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Preface

The first edition of this text appeared in 1994. Shortly after the third printing,
our editor suggested that we attempt a second edition because new develop-
ments in stellar structure and evolution had made our original work outdated.
We (the original authors, CJH and SDK) reluctantly agreed but with reser-
vations due to the effort involved. Our initial reluctance disappeared when
we were able to convince (cajole, twist the arm of, etc.) our new coauthor-
colleague Virginia Trimble to join us. (Welcome Virginial) We (i.e., all three
of us) hope that you agree that the present edition is a great improvement
compared to the 1994 effort.
Our objectives in this edition are the same ones we set forth in 1994:

What you will find is a text designed for our target audience: the typi-
cal senior undergraduate or beginning graduate student in astronomy
or astrophysics who wishes an overview of stellar structure and evo-
lution with just enough detail to understand the general picture. She
or he can go on from there to more specialized texts or directly to
the research literature depending on talent and interests. To this end,
this text presents the basic physical principles without chasing all the
(interesting!) details.

For those of you familiar with the first edition, you will find that some
things have not been changed substantially (F' = ma is still F' = ma), while
others definitely have. For example, Chapter 2 has been completely rewritten.
In many respects this chapter is the key to the text because it gives an ex-
tensive overview of the subject. The next eight chapters rely on the student’s
having absorbed large parts of Chapter 2, though complete understanding is
not necessary. Many students may wish to start with Chapter 2, although we
recommend at least a once-through of Chapter 1, which contains some fun-
damental material. And, in response to many requests, there is substantially
more observational material.

We have also attempted to improve on the graphics and have included
more than we did in the first edition. In addition, the instructor will find
many more “Exercises” at the end of chapters. They are a mixed bag (easy,
moderate, difficult) but we hope they illuminate much of what we have to
say. (Chapter 2 has more than its share; and, in fact, Chapters 1 and 2, plus
exercises, could be the basis of a mini-course.)



VI Preface

Also new is the inclusion on the inside back cover of a CD-ROM contain-
ing computer programs that make decent “zero-age main sequence” stellar
models and analyse those models for “pulsations” (radial and nonradial), and
stellar evolution codes everyone can play with. All are in FORTRAN and should
work on most computer platforms. Some of these codes are of our doing and
we thank Andy Odell and Dean Pesnell (Nomad Research) for their generous
contributions. As an additional bonus we have included portions of a colorful
and informative Stellar Evolution Tutorial put together by John Lattanzio
and his colleagues (as part of a commercial enterprise called Cantanout Ltd.).
See the README files on the CD-ROM for more information on the programs
and tutorial.

Acknowledgments: We wish to thank our many past and present senior col-
leagues and students for numerous reprints, corrections, suggestions, com-
ments, problems (i.e., exercises), book loans, help with computer glitches,
and PostScript figure files. They made our task much easier and enjoyable.
Blame the typos, mistakes, and confusion on us. In particular, for the second
edition, we thank Dave Arnett, Mitch Begelman, David Branch, Nic Brum-
mell, Joe Cassinelli, Maurice Clement, Peter Conti, Ethan Hansen, Henny
Lamers, Michael McCarthy, Cole Miller, Sean O’Brien, Dean Richardson,
Dimitar Sasselov, Ted Snow, Peter Stetson, Pat Thaddeus, Juri Toomre, Don
Vandenberg, Craig Wheeler, Matt Wood, and Ellen Zweibel. VT gives per-
sonal thanks to those people from whom she first learned that stellar struc-
ture and evolution is an exciting topic—namely, (the late) Thornton Leigh
Page, J. Beverly Oke, and Bohdan Paczynski. She also recognizes the past
encouragement and support of UCLA, CalTech, and the Stony Brook Sum-
mer School. CJH and SDK wish to thank their families and especially their
wives Camille and Leslie: may they not become computer widows yet again.
Finally, we send many kudos to our editors at Springer-Verlag.
The text was set in ITEX 2¢ by the authors.

Carl J. Hansen University of Colorado at Boulder
Steven D. Kawaler Iowa State University at Ames
Virginia Trimble University of California at Irvine,

University of Maryland at College Park
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1 Preliminaries

“Cosmologists have, nonetheless, made real progress

in recent years. This is because what makes things baffling
is their degree of complexity, not their sheer size

—and a star is simpler than an insect.”

— Martin Rees in Scientific American (Dec. 1999)

If you want an important insight into what makes stars work, go out and
look at them for a few nights. You will find that they appear to do nothing
much at all except shine steadily. This is certainly true from a historical
perspective: taking the sun as an example, from fossil evidence, we can extend
this period of “inactivity” to roughly three billion years. The reason for this
relative tranquility is that stars are, on the whole, very stable objects in which
self-gravitational forces are delicately balanced by steep internal pressure
gradients. The latter require high temperatures. In the deep interior of a star
these temperatures are measured in (at least) millions of degrees Kelvin and,
in most instances, are sufficiently high to initiate the thermonuclear fusion
of light nuclei. The power so produced then laboriously works its way out
through the remaining bulk of the star and finally gives rise to the radiation
we see streaming off the surface. The vast majority of stars spend most of their
active lives in such an equilibrium state, converting hydrogen into helium, and
it is only this gradual transmutation of elements by the fusion process that
eventually causes their structure to change in some marked way.

This chapter will introduce some concepts and physical processes that,
when tied together, will enable us to paint a preliminary picture of the stel-
lar interior and to make estimates of the magnitudes of various quantities
such as pressure, temperature, and lifetimes. Later chapters will expand on
these concepts and processes and bring us up to date on some modern de-
velopments in stellar structure and evolution. If, in reading this chapter, you
begin to get lost, we suggest you review Appendix A on some properties of
stars and nomenclature. Chapter 2 also contains similar material in narrative
form. For those of you who have no background in the subject at all, a good
first-year undergraduate text on astronomy for the nonscientist may be in
order, and several excellent texts are available. Some portions of the material
we present will also make considerable demands on your understanding of
physical processes. We assume that you have a decent background in under-
graduate physics. If not, you will have to catch up and review that material.

An alternative route some of you may wish to take is to start with Chap-
ter 2, which discusses stars and their evolution. If you choose this route,
however, you may have to return to this chapter for some elementary ma-
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terial. The later chapters go into more detail than you will need for now.!

Either way, go for it!

1.1 Hydrostatic Equilibrium

We first consider the theoretician’s dream: a spherically symmetric, nonro-
tating, nonmagnetic, single, etc., star on which there are no net forces acting
and, hence, no net accelerations. There may be internal motions, such as those
associated with convection, but these are assumed to average out overall. We
wish to find a relation that expresses this equilibrium. First assume that the
stellar material is so constituted that internal stresses are isotropic and thus
reduce to ordinary pressures, and define the following quantities, which will
be used throughout this text (and see Appendix B for a more complete listing
of symbols, including the values of physical and astronomical constants):

radius: r is the radial distance measured from the stellar center (cm)
total stellar radius: R
mass density: p(r) is the mass density at r (g cm™3)

temperature: T'(r) is the temperature at r (deg K)

2

pressure: P(r) is the pressure at r (dyne cm™2 = erg cm—?)

mass: M, is the mass contained within a sphere of radius r (g)

total stellar mass: M = Mz

luminosity: L., the rate of energy flow through a sphere at r (erg s=1)
total stellar luminosity: £ = Lg

local gravity: g(r), local acceleration due to gravity (cm s~2)

gravitational constant G' = 6.6726 x 1078 g~! cm? s72

solar mass: Mg = 1.9891 x 1033 g

solar luminosity: Lo = 3.847 x 1033 erg s~!

solar radius: Re = 6.96 x 100 cm

Note that the above are expressed in cgs units. There is really no good
reason for this, but cgs seem to be the units of choice for most researchers
dealing with stars. MKS (SI) units could just as well be used instead (and
are actually preferred by those dealing with magnetic fields in astrophysics).
We will use solar units (e.g., M/Mg or R/Rg) when appropriate.

! In any case, we strongly suggest you attempt as many of the exercises found near
the end of the chapters as possible. Note also that references are given at the
end of each chapter. (Since some of the journal abbreviations we use may seem
obscure, Appendix C lists them along with the full journal name.
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First we investigate the balance of forces within a star in equilibrium.
From elementary physics, the local gravity at spherical radius r is

_GM, _ f(MN (PN
g(r) = = 2.74 x 10 (M@> (RG) cm s (1.1)

and
Moydar — My = dM, = 4nr’p(r) dr (1.2)

is the mass contained within a spherical shell of infinitesimal thickness dr at
r. The integral of (1.2) yields the mass within 7,

M, z/ drr?pdr . (1.3)
0

Either (1.2) or (1.3) will be referred to as the mass equation or the equation
of mass conservation.

Now consider a 1-cm? element of area on the surface of the shell at r.
There is an inwardly directed gravitational force on a volume 1 cm? x dr of

pgdr:pG/;/lr dr . (1.4)
r
To counterbalance this force we must rely on an imbalance of pressure forces;
that is, the pressure P(r) pushing outward against the inner side of the shell
must be greater than the pressure acting inward on the outer face. The net
pressure outward is P(r)— P(r+dr) = —(dP/dr) dr. Adding the gravitational
and differential pressure forces then yields

P GM,

pr=——-——3 P (1.5)

as the equation of motion, where # is the local acceleration d?r/dt?.
By hypothesis, all net forces are zero, with # = 0, and we obtain the
equation of hydrostatic (or mechanical) equilibrium:

P GM,
= 5P =—9p. (1.6)

dr r
Since g,p > 0, then dP/dr < 0, and the pressure must decrease outward
everywhere. If this condition is violated anywhere within the star, then hy-
drostatic equilibrium is impossible and local accelerations must occur.
We can obtain the hydrostatic equation in yet another way and, at the
same time, introduce some new concepts.

1.2 An Energy Principle

The preceding was a local approach to mechanical equilibrium because only
local quantities at r were involved (although a gradient did appear). What we
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shall do now is take a global view wherein equilibrium is posed as an integral
constraint on the structure of the entire star.

Imagine that the equilibrium star is only one of an infinity of possible
configurations and the trick is to find the right one. (The wrong ones will not
be in equilibrium and just won’t do.) Each configuration will be specified by
an integral function so constructed that the equilibrium star is represented
by a stationary point in the series of possible functions. This begins to sound
like a problem in classical mechanics and the calculus of variations—and it
is. (We'll ease into the mathematics.) The function in question is the total
stellar energy, and so let’s see what it is.

The total gravitational potential energy, €, of a self-gravitating body is
defined as the negative of the total amount of energy required to disperse all
mass elements of the body to infinity. The zero point of the potential is taken
as the final state after dispersal. In other words, €2 is the energy required to
assemble the star, in its current configuration, by collecting material from
the outside universe. Thus 2 represents (negative) work done on, or by, the
system and it must be accounted for when determining the total energy of
the star.

We can get to the dispersed state by successively peeling off spherical
shells from our spherical star. Suppose we have already done so down to an
interior mass of M, 4+ dM,. and we are just about to remove the next shell,
which has a mass dM,.. To move this shell outward from some radius 7’ to
' + dr’ requires (G M, /r'*) dM,. dr’ units of work. To go from r to infinity
then gives a contribution to Q of (remembering the minus sign for )

dQ = —/ GM, dM,. dr' = _GM dM.,..

r'? r

To disperse the whole star requires that we do this for all dM,. or,

M
o-- [ S am,. (1.7)
0

r

The potential energy thus has the units of G M? /R and we shall often write
it in the form

Q=—q R (1.8)

For a uniform density sphere, with p constant, it is easy to show that the
pure number ¢ is equal to 3/5. (This should be familiar from electrostatics,
where the energy required to disperse a uniformly charged sphere to infinity is
—3e%/5R.) Because density almost always decreases outward for equilibrium
stars, the value of 3/5 is, for all practical purposes, a lower limit with ¢ > 3/5.

For the sun, GM?/Re ~ 3.8 x 10*® erg. If we divide this figure by
the present solar luminosity, L, we find a characteristic time (the Kelvin—
Helmholtz time scale) of about 3 x 107 years. More will be said about this
time scale later on.
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If we neglect gross mass motions or phenomena such as turbulence, then
the total energy of the star is 2 plus the total internal energy arising from
microscopic processes. Let F be the local specific internal energy in units of
ergs per gram of material. It is to be multiplied by p if you want energy per
unit volume. (Thus E will sometimes have the units of erg cm™2 but you will
either be forewarned by a statement or the appearance of those units.) The
total energy, W is then the sum of 2 and the mass integral of F,

W:/ EdM, +Q=U+Q (1.9)
M
which also defines the total internal energy
U :/ EdM, . (1.10)
M

The statement now is that the equilibrium state of the star corresponds to
a stationary point with respect to W. This means that W for the star in
hydrostatic equilibrium is an extremum (a maximum or minimum) relative
to all other possible configurations the star could have (with the possible
exception of other extrema). What we are going to do to test this idea is to
perturb the star away from its original state in an adiabatic but otherwise
arbitrary and infinitesimal fashion. The adiabatic part can be satisfied if
the perturbation is performed sufficiently rapidly that heat transfer between
mass elements does not take place (as in an adiabatic sound wave). We shall
show later that energy redistribution in normal stars takes place on time
scales longer than mechanical response times. On the other hand, we also
require that the perturbation be sufficiently slow that kinetic energies of
mass motions can be ignored.

If & represents either a local or global perturbation operator (think of it
as taking a differential), then the stellar hydrostatic equilibrium state is that
for which

(6W)aa =0

where the “ad” subscript denotes “adiabatic.” Thus if arbitrary, but small,
adiabatic changes result in no change in W, then the initial stellar state is in
hydrostatic equilibrium. To show this, we have to look how U and ) change
when p, T, etc., are varied adiabatically. We thus have to look at the pieces
of

(6W)aa = (00U )ag + (09)aq -

A perturbation § causes U to change by dU with
U—>U+5U:U+6/ EdMT:U—i—/ 0EdM, .
M M

The last step follows because we choose to consider the change in specific
internal energy of a particular mass element dM,. (This is a Lagrangian
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description of the perturbation about which more will be said in Chap. 8.)
Now consider 6 E. We label each mass element of dM, worth of matter and
see what happens to it (and E) when its position r, and p, and T are changed.

For an infinitesimal and reversible change (it would be nice to be able
to put the star back together again), the combined first and second laws of
thermodynamics state that

dQ =dE + PdV, =Tds . (1.11)

Here dQ is the heat added to the system, dF is the increase in internal specific
energy, and P dV), is the work done by the system on its surroundings if the
“volume” changes by dV,. This volume is the specific volume, with

V,=1/p (1.12)

and is that associated with a given gram of material. It has the units of
cm? g~!. (The symbol V will be reserved for ordinary volume with units of
cm3.) The entropy S, and @, are also mass-specific quantities. If we replace
the differentials in the preceding by ds, then the requirement of adiabaticity
(68 = 0) immediately yields (0F),,; = —P 6V,. Thus,

(60 )ag = — / PsV,dM, .
M
What is §V,? From the definition of the specific volume (1.12) and the

mass equation (1.2),

1 dwr?dr  d(47r3/3)
V = — = = . 1-].
P dM, dM, (1.13)

To make life easy, we restrict all perturbations to those that maintain
spherical symmetry. Thus if the mass parcel d M, moves at all, it moves only
in the radial direction to a new position r + dr. Perturbing V,, in (1.13) is
then equivalent to perturbing r or

dldm(r 4 67) /3]
dM.,

d(4mr26r)

V, —V,+6V, = Y

=V, + (1.14)
to first order in dr, where we assume that |07 /r| < 1. (Later we will call this

sort of thing “linearization.”) The variation in total internal energy is then
d(4mr? or)
), =— P———=dM, . 1.15

We now introduce two boundary conditions. The first is obvious: we don’t
allow the center of our spherically symmetric star to move. This amounts to
requiring that dr(M, = 0) = 0. The second is called the “zero boundary
condition on pressure” and it requires that the pressure at the surface vanish.
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Thus, Ps = P(M, = M) = 0. This last is perfectly reasonable in this context
because, in our idealized star, the surface is presumably where the mass runs
out and we implicitly assume that no external pressures have been applied.
(Later, in Chap. 4, we will have to worry quite a bit more about this “surface.”
It is more subtle than may appear.) Now integrate (1.15) by parts, apply the
boundary conditions to the resulting constant term, and find

dP
(60 = |
47 S dM.,
The corresponding analysis for (6€2).q yields

Q—>Q+5Q:—/ GM, er:Q+/ GMTérdMT
MmO Mmoo 2

Anr? 51 dM, .

to first order in ér after expansion of the denominator in the first integral.
Putting it all together, we find

dp GMT‘
(OW)aqa = /M {d/\/lr dnr? + 7‘2] or dM,. .
The aim is now to see what happens when this expression is set to zero.
Is hydrostatic equilibrium regained? This is an exercise from the calculus
of variations (as in Goldstein, 1981). If ér is indeed arbitrary (subject to
restrictions of symmetry), then the only way (§W).q can vanish is for the
integrand to vanish identically; that is, we must have

P GM,
dM, — dmrt

The equation of hydrostatic equilibrium (1.6) follows immediately after the
mass equation (1.2) is used to convert the differential from dM, to dr.
The version (1.16) is Lagrangian (the independent variable is dM.,.) and,
after introducing acceleration in the appropriate place, is often used in one-
dimensional hydrodynamical studies of stars (as in Chap. 7). Note that (1.16)
is necessary for an extremum in W but it does not give us the structure di-
rectly nor does it tell us whether more than one extremum exists or, for that
matter, whether any exist.

In this regard you may profit from considering the significance of (§2W) 4,
which is the second variation of W. As discussed by Chiu (1968, §2.12), the
sign of the second variation determines whether the equilibrium configuration
is mechanically stable or unstable to small perturbations. This is like asking
whether a pencil balanced on its point is “stable.” You are invited to play
with this idea in Ex. 1.11 near the end of this chapter.

(1.16)

1.3 The Virial Theorem and Its Applications

We now derive the virial theorem and, from it, obtain some interesting and
useful relations between various global stellar quantities such as W and 2.
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This will be primarily an exercise in classical mechanics at first, but the utility
of the virial theorem in making simple estimates of temperature, density, and
the like will soon be apparent. In addition, the theorem will be applied to
yield estimates for some important stellar time scales. Most texts on stellar
interiors contain some discussion of this topic. We shall follow Clayton (1968,
Chap. 2). A specialized reference is Collins (1978).

Consider the scalar product ), p; e r; where p; is the vector momentum
of a free particle of mass m; located at position r;, and the sum is over
all particles comprising the star. If the mechanics are nonrelativistic, then
recognize that

d d . 1d ~~d , o 1dI
@i 2P g e = 5 2 ) = 5

K2

where I is the moment of inertia, I = >, m;r?. On the other hand, the
derivative of the original sum yields

d dp; dr;
az:pﬂl‘i:zi: o ‘I‘i+zi:l)i°c;.

The last term is just >, mv? (v; is the velocity of particle i) and is equal
to twice the total kinetic energy, K, of all the free particles in the star.
Furthermore, take note of Newton’s law,

dp;
dt

where F; is the force applied to particle i, which we will take as the force of
gravity. Putting this together, we have

V2T
§ﬁ:2K+ZFi-ri. (1.17)

The last term is the virial of Clausius, but to make any use of it all of the
F; e r; must be specified.

That term in (1.17) is the mutual gravitational interaction of all the par-
ticles in the star. (And, remember, we are still ignoring magnetic fields, etc.
These make their own kinds of contributions.) To treat gravity, let F;; be
the gravitational force on particle i due to the presence of particle j. Because
such forces are equal and opposite, F;; = —F;;. You may verify by direct
construction (with, say, three particles) that

ZFi or; = Z(Fij er; + Fj;e1))
i (2}
1<J

where the sum is to be taken over all ¢ and j provided that ¢ < j. Hereafter,
this convention will be assumed and the limits on the sum will not be given.
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From elementary physics, the Newtonian gravitational force is

Gm;m;
Fijj=——5"(ri—r;)
T
where 7; is the interparticle distance 7;; = |r; — r;|. The gravitational con-
tribution to the virial is then

Y Fye(ri—r;)=—

using the equal and opposite expression to obtain the first term. It should be
apparent that the last sum (with minus sign) is just the negative of the work
required for dispersal to infinity; that is, we have recovered 2. Thus we have

72 Gﬁ?imj = Virial

Tij

Virial = Q .
Combining this with (1.17), we obtain
d*1
%W =2K +Q (1.18)

as the “virial theorem,” which we will often refer to as just the “virial.”

Note that this expression refers to quantities derived from sums (or in-
tegrals) over the whole star. If we had chosen instead to consider only a
portion of the star—as, say, defined by a sphere of radius r¢ < R and vol-
ume Vg—then I, K, and 2 would refer only to that portion. However, the
spherical shell containing material within radii r¢ < r < R would contribute
an additional term to the right-hand side of (1.18) given by —3PsVs, where
Pg is the pressure at the surface rg. If r¢ =+ R and Ps — 0 (as in a zero
boundary condition on pressure), then (1.18) is unchanged because we have
just encompassed the whole star and no external pressures act at R. (For a
derivation of this additional term see, for example, Cox 1968, §17.2, or Clay-
ton, 1968, pp. 134-135, and you can try it yourself in Ex. 1.8.) We will not
have occasion to use this term, but its possible presence should be kept in
mind.

We now interpret what the energy K represents. For example, is it U or,
if not, how does it differ? We had

2K = Zmﬂ? = Zpi eV, . (1.19)
i i

The scalar product of p and v measures the rate of momentum transfer and,
hence, from the kinetic theory of gases, must be related to the pressure. In
the continuum limit of an isotropic gas, pressure is given by?

2 This may seem to come out of the blue but, as long as the “gas” is perfect
and isotropic, it also applies to a radiation “gas” and other situations. Equation
(1.20) is the compact way of expressing derivations of ideal gas and radiation
pressures as given, for example, in §2-1 of Clayton (1968). You should be able
to construct this yourself, realizing that the factor of 1/3 comes from averaging
over angle in the isotropic gas.
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P = %/n(p)pov d*p (1.20)
P

where n(p) is the number density of particles with momentum p and the
integration is over all momenta. The units of n(p) are number cm =3 p=3.
Since the sum in (1.19) includes all particles, it should be clear that (1.20)
need only be integrated over total volume V' (in cm?) to obtain an expression

for K—mnamely,

2K = 3/ Pdv. (1.21)
v
Furthermore, since dM,. = p d(37r3) = p dV/, we find
P
2K = 3/ ~ M, (1.22)
M P
and the virial theorem becomes
d?I 3P
1
s—s = —d Q. 1.23
2 dt? /M P Mr (1.23)

We now apply this to stars by looking into some possible choices for the
equation of state.

1.3.1 Application: Global Energetics

Consider a simple, but useful, relation between pressure and internal energy
of the form
P=(y—-1)pE (1.24)

where 7 is a constant and E is still in erg g~!. This is usually called a “y-law
equation of state” and is not just of academic interest. For example (and as
we will show later), for a monatomic ideal gas v = ¢p/cy, = 5/3 where ¢,
and ¢, are, respectively, the specific heats at constant pressure and volume.
In this instance P = 2pFE. For radiation or a completely relativistic Fermi
gas v = 4/3. Since 2K = 3(y — 1) [ E dM,—from combining (1.22) and
(1.24)—then K = 2(y — 1)U. Thus K = U only if v = 5/3; that is, the total
kinetic energy is the same as the total internal energy only under certain
circumstances. Note that a v of 5/3 does not necessarily mean the gas is
ideal and monatomic.
The virial theorem is now

AT
242
If we let W =U + Q, as in (1.9), then the theorem becomes

=3(v—1U+9Q. (1.25)

1 L nw 4)Q 1.2
3ge =3 =W - By -4)Q. (1.26)
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For hydrostatic equilibrium d?I/dt? must be zero and W is related to §2 by

3y —4
3(v—-1)

which shows explicitly the relation between W and 2 for hydrostatic stars
with the y-law equation of state.

Since the energy W is that which is available to do useful work, a dynam-
ically stable star should have W < 0. Otherwise, the star would have enough
energy, at least in principle, completely to disperse all or part of itself. Equa-
tion (1.27) then implies that a star in hydrostatic equilibrium should have a
that exceeds 4/3. However, and as we shall find later on, even this condition
does not always guarantee safety. The star could contain a potentially explo-
sive fuel which, if ignited, could also cause W to exceed zero for a time. In
addition, we do not necessarily expect the total energy to remain absolutely
and forever constant. After all, stars do shine and lose energy in doing so.

We shall now explore some consequences of energy losses due to radiation
where the energy source is gravitational energy released by contraction.

Q0 (1.27)

1.3.2 Application: The Kelvin—-Helmholtz Time Scale

Barring bizarre circumstances, a star derives its energy to shine from three
sources: internal energy, thermonuclear fuel, and gravitational contraction.
One or more sources are used at one time or another. Here we briefly examine
the last source. A more complete treatment will be deferred to Chapter 6,
where stellar energy sources are discussed in more depth.

Suppose a star contracts very gradually while maintaining sphericity and
hydrostatic equilibrium at all times. (Realize that contraction cannot occur
without some acceleration unless all mass elements are just coasting. What we
mean here is that hydrostatic equilibrium is to be maintained almost exactly.)
As the star contracts, 2 and, possibly, W change. Denote these changes by
AQ and AW. If « remains constant during contraction, then (1.27) implies

3y—4
3(v—1)

Because we cannot follow the star’s progress exactly (at least at this stage in
the text) we use some dimensional arguments to estimate what  and W do
upon contraction.

Let R be the total stellar radius (or some other representative radius) and
AR be its change through some stage in the contraction. We assume v >
4/3. From (1.8), Q o« —GM?2/R, which implies that AQ o (GM?/R?)AR
for constant g. Since AR < 0 for contraction, then AQ is also negative in
these circumstances and the star sinks deeper into its own potential well.
This means that energy has been liberated in some form. The virial result
(1.28) also implies that AW < 0 and thus the system as a whole has lost

AW = AQ . (1.28)
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energy. What exactly is the energy budget here? Well, part of what has been
made available goes into internal energy. This may be seen from (1.25) (with
d?I/dt? set to zero for equilibrium), which becomes
1

AU 3 =1) AQ (1.29)
and yields 6U > 0 for contraction. Of the |AQ| units of energy made available,
AU is used to “heat” up the star. The rest is lost from the system. At this
stage in our discourse, it is simplest to assume that this energy has been
radiated from the stellar surface during the contraction; that is, power has
been expended in the form of luminosity. Note that if v = 5/3 (as for an ideal
monatomic gas), then AU = —AW = —AQ/2 and the split between internal
energy and time-integrated luminosity is equal. Note also that if an increase
in temperature is associated with the increase in U, then the star has an
overall specific heat that is negative: a loss of total energy means an increase
in temperature. This phenomenon is an important self-regulating mechanism
for normal stars. Finally, if v = 4/3, then AW = 0 and all the energy goes
into increasing U and the star need not radiate at all.

Suppose we now extend the above analysis and hypothesize that contrac-
tion is solely responsible for maintaining stellar luminosities. For an ideal
gas star with v = 5/3, AW = AQ/2 = (¢/2) (GM?/R?) AR. If we equate
—dW/dt to the luminosity £ (as a power output), then

AW qGM? <dR/dt>

L= ="72% R

(1.30)

It is clear that if £ is kept constant, then this equation defines a characteristic
e-folding time for radius decrease of

NQGMQ
T2 LR

where the “KH” subscript stands for the originators of the idea, Baron
W.T. Kelvin and H.L.F. Helmholtz. Choosing a representative value of ¢
of 3/2 (which is about right for the sun),

2 ~1 —1
tkn ~ 2 x 107 (/C:;) (é) <7§®> years. (1.32)

We know that a figure of 2 x 107 years for radius changes for the sun
cannot be correct from fossil evidence: terrestrial life is the same now (ex-
cept for relatively inconsequential developments) as it was many millions of
years ago. Any major structural change in the sun would have had profound
consequences for life and there is no sign of such consequences. However, we
will find that most stars do depend on (or, more accurately, are forced into)
gravitational contraction at some stage of evolution, and the corresponding
time scales can be comparatively very short.

tkH (1.31)



1.3 The Virial Theorem and Its Applications 13
1.3.3 Application: A Dynamic Time Scale

Consider a star in hydrostatic equilibrium composed purely of an ideal gas
so that W = /2 ~ —GM?/R. If, by some magic, an internal process were
to take place instantaneously whereby v — 4/3 but W did not change signif-
icantly, then d*I/dt* ~ —GM?/R from (1.26). By dimensional arguments,
I ~ MR?, so we define a time scale tqy, by d*I/dt* ~ I/tiyn ~ MR? [tayn.
Equating the two expressions for d*1/dt? yields tﬁyn ~ R?/GM or

1
tayn ¥ ——— 7> 1.33
T (133

where (p) ~ M/R? is approximately the average density. The dynamic time
scale tqyy is then a measure of the e-folding time for changes in radius as the
star makes dynamic adjustments in structure. (In this example, d?I/dt? is
negative and the star collapses.) For the sun tqyy, is about an hour, which is
many orders of magnitude shorter than txy.

Expression (1.33) is a form of the “period—mean density relation” and it
will come up again when we discuss variable stars.

1.3.4 Application: Estimates of Stellar Temperatures

We can squeeze even more out of the virial theorem. Consider a star of
uniform density and temperature composed of a monatomic ideal gas. The
internal energy density is

NLET 3

erg cm

E=3nkT =3p (1.34)
as we shall show in Chapter 3 (although it is an elementary result). Here
n is the number density of free particles (in number cm™3); k and N,, re-
spectively, are Boltzmann’s and Avogadro’s constants; and p is the mean
molecular weight (usually in amu) per ion or atom of the stellar mixture.
The quantity p will be discussed in much more detail shortly (in §1.4.1), but,
for now, regard it as that thing which makes

n:pNA.
I

For a typical stellar mixture of elements it is of order unity. In the language
of pu, the ideal gas pressure is
pNLET

P =nkT = . (1.35)
W

Multiplying E by the stellar volume V yields U and, since pV = M,
we find U = 3MNLET/uu. On the other hand, U = —Q/2 from the virial
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theorem (1.25) for the v = 5/3 gas, and = —2GM?/R for the constant-
density sphere. Equate the two forms for U; solve for T in terms of p, M,
and p; eliminate R by way of the density, and find

2/3
T = 4.09 x 10%(”‘) /3K (1.36)
. e . .

Before discussing the numerical results obtainable from this expression, it is
worthwhile deriving the main components from another perspective.

The Lagrangian expression for the equation of hydrostatic equilibrium
(1.16) is useful in this regard. In dimensional form it states that P is pro-
portional to GM?2/R?. But P also varies as MT/R3u after density has been
eliminated in the ideal gas law, P = nkT. After equating the two versions
of P we find (1.36) (but not the constant). The point is that if R is made
smaller, for example, then p increases as 1/R?® and, consequently, so would
the ideal gas pressure were T to stay constant. This dependence of P on
R is not strong enough, however, because P must also increase as 1/R* for
hydrostatic equilibrium independent of the temperature. Thus the ideal gas
equation of state and hydrostatic equilibrium demand that 7" must increase
as 1/R o p'/3.

Figure 1.1 shows (1.36) plotted as logT versus logp for u = 1 with M
ranging between 0.3 and 100 Mg. As a typical star, consider the present-
day sun, which has an average density of (p) ~ 1.4 gcm~3 and a central
density of approximately 80 gcm™2. If “average” may be identified with the
quantities in (1.36), then an average temperature for the sun is a few million
degrees. Even though it doesn’t make a lot of sense to talk about an average
temperature for a star, we note that the central temperature for the present-
day sun is T, ~ 15 x 10° K, which close to the number just found. As we
shall see later, a temperature greater than about 10° K is just what is needed
to initiate hydrogenic nuclear fusion in stars. A star thus produces energy by
nuclear fusion because hydrostatic equilibrium requires high temperatures.

Figure 1.1 has other lines on it that partition the log p-logT plane into
regions where equations of state other than the ideal gas law dominate.
The “degeneracy” boundary defines that region where Fermi-Dirac degen-
erate electrons begin to play a major role (and see Chap. 3). Above a line
corresponding to about 25 M), radiation pressure (with a v of 4/3 and
P = %aT‘l) becomes important. The areas beginning at p ~ 10 g cm™2 and
T ~ mec®/k ~ 5 x 10° K (mec? is the electron rest mass energy) are regions
where relativistic effects come in. All of these domains have their own pecu-
liarities, which can greatly modify the simple picture built up thus far. But
we shall have to wait for Chapter 3 to see what they are.

1.3.5 Application: Another Dynamic Time Scale

We have already found one dynamic time scale associated with readjustments
of the moment of inertia when hydrostatic equilibrium is seriously thrown out
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Fig. 1.1. The ideal gas virial result for temperature versus density for various
masses (in solar units) from Eq. (1.36). Radiation pressure dominates above the
dashed line and degenerate electrons must be considered below the dotted-dashed
line. Regions where relativistic effects are important are indicated. The location of
a constant-density “sun” is shown by the ©.

of kilter. Now consider perturbations in structure induced by small-amplitude
adiabatic sound waves and, specifically, compute how long it takes an adia-
batic sound wave to travel from, say, the center of a star to the surface and
back to the center again. (A discussion of mechanisms that might make such
waves, or cause them to be reflected, we postpone until Chap. 8.) If the stellar
sound speed is v, taken as constant for now, and II is the “period” for one
complete traversal, then

m=—. (1.37)

Vs

From elementary physics, the square of the local adiabatic sound speed is

given by
dP P
v = () =T~ (1.38)
ad

where I'1, our first “adiabatic exponent,” is

dInP p (dP
T = = 2= . 1.
' <dlnp)ad P(dp>ad ( 39)

We shall find later that I';, which measures how pressure changes in response
to changes in density under adiabatic conditions, is of order unity (and, of
course, it is dimensionless). For an ideal monotonic gas (1.38) yields the
elementary result vy o< V7.
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If hydrostatic equilibrium is closely maintained while the weak sound wave
passes through the star, then version (1.23) of the virial theorem yields

P 2 302
—Q:3/ ferz?,/ s aM, ~ 2 m
M P m T I

where the sound velocity and I'; appearing on the right-hand side represent
suitable averages of those quantities. Since |Q| ~ GM?/R we then obtain
an estimate for the period of Il ~ (R?/ G./\/l)_l/ ®. Constants of order unity
(such as T'1) have been set to unity. After eliminating mass and radius in
favor of density we find

1 .04
I~ ~ days (1.40)

G2 [/ (pe)]?

where (po) = 1.41 g cm~3. The final factor of 0.04 days comes from taking
care with some of those quantities of order unity and inserting information
that will be dealt with in Chapter 8.

Expression (1.40) is the same as tgqy, of (1.33) and rightly so because
they both describe mechanical phenomena involving the whole star. A more
careful analysis of how standing sound waves behave, however, introduces
an additional factor of (3I'; — 4)1/2 in the denominator of (1.40). Again, a
“gamma” of 4/3 will do curious things—as is obvious if 'y < 4/3. We will
postpone this discussion until it is time to examine variable stars.

1.4 The Constant-Density Model

We are now going to construct a stellar model by insisting that density be
everywhere constant. Of course, in real life, we can’t do this—the run of den-
sity is determined by many factors—but the model does have some utility.
The constant density “model” of §1.3.4 was somewhat of a fudge. There we
claimed that the star was in hydrostatic equilibrium, at constant tempera-
ture, and the ideal gas law was responsible for the pressure. A little thought,
but not very much, should convince you that those conditions are contra-
dictory. They imply that the pressure must be constant and yet hydrostatic
equilibrium is still satisfied. We will make amends now.

If we set p = p. = constant, with “c” meaning center, then the mass

4

equation (1.2) yields M, = gm"?’pc. This last expression is true up to the

surface where r = R and M, = M. Thus, after some trivial algebra,

This is now used in the Lagrangian form of the hydrostatic equilibrium equa-
tion (1.16) to rid ourselves of r. The pressure gradient is then
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P GM (M,
dM,  47RA* \ M ’

Integrate this using the zero pressure boundary condition at R to find

1—(%OW3:RP—691 (1.41)

where P, is the central pressure (at M, = 0) with

P=P

3 GM? MN /RN
Po=2""" _134x10"(2—) ([ =— -2, 1.42
o R 34 x 10 (MG) (RQ) dyne cm (1.42)

The numerical value for P, can be shown to be a lower limit for central pres-
sures in hydrostatic objects if it is assumed that p always decreases outward.
This assumption is correct except for some very unusual circumstances (which
may, in any case, signal an incipient instability in structure). That P, is a
lower limit seems reasonable because stronger concentrations of mass toward
the center than that of constant density imply stronger gravitational fields
which, in turn, require higher pressures to maintain equilibrium. (See, for
example, the “linear star model” of Stein 1966, which we include as Ex. 1.3.
You might also try Ex. 1.2. Tt explores another lower limit on P,.)

A simple exercise for the reader is to verify that the above expressions for
pressure and mass distribution satisfy the equilibrium version of the virial
theorem (1.23) with d*I/dt*> = 0 and Q = —2GM?/R.

To find a temperature distribution we have to specify an equation of
state and we again choose the monatomic ideal gas as a useful example with
P = nkT. But, before we reach our objective, we should first figure out how
to compute n or, equivalently, the mean molecular weight pu.

1.4.1 Calculation of Molecular Weights

Assume that the gas is composed of a mixture of neutral atoms, ions (in
various stages of ionization), and electrons but, overall, the gas is electrically
neutral. These are the free particles composing n. First collect the ions and
neutral atoms together into nuclear isotopic species, calling all of them “ions”
for now, and denote a specific species by an index 7. Thus, for example, assign
some particular index to all the ions of *He. Each nucleus of index 3 has an
integer nuclear charge Z; and a nuclear mass number, in amu (atomic mass
units), of A;. For *He, Z; = 2 and A; = 4. (The atomic mass of *He is not
exactly 4, but this is close enough.) Furthermore, let X; be the fraction by
mass of species ¢ in the mixture such that ), X; = 1. Thus, for example,
if 70% of the mass of a sample of matter were composed of species 4, then
X; = 0.7. The ion number density, in units of cm™3, of a given species i is
then
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(mass/unit volume) of i  pX;N,

ny; = (143)

s

(mass of 1ion) of i  A;

where Avogadro’s number N, = 6.022142 x 10?3 mole™!. Just to be sure we
understand where this comes from, recall that “amu” is so defined that an
atom of carbon isotope '2C has a mass of exactly 12 amu, N, is the number
of 12C atoms in 12 g of 2C, and a “mole” is the amount of substance in a
system that contains as many atoms as there are atoms in 12 g of '2C. You
can take it from there.

The total for all ions is

n, = an,i = pN, Z % . (1.44)

Now define pu; as the “total mean molecular weight of ions” such that

N
n, =22 (1.45)
My

3 Xi

—~ A;
K3

The ion mean molecular weight is then a sort of mean mass of an “average”

ion in the mixture and it contains all the information needed to find the

number density of ions.

The electrons are a bit more difficult to treat. To find out how many free
electrons there are we must have prior knowledge of the states of ionization
for all species. This information is difficult to come by and we will defer until
later a discussion of how it is obtained. For now we assume that some good
soul has done the work for us and has supplied us with the quantities y; that
contain what we want. These y; are defined such that the number density of
free electrons associated with nuclear species 7 is given by
X

Nei = Yi Zi Ny = pNa (A) YiZi - (147)

or
—1

o = (L.46)

Thus, out of the Z; electrons that a particular ion of species i could possibly
contribute to the free electron sea, only the fraction y; are, on average, actu-
ally free. We call y; the “ionization fraction.” A value y; = 1 then means that
the species is completely ionized, whereas y; = 0 implies complete neutrality.
The total electron number density is therefore

X; N
Ne = an- = pN, Z <A> il = 'OM A (1.48)

(5]

K2

which also defines p., the “mean molecular weight per free electron.” (Note
that in no way are we assigning a “weight” to the electron in this sense.)
Thus
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Zi Xiyi

vy (1.49)

He =

K3
If you look carefully at the way p. is constructed you will realize that it is the
ratio of the total number of nucleons (protons plus neutrons) contained in all
nuclei to the total number of free electrons in any sample of the material.

Finally, from the definition of n as the sum of n,; and n,, we easily find
that the total mean molecular weight is

1 177!
0= [ + } (1.50)
o He
with N
n:nl—i-ne:p = (1.51)
1

For relatively unevolved stars, in which nuclear transformations have not
progressed to any great extent, the major nuclear constituents are hydrogen
(1H) and helium (*He). We shall refer to their mass fractions (X;) as, respec-
tively, X and Y. All else shall collectively be called “metals” (or, sometimes,
“heavies”) and their mass fraction is denoted by Z (not to be confused with
ion charge). A typical value of Z might be, at most, a few percent. Obviously

X+Y+Z=1. (1.52)

A catalogue of the relative abundances of metals seen on the surfaces of
most stars, including the sun, reveals that the dominant heavy elements are
carbon, nitrogen, oxygen, and neon. Elements heavier than those, up to nickel,
contribute a little, and past there we find only traces. For the most part, the
isotopes of the major heavy elements fall along the “valley of beta-stability”
in which Z;/A; = 1/2. The same value of charge to mass number also applies
to “He.

An example of the metal abundances, X;, seen in the solar atmosphere
is shown in Fig. 1.2 for the elements from carbon (Z; = 6) to nickel (Z; =
28). The abscissa is the average mass number for the element using relative
isotopic abundances observed for the earth. The set is normalized so that
> X; = Z = 0.02, which is close to the metal mass fraction for the solar
atmosphere. Note that oxygen is the most abundant (by mass), followed by
carbon, neon, etc. Assuming that standard versions of the Big Bang are
correct, these (and the other metals) are not the result of element production
in the very early universe. Of course we wouldn’t mention this at all in this
text were it not that stars were (and are) responsible—as we shall eventually
see. (For an expanded version of Fig. 1.2 see Fig. 2.19 and the discussion in
§2.8.1.)

In the deep stellar interior, hydrogen, helium, and most of the metals are
completely ionized (y; = 1). If, in addition, metals compose only a minor
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Fig. 1.2. Shown are metal abundances for the solar atmosphere versus average
elemental mass number: from material reviewed in Grevesse and Noels (1993).

fraction of the total, with Z < 1, then you can use the results of the above
analysis to find the following convenient approximation for p:

2

He T X

(1.53)

Note, however, that in detailed modeling of stars, this is to be used with
great caution; ionization might not be complete (or elements may even be
completely neutral) and abundances may be quite strange.

The ion mean molecular weight can be similarly approximated under the
same conditions as above with the additional observation that Z is small
compared to an average A (A = (4;) = 14 or so). The result is

4
1+3X°

Ly A (1.54)
Using (1.53) and (1.54), an approximation for the total mean molecular
weight is then

4
3+5X
For a star just beginning the longest active period of its natural life—a “zero-
age main sequence” star (ZAMS)—typical abundances are X ~0.7, Y ~0.3,
and Z ~0.03 (or somewhat less for stars formed earlier on in galactic history).
These correspond to pu; =~ 1.3, pe ~ 1.2, and p ~ 0.6.

Now that we have reasonable approximations for the molecular weights
and are assured that typical values are near unity, we return to the constant-
density model.

TS (1.55)
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1.4.2 The Temperature Distribution

Taking P = pN kT /p, and using the central pressure of (1.42), the central
temperature for the constant-density model becomes

C1GM p s [ MN(R\!
T.=5—7% NAk_1.15><10 “(M@>(R@) K. (1.56)

The temperature distribution with respect to » and M, is of the same form
as that of the pressure in (1.41) with P, replaced by T..

For solar values of mass and radius, this central temperature is remarkably
close to that of the present-day sun found from sophisticated solar models and
is an improvement over the virial “average” estimate of (1.36). The constant-
density model result for Tt is higher than that from the virial because we have
found the detailed run of pressure in the model and not just some average
pressure.

As noted earlier, however, we cannot just assume a density distribution
and expect such a stellar model to satisfy all the equations of stellar structure.
We now discuss some of these additional constraints and equations.

1.5 Energy Generation and Transport

One goal of the effort in fusion energy research is to heat up a plasma contain-
ing potential thermonuclear fuel to temperatures exceeding about a million
degrees and then physically contain it for a sufficiently long period of time.
Most stars do that as a matter of course. They have the temperatures, con-
tainment mechanism (gravity), fuel, and time, and can fuse together light
elements into heavier ones and, by doing so, release energy. We shall not dis-
cuss here precisely what kinds of thermonuclear burning take place in stars
(see Chap. 6) but we shall extend our notion of equilibrium to include energy
generation and how it is balanced by the leakage of energy through the star.
In particular, suppose some sort of nuclear burning is taking place within a
given localized gram of material. If the energy generated in that gram is not
transferred elsewhere, then a nonequilibrium condition holds and the mater-
ial heats up. If, on the other hand, we succeed in somehow removing energy
as fast as it is liberated, and no faster, then we say the material is in “ther-
mal balance.” (Note that this term is not universally used by all authors in
this context.) The sample of material is, of course, not strictly in equilib-
rium because, in the case of fusion, the composition is changing with time
as more massive nuclear species are produced—but usually very slowly. We
shall return to that problem later.

To express thermal balance quantitatively, consider a spherically symmet-
ric shell of mass dM,. and thickness dr. Within that shell denote the power
generated per gram as € (erg g~! s71). We shall refer to it as the “energy gen-
eration rate.” The total power generated in the shell is 4712 pe dr = € dM,..
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To balance the power generated, we must have a net flux of energy leaving
the shell. If F(r) is the flux (in units of erg cm™2 s™1), with positive values
implying a radially directed outward flow, then £, = 47r2F(r) is the total
power, or luminosity, in erg s=!, entering (or leaving) the shell’s inner face,
and L, 44, = 47r2F(r + dr) is the luminosity leaving through the outer face
at r + dr. The difference of these two terms is the net loss or gain of power
for the shell. For thermal balance that difference must equal the total power
generated within the shell. That is,

Loyagr— Ly =dL,. = 47rr2p5 dr

which yields the differential equation

dr,
dr

= 472 pe . (1.57)

We will refer to this (or a more general version of it) as the “energy equation.”
Its Lagrangian form is

ac,

=c

M,
by way of the mass equation. Note that we have used total differentials here.
If the “equilibrium state” were also a function of time, then partials would
appear instead. Note also that other energy sources, such as gravitational
contraction, are being completely ignored at the moment.

Since, for now, we are only considering € > 0, then £, must either be
constant (in regions where ¢ = 0) or increase monotonically with r or M,..
We will demonstrate later that € is usually a strong function of temperature
and, because temperature is expected to decrease outward in a star, £ should
be largest in the inner stellar regions provided that fuel is present. Thus £,
should increase rapidly from the center, starting from zero, and then level
out to its surface value of £. There are exceptions to these statements for
highly evolved stars, but they will suffice for now.

Future discussions will make extensive use of a power law expression for
¢ of the form

(1.58)

e = eop™" (1.59)

where g, A, and v are constants over some sufficiently restricted range of T,
p, and composition. As important examples, consider briefly the two ways
that stars burn hydrogen ('H) into helium (*He). These are the proton-
proton (pp) chains, and the carbon-nitrogen-oxygen (CNO) cycles. The first
is, for the most part, a simple sequence of nuclear reactions, starting with one
involving two protons, that gradually add protons to intermediate reaction
products to eventually produce helium. The second cycle uses C, N, and O as
catalysts to achieve the same end. For typical hydrogen-burning temperatures
and densities (T' > a few million degrees, p of order 1 to 100 g cm™3), the
temperature and density exponents v and A are given in Table 1.1. We also



1.5 Energy Generation and Transport 23

give the exponents for the “triple-alpha” reaction, which effectively combines
three He nuclei (alpha particles) to make one nucleus of >C at temperatures
exceeding 10® K. The constant term &y need not concern us for the present,
and the derivation of all these numbers will be given in Chapter 6.

Table 1.1. Temperature and Density Exponents

Energy generation mode for e A v
pp-chains 1 ~ 4
CNO-cycles 1 =15
Triple-« 2 ~ 40

On the hydrogen-burning main sequence (discussed in Chap. 2), the pp-
chains dominate for stars of mass less than about one solar mass, but the
CNO cycles take over for more massive stars. This sensitivity to mass reflects
the combined factors of the general tendency of temperatures to increase with
mass (see Fig. 1.1) and the relative values of the temperature exponents, v,
for the two modes of energy generation.

The total energy released in the conversion of hydrogen to helium is ap-
proximately 6 x 108 ergs for every gram of hydrogen consumed. To get an
idea of what this might represent, a simple calculation will easily convince
you that the sun, with its present-day hydrogen content of roughly 70% by
mass, could continue to shine for almost 10! years at its present luminosity
just by burning all its available hydrogen.

What about the other factor in thermal balance? What determines L£,.7
As we shall see, there are three major modes of energy transport: radiation
(photon) transfer, convection of hotter and cooler mass elements, and heat
conduction, with the first two being most important for most stars. (White
dwarfs depend heavily on the last mode, but those stars are in a class by
themselves.)

For those of us concerned primarily with the interiors of stars, it is for-
tunate that the transfer of energy by means of radiation is easily described.
Except for the very outermost stellar layer, the energy flux carried by radia-
tion obeys a Fick’s law of diffusion; that is, the flow is driven by a gradient
of a quantity having something to do with the radiation field. The form is

d(aT*?)

F(r)=-D =

where aT? is the radiation energy density and D is a diffusion coefficient.
We shall show in Chapter 4 that the important part of D is the “opacity,”
Kk, which, by its name alone, lets you know how the flow of radiation is
hindered by the medium through which it passes. We suspect that D should
be inversely proportional to x. Without further ado, multiply F(r) by 4mr?
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to obtain a luminosity, put in the relevant factors in D to be derived later,

and find
drr2c daT?

L, =— 1.60
3kp dr ( )
The alternative Lagrangian form is
4 2\2 T4
g, = Wrr)Te da (1.61)

3k dM, -

We shall have ample opportunity to use both of these forms.

The calculation of opacities is no easy matter and there is a whole industry
set up for just that purpose. Chapter 4 will discuss what goes into them but,
for now, we write a generic opacity in the power law form

—S

k= kop"T™% cm? g~ t. (1.62)

As in the case of ¢, the coefficients and powers, kg, n, and s, are constants.
Important examples are electron Thomson scattering opacity (n = s = 0),
which is important for completely ionized stellar regions, and Kramers’ opac-
ity (n =1, s = 3.5), which is characteristic of radiative processes involving
atoms.

The luminosity carried by the transport of hot or colder material, which
we call convection, is a good deal more difficult to treat. We shall give a
simple prescription in the section below along with simple ideas that tie
together what has been discussed thus far.

1.6 Stellar Dimensional Analysis

Some texts on stellar evolution (and see especially Cox, 1968, Chap. 22) dis-
cuss the topics of “homology” and “homologous stars.” These terms describe
sequences of simple spherical stellar models in complete equilibrium where
one model is related to any of the others by a simple change in scale. More
specifically, assume that the models all have the same constituent physics
(equation of state, opacity, etc., as given by power laws), the same uniform
composition, and that M, and r are related as follows. If one of the stars
in the homologous collection is chosen as a reference star—call it star 0 and
refer to it by a zero subscript—then these relations must apply in order that
the stars be homologous to one another:

R

r = RfOTO and (163)
M

= v, 1.64

M MOM 0 (1.64)

where those quantities not subscripted with a zero refer to any other star
in the collection. These relations mean that the stars have the same relative
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mass distribution such that radius and the mass interior to that radius are
related by simple ratios to the corresponding quantities in the reference star.
We may also replace these equations by their derivatives keeping R, Rg, M,
and M all constant.

A consequence of the above is that the mass equations (1.2) for two stars
may be divided one by the other to give a relation between the densities at
equivalent mass points:

aM, 1 [(r\° MY (RN
p=ro er,o d?"/d'f‘o (7‘0) = Po <M0> (Ro) ' (165)
For stars of constant, but differing, densities this is obvious. It would also
be an obvious result in a comparison of average densities between any two
stars. However, (1.65) is true in general only for homologous stars.

What follows is a simplified treatment of homologous stars using a form
of dimensional analysis. We shall follow the scheme of Carson (1986), and the
results obtained will turn out to be identical to those obtained from standard
homology arguments. They will also be very useful for estimating how various
stellar quantities such as mass, radius, etc., are related. Again, however, the
results are not to be used blindly.

We start by writing the Lagrangian version of the equation of hydrostatic
equilibrium (1.16) in a form that emphasizes the dependence of pressure on
mass and radius. Fundamental constants, such as G, could be retained but,
at the end, it would be apparent that they were not needed. We have

P (1.66)

where M and R are chosen to represent mass and radius variables as in the
spirit of (1.65). The pressure is specified in power law form in the same way
as was done for the energy generation rate and opacity. Thus, we write

P = PypXeTXT. (1.67)

The constants Py (which will not be needed), x,, and xr, are assumed to be
the same for all stars in the collection. Note that (1.67) may also be written
in logarithmic differential form as

dinP = x,dlnp+ x,dInT . (1.68)

If (1.66) and (1.67) are equated, we then arrive at a relation between R, p,
T, and M, which we also written in logarithmic differential form: namely,

4dInR +x,dInp+ xrdInT =2dIn M . (1.69)

The plan is to treat the energy equation (1.58), the power law form of
the energy generation rate (1.59), the diffusive radiative transfer equation
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(1.61), and the power law opacity (1.62) in the same way as we just did for
the pressure. The aim will be to construct separate R, p, T, and L versus M
relations as

R o< M% (1.70)
p o< M (1.71)
T oc MOT (1.72)
L x M (1.73)

where the exponents « are to be determined. We have the requisite number
of equations to do this. For example, (1.70-1.73) may be inserted into (1.69)
to yield one relation between the as:

dor + Xp0p + XrOr = 2

where a common factor of d1n M has been divided out. If this sort of thing is
done for, in order, the mass equation, the equation of hydrostatic equilibrium
(just done), the energy equation, and, finally, the transfer equation, we then
obtain the matrix equation

3 1 0 0 ar 1
4 X, 0 xr a, | 2
0 A -1 v or | | -1 | (1.74)
4 —n -1 4+s Qo 1

The determinant of the matrix on the left-hand side of (1.74) is
Diad = (Bx, —4) (v —5—4) — x2(3X+3n +4) (1.75)

where the “rad” subscript reminds us that energy transfer is by radiation
in this case. We assume here that D,,q is not zero but it could be for some
particular combination of temperature and density exponents. The latter
circumstance leads to some strange situations, which we defer to Ex. 7.1.

The solutions to (1.74) are then (adapted from Carson, 1986, with the
correction of a minor typographical error in ag):

or = 3 [1=2(xr +v— 5~ 4)/Dyad] (1.76)
a, = 2(xr +v—5—4)/Draa (1.77)
ag = 14+ 2 Xxr+v—5—4) —2v(x, + A+ n)] /Draa (1.78)
Qp = *Q(XPJr)‘Jrn)/Drad (1'79)

where these are to be used in (1.70-1.73) in the situation where radiation is
assumed to carry all the luminosity (or where you suspect radiation transfer
seems to dominate).

If energy transport is primarily by means of convection, then the above
analysis must be modified, and we include that analysis for completeness
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(although, as we shall see, the results are of limited use). We shall have
to wait until Chapter 5 to explore convection in detail, but it will have to
suffice for now to state that vigorous and efficient convection implies that the
dependence of temperature on density as a function of radius is adiabatic.
Specifically this means that

T(r) oc p(r)ts=" (1.80)

where (I's — 1) is the adiabatic thermodynamic derivative

dInT
I's—1= 1.81

similar to I'y of (1.39). I's is also of order unity and we shall see much more
of these I's later. This relation replaces the radiative transfer equation of
the preceding analysis and means that the last row in the matrix of (1.74)
is replaced by (0, I's — 1, 0, —1) and the last element of the right-hand
side constant column vector is now zero. A simple calculation yields the
determinant for the new system

Deonv = (3Xp - 4) + 3XT(F3 - ]-) (182)
and the new exponents « are

ar = (1 =2/Dconv) /3

a, = 2/Deonv

ar = 1+ 2[(T3 —1) + A]/Deony
ar = 2(T's —1)/Deonv

for efficient convective transport.

How well does this analysis work? The stars that we think we know the
most about are located on the hydrogen main sequence. For the most part
these stars are nearly homogeneous in composition and their masses, lumi-
nosities, and radii are relatively well determined. Figure 1.3, constructed
primarily from data given in Allen (1973, §100, and see Table 3-6 in Miha-~
las and Binney 1981) illustrates the observed relation between these three
quantities.

From our previous discussion we expect that stars on the upper (more
massive and luminous part of the) main sequence should have higher central
temperatures just because they are more massive. The appropriate opacity
law to use in this case is electron scattering for which n = s = 0. Similarly, the
energy is generated primarily by the CNO cycles and thus, from Table 1.1,
A =1 and v = 15. Although, as we shall show, the inner regions of these
stars are convective, radiative transport of energy still dominates in the outer
regions from which the power finally escapes. Finally, although radiation
pressure is important, the pressure is mostly determined by the ideal gas
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Fig. 1.3. Luminosity and radius versus mass for main sequence stars. All quantities
are in solar units. The solid (dashed) line is that for luminosity (radius) adapted
from material in Allen (1973). Open (filled) dots are luminosity (radius) for com-
ponents of binaries, from Harris et al. (1963) and Bohm (1989).

law for which x, = xr = 1. If these stars represent, roughly, a homologous
sequence, then the preceding analysis should give values of ag and a, that
reproduce the slopes in Fig. 1.3. Using equations (1.75) through (1.79) and
the exponents just quoted, find that ag = 0.78, and a, = 3.0. A fit to the
slopes in Fig. 1.3 for stars with masses greater than a few solar masses yields

0.75
Rﬂ ~ </\Jll/l> and (1.87)
© ®
L MNP
. ~ </\/l@) (1.88)

where the sun is not only used for normalization of the various quantities,
but it appears as the reference star in the homologous set of stars. Obviously
the homology relations have done fairly well. In addition, a; = 0.22 and
a, = —1.33 so that temperature should increase with mass on the upper main
sequence whereas density should decrease. We state now, without further
proof, that this is indeed what happens (and see §2.15). Stellar models show
that central (as a homologous point) temperatures and densities do just this
and the exponents are just about what we find.

The lower (less massive) main sequence is more difficult to treat. The
pp-chains (A = 1, v = 4) dominate the energy generation rate and Kramers’
opacity (with n = 1, s = 3.5) operates through much of the star but, and
especially for very low mass stars, convection is important. This may seem
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to be no problem because we have derived the homology relations for con-
vection, but the trouble is that the structure of these stars may be almost
solely determined by what happens at the very outermost radiative surface
(see Chap. 7). But, being intrepid, let us see what happens if we combine the
above exponents with an ideal gas law, assume radiative transfer, and try to
duplicate stars of around a solar mass. One result is that a,s =~ 5.5. We com-
pare this to some results from the astrometric satellite Hipparcos® reported
by Martin and Mignard (1998), Martin et al. (1998), and Lebreton (2001).
The dashed line in Fig. 1.4 is an eyeball fit to the data with oy = 3.9. Even
though the slope may be moved around a bit (and we confess that we did use
an approximation to the bolometric correction to Hipparcos magnitudes), it
would stretch the imagination to claim that ay ~ 5.5 is a good fit for main
sequence stars of around a solar mass or less.
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Fig. 1.4. Shown are luminosities versus masses for main sequence stars in binary
systems derived from Hipparcos data as reported by Martin and Mignard (1998)
and Martin et al. (1998). The dashed line corresponds to a mass—luminosity relation
£ o< M9 and the location of the sun is indicated by ©.

3 This seemingly prosaic space mission was launched in 1989 and was designed
to measure precise positions of stars in the sky. After an operational lifetime
of nearly four years, the observations have now yielded results of fundamen-
tal importance to astronomy, including new insights into stellar evolution and
cosmology. Prosaic indeed! A good overview is given by Kovalevsky (1998).
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1.7 Evolutionary Lifetimes on the Main Sequence

It is a fact of life that stars spend most of their active life on the main sequence
converting hydrogen to helium. Another fact is that when approximately
10% of a star’s original hydrogen is converted to helium, the star undergoes
structural transformations that cause its luminosity and/or radius to change
enough that it can no longer be called a main sequence star. (Why this
happens is a later subject.) Thus the main sequence lifetime is geared to the
rate at which fusion reactions take place. To estimate that time, t,c, all we
have to do is calculate how much energy is released by burning 10% of the
star’s available hydrogen and compare it to the main sequence luminosity.
From the figures quoted before for the energy release per gram in hydrogen
burning, it is evident that

0.1 x 0.7 x M x 6 x 10'8 .

toue = 7 (1.89)
or, after converting to years and solar units,
£}
toue ~ 1010 (/Cl/l) <L> years . (1.90)
O] O]

Note that a factor of 0.7 appears in (1.89). This is the typical value of the
hydrogen mass fraction X given previously.

To eliminate the luminosity in (1.90), use the mass—luminosity relation
(1.88) and find, for upper main sequence stars,

—2.9
toue ~ 1010 (X:;) years. (1.91)
The main sequence lifetime of the sun is thus expected to be around 10'°
years (if we accept, roughly, the luminosity slope in Fig. 1.4). This is to be
compared to the present age of the sun of 4.6 x 10° years as a “middle-aged
star.” More massive stars have shorter lifetimes because they are so profligate
in using up their fuel to maintain their high luminosities. Stars on the lower
main sequence with masses not much less than the sun have lifetimes that
exceed present estimates for the age of the galaxy and universe.

This simple theoretical result explains why the main sequence for clusters—
all of whose stars are assumed to have been formed at nearly the same time—
terminates at the “turnoff point” leaving only the lower mass stars, and why
rough estimates may be made for the ages of those clusters (although more
is involved than what we have implied, as discussed in §2.3).

1.8 The Hertzsprung—Russell Diagram

Before we go on in the next chapter to describe real stars, it is essential
that we introduce the Hertzsprung—Russell diagram—or, more simply, the
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HR diagram—which we shall use extensively. This two-dimensional diagram
is the astronomer’s way of characterizing important observational properties
of stars. The vertical axis is a measure of the power output of a star while
the abscissa tells us the color or, equivalently, the temperature of the visible
surface. The units used for the axes depend on context and who is presenting
them. An observer will usually express power in magnitudes of one sort or
the other. A theoretician usually prefers luminosity (and the conversion from
magnitude to luminosity is sometimes no easy matter). Similarly, the observer
will indicate color as a difference in magnitudes between two spectral bands
but the theoretician uses effective temperature, Tog, which is a theoretical
construct. The relation between luminosity, total stellar radius, and Teg is

L=4roR* Tk (1.92)

where Stefan-Boltzmann’s constant o = 5.6704 x 107> erg ecm™2 K~4 571,
There are some subtleties to what is meant by radius and effective temper-
ature but, in the simplest definition, R is the radius of the visible surface
(photosphere) and Teg is the temperature on that surface. Thus (1.92) is the
blackbody radiant luminosity emitted from the surface of a sphere of radius
R whose surface temperature is T,g. The effective temperature of the sun is
T (®) = 5,780 K. In solar units for £ and R, (1.92) becomes

L R\ 2
= =3. 10710 =) 14 . 1.
T 8.97 x 10 <R®> e (1.93)

We shall usually use the L-Teg version of the HR diagram. One major con-
venience in doing so is that it is very easy to place straight lines of constant
radius on such a diagram if £ and T.g are expressed as logarithms. Note,
however, that the effective temperature scale runs from right to left with
the highest temperatures appearing on the left (for historical reasons). Note
also, the HR diagram gives no further information than £, T.g, and R. It
says nothing (at least directly) about stellar mass, composition, or state of
evolution.

An example of an HR diagram is shown in Fig. 1.5 from the review article
by Iben (1991). It shows typical ranges of stellar luminosities and effective
temperatures and three lines of constant radius that can be deduced from
(1.92-1.93). Nearby and bright stars are also indicated (from data listed
in Allen, 1973). It is clear that most of these stars lie along a relatively
well-defined locus called the “main sequence.” Others are collectively called
“giants” (because of their large size) while a small number have radii of about
1072 R and these are the “white dwarfs.” There are other kinds of stars than
those shown in the figure and part of the task of the next chapter will be to
explore possible evolutionary relationships between these diverse objects.
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Fig. 1.5. An illustrative Hertzsprung—Russell diagram showing nearby and bright
stars as seen from the earth. Reproduced with permission from Iben (1991).

1.9 Summary Remarks

This chapter has discussed a diverse set of topics all tied to an underly-
ing theme; namely, assuming, for the most part, that stars are spherically
symmetric and mechanically static, then the application of relatively simple
physics allows us to derive their overall characteristics. Thus, because stars
are massive they must somehow contrive to build up immense internal pres-
sures to support themselves against collapsing under their own weight. Stars
achieve this by way of high internal temperatures and densities. These state-
ments are summarized in the viral theorem (plus the accompanying mass
and hydrostatic equilibrium equations and an appropriate equation of state),
which gives reasonable estimates of internal pressures and temperatures for
most stars. But, because most stars are made up chiefly of material left over
from the earliest stages of our evolving universe, hydrogen is a prime fuel
for thermonuclear reactions and we now have an energy source. That energy
must leak out, by a variety of means, to the surface, thus making stars shine.
If we tie these last pieces of the puzzle together and describe thermal balance
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and, for example, radiative diffusion, the resulting four equations (1.3, 1.6,
1.58, and 1.60, or their variants) plus constituent equations of state, energy
generation and opacity form a complete (for now) system that may be solved
to construct stellar models. We have not done the latter in this chapter but,
using dimensional analysis, we were able to find scaling laws relating models
to one another with some success when compared to the real world.

In the next chapter we get down to business by giving an overview of stel-
lar evolution and some of the kinds of stars evolution produces. Later chapters
will be devoted to elaborating on the equations governing stellar structure
and evolution, and developing the necessary input physics and techniques
required to find their solutions.

1.10 Exercises

There’s no problem so big or complicated
that it can’t be run away from.

—Gralffito, London (1979)

Exercise 1.1. This is a little exercise in some items that this book does
not cover but which are essential to an understanding of stars. It has to
do with spectral classification of stars in the UBV photometric system and
some other matters. We recommend that you browse through the second and
third chapters of Mihalas and Binney (1981). Appendix A also contains some
information. Most of what you need for this exercise may also be found in
Allen (1973, Chap. 10) or Cox (1999). Note that you will have to look up
numbers in tables and these tables are not always entirely consistent: it’s still
not an exact science. Some of the answers you get for the following questions
will therefore be estimates, but they will be good ones. In any case, you are
told that a star has been observed with a U BV color index of B-V = 1.6 and
that interstellar reddening is negligible. In addition, the parallax of the star
is m = 0.25 seconds of arc, and its apparent visual magnitude is my = 9.8.
Detailed spectroscopy also reveals that the star has all the characteristics of
a main sequence star (luminosity class V).

1. What is the spectral class of the star?

2. What is the distance to the star (in parsecs), its distance modulus, its
absolute magnitude (My ), bolometric correction (B.C.), bolometric mag-
nitude (Mpo1), and luminosity (in Lg)?

3. What is its effective temperature (Teg) and radius (in Rg)?

4. Estimate the mass of the star (in Mg).

Exercise 1.2. We stated, without proof, that the central pressure of the
constant density star was a lower limit (§1.4); that is, central pressures must
exceed P, = 3GM?/(87R*). The proof of that statement requires a bit more
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work than we wish to attempt now. There is, however, a weaker lower limit
on P.. To get at this consider the function
M2

S8mrd

1. Show that f(r) decreases outward with increasing r. (Hint: Differentiate
f(r) with respect to r and use the equation of hydrostatic equilibrium to
show df /dr < 0.)

2. Assuming zero pressure at R, demonstrate (almost immediately) that

GM?

p > 2
7 SrRE

which is less stringent than that given by (1.42). Note that you must
show M2 /r# goes to zero as r — 0.

Exercise 1.3. A useful (albeit not terribly realistic) model for a homoge-
neous composition star may be obtained by assuming that the density is a
linear function of radius. (See Stein, 1966.) Thus assume that

p(r) = pe[L = 1/R]

where p, is the central density and R is the total radius where zero boundary
conditions, P(R)=T(R)=0, apply.

1. Find an expression for the central density in terms of R and M. (You
will have to use the mass equation.)

2. Use the equation of hydrostatic equilibrium and zero boundary conditions
to find pressure as a function of radius. Your answer will be of the form
P(r) = P.x(polynomial in r/R). What is P, in terms of M and R? (It
should be proportional to GM?2/R*.) Express P. numerically with M
and R in solar units.

3. In this model, what is the central temperature, T.? (Assume an ideal gas.)
Compare this result to that obtained for the constant-density model. Why
is the central pressure higher for the linear model whereas the central
temperature is lower?

4. Verify that the virial theorem is satisfied and write down an explicit
expression for Q (i.e., what is ¢ of Eq. 1.87).

Exercise 1.4. We shall discuss completely degenerate electron equations of
state in Chapter 3, but we can use them now without explaining what they
are. If the electrons are nonrelativistic, then the power law exponents for
pressure of equation (1.67) can be shown to be x, = 5/3 and x, = 0. Use
this information to find the exponent ag in R o« M*® of (1.70). You will find
that it does not matter whether the star is fully convective or fully radiative;
you get the same answer from the homology relations.
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Exercise 1.5. We used dimensional analysis earlier on (in §1.6) to derive
some estimates for the mass—luminosity slope of hydrogen main sequence
stars. These stars burn hydrogen into helium. Suppose, by some means, all
the hydrogen is converted to *He and that nucleus begins to combine to form
12C by way of the triple-a reaction. We could, in principle, then imagine
equilibrium stars composed of pure *He that form a “helium-burning main
sequence.”

1. Assuming an ideal gas, radiative transfer with electron scattering, and
using the values of A and v from Table 1.1 for the triple-a reaction, find
ag of (1.73) for the helium main sequence.

2. Such a main sequence may not exist in nature but that doesn’t stop
theoreticians from constructing them on the computer. The following
pairs of mass—luminosity results, in the form [M/Mg, logq £L/Lg], for
three helium main sequence models are from

> Hansen, C.J., & Spangenberg, W.H. 1971, ApJ, 168, 71:
[4.0, 4.24], [2.0, 3.42], and [1.0, 2.52]. Use these results to estimate o,
and compare to part (1). (Recall that an expression such as 1.73 may be
written in differential form as in 1.68.)

3. Using the computer data of part 2 and your a, result, normalize the
mass—luminosity relation and find the constant C' in

ag
£ _c (M> ,
Lo Mo
4. Suppose stars on the helium main sequence evolve off their main sequence
in much the same way as do stars on the hydrogen main sequence. That
is, after 10% of a star’s helium is converted to '>C they radically change
their structure. Call the time it takes to do that the “main sequence

lifetime” or t,,s. If conversion of a gram of *He to '2C releases 6 x 107
ergs, then what are D and ¢ in

-5
M
tms = D (M@> years?

We suggest you follow the arguments of §1.7.

Exercise 1.6. (This problem is due to Ellen Zweibel.) It appears that some
stars (besides the sun) are orbited by planets. Those extra-solar planets dis-
covered thus far seem to have masses comparable to, or greater than, that of
Jupiter and they orbit the parent star close in. Suppose one of these planets
is captured by, and accreted onto, the parent. The way we imagine this to
take place is that the planet’s orbit is circular and just grazes the star before
accretion. Once accretion has taken place and the planet is completely assim-
ilated into the star, we expect the combined body to have a radius different
than that of the original star. To get a common nomenclature, let M be the
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mass of the original star, m the mass of the planet and assume m << M.
The radius of the parent star is R and what we wish to find is how much
that changes in terms of the small quantity m/M. Call the change AR.

1. As the planet is accreted the total energy of the star increases by some
amount AW. Let this amount be due solely to the orbital energy of the
planet just as it is accreted (i.e., neglect any chemical or gravitational
energy addition from the planet). What is AW in terms of M, m, and
R (and G)?

2. If the gravitational potential energy 2 takes the form (1.8), then find AQ
to first order in the small quantities m/M and AR/R. (Note that part
of the change in 2 is due to the added mass m and part due to AR.)
Assume ¢ of (1.8) remains constant.

. Use the virial theorem in the form (1.28) to solve finally for AR/R.

4. If v =5/3 and ¢ = 3/2, what would AR /R be for the sun if it swallowed

Jupiter?

w

Exercise 1.7. We shall have little to do with general relativity (GR) in this
text but here we briefly explore the “Tolman—Oppenheimer—Volkoff” (TOV)
GR equation of hydrostatic equilibrium for spherical stars. It is the daunting
expression

aP G p(r) + P(r)/c] [M(r) + 4xr®P(r)/c?]
dr rr—2GM(r)/c?]

where p is now the mass—energy density but we still have M, = [ 4mr2pdr.
Let’s see what this gives for a “star” of constant p. For those of you who wish
to delve into this further see
> Shapiro S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: Wiley & Sons)
or, with even more stuff,
> Misner, C.W., Thorne, K.S., & Wheeler, J.A. 1973, Gravitation (San

Francisco: Freeman).
1. Show that

(1 —2MGr?/R3c?)Y2 — (1 — 2MG/Rc?)'/?

_ 2
P = P | TG MR T2 — (1 — 2MGr2 [T 2) 2

satisfies the TOV equation for p constant.

2. Show that this solution reduces to the constant density star solution of
§1.4 in the Newtonian limit ¢ — oo and that the central pressure of
(1.41-1.42) is retrieved.

3. Define the parameter o = 2GM /Rc? and show that the TOV GR solu-
tion does strange things as a — 8/9.

4. If a = 8/9, then what is R, in km, as a function of M/ Mg?
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5. If M is equal to M what is the density (in g cm™3) at a = 8/9. (Obvi-
ously we’re not fooling anyone here. This all has to do with black holes.)

Exercise 1.8. In the paragraph following the expression of the virial theorem
(1.18) we stated that an extra term —3PgVs should appear on the right hand
side if we had chosen to consider only that part of the spherical star interior
to r = rg having a volume Vg and a surface pressure Pg at rg.

1. Prove this for the case of hydrostatic equilibrium; that is, show that the
correct expression is
2K +Q —3PsVg = 0.

Hint: Integrate (1.22) by parts using the equation of hydrostatic equilib-
rium (1.5 or 1.16) and the mass equation, and remember to only go out
to rg in that integration and the one for 2 (1.7).

2. Show explicitly that this amended version works for the constant density
sphere.

Exercise 1.9. Redo the analysis of §1.3.5 and compute the period, II, of the
sun assuming it has constant density. Take I'y = 5/3. Note that this involves
an integration.

Exercise 1.10. A short article by G.P. Collins in the February 2000 issue
of Scientific American (p. 20) on the equivalence principle suggests a slightly
off-the-wall, but easy, problem. Gravitational binding energies are negative
but, by mc? arguments, so should the mass associated with this energy be
negative. Thus, for example, the total mass of the sun should be less than
the sum of its material parts when that negative mass is taken into account.
Assuming the sun to be a constant density sphere, or anything else that is
reasonable, by what fraction is the sun’s mass decreased when gravitational
binding energies are included?

Exercise 1.11. (This version of the stability problem is due to Cole Miller
of the University of Maryland.) Take the second variation of the total energy
Waa (compare with §1.2) and derive a condition for stability. Assume that
the equation of state is given by P = ¢;p'*, where ¢; is some constant.

1. Write §2W,q in its general form, assuming this equation of state. At the
end it will be most convenient to change variables from M, to V, so you
will also need to express factors like (67)? in terms of V and JV, where
V' is the regular volume.

2. If the adiabatic index I'; is a constant throughout the star, then it is
possible to show that the volume perturbations are proportional to the
volume; i.e., §V = kV, where k is a constant throughout the star. Use
this to determine a simplified condition for stability.
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1.11 References and Suggested Readings

The following format for references will be used throughout this text. In ad-
dition to listing the sources, we will occasionally make editorial comments
leading the reader to where we believe especially good discussions of some
material can be found. General references are usually listed first. These are
then followed by those keyed to sections within a chapter. Appendix C pro-
vides a key to the journal abbreviations and the sequencing of volume and
page numbers used here.

General References

Many of the quotes found at the beginning of the chapters are from
> The Oxford Dictionary of Quotations, 3rd ed. 1980 (Oxford: Oxford Uni-
versity Press)

> Metcalf, F. 1986, The Penguin Dictionary of Modern Humorous Quota-
tions (London: Penguin Books Ltd.).

The monograph by

> Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:

Gordon & Breach),

which was written with the aid of R.T. Giuli, is a classic monograph on
stellar structure. You can sometimes find it in used bookstores, but even
then its price is beyond the means of the average student. What you will not
find in this work are modern discussions of topics such as evolution in close
binary systems, supernova models, magnetic fields, rotation, etc. Don’t let
this discourage you. The care paid to detail and accuracy, and the clarity
of style, are worth it. You will note, incidentally, that we have attempted to
conform to Cox’s nomenclature for various quantities but there is no true
standard. You may have to do some translation if you consult other texts.

We must also guide you to the excellent text by
> Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer-Verlag).
The authors pioneered much of the work in stellar structure and evolution,
and their text contains a wealth of detail regarding the results of stellar
modeling. Although much of their philosophy and nomenclature differ from
what you will find here, both texts supplement each other in many respects.

You can now purchase a paperback version (1983) of the text by
> Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill).
It, like Cox (1968), is a bit outdated, but the last four chapters on nuclear
reactions and nucleosynthesis are still the clearest and most complete. There
are also excellent sections on the calculation of opacities and other quantities
discussed from a nice physical viewpoint.

We recommend the recent text
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> Rose, W.K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge
University Press),
which covers several topics in more depth than we do here. The physics also
tends to be at a higher level.

Other texts worthy of mention are
> Huang, R.Q., & Yu, K.N. 1998, Stellar Astrophysics (Singapore: Springer-
Verlag)
> Bohm-Vitense, E. 1992, Introduction to Stellar Astrophysics: Stellar
Structure and Evolution (Cambridge: Cambridge University Press)
which is the third volume in a three-volume series, and
> DeLoore, C.W. & Doom, C. 1992, Structure and Evolution of Single and
Binary Stars (Hingham, Mass.: Kluwer).
This last text will prove especially useful for its treatment of binary systems,
which is a topic we only touch upon in Chapter 2. Another general text is
> Collins, G.W. 1989, The Fundamentals of Stellar Astrophysics (New
York: Freeman).

The text by
> Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 2nd ed. (San Fran-
cisco: Freeman)
has a wealth of material on stars and other matters astronomical and astro-
physical. We recommend it strongly as a general reference for all students.
Yet another is the monograph by
> Jaschek, C., & Jaschek, M. 1987, The Classification of Stars (Cambridge:
Cambridge University Press).
As the title implies, this work describes how and why stars are classified
observationally. Most sciences start off with observation and classification so
the importance of such work should not be underestimated.

The text (in two volumes)
> Shu, F.H. 1991, 1992, The Physics of Astrophysics, Vols. 1-2 (Mill Valley,
CA: University Science Books)
offers an interesting alternative to gathering together many texts to fill in the
physics you need for astrophysics. The two volumes are at the graduate level
but Shu gives enough introductory material for an undergraduate to follow
the presentation. Not all topics are covered but this work may fit many of
your needs. The total cost, however, is not insubstantial.
> Allen, C.W. 1973, Astrophysical Quantities, 3rd ed. (London: Athlone)
is a popular compendium of astrophysical lore, tables, etc., in a single volume,
although it is rapidly getting out of date. It should be on your shelf (if you
can find an affordable used copy). A newer version of Allen (without Allen)
is
> Cox, A.N. (editor) 1999, Allen’s Astrophysical Quantities (New York:
Springer-Verlag).
It too has a hefty price tag. Another reference to look into is
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> Lang, K.R. 1991, Astrophysical Data: Planets and Stars (Berlin: Springer-
Verlag).

Useful intermediate texts at the undergraduate level are hard to come by
because many are written for the nonscientist. Among those few that we
suggest are
> Shu, F.H. 1982, The Physical Universe: An Introduction to Astronomy
(Mill Valley, CA: University Science Books)
and
> Carroll, BW., & Ostlie, D.A. 1996, An Introduction to Modern Astro-
physics (Reading: Addison-Wesley).
On a more elementary level are the many undergraduate first-year astronomy
texts for the nonscience major. There are so many available we shall not go
out on a limb and recommend one. However, just picking (almost) randomly
from our bookshelf, we have
> Chaisson, E., & McMillan, S. 1999, Astronomy Today, 3rd ed. (New
Jersey: Prentice-Hall, Inc.).
It (among other texts of its kind) has fancy acetate overlays and a CD-ROM
containing a hyperlinked version of the text plus videos and animations that
bring the discussion to life. A continuously updated website is also associated
with the text that enables the student to access resources on the WWW. (We
wish we could have done all this but, with the restricted market for advanced
texts, you would not have been able to afford ours had our publisher gone
along with such an ideal)

You might wish to check out
> Zel’dovich, Ya.B., & Raizer, Yu.P. 1966, Physics of Shock Waves and
High Temperature Hydrodynamic Phenomena, Vols. 1-2 (New York &
London: Academic Press)
from your library. It is by no means a text on astronomy but it contains a
wealth of material, of all kinds, that bears on the subject. It is written in the
Russian style, that is, clear, but not that easy.

§1.2: An Energy Principle
> Goldstein, H. 1981, Classical Mechanics, 2nd ed. (Reading: Addison-
Wesley)
is a standard text on classical mechanics. Many of us were raised on it.

If you can find

> Chiu, H.-Y. 1968, Stellar Physics, Vol. 1 (Waltham, MA: Blaisdell)
we suggest you browse through its chapters. It is unfortunate that the second
volume never appeared. The first volume covers topics you cannot find in
other standard texts in stellar astrophysics. It is now out of print.

§1.3: The Virial Theorem and Its Applications
The short monograph by
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> Collins, G.W., II 1978, The Virial Theorem in Stellar Astrophysics (Tuc-
son: Pachart)
contains many applications and variations on the virial theorem plus detailed
derivations. Our discussion of the theorem does not include important topics
such as magnetic fields, rotation, and relativistic effects. You will find them
in Collins. The references to Cox (1968) and Clayton (1968) are listed above.

§1.4: The Constant-Density Model

Take a good look at
> Stein, R.F. 1966, in Stellar Evolution, eds. Stein & Cameron, (New York:
Plenum Press), pp. 3-82.
If you can find this symposium volume, Stein’s article is worth the effort. In
it he uses simple models to bring out important points in stellar structure
and evolution.

> Clayton, D.D. 1986, AmJPhys, 54, 354,

titled Solar Structure without Computers goes at least one step further than
Stein (1966) in constructing a model. It has lots of potential for homework
problems!

> Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements,
eds. Pratze, Vangioni-Flam, & Casse (Cambridge: Cambridge University
Press), p. 15

is an excellent article to consult for abundances. (And see also the references
in Chap. 2.)

§1.6: Stellar Dimensional Analysis

The Observatory often publishes useful short articles that deserve more expo-
sure. Among these are often amusing commentaries on astronomical subjects
and historical articles. The reference to

> Carson, T.R. 1986, Obs, 106, 71
may be found there.

The observational data for the mass—luminosity and mass—radius relations of
Fig. 1.3 are from Allen (1973),
> Harris, D.L., ITI, Strand, K.Aa., & Worley, C.E. 1963, in Basic Astro-
nomical Data, ed. K.Aa. Strand (Chicago: University of Chicago Press),
p. 273
and
> Béhm, C. 1989, Ap&SS, 155, 241.
The second reference is one in a series of books which, though somewhat
outdated, still contain much useful material.
> Kovalevsky, J. 1998, ARA&A, 36, 99
reviews what has been learned to date from the Hipparcos mission along with
a brief description of the hardware. The material used for Fig 1.4 was taken
from
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> Martin, C., & Mignard, F. 1998, A&A | 330, 585
and
> Martin, C., Mignard, F., Hartkopf, W.I., & McAlister, H.A. 1998, A&AS,
133, 149.
See also
> Lebreton, Y. 2001, ARA&A, 38, 35
for a review of the impact of Hipparcos on our understanding of stars.

§1.8: The Hertzsprung—Russell Diagram
Figure 1.4 is from
> Iben, I. Jr. 1991, ApJS, 76, 55.
This paper contains a personal account of Iben’s work and, as is usual in his
papers, the reference list is exhaustive.



2 An Overview of Stellar Evolution

“And now for something completely different.”
— Monty Python’s Flying Circus (Oct. 1969-Dec. 1974)

“I never know how much of what I say is true.”
— Bette Midler (1980)

“You’d look pretty simple from ten parsecs too.”

— Attributed to Fred Hoyle in response to a question from

someone who was puzzled why we do not seem to
understand so simple a thing as a star. (c. 1955)

The structure and evolution of stars is the one part of modern astrophysics
that can be described as, to a considerable extent, a solved problem. This
means we can—

1. write down a set of four differential equations (see the previous chapter
or §7.1) that describe gradients of conditions inside a star,

2. insert into these equations the necessary physics of nuclear reactions
(Chap. 6), transport of energy by radiation, convection, and occasionally
conduction (Chaps. 4 and 5), and the relationship among the thermody-
namic variables T, p, and P, also called the equation of state (Chap. 3).

3. We can choose reasonable boundary conditions (e.g., see §4.3),

4. integrate the equations numerically (Chap. 7) to find out what stars
should look like, and

5. compare model stars with real ones.

The happy result is that the calculated stars are very much like the observed
ones in mass, brightness, size, temperature, surface composition, age, and the
correlations between these.

This chapter is supposed to provide you with the vocabulary and a few
other tools needed to work through the rest of the book and, meanwhile, to
be able to start reading some of the research literature in stellar astronomy
without having to look something up every other sentence. Appendix A,
however, has a short glossary in case you need to and, of course, we hope you
have read the basic material in Chapter 1. The approach is that of a teller
of folk tales, beginning with the birth of the heroine, “once upon a time,”
and ending with “they exploded happily ever after.” Keep in mind, however,
that most of what is said can, nevertheless, be documented, calculated, and
otherwise shown to be the honest story. Where the accompanying pictures
are blurry or vital details are hidden in shadows, we will try to tell you so.

You will note that the main body of this chapter is almost entirely in nar-
rative form. At most, you will see hardly more than fragments of an equation.
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The idea is not to interrupt the narrative with distracting mathematics. We
will, however, often suggest that you attempt an exercise at the end of this
chapter that bears directly on some point we are making (and that’s where
we hide the equations).

The stellar formation process is actually the least well understood part of
the lives of stars and we defer its discussion until the end. You might think
that this would be a fatal flaw in all that follows. Curiously, it is not. The
structure of a newborn star is simpler than that of any later stage and is well-
explained by the “five-step process” described above. A standard analogy is
a human one: you can do a good job of talking about babies and human
life without knowing much about conception and embryology. The analogy
extends to regions of current star formation sometimes being called stellar
nurseries or even wombs. Even the difficulty in studying the two formation
processes is somewhat similar. Baby formation is hidden in the uterus and
even more private places; star formation is generally hidden by dust, at least
to the observer of visible light. Indeed the advent of high-resolution infrared
astronomy has begun to draw back some of the veils.

2.1 Young Stellar Objects (YSOs)

A protostar becomes a star when the energy released by thermonuclear fusion
(hydrogen to helium) exceeds that released by contraction from the supply of
gravitational potential energy. This is not something we can directly observe.
Thus protostars and young stars are put into classes 0, 1, and 2 based on
things we can see—ratio of infrared to visible light, amount of molecular gas
around, how the gas is moving, and so forth. The class 0’s are still contracting,
and very few members are known, primarily because of the short time scales
involved. The 1’s and 2’s are already living on nuclear energy and, typically,
blowing material off their surfaces in bipolar or jet-like outflows.

These jets gradually clear away surrounding afterbirth, opening out from
narrow beams to wide cones, until visible light can find its way from the
stellar surface (photosphere) to us without being absorbed and re-emitted as
infrared. A cartoon of this sequence in shown in Fig. 2.1.

Signatures of the YSO phase include the following;:

1. We see variability in the visible light, because material ia still falling down
onto the surface of the star from a residual disk, so that both the stellar
surface and the disk have temperature irregularities that change in times
from hours to days and longer.

2. Emission lines are observed in their spectra, from the disk, or the bipolar
outflow, or both.

3. YSOs have more infrared luminosity than older stars of the same mass,
because there is more dust around.
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Fig. 2.1. This cartoon illustrates the four stages of star formation. (a) First proto-
star cores form within molecular clouds. Then, in (b), the protostar builds up from
the inside out while the surrounding nebular disk rotates around it. (c) Bipolar flows
break out along the rotation axis of the system. Finally, in (d), the surrounding
nebular material is swept away, and the newly formed star, with disk, is revealed.
From Shu et al. (1987). Reproduced with permisson, from the Annual Review of
Astronomy and Astrophysics, Vol. 25, ©1987 by Annual Reviews.

4. A high level of what is called activity is seen, meaning flares, star spots,
emission from a hot corona, and so forth, all of which are found at a low
level in the sun and other stars. The reason seems to be two-fold: young
stars are often rapid rotators (rotation periods from hours to days, versus
a month for the sun) and, because they are cooler than they will be when
settled onto the main sequence, they have surface convection that extends
deeper. The combination results in a strong dipole magnetic field, which,
in turn, drives the activity.

5. X-ray emission is seen from the hot corona. There is also radio emission,
but it is too faint to see except from very nearby, very active stars.

YSOs were first recognized from the combination of variability, emission
lines, location on the HR diagram, and location in space near clouds of gas
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and dust. The prototype low-mass YSO is T Tauri.! T Tauri stars (or T
Taus, which rhymes with “cows”) is a common name for the whole class.

The things you need to know about the protostar stage to carry on from
here are—

1. The energy source is gravitational potential energy and the total lifetime
therefore is short. The masses, luminosities, and radii of the YSOs are not
terribly different from solar values, so using the Kelvin—Helmholtz and
nuclear time scales of (1.32) and (1.90), the contraction life of a “typical”
YSO is only about 0.1% of its potential nuclear life.

2. Protostars are convective throughout. Thus a new star is chemically ho-
mogeneous. This will change as it ages.

We shall discuss more details of the structure and evolution of protostars
in Chapter 7, but, for now, Fig. 2.2 shows some evolutionary tracks on an
HR diagram for a variety of masses. The evolution starts in the upper right
(luminous but cool) and proceeds to the point where hydrogen is ignited on
the main sequence.
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Fig. 2.2. Shown are pre-main sequence evolutionary tracks adopted by Stahler
(1988) from various sources. Masses are in solar units. Also shown are the observed
locations of a number of T Tauri stars. Reproduced with permission.

! For those of you unfamiliar with how and why stars are named, we suggest you
look through some non-technical books such as Allen (1963) or Burnham (1978).
Another source of named stars in the spirit of how stars are classified is Jaschek

and Jaschek (1987).
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2.2 The Zero-Age Main Sequence (ZAMS)

Most people pronounce this as a word, rhyming with “hams.” The main
sequence gets its name because it includes most of the stars in an honest
sample. An “honest sample” means all the stars in a particular stellar cluster
or in a given volume of space. The “naked-eye” stars are not an honest sample
because they include not only the nearest few intrinsically faint stars, but lots
of intrinsically bright stars that we can see out to large distances.
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Fig. 2.3. Shown in the left panel is the HR diagram for the 101 brightest stars as
seen from earth. Compare this to the right panel that shows what happens when
only those stars (97 of them) within five parsecs are considered. The data are from
Allen (1973) as supplemented from Lang (1991). The sun is indicated by the ®, and
the main sequence, white dwarfs, and red giants are labeled. The location of some
well-known stars are also shown: Betelgeuse (B), Sirius A (Sa), the white dwarf
Sirius B (Sb), o Cen A (Ca, very much like the sun), @ Cen B (Cb), Proxima Cen
(PC, the nearest known star), Rigel (R), Arcturus (Ac), and Aldebaran (Al).

To illustrate this point, the left-hand panel of Fig. 2.3 shows an observer’s
HR diagram for the brightest 101 stars as seen from our vantage point. The
abscissa, B-V, is the difference in magnitudes of a star as measured using
two of the Johnson—Morgan filters. “B” denotes blue whereas “V” means
visual. Since blue is “hotter” than most wavelengths in the visible part of the
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spectrum, a large value of B—V implies a cool object, once you remember that
the magnitude scale is backward with respect to intensity. So, for example, a
main sequence star with B-V equal to zero has an effective temperature of
Teg ~ 10,000 K, whereas B—V of unity implies a considerably cooler 4,700 K.
The ordinate, My, is the absolute visual magnitude using a standard filter.
With some effort, not to be described here, it can be converted to luminosity,
although the conversion depends on the kind of star in question. (See Fig. 1.4,
which shows a composite HR diagram.)

All the brightest star panel tells us is that the brightest stars are intrinsi-
cally luminous and most of them are distant. The least luminous of the bunch
is the sun, indicated by the sun sign, and its near twin, Cen A. This is not an
honest sample. On the other hand, the right-hand panel of Fig. 2.3 is more
to the point. It shows what happens if you plunk down all the nearest stars
on an HR diagram—at least those out to five parsecs. There are about 100 of
them, not including objects so faint we cannot pick them out, but which are
probably not true stars anyway. If you wish more nearby stars to play with,
consult Lang (1991, p. 758ff.) for over 2,200 stars within 22 parsecs.

The majority of stars in the right-hand panel constitute the main se-
quence, and are so labeled. These stars are essentially unevolved even though
they are converting hydrogen to helium. Were any of them formed very re-
cently we would call them ZAMS stars. “Zero-age” in practice means that the
star has changed so little in luminosity, radius, and Teg since it first started
hydrogen fusion that you cannot notice it. This might mean only a few thou-
sand years for a massive star, 107 years for the sun, and 10° years or more
for the least massive stars. (See §1.7 and especially Eq. 1.91 for ¢,uc.) And, in
a cluster of stars all formed at the same time, it is possible for the ones of 6
M to have long ago evolved to white dwarfs (as in Fig. 2.3), those of 4 Mg
to be red giants (like those in the upper right of the left panel of Fig. 2.3),
those of 2 Mg to be slightly off the ZAMS, those of 1 Mg still on it, and
those of 0.4 Mg, still not quite through the formation process. Note that the
HR diagram says nothing directly about the mass.

To tidy up, note that you can still follow the main sequence on the
brightest-stars panel. It continues on to hotter temperatures than the sun’s,
but then the stars plotted rise almost vertically. Part of this rise is due to
evolution of those very bright (and massive, it turns out) stars.

2.2.1 Life on the Main Sequence

The single most important thing in the life of a star is its mass, with its
initial mix of hydrogen, helium, and heavy elements a distant second. The
mass determines luminosity, size, and surface temperature (as discussed at
length in §1.6) and also which nuclear reactions will occur, how long they will
last (§1.7), when and how material gets mixed through the star (convection),
and how the star dies.
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A ball of gas whose center never gets hot enough for nuclear fusion is, by
definition, not a star. Thus you can say with great confidence that all stars
spend most of their active (nuclear burning) lives on the main sequence,
where? their energy source is the fusion of hydrogen (*H) to helium (*He)
by one of two sequences of reactions, called the proton-proton chain and the
CN or CNO cycle, bicycle, or tricycle. The last was originally intended to be
funny but is an honest word for the three coupled sets of reactions among C,
N, and O. The details appear in §6.4.

The proton-proton chain (pp-chain) is the main energy source in stars
of less than about 1.5 Mg because it is easier for two protons to get close
together then for a proton plus a carbon nucleus. Thus the pp-chain starts in
gas that is too cool for the CNO cycle. But if a star is massive enough that
the balance between gravity and pressure takes its central temperature into
the CNO regime (above about 1.8 x 107 K), then CNO goes faster and pro-
duces most of the power. In either case, four hydrogen atoms are eventually
converted to one helium atom (*He), which is less massive by about 0.8%.
The mass lost comes out as photons (mostly) and neutrinos. The neutrinos
leave immediately and how much energy is lost in them has to calculated
carefully for each relevant nuclear reaction. In the case of the sun, we observe
the neutrinos as expected.?

Other differences among main sequence stars include—

1. The CNO cycle liberates energy in a much smaller region of the star
than do the pp-chains (i.e., its rate depends on a steeper power of the
temperature, and see §1.6 and Chap. 6) and so drives convection in the
stellar center. The sun may have had a small convective core when it was
young, but is now radiative there.

2. At about the same 1.5 Mg, dividing line, there is also a difference in how
energy is transported in the stellar envelope (loosely speaking, the outer
layers, which may turn out to be quite extensive). Less massive stars
have neutral hydrogen near their surfaces. Neutral hydrogen impedes the
flow of ultraviolet photons, and convection transports most of the power.
In more massive stars, the surface gas is hotter, the hydrogen largely
ionized, and radiation carries the power. Notice that few stars (beyond
the pre-main sequence stage) are convective throughout. Thus we do not
see nuclear reaction products on their surfaces for most of their lives.

2 You might think that this should say “when their energy source is ....” In prac-
tice, we often say “where” (having in mind a location on the HR diagram), and
one of the subsidiary goals of a book like this one is acculturation—to enable
you to sound like one of the tribe.

3 Until quite recently, it looked as if we were seeing fewer neutrinos than expected
by a factor of three. This has now been sorted out; it was a problem in weak
interaction physics, rather than in astrophysics. Section 9.3 includes more of the
story. See Bahcall (2001) and Seife (2002) for short reviews.
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Stars with masses less than about 0.3 Mg are an exception and remain
fully convective for all their lives.

3. The 1.5 Mg figure comes up yet again when main sequence stellar ro-
tation is considered. Stars of mass greater than this tend to rotate com-
paratively rapidly compared to lower mass stars (see Fig. 9.9). There is
definitely a good story lurking here!

4. Most of the surface opacity comes from the elements heavier than hydro-
gen and helium, namely the “metals.” (See Fig. 1.2 and discussion for a
typical “mix” of metals. And, yes, we do say “metals” in astronomer’s
primitive lingo—remember the tribes who are supposed to count one,
two, many; we count hydrogen, helium, metals.) Thus the more metals
there are the less deeply you can see into the star. The deeper you go, the
hotter the gas, and so metal-poor stars look bluer than metal-rich stars
of the same mass and age.* This can be conspicuous enough to show even
in the integrated light of a whole cluster or galaxy of stars.

5. All of the correlations of £, T', R, and lifetime with M explored in §1.6
seem to hold up quite well.

6. The “Supplemental Material” section near the end of this chapter lists
relevant properties of ZAMS models for your reading pleasure. You can
reproduce some of these using the “ZAMS” code found on the CD-ROM.

Most main sequence stars change only very slowly (with exceptions due to
mass loss from really massive stars), in both interior structure and external
appearance. When four (ionized) hydrogen atoms fuse to one (ionized) helium
atom, eight separate particles (including electrons of course) become only
three. Thus, since P = nkT (Eq. 1.35) and a fixed central pressure is needed
to balance gravity, the stellar core must slowly contract and heat up. This
makes the nuclear reactions go faster, and the star gradually brightens. You
might think the surface temperature would increase too, but it does not, it
goes down. Thus the sun, at formation 4.6 Gyr ago, was about 25% fainter
but also somewhat bluer (and a better source for ultraviolet light for primitive
biochemistry) than the present sun. Earth has somehow adjusted and kept
its surface temperature nearly constant, despite the 20 K increase you might
expect (and see Ex. 2.7).

2.2.2 Brown Dwarfs

A gas mass that does not get hot enough to fuse hydrogen all the way to
helium is called a brown dwarf, meaning something between red and black.
Really, of course, they are infrared dwarfs. For solar composition, the brown
dwarf/main sequence cut is about 0.085 M. It is about 0.1 Mg (around 75
times the mass of Jupiter) for a very metal poor star with less opacity to keep

4 To show this, do Ex. 2.3 at the end of this chapter where, using homology
arguments, Tog o< Z 3% for low-mass ZAMS stars; that is, the lower the metal
content, the hotter (bluer) the star.
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the light and heat in. While ordinary hydrogen fusion sets in close to 107 K,
deuterium (?H or 2D) will burn at 10% K, via the second reaction in Table
6.1. Only one atom in a hundred thousand of hydrogen is deuterium, left over
from the early universe, but this is enough to slow the contraction and death
of brown dwarfs a good deal. Indeed, for stars less than a billion years old, the
main sequence is almost continuous in appearance across the dividing line. A
few young brown dwarfs even show some signs of “stellar” activity. But with
time, they fade, while a true star of 0.1 Mg will live 1011-10'2 years.

The first certain brown dwarf, Gliese 229B, was discovered in 1995 and
is the companion to the red dwarf star Gliese 229A. One of the keys to its
identification, besides its being far fainter than its faint companion, was the
presence of methane in its spectrum. Any “real” star is far too hot to allow
methane to form in its atmosphere, although it is a common molecule in the
atmospheres of gas planets in our Solar System. The effective temperature of
Gliese 229B is about (only!) 900 K and it is a member of the newly minted
spectral class T (see §4.7 for additional information). The year 1995 also
saw reports of other brown dwarfs (not then confirmed to be such but some
showed lines of lithium, an element consumed by nuclear reactions in true
stars) and, by now, there are dozens in the known zoo. For reviews, see
Basri (2000a,b), Gizis (2001) and, for low-mass stars and substellar objects,
Chabrier and Baraffe (2000), and Burrows et al. (2001).

2.3 Leaving the Main Sequence

From now on, we will be making further distinctions by mass. Only stars of
initial mass more than about 0.3 Mg will be coming with us to §2.4 and
beyond. The smaller, fully convective, ones keep fusing and mixing until all
the hydrogen is converted to helium after 10'? years. The universe is not old
enough for this to have happened to any real star (except a member of a
binary pair that gets stripped at some intermediate time), so we are telling
you the result of a calculation here, but it is hard to escape.’

Stars of more than 0.3 Mg will eventually use up all the hydrogen fuel at
their centers while much still remains in their outer envelopes. The star is, of
course, still radiating (losing energy, a conserved quantity). The core cannot
cool down to conserve the energy supply, or pressure would cease to balance
gravity. Indeed this starts to happen, and so the core contracts, releasing
gravitational potential energy to keep the star shining.

As a prelude to what is coming next, Fig. 2.4 summarizes what single, or
essentially single, stars do in their ZAMS and later lives as a function of a
series of “mass cuts” (a term you probably won’t see in the literature, but
we like it). Thus, stars of about 0.85 Mg, or less, take a time of about the

® You might wish to use some of the computer codes on the CD-ROM to check on
what we say here.
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present age of the universe (Thybble) to evolve off the main sequence. Stars of
initial mass of 1.5 M, or less, use the pp-chains to burn hydrogen, whereas
more massive stars use the CNO cycles to the same end. And so on. All will
become clear, we hope, as this chapter continues. The masses at the mass
cuts do depend on factors such as metallicity, which causes most mass cuts
to increase as metals increase. Mass loss (M) has the same effect. If the star
is in a close binary system, then the story can change dramatically. Note
also that we have not included the energy releasing effects of gravitational
contraction, which introduces a bunch of stuff at various stages that would
require a very large, separate, diagram. In any case, consider this figure a
sort of “crib sheet” to be consulted as we go along.
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Fig. 2.4. Our “Mass Cut” diagram showing the fate of single stars in various mass
classes. See text.

Some distinctions by mass again need to be made and we shall use the
evolutionary tracks from Iben (1967) shown in Fig. 2.5 and the time scales
listed in Table 2.1 as a guide. Stars of more than 1.5 M go immediately to
the phase described in the next section, whereas those of more than about 5
M evolve without changing luminosity very much. It is not a coincidence
that this 1.5 Mg cut is the same as the dividing line between pp-chain
and CNO cycle energy generation on the ZAMS. Larger mass = higher
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temperatures = nuclear reactions occur more readily. We have never been
able to decide whether agreement in mass cut between the nuclear issues and
the mode of energy transport in the envelope is a coincidence or not.
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Fig. 2.5. Representative theoretical evolutionary tracks for stars of different
masses. Reproduced, with permission, from Iben (1967), Annual Review of As-
tronomy and Astrophysics, Vol. 5, (©1967 by Annual Reviews. Luminosity is in
units of L. The stages 1, ---,5 are referred to in the text and Table 2.1.

Stars of less than 1.5 Mg require some heating of the hydrogen outside
their inert helium cores to reach stage 4 in Fig. 2.5 and reacquire a nuclear
energy source. Thus their cores contract rapidly. Their outer layers simulta-
neously expand, soaking up more energy. The result is change in structure
on the thermal or Kelvin—-Helmholtz time scale (see §1.3.2), so that we catch
very few stars doing this. In a HR diagram for the members of a cluster of
not more than 1,000 or so stars, therefore, there will be a gap, occupied by
at most one or two stars. It is called the Hertzsprung gap. The “one in a
thousand” factor is roughly the same as the ratio of thermal to nuclear time
scales. (Compare Egs. 1.32 and 1.90 for a star like the sun.) Globular clus-
ters have so many stars (10%-10°) that there is no actual gap, just relative
sparsity.



54 2 An Overview of Stellar Evolution
Table 2.1. Stellar Lifetimes Where (i)—(i+1) Is Interval (in yr)

M/Mo (D)-(2) 2B  B)-@ (‘)5

9.00 2.14 x 107 6.05 x 10° 9.11 x 10* 1.48 x 10°
5.00 6.55 x 107 2.17 x 10° 1.37 x 10® 7.53 x 10°
3.00 2.21 x 10®% 1.04 x 107 1.03 x 107 4.51 x 10°
2.25 4.80 x 10% 1.65 x 107 3.70 x 107 1.31 x 107
1.50  1.55 x 10° 8.10 x 107 3.49 x 10® 1.05 x 10®
1.25  2.80 x 10° 1.82 x 10® 1.05 x 10° 1.46 x 10®

2.3.1 Cluster HR Diagrams

As we are talking about HR diagrams for clusters, it is time we showed some
examples. Much of what we know of stellar evolution derives from observation
of these usually closely knit groups of stars. Since, as is usually assumed, the
stars in a cluster form at very nearly the same time, their locations on the
HR diagram represent a snapshot taken at the present moment of where the
stars have gotten to since the cluster’s formation, the primary determinant
being the initial stellar mass on the ZAMS.

The first example is shown in Fig. 2.6, where the HR diagrams of two
“young” open clusters are superimposed. The dots are for the stars in the
Pleiades (the most prominent open cluster in the northern winter sky, also
known as M45, C0355+239, the latter an International Astronomical Union
number giving Right Ascension and Declination, etc.) and M67 (aka NGC
2682, C0847+120, etc.) gets the triangles. M67 is much further away from us
than the Pleiades (some 720 versus 125 pc) so we have moved M67 upward
so the main sequences of the two clusters coincide.®

There are problems with cluster diagrams such as these. For example, do
all the stars shown (all 652 of them) really belong to the cluster, or are they
stars that happen to be in the same field? Have the effects of interstellar
absorption by dust and gas been properly taken into account? For example,
if M67 is at 720 pc how has this affected the V' magnitude (thus dimming the
stars), and has B-V been altered because absorption affects different spec-
tral bands in different ways (altering what we guess to be Teg)? Answering
questions like these is beyond the scope of this text.

Figure 2.7 shows the HR diagram for the globular cluster M3 (NGC 5272,
C1339+286), which is a popular object for amateur (and professional) as-
tronomers. There are estimated to be some 3 x 10° stars in M3. The figure
shows only a little over 10,000 because of the difficulty in obtaining UBV
photometry in a such a crowded and faint stellar field. The radius of M3 is

only about 25 pc, giving an average stellar density of some 20 stars pc—3,

5 If the initial abundances of the clusters were the same this would be called “main
sequence fitting,” a technique used to find the relative distances of clusters. In
this case the abundances are close enough for our purposes.
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Fig. 2.6. Shown are the HR diagrams of the open clusters The Pleiades
and M67. The data for the figure were downloaded from the WWW (see
ftp://cdsarc.u-strasbg.fr/cats/II/124A) and is based on Mermilliod (1986)
supplemented by Mermilliod and Bretschi (1997) for the Pleiades. The Strasbourg
catalogs may be queried from http://vizier.u-strasbg.fr/viz-bin/VizieR.

which is more than 20 times as crowded as the solar neighborhood. The cen-
tral regions of M3 are even denser. (For SciFi fans, Isaac Asimov’s Nightfall
tells it all.) The turnoff point (labeled “TOP” here but “TO” is frequently
used) from the main sequence (MS) for M3 seems to be easy to find but to
pin it down to a “point” is impossible. Thus, converting a color at the TOP
to a Teg for metal poor ZAMS stars, then to a luminosity, and finally to a
lifetime on the ZAMS and an age for the cluster (see later), is an enterprise
for optimists (but you should try Ex. 2.8, where you are to estimate the age
of M67). This is an important point because stars in globular clusters (along
with most “halo” stars permeating and surrounding our galaxy in a roughly
spherical halo) are the oldest known surviving stars with large populations
in our galaxy. Thus pinning down the age of globular clusters is tantamount
to finding a lower limit to the age of the galaxy and, by hopeful extension,
the ages of other galaxies in the universe.

Besides the turnoff point, there are other indicators that are used to de-
termine ages of globular clusters, although we shall not go into any real detail
at this point. These indicators include the combination of the location of the
tip of the red giant branch (RGB in the figure) and the asymptotic giant
branch (AGB), both of which represent advanced evolutionary stages. RGB
stars are burning hydrogen in a shell surrounding a dormant helium core af-
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Fig. 2.7. The HR diagram of the globular cluster M3. The data for the figure were
downloaded from the VizieR WWW site (see Fig. 2.6) and originally were reported
in Buonanno et al. (1994).

ter having left the subgiant branch (SGB), whereas AGB stars are evolving
rapidly while burning helium deep inside. The horizontal branch (HB) con-
sists of stars evolving more leisurely while burning core helium. Its height
above the ZAMS is an age indicator. The strange gap to the left of the HB is
the home of the RR Lyrae variable stars: they are there but their color and
luminosity vary periodically. They are standard candles that can be used to
determine distances to a cluster. The figure also shows the location of the
enigmatic blue stragglers (as “BS”) that seem never to have left the ZAMS.
See Ex. 2.5 for one guess at their history.

Cluster and Galactics Ages

So, how well are globular cluster ages known? At the time of the first edition
of this text, in 1994, ages in the range 13-18 Gyr were the norm for clusters
in our galaxy. The trouble, though, is that this range places the time of
formation of globular clusters before the Big Bang if generally accepted (but
not by all) values of the Hubble constant are used. (An excellent semi-popular
review titled Cosmology in the New Millenium by Freedman & Turner may
be found in the October 2003 issue of Sky & Telescope, p. 30. They give a
value for the Hubble constant of Hy = 72f§ km s~! Mpc~! corresponding to
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a time of 13.7 & 0.2 Gyr since the Big Bang.) This embarrassing situation
seems now to be resolved: the ages of the clusters are now in the range 10-13
Gyr, which now has them being formed at a reasonable time after the Big
Bang.” Is this magic? No, a combination of factors have conspired to reduce
the ages by a few Gyr. (For reviews see, e.g., Lebreton, 2000, and, in more
popular form, Chaboyer, 2001, and the 3 Jan 2003 edition of Science starting
on p. 59.)

Firstly, newer observations with larger telescopes using greatly improved
instrumentation coupled with measurements by the astrometric satellite Hip-
parcos (see §1.6) put the globular clusters perhaps 10% further from us than
previously thought. This means that they are more luminous than supposed.
More luminous means the stars evolve faster and, hence, the clusters are
younger. But stellar evolution studies must be consistent with these new
ages. As is often the case in this business, a prod in the right direction gets
results. A combination of realistic adjustments in microphysics (equations
of state and opacities) and stellar atomosphere calculations (and this all in-
cludes better determination of stellar surface abundances, which, especially
for helium, is not easy) now give consistent ages. If a third edition of this
text ever appears, we hope we will not have to rewrite this story yet again.

Why do the HR diagrams for young and old clusters look the way they do?
The following sections will give more details of the story, but imagine a cluster
consisting of many stars all formed on the ZAMS at the same moment. As
time goes on, the more massive stars will evolve off the ZAMS first, followed
by successively less massive members. If we take snapshots of the cluster
as time progresses and superimpose these on the same HR diagram, we get
something that should look like Fig. 2.8 if the evolution is not carried on to
the very later stages (or ignored for now to simplify the diagram). Notice how
the stars have peeled off the main sequence, with each time frame (0.2-20
Gyr) having its own turnoff point. These are called isochrones and they do
demonstrate, in effect, the evolution of HR diagrams for a sample cluster.

2.3.2 Mass Loss From Massive Stars

Before we truly leave the main sequence, we must mention the early evolution
of very massive stars. Not many are made in the course of star formation,
but their high luminosities have a profound effect on the formation of their
nearby, less massive, siblings. The early course of evolution of massive stars
is governed not only by the transmutation of hydrogen into helium, but also
by how fast mass is driven from their surfaces by radiation pressure acting
on strong spectral lines. This topic is worthy of a text by itself (as are many

" Note that not all globular clusters are old. Galactic collisions may induce intense
star formation, including the formation of globulars, and this is going on even
as we speak. See the article by S.E. Zepf and K.M. Ashman in SciAm, October,
2003, p. 46.



58 2 An Overview of Stellar Evolution

3 ———————
0.20 Gyr
21 i
o 1} E
_
N
_
<)l
S ot ]
11 i
) . . . . . .
4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5

Log Tefr

Fig. 2.8. Representative theoretical isochrones for Pop II clusters of the indicated
ages. Adapted from the Revised Yale Isochrones, Green E.M., Demarque, P., and
King, C.R., 1987, The Revised Yale Isochrones and Luminosity Functions (New
Haven, CT).

other topics only mentioned here) and we recommend the text by Lamers
and Cassinelli (1999), and, for a review, Kudritzki and Puls (2000).

The rate at which mass is driven off, M = dM /dt (pronounced “Mdot”),
depends primarily on luminosity, the escape velocity at the stellar surface,
and the metal abundance Z. (And, of course, all but the last of these depend
on mass.) There is an excellent correlation between MuoRY? and L for
(roughly) fixed Z. Here vo, is proportional to the escape velocity at the
stellar surface. This correlation is shown in Fig. 2.9, adapted from Lamers
and Cassinelli (1999).

An application of Fig. 2.9, derived from further material in Lamers and
Cassinelli (1999), is shown in Fig. 2.10. Although we have taken some liberties
with their analysis to simplify matters, the figure gives the flavor of what
happens (but don’t use it for a robust meal). Also shown is the ZAMS for
Z = 0.02 in mass—luminosity space; that is, choose a mass and where the
dashed line intersects a line for luminosity (only a small number are shown),
that is the luminosity for that mass. Note that the ZAMS result represents
the newborn star with mass loss having been neglected. (You may wish to
attempt Ex. 2.13 to see where Fig. 2.10 comes from.)

As an example of what this figure implies, suppose we consider an 80 M,
star on the ZAMS. Its luminosity is about 106 L. At that luminosity and
mass, the mass loss rate is a staggering Mr~2x1075 Mg yr~1. From this
we can compute a mass—loss timescale of ty, = M/ M of about 4 x 106 years;
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Fig. 2.9. MuoRY? is shown plotted against L/Lq for spectral class O and B
stars in our galaxy from radio and Ha observations. Here M is in Mg yr !, veo
in km s™', and R in solar units. See Ex. 2.13 for more on what this figure implies.
We thank Henny Lamers and Joe Cassinelli for providing the PostScript file from
which this figure was made. From Lamers and Cassinelli (1999) and reprinted with
the permission of Cambridge University Press.

that is, an e-folding time of only 4 x 10° years with that M would effectively
evaporate almost half of the star. Compare this to our naive ZAMS lifetime
estimate (tyuc) of Eq. (1.91), which yields 2 x 10° years. In other words,
tML/thue 18 near 20. This would seem to imply that the effect of mass loss
is minor. However, we must remember that any reduction in mass means
a decrease in central temperature and, hence, for the CNO cycles, a more
dramatic decrease in energy generation, and so on. The conclusion is that
any self-respecting evolutionary calculation for massive stars must include
mass loss.

There is good observational evidence for mass loss—and not only direct
observation of winds—because in the stellar zoo we find the Wolf-Rayet
stars, which are luminous stars characterized by strong emission lines that
dominate the optical spectrum. They are near the main sequence but their
spectra indicate a strong deficiency or absence of hydrogen, and there is also
evidence that hydrogen and/or helium burning products have either been
brought to their surfaces, or that mass loss has exposed deeper layers. Even
the categories assigned to them (“WC,” with lots of carbon in their spectra,
or “WN” for nitrogen) tell the story. Because of vigorous mass loss, these
massive stars are highly evolved but, in some sense, young.

An example of the (theoretical) effects of mass loss is shown in the HR
diagram of Fig. 2.11 for a 40 Mg star on or very near the ZAMS subject
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Fig. 2.10. Shown are mass loss rates, M, as a function of mass for massive stars,
along with a ZAMS. See text for discussion.

to varying rates of loss. The rate is parameterized by the multiplier N as
M = NL/c* (cgs units). At the start on the ZAMS, N should be about
75 using the results of Fig. 2.10 (but N may change as mass is lost). Also
shown (in the insert) is how mass changes with time. The last points shown
correspond to the time the star can be said to have left the main sequence.
In any case, the naive no-mass—loss case (N = 0) differs appreciably from
what happens when mass loss is included.

2.4 Red Giants and Supergiants

For all stars that have made it this far, the hydrogen just outside the built-
up helium core is soon hot enough for fusion to continue (M 2 1.5Mg) or
resume (M < 1.5M). This “hydrogen shell burning” always occurs via the
CNO cycle. We make a point of this because CNO hydrogen burning is the
main (perhaps only) source of nitrogen in the universe, so without it you
would not be able to eat a high protein diet. Energy production in the thin,
hot shell also drives some convection. We do not expect actual mixing to
the surface yet. Nevertheless, particularly among globular cluster members,
stars not very far up the red giant branch (RGB, which nobody tries to
pronounce as a word, and see, e.g., stage 5—6 in Fig. 2.5) often have surfaces
somewhat enriched in nitrogen and/or carbon. The code phrase is “meridional
circulation” (meaning gas flows that head north and south as well as up and
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Fig. 2.11. This shows the effect of differing rates of mass loss on main sequence
evolutionary tracks for a star with initial mass of 40 M. The rate is parameterized
by N where N = 0 means no mass lost. (See text and Lamers and Cassinelli, 1999,
discussion for their Fig. 13.1.) The insert shows stellar mass as a function of time.

down). A one-dimensional stellar model cannot reveal whether mixing of this
sort is expected. More complex models say that it probably is, though still
not so much as we see perhaps.

Do we understand why stars become red giants, that is, why the envelope
expands and the core contracts (and conversely a few stages downstream)?
Well, everybody who has solved the differential equations for stars that have
helium cores, or followed evolving stars as such cores develop, have found
bright stars with extended envelopes. Thus red giants are implied by the
underlying physics that we think we understand.

Indeed even in analytical form, the equations can be juggled to show that,
if mean molecular weight drops sharply between a core and an envelope, the
ratio of core to envelope density will be large. No one, however, has found a
set of words that answers the question “Why do stars become red giants?” in
a way that satisfies most of the community. So, rather than our attempting
to do this, we refer you to Sugimoto and Fujimoto (2000), and the many
difficult references therein.®

8 If you try Ex. 2.22, you will get an idea that something must happen if the
inert helium core gets too massive. That exercise discusses the “Chandrasekhar—
Schonberg limit,” which places limits on how much mass can be built up in
an isothermal helium core before the core can no longer support the overlying
envelope and must thus contract and heat up.



62 2 An Overview of Stellar Evolution

The red giant phase lasts, on average, about 10% as long as the main se-
quence phase, because there is a comparable amount of hydrogen fuel avail-
able (about 10% of the mass of the star) and the stars are ten times as
bright. Indeed, the red giants, and supergiants, were recognized precisely
because they are so much brighter than main sequence stars of the same sur-
face temperature. This means they must be bigger as well, and, just as on
the main sequence, there are correlations among mass, luminosity, size, and
lifetimes that we understand. Larger mass means brighter, bigger, shorter
lived, and hotter but less dense at the center. The hydrogen burning shell
works its way out through the star, so that the mass of inert helium grad-
ually increases. Both central density and central temperature (p. and T¢)
also increase. They are somehow in a race to reach §2.5. This “race” is sum-
marized below (adapted from Kippenhahn and Weigert, 1990); that is, the
destiny of the cores of most stars consists of nuclear burning, followed by fuel
exhaustion, a phase of core contraction and heating, and then the ignition of
built up fuel, and so on.

Nuclear Burning

7 ™

Core Heating Fuel Exhaustion

‘\ /

Core Contraction

The sun will, of course, become a red giant in due course. Its surface
will probably reach beyond the present orbit of Venus, but not as far as the
earth (though some supergiants have radii of 1 AU and more). Other things
being equal, the equilibrium surface temperature of the earth will increase in
proportion as

T'(earth, now) [ L(sun, now ) 1/4
)

T(earth, future) | £(sun, future

and your first thought may be, oh, well, if it’s only the 1/4 power, what
difference does it make? But 10%/4 = 1.78 and 1.78 x 290 K (the present
average earth surface temperature) is 517 K, approaching the molten lead
and sulfur regimes.

2.5 Helium Flash or Fizzle

What happens next depends on the outcome of the race between central
temperature to increase from about 107 K to about 10® K and central density
to increase from its main sequence value of 10%*! to 10% g cm™3. If density
wins, the helium gas becomes degenerate (see §3.5), with pressure support
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provided by the electron momentum that is locked in by the uncertainty
relation Ax Ap = h. Such gas can contract no further and can heat no further.
Some envelope may leave in a wind, but the core will be left as a helium
white dwarf. Stars of initial mass less than about 0.4 Mg will meet this fate.
(Remember that small mass goes with low T but high p..) The universe is
not yet old enough for this to have happened to any star left to itself. We do,
however, find helium white dwarfs as members of binary star pairs, where
rapid mass transfer to the companion has stripped an initially more massive
star down to a helium core of less than 0.4 Mg. In globular clusters, the
binary may be later disrupted by close encounters with other stars, so that
we find single helium white dwarfs in some of the clusters as well.

The other extreme is that T, reaches 10% K, while pc is still considerably
less than 10% g cm~3. This happens in stars of more than about 1.5 Mg
which, therefore, experience peaceful helium ignition and do not change their
structure rapidly at this point in their lives, although the exact mass cut
for this does depend on initial composition. Indeed, the more massive the
star, the less it is shaken up by sequential nuclear fusion episodes (aside
from explosions later on!), and those of more than about 3 Mg do not even
get enormously brighter upon leaving the main sequence, as may be seen in
Fig. 2.5, where the tip of the RGB at point 6 is not very much more luminous
than point 1 on the ZAMS. Compare this to the situation for 1 M.

Notice that our sun belongs to the intermediate type regime between
0.4 and 1.5 Mg. (The mass of the sun is very precisely one, at least in
these units, in case we haven’t told you enough times before.) Such stars,
which also include those now leaving the main sequence in globular clusters,
ignite helium while the fuel is partly degenerate, that is, T, reaches 108 K,
the minimum temperature for barrier penetration to allow helium nuclei to
cuddle up, when p, is close to 106 g cm™2. “Helium flash” is the phrase used
to describe the resulting nuclear explosion.

Why an explosion? Well, in a gas where P = nkT, if you heat it up a bit,
the pressure goes up, the gas expands and all is well. But, if P is a function
only of density (or, nearly only) as it is in degenerate materials, ignition of a
new nuclear fuel will heat the gas, and it will not expand. The increased tem-
perature, however, makes the reaction go faster, which further heats the gas,
which makes the reaction go faster, which - - -. No, this does not go on forever.
But it does continue until thermal pressure exceeds degenerate pressure, at
which time the gas “notices” that it is wildly out of equilibrium and expands
with vigor. Exactly how vigorous is this expansion is still a matter of some
controversy. It certainly is not enough to disrupt the star because we see stars
that have (peacefully?) survived the event. However, the usual evolutionary
calculations sidestep possible hydrodynamical consequences by enforcing me-
chanical equilibrium so questions remain. We have also sidestepped the issue
of exactly where the flash starts. In many calculations it does not take off at
stellar center but a bit off-center. This is due to the emission of neutrinos,
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which are lost to the star and carry off energy, thus depressing the central
temperature somewhat.
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Fig. 2.12. Central density versus central temperature for evolving stellar models.
Reproduced, with permission, from Iben (1985).

In the helium flash case, the central density of the star is reduced to about
103-10* g cm ™3 and the core expansion is mirrored by envelope contraction
(the inverse of “Why does a star become a red giant?”). This is reflected in a
rapid decrease in stellar luminosity and increase of effective temperature and
the star heads to the left in the HR diagram. By the way, other nuclear fuels
may be ignited when they are degenerate, or partly so, and will also explode.
This happens to hydrogen of the surfaces of white dwarfs (nova explosions),
and to carbon and oxygen at the cores of white dwarfs that are driven above
a critical mass limit.

A summary of what we have talked about appears in Fig. 2.12, which
shows the evolution of central density and temperature for three stellar
masses. Note that the helium flash takes place shortly after lower mass
stars cross the dashed line labeled er/kT = 10. This is the “degeneracy
boundary” to the right of which matter is degenerate (see §3.5.3 and Fig. 3.7
for the boundary at a different composition). The line “Helium Ignition” is
self-explanatory, but it does dip to lower temperatures as density increases.
(Higher densities mean the helium nuclei are closer together, although Chap-
ter 6 has more to the story.) Note, in this figure, a star of 2 Mg does suffer
the helium flash contrary to our mass cut of 1.5 Mg. This is partially due
to a higher metallicity than we are thinking of, but it also shows the fuzzi-
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ness of some of the mass cuts, which, in part, depends on who is doing the
calculating (and in what year).

An example of a helium flash calculation is shown in Fig. 2.13, where
central density is plotted versus elapsed time for a 1 Mg, Z = 0.02 model
(which could just as well be the sun in a few billion years). Note the accel-
eration of core evolution as the RGB is climbed, then the flash, followed by
core expansion. The label “1/2 & HB” refers to the time when helium is half-
exhausted in the center of the core and the star is on the horizontal branch
(as in Fig. 2.7, although stars in M3 are Pop II rather than Pop I). The den-
sity then increases again as helium is completely used up in the central core
but the central temperature is not high enough to ignite the C—O mixture
produced by the burning of helium. The AGB will be discussed shortly, but
the ultimate fate of the star will likely be that shown in Fig. 2.12; that is, it
will end up as a white dwarf of about 0.6 My—meaning, as we will discuss
later, almost half of the mass of the original star will have to be lost.

All stars that succeed in igniting helium, peacefully or explosively, are
entitled to go on to §2.6.
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Fig. 2.13. Shown is the central density evolution of a 1 Mg model (Z = 0.02)
from Charbonel et al. (1996). Time is measured from the ZAMS. The data for the
figure were downloaded from the VizieR WWW site (see Fig. 2.6).

2.5.1 Helium Core Burning, Clumps, & Horizontal Branches

Because there is no bound nucleus containing eight nucleons, helium fusion
can occur only when it is both hot enough for two helium nuclei to crawl
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through their mutual coulomb barrier to fuse together and dense enough for
a third helium to come along in the 1071 s that the unbound “di-alpha” (aka
8Be) holds together (see §6.5 for the “triple-a” reaction, which we are de-
scribing). At only slightly higher temperatures, the product 2C can capture
another helium nucleus to make 160, so that the reactions

3%He = '2C and '2C(*He, )0

in effect compete with one another until all the helium is gone. The balance
(which is very sensitive to the excited level structures of the two product
nuclei) yields more carbon in stars of the smallest mass that fuse helium
at all and more oxygen in the more massive stars. The nucleus 2°Ne has
no appropriate excited level into which the product of **O(*He,v)?°Ne can
land, so helium fusion effectively stops with carbon and oxygen; that is, the
reaction is very slow unless temperatures are very high.

Helium-burning stars have an additional energy source, because hydrogen
burning (by the CNO cycle) continues in a thin shell around the helium core.
The energy available from helium fusion is, however, considerably less than
from hydrogen fusion and the stars are brighter than they were on the ZAMS,
so that this phase has a lifetime of a few percent of the main sequence lifetime
of the same star.

Stars that are not badly shaken up by helium ignition continue on their
way through the red (super) giant part of the HR diagram, though now or
later they may make loops back to bluer colors (higher surface temperatures),
when a burning shell works its way out to a radius in the star where there
is a composition discontinuity. Such a discontinuity will occur if a massive
star, with a convective core, has that core shrink as it ages. The progenitor
of SN1987A (the first supernova observed in 1987) had made such a loop and
so exploded while blue rather than red.

Less massive stars that were shaken up by helium ignition find themselves
with colors and effective temperatures characteristic of horizontal branch
stars if their metal abundances are less than about 10% that of the sun.
Higher metallicity, low mass, helium core burners look redder because opacity
rises with Z (as discussed in full in §4.5). Thus they nestle up against the
red giant branch in HR diagrams for old, open clusters, making a clump of
dots because they are all about the same brightness. Hence the charming
name “clump stars” or “red clump stars.” In case we forget to tell you, this
is also the reason that subdwarfs (main sequence stars of low metallicity) are
bluer than ordinary main sequence stars. The color difference is fairly easy
to observe, but models that take you between observed colors and calculated
effective temperatures are less than perfect.

Helium Core Exhaustion

You have heard this story before. A time comes when the central fuel supply
is exhausted and the star must again readjust its structure, because energy
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is flowing outward, but none is being liberated by nuclear reactions at the
center. The adjustment is, however, less drastic than at the end of hydrogen
core burning, because the thin shell of CNO cycle continues to supply some
energy.

2.5.2 Double Shell Burning Phase or Asymptotic Giant Branch

Meanwhile, the center of the star continues to contract, getting hotter; hydro-
gen fusion continues in a thin shell between core and envelope; and, soon, the
helium just outside the carbon—oxygen core is hot enough for helium fusion to
continue there. The phase is, therefore, sometimes called “double shell burn-
ing” (as in Fig. 2.14). As in the case of the red giants of small and moderate
mass, the contracting core and composition (molecular weight) discontinuity
cause the envelope to expand and cool again. Thus the phase is also called
AGB or “asymptotic giant branch,” meaning that, in an HR diagram, either
an evolutionary track or the points representing individual stars stretch into
a sort of asymptote to the main RGB. If you use real observers’ data to check
this, you will discover that the two branches can be separated only if you have
good, modern, photoelectric colors for the stars. Thus older texts (or ones
whose authors have borrowed figures dating back to the era of photographic
photometry) will show a single, broad red giant branch. An example of a
well-defined separation of the two branches can be seen in Fig. 2.7 for the
globular cluster M3.

Original Composition

He-Burning H-Burning
Shell Shell

Fig. 2.14. Double shell burning. Not to scale (by quite a bit) because the outer
envelope is huge, while shells and core are much smaller in real life.
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Because the stars are now quite bright, this phase will last less than 1%
of the main sequence lifetime. You can check the relative lengths of lifetimes
by, for instance, counting all the AGB, horizontal branch, and red giant stars
in a globular cluster and comparing them to the number of stars still on the
main sequence. Yes, the numbers fit. Many or most stars with double shells
are not only very bright but also unstable to pulsation. The combination
results in a wind blowing off the surface. The wind speed is comparable
with the escape velocity from the surface, 10-30 km s~! for instance (this
is not a coincidence), and the wind density is large enough that the star is
likely to lose 10-50% of its mass before something else happens to stop the
wind. Toward the end, the density gets even larger (up to 107* Mg yr—!
in extreme cases) and may be called a “superwind.” This helps explain the
seeming discrepancy between the 1 Mg initial mass of the star in Fig. 2.12
versus its final mass of about 0.6 Mg as a white dwarf. A recent review of
winds from cool, but luminous, stars is due to Willson (2000).

The double shell phase is the first in which we definitely expect the surface
of the star to show evidence of the nuclear reactions occurring inside. The
reason is that each shell drives a convection zone just above itself—remember
convection occurs if you (well, all right, the nuclear reactions, not you per-
sonally) dump too much energy into a small region and thus create a steep
temperature gradient. As a result, the shell sources flash on and off (on the
dynamical time scale) and chase each other back and forth in radius, with
the outer one sometimes making contact with the convective envelope (which
is, of course, caused by the large opacity of neutral hydrogen). Each zone in
turn brings up processed material from below and leaves some where the next
zone can pick it up and carry it on out. But the star is never fully convective,
hence the continuing onion-like structure shown in Fig. 2.14.

What fusion products do you expect to see? Make a mental list before
going on.

a. Helium, you said, from pp-chain and/or CNO cycles fusion. True, but
helium atoms are so hard to excite that they introduce spectral lines
only in a very hot gas. (We will find the extra helium later, though.)

b. Carbon, you said, from the triple—a reaction. True, quite often, and seen
in the form of molecular bands due to C, and CN.

c. Nitrogen, which you might have forgotten about, because the CNO cycle,
no matter what mix of CNO it starts with, leaves most of the catalyst
as nitrogen (because “N(p,v)!°0 is the slowest capture reaction in the
cycle). Indeed, one expects, and finds, that AGB stars have turned a
good deal of their oxygen into nitrogen, and strong CN features are also
common.

d. And, finally, one you would never have guessed. During the double shell
burning phase, the relatively abundant atoms of iron are gradually con-
verted to heavier elements, and those too are available for mixing. Thus
AGB stars are distinguished by strong features due to barium, yttrium,
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and other elements that you may not include in your favorites. Some
even show absorption lines produced by atoms of technetium. Tc has no
stable isotopes, only ones with lifetimes of a million years or less. Thus
the subset of stars with technetium spectral features constitute direct ev-
idence that stars live on nuclear reactions that are going on right now (by
astronomical standards) before our very eyes (or at least spectrographs).
(You should peruse the pioneering observations of Tc reported by Mer-
rill, 1952.) You may ask where the “relatively abundant atoms of iron”
come from, to say nothing of exotics like yttrium, etc., when, by now, we
have only really gotten to carbon and oxygen. Please wait until §2.8.1
and §2.11.2 for the story (unless you can’t wait and want to peek now).

The AGB phase, and even this section, eventually ends. But tracing out
what happens next requires us to make another mass cut. The precise value
depends on stellar metallicity and perhaps rotation and other factors. Cal-
culations indicate it should fall somewhere between 6 and 10 Mg, and this
is confirmed by observations of star clusters of different ages, where stars of
different masses have just left the main sequence. The mass cut is larger in
close binaries, where mass transfer removes the envelope when the star tries
to become a giant or AGB star.

2.6 Later Phases, Initial Masses <6-10 M,

Notice first that we talk about initial mass, because the wind has been re-
moving envelope material for thousands to millions of years (mass dependent
as, always, shorter times but more vigorous loss for more massive stars). We
speak of post-AGB stars when enough material has been removed by the
superwind, pulsations, and the last few flashes of the helium burning shell
that we can see down to hotter (bluer) layers. The ejecta can harbor dust (so
that much of the light is reprocessed into infrared before we see it) and OH
molecular masers. The entities suffering all this are called OH/IR stars, and
it is possible to earn a precarious living by studying them (as is true of every
phase mentioned so far, and the ones to come).

As more and more envelope blows off, hotter and hotter layers are uncov-
ered (and the escape velocity and wind speed increase as well). After perhaps
10* years, photons are leaving directly from a layer that is at a tempera-
ture of 50,000 K or hotter. These photons begin dissociating the molecules
and ionizing the atoms in the ejecta. The expanding, ionized ejecta radiate a
line spectrum characterized by ordinary hydrogen lines and forbidden lines of
O, N, and C, and other species, mostly light and relatively abundant. They
looked, through the telescopes of Herschel and other early astronomers, like
the disks of Uranus and Neptune and so were called planetary nebulae (PN).
They have nothing to do with planets (though when our sun does all this the
stuff will envelop Earth, Uranus, and Neptune). They look greenish because
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of strong emission lines of oxygen, while Uranus and Neptune look greenish
because of methane in their atmospheres.

After about 10,000 years, the residual core, called a planetary nebula
nucleus (PPN), has cooled to the point of emitting few ionizing photons
and the expanding ejecta have dispersed back into the general interstellar
material. The PN is gone, and the PNN remains as a young white dwarf.
Simultaneously, the central stellar temperature declines from 10® to 107 K
as the nuclear reactions turn off. (A long review of the evolution to the PNN
stage may be found in Iben, 1995.)

Stars of less than 6-10 Mg thus end their lives as carbon/oxygen white
dwarfs, because their centers do not get hot enough for any reactions beyond
helium fusion by the time their centers are dense enough to be degenerate
(remember the temperature—density competition that has occurred before
helium burning started).

The core is now officially a C—O white dwarf of 0.55-1.3 My, (both as
measured and as observed). Its only available energy source is the residual
heat of the atomic nuclei, and it will cool and fade to about 107° L in about
10'° years. The smallest masses have the largest radii but have the smallest
amount of heat stored and fade fastest.

There is a narrow mass range (not well defined) in which nuclear reactions
can proceed one more stage, leaving a core consisting mostly of O, Ne, and
Mg. We see evidence for all three sorts of white dwarf compositions (He,
C/0, O/Ne/Mg) when material is torn off their surfaces by nova explosions
in binary systems.

2.6.1 A Bit About White Dwarfs

This text has a whole chapter (Chap. 10) devoted to white dwarfs, but since
they keep popping up in our discussion, we’ll now give some more background
on these stars.

Single white dwarfs have an average mass of 0.6 £ 0.1 Mg and radii not
too different from the Earth’s (about 1072 R). Doing the arithmetic yields
an average density near 106 g cm™3. As discussed in §3.5.2, radius decreases
as mass increases—a bizarre consequence of their being supported by elec-
tron degeneracy pressure. They cool by transporting heat by conduction (as
in a metal) through their interiors until, near the surface, photons must la-
boriously work their way out by diffusion. And, following the usual rules of
thermodynamics, the hotter they are, the faster they cool.

Figure 2.15 shows a color-magnitude HR diagram for 782 well-observed
white dwarfs. You can detect some tight correlations (like beads on a string)
in the figure and this is due, in many instances, to using an empirical relation
between color and magnitude: not quite fair, but it doesn’t destroy the utility
of what’s shown. Most of the stars are “DA” white dwarfs, which have hydro-
gen Balmer lines in their spectra but no sign of helium or metals. There may
be some undetected contamination but consider their visible atmospheres to
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Fig. 2.15. A color-magnitude HR diagram for white dwarfs from data given by
McCook and Sion (1999). A ZAMS with the sun is shown to help orient you. An
effective temperature of 10,000 K is at B-V = 0.

be pure hydrogen. Pure helium atmosphere white dwarfs (“DB”) are also
present, but in smaller numbers. A still not completely understood phenom-
enon is the complete absence of DBs in the effective temperature range from
30,000 K to about 45,000 K. A similar, but cooler, gap in non-DA white
dwarfs shows up between about 5,000 K and 6,000 K. It may well be that DAs
can change (in their spectra) to DBs, and visa versa. As Fontaine et al. (2001)
put it, “It is suspected that a complex interplay between mechanisms such as
hydrogen and helium separation (through diffusion) and convective dilution
is responsible for the fact that a white dwarf may show different ‘faces’ during
its lifetime.”

Following the maxim that hot things cool faster, we infer that cool things
cool more slowly. Thus the cooler (larger B—V'), and intrinsically dimmer,
white dwarfs in Fig. 2.15 should take longer and longer to cool as time goes
on. If the universe and our galaxy have a finite age, which appears to be
the case, then the very oldest stars formed should have, by now, become the
intrinsically dimmest white dwarfs. That is, we expect to see a cutoff in white
dwarf luminosity below which there are no dimmer objects. This is indeed
the case for white dwarfs near (on a galactic scale) the sun in the disk of our
galaxy. Such a sampling is shown in Fig. 2.16 where the space density of white
dwarfs drops off precipitously around 1044 L. The effective temperature
at the drop-off point is near a very cool 4.600 K. If we then do evolutionary
calculations from the ZAMS to the cool white dwarf stage, we can then
determine the age of the least luminous white dwarfs in the sample; that is,
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Fig. 2.16. Shown is the Liebert et al. (1988) and Leggett et al. (1998) luminosity
function, ¢, for white dwarfs in the local galactic disk. The units of ¢ are the
number of white dwarfs per parsec cubed per unit interval in Myo1 (as a surrogate
for luminosity). The dropoff in luminosity is around 10™** £/Lq, although this
figure is fuzzy because of poor statistics at the cool end and possible choices in
binning the data (and see Fontaine et al., 2001, for more on this important point).
Note also the paucity of white dwarfs at high luminosities. This is to be expected
because those stars cool so rapidly.

we can, in effect, measure the age of the local galactic disk. This has been
done by several groups and the answer lies in the range 8.5-11 Gyr (see the
review by Fontaine et al., 2001). The spread is a bit uncomfortable and results
from uncertainties in the true mix of carbon and oxygen in white dwarf C/O
cores, micro-physics, and all the usual suspects. Yet, it shows the potential of
the method—and the oldest age in the spread does turn out to be less than
the age of the universe! Of interest for the future are observations of very cool
(perhaps in the 3,000—4,000 K T, range) galactic halo white dwarfs, which
should be older than our neighbors in the disk.”

% As practically a note in proof, we suggest you check out Hansen et al. (2002, and
see Hansen and Liebert, 2003) who report observations of white dwarfs in M4,
which is a relatively close globular cluster. They find an age for the cluster of
12.740.7 Gyr using their cooling sequences. In this regard, do try Ex. 2.9.
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2.7 Advanced Evolutionary Phases, Initial Masses
Greater Than 6-10 M,

In the time it takes the sun to go from its T Tauri birth to its planetary
nebula death, several thousand generations of massive stars can come and
go, for they do everything more rapidly, spending only millions of years on
the main sequence and thousands in later stages. They have, of course, more
fuel to start out with, but they use it more profligately (see Eq. 1.7). This is
not changed by their ability to fuse more elements on beyond the hydrogen
and helium fuels available to the sun, for 90% of the available energy going
from hydrogen to iron (the most tightly bound nucleus) comes out in the first,
hydrogen-fusion reactions, and half the rest when helium burns to carbon and
oxygen. In addition, the cores of massive stars, by the time they are fusing
carbon and heavier elements, are so hot that they produce copious fluxes of
neutrinos, made in several different processes, which, like the solar neutrinos,
depart promptly, doing nothing to maintain the stellar photon luminosity.

Table 2.2. Advanced Nuclear Burning Phases of Massive stars

Dominant fuel T Duration Important products
Carbon 5x 108 K 103-10* yr Ne, Na

Neon 8 x 108 K 10%-10% yr Mg, some O
Oxygen I1x10°K <1yr Si, some S, etc.
Silicon 3x10°K  days 56Ni

Table 2.2 summarizes the stages of heavy element burning. These stages
are only partially separated (that is, a bit of residual oxygen may still be
around when the dominant process is silicon burning) and the central tem-
peratures, T, required for ignition, do depend on density. The dominant
products are not always what you would guess. Two '2C nuclei, for instance,
do not often make a 2*Mg because there is no level at the right energy, spin,
and parity to make this reaction a probable one. Instead, the main reactions
are (and see Table 6.3)

2C+"2C — *Ne+ "He
— ®Na+p
followed by --- ?*Na(p,a)?**Ne and ?*Na(p,v)**Mg.

Notice that free protons, neutrons, and alpha particles will be floating around,
inviting capture by the assorted heavier nuclei in the soup. This remains true
through neon, oxygen, and silicon burning, so that the full range of stable
nuclides from 2C up to about zinc or gallium is produced. The group from
Mn to Zn is called the “iron peak,” because they are more abundant than
those on either side, and Fe is both in the middle and most abundant.
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Silicon burning is not achieved by two ?8Si meeting head-on and fusing to
6Ni, with beta decays to °°Fe (the stable one). The coulomb barrier caused
by the mutual repulsion of the two charged 22Si is so high that, by the time
the stellar core is hot enough to raise their velocities to overcome it, high
energy photons are busily photodisintegrating (analogous to ionization of
atoms) some of the 28Si back to alpha particles. As they are liberated, most
of the alphas are quickly captured by remaining 28Si nuclei, which build
up to 328, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and °6Ni, all of which are “alpha
nuclei” containing, in effect, many alpha particles stuck together. Capture of
free neutrons and protons yields smaller amounts of adjacent nuclides. This
process was historically called “nuclear statistical equilibrium (NSE)” or the
“e-process” as the nuclear version of chemical equilibrium (as discussed in
§3.4).

In fact, however, there is no time for all the nuclei to come into the equi-
librium abundances that would be set by beta decays. ®°Ni, for example, has
a half-life of about seven days, and *Ti a half-life measured in years. And
the whole silicon-burning phase lasts only a few days according to calcula-
tions. However, many reactions do take place rapidly enough that the term
“quasi-equilibrium” has been used to describe at least some aspects of this
burning stage.

At this stage, a color—magnitude (or HR) diagram is no longer useful in
interpreting the star’s life cycle. Everything beyond late helium fusion goes
faster than the outer layers of the star can find out about interior events and
respond to them. Indeed the star is nearly doomed. The various nuclear re-
actions of the previous sections are working outward though the star, leaving
their ashes behind (still in fairly discrete layers), and the core of iron-peak
elements is growing relentlessly toward the maximum mass that can be sup-
ported by the pressure of degenerate electrons (§3.5.2; about 1.2 Mg for
heavy elements). Earlier cores of He, C+0O, and so forth had also approached
this mass limit, but always before a bit of additional contraction heated them
until the next fuel ignited. But nuclei with mass numbers around A of 56 are
the most tightly bound, and there is no more nuclear energy to be got out.
The core must collapse.

As an illustration of where we have gotten to, Fig. 2.17 shows the layering
of composition in the inner 8.5 Mg of a 25 Mg pre-supernova model of
Arnett (1996). Following his description of the key letters at the top of the
figure, we have—

. The core is composed of iron-peak elements.

. Silicon burning is taking place, adding to the iron core.

. Oxygen is being burned, leading to Si and Ca.

. This zone contains neon, which is being burned, Mg and O, but no carbon.

Neon and Mg are being produced in this carbon burning shell.

WY QW e

Nothing much goes on here but this zone contains C waiting to be burned.
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G. Helium is being burned, producing C and O in this radiative zone.

H. This is an active convective zone, where He burning is going on, and which
mixes burning products outward into the star.

I. This is what’s left of the old helium core with no burning going on.

J. The letter J is not indicated but it is the rest of the star above a hydrogen
burning shell.

The quantity Y, is the number of electrons (presumed ionized) per nucleon
in the mixture. (We shall use pe = 1/Y, in Chap. 3.) For most of the star it is
equal to 0.5, corresponding to helium or nuclei composed of multiple helium
nuclei but, in the iron core, it decreases a small amount indicating,in effect,
that electrons have been captured by protons to make neutrons.
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Fig. 2.17. The compositional layering in the inner core of a 25 Mg pre-supernova
model versus interior mass. X; is the mass fraction. See text for an explanation and

further commentary. Reprinted with permission from Arnett (1996, his Fig. 10.8),
(©1996 by Princeton Univerity Press.

2.8 Core Collapse and Nucleosynthesis

Two triggers can contribute to core collapse. First, photodisintegrations cool
the gas, removing the support of thermal pressure. Second, the increasing
density forces electrons into ever-higher momentum states—hence higher en-
ergy states—until some of them have kinetic energies exceeding the neutron-
proton mass difference. Electron capture (inverse beta-decay) sets in, turning
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protons to neutrons and, with fewer electrons around, the degeneracy pres-
sure also drops.

At this juncture we are just past the end point of the trajectory of central
temperature, T, versus central density, p., shown in Fig. 2.18. This figure,
from Arnett (1996), derives from evolutionary calculations of an initially pure
helium 8 Mg model. It is not a completely realistic star, but the evolution
of such models mimics very well what eventually happens in pre-supernova
calculations. Various burning stages are indicated by “He”, “C,” etc. (Note
that the temperatures for the burning stages are not quite what we quoted
in Table 2.2. As we warned you, density does count.) At the last point (near
pe ~ 6 x 10° gem™ and T, ~ 8 x 10° K) collapse is about to begin. As
Arnett (1996) puts it, “The trajectories end at the point of hydrodynamic
instability; the time-scales are now so short that these stars are not so much
objects as events!” We shall defer until later what this implies when we go
supernova, so to speak.
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Fig. 2.18. The time trajectory of density and temperature at the center of an
initially pure helium 8 M model. (The lines labeled S, /Nak are lines of constant
radiation field entropy, which we will ignore for now.) Reprinted with permission
from Arnett (1996, his Fig. 10.3), ©1996 by Princeton University Press.

Anyway, the core collapses suddenly and catastrophically. You can figure
out what these words mean for yourself. The time scale will be something like
the dynamic time scale, tqyn, of (1.33). Evaluate it for a density of 10° g cm™3
to see that we are talking about seconds, at most. And the available energy
will be the change in gravitational potential for the inner 1.2 Mg, (or a bit
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more in practice) of the star contracting from a density of 10° g cm™3 to 101°
g cm ™3, which is the density of a normal nucleus or of the gigantic nucleus
that is a whole star made of 10°7 neutrons. Put in the numbers to show
that this is going to be something like 10°3 ergs. Compare this to the energy
released by the sun over its whole main sequence life (and see Ex. 2.12).

The products are a core—collapse supernova and a neutron star, both of
which you will meet again below. You will probably feel that, if there is
something called a supernova, there must also be something called a not-so-
super or plain old nova. There is, and it lives in §2.11.

Meanwhile, however, it is clear that the core collapse process just de-
scribed is going to bring together lots of iron-peak elements, lots of neutrons,
and lots of energy. This is just the set of conditions required for another sort
of neutron capture, the r-process where “r” stands for “rapid.” The definition
of rapid in this context is that successive neutrons are captured before there
is time for beta decays, until the next neutron wouldn’t be bound at all. Then
the process hangs up until one of the nuclear neutrons decays to a proton
(and electron plus electron anti-neutrino), and the neutron capture contin-
ues. The immediate products are highly unstable nuclides. But, at leisure,
after ejection from the star in a supernova explosion, they decay back to the
most neutron-rich stable isotopes of heavy elements like 75Yb (ytterbium)
or W (tungsten). The r-process is also the only source in our universe of
thorium and uranium, because the reactions have to leap over polonium (Po,
84 protons), radon (Rn, 86 protons), and a bunch of other unstable elements
to get there from bismuth (Bi, 83 protons), the last stable one.

Curiously, we have now made just about all the chemical elements that
are found on earth or in the periodic table, though you probably have not
been keeping count. A score sheet is presented in Table 2.3, which includes
the few not previously mentioned.

Table 2.3. Sources of element production

Elements Source

H and He Left from Big Bang (including ?H & *H); also
a bit of “Li from early universe

Li, Be, B Made by cosmic ray CNO fragmentation
in interstellar medium

12¢, 160 Helium burning

13¢, N, N, CNO cycle burning and its extension

o, 1%, F to higher temperature
Ne to iron peak Carbon, neon, oxygen, and silicon burning

Z = 30 and beyond  s-, r-, and p-processes, the latter two
primarily in supernovae
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2.8.1 Abundances and Nucleosynthesis

If we take an inventory of the abundances of the elements in the solar system
we find what we show in Fig. 2.19 (and do read the caption). Hydrogen and
helium are, by far, the most abundant (by at least two orders of magnitude)
and, as indicated in Table 2.3, they are leftovers from the Big Bang. Their
abundances may have been modified by stellar processes, but not in any
significant way. The next three elements, Li, Be, and B, are CNO cosmic
ray fragmentation products. Then follow elements produced by the CNO
cycles, helium burning, and the peak around iron from carbon, oxygen, neon,
and silicon burning. Heavy elements, with nuclear charge greater than about
30, are the responsibility of neutron (and some photon and proton) capture
processes with the iron peak providing most of the “seed” nuclei that do the
initial capturing (and see below). An excellent review of abundances (among
many other matters), and the various means of establishing them, is given in
Chapter 2 of Arnett (1996). Other reviews, with perhaps a slightly different
slant are Trimble (1991, 1996, 1997).

A closer view of abundances is shown in Fig. 2.20 (and continued in
Fig. 2.21), where individual odd (As) and even (es) nuclide abundances are
plotted versus nuclear mass number 1 < A < 90. By “odd” and “even” we
mean odd and even numbers of nucleons within a given nucleus; for example,
3He is odd, whereas “He is even. Because of the large number of nuclides in the
figure, we have shifted the odd nuclides down by two decades (N multiplied
by 10~2) for clarity, even though some of the impact of the information may
be lost. (Odd nuclei tend to be less abundant than their even counterparts in
any case.) For many nuclides, we indicate by what nuclear burning process
they were made (see figure caption). Note, however, some nuclides may be
produced by more than one process. For a more complete listing for each
nuclide, see Arnett (1966, App. A).

The general impression given by Fig. 2.20 is a trend downward in abun-
dance starting from '2C (ignoring hydrogen and helium as cosmological rem-
nants, and lithium, beryllium and boron, which may be involved in the pp-
chains but usually do not survive that phase of burning). Some nuclides seem
to be preferred, causing the alternating peaks at moderate mass number,
such as 2C, 160, ?°Ne, ?*Mg, 28Si, 328, 36Ar, ---, and *3Ti. These are the
a-particle nuclei composed of integral numbers of *He nuclei. The trend is
interrupted, however, at the iron peak where, as pointed out earlier, it takes
a lot of energy to remove or add on nucleons. The iron isotope *°Fe is the
most abundant by far. This may seem surprising since it is not an a-particle
nucleus, but it is the 3-decay product of 6Ni, which is, and the latter is an
important product of supernova explosions. The iron peak dribbles down-
ward until we reach nuclei around zinc (30 protons) where the p-, r-, and
s-processes begin to take over—which we will discuss more fully shortly.

This brings us to Fig. 2.21, which continues the story. Here we separate
out those nuclei produced by the p-, r-, and s-processes. In some cases, if not
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Fig. 2.19. “Solar” elemental abundances are plotted against nuclear charge, with
some representative element names shown as a guide. These abundances, from
Anders and Grevesse (1989), are derived from a combination of observed solar
values, carbonaceous chondrite meteorites, and with some values folded in from
ISM observations. The normalization used is that the number density of Si = 10°.
Note that some elements are missing (e.g., technetium, promethium. polonium,
etc.) because all their isotopes are radioactive with half-lives short compared to the
age of the solar system.

many, the addition of a proton in the p-process (i.e., proton capture) may
in fact be the result of the high-energy photon field inducing the ejection
of a neutron—that is, a (y,n) reaction—from a different nuclide to give the
same product. P-process nuclei tend not to be very abundant and this may
be a reason why it is not that well-understood. Some peaks are obvious in
the curves and these are associated with the neutron magic numbers 50, 82,
and 126 (forming closed shells within the nucleus not unlike closed electron
shells in the noble gases). Three nuclei usually assigned to the p-process seem
to be anomalous—namely, ®La, 1"6Lu, and especially '89Ta. The last may
be underabundant because it is particularly susceptible to destruction by
(7,n). Note that (look carefully) 23U is shown with an abundance much
larger than you find at the present time (0.7% of all uranium). Anders and
Grevesse (1989) have backdated some radioactive nuclei to 4.6 Gyr ago to
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Fig. 2.20. Individual nuclide abundances for odd and even nuclides, taken primarily
from Anders and Grevesse (1989). Triangles denote odd nuclides (which have been
shifted down by two decades), whereas “dots” are for even. Some important nuclides
are labeled. Sources (e.g., nuclear burning stages) are indicated for some nuclides:
U means Big Bang; X from fragmentation of cosmic rays; H for hot (and hotter)
hydrogen burning; he=helium burning; C, O, Ne, or Si=carbon, oxygen, neon, or
silicon burning; and an occasional P-, S-; or R- for p-, s-, or r-process.

give a better idea of what nuclide abundances were available at the time of
formation of the solar system. (23U has a half-life of 7 x 10% yr, whereas
2381J’s half-life is a long 4.5 x 10° yr. Both are important chronometers for
dating the formation of the earth, moon, and some meteorites. )

Our understanding of the neutron capture s-process seems to be well in
hand. Since it is “slow” (hence the “s”), relatively cool temperatures are
indicated. The first outline of the process was given in the classic paper by
Burbidge, Burbidge, Fowler and Hoyle (1957; hereafter, and forever, known
as B2FH). (A.G.W. Cameron also discussed the process at nearly the same
time, but the original paper is a Chalk River report not readily available.)
In its simplest form it is associated with helium shell burning and mixing by
convection. The neutrons are produced in the reaction sequence

2C(p,7)"N(e™, 1) *C(a,n)'°0
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Fig. 2.21. This is a continuation of Fig. 2.16 but nuclides are identified by source
mechanism, s- (es), r- (Os), and p-process or (y,n) (xs).

with 22Ne(a,n)?*Mg also making a contribution (among perhaps others).
These neutrons are then captured by iron peak nuclei (mostly *°Fe) to form
heavier nuclei, which, in turn, may capture neutrons, etc. This chain may oc-
casionally be interrupted by the (G-decay of a short-lived radioactive nuclide.
(Extensive reviews may be found in Képpeler et al., 1989, 1990; and Meyer,
1994). A sample path is shown in Fig. 2.22. We suppose that "®Se has been
produced by neutron capture (indicated by solid arrows pointing to the right)
and is ready to capture its own neutron producing "Se. In the laboratory,
™Se has a half-life against $-decay of nearly 10° years, which would seem to
allow plenty of time for it to capture a neutron. In the stellar environment,
with a temperature of around 3 x 10% K, however, the radiation field can
cause an excited state in "’Se to be populated, thus reducing the life time to
less than a year. The dashed arrow labeled Ag shows the path of the 3-decay
to ™Br, which now competes with the neutron capture (\,) to 8°Se. And so
it goes. Note that 82Se cannot be reached because of a 3-decay from 8'Se. It
is “shielded” from the s-process and is classified as a r-process nucleus. 89Kr,
on the other hand, is shielded from the r-process and is a s-process nucleus
(or perhaps p-process).

The r-process, as mentioned earlier, is associated with more violent, higher
temperature, environments than the s-process (remember, the “r” stands for
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Fig. 2.22. Here is a portion of the Chart of the Nuclides in the selenium to stron-
tium region showing sample s-process paths of neutron capture and (3-decay. Neu-
tron number is on the abscissa and element name on the ordinate. The boxes (with
total nucleon number indicated) are for either stable nuclei or those with very long
half-lives. Solid arrows are neutron capture paths, whereas dashed represent (-
decays. The source directions for p-process (or [v,n]) and r-process are also shown
schematically. This is a standard figure and is modeled after Fig. 2 of Képpeler et
al. (1989), and see Clayton (1968, Fig. 2-26).

“rapid”). All in all, it is also more complicated because it depends on the
details of silicon burning, which, in turn, are dependent on temperature,
density, and the time scale of evolution. The final abundances of the later
phases of silicon burning, whether they are in near equilibrium or close to
it, are further determined by the ratio of total neutrons in nuclei (or free
neutrons) to the total number of neutrons plus protons. And, in an explosive
situation, how fast expansion takes place is also critical. At some point, when
the material cools sufficiently (but it is still hot!), charged particle reactions
tend to shut off because particles are not swift enough to overcome Coulomb
barriers. The reactions are said to “freeze out.” The neutrons, as electrically
neutral particles, do not have this problem, and they can busily go about
sticking onto nuclei. And we need plenty of neutrons for the r-process. If a
%6Ni nucleus is a typical product of silicon burning, then to make one 233U
nucleus requires nearly 200 additional neutrons, nearly half of which must
decay into protons to keep the charge right. A detailed calculation of the r-
process is no easy matter because of the many reactions that are possible. In
addition, the physics required is at the limits of what we know about nuclei.
If we were to try to keep adding on neutrons to some seed nucleus, at some
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point a final capture would not be possible because the resulting nucleus
would be unstable against neutron decay. Those nuclei that are unstable in
this sense constitute the “neutron drip line” on the chart of the nuclides, and
although we have a good idea of where that is (from experiment and theory),
it would be better to do better.

2.9 Variable Stars: A Brief Overview

A few naked eye stars, including Mira (o Ceti) and Algol (3 Persei) are, once
you are looking for the effect, wildly variable in their brightness over times
from a year or two (Mira) to a week or so (Algol). One suspects that their
behavior must have been known to the ancients (as the names “wonderful” for
Mira in Latin, and “the demon” for Algol in Arabic suggest). The first firm
records of anyone’s being aware of these recurrent and more-or-less periodic
variables date, however, only from a few decades before the invention of the
telescope. The Greeks and Chinese recorded a few “new” or “guest” stars
that appeared where none had been seen before—and then faded away in
weeks to years—from about the beginning of the Common Era,'? and that
was it.

It is now clear that, at some level, the light output of every star, including
our sun, varies with time, over virtually every length of time possible from
the dynamical time scale, tqyn of §1.3.3 (about an hour for the sun) to the
nuclear time scale, tyy of §1.7 (which, for the sun, is about 10 billion years
as it gradually gets brighter). Both causes and manifestations are many and
varied; a recent count identified more than 70 classes of variable stars, most
of them named for a particular star (called the prototype), which belongs to
the class, or was anyhow thought to belong when the class was established.
Examples are T Tauri stars, Cepheids (for § Cep), FK Comae stars, Miras,
and U Geminorum stars.

Here we summarize some interesting sorts, but save those of more direct
consequence for this text for later (in §9.10). These more “interesting sorts”
include the pulsational variables (§2.10) and their violent relatives the novae
and supernovae (§2.11).

2.9.1 Eclipsing and Ellipsoidal Variables

If a pair of stars orbit each other, you, the observer, may be located close
enough to the orbit plane to have one pass in front of the other and block its
light for a portion of each orbital period. Because the eclipse tells us that the
system is nearly edge on, eclipsing binaries are among the sorts particularly
useful in measuring stellar masses. Even if there is no eclipse, the gravitational

10 We shall use the nondenominational designation Common Era (C.E.) instead of
the more usual A.D. B.C. is then B.C.E. or Before Common Era.
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field of one star may distort the shape of its companion into an ellipsoid, so
that you see a larger star area when the stars are side-on to you than when
they are end on. This will also result in periodic variability, though of a less
useful sort.

2.9.2 Spotted, Rotating Stars

The sun is an example of this class. Its brightness varies both at its rotation
period (about a month) and through the 11-year sunspot cycle. The variation
is, however, only about 0.1% (and, curiously, the sun is brighter when it has
more spots because the extra brightness of the bright vein-like facular regions
of the photosphere more than makes up for the darker spots).

Larger fluctuations in brightness happen among younger, rapidly rotating
stars of types G, K, and M, and among close binary pairs, where the rotation
period is locked to the orbit period. The majority view is that rapid rotation
plus the convective atmosphere of these cool-surfaced stars permits the op-
eration of a dynamo, producing a magnetic field, which, in turn, drives spot
formation and other kinds of stellar activity. Relatively strong variability of
this sort is associated with emission of x-rays and radio waves from the solar
or stellar corona and other indications of youth and activity.

2.9.3 T Tauri Stars, FU Orionis Stars (FUORs), and Luminous
Blue Variables

These are stars that are very young (pre-main sequence) or very massive and
bright, or both. They are probably both accreting material from a disk and
blowing off material at their poles, and may be heavily spotted as well. The
result is nonperiodic flaring and variability. Surrounding gas and dust fre-
quently show up in images and spectra of these stars, and very occasionally
it is possible to tell which bits are flowing in and which are being ejected,
sometimes in jets. Rapid rotation and magnetic fields (which together colli-
mate the jets) are also part of the picture.

2.9.4 Last Helium Flash and Formation of Atmospheric Dust

These two physically different causes of variability appear together because
one is often precursor to the other. A star that has already left the AGB
phase can experience one last flash of its helium burning shell. This puffs up
the envelope so that the star quickly comes to resemble a red giant again and
to brighten (because more of the light comes out in the visible part of the
spectrum). Only three or four stars have been caught doing this in historic
times. The prototype is FG Sge, which began galloping from blue to red and
faint to bright across the HR diagram shortly after 1900. It and other mem-
bers of the class also begin to display unusual elemental abundances in their
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spectra, as a result of the flash driving an outer convection zone. Extra car-
bon, s-process elements, and sometimes lithium appear in their atmospheres
in a matter of years. A popular report of a closely related star (Sakurai’s
Object or V4334 Sgr) is due to Kerber and Asplund (2001), and see the spe-
cial issue of Ap&SS, Vol. 279 (2002) for a series of articles. An evolutionary
relationship between these (sometimes called) “born-again” stars is discussed
in Lawlor and MacDonald (2003).

Highly evolved stars with carbon-rich atmospheres (including FG Sge
stars) occasionally and unpredictably fade by many magnitudes in a few
weeks and gradually recover over months. The missing light comes out as
infrared, and the cause is sudden condensation of carbon dust in the cool
stellar atmosphere, which then gets blown out again by radiation pressure.
These are the R CrB variables (sometimes called inverse novae). About 40 are
known, and two stars of the FG Sge type have recently displayed R CrB-type
fading.

2.10 Pulsational Variables

These are the most useful variable stars because the length of time in which
they brighten and fade again—their periods—are frequently correlated with
their absolute brightnesses, so that they can be used to measure distances to
star clusters anywhere in the Milky Way and to nearby galaxies. The period—
luminosity relation (see §8.2.3) for one sort, the Classical Cepheid variables,
is generally regarded as the first, fundamental rung on the ladder that leads
to measuring distances to distant galaxies and so to measuring the speed
of expansion of the universe, its age, and other things you might want to
know. In the following, we shall set aside many technical details and refer to
our Chapter 8. For texts and reviews we recommend Cox (1980), Unno et
al. (1989), and Gautschy and Saio (1995, 1996).

Stellar pulsation can be purely in and out (radial modes) or include ma-
terial slopping around in latitude and longitude as well (nonradial modes).
The pulsation must be driven by some instability (often the repeated ion-
ization and recombination of atoms of a common element, which acts like
a faucet, letting radiation out and shutting it up). The restoring force that
brings the gas back where it started from (only to overshoot the other direc-
tion, over and over again) can be gravity or pressure or (perhaps) magnetic
fields. In this sense, the instability is intrinsic to the star and not due to ex-
ternal influences; hence, such stars are often referred to as intrinsic variables.
A really complex gravity (g-) or pressure (p-) mode with both radial and
nonradial motions is described by the number of nodes in the r, 8, and ¢ di-
rections (like the eigenstates of the hydrogen atom in spherical coordinates),
and stars sometimes show more than one at a time, up to dozens, or (in the
case of the sun, for which we can observe the tiniest displacements) millions.
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For purely radial pressure modes the underlying time scale is the dynam-
ical time (tqyn). The fundamental mode, which is a simple breathing in and
out with the only node at the stellar center (you don’t want the center mov-
ing off some place), is the only radial mode that shows a simple period—mean
density relation (as in §1.3.5). But, if all the stars in a class have about the
same mass and temperature, density depends only on radius, and so there
is period-luminosity relation of the sort we see (and you might try Exs. 2.2
and 2.4). If you can pick out a fundamental mode and an overtone (more
than one radial node), their ratio gives you one more handle on the star’s
properties. This can be used to learn masses (or, alternatively, to check that
you have figured out what is really going on).
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Fig. 2.23. A selection of intrinsically variable stars placed on an HR diagram. Were
we to include all known classes (real or imagined), you wouldn’t be able to read
it. The sun, itself a variable, is indicated on the ZAMS. A schematic evolutionary
track from AGB-PNN-WD stage helps place some variables. The “Cepheid Strip”
is shown by the dashed lines demarcating the Cepheid variables.

An instability strip (driven by helium ionization) extends diagonally
across the upper right of the HR diagram, and probably all in it are pul-
sational variables to some extent. (The name “Cepheid Strip” is often given
to this strip.) A selection of variable stars, in and out of this strip, include
(and see Fig 2.23)-

e (lassical Cepheids, usually called just Cepheids (or Type I Cepheids), are
young, metal-rich stars crossing the instability strip with spectral types
F6-K2, with periods of days to months. The more luminous (and more
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massive) ones have the longer periods, which gives the period-luminosity
relation. They appear to be purely radial pulsators. The cause of their
pulsation was unraveled by the pioneering studies of Cox and Whitney
(1958) and Zhevakin (1953).

e W Vir variables (or Type II Cepheids) have the same sort of behavior as
the Classical Cepheids but are metal-poor, older, and lower-mass stars.

e RR Lyrae variables are horizontal branch stars in the instability strip with
spectral types A2-F2 (see Fig. 2.7). They were formerly known as cluster-
type variables or Cluster Cepheids because they are common in globular
clusters. They have periods of a day down to a couple of hours and are
useful in determining distances to globular clusters in our galaxy and
in nearby galaxies. They are subdivided into subclasses (“Baily types”),
depending on details of their light curves (i.e., their curve of magnitude
versus time). Since Smith (1995) has written an excellent monograph on
the whole subject, we defer to him (but you might try Ex. 2.11).

e [ Cepheid and 7 Doradus stars are main sequence stars (or close) of
spectral types A and B. They are nonradial pulsators (and, arguably,
radial) and multiple modes are common. Periods tend to be longer than
the dynamic time scale, which suggests that the modes are gravity (g-)
modes.!?

e { Scuti variables are spectral class A to early F (i.e., at the bluer end of
spectral class F) stars on or near the main sequence (luminosity class V
to III) in the instability strip. They have periods ranging from about 30
minutes to 8 hours and pulsate in radial and nonradial pressure modes,
although gravity modes may be present. Amplitudes tend to be low. As
with some other variable stars, the § Sct variety have a well-organized
network devoted to their observation and theory. In their case, the network
is presently centered in Vienna, Austria. You may wish to access their
WWW site at http://www.deltascuti.net.

e SX Phe stars are blue stragglers (stars brighter than the main sequence
turnoff, perhaps arising from mass transfer or mergers in close binary
systems) found in globular clusters and among old field stars, and are
fundamental or first overtone pulsators.

e 77 Ceti variable stars are white dwarfs with hydrogen atmospheres (DA
white dwarfs) sitting in their own instability strip (see Fig. 2.23) on the
white dwarf cooling curve. Only nonradial gravity modes are seen, often
many in a single star. A corresponding strip exists for white dwarfs with
helium atmospheres (the DB variables) and for carbon-oxygen—helium at-
mospheres (the PG1159 stars) and their close relatives the variable PNN
stars. Chapter 10 will consider these in more detail partly because analysis
of their often complex light curves lets us probe their interiors. The var-

11 A recent review of some nonradial near-main sequence pulsators is due to M.—A.
Dupret, part of whose Ph.D. dissertation appears in the Bulletin of the Royal
Society of Sciences of Liége, Vol. 71, 249 (2002).
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iable white dwarfs also have a network (“The Whole Earth Telescope,”
aka WET), which observes them (along with some other variables in-
cluding ¢ Scts). Now coordinated from Ames, Towa, its WWW site is
http://wet.iitap.iastate.edu. As an example of a light curve of a
variable white dwarf see Fig. 2.24 where a night’s worth of data is shown
for PG1159-035 (the prototype of its class). We shall see more of this
star in Chapter 10 but, for now, let it be known that it pulsates over
100 ways at once, as is evidenced by the “beating” (the peculiar waves
superimposed over the regular ups and downs).

Mira variables, as mentioned previously, are luminous red supergiants
belonging in the class of Long Period Variables (LPV in Fig. 2.23) with
periods ranging from roughly 100 to 700 days. Radial modes seem to be
the norm. Closely related to them are the Semi-Regular Variables (SRV),
which act as their name implies. All stars of more than main sequence
luminosity and redward of the Cepheid instability strip are to some extent
variable. Usually the period is long (as a result of low density atmospheres)
and somewhat irregular. RV Tauri stars are an extreme version, with
low mass and large luminosity, so that a second pulse starts before the
atmosphere has had time to fall down from the previous one. They display
alternating large and small amplitudes in their light variability. Many R
CrB stars are also pulsational variables of this sort.

The Rapidly Oscillating Ap stars (roAp in Fig. 2.23) are characterized
by low amplitude, short period photometric variations (typically around
10 minutes), strong magnetic fields, and enhanced surface abundances
of exotic elements such as strontium and europium (among others less
exotic). The observed light variations are modulated in amplitude by the
rotation of the star and it is thought that the pulsations are carried around
by an off-axis magnetic field as the star rotates. This is the “oblique
rotator model,” reviewed (and named) by Kurtz (1990). We have shifted
their location in Fig. 2.23 for clarity; they should be close to the § Scts.
The sun is indicated in Fig. 2.23 (as a pressure mode variable with millions
of nonradial modes with periods around five minutes—see Chap. 9). But it
may be just our closest example. The sun-like star o Cen A (see Fig. 2.3)
is also variable, as discovered by Bouchy and Carrier (2001).

Finally, in this short list, we welcome the EC14026 variable stars, which
may be the newest class discovered (see Kilkenny et al., 1997). They are
low amplitude subdwarf B (sdB) pulsators with periods of around 150 s.
Their evolutionary state is uncertain but they are probably closely related
to other sdB variables (as yet unnamed) having periods ten times as long
(and which must be g-mode pulsators, as discussed in Green et al., 2003).

The variability of pulsational variables shows in their radial velocities as

well as their light. In principle, one can integrate the velocity curves to get
radius as a function of time and then, with a temperature from their colors
or spectra, calculate the absolute luminosities. This is called the Baade—
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Fig. 2.24. The light curve of the variable white dwarf PG1159-035 shows periodic
behavior with a period of around 500 s modulated by the the interference of many
modes. The data is from a 1989 observing run by the Whole Earth Telescope
consortium. More will be said about this star in Chapter 10 (and see Fig. 10.5).

Wesselink method, and the results (mercifully) more or less agree with the
results of parallax measurements and other ways of getting the brightnesses
and distances of the stars concerned (and try Ex. 2.14).

2.11 Explosive Variables

These are the stars that release a great deal of (nuclear or gravitational)
energy in a hurry. They include the first variables (“new” or “guest” stars) to
be recognized. The cataclysmic variables (see Warner, 1995; for an exhaustive
review, Sparks et al., 1999, for a brief overview; and Sion, 1999, for the role
of white dwarfs) are close star pairs with a white dwarf in orbit with a main
sequence or red giant companion. The white dwarf accepts material from
its companion. One sort of variability arises when the rate of acceptance or
accretion and therefore the rate of release of gravitational potential energy
changes. (Think of the erratic splashing of a waterfall if the river at the stop
alternates between carrying a little water and lots.) When enough hydrogen—
rich material has accumulated on the surface of the white dwarf, it fuses
explosively. Remember what happened when we ignited degenerate helium
in a helium shell flash. Degenerate hydrogen is even worse, and need not even
be very hot when it is as dense as a white dwarf. Even more spectacular are
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supernovae, as evidenced by explosions that may temporarily outshine the
galaxy in which they occur.

2.11.1 Novae

Nova and recurrent nova explosions are the names given to the outbursts
fueled by degenerate hydrogen ignition. Actually, of course, the names were
given to the phenomena long ago (when people still used Latin for scientific
nomenclature), and understanding came later. Novae can recur, since more
hydrogen can be accreted as long as the companion star exists, and “recurrent
novae” simply means that more than one nuclear-fueled outburst has been
caught in the past century or two.

Cool Dwarf

XNy
S ot
Nt
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R

Hot Spot\

Fig. 2.25. This drawing illustrates mass accretion from a donor star to a cata-
clysmic variable with an accretion disk as an intermediary. The “hot spot” is where
the incoming material meets the already formed disk.

A drawing of a cataclysmic system is shown in Fig. 2.25. Mass is grav-
itationally drawn off a donor star and forms an accretion disk around the
cataclysmic variable (of one sort or another). The material gradually makes
its way through the disk and is eventually deposited onto the variable. How
a system gets itself into this predicament we reserve for §2.13.

Novae (often referred to as “classical novae”) may yield a total of 104
10*° ergs upon eruption with some 103® ergs being radiated in the optical.
Mass lost during the explosion ranges from 107° to 10~ solar masses. The
odd thing about these objects is that the pre- and post-nova stars (after
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things have finally quieted down) appear to be identical. This suggests that
the star has not suffered too much from the explosion and is waiting for
enough mass to be accreted so that it can do its thing all over again. With
estimated mass transfer rates of M ~ 1079-107% Mg yr~! and the mass
losses quoted above, the time between explosions comes out to be (by simple
division) thousands to millions of years. If we see one go off, it is unlikely
that we will see it explode again in our lifetime.

A schematic nova light curve is shown in Fig. 2.26. There is a fast rise,
lasting perhaps a day, followed by a decline in brightness that may be quite
variable from nova to nova. In the “fast” novae the decline may take a couple
of weeks to reduce the visual brightness by two magnitudes. “Slow” novae
may take a few months to accomplish the same thing. Between the initial rise
and eventual decline, there may be a plateau near the peak lasting an hour
or so in fast novae but extending over days for slow ones. As indicated in the
figure, the decline phase may be interrupted by oscillations or a pronounced
trough. This complexity should not be too surprising because we are dealing
with four objects at the same time: donor star, accretion steam, accretion
disk, and white dwarf, all interacting with one another. For example, how
the ejected material and radiation field from the explosion affect the donor
star and/or accretion process is a formidable multi-dimensional problem.

The course of the explosion itself has been modeled with fair success.
After 1075-10~* M, of hydrogen-rich donated material has been deposited
on the high gravity surface of the white dwarf, gravitational compression has
heated it up to ~ 108 K with densities 103-10* g cm~3. This is a combination
sufficient to initiate a runaway thermonuclear explosion using hydrogen as
fuel. It has been established that CNO nuclei play a crucial role in controlling
how the explosion proceeds. As in main sequence hydrogen burning, the CNO
nuclei act as catalysts but, unlike quiescent burning, the time scales are so
short that many intermediate nuclei produced do not have time to decay
by positron emission until the explosion is well underway and the material
is already being ejected. The energy released by decays at later times helps
power the expansion of the ejecta.

It also appears that a successful fast nova requires that the material ac-
creted from the secondary be overabundant in CNO nuclei as compared to
the sun and the atmospheres of most other normal stars. What causes this
overabundance in the outer layers of the secondary is not known but observa-
tions of the ejected matter confirm that C, N, and O are indeed overabundant
along with other nuclei such as neon and magnesium (although the presence
of the latter may reflect the composition of the underlying white dwarf).

Dwarf novae erupt repetitively (but not with a regular period) with in-
tervals between outbursts of tens to hundreds of days. The duration of the
outburst may vary but, for the majority of systems, there is a correlation
between the duration of outburst and the interval of time before the next
one takes place: the longer the duration, the longer the interval. At outburst



92 2 An Overview of Stellar Evolution

T FINAL [ \ gamLy T—

= 'I"" RISE | \ pECLINE

PRE-MAX
HALT

9 Mags.
INITIAL]
RISE

__y PRE-NOVA POST-NOVA

Fig. 2.26. Shown is a schematic light curve for classical novae. Reproduced, with
permission, from McLaughlin (1960), (©1960, University of Chicago Press.

peak, the optical luminosity is typically around £ ~ 1034 erg s~! with a (usu-
ally) rapid rise to the peak and a slower decline. The total energy released for
an outburst is estimated to be of the order 10%-1039 ergs. With this combi-
nation of readily identifiable characteristics, it is not surprising that over 300
dwarf novae are now known.

Because the dwarf novae are binary systems we can view them from dif-
ferent aspects as the two stars orbit and perhaps eclipse each other. The
following is a generic description of what information has been derived from
observations of the binary light curves of many systems. (We shall note later
some variations on the following themes.) There is clear evidence for the
“hot spot” (as in Fig. 2.25) that reveals itself by a “hump” in the light curve.
In most systems, the emergence of the hot spot also coincides with a noisy
“flickering” in the light output, which most likely reflects the violence of the
collision process. In strong support of the presence of a disk is the spectrum
of the light emitted by the system: it is consistent with that expected from
a thin but (often) optically thick bright disk and this light from the disk, in
most cases, outshines both white dwarf and secondary stars. In rare cases
Doppler-shifted atomic lines are observed that directly indicate rotation of
material around the white dwarf.

What is not so clear, and is still controversial, is what causes the eruptions.
Two perfectly reasonable models are prime contenders. If the mass—losing
secondary star is subject to instabilities that cause variations in the amount



2.11 Explosive Variables 93

of mass fed to the disk, then a higher than normal transfer rate will cause
the disk to gain more energy and brighten and supplement the amount of
material crashing down onto the white dwarf. A lull in the transfer rate, on
the other hand, will result in a quiescent state. The rhythm of outbursts is
then set by the secondary. But if the secondary is a well-behaved star, we are
led to the competing model. As mass is steadily fed to the disk in this model,
the disk grows in size and gradually brightens as it stores mass. Theoretical
calculations have shown that this is a potentially unstable situation. If the
accretion continues unabated, conditions in the disk may reach a point where
the physics of ionization of hydrogen and helium cause what may best be
described as a phase transition in the properties of the disk. The end result is a
change in the mass—storage capabilities of the disk from one where additional
mass may be easily accommodated and the disk is cool to one in which the
disk rapidly heats up, glows more brightly, and dumps material down onto
the white dwarf. Neither theory nor observations are yet up to discriminating
between these models. The combination of observation and modeling of disk
structures do lead to estimates of how much the total mass flow through the
disk is modulated between outbursts and quiescent states. During quiescence
the mass transfer rate estimate is M ~ 5x 107 Mg yr~!, which is boosted
to M ~ 5x 1072 Mg yr~! during outburst. The factor of 100 between these
numbers is roughly consistent with the difference of power output between
the two states. An order of magnitude (or so) estimate for the mass of the
disk is found by multiplying the quiescent mass transfer rate by a typical
time between outbursts (say a month) and yields Mgjgx ~ 10 x 10711 M,

Compared to the mass of the stars involved, this is a remarkably small number
considering what the disk is able to do.

The dwarf novae are not a completely homogeneous class of objects and
there are well-recognized subclasses named after their prototypes. The “Z
Camelopardalis” systems, for example, have normal outbursts but, occasion-
ally, instead of returning to the usual quiescent state, the light output from
the system stays roughly constant at a level intermediate between quiescence
and outburst peak for a few days to months. (It is somewhat difficult to
reconcile these “standstills” with a long-lasting disk instability.) “SU Ursae
Majoris” dwarf novae sometimes undergo “super-outbursts” during which the
light output far exceeds that of a normal outburst. Finally—and this is as far
as we shall go—the “U Geminorum” variables are those that fit into neither
of the above subclasses and which may be thought of as more the prototype
dwarf novae. Sample visual light curves for the three major classes are shown
in Fig. 2.27.

Note that we have not discussed variations on these systems in which
the white dwarf has a measurably strong magnetic field, in the range 10-50
MG (and the field channels the accretion, so that there is additional varia-
bility at the rotation period resulting in objects called polars, DG Her stars,
intermediate polars, and other things).
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Fig. 2.27. Visual light curves for three classes of dwarf novae: (a) a U Gem DN, (b)
Z Camelopardalis, (c) an SU UMa DN. (Panel d is for a weird beast.) From Wade
and Ward (1985), (©1985 Cambridge University Press; reproduced with permission.

2.11.2 Supernovae

Supernovae (SN or, sometimes, SNe) are the most spectacular variables of
all. At maximum light, they are as bright as a whole, smallish galaxy, and
recognizing them for what they are was part of the total process between
1900 and 1925 C.E. that sorted out the approximate size of the Milky Way
and demonstrated the existence of other galaxies. There is a sort of family
resemblance among all supernovae—they get really bright in a matter of days
and fade in months to years. Their spectra display very broad features (a
combination and emission and absorption), indicating velocities of thousands
of km s~!. And they blow out a solar mass or more of material at these large
velocities that can then be seen as a supernova remnant for thousands of years
thereafter. A large galaxy experiences one to a few per century, though the
Milky Way seems overdue for its next. Combing (mostly) Chinese, Japanese,
and European records has established supernova events in 1006 C.E., 1054
(leaving the Crab Nebula), 1181, 1572 (seen by Tycho), 1604 (seen by Kepler),
and 1685 (seen by Flamsteed, the first Astronomer Royal).!?

A closer look at the spectra shows two basic supernova categories, called
inevitably Type I and Type II. Type I spectra show no evidence of any hy-
drogen, though it is the most abundant element just about any place you

12 We again refer you to Arnett’s (1996) monograph for more information on su-
pernovae. For a shorter review to start out with, see Burrows (2000). And, for a
popular review of historical SN in our galaxy, see Stephenson & Green (2003).
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Fig. 2.28. Shown are the spectra of the four major types of supernovae captured
about one week after maximum light in the B-band (“¢ ~ 1 week”) or after core
collapse (“r ~ 1 week”). The ordinate is essentially magnitudes in a spectral band
(fv is flux) and the wavelengths of the abscissa are in the rest frame of the su-
pernova. Reproduced with permission, from Filippenko (1997), Annual Review of
Astronomy and Astrophysics, Vol. 35, ©1997 by Annual Reviews.

look in the universe, while Type II spectra have strong emission and ab-
sorption features due to hydrogen. This is illustrated in Fig. 2.28, where the
spectra of four types are plotted against wavelength.!®> Three of the spectra,
corresponding to Type I subtypes Ia, Ib, and Ic, show strong features due to
ionized iron, calcium, etc., but not a sign of hydrogen. (If there is hydrogen
between us and the SN we may see some, but this would be accidental.)

The Type II spectrum, on the other hand, has strong hydrogen absorption
lines. In addition, Type II events always, or nearly always, occur in galaxies
with recent, vigorous, star formation and in regions of that star formation
(i.e., among Pop I stars), while Type I events can also occur in elliptical
galaxies and galactic bulges and halos (i.e., among Pop II stars). Type II’s
expel more mass but at lower velocity, and there are also systematic but
rather subtle differences between the two sorts of light curves. Type II’s are
considerably more likely to be picked up as radio and x-ray sources, usually
at later times than the visible light peak.

13 The University of Oklahoma hosts a WWW site devoted to archival
spectra and light curves for supernovae. The access address is
http://tor.nhn.ou.edu/"suspect.
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The distinction between Type I and I supernova almost, but not exactly,
corresponds to a very fundamental difference in what is going on in the two
cases. Type II events (which are a commoner sort, though somewhat fainter
and so harder to discover) are the products of the collapsing cores of mas-
sive stars (where we left you hanging at the end of §2.8). The basic energy
source is the gravitational energy released in the collapse, often more than
10°3 erg. Of this, most comes out in neutrinos, 1% or so in kinetic energy
of the ejecta, and less than 0.1% in visible light and other electromagnetic
radiation. Evidence for this mechanism includes the presence of the collapsed
core (pulsar or rapidly rotating magnetized neutron star) at the center of
the SN1054 remnant, the Crab Nebula, and the burst of neutrinos seen from
SN1987A, which we will come back to shortly.'*
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Fig. 2.29. A selection of light curves for Type II plateau and linear subtypes along
with SN1987A and SN1993J. Also shown is “3°Co,” whose radioactive decay helps
power the light curve resulting in a decline rate of roughly one magnitude per 100
days (see text). The insert is on an expanded time scale. A Hubble constant of 75
km s~ Mpc™! is assumed. Reproduced with permission, from Wheeler and Benetti
(1999), ©1999 by Springer—Verlag.

' Supernova are labeled by year of discovery and the order in which they were
discovered. Thus SN1987A was not necessarily the most important event of the
year, just the first. After 26 have been ordered, the labels are SN1998aa, ab,
etc., to az, then SN1998ba to bz, and so forth. In recent years, discoveries have
reached the e’s and f’s, and eventually a new system will be needed.
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In an ordinary Type II event, there is a good deal of the original hydrogen-
rich envelope left when the core collapses, which is heated and ionized by
the outgoing blast wave, producing the hydrogen lines in the spectra. If a
massive star has lost its hydrogen envelope (in a strong wind or by transfer
to a companion star) before its core collapses, there will be no hydrogen lines.
A composite set of Type II light curves is shown in Fig. 2.29. These include
the “plateau” subtype, SN II-P, where the decline is held up for a while, and
the “linear” subtype, SN II-L, which declines with essentially no hang-up.
The best-studied event has been SN 1987A. Note that the figure has data for
times well before maximum.

SN1987A

Rather than give a general discussion of Type II supernovae, we shall con-
centrate on SN1987A in the Large Magellanic Cloud (LMC), which was first
observed visually and photographically on February 24, 1987. Despite the
fact that this is not a typical SN II object—its light curve and spectrum are
almost unique, and it is intrinsically dimmer than what is typical—the basic
physical processes driving the explosion are most certainly those of other SN
Type II. In addition, we have a wealth of information concerning this object
because of its relative proximity. We shall rely on the review by Arnett et
al. (1989, and see Arnett, 1996, §13.6, and Wheeler and Benetti, 1999) in
what follows.

First of all, we know which star exploded. It was Sanduleak—69° 202,
which was a B3 I blue supergiant with £ ~ 1.1 x 10° L and T.g ~ 16,500
K. From various lines of evidence, it is estimated that the main sequence
mass of Sanduleak-69° 202 was in the range 16 to 20 M and that during
its pre-supernova evolutionary stages it lost perhaps a few solar masses of its
hydrogen-rich envelope. Although the star was certainly a Pop I object, its
original composition was metal-poor compared to objects of similar mass in
our galaxy: low-metallicity stars are characteristic of stars in the neighbor-
hood of SN1987A and for the LMC in general.

The whole story has not yet been unraveled, but SN1987A ended up
as a blue star before it exploded. More usual SN II events are thought to
involve red supergiants and this difference explains why SN1987A is peculiar.
(However, comparatively low-luminosity supernovae such as SN1987A may
be much more common than we think: we just have a harder time finding
them than we do the “normal” brighter objects.)

Perhaps the two most important observations made of SN1987A are the
detection of neutrinos prior to the optical discovery and the later detection
of radioactive *®Co. These are the two keys to our understanding of how the
star exploded and both were anticipated by earlier theoretical work on the
modeling of Type II events. To explain this we need to recall the thermonu-
clear burning stages of a star with a mass comparable to SN1987A. This is
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TIMESCALE 107 years 9.5x10°% years 300 years
STAGE H—>He L He—=>C,0 [l C —>Ne
PerTe 6.6,40x108 9.4x10%,1,9x108 2.7x105,8,1x108
Lyl 7x10%,— 1.4x10%,<250 1.1x10%,1.9x10°
<
N
4,6 months 6 months 2 days 1 second
Ne =0.,Si |, 0O —=Si Lo Si—>Fe N Fe =n
4.0x10%,1.7x10° 6.0x108,1.7x10° 4.9x107,3.7x10° »2.7x1014,5101°
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Fig. 2.30. A representation of the thermonuclear burning stages of a star similar
to SN1987A. The first box is a key to the notations in the boxes following—each
of which represents a stage. Central density is in the units of g cm™3, T, in K,
and photon and neutrino luminosities are in the units of L. The progression of
arrows indicates the arrow of time. The figure is adapted from Table 1 of Arnett et
al. (1989).

shown schematically in Fig. 2.30, where each box represents an active burn-
ing stage at the center of the star. Also indicated is the lifetime of each stage,
the central density and temperature, the total stellar luminosity and, finally,
the total power given off in the form of neutrinos. An “onion-skin” diagram
for the last stage is shown in Fig. 2.31.

The amount of iron core that is formed by the burning of silicon is ap-
proximately 1 Mg and has a radius near that of a white dwarf. This core
(or perhaps the innermost part of it), having no further source of nuclear
energy production and losing energy from neutrinos, now collapses on a time
scale of seconds or less. As it does so, the temperature rises rapidly until
the radiation bath of high-energy photons (in the form of gamma rays) in-
teracts with the iron peak nuclei and effectively boils off their constituent
nucleons. What speeds the process along is that at the very high densities
encountered during the collapse, electrons gain enough energy that they may
be captured on nuclei, thus converting protons into neutrons plus neutrinos.
These processes continue until the stellar plasma of the core is reduced to
a sea of mostly neutrons at a density comparable to or exceeding that of
nuclear matter (2.7 x 10*g cm™3) confined in a radius measured in only tens



2.11 Explosive Variables 99

Ne-0,Si

0-Si

F

N

Fig. 2.31. An onion-skin diagram for the last stage of Type II presupernovae. The
thickness of the layers is not to scale.

of kilometers. Further collapse is effectively halted by the very stiff equation
of state of nuclear matter.

What has happened is that all the nuclear burning stages the core has
experienced—from hydrogen-burning through to the production of iron peak
material—have been unraveled. This means that all the energy produced in
those stages must be repaid back along with the energy lost through the
emission of neutrinos. To estimate what is owed we consider first the nuclear
energetics. The binding energy per nucleon of nuclei in the iron peak is about
9 MeV/nucleon (see Chap. 6). If an average nucleus in this peak has 56
nucleons, it then requires about 8 x10~# ergs to reduce the nucleus to neutrons
and protons and, for a unit solar mass containing about 2 x 10%° such nuclei,
the total owed back for nuclear burning is about 2 x 1052 ergs. Finally (and as
probably a lower limit), two days of neutrino emission at a rate of 8 x 10*! L
(see Fig. 2.30) totals more than 10°° ergs. Where does all this energy come
from? Actually, this is easy to answer because we have caused an object
roughly the size of a white dwarf to collapse down its gravitational potential
well to something the size of 10 km in radius. You may easily calculate that
if 1 Mg is involved, the total release of gravitational energy is, and see §1.2,

2
|AQ| ~ % ~3x 10% erg.

This is more than enough to repay debts. How this energy is used to
blow up the star is still a matter of some controversy but what is involved
is some way of abstracting a portion of the energy from out of the collapsed
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(or collapsing) core and depositing it further out in the star. This may be
accomplished by having core material “bounce” as it reaches nuclear density
(or beyond) and, as it bounces, collide with infalling material thus forming a
shock that propagates outward lifting off most or all of the remainder of the
star. The alternative is to produce enough high-energy neutrinos (by various
processes ultimately relying on the energy released by collapse) so that some
fraction of them might interact with overlying material to the extent that
they effectively push off the outer layers. The calculations are very difficult
and depend on many physical parameters (plus how the numerical work is
done). Either way of doing things, however, and in the best of worlds, yields
supernova energies in the proper range and, more to the point, predicts that
high fluxes of neutrinos will pass out of the star before the event is seen
optically, and that the violence of the event will cause nuclear processing of
ejected material to iron peak nuclei—including large amounts of *°Ni.

Both of these conditions are met for SN1987A. Neutrinos were detected
about a quarter of a day before optical discovery, with energies within the
proper range and over a time scale (5 to 10 s) that seems reasonable given
the time scale estimated for their production. Furthermore, gamma-ray lines
of *°Co (half-life of 77 days) were detected well after the event (at about
160 days), consistent with the early production of 6Ni. The significance of
this is the decay sequence *’Ni = %6Co = °6Fe, which not only makes %6Fe
(see Fig. 2.20) but also provides an energy source for the expanding ejecta.
Modeling of the later light curve powered by these decays is a success story
for supernova calculations (see Arnett 1996, §13.4).

One further question remains, and this is whether a compact neutron-rich
or black hole remnant lurks within the exploding debris. All models point to
a remnant neutron star but none has been observed as yet. In its simplest
manifestation it would appear as a pulsar but this requires that the neutron
star have a strong magnetic field and that it be rotating (as the least of the
requirements).

SN Type I

In contrast to Type II events, Type I SN show no evidence for hydrogen in
their spectra, strongly suggesting that the object that explodes has lost its
hydrogen envelope (in a strong wind or by transfer to a companion star),
leaving an “undressed” core. Two subsets of Type I events, called Types
Ib and Ic (and characterized by anomalies in the lines produced by heavier
elements), are thought to be powered by the collapse of such undressed cores,
and they, like the Type II’s, are confined to regions of recent star formation.

In contrast, classic Type I events, now called Type Ia, occur in a wide
range of galaxies, locations, and stellar populations.'® There is no evidence for

15 A semi-popular discussion of Type Ia SN is by Maurer, S.M., & Howell,
D.A. 2002, Anatomy of a Supernova, Sky&Tel, 104, 22. The graphics are ex-
cellent. Also see Branch, D., 2003, Science, 3 Jan 2003, p. 53.
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formation of a neutron star or other condensed remnant. All observations are
consistent with and even suggest that the energy source for these is explosive
fusion of about one solar mass of carbon and oxygen to iron-peak elements,
especially 55Ni.

By now, you should be saying to yourself, “Aha! Explosive nuclear burn-
ing. The fuel must has been degenerate at ignition. Where might I find enough
degenerate carbon and oxygen to do this?” And your better self will answer,
“A white dwarf!” Of course a white dwarf of less than the limiting stable
mass M, (the Chandrasekhar limiting mass discussed in §3.5.2) will just sit
and cool for the age of the universe.
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Fig. 2.32. A selection of light curves for Type I SN. The solid line is a composite
of many Type Ia events, while SN1994I is Type Ic. Reproduced with permission,
from Wheeler and Benetti (1999), (©1999 by Springer—Verlag.

Thus something must happen to increase the mass beyond the limiting
stable mass. One possibility is the merger of a pair of white dwarfs, each of
mass less than M, but with the sum greater than M. This is many people’s
“best buy” model. It accounts for the absence of hydrogen, the possibility of
occurrence among even very old stars, and for the rather boring sameness of
SN Ta light curves, as shown in the composite light curve of Fig. 2.32. SN
Ta are not quite standard candles (all the same peak brightness), but they
can be used as distance indicators out to redshifts of unity and beyond. (The
peak blue magnitude of Type Ia SNs is estimated to be —18.4+0.3+ 5log h,
where h is Hubble’s constant in units of 100 km s~! Mpc~!.) “Boring,” in
reference to the light curve, means that they all decline in very much the
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same way with a slope of 0.012-0.015 mag day~!. They are currently being
used that way to provide hints of the distant past and long-range future of
the expansion of the universe.

The only problem with the white dwarf pairs as SN Ia progenitors is that
there don’t seem to be very many (not any some would say) with both ade-
quate mass and the ability to merge in the age of the universe. An alternative
progenitor class is the recurrent novae, some of which, at least, have white
dwarf masses very close to M, and do not blow off in the explosion all the
material they accreted to make it happen. Thus their masses are gradually
increasing. It is not entirely clear why no hydrogen emission or absorption
appears in the SN spectrum if this is what is going on, since the donor star
(though not the white dwarf accretor) is made mostly of hydrogen.

If matter is accreted onto a white dwarf with mass close to M, the star
gets smaller. (Recall for white dwarfs that more massive means smaller, and
less massive means bigger.) But this results in compressional heating. If the
added heat cannot be transported away sufficiently rapidly, then potential
thermonuclear fuels—such as the carbon and oxygen thought to make up
most of a white dwarf—may be ignited. Because of the extremely high den-
sities in the interior, any ignition of fuel initiates a runaway explosion and a
supernova is born.

To demonstrate the possible energetics of such an explosion, consider
the thermonuclear burning of pure carbon in the form of '2C under these
conditions. If the burning is not somehow controlled, then a sequence of
reactions rapidly processes the carbon to elements in the mass range of iron
with, yet again, ®°Ni as the most abundant. The energy released by the
formation of 5Ni (from 4+2/3 2C nuclei) is 8.25 x 1075 erg. Were we to
convert 1 M, in this way, the total energy release would be about 102 erg,
with plenty to spare for a supernova.

Details of the explosion process have been explored by many investigators
using state-of-the-art hydrodynamic computer codes but some uncertainties
remain. (For a review of SN Type Ia models, see Hillebrandt and Niemeyer,
2000.) Two crucial parameters are the rate of mass accretion onto the white
dwarf and the mass of the white dwarf. Different choices of combinations of
these parameters lead to quite different events. It is possible, for example,
completely to disrupt the white dwarf and leave no stellar remnant or to
have a partial explosion that leaves behind a white dwarf of lesser mass.
Other possibilities include the detonation of helium in a white dwarf that
has not converted all of that element to carbon and oxygen. In any case, it is
not thought that a neutron star—and, perhaps, pulsar—would be left behind
as a remnant.

SN Remnants

The supernova remnants (SNRs) we see range in age from less than 20 years
(SN1987A is just getting big enough to resolve) to 10* or more. Many are
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sources of radio waves and x-rays as well as visible light. Where there is a
central pulsar, it continues to pour energy into the remnant until the gas
is too dispersed to be seen. Pulsar-less remnants nevertheless remain bright
for as long as the expanding ejecta are plowing into surrounding interstellar
gas. They look brightest around the edges. The Crab Nebula, pulsar fed and
left from the supernova seen by the Chinese, Arabs, and possibly Europeans
in 1054 C.E., is the best known and most thoroughly studied supernova
remnant. Recent x-ray images show energy from the pulsar being beamed
out along the long axis of the prolate nebula, which is brightest at the center.
Cas A (meaning the brightest radio source in Casseiopia) is the remnant of
SN1685 (or thereabouts). Our view of its optical emission is partly blocked
by dust, but the radio and x-ray images show that it is brightest around
the edges, consistent with the absence of a detectable pulsar (though there
is a central faint, point source, which could be a residual neutron star or
black hole accreting some material from its surroundings). The gas in both of
these SNRs includes lots of hydrogen, so presumably they would have been
classified as Type II supernovae, though both Flamsteed and the medieval
Chinese unaccountably neglected to photograph the spectrum for us.

Supernova remnants are important in the great scheme of things as heaters
and stirrers of interstellar gas, probably as triggers to collapse gas clouds to
initiate star formation, and probably as the accelerators of cosmic rays—
particles, mostly protons, with kinetic energies greatly exceeding mp02 which
pervade the Milky Way and other galaxies. Cosmic rays produce most of our
lithium, beryllium, and boron, make '4C in the upper atmosphere, and are a
major source of mutations in terrestrial creatures.

2.12 White Dwarfs, Neutron Stars, and Black Holes

These are the three, and only three, ways we found in earlier sections that
stars could end their lives. (Note that the title of this section is a permutation
of the title of Shapiro and Teukolsky’s 1983 text Black Holes, White Dwarfs,
and Neutron Stars, which should be consulted.) Chapter 10 explains how to
calculate what the inside of a white dwarf should be like, and neutron star
structure is handled in much the same way. There are two catches, however.

First, neutron stars are compact enough that the equation in which
pressure balances gravity must be rewritten with gravity described by gen-
eral relativity, rather than its Newtonian approximation. This Tolman-
Oppenheimer—Volkoff equation (so called because it was first written down
by Lemaitre but, in any case, you can play with it in Ex. 1.7) makes it clear
that, deep down in the potential well, Einsteinian gravity is stronger than
Newtonian by a factor of /(1 — 2MG/rc?) in the denominator. This lowers
the maximum mass that can be supported by degenerate pressure to about
0.7 Mg, as Oppenheimer and Volkoff found in 1939.
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Second, the equation of state, describing how pressure depends on den-
sity, temperature (and composition), must include the nuclear force as well
as quantum mechanics and degeneracy pressure. At distances less than about
1 fm (10715 m), the nuclear potential is repulsive and so helps balance grav-
ity, raising the mass limit. This is good. Otherwise there would probably be
no neutron stars; anything that made it past white dwarf density would con-
tinue down inside its own Schwarzschild horizon and become a black hole. The
downside is that we have no closed, complete theory of the nuclear force to
correspond to quantum electrodynamics for the electromagnetic force, and
laboratory conditions cannot quite duplicate the enormous assemblages of
neutrons needed to see just what the potential looks like. As a result, the lit-
erature includes many different equations of state for “dense nuclear matter”
that imply different internal structures for neutron stars, different limiting
masses, characteristic radii, break-up rotation velocities, and so forth. Indeed
the interior of a neutron star need not even be primarily made of neutrons.
Hyperons, muon condensates, and strange quark matter have all been sug-
gested.

In contrast, the structure of a black hole is remarkably simple. It can be
characterized by a mass (as measured by Kepler’s third law from far away), an
angular momentum (measured by how it drags space-time around up close),
and electric charge (probably zero, since free electrons and protons can flow
in). That’s it. Of course calculating things (like the shortest period orbit that
is possible for a test particle going around a black hole, or how synchrotron
radiation will be modified if both the magnetic field and relativistic particles
are being dragged around) is, at best, extremely difficult.

We can, however, summarize the expected and measured properties of
white dwarfs, neutron stars, and stellar-mass black holes, as is done in
Figs. 2.33 and 2.34. Notice that the three categories were initially defined in
very different ways: white dwarfs by their location on an HR diagram, neu-
tron stars in analogy as something supported by degenerate neutron pressure,
and black holes (the idea predates general relativity by more than a century)
by having an escape velocity larger than the speed of light. Given these de-
finitions, white dwarfs must exist, neutron stars exist on the “walks like a
duck, quacks like a duck” principle, and black holes exist on the Sherlock
Holmes principle that, if you have eliminated the impossible (neutron stars
of 10 Mg and so forth) whatever remains, no matter how improbable, must
be the truth. Whether astrophysical black holes have all the internal proper-
ties implied by general relativity cannot be determined from outside (and all
the students sent inside to do thesis research on this topic have so far failed
to return and submit their theses) and for our purposes does not matter.
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Property White Dwarfs Neutron Stars Stellar Mass Black Holes
Definition Position in HR diagram Pressure from degenerate neutrons Vegc Ereater than ¢
Predicti .
redietion Zwicky 1933-34 Michell 1784, Laplace 1798
Discovery
wide binary Bessell 1844, Clark 1862
WS Adams 1914 (Sir B)
single van Maanen’s star c. 1920 pulsar CP1919, Hewish, tentative: 1999 MACHO events
Bell 1967-68 toward galactic bulge
interacting cataclysmic variables interpretation of Sco X-1 orbit of Cyg X-1, Bolton,
binaries Struve,Kraft 1950s Zeldovich et al. 1964+ Murdin 1972
Masses 0.2-1.38 Mgy, CBS orbits 0.8-1.44 Mgy, CBS orbits 6-10 Mgy, CBS orbits. BHXRB,
surface gravity, log g=8 gravitational redshifts duration of MACHO events
gravitational redshifts 30-75 km sl
probable correlation of M and
interior compositions
Sizes radius ~ R L=4nR25T? R~10km, X-ray L & T some limi_ts f_rf)m
earth’ rapid variability
eclipse timing 1097 K, X-ray colors
Luminosity & thermal (single WD) thermal, ISM accretion accretion disks 1007 K
energy sources (single, non-pulsar) X-ray colors
accretion (cataclysmic accretion (X-ray binaries), accr‘elion, per}!aps Blandff)rd-
variables), nuclear (novae) nuclear (X-ray bursters), Znajek extraction of rotational
magnetic extraction of ro- KE, X-ray binaries
tational KE (pulsars),
104-102 Lsun 0.001 of to greater than Z:g;,n(;‘ilr}) (::)d;g:[(;?xi?;ﬁnmed
H i 1 H
104 Lgyp in novae Eddington limit Eddington limit

Fig. 2.33. Our “crib sheet” for the properties of white dwarfs, neutron stars, and
black holes. Codes used in this figure are: CBS = close binary systems, BHXRB =
black hole x-ray binaries, ISM = interstellar medium, LMXRB = low mass x-ray
binaries, HMXRB = high mass x-ray binaries, MACHO = MAssive Compact Halo
Objects. Continued in Fig. 2.34.

2.13 Binary Stars

Half or more of all the dots of light you see in the sky actually represent
two (or occasionally more) stars, and these gravitationally bound pairs, or
binary stars, are nearly the only source of information we have about stellar
masses, the most important thing in a star’s life. In addition, some of the
most spectacular of astronomical phenomena—novae, some supernovae, some
gamma ray bursts—and many of the favorite objects of amateur astronomers
(eclipsing variables, blue plus yellow pairs) are binaries. Why, then, are they
left almost for last? Mostly because one needs to know about the evolution
of single stars before one can put them together and follow the evolution of
pairs.

2.13.1 Types of Binaries

Binary stars can tell us about their duplicity in many ways and are classified
accordingly. Eclipsing binaries are those in which one star passes in front of
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Property White Dwarfs Neutron Stars Stellar Mass Black Holes
Rotation periods minutes to century, 1.55ms to 1500 s, IM2=0.4 10 0.95 (c=G=1 units) of
most much slower than some at breal-up maximum allowed by general relativity
break-up; bimodal?
v sin i, polarization pulsar periods, line profiles
variability Lyx(t) in XRBs
breuk-up is seconds break-up=ms 1/M2=1 maximum possible
(o minutes
Magnetic fields hydrogen line splitting, channeling of gas accretion, (attached to disks)
circular polarization P vs. dP/dt of pulsars
104 t0 10% G, bimodal 1059 G, LMXRB,
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Fig. 2.34. Our WD, NS, & BH “crib sheet,” continued.

the other from our point of view, wholly or partially blocking its light, so
that we see periodic variability. Eclipsing systems are generally ones in which
the stars are fairly close together, because this makes it more likely that we
be close enough to the orbit plane to see the eclipse.

Spectroscopic binaries (called SB1 and SB2 or single- and double-lined
spectroscopic binaries, depending on whether you see spectral features from
one of the two stars or both) are systems in which the periodic change of
stellar speed along our line of sight through the orbit is large enough for the
Doppler shift to be detectable. Once that meant speeds projected along our
line of sight of 10 km s~! or more. The state of the art is now more like 1 km
s~! (and it is this capability that has enabled the detection of Jupiter-mass
planets orbiting many dozens of nearby stars).

Spectroscopic binaries are of enormous value to astronomy, because the
velocities of the two stars plus the orbital period, the information from the
eclipse—which means the orbit is nearly edge on—and a bit of arithmetic
permit calculating the masses of the two stars. The lengths of the eclipse
tell us the radii of the stars; the spectral types contain information about the
stellar temperatures, and with both R and T.g you can immediately calculate
the absolute luminosities of the two stars and compare all this information
with evolutionary tracks of the masses you measured.
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Pairs where you see two sets of spectral features corresponding to different
types but no Doppler shifts are called spectrum binaries (and must have
either very long orbital periods or orbits that we see nearly face on). Visual
binaries are the ones where you can two dots of light moving around each
other in the sky, and can also be analyzed to determine the masses of the
stars, though you must be patient. Most visual orbit periods are years to
decades to centuries, while spectrum binaries have periods of days to weeks.

If the two stars are too close to each other for you to resolve the two dots
of light in the sky, the centroid of the dot may still move around, or you
may see the light from a seemingly-single star wiggle back and forth across
the sky as it orbits something too faint to resolve. These are the astrometric
binaries. The first white dwarfs, Sirius B and Procyon B, were originally
recognized from astrometric orbits of the bright stars Sirius and Procyon,
otherwise known @ CMa and o« CMi. That the two dog stars both have white
dwarf companions is thought to be a coincidence.

Still wider pairs of stars may still be gravitationally bound but have orbit
periods too long and motions too slow to have been seen yet. But they will
move together through space and are dignified by the name common proper
motions pairs. Proper motion is not a term of social approbation but the
standard name for the motion of a star (etc.) across the sky, measured in

arcsec year ™!,

2.13.2 The Roche Geometry

The need for specific investigation of stellar evolution in binaries is made
clear by the Algol (8 Per) paradox. You know from earlier parts of this text
that massive stars evolve faster than petite ones (as in tp,e M=29 of
Eq. 1.91). Yet there is a large group of eclipsing binaries, of which Algol is
the prototype, in which a clearly evolved giant (often of spectral class K)
orbits a clearly less-evolved main sequence star (often of spectral type A or
F). And the evolved giant star is the less massive of the two. This paradox
has its resolution in the phenomenon of mass transfer in close binaries. That
is, the initially more massive star has managed to off-load a good deal of its
substance onto the initially less massive star. The donor, however, continues
to evolve as if it still had its initial mass and so will finish first.

Just what happens is always discussed within the framework of what is
called the Roche geometry (for the French mathematician; though Lagrange
of Turin also comes into the story). Think of yourself as a test particle living
somewhere near a binary star system and at rest in a coordinate system that
rotates with its orbit period. The orbit of each star is assumed to be circular.
That is, if the stars are going around their mutual center of mass in circles
with period II or angular velocity €2, you too are going around the center of
mass with period II and angular velocity 2. Now trace out the equipotential
surfaces—the ones that you can walk (or fly or rocket) around without having
to do any work, like the surface of the rotationally-distorted earth.
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Fig. 2.35. The Roche equipotential surfaces for ¢ = Ma/ M1 = 1/2 in the plane
of rotation. Three surfaces (£1, &2, and &3) are labeled. (To find out what the &;
represent, see the text and Ex. 2.19.) Boxes (O) enclose three of the Lagrangian
points. The boldface x is the center—of—mass of the system. The coordinates = (the
axis connecting the two stars) and y are in units of the distance between the stars.

What you will find is shown in cross-section in Fig. 2.35. (Ex. 2.19 explores
some of the mechanics necessary to set up the equipotentials in this figure.)
The two black dots are the stars, M; the primary (more massive), and My
the secondary with M; > Ms. (For simplicity it is assumed that the stars
are just massive dots with spherically symmetric gravitational fields.) In this
particular case M = 2Ms, and the center of mass is at the point x. We
will adhere to the custom of theorists in binary astronomy of continuing
to call M; the primary no matter what happens to the stars subsequently.
Working outward from the stars, first you find that the equipotentials are
nearly spherical, with one sphere surrounding each star, just as for a single
point mass. But soon you come to &, called the inner Lagrangian surface,
which is made up of two Roche lobes, one surrounding each star. The point
L; between them is the first Lagrangian point. Clearly if one star fills its
Roche lobe and the other doesn’t, material is free to flow from the star with
the filled lobe to its companion. and if both lobes are filled, it would seem
that gas could slop back and forth between the two stars.
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The Roche geometry is responsible for another set of names for types
of binaries. In detached systems, neither star fills its lobe. In semi-detached
systems (like Algol) one does. And in contact systems both lobes are filled.
The W UMa variables are contact systems of relatively low mass, and you
see a bit of an eclipse almost no matter what direction you look at them
from. Observed binary systems have separations (that is, major axes of their
relative elliptical orbits) that range in size from the sum of the radii (contact
systems) up to about 0.1 pc or 20,000 AU. Wider systems may well have
formed but are very easily disrupted by any passing star or gas cloud.

Still further out from the stars comes the first equipotential that is open
to the rest of space at the point Ly (on the equipotential surface £3). Gas
that reaches this point is free to leave the system completely, as is even more
true for gas that reaches Lz (on &). The points Ly and Lj have no special
significance for binary evolution but are analogous to the Trojan asteroid
orbit locations for the Sun—Jupiter system and might be good places to put
artificial satellites if you were living in the system. (In this context they
are called the “Trojan points” and form equilateral triangles with the sun
and Jupiter at two of the corners. Generally they are referred to as “triangle
solutions.”) A pair in which both stars over-fill their Roches lobes is a common
envelope pair (CEB). Gas that leaves through Lo and Lz will have more
than its fair share of angular momentum (because they are further from the
center-of-mass than the main bodies of the stars). The residual stars will
spiral together, perhaps rather rapidly. We know this must happen because
there are pairs of evolved stars (white dwarf plus red dwarf for instance)
whose present separation is smaller than the sum of their radii when they
were both on the main sequence.

2.13.3 Formation and Early Evolution

Since we do not understand star formation very well this is obviously dou-
bly so for binary star formation. It is probable, however, that two or more
modes are in operation. One might, for instance, imagine two (or more) dense
cores in a molecular cloud that happen to condense close enough together for
the resulting star pair to be gravitationally bound. Such binaries should be
wide pairs. Second, in a crowded environment with many protostars milling
about, tidal capture may occur. The extra kinetic energy of the initially hy-
perbolic encounter has to go some place, via dissipation in the protostars, and
extended disks make the process more efficient, while in turn perhaps disrupt-
ing the disks and making planet formation unlikely. This is OK, though you
wouldn’t want to try to live on a planet in a close binary system anyway. The
orbit, like most three body processes, is likely to be unstable and send your
planet careening out into distant space or crashing into one of the stars.
Third and last, a contracting core may fragment into two pieces, especially
if it is rotating rapidly. Even the gentle rotation observed for many molecular
clouds is enough that, with a contraction process that conserves angular
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momentum, many cores will be close to the break-up rotation speed (as in
Ex. 2.20, and see Bodenheimer, 1995],for a discussion of angular momentum
problems for young stars and disks). Fragmentation or fission of a single core
is expected to produce close binary pairs, arguably with the two components
of rather similar mass. Tidal capture, on the other hand, might “choose” stars
at random out of the total ensemble and favor unequal pairs. In practice, we
observe virtually all sorts of pairs that are physically possible. Notice that
this excludes pairs of main sequence stars of such different mass that one
has completed core hydrogen burning before the other even reaches the main
sequence (mass ratios of less than 0.2 or thereabouts).

Ongoing loss of angular momentum is characteristic of most stars whether
single or binary (including the sun). The usual mechanism, at least for stars
with convective envelopes, is an outgoing stellar wind, magnetically locked
to the rotation of the star close in, which then breaks loose and so carries off
a ratio of total angular momentum to mass (J/M) larger than the star (or
binary) average. In close binary systems, the rotation and orbital periods are
locked much of the time (like the moon to the earth), thus angular momentum
loss affects the system as well as the individual stars, and members gradually
spiral together. This must be how W UMa (contact) binaries form, since the
systems we see are smaller than the stars were during protostellar collapse.
Confirming evidence comes from looking at very young star clusters, which
have lots of wide pairs but no W UMa stars. Older clusters (including globular
clusters) do have W UMa pairs, and it looks like there is a steady supply of
them forming from previously detached pairs. But they then merge after
another billion years or so, only to be replaced by others coming through the
spiraling-in process.

In a system that is initially detached, the two stars live their early lives
much as they would in isolation, although they are likely to display more
activity than average for their masses and ages both because of the reduced
surface gravitational potential and because of their rotation being kept at
the orbital period, faster than they might otherwise rotate. The extremity
of this is the category called RS CVn stars, where both are slightly evolved
(F, G, or K stars as a rule) with winds vigorous enough that the collision
region is a source of both x-rays and radio emission, while the individual stars
have vigorous chromospheres (detectable as emission features inside strong
absorption lines of hydrogen, calcium, etc.).

2.13.4 The First Mass Transfer Phase and its Consequences

Sooner or later, M; (the primary) is going to try to become a red giant,
as all stars massive enough to have done anything at all in the age of the
universe do. If its companion is sufficiently far away, neither star cares about
the other, and you can go on to the next section. A “close” binary is, by
definition, one in which the primary fills its Roche lobe at some evolutionary
phase. Aficionados distinguish three cases: Case A where the lobe is filled
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during immediate post-main sequence evolution, Case B where filling occurs
while the primary is a red giant, and Case C where Roche lobe overflow sets
in even later, for instance when M; becomes a AGB star. There are people
who earn a precarious living by numerically integrating through all of the
possible combinations. We will sort of average over them here. Much more
detail is given in de Loore and Doom (1992).

When M; first fills its Roche lobe, material begins spilling over onto My
rapidly because (if you do the arithmetic—as you should in Ex. 2.21) the
mass ratio coming closer to unity brings the two stars closer together so that
the lobe is shrinking at the same time that the star is trying to expand. Now
M can adjust its structure and dump on its thermal or Kelvin—-Helmholtz
time scale (see Eq. 1.32), but My can only adjust and accept on its thermal
time scale, which is longer, since things all scale roughly as M~2 (combining
Eqgs. 1.32, 1.87, and 1.88). Thus its envelope puffs up until it, too, fills and
overfills its Roche lobe, producing a contact or common envelope binary. The
first person to discover this was a semi-mythical Berkeley graduate student
named Benson, who had intended to couple two stellar evolution codes and
follow both stars to the bitter end. Instead, by the time a tenth of a solar
mass had passed through Lj, both lobes were full and the codes broke down.
It is said that he submitted his thesis and left astronomy forever in about
1971.

But, leaving Benson to his fate, Fig. 2.36 shows the earlier stages of Case
A evolution (from de Loore and Doom, 1992). Starting with M; = 9 Mg
and My = 5 Mg, mass exchange leaves them at 3Mg and 11 M), respec-
tively, after only 18 million years of evolution. At a later stage, the (former)
secondary will do its thing also.

Several stars, including 3 Lyrae, have been proposed as examples of this
rapid mass transfer, when M is so deeply buried in an accretion disk that all
it can do is eclipse the other star. Come back in a little while (we mean after
a few Kelvin—Helmholtz times, not 2005), however, and the ratio of masses
will have been reversed, with part of the outer layers of M; lost forever to
the system and part settled in on top Ma, and with M} > MY in the star’s
new guises. W Serpentis has been proposed as an example of a star at this
evolutionary state (but don’t bet money on it).

Now, further mass transfer will make the mass ratio more unequal, so that
the system expands again and so does M} ’s lobe. Thus continued adjustment
of its structure and further mass transfer occurs on the much longer nuclear
time scale. The prototype of this phase is—had you almost forgotten about
it?7—Algol, with the evolved giant still gently overflowing its Roche lobe and
transferring material to the now-more-massive main sequence star.

In due course, M, still evolving on the time scale set by its initial mass—
at least for transfer in Cases B and C (sorry!)—completes its evolution as
a white dwarf, neutron star, or black hole. The minimum main sequence
masses to make a neutron star or black hole are probably somewhat larger
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ng +5Mg t=0 P=1.45d
QME +5MD t=12.5 P=145d
')'M'v—TMQ t=12.504 P=1.12d

373 Mg+ 1(117/'Ma t=12.504 P=1.12d

302M,+ 1098M, t=18  P=3.77d

Fig. 2.36. An example of the earlier phases of Case A evolution. The two stars have
initial masses of 9 and 5 M orbiting each other with a period of 1.45 days. Times
(t) are given in millions of years. For the last four panels, the black circles represent
helium-rich material, whereas gray is original hydrogen-rich. Note the somewhat
dubious assumption here: no mass is supposed to have escaped from the system.
Reprinted from de Loore and Doom (1992) with kind permisssion of the authors
and Kluwer Academic Publishers (and see Kippenhahn and Weigert, 1967).

than for single stars, for instance 15 M, versus 8-10 M, for a neutron star
(though this must also depend on initial composition and perhaps rotation
and magnetic fields as well). The minimum single star mass needed to make
a black hole is not known observationally, though numbers as small as 20
M have been proposed by theorists, but there is at least one x-ray binary
with M now a neutron star, whose secondary is such that the initial mass
of M; must have been something like 50 M.

You might suppose that the loss of mass in a planetary nebula or core col-
lapse supernova would automatically unbind the system. This is, in general,
not the case. Remember M; is the less massive star by the time it dies, and
to unbind a gravitational pair with sudden mass loss, you must remove at
least half the total mass (which is left to you in Ex. 2.6). Thus white dwarfs
nearly always remain attached to their secondaries, and neutron stars (and
presumably black holes) will be liberated only if the supernova explosion is
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asymmetric and gives the core a reciprocal kick velocity (yes, that is the
phrase normally used).

2.13.5 Systems With One Compact Component

Binaries at the start of this evolutionary stage can be rather difficult to recog-
nize, particularly if M is a white dwarf, a good deal less luminous than its
main sequence or giant My. Consider Sirius. The white dwarf contributes
roughly one photon in 10% of those reaching us, and although Bessell showed
in 1844 that there must be a companion, it was not seen for nearly 20 years,
and even now it still gets lost in the glare during the part of its 50-year
elliptical orbit when it is closest to the main sequence star Sirius A. Inciden-
tally, Sirius is a “close” binary in the sense that, if you trace the evolution
backward, there was probably some mass transfer.

Nevertheless, binary nuclei in planetary nebulae are not uncommon (some
are eclipsing binaries), and V471 Tau, in the Hyades, is the prototype of a
class of temporarily non-interacting systems consisting of a white dwarf plus
a spectral class M star. A Mickey Mouse handful of pulsars have spectral
class B main sequence stars as companions, and there is a larger class of
neutron star and black hole binaries in which the extended star is blowing
off a vigorous wind, enough of which is captured by the neutron star or black
hole to make a bright x-ray source. There must surely also be examples of
non-accreting pairs in which a neutron star or black hole orbits an extended,
bright Mo, but they are not easy to distinguish from systems in which both
stars are still on or near the main sequence and one is much more massive
and brighter than the other.

2.13.6 The Second Phase of Mass Transfer

Binary stars are perhaps at their best when My in turn reaches the stage of
expansion away from the main sequence. First an enhanced wind and then
overflow of its Roche lobe provides a supply of hydrogen—rich gas for accretion
onto the compact companion. And astronomy is at its most botanical in
describing and classifying the cataclysmic variables. All are to some extent
variable in light output, and, as discussed previously, display emission as well
as absorption line features, and have at least some light coming from five
locations—two stars, an accretion disk around the white dwarf, the stream
of gas from L; down (in potential!) toward that disk, and a hot spot where
the stream hits the disk. X-ray binaries, where the accretor is a neutron star
or black hole have the same anatomical parts and also a corona of very hot
gas above and below the accretion disk.

The x-ray binaries are classified along two axes. First, is the accretor a
neutron star or black hole? The decision depends only on mass, and there
seems to be a clean cut, with masses implied by the orbits’ being either less
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than about 2 Mg (neutron stars) or more than 4 Mg (black holes). The
former are more numerous by a factor of ten or so and are, in addition,
sometimes characterized by variability at the rotation period (meaning that
accretion is channeled by a magnetic field of 10*'-10'2 G) and short bursts,
lasting a few minutes, which represent degenerate ignition of helium on the
neutron star surfaces. (The accreted hydrogen burns steadily, but the helium
becomes degenerate before ignition and so explodes.) Some of the black hole
sources display quasi-periodic oscillations, probably at periods characteristic
of the last stable orbit around the black hole (before material plunges in
freely as a result of general relativistic gravitational effects).

The second axis of classification is the mass of the donor star, resulting
in the names “low-mass x-ray binary” (LMXRB) and “massive x-ray binary”
(MXRB). Both can have either neutron star or black hole accretors. The
LMXRB systems seem to be old, where the accretor is a neutron star, the
magnetic field has decayed to 1019-10% G or less, so that accretion is not
strongly channeled, and the evidence for both neutron star rotation and for
the orbit period took some years to acquire. Curiously, this cut is also a fairly
clean one, with donors of less than 1.5 Mg and more than about 8 M and
not much in between. An exception is Her X-1 (meaning the brightest x-ray
source in the direction of the constellation Hercules, previously known as the
optical variable star HZ Her), where the donor is an A or F star. This system
is a peculiarly complex and interesting one, having all the variability time
scales you would expect plus another of about 35 days, which is probably
precession of the accretion disk.

For reasons that now puzzle us, the XRBs with accretors of large mass
were for many years called “black hole candidates” rather than BHXBs. This
now seems rather silly, and perhaps arose out of some confusion about what
is meant by a “black hole.” To repeat, an astrophysicist’s black hole is merely
something with a size comparable with its Schwarzschild horizon. We make
no promises about what, or who, is inside.

In due course, Mo will also complete its evolution, leaving another white
dwarf, neutron star, or black hole. A core collapse and supernova on the
part of My will now remove more than half the total mass of the system,
which is more likely to be unbound at this stage than when M collapsed
and exploded. Thus the products at this stage can include a runaway newly
made pulsar, but also an old neutron star that has been spun back up to
rapid rotation by accretion from its My. This is thought to be the origin of
at least some of the single, weak field, rapidly rotating, millisecond pulsars,
of which the fastest has a rotation period of 1.55 ms.

2.13.7 Binaries With Two Compact Components

We can reasonably expect that some combination of initial star masses and
separation will leave any of the combinations of compact stars that we think
of by taking “one from column A and one from column B,” where column A is
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Mi = WD, or NS, or BH, and column B is My = WD, or NS, or BH. There
is observational evidence for most of the sorts of pairs we would expect to see.
Still missing from the inventory are WD + BH (not clear that any of these
will form, as a large disparity in initial masses would seem to be required),
NS+BH (but statistical considerations say that one of these should turn up
by the time the current list of known binary pulsars has doubled or tripled),
and BH+BH (but one is hard pressed to know how to look for these unless,
by rare good chance, one acts as a gravitational lens for a background star
while someone is watching).

White dwarf pairs often show spectroscopic or eclipse evidence for their
duplicity, allowing for measurement of the component masses. Some of the
systems with small total mass have separations comparable with the sum of
the stellar radii. These must be products of common envelope binary evo-
lution. The prototype is AM CVn. Such pairs will surely spiral together in
time, since they are losing material (hence angular momentum). In addition,
any orbiting binary radiates some gravitational radiation. For extended stars,
this drains energy and angular momentum very slowly indeed. For compact
pairs, it can be the dominant process, and will cause mergers of systems with
periods of 12 hours or less in less than the present age of the universe.16

Pairs of white dwarfs with total mass in excess of 1.4 Mg (the Chan-
drasekhar limit) and orbit periods less than half a day should spiral together
and, as noted earlier, continue to be many people’s first choice as progenitors
of Type Ia supernovae. As we go to press, there is known to exist somewhere
between zero and one system with the requisite properties, several having
been tentatively reported in the past and the system characteristics later
corrected outside the target range.

The (rotation) periods of pulsars are a precise clock, whose periods show
Doppler effects just as precise light wavelengths or frequencies do. This per-
mits mass estimates for the pulsars and their companions, particularly where
there is some additional information from precession of the perihelion or from
an optical identification. White dwarf and neutron star companions are both
found, and it is not always clear as we would like which of the two stars was
initially the more massive.

Neutron star pairs (NSX2) and paired neutron stars and black holes will
also eventually spiral together. The prototype is the first binary pulsar dis-
covered (PSR 1913416, where the two numbers refer to Right Ascension
and Declination, respectively), with two neutron stars and an orbit period
of about eight hours and a total mass of about 2.8 Mg. A handful of other
systems are known, though with the star masses, etc., less well measured.
Thus the Milky Way (and presumably other large galaxies) should have a
few such pairs merge every 10® years. The product would seem likely to in-
clude both some sort of very energetic explosion and a core that collapses

'8 You should work through §16.4 of Shapiro and Teukolsky (1983) to understand
how binary orbits decay due to gravitational radiation.
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to a black hole. Models exist in which observable manifestations include a
spurt of r-process material (perhaps the source of the very heaviest nuclides,
including 2*4Pu, which existed when the solar system formed but has now
decayed away) and an enormous burst of gamma rays, of 10°® erg or there-
abouts, perhaps resembling a subset of observed gamma ray bursts (GRBs).!7
An efficient, all-sky detection system for such GRBs records a couple each
day, coming from galaxies as far away as z = 4. NSX2 or NS+BH mergers
are a candidate model; their main competitor is collapse of single, massive,
rapidly rotating stars to rapidly rotating black holes. Arguably both happen
and make different sorts of GRBs (the binary merger ones having such short
durations that no x-ray, optical, or radio counterparts have yet been caught
and no redshifts have yet been measured).

Finally, the merger of two stellar mass black holes in a binary system
ought to make a burst of gravitational radiation describable as a chirp (that
is, both the intensity and frequency of the radiation increase over a few
moments to a few-second peak at close to a kHz). Detectors to look for these
are being built several places, and at least one (an interferometer with a
baseline of 300 meters, in Japan) had already reported some upper limits as
this is being written.

2.14 Star Formation

Within the Milky Way at present, most star formation occurs within clouds
of gas that are (a) molecular clouds (mostly Hy but with CO as an important
tracer), (b) cool (meaning 5-15 K), (c) dense with 10® or more Hy cm™3,
which is thinner than thin air, but dense compared to the galactic gas average
of about one hydrogen atom cm~2, (d) largish (sizes of parsecs and masses
up to 10> M), and (e) primarily located in the spiral arms of the disk.
Other sites of star formation must surely be important at other times and in
other kinds of galaxies, but even less is known about them than the parochial
sort.'8

About 1% of the mass is invariably in dust, and this is more than enough
to make the relevant clouds largely opaque to visible and ultraviolet light.
Thus historically a major reason for our ignorance of star formation was
that we couldn’t really observe it. Constantly increasing sizes of collecting
areas, improved angular and wavelength resolution, and better detectors for
infrared and radio photons have largely ameliorated that situation. Emission

17 The gamma ray bursters are beyond the scope of this text but you may wish to
consult Schilling, G., 2001, Science, 294, 1816 for an introduction

8 Check out the 4 January 2002 (Vol. 295) of Science, pages 63-91, where you
will find a series of articles on various topics in star formation. For a conference
proceedings devoted to this whole topic, see Holt and Mundy (1997). Going yet
further into the formation of binary stars, see Tohline, J.E., 2002. ARA&A, 40,
349.
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lines of CO and many other molecules (something like 130, with molecular
weights up to 100 or so, are known, many familiar from earth, some distinctly
odd) permit mapping out the gas clouds. An important discovery is that the
clouds are never of uniform density. All have dense cores studded through
them, some that already have protostars inside, and some that do not but,
we suppose, eventually will. Infrared astronomy permits the detection and
analysis of emission from the embedded stars themselves and the residual
disks of dust and gas from which planets presumably form. A very short list
of some of the more interesting, and perhaps surprising, interstellar and cir-
cumstellar molecules is given in Table 2.4 (material courtesy of Pat Thaddeus
who periodically updates his list). Much more information about astronom-
ical molecules, big and small, is available in the review by Ehrenfreund and
Charnley (2000). For more on the interstellar medium (ISM) of our galaxy,
see Ferriere (2001).

Table 2.4. Some Interstellar Molecules

Molecule Other names

SiHy4 Silane

CH4 Methane (marsh gas)

H>CO Formaldehyde (preservative, etc.)
NH3 Ammonia

SiC Carbide (whetstones, etc.)

H.S Hydrogen sulfide (rotten eggs)

CH3CH2OH Ethanol, Ethyl alcohol (for cocktails)

CH3;0H Methanol, Methyl alcohol (not for cocktails)

CH,=CH: Ethylene (See Hale et al. 2003 for an unusual application.)
CH2CHN  Vinyl cyanide

Another property of these giant molecular gas clouds is at least approxi-
mate balance between inward gravitational forces and outward pressure, the
latter made up of contributions from microscopic gas kinetics of the mole-
cules, turbulence, magnetic fields, and rotation (all of which are more or
less observed). Thus the clouds typically last longer than their free-fall time,
perhaps 108 years (the galactic rotation period) versus 105-10¢ years. What
makes a given cloud to decide to start contracting and forming stars is some-
times posed as a question: “Is star formation triggered?” Possible triggers for
contraction might include bumping up against another cloud, being zapped
by an expanding supernova remnant or HII region (the expanding cloud of
gas ionized and heated by a young, massive, hot star), or being swept up in
the shock wave at the front of a spiral arm as the galaxy rotates. It is not
obvious by looking but spiral arms are really sort of like standing waves, and
their rotation speed differs from that of the galactic stars and gas. After years
of careful observation and analysis, astronomers working on star formation
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have provided the answer to the question “Is star formation triggered?” The
answer is, “Sometimes.”

Approaching the problem from the other side, we can look at the prop-
erties of a population of newly formed stars (a young cluster or association,
for instance, or a ensemble average of a bunch of these). Important prop-
erties include (a) how much total mass goes into stars from a given mass
molecular cloud?, (b) What is the distribution of stellar masses formed? This
is called the Initial Mass Function, or IMF. (¢) What fraction of the stars
are in binary systems (or large hierarchies)? and, (d) what are the statistical
properties of the binary ensemble (the distribution of separations, M; and
M or the ratio, and of eccentricities).

Most of these questions have at least approximate answers, though not
all astronomers agree on precisely what they are or on the extent to which
any of the properties varies from one star formation region to another. The
IMF, for instance, looks rather like a power law,

E(M) dM = M~ dM

where, for masses less than about 0.5 Mg, « is typically around 1.35, and &,
is a constant. The units of £(M) are the number of stars per unit mass. (There
is also the “birthrate function,” which describes the rate at which stars are
formed in a given mass interval. See Ex. 2.17 for an example.) Notice that
this diverges as mass becomes arbitrarily small. Another description is as a
Gaussian, whose righthand side looks a lot like a power law form. This will
not diverge, but the problem of finding the mass at which the peak occurs
remains. A particular area of disagreement is how far toward small masses
the IMF continues to rise and, therefore, how much matter is more or less
hidden in very small stars or brown dwarfs whose lifetimes are longer than
the age of the universe. And is this the same everywhere? (Almost certainly
no, to the last part of the question. Some young clusters, including one near
the center of the Milky Way and in the Large and Small Magellanic Clouds,
appear to be making only rather massive stars, or at least more than their
fair share.)

As for the binaries, we noted earlier that half or more of all stars (perhaps
up to 90% in some places) are binaries and that the full range of possible
separations occurs, with perhaps some preference for the middle of the range
and periods of ten years or so (not very easy to study). The orbits are not
all circular (except for contact systems) and not all extremely eccentric, but
the distribution is not very well known. Older star populations have more
circular orbits, but this is the result of gradual dynamical evolution, not of
different initial conditions. The distribution of binary mass ratios is probably
not the same everywhere or the same for systems of all possible separations.
Some studies have found, for instance, that the binary members of some star
clusters act like pairs of stars that were selected at random from the IMF to
live together. Other studies, especially ones of short period systems, find an
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excess of pairs where the stars have roughly the same mass. Complete data
to assess any of these distributions are very difficult to acquire.

Finally, the process is generally (again in the Milky Way context) not very
efficient. Where giant molecular clouds have enough gas for 10° suns, young
clusters and associations consist of dozens, to hundreds, or at most a few
thousand stars, indicating an average efficiency of not more than 1%. Indeed
if the efficiency were very high, probably all the gas would have been turned
into stars long ago, as indeed apparently happened in elliptical galaxies. Part
of the underlying reason for the inefficiency is that the first few massive
stars that form will, via their winds and HII regions and eventual supernova
explosions, dissipate the gas that has not already also gathered into stars
very quickly.

The statement is often made by astronomers (including us) that there
is no theory of star formation. Roughly what this means is that you can
observe many of the details of molecular clouds (mass, rotation, internal
distributions of density, temperature, turbulence, and magnetic fields) and
tell a theorist about these details, but she or he will not, in turn, be able
to tell you how efficient the star formation will be, what the resulting IMF
and binary population characteristics will be, and so forth. “What makes the
IMFE?” in particular is one of those questions that astronomers have asked,
and found a great many different answers to, over the years.

An early answer was that the stars should all have approximately the
Jeans mass, the minimum that can hold itself together by gravity at a given
gas density and temperature.

Another answer was that single clouds normally fragmented into little
bits smaller than stars, which later collided and stuck. This sort of statistical
process will indeed give you a power-law distribution of masses. Somewhat
later came the answer that the mass of a star was set by the end of ac-
cretion from the surroundings and the onset of (probably collimated) mass
loss. The transition is thought to happen when the core of the star gets hot
enough (about 10° K) for deuterium to fuse, setting up a convection zone
and permitting the generation of a dynamo magnetic field.

The whole story probably includes at least part of all these ideas, and also
part of the idea that when gas is turbulent there will be bits that are tossed
around and bits that are relatively quiescent backwaters, where cores might
form and condense to make stars. Why, you ask, can’t you just put it all on
a computer and let it run? Surely there is no unknown fundamental physics
in the process of star formation. True enough, but this concerns an enormous
number of particles—perhaps 102 molecules in a largish cloud. Clearly you
cannot, follow them individually through their gravitational and collisional
interactions. Suppose instead you think of the cloud as being made up of
many small fluid elements (small compared to a star, but large compared to
an atom). You will still discover, if you want to resolve entities that will be
a few AU across when the process is complete, that the largest cloud you



120 2 An Overview of Stellar Evolution

can handle is perhaps 100 Mg, and a good many Moore’s doubling times
in computing power will have to pass before there will be adequate dynamic
range to simulate a whole giant molecular cloud divided into bits of a Jupiter
mass or thereabouts. The problem is somewhat akin to weather forecasting,
which is often done on a grid of 100-km squares, because more smaller ones
would overwhelm number-crunching capabilities. Unfortunately, whether a
given storm will pass 50 miles off the coast or right though your beachfront
house is then impossible to predict.

Astronomers working on calculations of star formation currently receive
many fewer complaints about this problem than do weather forecasters.

2.15 Supplemental Material

To give you a better idea of some properties of ZAMS models, Tables 2.5 and
2.6 list representative models from various sources. Along with the model
mass and composition, each model is keyed by a model number (the first
column) to help bridge across the tables. The fourth and fifth columns of
Table 2.5 list the model luminosity and effective temperature and the sixth
column gives the model radius in units of 10 cm. (We shall occasionally
use the subscript notation S,, to denote the value of a quantity S in units of
10™.) The references in the last column are as follows:

(1) Models with this reference number were made by the authors using the
computer code ZAMS.FOR that can be found on the CD-ROM on the end-
cover of this text. It uses simple physics and analytic fits to opacities and
energy generation rates. These models are perfectly fine for pedagogy.

(2) These models are from

> VandenBerg, D.A., Hartwick, F.D.A., Dawson, P., & Alexander, D.R.
1983, ApJ, 266, 747.
As with the models of reference (3), they contain much more sophisticated
physics than do our models.

(3) These very low mass models are from the “MM EOS” sequence of

> Dorman, B., Nelson, L.A., & Chau, W.Y. 1989, ApJ, 342, 1003
and see

> Burrows, A., Hubbard, W.B., & Lunine, J.I. 1989, ApJ, 345, 939.
A good review of the consequences of uncertainties in constructing models
for low-mass stars may be found in

> Renzini, A., & Pecci, F.F. 1988, ARA&A, 26, 199.

The central temperature (in units of 106 K) is T; 6, and p. and P, are,
respectively, the central density and pressure in cgs units. These are listed in
Table 2.6. Finally, the last two columns in that table list q. and qeny. The
quantity q. is the fractional mass of a possible convective core in a model (see
Chap. 5). For example, in a model of M = 60 Mg the inner 73% of the mass
is convective starting from model center. The corresponding quantity qeny is
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Table 2.5. Zero-Age Main Sequence Models

No. M/Mas (X,Y) logL/Ls logTes Rio Ref.

-3.023  3.475 0.805
-3.803  3.327 0.650

0.70, 0.28
0.70, 0.28

1 60 (0.74,0.24) 5701 4.683 70.96 (1)
2 40  (0.74,0.24) 5.345 4.642 56.89 (1)
3 30 (0.74,0.24) 5066 4.606 48.53 (1)
4 20 (0.74,0.24) 4.631 4547 38.73 (1)
5 15 (0.74,024) 4.292 4498 32.89 (1)
6 10 (0.74,0.24) 3.772 4.419 25.94 (1)
7 7 (0.74,024) 3.275 4341 20.99 (1)
8 5  (0.74,0.24) 2773 4259 17.18 (1)
9 3  (0.74,024) 1951 4.118 12.76 (1)
10 2 (0.74,0.24) 1.262 3.992 10.30 (1)
11 1.75 (0.74,0.24) 1.031 3.948 9.695 (1)
12 150 (0.74,0.24) 0.759 3.892 9.151 (1)
13 1.30 (0.74,0.24) 0496 3.834 8.827 (1)
14 120 (0.74,0.24) 0.340 3.800 8.648 (1)
15 1.10 (0.74,0.24) 0.160 3.771 8.032 (1)
16 1.00 (0.74,0.24) -0.042 3.752 6.931 (1)
17 090 (0.74,0.24) -0.262 3.732 5.902 (1)
18 075 (0.73,0.25) -0.728 3.659 4.834 (2)
19 060 (0.73,0.25) -1.172 3.594 3.908 (2)
20 050 (0.70,0.28) -1.419 3.553 3.553 (3)
21 040 (0.70,0.28) -1.723 3.542 2.640 (3)
22030 (0.70,0.28) -1.957 3.538 2.054 (3)
23 0.20 (0.70,0.28) -2.238 3.533 1.519 (3)
( ) 3)

( ) 3)

the fractional mass contained in a fully or partially convective envelope. For
our purpose here, if qepny is not zero, then it is the fractional mass measured
from the model surface inward to a level where convection ceases. Thus, for
example, the outer 0.35% of the mass of the model numbered 16 (1 Mg)
is entirely or partially convective. This is a ZAMS model of the sun and, it
turns out, it is completely convective from just under the photosphere inward
to that mass level. This corresponds, however, to the outer 17% of the radius.
A listing of “neg.” for qeny means that a negligible fraction of the envelope is
convective (say, less than 10~ in mass) but a “1” means the model is fully
convective. A “0” in that column means that there is no convection. Finally,
a “~” implies that the information was not available to us. Now for what may
be learned from the models.

For the higher mass stars, and keeping composition fixed, radius is seen to
increase with mass as expected from the homology relation (1.87) where R
M7 Since strict hydrostatic equilibrium holds for these models, Equation
(1.66) plus (1.87) implies that P oc M~1. If this pressure is taken as the
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Table 2.6. ZAMS Models (continued)

No. M/M@ Tc,G Pc log Pc Jec Jenv

1 60 39.28 1.93 16.22 0.73 0
2 40 3759 2.49 16.26 0.64 0
3 30 36.28 3.05 16.29 0.56 0
4 20 34.27 4.21 16.37 0.46 0
5 15 32.75 5.48 16.44 0.40 0
6 10 30.48 8.33 16.57 0.33 0
7 7 2841 126 16.71 0.27 0
8 5 2643 19.0 16.84 0.23 0
9 3 2347 35.8 17.06 0.18 0
10 2 21.09 47.0 17.21 0.13  neg.
11 175 20.22 66.5 17.25 0.11  neg.
12 150 19.05 76.7 17.28 0.07 neg.
13 1.30 17.66 84.1 17.28 0.03  neg.
14 1.20 16.67 85.7 17.26 0.01 1077
15 1.10 15.57 84.9 1722 0 5x107°
16 1.00 14.42 822 17.17 0  0.0035
17 090 13.29 785 17.11 0  0.020
18 0.75 10.74 815 - 0 -
19 0.60 9.31 79.1 - 0 -
20 050 9.04 100 17.10 O -
21 040 815 104 17.04 0 -
22 0.30 7.59 107 17.05 = 1
23 020 6.53 180 17.24 = 1
24 0.10 451 545 17.68 = 1
25 0.08 330 775 17.83 1

central pressure, then P, should decrease with mass. It does, although not
as fast as homology would imply. The relation of density to mass and radius
of (1.62) combined with (1.87) yields p oc M~%/4, and this general behavior
is shown in Table 2.6 where p, decreases with mass. We already know that
luminosity increases with mass (from 1.88), and it is an easy matter to show
that Tog and T, do so also. In summary, ZAMS stars of high mass get bigger,
brighter, and less dense as mass increases.

2.16 Exercises

Exercise 2.1. By some combination of means, a binary system has been
observed and the following parameters determined for it:

e The system has zero eccentricity; i.e., the orbits are circular.
e The mass of the primary (the brighter star) is M; =5 M.
e The inclination of the system is ¢ = 30°.
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The period is IT = 31.86 days.
The maximum velocity of the primary along the line of sight to us is
V, =10.17 km s 1.

We assume that both primary and secondary stars were formed at the
same time on the ZAMS and that further evolution has been such that neither
mass nor angular momentum has been lost from either star or the system
since that time. This means that the orbital parameters have not changed
since the system was formed. The following questions require that you read
up on Kepler’s laws as applied to binary systems: see, for example,

> Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 2nd ed. (San Fran-

cisco: Freeman), pp. 79-86.

1. What is the numerical value of the semimajor axis, a, of the system?
Compare this figure to the distance of the planet Mercury from the sun.

2. What is the mass, M, of the secondary?

3. After what period of time following ZAMS formation will the primary
expand to fill its Roche lobe as a result of normal evolution? You will
need radius versus time information to answer this. This information can
be found by reading £ and Teg from Fig. 2.5 and then computing. For a
larger version of Fig. 2.5, see Fig. 6-16 of Clayton (1968). You may also
“cheat” and use the original source for these figures:

> Iben, I. Jr. 1966, ApJ, 143, 483.
The Roche lobe radius traditionally used is the radius of a sphere of
volume equal to that of the Roche lobe. There are several versions: the
one given below is due to

> Eggleton, P.P. 1983, ApJ, 268, 368.
If M is the mass of the primary, ¢ = My/M; < 1, and a the semimajor
axis of the system, then the equivalent radius of the Roche lobe of the
primary is

RR1,1 - 0.49
a  06+¢3n (1+1/q'/3)"

(2.1)

Exercise 2.2. A Classical Cepheid variable with a period of 10 days is seen
in a distant galaxy. Its observed color and apparent visual magnitudes are,
respectively, (B-V)g = 0.7 and my = 14. If we assume there is no dust or gas
between us and the star, estimate the distance to the galaxy using material
from, say, Chapter 10 of Allen (1973, 3rd ed.) or Cox (1999). You should
also check how well the following period-luminosity—color (PLC) relationship
works given all the above information. From
> Iben, I. Jr. & Tuggle, R.S. 1972, ApJ, 173, 175,

we have

log <££> = —17.1+1.491logIT + 5.15log Tog (2.2)
©

where IT is the period in days. A newer, but more complicated, version of this
may be found in
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> Iben, L. Jr. 2000, in Variable Stars as Essential Astrophysical Tools, ed.
C. Ibanoglu (Dordrecht: Kluwer), p. 437.

Exercise 2.3. As an exercise of your skills in homology or dimensional anal-
ysis try the following:

1. Verify the following homology relations for the lower main sequence:

L o« 7035155412
R o 7015 x0.68 \41/13

[ o 7-11x-50),546
Tog oc 72035 X 164133, (2.3)

2. Now do the same thing for the upper main sequence where electron scat-
tering and the CNO cycles are important. Still assume diffusive radiative
transfer and the ideal gas equation of state. Since the rate for the CNO
is proportional to the abundance of CNO nuclei times that of protons
(see Chap. 6), take ecno oc X ZpT1®. The HR diagram (Fig. 2.37) shows
lower ZAMS models from

> Mengel, J.G., Sweigart, A.V., Demarque, P., & Gross, P.G. 1979,
AplJS, 40, 733
for metalicities Z = 0.04 and 10~* (Y = 0.3). See how well your homology
results compare with the figure. (Answer: “So, so, but not a disaster.”)

2.5
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log Test

Fig. 2.37. The results of Mengel et al. (1979) for lower main sequence models are
plotted on an HR diagram.
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Exercise 2.4. This problem will explore a key property of Classical Cepheids
pertaining to the distance scale and, in particular, you will find the distance
to the galaxy M81, as follows. In the simplest scenario, there is a correlation
between the period, II, of variability of a Classical Cepheid Variable (CCV)
and its luminosity, £. This is the period—luminosity (II-£) relationship and
it has the form

IToc L9

where « is some constant.

1. To estimate a, use the period-mean density relation IT o (p)~'/? and

phrase this in terms of powers of M and R. To eliminate M in what
you found, note that there is a relation between M and £ (derived from
theoretical evolutionary tracks) for CCVs of the form £ o M7/2. Now use
the blackbody relation between £, R and Tog to phrase II as a power law
in terms of only £ and Teg. Finally, there is a rough relation between T,
and £ on the Cepheid Strip of the form £ x Te_ff15. Use this to eliminate
T to get II o L@ and thus derive the value of a.

2. To see whether your result for « is reasonable, consider Fig. 2.38, which
shows the observed apparent visual magnitudes, my -, versus logII for
CCVs in the galaxy M81. (The data have been massaged slightly to
make this problem more tractable.) Fit this data to a straight line of
the form my = —a logll + b, where a and b are constants and II, as
in the graph, is in the units of days. What are a and b? Convert your
expression for my to a II-L relation of the form given earlier; that is,
you are to convert this to IT oc £8. To do this you will need the follow-
ing: log L/Le = [Mpol(®) — Mpal] /2.5, where My, = My + B.C. is the
absolute bolometric magnitude. [For the sun My (®) = 4.75.] Take the
bolometric correction B.C. to be a constant for the data set. Neglect ex-
tinction and reddening in your analysis. Finally, you will need (here and
elsewhere) my — My = 5 logd — 5, where d is the distance to the star in
pc. Find the value of 8 and compare this to your result for a.

3. Now to find the distance to M81. We use the LMC as a guide. The LMC
is at a distance of 50.1 kpc and contains CCVs that are assumed to be
identical in general properties to those in M81; that is, a CCV with a
given log IT has the same My in either galaxy. In the LMC a CCV with
a period of 10 days has an apparent magnitude my = 14.4. Neglecting
extinction, etc., deduce the distance to M81. Give that distance in the
units of Mpc.

Exercise 2.5. We now have the tools to investigate a curious class of stars
called “blue stragglers” that continues to baffle astronomers. One model for
these stars is that they mix up their insides somehow so that their composition
is always homogeneous. Construct a family of homologous stars in which
the mean molecular weight u is kept as an independent variable (i.e., £
e M= ete.). Assume CNO burning (e oc pT*°) and Kramers opacity (k o
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Fig. 2.38. Apparent visual magnitudes of Classical Cepheids in the galaxy M81.

pT—35). For simplicity, neglect the weak composition dependence of € and &,
and assume a nondegenerate ideal gas equation of state.

1.

How does the main sequence £ versus Tog vary with p? Explain what is
happening in physical terms.

. What is the functional form of an evolutionary track for a homogeneous

star in the HR diagram? Draw an HR diagram showing the evolutionary
track in relation to the main sequence.

. How does the luminosity of such a homogeneously evolving star change

with u? Such a star burns about 10 times as much fuel as a normally
evolving star before depleting hydrogen. Qualitatively, will the homoge-
neous star live 10 times as long as a normal star? Why or why not?

. Draw a schematic HR diagram of a moderately old cluster as it would

look if some small fraction of all stars underwent homogeneous evolution.
Qualitatively, how would this diagram be modified if the “homogeneous”
stars actually retained a small outer portion of their envelopes as unmixed
hydrogen?

. How much energy is required to mix the interior of such a star from grav-

itational considerations? Is such mixing then feasible? Can you suggest
some ways in which intermediate-mass main sequence stars could mix
themselves up?

You may wish to check out detailed computations of such mixed models. See,

for

example,

> Saio, H., & Wheeler, J.C. 1980, ApJ, 242, 1176.

Exercise 2.6. In §2.13.4 it was remarked that, in the simplest circumstances,

“,,

- to unbind a gravitational pair with sudden mass loss, you must remove
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at least half of the total mass.” Thus consider a binary pair of masses M;j
and M in circular orbits about their common center of gravity. The masses
are separated by the distance a. One of them, say, M, rapidly loses mass in
a spherically symmetric way (in, for example, an ideal supernova explosion).
The mass is lost to the system entirely. If the stars’ initial velocities are wvq
and wvg, then the velocity of M .,—as what’s left of M; as a remnant—
will still be v; after the mass loss. (In the terms of §2.13.4, there will be
no “reciprocal kick velocity.”) Velocities and masses of the initial system are
related by Mjv; = Mavs (as simple dynamics will show). The aim here to
show that the following is necessary to unbind the system:

Mrcm S 1
Mi+ My = (14+ Mo/ Mp)(2+ Mo/ My)

<1
5

In the following you may wish to consult, for example,
> Carroll, B.W., & Ostlie, D.A. 1996, An Introduction to Modern Astro-
physics (Reading: Addison-Wesley), §17.5.

1. Convince yourself that the initial total energy, Wiy, of the system is
Winit = U + Q = 2 M0 + LMo — GMiMs/a.

(Note the use of W, U, and Q. The virial theorem is lurking here in
one manifestation.) The final total energy of the system, Wy, is just the
above with M replaced by Mem-

2. For the final system to be unbound, W5, must be greater than zero. You
now have enough information to prove the result desired, after just a tad
of algebra.

Exercise 2.7. It was stated that the sun’s luminosity 4.6 Gyr ago was some
25% less than it is at present. The first reaction to this is that the earth’s
surface and atmosphere should have been cooler at that remote time. So
let’s put in numbers, examining the present epoch as a start. First calculate
the solar constant, which is the flux of radiation incident upon a unit surface
perpendicular to that beam of radiation at the top of the earth’s atmosphere.
(All you need is the sun’s present luminosity and the distance to the sun;
ie, 1 AU.) To find out how much radiation is actually absorbed by the
atmosphere, assume that the earth’s albedo is 31%; that is, 31% of the solar
flux is reflected back into space. Then, without further hints, assume that the
earth is in thermal balance and re-radiates power into space as a blackbody. In
that case, what is the effective temperature of the earth? (The answer for the
present epoch will come out to about 254 K, which turns out to be very near
the mean temperature of atmosphere for the earth we have grown to know
and love.) Now do the same for the earth at 4.6 Gyr ago assuming nothing
else has changed (including the composition of the atmosphere—which is a
nonsensical assumption) except for Lg. If the present mean temperature of
the earth’s surface is around 290 K (63° F), what, naively, might it have been
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4.6 Gyr ago? (We really have no idea of the real answer to this but microscopic
life began at a surprisingly early time in earth’s history—perhaps as early as
3.6 Gyr ago, although there is now some controversy about the fossils.) For
those of you interested in the earth’s atmosphere, we warmly recommend the
intermediate level text Atmosphere, Weather and Climate by R.G. Barry &
R.J. Chorley, 6th (or earlier) ed., 1992 (London & New York: Methuen).

Exercise 2.8. It is obvious that of the two open clusters shown in Fig. 2.6,
the Pleiades is younger than M67 because the turnoff point is at a cooler Teg
in M67.

> Lang, K.R. 1991, Astrophysical Data: Planets and Stars (New York:

Springer—Verlag), Table 15.2
gives the age of the Pleiades as 0.08 Gyr and 4 Gyr for M67. Let’s see how
close we can come to the figure for M67. This is a tricky business, as you
will see, but you should come within 50% or so (assuming the quoted figure
is really correct to begin with!). First note that (B-V') in the figure is as
observed and is not corrected for interstellar absorption. Since light from
different spectral bands is absorbed differently, we must make a correction
to get to the colors as emitted from the stars before absorption take place.
If (B-V)g is the true color index, then the correction is given by the color
excess

Ep_yv=(B-V)=(B-V)o

where Lang gives Ep_y = 0.08 for M67. (This makes stars hotter than would
be the case if you used the uncorrected color.) Thus look in the literature,
and the tables in Lang are fine, to translate (B-V') at the turnoff point in
M67 to luminosity at the turnoff point—and remember that stars at that
point are luminosity class V main sequence stars. (Note that this can be a
bit messy. It’s not easy to guess where the turnoff point might be in some
HR diagrams. This is certain;y true for M67.) Next use the following arcane
formula quoted by
> Iben, I. Jr., & Renzini, A. 1984, PhysRep, 40
between luminosity at the turnoff point and cluster age:

c
log [ETO} ~ {0.019 (log Z)? +0.065log Z + 0.41Y — 1.179} log to +
©

+ 1.246 — 0.028 (log Z)* — 0.272log Z — 1.073Y (2.4)

where tg is the cluster age in units of 10° years and L1o/L is at the turnoff
point. This expression adequately reflects the results of evolutionary calcu-
lations for —4 <logZ < —1.4, 0.2 <Y < 0.3, and 0.2 < tg < 25, which are
ranges of general interest. If M67 is about 4 Gyr old, then a composition close
to solar seems a good guess (perhaps); that is, try something like Z = 0.02
and Y = 0.3. What do you find for the age of M677

Exercise 2.9. You ought to be able to estimate the age of our local galactic
disk and other parts of our galaxy from the dropoff point of white dwarf
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luminosity functions, as discussed in §2.8.1. You will need the following kind
of information: The time it takes to get to the PNN stage starting from the
ZAMS has been estimated (from evolution studies) by

> Iben, I. Jr. & Laughlin, G. 1989, ApJ, 341, 312
to be

log tio pan = 9.921 — 3.6648 log </\/:l/l> +
(O]

+ 1.9697 {log (/Cl/;)r —0.9369 {log (/C:;)T (2.5)

for ZAMS masses 0.6 < M/Mg < 10. Times are in units of years. (Note
these are original ZAMS masses, and assume the sample is large enough that
the WDs at dropoff started out at the maximum mass for stars ending up as
WDs. Why make this last assumption?!) Once the star is a hot and luminous
PNN, it has the mass it will have in its subsequent career as a white dwarf.
> Iben, I. Jr., & Tutukov, A.V. 1984, ApJ, 282, 615

estimate it takes the time twp (in years) for the WD to cool to some given
luminosity with (and see Chap. 10)

AN 7 MmN uN-2T [ L —-5/7
_ 6 <~ b 7 it
twp = 8.8 x 10 (12> (M@) (2) <£®) yr.  (2.6)

Here A is the nuclear mass number (say for carbon) and p is the mean
molecular weight (both discussed in §1.4.1). Assume a standard WD mass.
Having done this part of the problem, do the same for the halo using a Teg
of, say, 4,000 K while assuming a standard size and mass for the WD.

Exercise 2.10. In Chapter 1 (§1.7) we estimated t,,c, the hydrogen ZAMS
lifetime, by calculating the energy released by converting 10% of the available
hydrogen to helium and then dividing by luminosity. We can do the same
for a pure helium ZAMS or, more to the point, estimate the lifetime on
the HB where helium is being converted to C/O. A typical HB star has a
luminosity of 50 Lo and helium core mass of 0.5 M. If we assume, for
simplicity, that oxygen is the final product, then a total of 14.3 MeV is
released when combining four *He nuclei (16 amu) to make one 60O nucleus.
With this information, find the lifetime of a star on the HB using the same
10% efficiency used on the hydrogen ZAMS. You might wish to experiment
and use

Mcore
Mq

log (££®> ~ 0.261 4 3.04 (2.7)

from

> Iben, I. Jr., & Renzini, A. 1984, PhysRep, 40,
where Moo is the helium core mass. This at least gives an idea of how the
luminosity on the HB varies with core mass. (Some abundance information
has been deleted by us in Eq. 2.7.) You might compare your results to an
older estimate by
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> Iben, I. Jr. 1974, ARA&A, 12, 215,
which is

MCOI’E
logtyp ~ 7.74 — 2.2 - 0.5 .
e () oe] o

Exercise 2.11. RR Lyrae variable stars are on the HB, have observed peri-
ods of roughly 2-24 hr in the “fundamental” mode of pulsation, and effective
temperatures Tog ~ 7,000 £+ 500 K.

> Iben, I. Jr. 1971, PASP, 83, 697
has come up with the following expression (again a fit to calculations) that
relates almost all interesting properties of these variables:

logIl ~ —0.340 + 0.825(log £ — 1.7) —
—3.34(log Tog — 3.85) — 0.63(log M + 0.19) (2.8)

where £ and M are in solar units, and the period II is in days. With this
information (and perhaps hints from Ex. 2.10), find a range of typical masses
for RR Lyraes.

Exercise 2.12. In §2.8 we hinted that you should estimate the gravitational
potential energy released in the collapse of a 1.2 Mg core from an initial
density of 10° g cm ™3 to a final 10*® g cm 3. Do so.

Exercise 2.13. Figure 2.10 showed mass loss rates for massive and luminous
stars. The numbers for this figure were derived from material in Lamers and
Cassinelli (1999) in their §2.7. The key equation is their Eq. 2.38, which reads

log (MusRY?) = —1.37 + 2.07 log (£/10°) (2.9)

where (in this equation alone) M, R, and £ are in solar units, M is in
Mg yr71, and vs (the terminal velocity of the wind far from the star) is in
km s~!. This is a semi-empirical formula based on observations of spectral

class O and B stars in our galaxy, where log (MvooRl/ 2) is well-fit by a

straight line versus log £/L (see their Fig. 2.19). The terminal velocity v,
is found to be roughly proportional to the escape velocity, vesc, at the stellar
surface, where

Vese = V/2(1 —To)GM/R . (2.10)

The curious term (1 — T'y) arises from the levitating effect of the radiation
field due to radiation pressure at the photosphere. It effectively lowers the
escape velocity. For now—but see later—we shall set it to unity (i.e., set T
to zero). For stars with Tog 2 21,000 K, Voo & Vesc/2.6. (The factor 2.6 is less
for cooler stars.)

1. With this information, check to see if we did our arithmetic correctly in
producing Fig. 2.10.
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2. Now back to I'e. This is given as
r, - KpL
4reGM

where £, ~ 0.3 cm? g7! in the winds of hot stars. Look ahead to §4.3
where we discuss the “Eddington limit,” and specifically to our (4.49),
where you will find a numerical version of (2.11). Now redo you calculation
of M and see what are the effects of reducing the escape velocity because
of radiation pressure.

(2.11)

Exercise 2.14. We briefly mentioned the Baade—Wesselink method for de-
termining distances, luminosities, etc., of variable stars by examining how
they pulsate. For the two original references see
> Baade, W. 1926, AstNachr, 228, 359
> Wesselink, A.J. 1946, BAN, 10, 91.

The technique goes back quite a ways. What you will do here is to look at a
piece of the method. (Only a piece because a lot is really involved.) Imagine
that you have observed the radial velocity of a spectral line in a RR Lyrae
star; that is, you have determined the velocity of material, away or toward
you in the line of sight, on the surface of the star as it pulsates. (Note that
you may get somewhat different velocities were you to observe another line.
This is one of the tricky points in the method.) Suppose the velocity curve
you have observed is the one shown below (which is decidedly a fake, but
for reasons to become obvious, it will make things simple). The velocity is
plotted in Fig. 2.39 against phase, ¢, meaning that you started observing at
a zero time, said to be at ¢ = 0, and then observed for one complete period
of pulsation, II, and call that ¢ = 1. Thus ¢ measures time in units of II.
(Of course the curve goes on and on and we naively assume it repeats itself
each II.) Tt has been determined by other means that T,g for the RR Lyrae
is 7000 K (typical) and the luminosity is £/Ls = 54 (also typical), where
both represent some average over time as the star pulsates. The pulsation
period is IT = 0.5 days (also typical). What you are about to do is determine
how the radius varies over one period. The radius of the star, R(t), is just the
integral of the radial velocity, v(¢), making sure you get your units correct. It
so happens that, thanks to us, your velocity curve is well-fit by the function

v(¢) = —30 cos (21¢) + 10 sin (47p) km s~ 1. (2.12)

(Remember while doing this that a negative velocity means that the stellar
surface is moving toward you.) Integrate this from ¢ = 0 to some ¢ in order,
in effect, to get R(t) — R(0). If you assume that ¢ = 0 represents the average
radius (taken to be the radius the star would have were it not pulsating)
derivable from the Tog and L given above, then plot R(t) (in solar units)
versus time. To see if you are on the right track, we find that the total
excursion in radius from smallest to largest is AR =~ 0.6 R (which is also
typical for many RR Lyraes).
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Fig. 2.39. Here is the velocity curve for your RR Lyrae variable. Note that velocity

is in km s71.

Exercise 2.15. Material eventually accreted onto a white dwarf or neutron
star first forms a luminous accretion disk surrounding the accretor.
> Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons)
give the following expressions for the luminosity of the disk (good to within
an order of magnitude or so):
Laisk (WD) ~ %% ~10% M_g ergs! (2.13)

for white dwarfs, and

Laisk(NS) ~ LGMM. 103" M_g ergs! (2.14)
2 R

for neutron stars. Here M _g is the accretion rate in the units of 1079 Mg,
yr~ 1. If you assume the material comes effectively from infinity and most of
the luminosity comes from very near the accretor, take a stab at deriving
these for a typical white dwarf and neutron star. (The first terms on the
right-hand sides of the expressions are a giveaway.) A rate of 107 M, per
year is in the right ballpark for these systems meaning that solar luminosities
(or much higher) are easily achievable.

Exercise 2.16. Invent an eclipsing binary system of your choosing (but don’t
attempt a system where the two stars are in contact, or nearly so—too dif-
ficult!). So, choose your two stars, big, small, whatever, luminous, dim, etc.,
separation and eccentricity of orbit, inclination, etc., and plot the radial ve-
locity and light curves over one cycle of the orbit. (Do have them eclipse,
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however.) To do this in real detail is difficult (problems of limb-darkening,
etc.) so make it simple. A nice elementary discussion of binary systems may
be found in
> Shu, F.H. 1982, The Physical Universe: An Introduction to Astronomy
(Mill Valley, CA: University Science Books).

Exercise 2.17. This exercise is essentially Problem 1.6 of Shapiro and
Teukolsky (1983, and we suggest you check their §1.3 for the necessary back-
ground on the whole question of how stellar statistics vary with time for the
galactic disk): The

> Salpeter, E.E. 1955, ApJ, 121, 161
“birth rate function” is given by

M b M —2.35 ( M ) P
. 2 ) =92x%1 - —_— 2.1
Ysd (M®> x 10 (M@) d M, pc o yr (2.15)

and it gives the rate at which stars are “birthed” in the galactic disk in a
sample pc~® and is supposed to be roughly valid for 0.4 < M/Mg < 10.
We will use this to estimate how much iron-peak material has been thrown
off into the disk of our galaxy by hypothetical supernovae in the mass range
4 < (M/Mg) < 8 where we assume that 1.4 Mg of iron-peak material is
expelled from the star. (Note that the above mass range does not agree with
what we have said about masses for pre-supernovae—and this is the main
point to the problem.) We also assume that the rate of production of stars
of a given mass has not changed during galactic history (which is somewhat
unlikely). Take the age of the galactic disk as Tga = 10 Gyr.

1. After a time Tga1, what is the concentration of iron-peak material in the
units of Mg pe=3?

2. Show that the main sequence lifetimes of the stars in question make little
difference in the answer you obtain.

3. The Oort limit is the estimated total amount of matter in the solar neigh-
borhood necessary to explain the motions of nearby stars. The corre-
sponding density is 0.14 Mg pc=3. Some of this must be composed of
iron-peak material. If all of that material were produced from supernovae
in the mass range used above, then what would be the mass fraction of
iron in the disk?

4. Compare your result to the iron mass fraction given in our Fig. 1.2,
assuming solar system abundances are representative of the disk. What
do you conclude from this exercise?

Exercise 2.18. When a supernova explodes, a shock wave travels through
the star heating up and compressing the stellar material. What we shall
now explore is a simple model which gives a rough idea of how violent this
process may be. We will use the Hugoniot—Rankine (HR) relations that tell
us how hot and dense the material is after a shock has passed. For a first-rate
reference see the first chapter of
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> Zel'dovich, Ya.B., & Raizer, Yu.P. 1966, Physics of Shock Waves and
High Temperature Hydrodynamic Phenomena, in two volumes, eds.
W.D. Hayes and R.F. Probstein (New York: Academic Press).

The HR relations are

p(D —v) = ppD mass conservation (2.16)
P+ p(D —v)? = Py + poD* momentum conservation (2.17)
P D —v)? P D?
E+—+ % =FEo+ =2+ —~  energy conservation . (2.18)
P Po

Here a zero subscript on pressure (P), internal energy per gram (FE), and
density (p) refers to the conditions of the stellar material before the shock hits
(and this pre-shock material is assumed to be at rest), whereas no subscript
refers to the post-shock conditions. The velocity v is that of the post-shock
material and D is the velocity of the shock wave itself. (By the way, see if you
can derive these equations.) The idea here is to specify the initial density po,
temperature Ty, and composition of the pre-shock material, and then choose a
value of D. All else should follow. We shall assume initial conditions py = 0.01
g cm ™3, Ty = 10° K, and a composition specified by a mean molecular weight
of u = 1/2. This places us somewhere in the envelope of the supernova. We
further assume that the material doesn’t change its ionization state so that
1 always remains a constant. For an equation of state we will take some
combination (see below) of ideal gas and radiation. To tackle the problem
as we will pose it, it is best to eliminate v in the HR relations so as to end
up with only two equations. Then plug in directly the equation of state.
The resulting equations will then have only p and T" as unknowns with D as
a parameter. The idea will be to choose D and then numerically solve for
density and temperature. We suggest some kind of Newton—Raphson scheme
for solving this problem. Chapter 7 of the text goes through some of this (and
see the references there).

1. First assume that the equation of state is solely due to an ideal gas.
Choose several values of D through the range 103 x 10° cm s~! and
find the corresponding post-shock densities and temperatures. Plot your
results.

2. You will note that the post-shock temperatures continue to rise as D
increases but, after a while, the density doesn’t change. Show analytically
that in the limit

Df2 S N KTy
2 H
the density levels out to p/pg = 4 and the temperature is given by T =
3uD?/(16kN,).
3. Now do the same thing but include radiation pressure and energy along
with the ideal gas. Plot your results.
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4. Here you find the same kind of behavior as in the ideal gas case; the
density levels off but the temperature keeps increasing as D increases.
However, the ratio p/py = 7 is reached for this situation. Show this
analytically. Note also that the temperature in this case ends up being
less than for the ideal gas shock. Figure out why this happens and then
show, in the limit of very large D, that T* = 18pyD?/(7a) where a is the
radiation constant.

Exercise 2.19. Putting together the Roche geometry shown in Fig. 2.35 is
not easy because the computations can be very tricky. This exercise will ask
you to set up the problem (which involves a review of elementary mechanics),
and then, at the end, request from you only a single number (but you may
go on as far as you wish). The now-classic reference is
> Kitamura, M. 1970, Ap&SS, 7, 272,

which includes results for the rotation plane plus equipotentials off that plane
(plus much more).

1. The starting point is to write down the potential, gravitational plus cen-
trifugal, in the rotation plane (z—y plane, with z = 0) at some arbitrary
point (z,y). For the moment, z and y are measured from the center-
of-mass (CM) of the system. If  is the angular rotation velocity (with
circular orbits), 71 the distance from Mj to (z,y), and r2 the correspond-
ing distance from Ma, then show that the total potential, ¥(x,y), in the
CM system is

My | GMa | %QQ (z® +47) . (2.19)

\I/ =
(z,y) o 7‘2

(Depending on how you define gravitational and centrifugal forces as
derived from potentials, you may derive the negative of our ¥. It doesn’t
matter, but keep track of your signs. Note also that an arbitrary constant
may be added to your result.)

2. Now shift your reference point from the CM to the location of M; and
let z and y be measured from there. Show that the result is

2
(m — R%) + y?

GM;, n GMy 1
My + My

0?2
1 T2 + 2

U(z,y) = (2.20)

where r? = 22 + 9%, 73 = (R — 2)? + y?, with R being the distance from

My to M. (You will have to recall the relation between masses and
distances between masses in the CM to get this.)

3. Now to find out what the &; are in Fig. 2.35. The aim is to get ¥ in a
dimensionless form. Define £(z,y) by

R M2
Iy _ .
ant, Y@y =g (M + My)

§(z,y) = (2.21)
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Note that this only scales ¥(z,y) and adds a constant. Thus if ¥U(z,y)
is a constant, as an equipotential, then £(z,y) is also constant and is the
same equipotential but in different guise.

4. The final step is to introduce ¢ = My /M; < 1 (with M; as the primary),
and let x, y, r1, and 79 be given in units of R. Show that the final result
* 1 1 1 9 9

§(x,y):+q(—m>+(1+q)(as +y?) . (2.22)
1 T2 2

(You will have to show that Q% = G (M; + M3) /R? to get this. It fol-
lows from balancing centrifugal and gravitational forces in the CM.) In
principle, this is all you need to find the curves of equipotentials such as
the samples shown in Fig. 2.35. You may wish to try but, not being that
cruel, we won’t ask you to.

5. However, given that the equipotential, &1, for the Roche lobe is & =
2.875845 for ¢ = 1/2, find the location of the first Lagrangian point L;.
(Check Fig. 2.35 to see if your answer is reasonable.)

Exercise 2.20. Suppose you wanted to make a star of one solar mass out
of a very large sphere of interstellar matter of mass 1 Mg with a uniform
density of 1 hydrogen atom cm™3. First off, what is the radius of the sphere?
If we want to make the star in the disk of our galaxy at the location of our
sun (about 9 kpc from galactic center)—and the sun orbits the galactic center
at a speed of about 230 km s~'— what is the rotation period and angular
velocity (in radians s~!) at that location? By the way, a short listing of the
properties of the Milky Way may be found in

> Trimble, V. 1999, in Allen’s Astrophysical Quantities, 4th ed., ed. A.N.

Cox (New York: Springer—Verlag), p. 569.
What is the initial angular momentum of the cloud (assuming it participates
with the galactic rotation)? If the cloud now condenses uniformly down to
solar size, conserving angular momentum and not losing any by any means,
what is the final rotation rate (in, say, Hz)? Estimate the breakup velocity at
the sun’s surface and the corresponding rotation rate. You should now realize
why angular momentum has to be gotten rid of in star formation.

Exercise 2.21. It was stated that if the more massive star (M) in a binary
system loses mass to the secondary (M), then the separation between them
decreases. This is true if angular momentum isn’t lost from the system (i.e.,
all the mass lost by M goes to My). Using conservation of momentum,
show that the separation does decrease. (You can use some of the results
from Ex. 2.19.)

Exercise 2.22. (We thank Cole Miller of UMD for reminding us about this
simple analysis and follow his version.) A very early, and now classic, paper
by

> Schonberg, M., & Chandrasekhar, S. 1942, ApJ, 96, 61
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discusses what happens if an isothermal core of helium tries to support a
hydrogen-rich envelope but runs into trouble if the core gets too massive.
(Tt is assumed that a hydrogen burning shell overlies the core.) The trouble
point is the Chandrasekhar-Schénberg limit (in mass, and you may often
see the names reversed). The following analysis is crude but is intended to
give the idea of how this works. So, assume that you have a constant density
star of total mass M and radius R. These are kept fixed throughout the
problem. The mass of the helium core, of mass M e, and its radius, Reore,
are, however, allowed to vary. The idea will be to examine what is the pressure
at the inner surface at R¢ore and compare it to the pressure exterior to that
surface where the composition has changed (and, hence, so has the mean
molecular weight). To make things simple, assume that the ideal gas law
holds everywhere. (You may wish to consult

> Stein, R.F. 1966, in Stellar Evolution (New York: Plenum Press), eds.

Stein & Cameron, pp. 3-82
for a slightly different version of what follows.)

1. Use the virial theorem in the form
2K + Q) =3PsV (2.23)

as discussed briefly in §1.3 and Ex. 1.8 (where you are to derive it). Pg
is the surface pressure at the inner surface at R¢ore- Remembering that
we have an isothermal, constant density, core made up of an ideal gas,
find Pg as a function of Mcore, Reores feore (the mean molecular weight
in the core), and the temperature T' of the core.

2. This Pg is the pressure that is supposed to support the overlying layers.
We want to maximize it to give the hardest push on the envelope. Show
that the maximum, with respect to Rcore, is given by

p 1315\’ (NJT\Y 1
st = 231(7) () v

core

3. Now use the result (Eq. 1.42) for the central pressure of the constant
density sphere to find the temperature T' of the core; i.e., express T in
terms of M, R, and picore. (Of course, for such a sphere, Meore/R3,.. =
M /R? so you have some leeway in how to express 7. Hint: see Eq. 1.56)

4. Since we really don’t want T to be discontinuous across Reore (Otherwise
heat would flow like crazy across Reore), €xpress Ps(max) in terms of M,
Meores Meore, and fleny, where the last is the mean molecular weight in
the envelope.

5. In order that the core be able to support the envelope, we must have

Pg(max) > Pg(env) (2.24)

where Pg(env) is the pressure just exterior to Reore (oOtherwise the en-
velope would push in the core). Now, if you will allow for a little incon-
sistency, since T' and density are constant in the core the implication is



138 2 An Overview of Stellar Evolution

that pressure is everywhere constant and, so that hydrostatic equilibrium
is to be maintained at Reore, take Pg(env) to be the central pressure of
the sphere. (For a different, but similar tack, see Stein 1966.) From this
(somewhat dubious assumption) show that (2.24) is equivalent to

(W () e
M 4 2 /”'core

Put in numbers for (2.25) using (1.55) assuming complete ionization, and
compare your result to what was said in §1.7 about lifetimes on the main
sequence. (The result isn’t bad at all.) Note that an important element
of what’s going on here is that the envelope has the advantage to begin
with. As we have emphasized several times, the mean molecular weight
in the helium core is greater than in the hydrogen-rich envelope because

there are fewer free particles per gram in the core. Thus the envelope
pressure has more free particles to use.

2.17 References and Suggested Readings

§2.1: Young Stellar Objects

Figure 2.1 is from

> Shu, F.H., Adams, F.C., & Lizano, S. 1987, ARA&A, 25, 23
entitled “Star Formation in Molecular Clouds,” which tells you what it’s
about. We recommend it highly. The evolutionary tracks and location of T
Tauri stars of Fig. 2.2 are from the review article by

> Stahler, S.W. 1988, PASP, 100, 1474.
It’s an excellent “easy” introduction to the subject.

Amateur astronomers are familiar with
> Allen, R.H. 1963, Star Names (New York: Dover)
and
> Burnham, R. Jr. 1978, Burnham’s Celestial Handbook, in three volumes
(New York: Dover)
but professionals also consult them—especially if teaching an undergraduate
course. Of a different sort is
> Jaschek, C., & Jaschek, M. 1987, Classification of Stars (Cambridge Uni-
versity Press: Cambridge),
which is a compendium of, as titled, stellar classification. An excellent mono-
graph to consult for spectral types, etc., although it is getting to be a bit
dated.

§2.2: The Zero Age Main Sequence

The most widely consulted shorter compendia of astronomical tables, etc.,
are
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> Allen, C.W. 1973, Astrophysical Quantities 3d ed. (London: Athlone)

> Cox, A.N. 1999, Editor of Allen’s Astrophysical Quantities (New York:
Springer—Verlag)
which replaces Allen(1973), and
> Lang, K.R. 1991, Astrophysical Data: Planets and Stars (Berlin: Springer—
Verlag).
Their prices, however, are unfortunate.

Brief discussions of the “solar neutrino problem” include
> Bahcall, J.N. 2001, Nature, 412, 29

and
> Seife, C. 2002, Science, 296, 632.

As more are discovered, brown dwarfs will take up more and more space in
textbooks such as this. For now, see

> Basri, G. 2000a, SciAm, 282, 77 (April 2000)

> Basri, G. 2000b, ARA&A, 38, 485
and

> Gizis, J.E. 2001, Science, 294, 801.

> Chabrier, G., & Baraffe, 1. 2000, ARA&A, 38, 337

and
> Burrows, A., Hubbard, W.B., & Lunine, J.I. 2001, RevModPhys, 73, 719
discuss the general problem of substellar objects.

§2.3: Leaving the Main Sequence

Figure 2.5 is from

> Iben, I. Jr. 1967, ARA&A, 5, 571
which is now a classic and one of the first of many review articles by Icko
Iben.

> Iben, I. Jr. 1991, ApJS, 76, 55
contains a personal account of Iben’s work and, as is usual in his papers, the
reference list is exhaustive. Figure 2.12 is from

> Iben, I. Jr. 1985, QJRAS, 26, 1.

Most of the data used for Fig. 2.6 is from

> Mermilliod, J.-C. 1986, A&AS, 24, 159
supplemented by

> Mermilliod, J.-C. & Bratschi, P. 1997, A&A, 320, 74.
The source for the HR diagram of M3 is

> Buonanno, R., Corsi, C.E., Buzzoni, A., Cacciari, C., Ferraro, F.R., &

Fusi Pecci, F. 1994, A&A, 290, 68.

Much effort has made in recent years to determine globular cluster ages. Two
convergent views are to be found in

> Chaboyer, B.C. 2001, Rip Van Twinkle, SciAm, 284, #5, 44 (May 2001)
and
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> Lebreton, Y. 2000, ARA&A, 38, 35.
A very useful reference, though now somewhat outdated, that describes how
cosmological distances and time scales are derived (usually virtually all the
tools of astronomy) is
> Rowan-Robinson, M. 1985, The Cosmological Distance Ladder (New
York: Freeman).
And, just to go back in time, see
> Larson, R.B., & Bromm, V. 2001, The First Stars in the Universe, SciAm,
285, #6, 64 (Dec 2001)

The isochrones of Fig. 2.8 were derived from data in
> Green, E.M., Demarque, P., & King, C.R. 1987, The Revised Yale
Isochrones and Luminosity Functions, Yale University Observatory re-
port (New Haven, CT).
You may also make up your own isochrones using the model results of, for
example,
> Mengel, J.G., Sweigart, A.V., Demarque, P., & Gross, P.G. 1979, ApJS,
40, 733.

We are fortunate that
> Lamers, H.J.G.L.M, & Cassinelli, J.P. 1999, Introduction to Stellar Winds
(Cambridge: Cambridge University Press)
was published so we could refer to it so often. For more on winds from hot
stars see
> Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613.

§2.4: Red Giants and Supergiants

With such a basic question as “Why do stars becomes giants?” it is surprising
that people are still asking it, as in
> Sugimoto,D., & Fujimoto, M.Y. 2000, ApJ, 538, 857.
Our little diagram illustrating the cycle of nuclear burning, exhaustion, fol-
lowed by contraction and heating, is adapted from the discussion in
> Kippenhahn, R., & Weigert, A. 1990, Stellar Structure & FEvolution
(Berlin: Springer—Verlag).

§2.5: Helium Flash or Fizzle

It is often instructive to follow p. versus 7. through time and we have chosen
> Iben, I. Jr. 1991, ApJS, 76, 55
for Fig. 2.12 to illustrate this. The evolution of p. for a solar model is based
on data from
> Charbonel, C., Meynet, G., Maeder, & Schaerer, D. 1996, A&AS, 115,
339.

The discovery of Technetium in the atmospheres of some cooler stars has to
be one of the most important in stellar astronomy; see
> Merrill, P.W. 1952, Science, 115, 484.
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> Willson, L.A. 2000, ARA&A, 38, 573

offers an extensive review of winds from red supergiants.

§2.6: Later Phases, Initial Masses M <6-10 M,

Every few years George McCook & Ed Sion update their very useful white
dwarf catalog. The latest is

> McCook, G.P., & Sion, E.M. 1999, ApJS, 121, 1
and it is the basis for our Fig. 2.15. For white dwarf luminosity functions and
ages, see

> Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409

> Liebert, J., Dahn, C.C., & Monet, D.G. 1988, ApJ, 332, 891
and

> Leggett, S.K, Ruiz, M.T., & Bergeron, P. 1998, ApJ, 497, 294.
The Fontaine et al. reference discusses the prospects of using white dwarfs to
determine the age of our galaxy (and others). Our Chapter 10 will dwell on
this further. Observations of the globular cluster M4 are reported in

> Richer, H.B. et al. 2002, ApJ, 574, L151

> Hansen, B.M.S. et al. 2002, ApJ, 574, L155.
An excellent review of the cool white dwarfs is

> Hansen, B.M., & Liebert, J. 2003, ARA&A, 41, 465.

For a review of evolution to the PNNS, see
> Iben, I. Jr. 1995, PhysRep, 250, 1.

§2.7: Advanced Phases, Initial Masses M >6-10 M,

We are yet again pleased that one of our colleagues has written a text that
we can reference—instead of our having to do all the work. In this case it is
> Arnett, D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton
University Press).
We shall refer to it often because it covers supernovae and nucleosynthesis in
clear and full detail.

§2.8: Core Collapse and Nucleosynthesis

Besides Arnett (1996), the student should, at some time in her life, read the
classic

> Burbidge, E.M., Burbidge, G.R., Fowler, W.A., & Hoyle, F. 1957 (B2FH),

RevModPhys, 29, 547.

The science is important, but it also shows how papers should be written.
We have used several references in our discussion of elemental and nuclear
abundances, and the r- and s-processes. These are

> Anders, E., & Grevesse, N. 1989, GeoCosmo, 53, 197

> Trimble, V. 1997, Origins of Life, 27, 3

> Trimble, V. 1991, A&ARev, 3, 1
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> Trimble, V. 1996, in Cosmic Abundances, eds. Holt & Sonneborn, ASP
Conf. Ser., 99, 3

> Kappeler, F., Beer, H., & Wisshak, K. 1989, RepProgPhys, 52, 945

> Képpeler, F., Gallino, R., Busso, M., Picchio, G., & Raiteri, C.M. 1990,
AplJ, 354, 630
and
> Meyer, B.S. 1994, ARA&A, 32, 153.
The following should also be at your fingertips when we discuss nuclear
physics and nucleosynthesis:
> Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill).

§2.9: Variable Stars

Sakurai’s object is a fascinating example of evolution in action. For an easy
introduction, see
> Kerber, F., & Asplund, M. 2001, The Star Too Tough To Die, Sky&Tel
(Nov.), p. 48.
Evolutionary calculations for these kinds of stars are given in
> Lawlor, T.M., & MacDonald, J. 2003, ApJ, 583, 913.

§2.10: Pulsational Variables

The two major textbook references to intrinsic variable stars are
> Cox, J.P. 1980, Theory of Stellar Pulsation (Princeton: Princeton Uni-
versity Press)
and
> Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonra-
dial Oscillations of Stars, 2d ed. (Tokyo: University of Tokyo Press).
Recent reviews include
> Gautschy, A., & Saio, H. 1995, ARA&A, 33, 75
> Gautschy, A., & Saio, H. 1996, ARA&A, 34, 551

and
> Brown, T.M., & Gilliland, R.L. 1994, ARA&A, 32, 37.

> Cox, J.P., & Whitney, C.A. 1958, ApJ, 127, 561
and

> Zhevakin, S.A. 1953, RusAJ, 30, 161
essentially solved the problem of what makes Classical Cepheids pulsate,
which also gave the key to the pulsations of other variables in the Cepheid
Strip.

> Smith, H.A. 1995, RR Lyrae Stars (Cambridge: Cambridge University
Press)
has reviewed the properties of RR Lyrae variables in some detail. The oblique

rotator model for roAp variables was first discussed in detail by
> Kurtz, D.W. 1990, ARA&Ap, 28, 607
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and thanks are due
> Bouchy, F., & Carrier, F. 2001, A&A, 374, 5
and
> Kilkenny, D., Koen, C., O’Donoghue, D., & Stobie, R.S. 1997, MNRAS,
285, 640
for discovering pulsations in « Cen A and EC14026, respectively. Even newer,
but unnamed pulsators are discussed in
> Green, E.M., et al. 2003, ApJ, 583, L31.

§2.11: Explosive Variables

The text by
> Warner, B. 1995, Cataclysmic Variable Stars, (Cambridge: Cambridge
University Press)
is required reading for those interested in cataclysmic varaibles. Other refer-
ences include
> Sparks, W.M., Starrfield, S.G., Sion, E.M., Shore, S.N., Chanmugam,
G., & Webbink, R.F. 1999. in Allen’s Astrophysical Quantities, 4th ed.,
ed. A.N. Cox (New York: Springer—Verlag), p. 429
> McLaughlin, D.B. 1960, in Stellar Atmospheres, ed. J.L. Greenstein (Chi-
cago: University of Chicago Press), p. 585
and
> Wade, R.A., & Ward, M.J. 1985, in Interacting Binary Stars, eds.
J.E. Pringle and R.A. Wade (Cambridge: Cambridge University Press).
For more about white dwarfs in these systems, see
> Sion, E.M. 1999, PASP, 111, 532.

Figure 2.28 (sample SN spectra) is from
> Filippenko, A.V. 1996, ARA&A, 35, 312
and see
> Branch, D., Nomoto, K., & Filippenko, A.V. 1991, ComAp, 15, 221
while the SN Type I & II light curves of Figs. 2.29 & 2.32 appeared in
> Wheeler, J.C., & Benetti, S. 1999. in Allen’s Astrophysical Quantities,
4th ed., ed. A.N. Cox (New York: Springer—Verlag), p. 453 (Fig, 18.2),
p. 455 (Fig. 18.4), ©AIP Press, Springer—Verlag.
An introductory review of SN may be found in
> Burrows, A. 2000, Nature, 403, 727 (Feb. 17, 2000)
and, for a review of historical galactic SN, see
> Stephenson, F.R., & Green, D.A. 2003 (May), Sky&Tel, p. 40.
Note that they do not list SN1685. Our discussion of SN1987A follows that
of
> Arnett, W.D., Bahcall, J.N., Kirshner, R.P., & Woosley, S.E. 1989,
ARA&A, 27, 629
with additional material from Arnett (1996). More up-to-date material on
the explosion of massive stars may be found in
> Woosley, S.E., Heger, A., & Weaver, T.A. 2002, RevModPhys, 74, 1015.
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A thorough discussion of Type Ia models is to be found in
> Hillebrandt, W., & Niemeyer, J.C. 2000, ARA&A, 38, 191.

§2.12: White Dwarfs, Neutron Stars and Black Holes

The following reference is a bit dated but it remains the classic text:
> Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons).

§2.13: Binary Stars

This is a huge subject that we have condensed down to a smidgen. For an
excellent introduction (both observationally and theoretically), see
> de Loore, C.W.H. & Doom, C. 1992, Structure and Evolution of Single
and Binary stars (Dordrecht: Kluwer Academic Publishers).
We also took Fig. 2.36 from their work (Fig. 16.1), and see
> Kippenhahn, R., & Weigert, A. 1967, ZeAp, 65, 221.

Calculating Roche surfaces is not for the weak of heart. See
> Kitamura, M. 1970, Ap&SS, 7, 272
for the best examples.

§2.14: Star Formation

For an overview of the subject see
> Holt, S.S. & Mundy, L.G. 1997, eds. Star Formation Near and Far, AIP
Conf. Ser. 393.
Angular momentum problems (always a problem because they are always
multi-dimensional) are discussed in

> Bodenheimer, P. 1995, ARA&A, 33, 199.

> Ehrenfreund, P., & Charnley, S.B. 2000, ARA&A, 38, 427
take us on an interesting voyage through a space teeming with molecules.
The ISM of our galaxy is reviewed by

> Ferriere, K.M. 2001, RevModPhys, 73,1031.

> Hale, J.R. et al. (2003), Questioning the Delphic Oracle, SciAm, 289, 67
(Aug. 2003)

suggest that the oracles at Delphi in classical Greece unwittingly used ethyl-
ene emitted from vents in the earth to pass into a trance-like state to make
their ambiguous pronouncements. Nothing to do with astronomy, but inter-
esting nevertheless.



3 Equations of State

“The worth of a State, in the long run,
is the worth of the individuals composing it.”

— John Stuart Mill (1806-1873)

“What is Matter?—Never mind.
What is Mind?—no matter.”

— from Punch (1855)

The equations of state appropriate to the interiors of most stars are simple
in one major respect: they may be derived using the assumption that the
radiation, gas, fluid, or even solid, is in a state of local thermodynamic equi-
librium, or LTE. By this we mean that at nearly any position in the star
complete thermodynamic equilibrium is as very nearly true as we could wish.
It is only near the stellar surface or in highly dynamic events, such as in
supernovae, where this assumption may no longer be valid.

The reasons that LTE works so well are straightforward: particle—particle
and photon—particle mean free paths are short and collision rates are rapid
compared to other stellar length or time scales. (A major exception to this
rule involves nuclear reactions, which are usually slow.) Thus two widely
separated regions in the star are effectively isolated from one another as far
as the thermodynamics are concerned and, for any one region, the Boltzmann
populations of ion energy levels are consistent with the local electron kinetic
temperature.! Note, however, that different regions cannot be completely
isolated from one another in a real star because, otherwise, energy could not
flow between them. Chapter 4 will go into this further.

One typical scale length in a star is the pressure scale height, Ap, given

by )
din P\ P
Ap = — — 1
r < dr ) ap (31)

where the equation of hydrostatic equilibrium (1.6) has been used to eliminate
dP/dr. The constant—density star discussed in the first chapter easily yields
an estimate for this quantity of

2

R 2
)\p (p = Constant) = 27 |:1 — (L) :|
T R

using the run of pressure given by (1.41). The central value of Ap is infinite
but through most of the constant—density model it is of order R. Near the

! For further discussions of the conditions for LTE see Cox (1968, Chap. 7) and
Mihalas (1978, Chap. 5).
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surface it decreases rapidly to zero. We compare these lengths to photon
mean free paths, Aphot, which we construct from the opacity by

Aphot = (kp)™" cm. (3.2)

This quantity is a measure of how far a photon travels before it is either
absorbed or scattered into a new direction (see Chap. 4). Note that opacity
has the units of cm? g—!.

For Thomson electron scattering, which is the smallest opacity in most
stellar interiors, later work will show that x ~ 1 cm? g=!. If we consider
the sun to be a typical star and set R = R and p = (pg) ~ 1 g em™3
in the above, we then find Apno¢ is at most a centimeter and Ap ~ 101 cm
through the bulk of the interior. Thus Aphot is smaller than Ap by many orders
of magnitude. We could also have compared Apnot With a temperature scale
height and found the same sort of thing because, for the sun, the temperature
decreases by only 107% K cm™! on average from center to surface.

Another simple calculation yields an estimate of how much of a star is not
in LTE. If the photon mean free path is still of order 1 cm, then the relative
radius at which the pressure scale height is equal to the photon mean free
path is (r/R) ~ 1 — 107! using the constant—density model. This means, as
a crude estimate, that it is within only the last one part in 10'! of the radius
that the assumption of LTE fails. In realistic models, the assumption of LTE
breaks down within the region of the stellar photosphere, which is the only
part of a star we can see.

In the following sections we shall quote some results from statistical me-
chanics, which will eventually be used to derive equations of state for stellar
material consisting of gases (including photons) in thermodynamic equilib-
rium. Because several excellent texts on statistical mechanics are available for
reference, many results will be stated without proof. One particular text we
recommend is Landau and Lifshitz (1958, or later editions) for its clean style
and inclusion of many fundamental physical (and astrophysical) applications.
Additional material may be found in Cox (1968), Kippenhahn and Weigert
(1990), and Rose (1998, §3.2).

3.1 Distribution Functions

The “distribution function” for a species of particle measures the number
density of that species in the combined six—dimensional space of coordinates
plus momenta. If that function is known for a particular gas composed of
a combination of species, then all other thermodynamic variables may be
derived given the temperature, density, and composition. For the next few
sections we shall assume that the gas, including electrons and photons, is
a perfect (sometimes called ideal) gas in that particles comprising the gas
interact so weakly that they may be regarded as noninteracting as far as their
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thermodynamics is concerned. They may, however, still exchange energy and
other conserved properties. Before writing down the distribution function for
a perfect gas we first introduce what may be an unfamiliar thermodynamic
quantity.

The variables of thermodynamic consequence we have encountered thus
far are P, T, p (or V, = 1/p), S, E, @, and various number densities, n;
(see §1.4.1). The latter have been, and will be, given in the units of number
ecm~3. We now introduce N;, which is the (specific) number density of an ith
species in the units of number per gram of material with N; = n;/p. It is the
Lagrangian version of n; and it will prove useful because it remains constant
even if volume changes.

Another very useful thermodynamic quantity is the chemical potential,

13, defined by?
oF
= aNi)S,V (33)

as associated with an ith species in the material (and is not to be confused
with g, the ion molecular weight). If there are “chemical” reactions in the
stellar mixture involving some subset of species (ions, electrons, photons,
molecules, etc.) whose concentrations could, in principle, change by dN; as
a result of those reactions, then thermodynamic (and chemical) equilibrium
requires that

Z,ui dNi =0 (34)

which we state without proof. Changing N; by dN; in a real mixture usually
means that other components in the mixture must change by an amount
related to dN; so that not all the dNV; are independent.

As an example, consider the ionization—recombination reaction

HY 4+ e = H +4 (3.5)

where H is neutral hydrogen—assumed to have only one bound state in
the following discussion—H™ is the hydrogen ion (a proton), and e~ is an
electron. We shall neglect the photon that appears on the righthand side of
(3.5) in the following because, as we shall show, its chemical potential is zero
and will not enter into the application of (3.4). The double-headed arrow is
to remind us that the reaction proceeds equally rapidly in both directions in
thermodynamic equilibrium. Now write (3.5) in the algebraic form

1Ht +1e —1H°=0

where the coefficients count how many individual constituents are destroyed
or created in a single reaction. A more general form for this equation is

2 A simple example indicating why su; is a “potential” is given as Ex. 3.6.
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> 1iCi=0. (3.6)

The C; represent H, H°, and e~ in the example and the v;, or stoichiometric
coefficients, are the numerical coefficients. Obviously the concentrations, N;,
are constrained in the same way as the C;. Thus if N; changes by some
arbitrary amount d/N7, then the ith concentration changes according to

dN; dN;
V; B 141 ’
Equation (3.4) then becomes
dNy dNy
,Ufzil/i - T Wiy = 0

"
%

or, since dN; is arbitrary,

This is the equation for chemical equilibrium, which must be part of thermo-
dynamic equilibrium when reactions are taking place.3

As another simple, and useful, example consider a classical blackbody
cavity filled with radiation in thermodynamic equilibrium with the walls of
the cavity. Equilibrium is maintained by the interaction of the photons with
material comprising the walls but the number of photons, N, fluctuates
about some mean value; that is, photon number is not strictly conserved.
Therefore dN, need not be zero. Nevertheless, reactions in the cavity must
satisfy a symbolic relation of the form » p; dN; + py dN, = 0 with dN; = 0.
The last two statements can only be reconciled if

ty =0 for photons. (3.8)

It is for this reason that photons were not included in the ionization and
recombination reaction of (3.5): the vanishing of p, makes its presence su-
perfluous in the chemical equilibrium equation (3.7).

It is reasonable, and correct, to expect that given T, p, and a catalogue
of what reactions are possible, we should be able to find all the NN; for a
gas in thermodynamic equilibrium. In other words, information about N; is
contained in p; for the given T" and p. In a real gas this connection is difficult
to establish because it requires a detailed knowledge of how the particles in
the system interact. For a perfect gas things are easier. Any text on statistical
mechanics may be consulted for what follows.

3 We exclude thermonuclear reactions from this discussion for the present because
they may proceed very slowly and, usually, only in one direction during stellar
nuclear burning.
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The relation between the number density of some species of elementary
nature (ions, photons, etc.) in coordinate-momentum space and its chemical
potential in thermodynamic equilibrium is found from statistical mechanics
to be

1 9j
") =3 L T &+ T AT (39)

We call n(p) the distribution function for the species (although you will often
see this referred to as the “occupation number”). The various quantities are
as follows:

e 4 is the chemical potential of the species.

e j refers to the possible energy states of the species (e.g., energy levels of
an ion).

o & is the energy of state j referred to some reference energy level.

e g; is the degeneracy of state j (i.e., the number of states having the same
energy &;).

e &(p) is the kinetic energy as a function of momentum p.

e a “+” in the denominator is used for Fermi-Dirac particles (fermions of
half-integer spin) and a “—” for Bose-Einstein particles (bosons of zero
or whole integer spin).

e 1 is Planck’s constant b = 6.6260688 x 10727 erg s.

e n(p) is in the units of number per (cm—unit momentum)?® where the dif-
ferential element in coordinate-momentum space is d°r d°>p.

As we shall demonstrate in the following discussion, (3.9) will lead to all
the familiar results from elementary thermodynamics.

To retrieve the physical space number density, n (cm~3), for the species
from (3.9) we need only integrate over all momentum space, which, from
standard arguments, is assumed to be spherically symmetric; that is,*

n = /n(p) 4rp*dp cm ™3 . (3.10)
P

The factor of 47 (steradians) comes from the two angular integrations over
the surface of a unit sphere.

Because we shall want eventually to consider relativistic particles, the
correct form of the kinetic energy, £, for a particle of rest mass m is given by

E(p) = (p*c® + m204)1/2 —mc? (3.11)

4 We explicitly assume here that the distribution of particles is angularly isotropic
in momentum. This is really part of LTE but the assumption will have to be
reexamined in Chapter 4 when we put back angular information and partially
unravel the integral.
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which reduces to £(p) = p?/2m for pc < mc? in the nonrelativistic limit, and
E(p) = pc for extremely relativistic particles or those with zero rest mass.
We shall also need an expression for the velocity which, from Hamilton’s
equations (one of the more elegant and important subjects in the physical
sciences), is
_0¢€
=
(As a simple check on this definition of v, note that v — p/m for pc < mc?
and v — c¢ for the relativistic case, both of which are elementary results.) This
is the velocity to use in the following kinetic theory expression for isotropic
pressure (as in 1.20)

v (3.12)

P=3 / n(p) pvdmp®dp . (3.13)
P

Finally, the internal energy is simply
E= / n(p) E(p) dmp*dp . (3.14)
P

That completes all that we shall need to construct practical equations of state
in the following applications.

3.2 Blackbody Radiation

Photons are massless bosons of unit spin. Since they travel at ¢, they only
have two states (two spin orientations or polarizations) for a given energy
and thus the degeneracy factor in (3.9) is g = 2. From before, p, = 0 and
& = pc. Because there is only one energy level (no excited states), £ may be
taken as zero. Putting this together, we find that the photon number density

is given by?®
8t [ p? dp _3
= — —_— . 3.15
A /0 exp (pe/kT) — 1 e (3.15)
Let « = pe/kT and use the integral

® It may seem contradictory to give one number for the photon density whereas we
stated earlier that the photon concentration fluctuates about some mean value—
thus giving p, = 0. But the point is that photons must interact with matter to
equilibrate (not with each other unless you delve into quantum electrodynamics)
and this is a statistical process. What you get in (3.15) is an average. Fluctuations
about that average depend on the particulars of the matter interactions but, as
long as there are many interactions, the effect of fluctuations is very small. Much
the same can be said about even the ideal gas except there we deal with various
conservation rules involving particles, not photons. See, for example, Landau and
Lifshitz (1958, Chap. XII).
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/OO v _ 2¢(3) = 2(1.202- - )
0

et —1

where ((3) is a Riemann Zeta function, to find
2T\ * s 4
ny=2m¢(3) (- ) ~20287° em™. (3.16)

Find, in similar fashion, that the radiation pressure is given by

K 8\ T aT* o
Pog = (c3h3 T > 5 =3 dyne cm (3.17)

and that the energy density is
Fraq = aT* = 3Paq  erg cm™3 (3.18)

where a is the radiation constant a = 7.56577 x 10715 erg cm~2 K~*. Thus
we recover the usual results for blackbody radiation. The nice thing about
LTE radiation is that all you have to know is the ambient temperature.
Matter density, composition, etc., don’t matter, so to speak.

Note that (3.18) is a y—law equation of state P=(y—1)FE (as in 1.24 after
E in that equation is converted to energy per unit volume) with v = 4/3.
Thus a star whose equation of state is dominated by radiation is in danger
of approaching the v = 4/3 limit discussed in Chapter 1.

It will be convenient for later purposes to define the energy density per
unit frequency (v) or wavelength (A) in the radiation field. These energy
densities are usually designated by u (with an appropriate subscript). Recall
that frequency is given by v = £/h = pc/h and wavelength by A = ¢/v. If
u, is the energy density per unit momentum (that is, the integrand of 3.14
with F..q = fooo up dp) and u, and uy are the corresponding densities per
unit frequency and wavelength, then you may easily show

8rhv3 1 _ _
U, dv = Ry dv erg cm™> Hz™! Hz (3.19)
and 8mh 1
whe _ _
uy dA = B ghe T ] d\ ergem 3 cm™! cm . (3.20)

Associated quantities are the frequency-dependent Planck function
B,(T) = iu, erg cm ™2 (3.21)

and the integrated Planck function

B(T) = /0 B,(T)dv = %T‘l = %T‘l erg em 257! (3.22)
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Fig. 3.1. A plot of the function B(z) = 2®/[exp(z) — 1] corresponding to the vital
part of either u, or the Planck function B, . The maximum is at = hv/kT = 2.821.

The Stefan-Boltzmann constant ¢ = 5.6704 x 1072 erg cm™2 K% s~!. We
shall make extensive use of these functions when we discuss radiative transfer
in the next chapter.

To remind you of what u, or B, looks like, we plot the function B(z) =
23 /[exp(x) — 1] (as part of 3.19) in Fig. 3.1 where z = hv/kT and multi-
plicative constants have been ignored. The function is strongly peaked with
a maximum at 2 = 2.821 - - -. For the center of the sun, with 7. ~ 107 K, this
peak corresponds to a photon energy of 2.4 keV. (For conversions to eV units
see App. B.) Photons of these energies are capable of completely ionizing
most of the lighter elements.

3.3 Ideal Monatomic Gas

As we shall soon show, the Boltzmann distribution for an ideal gas is charac-
terized by (u/kT) < —1. We start off by asserting that this inequality holds
for a sample of gas.

To make it simple, assume that the gas particles are nonrelativistic with
& = p?/2m, v = p/m, and that they have only one energy state £ = &,. These
could be, as examples, elementary particles, or a collection of one species of
ion in a given state. If (u/kT) < —1, then the term %1 in the denominator
of (3.9) may be neglected compared to the exponential and the gas becomes
purely classical in character with no reference to quantum statistics. The
expression for the number density is then
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n= %g /00 pze“/kTe*EO/kTe*pz/zka dp . (3.23)
0
The integral is elementary and yields p in terms of number density:
3
e/ T — Le&)/kf (3.24)
g(271'mk:T)3/2

Because we require exp (u/kT) < 1 (since p/kT < —1), the righthand
side of (3.24) must be small. Thus, nT~3/2 cannot be too large. If this is not
true, then other measures must be taken. For example, if 1/kT is negative but
not terribly less than —1, it is possible to expand the original integrand for
n (with the 1 statistics term retained) in a power series and then integrate.
The additional terms obtained, assuming convergence of the series, represent
Fermi—Dirac or Bose—Einstein corrections to the ideal gas. This is done for
fermions in Chiu (1968, Chap. 3), and Chandrasekhar (1939, Chapt. X), for
example. In any event, u may be computed once n and T are given. We
assume here that (3.24) is by far the largest contribution to any expansion
leading to an expression for p for given n and 7T

It is easy to take logarithmic differentials of n that yield the following
expressions, and you may easily verify from the literature that they are the
distribution functions for a Maxwell-Boltzmann ideal gas:

dn(p 4m — 2 /9m
(p) = 573 € p/2 M2 dp (3.25)
n (2rmkT)

and, in energy space,

dn(é) _ 12 L enmteir2 e (3.26)
n T1/2 (kT)3/2

The relevant part of (3.26), C(z) = x'/? exp(—z), is shown in Fig. 3.2, where
the maximum corresponds to & = kT/2 (i.e., z = 1/2).

It is easy to show that the average kinetic energy of a particle in this
distribution is just 3k7/2, which gives rise to (3.29) below. (To get the av-
erage, multiply 3.26 by £ and integrate from zero energy to infinity.) Thus
the “important” particles, in a manner of speaking, of a Maxwell-Boltzmann
gas are those with energies near k7. A major exception to this involves those
partaking of fusion reactions. For the solar center kT is around 1 keV, which
is small compared to nuclear energies measured in MeVs. It will turn out (in
Chap. 6) that the important fusion reactants are those in the exponential
right hand tail of Fig. 3.2, even though their population is small compared
to those in the peak of the distribution.

A similar procedure involving the neglect of the 41 statistical factor equiv-
alent to what was done for (3.23) yields the pressure

A w1/2

_ gﬁ o (2ka)5/2€M/kT€—SO/kT (3.27)
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Fig. 3.2. A plot of the function C(z) = z/? exp(—z) corresponding to the exciting
part of the Maxwell-Boltzmann distribution in energy space. The maximum is at
x=1/2 (£ =kT/2).

or, after substituting for e*/*T of (3.24),
P =nkT dyne cm™?2 (3.28)

which comes as no surprise. This last result is true even if the particles are
relativistic (as in Ex. 3.4). The internal energy is
3

E = 3nkT erg cm™® (3.29)

using the same procedures. (Note that if reactions are present that change the
relative concentrations of particles, then £ must contain information about
the energetics of such reactions; see below.) These are all elementary results
for the ideal gas so that, given n, T, and composition, then P, FE, and u
immediately follow.

To tidy up, we return to a statement made at the beginning of this chapter;
namely, that “the Boltzmann populations of ion energy levels are consistent
with the local electron kinetic temperature” in LTE. We have implicitly as-
sumed here that all species in a mixture have the same temperature, which, in
some environments, is not warranted. For the stellar interior the assumption
is fine. Thus consider an ion with two energy levels with & > &. These levels
are populated or depopulated by photon absorption or emission, for example.
Because the photon chemical potential is zero, then p; = ps. Dividing (3.24)
for the two levels yields, after trivial algebra,

mo_ 9716—(51—52)/7@1" (3.30)
n2 g2



3.4 The Saha Equation 155

which is the Boltzmann population distribution and, if the statistical weights
are not strange, means that levels become more sparsely populated as their
energy increases.

3.4 The Saha Equation

In many situations the number densities of some species cannot be set a priori
because “chemical” reactions are taking place. This is the problem referred
to in §1.4 where mean molecular weights were computed. If the system is
in thermodynamic equilibrium, however, then the chemical potentials of the
reacting constituents depend on one another and this additional constraint
is sufficient to determine the number densities.
As an example, consider the ionization—recombination reaction brought
up earlier:%
HY +e” <= H° + xq (3.31)

where yy = 13.6 €V is the ionization potential from the ground state of
hydrogen (still assumed to have only one bound level). We assume that no
other reactions are taking place that involve the above constituents and, in
particular, that the gas is pure hydrogen. Reference to the photon in (3.31)
has again been deleted because its chemical potential is zero and does not
appear in the equilibrium condition (3.7), which will be invoked shortly.

To obtain the LTE number densities of the electrons and neutral and
ionized versions of hydrogen, assume that all gases are ideal so that (3.24)
applies. The reference energy levels for all species are established by taking
the zero of energy as the just-ionized HT + e~ state. (Other choices are
possible of course.) Thus & for electrons and H is zero, whereas for HO it
is —xu = —13.6 eV lower on the energy scale. That is, we need 13.6 eV to
convert HY to a free electron and a proton. The ground state of hydrogen
has two near-degenerate states corresponding to spin-up or spin-down of the
electron relative to the proton spin. For our purposes regard those states
as having the same energy (but of course they do not, otherwise 21-cm HI
radiation would not exist). Thus the degeneracy factor for H® is ¢ = 2.
The situation for the free electron and HT is a bit more complicated because
of the possible problem of double counting. If the spin axis of the proton
is taken to be a fixed reference direction, then the free electron may have
two spin directions relative to the free proton. Thus, g~ = 2 and gt = 1.
The argument could be reversed without having any effect on the following
results.

With p~, uT, and p° denoting the chemical potentials of the components
in (3.31), Equation (3.24) then yields

6 See Ex. 3.1 for a more complicated problem.
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2 [2mmekT] i el /KT

- - (3.32)
3/2
nt = %e’ﬁ/kip (333)
3/2
0 = A LT it sy

where m, and n. denote, respectively, the electron mass and number density,
mp is the proton mass, and the neutral atom mass is set to me + mp.
Now form the ratio nn./n® and find

nT

3/2
ne  (2rkT)¥2 [ mem, / (™ ) KT = /AT
no h3 :

Me + My,

But u~ + put — pu® = 0 for equilibrium by application of (3.7), so that we
obtain the Saha equation for the single-level pure hydrogen gas”

3/2
ntne _ <2ﬂ'mekT) J— (3.35)

n0 h?
where the reduced mass approximation [mem/(me+ m)] = me has been
used. A numerical version of part of this equation is

2mmekT
2

3/2
) =2.415 x 10732 cm~3 (3.36)

and note that
kT =8.6173 x 107°T eV (3.37)

where the eV units are handy for energies on the atomic scale.

To find the number densities, and not just ratios, further constraints must
be placed on the system. A reasonable one is that of electrical neutrality,
which requires that n, = n™ for a gas of pure hydrogen. Furthermore, nucleon
number must be conserved so that nt + n® = n, where n is a constant if the
density (p) is kept fixed.

We now define the degree of ionization (as in §1.4 and Eq. 1.47)

Ne
=—=— 3.38
y=--=- (3.38)
so that y is the fraction of all hydrogen that is ionized. The Saha equation
(3.35) is then

" Clayton (1968, §1-2) extends this analysis to the case of multiple ionizations in
many-electron atoms, which leads to a consideration of partition functions. We
shall not need those functions but Clayton’s discussion is worth looking into.
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21 () 55
-y n h? ' '
For sufficiently high temperatures, with fixed density, we expect the radiation
field or collisions effectively to ionize all the hydrogen. This is indeed the case
because we see that as T' — oo, then y — 1. Similarly, low temperatures mean
less intense radiation fields and recombination wins with y — 0.

5.0

IONIZED

log T

NEUTRAL

3.5

log o

Fig. 3.3. The half-ionization curve for a mixture of pure hydrogen undergoing the
recombination-ionization reaction H" 4+ e~ <= H° 4 yu (ground state only).

For the pure hydrogen mixture n = pN, and (3.39) becomes

: y? _ 4.01x107° T3/2,—1.578x10°/T (3.40)

The half-ionized (y = 1/2) path in the p-T plane for this mixture is then
p = 8.02 x 107 9T3/2¢1.578x10°/T o (=3 (3.41)

and this is shown in Fig. 3.3 as a very shallow curve for a range of what are
interesting densities.

The dominant factor in (3.40) and (3.41) is the exponential and this is
what causes the half-ionization point to depend only weakly on density. For
hydrogen ionization from the ground state, the characteristic temperature for
ionization-recombination is around 10* K and you may readily check that the
transition from y = 0 to y = 1 takes place very rapidly as the temperature
scans across that value (or, more precisely, at the temperature corresponding
to y = 1/2 at a particular density). This is shown in Fig. 3.4 for pure hydrogen
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at a density of 107 g cm™3. A rough rule of thumb is that the transition
temperature (where y & 1/2) is such that x/kT ~ 10 to within a factor of
three or so depending on density. Thus, for example, the ionization potentials
for removing the first and second electrons of helium are 24.6 eV and 54.4 eV,

which correspond to transition temperatures of about 3 x 10* K and 6 x 10*
K. (See Ex. 3.1.)

y (lonization fraction)

[
[
[
I
I
[
[
0.0 . . i
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

T, in units of 10% K

Fig. 3.4. Note how the ionization fraction y changes rapidly for pure hydrogen as
temperature is varied through 1.62 x 10* K at which y = 1/2—as indicated by the

dashed lines. The density is fixed at p = 107% g em™>.

As we shall see, the presence of these zones of ionization have profound
consequences for the structure of a star. You may wish to consider at this
point a mixture of single-level hydrogen and helium (with two stages of ion-
ization) and go through an analysis corresponding to the above to see how
the various ions compete for electrons and to find out what the transition
temperatures are for the three ionization stages involved. Even for this very
practical, but simple, problem, you will find that a computer is essential for
your sanity.

If the temperature and density of the hydrogen mixture are fixed, then
(3.40) yields the ionization fraction y. The total hydrogen number density is
clearly n = pN, and thus n* = ne = yn from (3.38). Chemical potentials, if
required, follow from (3.32-3.34). The partial pressures and internal energies,
which are additive, yield the total pressure

P =n(1+y)kT (3.42)

and total internal energy
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E = %n(l +y)kT +ynxs ergcm > (3.43)

The last term in ' appears because we have to take account of the ionization
energy. If we wish to ionize the gas (y — 1) completely, then (3nkT/2 +
nxy) erg cm~2 must be added to the system. Of this amount, nyy strips
off the electrons, and the remainder brings the system up to the common
temperature T'.

The real calculation of ionization equilibria is as difficult as that for real
equations of state (and the two are intimately connected). In principle, all
species, energy levels, and reactions must be considered. In addition, the ef-
fects of real interactions must be included (and these depend on composition,
temperature, and density), which change the relations between concentration
and chemical potential. For textbook examples see Cox (1968, §15.3), and
Kippenhahn and Weigert (1990, Chap. 14), with the warning that, in prac-
tice, accurate analytic or semianalytic solutions are seldom possible: you are
usually faced with computer-generated tables of pressure and the like and
the task is to use them intelligently.

3.5 Fermi—Dirac Equations of State

The most commonly encountered Fermi-Dirac elementary particles of stel-
lar astrophysics are electrons, protons, and neutrons; all have spin one-half.
(Neutrinos also appear but in contexts not usually connected with equations
of state.) The emphasis here will be on electrons, but (almost) all that fol-
lows may apply to the other fermions as well. The prime motivation for this
discussion is that the equation of state in the inner regions of many highly
evolved stars, including white dwarfs, is dominated by degenerate electrons
and, to a great extent, this determines the structure of such stars.

The number density of Fermi-Dirac particles is given by (3.9) and (3.10)
with the choice of +1 in (3.9) and an energy reference level of & = mc?, where
m is the mass of the fermion. (Other choices are indeed possible for &. They
lead to an additive constant in the definition of the chemical potential and
you have to watch out for this in the literature.) For these spin 1/2 particles,
the statistical weight g = 2. Transcribing these statements then means that
the number density is

_ 8m [ p*dp
" h? /0 exp{[—p+mec2+E&(p)| /kT} + 1 (3.44)

where, in general, from (3.11) and (3.12),

() 1] (3.45)

E(p) = me®

and
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) =L P {1 + (p)2]1/2. (3.46)

787p7m mc

We now explore some consequences of the above.

3.5.1 The Completely Degenerate Gas

The “completely degenerate” part of the title of this subsection refers to
the unrealistic assumption that the temperature of the gas is absolute zero.®
In practice this does not happen but, under some circumstances, the gas
effectively behaves as if it were at zero temperature and, for fermions in
stars, these unusual circumstances are very important. So, in (3.44), note the
peculiar behavior of the integrand as T — 0. The exponential tends either to
zero or infinity depending on, respectively, whether —u + mc? + £ is <0 or
>0. Therefore consider the interesting part of (3.9),

1
PO = G me AT 71

where, as T — 0, F'(£) approaches either zero or unity depending on whether
£ is greater or less than yu — mc2.

The critical kinetic energy at which F(E) is discontinuous (for T' — 0) is
called the “Fermi energy” and we denote it by £p; that is, where & = p—mc?.
(But note that we have not yet described how g is found.) The situation is
depicted in Fig. 3.5 where, in the unit square corresponding to particle ener-
gies 0 < & < Ep, F(€) is unity. Fermions are contained only in that energy
range and not at energies greater than £ where the distribution function
is zero. In this situation we refer to a “filled Fermi sea” of fermions because
all the fermions present are swimming in that sea and nowhere else. (Ignore
the dashed line for the moment. It shows what happens if the temperature
is raised slightly above zero. See §3.5.3.)

The momentum corresponding to the Fermi energy is the Fermi momen-
tum pp. It is usually reduced to dimensionless form by setting = p/mc and

defining zp = pp/me. Then, from (3.45), we have

(3.47)

Ep = mc? {(1 +a22) 2 - 1} . (3.48)

In this language, the chemical potential of the system is up = Ep+mc? and it
is the total energy, including rest mass energy, of the most energetic particle

8 This has almost been achieved in the laboratory by the elegant experiments of
DeMarco and Jin (1999), who, using atoms of 10K at temperatures less than
300 nanoKelvin (!), have made a soup of fermions in their lowest energy states.
Similar experiments by Anderson et al. (1995) have done the same for bosons
by making a “Bose-Einstein Condensate” (BEC), a form of matter long thought
possible but only now demonstrated actually to exist (and the work gained the
two senior investigators a Nobel Prize). The two groups, not so incidentally, are
in the same institute (JILA) at the University of Colorado.
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Fig. 3.5. The function F(E/Er) of (3.47) versus particle kinetic energy in units of
Er for zero temperature. Fermions are restricted to the shaded area of unit height
and width and do not have energies greater than the Fermi energy £r. The dashed
line shows how F'(€) is changed by raising the temperature slightly. (In this case
Er /KT = 20.)

(or particles) in the system. If the spin is 1/2 (g = 2), then all the rest of the
particles are locked in pair-wise with spin-up and spin-down paired at each
lower energy level by the Pauli exclusion principle.” The Fermi sea is then
capped by the “Fermi surface” at Ep.

The relation between particle number density and the Fermi energy, and
thus pp, is found as follows. Because F'(€) is in the form of a unit step, (3.44)
need only be integrated up to pr. Hence

PF -3 rar -3
nz%o pzdp:&r(h) /0 mzdm:ir(h) ah (3.49)

mc mc

To deal with astrophysically interesting numbers we shall, from this point on,
deal exclusively with electrons unless otherwise noted.

It is traditional, but admittedly confusing, to delete the F' subscript on
xp so that (3.49) is written

8w h " 3 29 3 -3
Ne = — x° =5.865 x 10%” z°  cm (3.50)
3 \mec

® The most obvious application of the Pauli exclusion principle is for atoms. Were
it not for this curious way nature works, electrons would all cascade down to the
lowest energy level of atoms and we all would become very small entities indeed.
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for electrons where (h/mec) is the electron Compton wavelength equal to
2.426x1071% cm. The transcription to other spin 1/2 fermions is accomplished
merely by changing the mass in (3.50).

To convert this to density units we reintroduce the electron mean molec-
ular weight, e, of (1.48-1.49) with n, = pN,/pe. Thus

14 3
— =Bz 3.51
He ( )

with

B— " < h )3—9739><105 em™® (3.52)

3N, \mec o & '
for electrons. This may be looked upon as a relation that yields z (i.e., zp),
and, hence, £ and pr, once p/p. is given.

Note that the demarcation between nonrelativistic and relativistic me-
chanics occurs when pp =~ mec or x = xp &~ 1. The corresponding density is
p/te ~ 108 g ecm ™3, which, incidentally, is a typical central density for white
dwarfs and is near the density at which the “helium flash” takes place (see
§2.5). It remains to be shown, however, that temperatures in these contexts
are sufficiently low to be effectively zero as far as electrons are concerned.

Looking ahead to neutron star matter, the numerical constant B in (3.51—
3.52) is B(neutrons) = 6.05 x 10'% g cm ™2 and p. in that expression is set
to unity; that is, we must replace . by the amu weight of the neutron
(essentially unity). For typical densities in a neutron star (comparable to
nuclear densities of p ~ 2.7 x 1014 g cm™3), x ~ 0.35 and £ ~ 57 MeV. This
implies that the neutrons are nonrelativistic because the neutron rest mass
energy is 939.57 MeV.

The pressure of a completely degenerate electron gas is treated in the same
way as that for the number density. It is the integral in (3.13) truncated at
the Fermi momentum with F(€) of (3.47) set to unity. A little work on (3.13)
yields

4.5 TF 4
where L
A= g (mhcc> Mmec? = 6.002 x 1022 dyne cm™2 (3.54)
for electrons and
fl@) =2(22® = 3)(1 +2*)Y? + 3sinh 'z . (3.55)

Similarly, the internal energy, from (3.14), is given by the integral

h
MeC

E. =8 < >3mec2 /0 T [(1 L2 1} dr = Ag(z)  (3.56)
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with
glz) =823 |(1+ 222 —1| — f(z) . (3.57)

3 2

The units for E, are erg cm™* as is that for A when dyne cm™ is expressed
in those units in (3.54).
It will often prove useful to have limiting forms for f(z) and g(z) that

correspond to the limits of relativistic or nonrelativistic electrons. These are

8.5 _ 4.7
gt —zxi 4, 2K
f<x)_>{2w4—2x2+~-~, x> 1 (3.58)
and 12,5 _ 3,7
g<x)_>{6x4—8x3+~~, z>1. (3:59)

Note that x < 1 implies nonrelativistic particles, and x > 1 is the extreme
relativistic limit. Also observe that

(p/ne)??, =<1
Foocfoo { (p/pe)?, x> 1 (3.60)

and the limiting ratios of E, to P, are

Be _glx) _ {3/2 (y=5/3), z<1 (3.61)

BT f@ 13 (r=4/3), a>1.

The values for v are included as a reminder that for a y—law equation of state
the completely degenerate nonrelativistic electron gas acts like a monatomic
ideal gas whereas, in the extreme relativistic limit, it behaves like a photon
gas.

3.5.2 Application to White Dwarfs

As a simple, but important, application of completely degenerate fermion
statistics, consider zero temperature stars in hydrostatic equilibrium whose
internal pressures are due solely to electron degenerate material and whose
densities and composition are constant throughout.

The easiest way to look at this is to apply the virial theorem in the
hydrostatic form 3(y—1)U = —Q from (1.25). Because the star is assumed to
have constant density, @ = —(3/5)(GM?/R). If E, is the volumetric energy
density (with no contribution from the zero temperature ions), then U = VE,
where V is the total stellar volume V = (47/3)R3. In the nonrelativistic
limit F, = 12A2°/5 from (3.56) and (3.59), = may be expressed in terms
of p/pe via (3.51) and p, in turn, may be eliminated in favor of M and
R by p = M/(4nR3/3). If the entire virial theorem is also cast in a form
containing only M and R, and if the constants B and A of (3.52) and (3.54)
are given in terms of fundamental constants, then a little algebra yields the
nonrelativistic mass-radius relation
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4 2 3 72
1 3 h=N, N 1
M = i <477) (meé) —Mg 7 for constant density. (3.62)

This relation has the remarkable property that as mass increases, radius
decreases and is quite unlike the homology result for main sequence stars
discussed in the first chapter. And this result is what we promised you several
times in Chapter 2.

For electrons, this yields the numeric expression

-3 5

Mo 107¢ <R> (2> : (3.63)

M@ R@ He
We state, without proof for now, that the interiors of white dwarf stars are
almost entirely supported by electron degeneracy pressure, and that they
typically have masses around 0.6 M. If the electrons are nonrelativistic, then
(3.63) yields a typical radius of R & 0.01 R for pe = 2 (completely ionized
1He, 12C, 160, etc.). This radius is very close to that of the earth’s with
Rg = 6.38x10% cm. An exact analysis involving integration of the hydrostatic
equation using the nonrelativistic equation of state shows that (3.63) gives the
correct result provided that the numerical coefficient is increased by (only!)
a factor of two.

If p1e in (3.62) is replaced by unity and the particle mass is taken to be

that of the neutron, then the neutron star equivalent of (3.63) becomes

-3
./J\jl/; ~5x1071 <7§®> (neutron stars) (3.64)
in the nonrelativistic limit. For M = Mg, R ~ 11 km, which is in the
right ballpark. Note that general relativistic effects have been completely
ignored, but this is the least of our sins because the nuclear force makes our
noninteracting equation of state inaccurate.

You will have realized by now that the simple arguments outlined above
for mass—radius relations contain a serious flaw. The nonrelativistic degen-
erate electron pressure depends solely on density and composition (through
He); that is, in numeric form and using (3.51), (3.53), and (3.58)

5/3
P, = 1.004 x 103 (p> dyne cm ™2 (3.65)
Le
and, as may easily be verified, the corresponding extreme relativistic expres-
sion is
4/3
P, = 1.243 x 10'5 (p> dyne cm™2. (3.66)

e

Thus if p and p. are constant, then so is P, by virtue of the equation of
state. But a constant pressure is inconsistent with hydrostatic equilibrium
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and, in fact, (1.41) is the correct solution for the pressure through a constant—
density star. Thus P, is not a constant and neither is E, as assumed above.
The trouble is that we have overconstrained the problem by insisting on the
constancy of p combined with the degenerate equation of state.

The correct way to construct equilibrium degenerate models is to use the
general expression for the pressure given by (3.53) along with the relation
between p/p. and dimensionless Fermi momentum of (3.51). This yields a
pressure—density relation, which is then put into the equation of hydrostatic
equilibrium. The resulting equation is then combined with the equation of
mass conservation yielding a second-order differential equation that must be
integrated numerically. We shall not go into the tedious details here because
more than adequate discussions are given in Chandrasekhar (1939, Chap. 11)
and Cox (1968, §25.1), and, in any case, such solutions are easy to come by
using modern numerical techniques. (See, for example, Chap. 7.) Important
results are summarized below.

In the limit of extreme relativistic degeneracy, where (3.66) is appropriate,
you may easily convince yourself by using dimensional analysis that the total
stellar mass depends only on u. and not on radius. An exact analysis yields

M My 22
— = 1456 = 3.67
Mg Mg (Me) ( )

where M, is the Chandrasekhar limiting mass.'® A virial analysis similar
to that used to find (3.62), but done in the relativistic limit, yields a result
differing from the above by only a change in the constant (a 1.75 instead of
1.456). We assume you will try to verify this and, if you do, you should also
find that the full virial expression (1.25) implies d?I/dt? becomes negative if
the total mass exceeds M,. The interpretation is that electron degenerate
objects (of fixed p.) cannot have masses exceeding the Chandrasekhar limit
without collapsing the object. Increased densities and pressure cannot halt
the collapse because the relativistic limit has already been reached. In the
nonrelativistic limit, on the other hand, a new configuration may be reached
by decreasing the radius as indicated by (3.63). Extreme relativistic equations
of state, including that for photons, are too “soft” compared to the effects
of self-gravity. (You can’t make the particles exceed the speed of light to try
to increase pressures!) This conclusion might have been anticipated because
extreme relativistic effects imply v — 4/3.

10 The exact value of this limiting mass depends on physics we have not included
in our analysis. Hamada and Salpeter (1961), for example, consider the effects
of electrostatic interactions and electron captures on various nuclei. For single
white dwarfs with normal masses and compositions, these effects are not that
significant. However, we can imagine massive objects formed by various means
in binary systems where such effects could well give a stable maximum mass less
than the Chandrasekhar limiting mass, as discussed earlier in §2.13.
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The astrophysical significance of the Chandrasekhar limiting mass is just
as we discussed in Chapter 2. If electron degenerate configurations are good
representations of white dwarfs, and if those objects are the final end product
of evolution for most stars, then the late stages of evolution are severely
constrained. That is, if a star does not finally rid itself of enough mass to
eventually leave a white dwarf with M < 1.46M (assuming a reasonable
value of pe near 2), then something catastrophic will happen at some time
in its life. Since there are so many white dwarfs in the sky, a large fraction
of stars either start off with sufficiently low masses, or they manage to rid
themselves of the excess mass.

The regime intermediate between nonrelativistic and full relativistic de-
generacy is intractable using simple means, and full-scale models must be
calculated (and you may try this by using the code WD.FOR on the CD-ROM).
The following useful and quite accurate mass—radius relation bridging the two
regimes (fit to actual calculations) is based on one given by Eggleton (1982)
for electrons:

4/371/2 -1/3
R oo (ML M . (3.68)
R1 Moo Mo
Here, M /M is given by (3.67), and R4 is defined by
R1 3 < 2 )
— =5.585 x 10 — . 3.69
Ro He ( )

This radius is a typical scale length for electron degenerate objects. The
relativistic and nonrelativistic limits of (3.68) go to the correct values as
R — 0 (relativistic) or M becomes small (nonrelativistic). It is shown plotted
in Fig. 3.6.

We shall have more to say about white dwarfs in Chapter 10. One crucial
item that has not been addressed here, and that pertains to these objects, is
the effect of temperature on degeneracy. After all, if white dwarfs were really
at zero temperature we wouldn’t see them.

3.5.3 Effects of Temperature on Degeneracy

The crucial step in deriving some of the thermodynamics of the completely
degenerate zero temperature fermion gas was the realization that the dis-
tribution function becomes a unit step function at a kinetic energy equal
to u — mc?. If the zero temperature condition is relaxed, the distribution
function follows suit. Suppose the temperature is low—on some scale yet to
determined—but not zero. Fermions deep in the Fermi sea, at energies much
less than £r, need roughly an additional £ energy units to move around
in energy. That is, if the energy input to the system, as measured by kT, is
much smaller than £g, then low—energy particles are excluded from promo-
tion to already occupied upper energy levels by the Pauli exclusion principle.
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Fig. 3.6. The mass—radius relation for zero temperature white dwarfs with constant
te. (See Egs. 3.68-3.69.)

Fermions near the top of the Fermi sea don’t have that difficulty and they
may find themselves elevated into states with energies greater than £p. Thus
as temperature is raised from zero, the stepped end of the distribution func-
tion smooths out to higher energies. This is the effect shown in Fig. 3.5 by
the dashed line. If temperatures rise high enough, we expect the effects of
Fermi—Dirac statistics to be washed out completely and the gas should merge
into a Maxwell-Boltzmann distribution. With this discussion as a guide, it
should be apparent that a rough criterion for the transition from degeneracy
to near- or nondegeneracy is £ ~ kT. The dashed line in Fig. 3.5 shows the
effect of a rise in temperature corresponding to £ = 20kT". The effect on the
distribution function is rather small, as would be expected, but the gas is no
longer completely degenerate. A better description is that the gas is partially
degenerate. As an example of the transition to nondegeneracy we apply the
criterion € ~ kT to nonrelativistic electrons.

The Fermi energy of a nonrelativistic electron gas is £y = mc?r2 /2,
which is easily obtained by expanding the radical in (3.48) for small 2r. The
dimensionless Fermi momentum zp is then converted to p/p. using (3.51).
After this is applied to £ =~ kT, and numbers put in, the criterion becomes

L 6.0x107°T%2 gem™S, (3.70)
He
If p/pe exceeds the value implied by the righthand side of (3.70) for a given
temperature, then the gas is considered degenerate. Realize though that this
is a rough statement: there is no clean demarcation line on the T—p/ . plane
that distinguishes degenerate from nondegenerate electrons.
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The extreme relativistic equivalent to (3.70) is

P x46x107 T gem™. (3.71)

He
The density near which special relativistic effects become important was es-
timated earlier as p/pe ~ 10¢ g cm=3. Equations (3.70) and (3.71) are illus-
trated in Fig. 3.7 where the transition near 10° g cm ™3 has been smoothed.
Note that the center of the present—day sun, as indicated in the figure, is
nondegenerate but close enough to the transition line that good solar models
include the effects of Fermi-Dirac statistics.

11

NONDEGENERATE

log T

DEGENERATE |

5 . . . . . . .
0 1 2 3 4 5 6 7 8

log o/ e

Fig. 3.7. The domains of nondegenerate and degenerate electrons in the T—p/ e
plane. The location of the center of the present-day sun in these coordinates is
indicated by the ® sign.

A better idea of how the transition from degeneracy to nondegeneracy
takes place with respect to temperature and p/ e requires explicit evaluation
of the Fermi-Dirac integrals. In general, this involves numeric integration,
although there are some useful series expansions and we shall discuss one of
these in a bit. The reader is referred to Cox (1968) and other references at
the end of this chapter for a full discussion but the results are summarized
in Fig. 3.8, which is derived from the numeric tabulations in App. A2 of Cox
and his §24.4. Cloutman (1989) discusses some techniques for computing
the Fermi-Dirac integrals and includes a FORTRAN program listing (see also
Eggleton et al., 1973, and Antia, 1993).

Plotted versus p/p. in Fig. 3.8 is the ratio of electron pressure at nonzero
temperature, Po(T, p/pe), to the electron pressure for complete degeneracy
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Fig. 3.8. The domains of nondegenerate and degenerate electrons in temperature
and density as expressed by the ratio Ps(T, p/pe)/Ps(T = 0, p/pte). Temperatures
are given in units of § = kT/mec®, where 8 = 1 corresponds to 5.93 x 10° K.
The dashed lines are lines of constant 7, which is sometimes called the “degeneracy
parameter” and is related to the chemical potential (see text). The position of the
solar center is indicated by ©®.

at zero temperature, P(T = 0, p/pc). Values near unity for this ratio imply
strong degeneracy for P.(T, p/u.), whereas large values mean that the gas is
nondegenerate and, if large enough, the Maxwell-Boltzmann expression may
be used. The solar center is indicated in the figure, and its position implies
that degeneracy accounts for some 15% of the total pressure at that location.

Note that the effects of electron—positron pairs created by the radiation
field are not included here. These become important if temperatures approach
or exceed kT ~ mec? (ie., T 26 x 10° K). We shall discuss pair—created
electrons briefly in Chapter 6, where they play a role in creating neutrinos.

A parameter called 7 is plotted as dashed lines on the figure and an 7 of
five, for example, corresponds to the situation where the true pressure is only
about 15% greater than if the gas were completely degenerate. Along the
dashed line labeled “n = 0,” a degenerate estimate for the pressure would be
too low by about a factor of three. Transferring this line to the temperature
versus density plane results in a plot that is very similar to that of Fig. 3.7.
Finally, the parameter 1, which is commonly used in the literature (but not
by everyone), is related to the electron chemical potential defined here by
n=(u—mec®)/kT.

For strongly, but not completely, degenerate gases, there are useful expan-
sions for number density, pressure, and internal energy that are often quoted
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in the literature. We shall not derive complete versions of those expansions
here (see the references) but they all depend on the mild relaxation of the
shape of the distribution function near £z. One of them is the following.

Following Landau and Lifshitz (1958, §57) we write any of the Fermi-
Dirac integrals (for number density, etc.) in the kinetic energy-dependent
form

° G(€)dE
11) = | 2 .
o expl(—p+me2+&)/kT)+1
The integral I may be expressed as an asymptotic (but not necessarily con-
vergent) series whose leading terms are

(3.72)

o 2 9G Tt G
I(N,T)Z/O G(g)dg—‘rff(k‘T)Q‘F%@

o ¢ (KT)* + -+ (3.73)

where p' = ;1 — mc? and all the partials are evaluated at u'. It is assumed
that u'/kT is much larger than unity.

It is a simple, but tedious, exercise to transform the integrals for n, P,
and E of, respectively, (3.10), (3.13), and (3.14), into their energy space
counterparts and then to find G(€). Another way, however, is to transform
all of the elements in the expansion (3.73) into z = p/mc-space using (3.45);
that is, £ = mc? [(1 +x2)1/2 — 1)} A big part of this was done when the
expressions for the completely degenerate electron gas were written down in
the equations for n, (3.49), P, (3.53), and F, (3.56). Thus, for example, the
leading term in the expansion of (3.73) for n, is simply (neglecting constants)

zy
ne (first term) o / 22 da .
0

Here zs takes the place of p/ = u — mc? and, since we have converted from
energy to z-space, it should be obvious that the relation between z; and p/
is

W= = mec? =mec® [(14+2%)!? 1] | (3.74)

This relation is given in the same spirit as was done for the completely de-
generate case where the Fermi energy was related to the chemical potential
by €r = 1 — mec? and E was given in terms of xz through (3.48). In that
instance, zp and, hence, p were found by fixing the number density n, and
using (3.49). The same sort of thing can be done here except there is an
additional complication because temperature also appears in the thermody-
namics; that is, n. must be a function of both s (or ) and T This all can
be accomplished by performing the indicated operations in the expansion
(3.73). Carrying out this enterprise is left to you as an exercise in elementary
calculus, but the result, to second-order in temperature, is

st b\ " J1+20% 7 kT \? s
ne:3<mcc> i 1+7TW mec? Foe em (375)
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This expansion is useful only if the second term in the brackets is small
compared to unity. A useful rule of thumb is to be wary if it exceeds 0.1
to 0.2. In any case, given any two of ne (or p/ue), T, or xy (or p), the
third follows. Looked at another way (and we shall use this shortly), (3.75)
may be used to find out how the chemical potential changes with respect to
temperature for fixed n. or p/ue. Note that as T — 0, the number density
approaches the completely degenerate expression (3.49) with zy — xp, and
,u/ — Ep.

The corresponding expansions truncated to second order in kT for pres-
sure and internal energy are

/2 2
_ (1 +2%)! KT
P, = Af(zg) |1+ 4x en) e (3.76)
(1432214222 — (1 +222) / kT \?
_ X 2 f f f
E. = Ag(zy) |14+4m o 9(er) <m602) (3.77)

where f(xf) and g(xy) are given, respectively, by (3.55) and (3.57). Note
that P, is in dyne cm~2 and F. is the volumetric energy density in erg cm ™3
(and not specific energy density in erg g=1).

These equations will be used to find such things as specific heats and
temperature exponents for the almost completely degenerate electron gas.

Note: As a matter of practicality, = is often computed as if the gas were
completely degenerate. Thus if the correction term for temperature is very
small, then z (or zp) of (3.50) is used instead of x; as a good approximation
for direct calculation of n., Pe, and E, in (3.75-3.77). This is what we shall
usually do here.

3.6 “Almost Perfect” Equations of State

In real gases, interactions have to be taken into account that modify the
“perfect” results given above. In addition, a stellar equation of state might
consist of many components with radiation, Maxwell-Boltzmann, and degen-
erate gases competing in importance. This short section will not attempt to
show how imperfections are treated in detail but will indicate where some
are important in practical situations. The results of this discussion are sum-
marized in Fig. 3.9 for a hypothetical gas composed of pure hydrogen.

In an almost-ideal gas, a measure of the interaction energy between ions
is the Coulomb potential between two ions. If the ionic charge is Z, then
the potential is Z2e2/a, where a is some typical separation between the ions.
Coulomb effects are expected to become important when this energy is com-
parable to kT. Thus form the ratio

VA

F p—
¢ akT

(3.78)
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log p

Fig. 3.9. A composite showing how the p—T plane is broken up into regions dom-
inated by pressure ionization, degeneracy, radiation, ideal gas, crystallization, and
ionization-recombination. The gas is assumed to be pure hydrogen.

where I'c = 1 is the rough demarcation between where Coulomb effects might
be important or not, and a I'c > 1 implies they probably are important. The
distance a is usually taken as the radius of a Wigner—Seitz sphere whereby
(4ma/3) = (1/n;) and n, is the ion number density. If the gas consists of
pure ionized hydrogen and I'c = 1, then (3.78) becomes

p=2849x 107113 gem3. (3.79)

If the density is greater than that implied by (3.79) for a given temperature,
then you can be reasonably certain that a perfect gas is not as perfect as
could be desired. This line is shown in Fig. 3.9. You may check, from the
material given previously, that the centers of very low mass ZAMS stars are
encroaching upon both this line and the one for degeneracy effects. Carefully
done stellar models of these stars contain corrections for these effects.

If 'c becomes large enough, then Coulomb effects overwhelm those of
thermal agitation and the gas settles down into a crystal. The best estimates
as to how this takes place yield a I'¢c of around 170 for the transition. With
this value of I'c in a hydrogen gas (which is kind of silly for a crystallizing
composition but fine for talking purposes), (3.79) becomes

p=42x1071°73 gcm3. (3.80)

This is not an academic issue because some portions of very cool white dwarfs
are thought to turn crystalline, but with carbon and/or oxygen rather than
hydrogen.
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We have already discussed the Saha equation for pure hydrogen, and the
density-temperature relation for half-ionization was given by (3.41). That
relation is also shown in Fig. 3.9 as the dashed line. In deriving the Saha
equation it was implicitly assumed that the energy levels of the hydrogen
atom (had we included all of them) were known and that their energies were
independent of conditions in the ambient environment. This cannot be true
in general. If the gas is dense, then the electrostatic field of one atom should
influence a neighboring atom and hence disturb atomic levels. In the extreme,
we can imagine this continuing until electron clouds practically rub and elec-
trons are ionized off the parent atoms. This is a crude description of pressure
ionization. To estimate under what conditions this occurs, take the rubbing
picture seriously and find at what density the Wigner—Seitz radius equals
the radius of the first Bohr orbit of hydrogen (0.53 x 1078 c¢m). A very easy
calculation says that this takes place when

p~1 gcm > (3.81)

This density is shown in Fig. 3.9 as the line that terminates ordinary Saha
ionization. Such densities are commonplace in stellar interiors and lead to
the statement that the larger bulk of those interiors are ionized as far as
the lighter elements are concerned independent of the effects of the radiation
field.!!

We finally ask under what conditions radiation pressure dominates over
ideal gas pressure or the other way round. That is, where does aT*/3 =
PNAKT/pu? With the assumption of complete ionization in hydrogen this
becomes

p=15x10"2T3 gcm™ (3.82)

as shown in the figure. This ends the discussion of the major factors deter-
mining pressures and internal energies in simple environments.!?

3.7 Adiabatic Exponents and Other Derivatives

For the most part, all we need in the way of thermodynamic variables to con-
struct a simplified stellar model is the internal energy and pressure as a func-
tion of density, temperature, and composition (as was done in Chap. 1). To
construct realistic models, and to evolve them in time, however, we need sev-
eral thermodynamic derivatives. We shall assume, at first, that the detailed

1" As a side comment, note that several lines in the figure cross at T ~ 3 x 10°
K and p ~ 1 gcm™>. You can be assured that computing accurate equations of
state in that region of the T—p plane is a nightmare.

12 We have purposely ignored equations of state at ultrahigh densities such as are
found in neutron stars and the collapsing cores of supernovae. This is a difficult
subject itself worthy of a monograph. For further reading we suggest chapters 2
and 8 of Shapiro and Teukolsky (1983) and Bethe (1990, §§3-4).
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composition, including concentrations of ions, etc., has been determined and
that chemical reactions are not taking place. We also assume that you have
some facility in transforming thermodynamic functions under reversible con-
ditions and that you are familiar with their properties.

3.7.1 Keeping the Composition Fixed

If changes in temperature and density (or volume) do not cause corresponding
changes in the relative concentrations of various species of atoms or ions in
the stellar mixture, then the calculation of thermodynamic derivatives is not
particularly difficult. We now examine this situation and ignore until later
those complications arising from chemical reactions.

Specific Heats

The first derivatives encountered in elementary thermodynamics are specific
heats. In general form these are defined by

o = (flg)a (3.83)

where « is kept fixed as T' changes. In the following, @) will have the units of
erg g~ ! and thus the specific heats will have units of erg g=! K~!. The most
useful variables for a for us are P, p, or the specific volume V, = 1/p. (We
shall also have occasion to use the ordinary volume, V.) From the first law
for a reversible process (and see 1.11)

deEJrPdedEJrPd(l) :dEf%dp (3.84)
P P
so that a0 OF
== = = “TK-L .
cy, (dT)p <5‘T)p erg g (3.85)

For an ideal monatomic gas E = 3N, kT/2u erg g=! (from 3.29) so that
cy, = 3N k/2p and E = cy,T. Note that the composition has not been
mentioned here except in the mean molecular weight p: it is kept fixed by
assumption.

To find ¢p, recall (from any of many thermodynamic texts) that ¢, and
cy, (or ¢ ) are related by

oP\? orP\ !
—ey, =-T| = =) . 3.86
o Ve (8T> (p or V,) (8VP>T ( )

To cast this in a form that will prove more suitable for later purposes we rein-
troduce the power law expression for the equation of state given in Chapter 1
by (1.67):
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P = PypXeTXT (3.87)
where Py, X,, and X, are constants. This means that the last two are also
defined by

Oln P T (0P
Xr = () == () (3.88)
olnT ), o v, P T ) () o v,)
and

_ OlnP _ Oln P _ P 6j __i ai (3.89)
Xe=\omp ), \omv,),” P\op ), pP\ov,),
Thus

PT xp
For an ideal monatomic gas x, = xr =1 and

N,k
cp—cy, = TA erg g ' K1 (ideal gas), (3.91)

which gives the elementary result ¢, = 5N, k/2pu.
We also define v (yes, another ), the ratio of specific heats, to be

P 2
v=2 1y Xr_ (3.92)
cv, pLey, Xxp

which will be discussed shortly. This v need not be the  of the v—law equation
of state, but sometimes it is—see later.

Adiabatic Exponents

The dimensionless adiabatic exponents, the “I's,” measure the thermody-
namic response of the system to adiabatic changes and will be used exten-
sively. (Two of them, I'; and I's, were already introduced in Chap. 1.) They
are defined as follows:

OlnP OlnP
I = = ——— .
! <8lnp>ad <81an>ad (3.93)
FQ 81HP 1
= = . 4
I'; -1 <alnT>ad Vad (3.94)

which also defines V,q, and

OlnT OlnT
I's—1=(— === . 3.95
° (alnp>ad (alnvp)ad ( )
As in Chapter 1, the subscript “ad” means that the indicated partials are to
be evaluated at constant entropy. (We shall not need it directly, but extensive
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use will be made of V,q in later chapters.) It will shortly become clear why
the T'; appear in such curious combinations in the definitions, but first note
that not all the I'; are independent. You may easily show that

Ty—1 Tp—1
r Iy

= Vo . (3.96)

Computation of the I'; is tedious and not particularly enlightening. Com-
plete and clear derivations may be found in Cox (1968), but we suggest you
try to derive the expressions that follow using the more compact methods
given in Landau and Lifshitz (1958), for example. They start from funda-
mentals and then use powerful yet simple Jacobian transformations to derive
what is needed. All you need watch out for is the distinction between V' and
V,. When you get done, realize that there are many variations in the ways
that the I'; may be expressed and the following may not always be the most
efficient to use; that is, you may wish to rearrange things. The adiabatic
exponents are

P 1/0P
My—1 = — X2 _ 2 <> (3.97)
pL ey, p\OE o
Xp
I = s -1 =—=r 3.98
1 XT ( 3 ) + XP 1 _ XTvad ( )
Iy -1 T X, Xp
= =cp—-F = . 3.99
Too1 ~ Ved =G p o T g X (3.99)
The last exponent, v, is given by
r s—1 1
= o My = (3.100)
cv, Xp Xp Xp Vad

Note that the righthand side result for I's implies that P = (I's — 1)pE so
that the v in the v—law equation of state of (1.24) is I's and, generally, not
one of the other gammas. Lay the blame for any possible confusion here on
the quirks of historical nomenclature.

Explicit values for all the exponents and specific heats, etc., for interest-
ing gases follow below. Remember, however, that there are still no chemical
reactions going on so that the relative concentrations of ions and electrons
are fixed despite changes in temperature and density.

Mixtures of Ideal Gases and Radiation

For a monatomic ideal gas x, and xr are equal to unity and I'y =I'y =I'3 =
~v = 5/3. A pure radiation “gas” has x, =0, xr = 4,and Iy =Ty =T's =4/3.
Note that v =T'1/x, — oo in this case.

If v =T, =Ty =I'3 of the same constant value, as can be satisfied by an
ideal gas, then
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P x p? (3.101)
P o TV/0O7Y (3.102)
T x pO=b (3.103)

along adiabats. This is the result usually quoted in elementary physics texts
for adiabatic behavior: it is collectively true only if the exponents satisfy the
above equality.

In modeling simple stars, it often turns out that an equation of state
consisting of a mixture of ideal gas and radiation suffices:

N kT T4
P = Pla + % = Ig + Prad dyne Cm_2 (3104)
W
and p "
SNLKT T
E=2tal a8 erg g L. (3.105)
2p p

We can find the density and temperature exponents almost by inspection so
that

P,

Xo=F =0 (3.106)

which also defines 3, the ratio of gas (P;) to total pressure, and
Yr=4-33. (3.107)

(This 3 is not to be confused with 3 = kT//m.c? introduced earlier.) Further
analysis, using the general expressions given previously, yields

cy, = 3]2\7216 (8_676) erg g ! K1 (3.108)
_2/(4-3p
r3—1_3<8_w> (3.109)
Ty  32-245— 332
o1~ T3 (3.111)
and, finally, .
5= ﬁl . (3.112)

It is easy to confirm that all quantities go to their proper limits as 3 — 1
(ideal gas) or # — 0 (pure radiation) and that all quantities are intermediate
between their pure gas and radiation values for intermediate (3.
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Mixtures of Degenerate and Ideal Gases

The first thing we shall find is the specific heat at constant volume for an
almost completely degenerate electron gas. Recall our earlier discussion of
the temperature corrections to such a gas where the number density, n., was
given as a function of 7" and x ¢ in (3.75). If the volume or density of the gas is
fixed while temperature is varied, then n, does not change but x; must. Thus
(9ne/0T), = 0. If this operation is performed on (3.75), then the righthand
side of the resulting equation contains (0x¢/0T') , which may be solved to

. P’
first order in T' as

833f k2 1 +2x?
(az—')p:_']’ng&?)x;’,T (3113)

When you derive this you will find that it is missing a denominator of the
form [1 4 O (T?)], where O (T?) contains terms that are of order 7. Those
terms must be ignored because they are of the same order as other correction
terms that would have appeared if the equation for n. had been carried out
to higher order in temperature. Thus (3.113) is correct to first order in T.

To find the specific heat we have to differentiate E, of (3.77) with respect
to T while keeping density fixed. This operation yields, through the chain rule,
nasty terms such as [dg(xy)/dxy] (Oxy/OT) . When these are all straightened
out (see Chandrasekhar 1939, Chap. 10, §6), we find

8m3mic® (kT 2 on1/2
Vo) = 37, (mec2> vy (1+27) (3.114)
for electrons or
1.35 x 10°
v, (0= —— Ty (1+ z?)l/Q erg g P K7L (3.115)

p

Note the presence of p in the (3.115). It is required because this specific heat
is a specific specific heat (from the units). As before, it is reasonable to replace
x ¢ with zp or x using (3.49-3.50) provided that temperature correction terms
are small in all of ne, P., and E,. In any case, note the important result that
the electron specific heat for the nearly degenerate gas is proportional to
temperature.

From here on, we have to make some reasonable physical assumptions
about the nature of the stellar gas. Because of pressure ionization, we expect
all or most of the nuclear species to be completely ionized so that all electrons
are free to swim in the Fermi sea. Thus pressure and energy, as additive
quantities, are determined by bare ions and the free electrons. Radiation
should play no significant role because, if it did, the temperatures would
be so high that electrons would no longer be nearly degenerate—which we
assumed at the onset. (See Fig. 3.9.) Thus the total pressure consists of
P = P, + P,, where “I” means “ions.” Internal energies and specific heats
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are also additive. The reason we bring this up is because the rest of the
thermodynamic derivatives are, for the most part, logarithmic (like the I's)
and we cannot simply add them together. It is best to give an example.

The temperature exponent of pressure, xr, is (T'/P) (0P/0T) , from (3.88)
where P is the total pressure. We cannot separate x, into components de-
scribing just the electrons or just the ions. We had the same problem when
treating the gas and radiation mixture of the previous section but the calcu-
lations there were fairly straightforward. Here, however, the complexity of the
electron gas equation of state makes things computationally more difficult.
Nevertheless, we can compute all the derivatives fairly easily if we assume
that temperatures are very low. If this is the case, then electron degeneracy
pressure greatly exceeds that of the ions and P, > P,. The same is not true for
the partials of pressure with respect to temperature. By following the same
course of analysis as was outlined above for the specific heat, you should verify
that (0F./0T), o< T (See 3.76.) On the other hand, (0F,/0T), = Nakp/u
where p; is the ion mean molecular weight. (The ions are still assumed to
be ideal.) Thus for low enough temperatures the temperature derivative of
electron pressure may be neglected compared to that of the ions. The net
result is that for low temperatures

NAkg
o Pe

Xr — (3.116)

and, as T' — 0, so does xr. The electrons have nothing to say in the matter.
The density exponent x, = (p/P) (0P/0p), of (3.89) is easier. The elec-
tron pressure dominates both terms for low temperatures so that

P, .
Xo = ;( > N {5/3 nonrelativistic (3.117)
e T

dp 4/3 relativistic.

The limiting forms come directly from the pressure-density relations (3.60)
for the degenerate gas.

The rest of the derivatives require that the specific heats be found. We
already have cy, (¢) (from 3.114) and we know that the ion specific heat is
3N k/2u; (from, e.g., 3.85) and it is a constant. Therefore, for sufficiently
low temperatures

3N,k 1.247 x 108 o
v, eV, () = 2:1 R erg gt K (3.118)

and the electrons do not matter. (But always check that the temperatures
are “sufficiently low.”) It may seem strange at first that the electrons, which
may have a lot of total kinetic energy tied up in their Fermi sea, have a low
specific heat. But most of that energy is locked in, so to speak, because of
the exclusion principle and the vast majority of electrons have nowhere to go
in energy space. Thus increasing or lowering the temperature of the electrons
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does little to change their total kinetic energy. The ideal gas ions do not have
that constraint.

The combination of pressure dominance by electrons, low sensitivity of
pressure to temperature (small xr), and low specific heats (only the ions
matter), all add up to a potentially explosive situation when very reactant
nuclear fuels are present, as in the helium flash.

Having found the above, it should be a simple matter for you to verify
the following: ¢, = ¢y, (1), I's =1 =2/3, 'y = x,, and Vaq = 2/3x,.

3.7.2 Allowing for Chemical Reactions

We now give an example of how the thermodynamic derivatives are found
when chemical reactions are taking place. For simplicity, the ideal gas, one-
state hydrogen atom will again be used, and radiation in the equation of
state will be ignored. As usual, real calculations are very difficult and you are
referred to Cox (1968, §9.18) for a fuller discussion. As you will see, even in
the simple example given here, the analysis is made difficult because relative
concentrations of particles vary as temperatures and densities change.

Because we assume that all changes in the system take place along paths
in thermodynamic equilibrium, which implies chemical equilibrium, the Saha
equation of (3.35) holds and

+
”nff = BT3/2 ¢—xu/kT (3.119)
where B is
ormok\ */?
B = ( W;Z ) = 2415 x 1015 cm™3 K—3/2 (3.120)

and the other symbols are the same as those in §3.4. Define N (as in §3.1)
so that Np = n = nt + nl. Thus N is the total ion plus neutral atom
number density per unit mass and it is independent of density and will not
change as the system is compressed or expanded. With the usual definition
of y = n*/n = ne/n, the pressure may be written

P=(ne+n" +n°)kT = (1 +y)NpkT dyne cm™? (3.121)

and the specific internal energy is (see 3.43)

3kT
E=(1+y) "ty v ergg™ (3.122)
p 2 p
. 3kT
E=(0+y)N—-+yNxu erg g ! (3.123)

where the energetics of the reaction are accounted for.
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Having the pressure and internal energy now allows us to compute the
thermodynamic derivatives. First note that the analysis leading to the deter-
mination of those derivatives in the previous discussion involved only taking
partials with respect to either temperature or density with the other kept
fixed: concentrations were never mentioned in that analysis. But this implies
that partials with respect to concentrations (i.e., the N;) were never needed.
Thus the general expressions derived for the specific heats, the I's, etc., are
formally correct and all we need do is put in the correct pressures and internal
energies that contain the information about chemical equilibrium. To carry
this out in detail, however, still requires some effort. We start with easier
quantities, xr and x,, and leave most of the rest of the work to you.

The ionization fraction y is given by a slightly rewritten version of (3.39):

2
v B sz i (3.124)
1—-y Np

We now have the three relations P = P(p,T,y), F = E(p,T,y), and the
Saha equation. Take total differentials of the first two to find
dT  dp dy ]

dP =P |—+—+
[T p 14y

and

dl' 2 (3  xu dy
dE = 3NkT(1 o (AR 2
2 (+y)[T+3(2+kT)l+y
Recall that N remains fixed because it is the number of hydrogen nuclei per
gram and cannot change with temperature, density, or volume.
Also take the differential of the Saha equation (3.124) and divide the
result by the Saha equation itself to find

dy _ 3 xu)dl _dp
1+y_D(y)K2+kT)T p:|

y(1—y)
Dy) = —————.
) 2-y)(1+y)
Note that D(1) = D(0) = 0 and, for general 0 <y < 1, D(y) > 0. It reaches
a maximum at the half-ionization point y = 1/2 where D(1/2) = 1/9.
The lefthand side of the differentiated Saha equation appears explicitly

in the expressions for dP and dFE. Therefore, use that equation to eliminate
any reference to dy in dP and dFE and find, for dF,

2/3 xu\|dT  _2/3 xu)\dp
1+D= (o4 2n) | == —p2(op )22
035 |7 PG )

where
(3.125)

3
E = °NET(1
E=5 k(+y){ 3\2 " &T

From this find directly
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2/3  xu)’
1+D(y)3(2+kT)

Note that Nk = N k/p, and Nky = N, k/pe from which may be found p, of
(1.45) and p, of (1.48).
Treating the pressure differential in like fashion we find

P _ {14_7)(34_“)]@4_(1_@)@

3
cy, = ~Nk(1+vy)

5 erg g ' K71 (3.126)

P 2 kT T p
so that
o =1-D(y) (3.127)
and 3
_ S, Xu
xr =1+ D(y) <2 + kT) . (3.128)

Because D > 0, we have x, < 1 and x, > 1. The interpretation here is
that if temperature rises, keeping density fixed, we get more free electrons
liberated and the pressure rises more so than the rise due to temperature
alone. Hence xr increases above its nominal value of unity without ionization
or recombination; that is, x must be greater than or equal to unity. If density
increases, keeping temperature constant, then recombination decreases the
number of free electrons per gram and thus x, can fall below unity.

The I'; may now be calculated using equations (3.97) through (3.99) in
the forms that contain x,, xr, and cy,. After a bit of algebra the results are

L 242D(y) (3/2+ xu/kT)
P T 32D ) (3/2 + xu /KT

Ly 54+2D(y) {xu/kT + (3/2 + xu/kT) (5/2 + xu/kT)}
[y —1 2+ 2D(y) (3/2 + xu/kT)

and T'; follows from (3.96).

Note that as y approaches zero or unity (so that D — 0) all the T
approach their ideal gas values of 5/3. This is as it should be. If the gas
is completely neutral or totally ionized, then the equation of state is of its
usual ideal gas form since y is not changing. It is the intermediate case that
is interesting.

To compute the I'; the scheme is, choose p (or n) and T, find y from
the Saha equation (3.124) (and D by means of 3.125), and then apply the
above expressions. A typical result is shown in Fig. 3.10, where I'3 is plotted
as a function of temperature for three densities. The half-ionization point,
y = 1/2, is indicated. Note that if T is near the typical hydrogen ionization
temperature of 10* K, I's drops rapidly from its value of 5/3 to much lower
values. Even the dangerous 4/3 may be passed by in the process. A word to
the wise: always watch out for temperatures near 10* K in a hydrogen-rich
mixture.

(3.129)

(3.130)
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p:1078 g cm

10% 10°
Temperature (K)

Fig. 3.10. The adiabatic exponent I's for an ionizing pure one—state hydrogen gas
is plotted as a function of temperature. Results are shown for three densities. The o
indicates the half-ionization point. The fiducial points 5/3 and 4/3 are also shown.

The reason why I's (and the other I's) behaves the way it does when
ionization is taking place is quite simple. First suppose no ionization or re-
combination processes can operate in an almost completely neutral gas so
that concentrations remain constant as the system is compressed adiabati-
cally. In that case I's = 5/3, T' ~ p*/3, (as in 3.103) and the gas heats up. If,
however, we allow ionization to take place, then compression may still heat
up the gas, but ionization is much more sensitive to temperature changes
than to changes in density. Hence, ionization is accelerated. But this takes
energy and that energy is paid for at the expense of the thermal motion in
the gas. Thus the temperature tends not to rise as rapidly as p?/® and I's is
smaller than its value with no ionization.

As we shall see in chapters to come, all the I'; are important in some
respect or another: I's says something about how the heat content of the gas
responds to compression; I'; is intimately tied up with dynamics (partially
through the sound speed); the behavior of I's and V,q may be a deciding
factor in whether convection may take place. As an example, Fig. 3.11 shows
the run of Vaq through a ZAMS model sun. The abscissa is — log (1-M,. /M),
the stellar center is at the left, and the surface is to the right. Such an axis
emphasizes the outer layers of the model. Thus, a value of “9” on this axis
corresponds to 1 — M,./M = 1072 or a mass point that is within 107 of the
total mass. The dips in V,q signal ionization. The one at “5” takes place at
a temperature of about 10° K and is the first *He ionization zone. The broad
trough around 8-9 is at about 10* K and corresponds to a combination of
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Fig. 3.11. Plotted is Vaa (of 3.96) versus —log (1 — M, /M) for a ZAMS model

sun. The region from roughly “3” on this scale to almost the surface is convective
due, in part, to the depression of Vaq.

second *He and 'H ionization. Suffice it to say that the whole region with
depressed V ,q is convective, for reasons that will be explained in in Chapter 5.
The effects of radiation or other ionizing species and energy levels are
included in more complete analyses than what we have done here (see Cox,
1968). In addition, the effects of pressure ionization (among other things)
have to be included in many situations. Even though the results we have
obtained are useful for many calculations in stellar structure, you should
be aware that real models are usually constructed using tabular equations
of state with P, E, and, sometimes, various derivatives given as functions of
temperature and density for a fixed nuclear composition. Very often these are
included in tabulations of opacities—which we discuss in the next chapter.

3.8 Exercises

Exercise 3.1. We have already explored the Saha equation using a pure
hydrogen gas as an example. Now consider the more complicated *He atom
with its two electrons. Assume, as in the hydrogenic example, that the neutral
atom and first ionized ion are in their respective ground states. The ionization
potential to remove the first (second) electron is x1 = 24.587 eV (x2 =
54.416 eV). To agree on a common nomenclature, let ne, ng, n1, and ng
be the number densities of, respectively, electrons, neutral atoms, and first
and second ionized ions. The total number density of atoms plus ions of the
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pure helium gas is denoted by n. Furthermore, define z. as the ratio ne/n;
and, in like manner, let z; be n;/n, where i = 0,1, 2. The gas is assumed to
be electrically neutral. For the following you will also need the degeneracy
factors for the atoms and ions and these are to be found in Allen (1973),
Lang (1991), or Cox (1999) as the data-type references given at the end of
Chapter 1.

1. Following the hydrogenic case, construct the ratios neni /ng and neng/n;.
In doing so you must take care to establish the zero points of energy for
the various constituents. One way to do this is to use mc? arguments.
For example, the first ionization has mec? +mic? = moc? + x1 in obvious
notation. The reference energies £ to be used in (3.24) for each constituent
are then taken to be the mc?s. This establishes the relative order of the
Es. The final form you obtain should not contain chemical potentials (and
you must show why this is true).

2. Apply n = ng + n1 + no, overall charge neutrality, and recast the above
Saha equations so that only z; and z, appear as unknowns. The resulting
two equations have temperature and n or, equivalently, p = 4n/N, as
independent parameters.

3. Simultaneously solve the two Saha equations for z; and z5 for tempera-
tures in the range 1 x 10* < T < 2 x 10° K with a fixed value of density
from among the choices p = 1074, 1076, or 1078 g cm™2. Choose a dense
grid in temperature because you will soon plot the results. (These cases
will prove useful when discussing pure helium opacities in Chap. 4.) Once
you have found z; and 2o, also find z, and zg for the same range of tem-
perature. Note that this is a numerical exercise and use of a computer is
strongly advised.

4. Now plot all your z; as a function of temperature for your chosen value
of p. (Plot zp, 21, and 22 on the same graph.) This is an essential step
because it will make clear how the ionization responds to temperature
changes.

5. Find the half-ionization points on your plot. The two temperatures you
obtain (for fixed density) will correspond to the single half-ionization
point for pure hydrogen.

Exercise 3.2. We earlier established that photon mean free paths were very
short in a star except in the very outermost layers. This means that photons
must follow a tortuous path to escape eventually from a star and must take a
long time in doing so. To estimate this time, assume that a photon is created
at the center of a star and thereafter undergoes a long series of random
walk scatterings off electrons until it finally reaches the surface. The mean
free path associated with each scattering is Apnot = (neae)fl, where o is
the Thomson scattering cross section o, ~ 0.7 x 1072* cm? (see §4.4.1).
For simplicity, assume that the star has a constant density so that Apnet is
also constant. This is an order-of-magnitude problem, so don’t worry too
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much about constants of order unity. (Real diffusion in stars is much more
complicated and your estimate for the time will be an underestimate.)

1. Using one-dimensional random walk arguments, show that L ~ R?/Aphot
is the total distance a photon must travel if it starts its scattering career
at stellar center and eventually ends up at the surface at R.

2. Since the photons travel at the speed of light, ¢, find the time, Tphot,
required for the photon to travel from the stellar center to the surface.
(Assume that any scattering process takes place instantaneously.)

3. Give an estimate for Thot, in the units of years, for a star of mass M/ Mg
and radius R/Re.

Exercise 3.3. Neutron stars are assumed to be objects with M ~ Mg,
R ~ 10 km ((p) ~ 10** g cm~3) where internal temperatures (kT') are small
compared to the Fermi energies of electrons, protons, and neutrons (which
are assumed to be the only particles present). To demonstrate that the name
neutron star is apt, consider the following. Assume that the stellar tempera-
ture is zero and that chemical equilibrium exists between electrons, protons,
and neutrons. The reaction connecting them is

n<p+e +Q

where @@ = 0.782 MeV and we are neglecting the electron anti-neutrino,
which should appear on the right-side of the reaction. Further assume that
the electrons are completely relativistic but that protons and neutrons are
nonrelativistic.

1. Convince yourself that the “Saha” equation is
En+Q=E+¢E

where the s are the Fermi energies of the respective particles. Do your
“self-convincing” two ways: (a) argue from the chemical potential equa-
tion of the reaction; (b) make a physical argument based on the energetics
of the reaction and the Pauli exclusion principle.

2. Now find the number densities of the particles as a function of density.
Assume charge neutrality, so that ne = n;,, and use the Saha equation to
find ne, np, and n, for densities in the range 103 5 p 52 x 10 g cm™3.
You may take the density as being p = (n, + n,)m where m is the mass
of either proton or neutron.

3. Plot your number density results as a function of density and, if possible,
compare to what you might find in the literature.

Exercise 3.4. Show for the ideal gas (u/kT < —1) that P = nkT is a
general result independent of whether the particles are relativistic, nonrela-

tivistic, or anything in between. (Hint: integrate 3.13 by parts after inserting
3.12.)
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Exercise 3.5. Verify (3.29) by computing the average kinetic energy of a
Maxwell-Boltzmann distribution.

Exercise 3.6. To give an idea why the chemical potential is referred to as a
“potential,” consider the following, as discussed in Landau and Lifshitz (1958,
§25). They state that a body subject to an external field is in equilibrium if
the sum of the local chemical potential at every position in the body—here
call it pyocar(r)—and the potential of the external field , ¢ (r), is a constant;
that is,

Utot = Mocal (T) + ¥ (r) = constant.

To make things simple, consider a one-dimensional situation where the ex-
ternal field is gravitational and the local gravity, g, is everywhere constant so
that ¢(r) = —mgz where z is height and m is the mass of a particle in the
body. Further assume that the particles compose an ideal gas.

1. Using the ideal gas results, show that

( oP ) P
Ottocal T m’

2. Compute dyitor/dz and finally show that

dP
dz
which is the elementary result for the equation of hydrostatic equilibrium
in a constant gravity field; that is, you have shown that the chemical
potential is part of a potential! For a more complicated situation, see
> Aronson, E., & Hansen, C.J. 1972, ApJ, 177, 145,
who give an example of the “gravo—thermo catastrophe.”

= —gp

Exercise 3.7. This problem deals with corrections to Maxwell-Boltzmann
thermodynamics due to the effects of weak electron degeneracy. Suppose
w/kT is still very much less than —1 as discussed in §3.3, but we wish to
include some effects of Fermi-Dirac statistics; i.e., what are the effects due
to the +1 in the distribution function (3.9)?

1. If the exponential term in (3.9) is still large then, we can use the expansion
1/(a+1) =~ (1—1/a)/a to first order in the large quantity a. If you assume,
as an approximation, that p/kT of (3.24) is still given by

/KT — noh’
2 (2rmekT)? /2

where ng is the electron number density in the pure Maxwell-Boltzmann
limit, then show that the number density, n, for weak degeneracy is

n =ng {1 —2_3/2K} .
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2. Similarly show that the new pressure is
P = ngkT [1 _ 2—5/21(} .

Exercise 3.8. Section 3.6 discusses “imperfections” in equations of state
that make life difficult for the stellar modeler. One of these imperfections
arises from electrostatic interactions between ions. These cause modifications
in the ideal gas equation of state. The severity of the modifications depends
on density and temperature in the sense that low temperatures and/or high
densities means you have to work harder. One method of attacking the prob-
lem is to use Debye—Hiickel theory wherein it is assumed that (for, say, a
one-component composition) that the average inter-ion spacing rg is large
compared to the Debye length

B kT 1/2
'p= 4dme2p (N, '

Here ( = Z(Z 4+ 1)/A where Z is the ion charge and A is its atomic mass (in
rounded off amu’s). This statement is equivalent to

kT \?
"2 ==\ 72
where ny is the ion number density. If this condition is satisfied then, we find
the following expression for the pressure:

¢ (TNup)?

P=nkT |1—
ot |1 5

MCS/Q}

which becomes, after putting in numbers,

P =nkT 373

6

1/2
10322 s,
T,

Here n is the total number density (ions plus electrons), u is the mean mole-
cular weight, and Ty is the temperature in units of 106 K. You may check
these expressions by consulting Cox (1968, §15.5) or Clayton (1968, §2.3). In
any case, write this as

P =nkT(1- B)

where, for this analysis to work at all, B must be small compared to unity.
If it gets moderately large (say 0.1 or larger), then electrostatic effects are
considered to be significant. Now do the following.

1. Consult the literature (or the Supplemental Material section of Chap. 2)
for properties of ZAMS models. Make believe these are composed of pure
ionized hydrogen (1 = 1/2) and compute B at model center for a selection
of these models starting with 60M s and ending at 0.08 M.
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2. What do you conclude from this exercise? Where, in mass on the ZAMS,
do you think electrostatic corrections begin to be important?

Exercise 3.9. Having already found the ionization fractions for pure helium
in a previous exercise, let’s go one step further—but “we” have done most
of the work for you here. The FORTRAN program GETE0S.F90 to be found
on the CD-ROM on the endcover of this text was written by W. Dean Pes-
nell (an old colleague of ours) to compute the pressure and internal energy
(among other things) for an ideal gas plus radiation. (This code is also part
of ZAMS.FOR also found on the CD.) You input the hydrogen (one ionization
state) mass fraction X, the helium (two ionization stages) mass fraction Y,
the temperature 7', and the specific volume V). The output from GETEOS
consists of pressure P, internal energy E (in ergs g~!), the electron pressure
(PE), (0P/0V,)r (PV), (OP/OT)y, (PT), (OE/0V,)r (EV), and (OE/OT)y,
(ET). The code is sparsely annotated but you should try to see what goes
on. The variable GES is our 1/pu. and it is iterated upon until all the Saha
equations are satisfied. One way to unravel the code (in your mind, not when
using the code) is to set XHE and XHE2 (the helium ionization potentials)
to infinity, thus shutting off the ionization of that element. The metals con-
sist partially of Mg, Si, and Fe, included as a single element, with potential
XM. Set XM to infinity also. The rest of the metals are Na and Al, which
are always assumed to be ionized. A driver code at the beginning is just an
example and you will have to change it to get all the output quantities from
EOS. Note that this is in FORTRAN 90. In using the code be aware that it
doesn’t always like X or Y (or Z=1— X —Y) to be zero. But you can set
them to some very small number.

1. Use this code, with your version of the driver, to compute various pres-
sures, etc., for interesting combinations of the input quantities.

2. Find the I's for nearly pure hydrogen and compare to what was shown in
Fig. 3.10. The output from GETEQS gives you all you need.

3. Do the same for nearly pure helium to show the effects of the two ioniza-
tion stages. And we are sure your instructor can think of lots more things
to keep you busy! Note: pressure ionization is not included in this code
but, by the time the density reaches that level, the major constituents
(H and He) are already ionized.

3.9 References and Suggested Readings

Introductory Remarks

The place to go for general information on stellar equations of state is
> Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).
In particular, see his Chaps. 9-11, 15, and 24. We also recommend Part II1
of
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> Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer—Verlag)
and §3.2 of
> Rose, W.K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge
University Press).
> Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill)

also contains useful material.

A favorite text of ours is
> Landau, L.D., & Lifshitz, E.M. 1958, Statistical Physics (London: Perg-
amon)
and its later editions. We recommend it for its clarity (but it is not easy) and
wealth of practical applications. You will even find material about neutron
stars in it.

A complete discussion of what conditions must be met to use the approxi-
mation of LTE sensibly may be found in

> Mihalas, D. 1978, Stellar Atmospheres, 2nd ed. (San Francisco: Freeman).
Anyone thinking seriously about studying stars should try to find a copy.
The last we heard, it is out of print, but permission might be granted by the
publisher to reproduce it (but check for royalty fees).

§3.3: Ideal Monatomic Gas

A complete monograph discussion of Fermi—Dirac equations of state for use
in stars was first published by
> Chandrasekhar S. 1939, An Introduction to the Study of Stellar Structure
(Chicago: University of Chicago Press).
It should be available in paperback Dover editions and is well worth buying
at modest cost. We shall refer to this work quite often. Other versions may
be found in §3.5 of
> Chiu, H.-Y. 1968, Stellar Physics, Vol. 1. (Waltham, MA: Blaisdell)
and Chapter 24 of
> Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).

§3.4: The Saha Equation

Systematic application of the Saha equation to multicomponent mixtures is
not easy. The bookkeeping required to keep track of all the energy levels is
a daunting task, to say nothing of getting information on level parameters.
See Chapter 15 of
> Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach)
and Chapter 14 of
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> Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer—Verlag).

§3.5: Fermi—Dirac Equations of State

Chandrasekhar (1939) and Cox (1968) (see above) are standard references.
The references to fermionic matter and Bose-Einstein condensates are

> Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., & Cor-
nell, E.A. 1995, Science, 269, 198.

> DeMarco, B., & Jin, D.S. 1999, Science, 285, 1703.

The reference to Peter Eggleton (1982) is given as a private communication
in

> Truran, J.T., & Livio, M. 1986, ApJ, 308, 721,
who use it in some work concerning nova systems. We have extended Eggle-
ton’s mass-radius fit for white dwarfs to accommodate general .

> Cloutman, L.D. 1989, AplJS, 71, 677
is a good source of numerical techniques for computing the Fermi—Dirac in-
tegrals. See also

> Eggleton, P., Faulkner, J., & Flannery, B. 1973, A&A, 23, 325
for a thermodynamically self-consistent and efficient computation of the equa-
tion of state for arbitrarily degenerate and arbitrarily relativistic ionized
gases.

> Antia, H.M. 1993, ApJS, 84, 101
gives rational expansions for the Fermi—Dirac integrals. Early work on real-
istic corrections to the perfect Fermi—Dirac gas includes

> Hamada, T., & Salpeter, E.E. 1961, ApJ, 134, 683.

§3.6: “Almost Perfect” Equations of State

Our Fig. 3.9 is our version of Fig. 1 of

> Fontaine, G., Graboske, H.C., & Van Horn, H.M. 1977, ApJS, 35, 293.
This paper has an excellent discussion of the problems that arise when ioniza-
tion (including pressure effects) and electron degeneracy must be accounted
for. Their results are in the form of tables.

We have not discussed nuclear equations of state. To get an idea of what may
be involved see chapters 2, 8, and 9 of
> Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons)
and the review article by
> Bethe, H.A. 1990, RevModPhys, 62, 801.



4 Radiative and Conductive Heat Transfer

“In an intuitive picture of diffusion,

one usually conceives of a slow leakage

from a reservoir of large capacity by means
of a seeping action. These ideas apply in the
radiative diffusion limit as well.”

— Dimitri Mihalas in Stellar Atmospheres (1978)
OK, this plus a little math and I suppose we’re done.

In this chapter we discuss two ways by which heat can be transported through
stars: diffusive radiative transfer by photons, and heat conduction. The third
mode of transport, which is by means of convective mixing of hot and cool
material, will be discussed in Chapter 5. For references on the theory and
application of energy transfer in stars, we recommend the following excellent
texts by Mihalas (1978) and Mihalas and Mihalas (1984). Cox (1968), Rybicki
and Lightman (1979), and Rose (1998) also contain some very useful material.
The discussion here will barely scratch the surface of this complex subject and
will be directed toward the specific end of finding approximations suitable for
the stellar interior.

4.1 Radiative Transfer

In discussing blackbody radiation and equations of state we assumed LTE as
a very good approximation. We do know, however, that LTE implies complete
isotropy of the radiation field and this, in turn, means that radiant energy
cannot be transported through the material of the star. Anisotropy in the field
is required for that to happen. On the other hand, it is easy to demonstrate
that only a small degree of anisotropy is needed to drive photons through
most of the stellar interior. Another way to phrase this is that even small
gradients in temperature can do the job. For example, a crude estimate of
the overall temperature gradient in the sun is given by the ratio (7,/Re) =
10~* K cm™!. Although convection might augment heat transport in parts
of the star, that small gradient is usually sufficient. At the solar photosphere,
however, we shall see that gradients are large and, in any case, the radiation
field must eventually become very anisotropic since radiation only leaves the
star at the surface while none enters.

What we shall examine is what near-isotropy in the radiation field implies
for the stellar interior. In the end, we shall find that the diffusion equation
discussed in the first chapter (§1.5) is more than adequate for most of our
purposes. Consideration of the very surface will be deferred until later. For a
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start, assume that all photons have the same frequency (v). Amends will be
made shortly.

Central to a discussion of radiative transfer is the specific intensity, I(19).
It is so defined that the product I(9)dQ is the radiative energy flux (in
erg cm~2 s~1) passing through a solid angle df2 (in sr=steradians) around a
colatitude angle ¥ (in spherical coordinates ¥ and ¢) at some position r or, in
plane parallel geometry, z. We delete, for now, reference to r, z, and ¢ in the
intensity and we make the important assumption that the energy transfer
does not depend on time. The picture is that of a thin cone of radiation
starting from r and passing through d{2 as shown in Fig. 4.1.

dQ

rorz

)
>

!

Fig. 4.1. The geometry associated with the specific intensity I(¢). The position
coordinate may either be radius r in a spherically symmetric star or vertical distance
z in a plane parallel “star.” In the latter case, symmetry in the transverse z- and y-
coordinates is assumed. The properties of the stellar medium are then independent
of azimuthal angle ¢ for either choice of geometry.

The quantity () dQ is the corresponding energy density (in the units
of erg cm™2). This may be related to I(1) by considering how much radiant
energy is contained in a tube of unit cross section and length 1 sec x ¢ along
a thin cone in the direction ). Thus

1(9)

C

w(®)dQ =~ dq . (4.1)

The total energy density U is obtained by integrating (4.1) over 47 steradians
with
27 !

¢ J-1

U= /47r u(¥9) dQ I(p)dp (4.2)
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where azimuthal symmetry (for a round star or flat plane) in ¢ has been
assumed and pu = cos? with —1 < pu <1.

Because we are eventually interested in the net outflow (or inflow) of en-
ergy along z or r, define the total flux, F, as follows. Place a unit area (1
cm?) perpendicular to the z-direction (in planar geometry to simplify mat-
ters). The projection of I(¥) onto this area is then () cos® x 1 cm?. If this
last is integrated over d2 and the result is divided by 1 x cm? we then obtain
the total flux in the z-direction,

1
F= I(9) cos ¥ dQ = 27r/ I(w)pdy ergs™' cm™2. (4.3)
4m -1
Note that if I is a constant, then the total flux is zero because the same
amount of radiation comes in as goes out. Hence I must vary with p (or )
for radiant energy to be transported; that is, I(¥) must be anisotropic.
What are the sources and sinks for I(¥)? At any location z or r, I(9) may
be fed by radiation being scattered from other directions into ¢ or by direct
emission from local atoms. We are not going to go into all the subtleties
of what these different kinds of processes mean for radiative transfer, but
will rather lump them together into the mass emission coefficient, j(9) (in
erg s~ g71), constructed as follows.! If ds is a distance directed along I ()
over which I(¥) is augmented by the amount dI(¥) due to scattering or
emission, then j(¥) is defined by

dI(put into ¥) = j(¥)pds.

Photons can also be removed from the beam by absorption and scattering.
These processes are accounted for by the opacity (or mass absorption coeffi-
cient), k (in ecm? g=1); so that the amount removed from I(?) is

dI(taken out of ¥) = —kpl (V) ds

and it is proportional to I(¥) itself because it depends on the number of
photons present locally. Note that if j is zero and k and p are both constant,
then

I o e™7P8

as simple attenuation of the beam. Recall that the product (kp)~! was pre-
viously used to compute a typical mean free path in (3.2). We see now that
it is an e—folding length for attenuation.
The net change in () per unit path length is then
1 dI(9)
———=j—krl(¥ 4.4
s (9) (4.4)
! Note that we do not discuss here many of the processes by which photons are
emitted. See, for example, Ex. 4.9, where spontaneous versus stimulated emission
is discussed in terms of the Einstein coefficients.
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which is the equation of transfer. Note that in the form we give it, the trans-
fer equation really only holds in planar geometry: a rigorous derivation in
spherical geometry would have to contain curvature terms. Because we shall
finally get the diffusion equation, such niceties are unnecessary here.

If we had LTE and complete isotropy and spatial uniformity of the radia-
tion field, then (dI/ds) = 0 and I = (j/x) would be constant with no radiant
energy transported. In that case the energy density of the radiation field is,
from (4.2),

o (1

U Tdy = 4%1 . (4.5)

¢ J
But in LTE, U follows from the blackbody result U = aT* (as in 3.18 with
E,.q replaced by U) so that
1=2="S4r*=27*=B(T) (inLTE) (4.6)
K 4 T
where B(T) is the integrated Planck function, introduced in Chapter 3 as
(3.22). The frequency-dependent Planck function is

2hv3 1 _2
= erg cm

(4.7)

as may be deduced from (3.19) and (3.21).

If, as we suppose, the radiation field is nearly isotropic through most of
the star, then the intensity should closely resemble B(T'). The question is, by
how much? We have to work a bit harder to answer this.

At this point we introduce frequency, v, into all expressions and realize
that quantities such as I, j, and x must all depend on v so that we can talk
about photons of a given frequency being added to or subtracted from a beam
in direction ¥, etc. In addition, we introduce the source function (which, for
us, will be merely a computational device),

SV - jy/’iu
and the optical depth, 7,,, with
dr, = —k,pdz (or dr) . (4.8)

The integrated version of (4.8) is

T(2) =Tu0 */ kypdz (4.9)

Z0

where zj is some spatial reference level and 7, ¢ is the optical depth evaluated
at that level. If zy corresponds to the “true surface” of the star where density
and pressure presumably go to zero, then 7, is taken to be zero. We shall
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make this choice and thus 7, (z) measures depth from the surface in curious,
but dimensionless, units.

If we now recall that ds is measured along the direction of I(¥), then
dz=cos ¥ ds=puds and, putting all together, the equation of transfer becomes

dIV (Ta ‘LL)

dr,

= Iy(Tv /L) - S,,(T, :u) . (410)

The solution of the transfer equation is easy to pose but difficult to carry
out in practice. As a first step, note that (4.10) admits of the integrating
factor exp (—7/u) where here (and often elsewhere) the subscript v and the
arguments 9 or p will be deleted for visual clarity. Thus multiply through by
that factor, recognize a perfect differential, and find

% [677/# I} = —e*T/“g .

If we formally integrate from some reference level 7y to a general level 7, then
the solution is
e S(t)

I(1,p) = e—(r0—7)/n (70, 1) Jr/ e~ (t="7)/n

dt 4.11
T K ( )

where ¢ is a dummy integration variable.

Depending on the range of p (or ¢), different values for 79 are chosen
in seeking solutions for I(7, u). For forward-directed radiation (heading out
toward the surface) with © > 0 (0 < 9 < 7/2), choose 1y to be very large and
positive so that the reference level lies deep (at least with respect to optical
depth) within the star. Thus with 79 — oo,

I(t,pu>0) = / e~ (t=n/u 3O (4.12)
T p

If 4 < 0, signifying inwardly directed radiation, use 79 = 0 so that

0
I(t,p < 0) = / e~ =n/n S gy (4.13)
. 1t
In the last expression, advantage has been taken of the fact that the level
7o = 0 has been chosen to be the true surface of the star, where it is required
that I(0,p < 0) = 0; that is, there is no incoming radiation at the surface.
Note that this would be inapplicable to a star in a close binary where its
companion might bathe the stellar surface with radiation. A similar situation
holds for stellar winds where the wind itself may radiate profusely.
If the deep interior is to be nearly in LTE, we expect the source function
S = j/k to be almost independent of angle and, from (4.6), to be near its
Planckian value B(T') at depth 7 (assumed to be appropriately large and still
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leaving off reference to v). If this is so, then it seems reasonable to expand
S(t) in a Taylor series in 7 which, to first order, is

St)=B(r)+({t—1) (?9?) (4.14)

where B(7) stands for B[T'(7)]. (A more exacting discussion of this, and the
approach to the diffusion equation, may be found in Mihalas, 1978, §2-5.)
Inserting (4.14) into (4.12-4.13) yields

I(r, > 0) = B(r) + u(gf)T (4.15)
and
I, < 0) = B(r) [L—e7/v] + “<(?5>T [ew (; - 1) + 1] . (4.16)

Since 1 < 0 in (4.16), we may neglect the exponential e™/# for 7 large and find
that (4.15) is valid for all . You may easily verify that higher-order terms
in the Taylor series expansion for S(t) in (4.14) lead to additional terms in
I(7, ) that go as |0"B/01™| ~ B/7™ (and see Exs. 4.1-4.3 at the end of this
chapter). Thus, roughly speaking, convergence is rapid if 7 is greater than
unity.

This looks promising. Since we expect temperature to increase inward, as
does 7, then dB/d7 > 0. Thus, because of the presence of the factor p in
(4.15) or (4.16), the outwardly directed intensity (with g > 0) is enhanced
over its Planckian value, B(7), whereas the intensity directed inward (with
w1 < 0) is reduced. The net result is a flow of radiation outward when the two
intensities are integrated over their respective angles and the two results are
added. To compute the flux of this radiation, use (4.3) and find

63(7‘)} d :4163(7) (417)

f(T)zzw/l [B(T)w - T

-1

in the units of erg cm™2 s~!. Since the integrated Planck function is propor-

tional to T, the amount of energy flux carried by radiation depends only on
how rapidly temperature varies with optical depth.

If (4.17) represents the total flux (implying that it contains all the fre-
quency-dependent fluxes integrated over frequency), then the Iluminosity for
a spherical star at radius r(7) is

L(r) =L, =4nr*F(r) ergs ' (4.18)

A measure of the anisotropy in the intensity is the comparison of I(7)
to OB(1)/0T of (4.15). So, calculate 9B(7)/07 from the flux by means of
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(4.17), and use (o/7)T*(7) as an estimate for I(7) from (4.6). As an ex-
ample, consider the sun. Using global values for everything in sight, a typ-
ical flux may be found from Lg ~ 47RZFe ~ 4 x 10% erg s™! or, Fg ~
7 x 1019 erg cm™2 s71. Thus B(7)/076 ~ 2 x 101 erg em™2 s71. A typical
solar temperature is Ti, ~ 107 K, so that I = Bg ~ 2 x 10% erg em=2 571,
The measure of anisotropy is then [0B(7)/97], /Io ~ 107'3. (And see
Ex. 4.2.) We have, of course, used estimates for various numbers here, but the
final result is quite representative of the true situation in the deep interior.

The truncation to first order of the expansion for I(7, ) is reasonable
provided that 7 > 1. We shall find that an optical depth of unity lies very
close below the physical surface in most stars. Hence the approximations used
here will be valid for just about all of a star. The thin region above 7 ~ 1
we call the atmosphere and it is the region where radiation is processed so
that we ultimately see it. Except for some simple calculations to be considered
shortly in §4.3, the atmosphere will be left to the specialists in that important
subject.

4.2 The Diffusion Equation

To derive the diffusion approximation properly, we return to the expression
for the flux but include the frequency dependence:

47 OB,
F,=— 4.19
3 01, ( )
which may be rewritten using the definition of dr, as
47 1 0B,
F,=—— . 4.20
3 Kkyp Or ( )

The derivative of B, is cast into more a convenient form by using the chain

rule so that
0B, 0B, dT

or  OT dr
where, if desired, 0B, /0T may be found using (4.7). The flux is then

F, = _411 dgi 9By

(4.21)

To obtain the total flux integrate over frequency and define the Rosseland
mean opacity, k, by

1 >~ 1 0B, >~ oB, 17"

so that the total flux is
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dr 1 dT [ 0B,
F=—-Fc—— dv .
3 kp dr Jo OT v

The last integral is eliminated by observing that

> 0B o [ 0B  ac
“dv=— | B,(T)dv=—-=—T°
/OaT”aTO (T)dv =57 =7
where (4.6) and o = ac/4 have been used. Thus, finally,

dac 1 daT c d(aT?)
- _ iy o5 S B . 4.2
Fr) 3 Kp dr 3kp dr (4.23)

This version of F is in the Fick’s law form introduced in the first chapter
(8§1.5), where the diffusion coefficient D is now identified as D = ¢/(3kp).
The factor of 1/3 that appears is usual in diffusion theory and the remainder
represents a velocity (c¢) times a mean free path A = 1/(kp). The derivative
term in (4.23) implies that the “driving” is caused by spatial gradients in the
energy density (aT*) of the radiation field.

The total luminosity in the diffusion approximation to radiative transfer
is simply £ = 47r2F or

16racr? T3 dl _47rac7“2 d7T4 (4.24)

Llr)=L£r=— 3Kkp dr 3kp dr

which is what was stated in (1.60). There are several other ways of expressing
L, which will prove useful for future work. Among these are the following.

The Lagrangian form of (4.24) is obtained by using the mass equation
(1.2) to convert the radial derivative to one of mass:

anr?)? ac dr4
L, = —% A (4.25)

and this was used in the dimensional arguments of §1.6. Absorbing the factor
of a and recognizing Praq = (1/3)aT* also yields

(47r7"2)2 ¢ dP,aq
= - . 4.2
£ K dM., (4.26)

For still another version, introduce the equation of hydrostatic equilibrium
(1.6) (in a slightly disguised form and note the presence of the pressure scale
height of Eq. 3.1 in the middle term) so that

“dlnr Xp 7P

dlnP r  GM,p (4.27)

Then divide both sides by (d InT/d Inr) to find
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(dlnP/dlnr) dlnP  GM,p 1
(dInT/dInr) dInT rP (dInT/dInr) "

The reciprocal of the derivative in the middle of this expression is used to
define a new quantity, V, called “del” with

dinT r2P ld;f
dinP  GM,.pT dr’

\%

(4.28)

Sometimes a subscript “act” is appended to V to denote “actual.” The im-
plication is that V represents the actual run, or logarithmic slope, of local
temperature versus pressure in the star. If V is known by some means or
another, then a simple rearrangement of (4.24) yields

_ 16macG T74

Ly
3 Pk

M.V (4.29)
as yet another way to express the relation between luminosity and a gradient.
All these variations on luminosity will be used at some point or another.

4.2.1 A Brief Diversion into “Vs”

Besides the V defined above, it is useful to define another logarithmic quan-
tity, Viaq, called “delrad,” as follows. Suppose L, (total) is the luminosity
corresponding to an energy flux transported by any means and not necessar-
ily just by radiation. Then define V,,q by turning (4.29) around so that

E — = —_— . 4.
dlnP 16macG T+ M, dacG T4 M, (4.30)

_ (dInT 3 Pk L, (total) 3r2 Pk Fiot
vrad = ( )
rad

(The flux Fiot is the total flux Fioy = 4712 /L, (total), and will be ued later.)
Thus V,aq is the local logarithmic slope of temperature versus pressure that
would be required if all the given luminosity were to be carried by radiation.
This quantity will prove useful for future work, although, at the moment, it
may seem to be superfluous baggage. But, for example, suppose you were
given the run of density, temperature, opacity, and energy generation rate
in a star and the luminosity and V and V,,q as functions of radius. But
you don’t know how the energy is transported. It could well be that the
luminosity, £, at a given radius consists of a part from diffusive transfer,
L:ad, plus a contribution from other sources such as convection, Lcony, with
L = Lrad+ Leony. The luminosity of (4.29) is obviously L,,q because it is that
which is generated by Fick’s law with, in the present nomenclature, a gradient
term V; that is, V is the actual driving gradient in the star and thus L;.q
follows from it. However, V,.q derives from the total £. Thus if V = V. .q
then all the luminosity must be radiative, £ = L;.q4, and Leony = 0. If, on
the other hand, V,,q > V, then £ > L..4, Lcony i not zero and radiation
does not transport all of the energy.
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The preceding analysis will turn out to be not all that abstract. Recall
that yet another “del” was defined in (3.94) and (3.96) of the previous chapter
as Vaqg = (0InT/0In P)_,. It has the same TP structure as V but it is a
thermodynamic derivative. All three “dels” consist of logarithmic derivatives
of temperature with respect to pressure except they are computed under
different circumstances. When convection is discussed in the next chapter,
these three derivatives will serve to establish one description of how energy
is transported in the stellar interior.

4.3 A Simple Atmosphere

Later on we shall have to ask what boundary conditions should be applied to
the stellar surface to make satisfactory models. In Chapter 1 we used “zero
boundary conditions” as a first go. It will turn out that these are (barely)
satisfactory for many stars but are completely inadequate for others. The
purpose of this section is to take a small step forward and derive boundary
conditions from a simple model atmosphere that are a great improvement
over just setting everything in sight to zero at the surface. Note, however,
that our efforts are not a real substitute for accurate stellar atmospheres and
what we find should not be applied to all stars.
Recall from (4.18-4.20) that the relation between frequency-dependent
radiative flux and the Planck function is
4t 1 0B, L,

fl/ = —— =
3 Kkyp Or 47r?

(4.31)

at large optical depths. This also defines the frequency-dependent luminosity,
L,. At the same level of approximation it is easy to show that the frequency-
dependent radiation pressure is given by
47

Pradgy = %Bu . (4.32)
This is consistent with the statement that Praq, = U, /3 (with U, being the
radiation energy density) because U, = 47 B, /c in LTE (see Egs. 3.19-3.21
and 4.5-4.6).

Putting this together gives

Eaprad,l/ _"{ucu

p or  dm?’ (4.33)
Integrate this over frequency so that
dPrad Hpﬁ
dr  dmrc (434)

where  is defined as



4.3 A Simple Atmosphere 203

1

K= Z/o Ky Ly dv (4.35)

and it is not the Rosseland mean opacity defined previously by (4.22). (Later
we shall use this opacity but make believe it is Rosseland as one of a series
of approximations.)

Because at this juncture we are only interested in the radiation properties
of the stellar material very near the photosphere, we simplify (4.34) by replac-
ing r on the right-hand side with R, which is defined as the radius at which
we find the photosphere. We also remind you that the effective temperature,
Tefr, is the temperature that satisfies the relation

L = 4roR*Ti (4.36)

(and see §1.8). Thus T.g is the temperature the photosphere (at R) would
have if that surface radiated as a black body. Note that of the three quantities
in (4.36) only L is directly observable; R and Tog may both turn out to
be convenient fictions. This is because the term “visible surface” is really
a spectrum-dependent statement (photons of one frequency may emerge to
final visibility from different depths compared to other photons) and, in any
case, no star really emits radiation into space as a pure blackbody, as we shall
demonstrate later with real spectra.

One final point before we go on. Recall from our earlier discussion that
we had defined the “true surface” as that level in the star where there was no
incoming radiation. This was set at optical depth 7=0 (see Eqgs. 4.8-4.9, and
discussion). What we will have to determine is how that level is related to
the level at R or how the photosphere differs, if at all, from the true surface.

With the above in mind, now integrate (4.34) with » = R from 7 = 0 to
some arbitrary depth 7 and find

arbitrary point L T r
Praa = — g kpdr = d 4.37
o /true surface 4R%c npar A 47R2%¢ T ( )
or
L UT4ff
Prad(T):m7+Prad(T:0):TGT+Prad(T:0). (438)

We now have to determine what the radiation pressure at the true surface
is. A general expression for radiation pressure may be constructed by consid-
ering the momentum transferred by radiation across an imaginary surface at
some position. If we realize that I(#)/c is that flux (energy flux/c), then

2 [T

Pog=— 1(0) cos? 0 sinf do (4.39)
¢ Jo

by arguments similar to those used in deriving the total flux (see 4.3). The
additional factor of cos§ comes about because we require a projection of the
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momentum to the radial direction. To make further progress, I() must be
specified. There are several strategies possible here but the most straightfor-
ward is to invoke a version of the Eddington approximation. (For a much
fuller discussion of its virtues and faults, see Mihalas, 1978.) A primary con-
sequence of this approximation is that the radiation pressure is given every-
where, except at T =0, by its LTE value P,,q = a7*/3. This is the same
result as would be obtained were I(#) isotropic with I = (o/7)T* (from 4.6),
as should be apparent if you put this in (4.39). (Show this in Ex. 4.13.)

Assume, therefore, that I(6) is isotropic everywhere except at the true
surface. At 7 = 0 we compromise and let () be isotropic for all outgoing
angles but set it to zero for m > 6 > /2. Thus no radiation enters the true
surface from the outside. Equation (4.39) then yields

Praa(T7=0) = ?))—7; I(t=0) . (4.40)

We now find I(7 =0) by computing the flux at zero optical depth and

assuming, as a further minor approximation, that the position of the true

surface is at R (and remember that a relatively large change in optical depth

need not mean a correspondingly large change in radius). Using expression
(4.3) for the flux, we have

w/2
L =47R* 27 / I(1=0)cosf sinfdf = 47R*7I(T7=0) . (4.41)
0

Use this to eliminate I(7=0) in (4.40) and find

2 L 2
Prad(T:O) = %W = QOTSH . (442)

The complete expression for the radiation pressure at depth is then

Praa(7) = %aT4(T) - %(T +2/3) T4 . (4.43)

From this also obtain the run of temperature in the very outermost layers,

T4 (1) = %Tgﬁ (1 + 27) (4.44)

after recalling that a = 40/c. Thus in these approximations the photosphere
lies at the optical depth 7, = 2/3, where T(1,) = Tex (and “p” stands
for “photosphere”). Note also that the temperature is nonzero even at the
surface, where it has the value 271/4T.g, and not zero as assumed for zero
boundary conditions.?

2 Exercise 4.10 uses the Eddington result of (4.44) to examine a criterion for con-
vection. It’s a cute result. Try it.
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Before we continue, it is worth pointing out that an optical depth at the
photosphere of about unity (2/3 & 1 is close enough) is to be expected. If
we see the photosphere, then it must be at a physical depth, Ar, of about
one photon mean free path (the distance an average photon travels before
something happens to it) Aphot = (kp) ! (from 3.2 and the discussion leading
to 4.4). But, by the definition of optical depth, A7 ~ kpAr; that is, the
photosphere should be at 7, ~ 1.

To find the run of total pressure in the outer layers requires solving the
hydrostatic equilibrium equation

dP
— =—gp. 4.45
e (4.45)
If mass and radius are regarded as fixed in the local gravity, then g is a
constant, with g, = GM/R?, and the hydrostatic equation can immediately
be integrated from the true surface down to some optical depth to yield

-
P(1) = gs dr . (4.46)
0o K
What we want is the pressure at the photosphere, which is now known to
lie at 7 = 2/3 (or nearby, depending on how the previous analysis is done
in detail). To again make matters simple, consider the case where opacity
is constant (as a version of the “grey” atmosphere) and equal to its value
at the photosphere. Denote that opacity by x,. Equation (4.46) can then be

integrated and becomes
P(r,) = ==+ P(r=0). (4.47)

If the material gas contributes little or nothing to the total pressure at the
true surface (as seems reasonable because nothing should act there to reverse
the flow of radiation outward), then setting P(7=0) = Pq(7=0) yields

_29s (1 Mk
Pm) = 3 Kp (1 T 47rcG./\/l> (4.48)

after a little algebra and the use of (4.42).
For most stars the last factor in parentheses is small with

ol s (L) (MY
47TCGM77.8><10 np(£®> <M®) (4.49)

and it can almost always be ignored. For some very massive and luminous
stars, however, it cannot ignored as the following argument shows.

Near the true surface where radiation pressure dominates, the hydrostatic
equation is as given above but with dP/dr replaced by dP,,q/dr. If the lumi-
nosity is very high and the radiation field very intense, we can imagine that
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the force due to radiation pressure might overwhelm the local gravitational
force. This situation can be written as

_ dPrad
dr

> gsp - (4.50)

If we further make the (actually contradictory) assumption that radiative
diffusion is still responsible for energy transport, then a slightly rewritten
form of the transport equation (from 4.26) is

47 R?c dP,aq

E =
Kpp  dr

(4.51)

Eliminating the pressure gradient between the two equations then yields an
estimate of how large the luminosity must be so that radiative forces exceed
gravitational forces. That limiting luminosity, called the FEddington critical
luminosity or Eddington limit, is

4reGM
Lpag = —2 (4.52)

Fp

and this overall combination is exactly that which appears as the second
term of (4.48). If that term exceeds unity then the Eddington limit has been
exceeded. It should be obvious that this subject is intimately connected with
mass loss (and for more on the implications, see §2.3.2). As a practical mat-
ter, the opacity usually used in (4.52) is electron scattering because high
luminosities usually imply high temperatures. With a hydrogen mass frac-
tion of X = 0.7 and ke = 0.34 cm? g—! used for the photospheric opacity,
the Eddington limit is

EEdd 4 M
— | = 3. 1 — . .
(%) 3.5 x 10 (M@) (4.53)

It is to be understood that if the luminosity approaches 10%, or so, of this
number, then a simple static stellar atmosphere will not adequately describe
what is going on; the dynamics of momentum and energy transfer between
the radiation field and matter must be done correctly and this is very difficult.

If the Eddington term is neglected, then the photospheric pressure is given
by

P(ry) ~ 29 (4.54)

This may now be used to find the density at the photosphere. If the gas is
assumed to be composed only of the sum of ideal gas plus radiation, we set
(4.54) equal to that sum and find

1 N,k 2 g
ZaTh + 20 ) T =295 4.55
3a off M Poleft 3 Hopg e;fs ( )
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where the power law expression /iopgTe;fS has replaced the opacity. If n and
s are known and T.g is fixed, then p, may be found using some iterative
method. This implies, incidentally, that one must have some idea of pho-
tospheric conditions beforehand in order that the kind of opacity and its
exponents be known. In the simple case, where it is assumed that radiation
pressure is unimportant,

n+1 2 gs M s—1

J 3o NAkTeH . (4.56)
We know typical ranges for Tog and gravity so we can easily find out what
kinds of numbers are associated with photospheric densities. For example, if
the gravity and T,g are chosen as solar (gs &~ 2.7 X 10* cm s™2 and Tog ~ 5780
K), and the opacity is pure electron scattering (n = s = 0), then (4.56) yields
pp ~ 1077 g em~3. Using the same conditions but with the more realistic
H~ opacity (see 4.65) gives ~ 1075 g ecm™3, which is essentially the same
number at our level of approximation. In any case, photospheric densities are
far smaller than those deeper down.

Note in all the above that it has been assumed that convection plays no
role in heat transport between the true and photospheric surfaces. This is
consistent with our notion of a radiating, static, visible surface, and we shall
continue to think of the photosphere in those terms. However, even in the
sun the effects of underlying convection may easily be seen in the form of
cells, granulation, etc., so that if the photospheric regions are to be modeled
correctly, much care must be taken (and do not forget magnetic fields, and
so on). We shall not go to such extremes, but we will find that convection
can extend right up to the base of the photosphere.

When making stellar models in practice, things can get complicated. What
is done is to construct a “grid” of realistic stellar atmospheres where each
model atmosphere in the grid is labeled by, for example, a different combi-
nation of effective temperature and surface gravity. If, during the course of
some sort of iterative procedure used in making a complete stellar model, a
set of boundary conditions is required at the photosphere, then interpolation
is done in the grid to yield these boundary conditions for a given effective
temperature and gravity. A description of one strategy for such an interpo-
lation is given in the classic paper of Kippenhahn, Weigert, and Hofmeister
(1967, §IV).

4.4 Radiative Opacity Sources

The calculation of realistic stellar opacities is easily among the most dif-
ficult problems facing the stellar astrophysicist. At the present time, the
most commonly used opacities for stellar mixtures are those generated at the
Los Alamos National Laboratory (LANL), at the Lawrence Livermore Na-
tional Laboratory (LLNL), and the “Opacity Project” (OP) group for both
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astronomers and nonastronomers. (The original need for opacities at LANL
was, needless to say, prompted not by astrophysical considerations but rather
by those of fission and fusion bomb work. How, for example, does the at-
mosphere respond to a blast of radiation?) Opacities are available in tabular
form and include many stellar mixtures with opacities computed over wide
ranges of density and temperature. The references at the end of this chapter
include published sources and it would be a worthwhile exercise for you to
plot up some opacities and get a feel for how they behave, as we shall do
shortly.

The following discussion is by no means complete and will give only
sketches (if even that) of what goes into the calculation of opacities. A phys-
ically clear, and not terribly difficult, description of the ingredients of the
calculations may be found in Clayton (1968, Chap. 3). Cox (1968, Chap. 16)
also contains some very useful material. The aim is to construct a total Rosse-
land mean opacity, kyaq, which is the sum of contributions from the following
sources. We shall start with the simplest, which is electron scattering.

4.4.1 Electron Scattering

Equation (4.4) gave a prescription for calculating how much intensity is re-
moved from a beam when an opacity source is present. In the instance where
the opacity is independent of frequency, a simple relation may be found be-
tween the opacity and the cross section of the process responsible for beam
attenuation. Before we proceed, recall that a cross section is a microscopic
measure of how a particular reaction takes place, whereas the opacity is a
macroscopic quantity that tells us how a large collection of such reactions
modifies the flow of radiation. This distinction sometimes escapes the stu-
dent’s attention.

A cross section for a process may be defined quite generally as in this
example of low-energy electron scattering. If a beam of photons of a given
flux—now defined as the number of photons per cm? per second—is incident
upon a collection of stationary electron targets, then the rate at which a given
event (a photon scattered out of the beam) takes place per target is related
to the cross section, o, by

number of events per unit time per target 9
o= — cm”. (4.57)
incident flux of photons

As we shall soon indicate, the cross section for low-energy electron scattering
is independent of energy, and the transfer equation that describes how a beam
is attenuated is (4.4) with j set to zero. Thus if n, is the number density of
free target electrons, then the product Ion, ds is the number of scatterings
in cm~2 5! erg over the path length ds (from the definition of o) and this
is to be equated to Ikpds of (4.4). The desired relation between x and o is
then
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T em? gt (4.58)

R =

where 1/on, may be identified with a mean free path (as in 3.2).

For electron or photon thermal energies well below the rest mass energy
of the electron (KT < mec? or T < 5.93 x 10° K), ordinary frequency-
independent Thomson scattering describes the process very well, and the
cross section for that is

_8r
3

Oe

2 2
( c ) =0.6652 x 107 cm? (4.59)

mec?

where (62 /meCQ) is the classical electron radius. Because, as it will turn
out, electron scattering is most important when stellar material is almost
completely ionized, it is customary to compute n. according to the pre-
scription of (1.48) and (1.53) if the composition is not unusual. Thus take
ne = pN4(1 + X)/2 where X is the hydrogen mass fraction. Folding this in
with (4.58-4.59) we obtain the electron scattering opacity

ke =02(1+X) cm? gt (4.60)

If heavy elements are very abundant or ionization is not complete, then n.
must be calculated in a more general way using the ionization fractions, etc.,
of (1.48). Note also that in a mixture consisting mostly of hydrogen, this
opacity decreases rapidly from the value implied by (4.60) at temperatures
less than the hydrogen ionization temperature of 10* K: there are just too
few free electrons left. The corresponding temperature for a gas consisting
mostly of helium is around 5 x 10* K. (And see Figs. 4.2 and 4.3.)

As remarked upon in §1.5, this opacity depends neither on temperature
nor density if ionization is complete and hence its temperature and density
exponents s and n in K = kep"T~* (of 1.62) are s =n = 0.

Besides having to worry about exotic mixtures of elements and partial
ionization, the electron scattering opacity presented above must be modified
for high temperatures (relativistic effects with kT > mec?) and for the effects
of electron degeneracy at high densities where electrons may be inhibited
from scattering into already occupied energy states.

4.4.2 Free—Free Absorption

As is well known from elementary physics, a free electron cannot absorb
a photon because conservation of energy and momentum cannot both be
satisfied during the process. If, however, a charged ion is in the vicinity of the
electron, then electromagnetic coupling between the ion and the electron can
serve as a bridge to transfer momentum and energy making the absorption
possible. It should be apparent that this absorption process is the inverse of
normal bremsstrahlung wherein an electron passing by and interacting with
an ion emits a photon.
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A complete derivation will not be presented here (which would deal with
the quantum mechanics of the absorption) but a rough estimate of the
opacity may be found classically. We first compute the emission rate for
bremsstrahlung, and then turn the problem around.

Imagine an electron of charge e moving nonrelativistically at velocity v
past a stationary ion of charge Z.e. As the electron goes past, it is accelerated
and radiates power according to the Larmor result

2¢?

Pit)==:=
t)=35a

()

where a(t) is the time-dependent acceleration. If we naively assume that the
electron trajectory is roughly a straight line, then it is easy to show (as an
E&M problem in Landau and Lifshitz 1971, §73, or Jackson, 1999, Prob. 14.7)
that the time-integrated power, or energy, radiated is

_ Z2ebm 1

3e3m2 vs3

Es

where s is the impact parameter for the trajectory; that is, the distance of
closest approach were the trajectory to remain straight.

The maximum energy radiated during the scattering will peak in angular
frequency around w =~ v/s. Thus if E,, is the energy emitted per unit fre-
quency, then E,, must be simply related to E,, which is the energy emitted
per unit impact parameter. If 2wsds is the area of an annular target that
intercepts a uniform velocity beam of electrons, then

272%e5 n?
Ew dw = —Es 2msds = mﬁ
where w has been set to v/s and the minus sign comes about because ds > 0
implies dw < 0.

To get a rate of emission per unit frequency, assume that the electron
distribution is Maxwell-Boltzmann so that (3.25) applies and

2
ne(v) dv = 4mn, (2:1]:11)3/ e=mev?/2KT 32 gy,
after the transformation p = mev is used in (3.25). The product ne(v)v is
the flux of electrons per unit velocity so that E,n.(v)vdv integrated over
all permissible v is the desired rate per target ion per unit frequency. All
that remains is to multiply by the ion number density, n;, and to identify
the result as being part of the mass emission coefficient j of (4.4). The total
power emitted per unit frequency and volume is then

dmtj,p = nI/Ewne(v)vdv
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where j,, assumed isotropic, has been integrated over 4w steradians.

The lower limit on the integral should correspond to the minimum veloc-
ity required to produce a photon of energy hw, namely, (1/2)m.v2; = hw,
with i = h/27. Even though we have assumed that the electrons are nonrel-
ativistic, the upper limit is taken as infinity. (Unless temperatures are very
high, the exponential in the Maxwell-Boltzmann distribution will serve as an

effective cutoff.) The integral is elementary and yields

, or 725 [ or \'/? e
dmj,pdw = ?mcc3 (mckT) neny e /BT du

Finally, integrate over w and find

dmjp =

3 moc3h

or Z2e8 [ 2nkT\"/?
T Ze® (W) neny ~ 10727 ZcznlneTl/2 erg cm 2 s~ L
Me

This result is very nearly correct; the numerical coefficient should be 1.4 x
10727 and an additional quantum mechanical “gaunt factor” (g), which is
of order unity, should appear (as in, for example, Spitzer, 1962, §5.6)

To get the absorption coefficient, we assume that the radiation field is in
LTE with j/k = S = B(T) and that x is due only to free—free absorption.
Thus, k = j/B(T) = =nj/oT*, or, putting in the numbers, the freefree
opacity is

on ZP2nen, T35
kg ~ 4 x 10 24 ZctelE

x pT ™35 cm? g7t (4.61)
where the last proportionality arises from eliminating the number densities,
both of which are proportional to density.

The functional relation of kg to p and T of the above is basically correct.
The numerical coefficient is too high by a factor of ten. To use this opacity as
a Rosseland mean, we must really perform the integration indicated in (4.22)
and put in the relevant atomic physics. All this is done when constructing
opacity tables, and we defer to them. There is, however, a fair approximation
to the free—free opacity, which does prove useful in working with simplified
stellar models (and is only a factor of ten less than 4.61 if you put in the
numbers); that is,

2
K A2 1023ﬁéT—3-5 cm? g7t (4.62)

He Hr
where Z. is an average nuclear charge and p. and p; are the mean atomic
weights used previously on several occasions. Note that this opacity requires
the presence of free electrons: if none are present, then kg should be zero.
This is effectively taken care of by e, where, if all ions are neutral, then
tte — 00 from the definition of . in (1.48-1.49, with y; = 0). For a mixture
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composed of hydrogen and some helium (and traces of metals), we expect
the free—free opacity to be negligible below temperatures of around 10* K (or
perhaps a little higher if densities are relatively high: see the half-ionization
curve for hydrogen of Fig. 3.10).

The main features of (4.62) are correct and the general form is that of
a Kramers’ opacity, which was used in Chapter 1 (§1.5). Recall from there
that the opacity was written in power law form x = kop"T~* in Eq. (1.62)
and please note the sign in the temperature dependence. Thus the free—free
opacity may be characterized by n =1 and s = 3.5.

The strongest dependence in kg is that of temperature. In our quick and
dirty derivation, this comes about because j is a weak function of temperature
(j ~ T'/?) whereas B(T) ~ T*. Another closely related approach is to con-
struct directly the cross section for the free—free process. The contribution to
this quantity from electrons in the velocity band dv is o o ne(v) dv/vv® where
v is the frequency of the absorbed photon. (Several factors varying relatively
slowly with frequency or velocity have been neglected here.) An average for
this cross section over velocity introduces a temperature dependence going as
T-1/2 (from integrating ne[v] dv/v). The Rosseland mean integral of (4.22)
weights most heavily those photons with frequencies near v ~ 4kT/h (as you
may verify in Ex. 4.11). Thus 3 in the cross section gives a dependence of
T—3 and this is folded in with the velocity average contribution to yield a
factor of 7735, The opacity is proportional to the cross section and, hence,
s =3.9.

4.4.3 Bound—Free and Bound—Bound Absorption

Bound—free absorption is absorption of a photon by a bound electron where
the photon energy is sufficient to remove the electron from the atom or ion
altogether. To do a proper job of opacity calculation, the atomic physics
of all the atoms and ions in the mixture must be handled with great care.
However, it may be shown that the frequency dependence of the opacity &, is
again 1/v® and that the total bound—free opacity is again of Kramers’ form.
A rough-and-ready estimate, permissible for simple stellar calculations, has
been given by Schwarzschild (1958), who gives (with some factors of order
unity deleted)

ke ~ 4 x 102 Z(1+ X)pT 3% cm? gt (4.63)

where X and Z are, respectively, the hydrogen and metal mass fractions
discussed in §1.4. This expression should not be applied if temperatures are
much below T = 10* K because, as only part of the story, most photons are
not energetic enough to ionize the electrons.

Bound-bound opacity is associated with photon-induced transitions be-
tween bound levels in atoms or ions. The calculation is quite complex because
it involves detailed description of absorption line profiles under a wide variety
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of conditions of line broadening, etc. The form of the opacity is of a Kramers’
type and could be included in with the preceding expressions. Since, however,
it is usually of magnitude less than kg or Kpe, we shall not give any estimates
here.

Schwarzschild also gives an expression for the free—free opacity, which is
quite useful although, it makes some assumptions about the composition:

kg ~4x 102(X +Y)1+ X)pT 3% cm? g7! (4.64)

with the usual warning not to use this for something serious.

4.4.4 H~ Opacity and Others

Among the more important sources of opacity in cooler stars is that resulting
from free—free and bound—free transitions in the negative hydrogen ion, H™
(“H-minus”). It is, for example, the most important opacity source for the
solar atmosphere. Because of the large polarizability of the neutral hydro-
gen atom, it is possible to attach an extra electron to it with an ionization
potential of 0.75 eV. But this implies that the resulting negative ion is very
fragile and is readily ionized if temperatures exceed a few thousand degrees
(kT ~ 0.75 eV). Making the ion is not an easy task either because it requires
both neutral hydrogen and free electrons. This means that some electrons
must be made available from any existing ionized hydrogen (helium will be
neutral for T' < 10* K) or from outer shell electrons contributed from abun-
dant metals such as Na, K, Ca, or Al. In this respect, the H™ opacity is sen-
sitive not only to temperature but also to metal abundance. If temperatures
are less than about 2,500 K, or if metal donors have very low abundances,
then insufficient numbers of free electrons are available to make H™ and the
opacity becomes very small.

An estimate of the opacity contributed by H™ can be obtained by us-
ing existing tabulations (to be discussed shortly, and see Fig. 4.4). The
following power-law fit, eyeballed by us, gives reasonable results (within a
factor of ten) for temperatures in the range 3,000 < T < 6,000 K, densities
10719 5 p 5107 gm cm™3, a hydrogen mass fraction of around X ~ 0.7
(corresponding to main sequence atmospheric hydrogen abundances), and
a metal mass fraction 0.001 5 Z 5 0.03, assuming a solar mix of individual
metals:

K- ~ 2.5 x 10731 (Z

e 0.02

This expression should only be used for estimates when tabulated opacities
are not available. On the other hand, it does give the flavor of how this
opacity operates and it will prove useful when we examine some properties
of cool stars. Note that its power law exponents are n = 1/2 and s = —9.
Unlike Kramers’, it increases strongly with temperature until about 10* K,
above which Kramers’ and electron scattering take over (and, any case, most

) pt2T%  em? g7t (4.65)
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or all of the H™ is gone by this temperature). This will be apparent when
curves of realistic opacities are presented later.

For very cool stars with effective temperatures of less than about 3000 K,
opacity sources due to the presence of molecules or small grains become
important. Because of the proliferation of complex molecules in cool stars
and the difficulty in modeling their abundances and opacities, there is still
a good deal of uncertainty about how the atmospheres of cool stars really
work. This situation is likely to be with us for several more years.

This ends our discussion of opacities derived from atomic processes. In
the interiors of dense objects, however, there are other processes that control
the flow of energy.

4.5 Heat Transfer by Conduction

We have already stated that the structural support of the deep interior of a
white dwarf or of some red supergiants is due to the presence of degenerate
electrons. Not only do these electrons prevent the interior from collapsing,
they also are the major means by which energy is transported outward (or,
in some instances, inward). The mechanism is by means of electron heat
conduction down a temperature gradient—as in a metal—and it is at this
point that we must do a little solid-state physics (and that’s why dealing
with stellar interiors is so much fun: you get to do almost everything).

A good approximation to heat transfer in metals is, again, Fick’s law of

diffusion:
dT

dr
Here, D, is a diffusion coefficient with “e” standing for electron. It is conve-
nient to recast (4.66) into a form identical to that used in diffusive radiative
transfer (i.e., Eq. 4.23 or 4.24) by defining a “conductive opacity,” Kcond, with

Feond = —De (4.66)

dacT?
cond = . 4.
Kecond 3Dep ( 67)
The conductive flux is then
4ac 2 dT
Feond = — 7T‘37 4.68
cond 3’icondp dr ( )

so that Keong looks like a radiative opacity.

Assuming, for the moment, that we already know how to compute Kcond,
how do we combine this opacity with atomic opacities, since, if we have a
temperature gradient, photons should also flow? The total energy flux, from
radiation and conduction electrons combined, is additive. Thus, calling the
radiative component F,.q, the total is Fiot = Frad + Feond if convection is
ignored. By inspection (see 4.24), the opacities are additive as in a parallel
resistive circuit or
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-+ (4.69)
Rtot Rrad KRcond
with A T
ac
Fiot = — 32— | 4.70
rot 3Ktotp dr ( )

Radiative opacities are added together in simple sums as in a series circuit.
Note that whichever opacity in (4.69) is the smaller of Kyaq Or Keond, it is
also the more important in determining the total opacity and hence the heat
flow (again, as in a current flowing through a parallel circuit). In normal
stellar material Kcong is large (conduction is negligible) compared to radiative
opacities and, in those situations, only the latter need be considered. The
opposite is usually true in dense degenerate material.

The diffusion coefficient, D,, has the general form (see, e.g., Kittel, 1968)
D. = cyv,)\/3, where ¢, is the specific heat at constant volume of the de-
generate electrons, v, is some typical (or relevant) electron velocity, and A is
an electron collisional mean free path. In the following, we shall derive the
diffusion coefficient for nonrelativistic electrons.

The specific heat of a nearly completely degenerate electron gas was given
by (3.114) in the last chapter. The momentum parameter x; in that equation
is very much less than unity for nonrelativistic electrons so that

871'3m§c

23 kK*Tx; ergem™® K1 (4.71)

Cy =

where a factor of 1/p has been deleted from (3.114) to convert to the indicated
units. Since x (p/,ue)l/3 from (3.51) is a good approximation to zs at low
temperatures, it is easy to see that c, o< (p/ue)l/3 T.

For v, and A, we must recall an important fact of degenerate life: any
collisional process involving a degenerate electron cannot result in that elec-
tron being scattered into an already filled energy state. What this means
is that only electrons near the top of the Fermi sea can participate ef-
fectively in the conduction process. Thus the velocity v, should satisfy
MeVe R PP X T X (p/,ue)l/3. The most efficient means of scattering these elec-
trons is via Coulomb interactions with the surrounding ion gas. Thus, write
A = 1/(ocn,) where n, is the ion number density and o¢ is the Coulomb
scattering cross section. A typical way to estimate o¢ is to consider what
electron—ion impact parameters result in a “significant” degree of scatter-
ing. Following arguments similar to those in Spitzer (1962), we can see that
an encounter in which the electron kinetic energy is about the same as the
electron—ion electrostatic potential will result in a significant scatter. Thus
consider electrons for which mev? ~ Z.e?/s. The significant impact parame-

—2/3 . L .
) /3 The cross section, in simplest terms, is

ter is then s oc 1/v2 o (p/pte
oo ~ ms? x (p/ue)_4/3. Thus A (p/ue)zl/3 /m; or, after introducing the

ion mean molecular weight p;, A o< (p/ue)4/3 (11/p), and De o< (pr/p2) pT.
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Inserting these results into (4.67) and accounting for all the numerical factors
previously ignored, we find that the conductive opacity is

p2 o, (T’
Keond /= 4 x 1078 L& 72 <> cm? g1 (4.72)
Hr p

(and remember that Z,. is the ion charge). As crude as this derivation has
been, the final result is not so bad when compared to accurate calculations.
The temperature and density exponents are about right (s &~ n ~ —2) and
the coefficient is correct to within an order of magnitude (or so).

As an example of where conductive opacities are important, consider the
deep interior of a typical cool white dwarf with p ~ 106 g em™3, T ~ 107 K,
and a composition of carbon (which is close enough). The results of the last
chapter imply that the gas is certainly degenerate and the material pressure
ionized. This implies that the radiative opacity is electron scattering with
ke ~ 0.2 cm? g1, Equation (4.72) yields Keond = 5 x 107° cm? g=! with
te = 2, uy = 12, and Z, = 6. Because Kkcond < Krad, the total opacity
IS Ktot & Kecond after applying (4.69). Thus the radiative opacity is of no
consequence.

4.6 Tabulated Opacities

As has been emphasized repeatedly here, modern stellar structure and ev-
olution studies never use the simple kinds of expressions quoted here for
opacities except, perhaps, for pedagogic purposes. In practice, extensive ta-
bles or, sometimes, analytic fits to these tables® are used that give radiative
and conductive opacities over wide ranges of temperature and density for
various compositions of interest. Usually a specific opacity is obtained by a
multidimensional interpolation in tables; for example, interpolation is density,
temperature, and X, Y, and Z.

The earlier efforts at large-scale computer calculations of opacities were
due to the group at the Los Alamos National Laboratory (LANL) starting
in the middle 1960s as a spin-off of nuclear weapons diagnostics.* Figures 4.2
and 4.3 show two sets of these older radiative LANL opacities (both from
Cox and Tabor, 1976) plotted as functions of temperature and density for
two different compositions.

The first is the “King IVa” set in which the composition is X = 0.70,
Y = 0.28, and Z = 0.02 with a solar mix of metals (see, e.g., Figs. 1.2

3 One such fit is given by Stellingwerf (1975).

* LANL was formerly known as LASL (for Los Alamos Scientific Laboratory) and
is referred to as such in the older compilations. The FORTRAN program “csotesr”
found on the CD-ROM on the endcover of this text yields opacities based on
the older LANL (Cox and Stewart) tables. This code also computes conductive
opacities.
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and 2.19). The name “King IVa” given to the tabulated set of opacities
from which this figure was generated means that it was the IV*® (sub a)
set requested by David King. This kind of nomenclature is often found in
the older published LANL tables. (These opacities were used by King in
his, and his collaborators’, studies of Cepheid variables.) The most obvious
feature is the pronounced hump around 7' ~ 10* K. As density increases, the
location of the peak of the hump moves out to slightly higher temperatures.
This behavior reflects the temperature versus density relation of the Saha
equation for the half-ionization point of hydrogen as given by (3.41) and that
relation is indicated on the figure. (The relation should actually be modified
because the mixture used for the figure is not pure hydrogen but it is close
enough.) The sharp drop in opacity to the left of T ~ 10* K signals the
demise of free—free and bound—free transitions as hydrogen becomes neutral
and the radiation field cools to lower energies, but H™ prevents the opacity
from disappearing altogether (see Fig. 4.4).
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Fig. 4.2. Plots of the LANL radiative opacities for the King IVa mixture X = 0.7,
Y = 0.28, and Z = 0.02. The mix of metals comprising Z corresponds to those
seen in the solar atmosphere. Material for this figure comes from the tabulations
of Cox and Tabor (1976). The dashed line shows the half-ionization curve for pure
hydrogen.

Features at higher temperatures include the effects of first and second
helium ionization, which can be detected as mild increases in opacity at
temperatures a little over 10* K and near 10° K at the lower densities. These
features, although seemingly minor, are important for many variable stars,
which are “driven” by helium ionization. (See Chap. 8, and, in this case, the
devil is in the details!) Apart from such irregularities, the opacities roughly
follow a Kramers’ law and fall off in temperature until high temperatures are
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reached, whereupon electron scattering takes over (k. /& 0.34). At the highest
temperatures, the opacity dips below the Thompson scattering level and this
is due to relativistic effects.

Figure 4.2 also illustrates some problems with using tabulated opacities.
First of all, they do not completely cover the temperature-density plane
(that would be impossible) but rather include just enough information to
be of use for modeling certain classes of stars. If you wish to study stars
whose properties are very different from those for which the given table was
computed, then you have to extend the table or make a new one. Never
extrapolate off a table (if possible). Secondly, you will note that the lines
in the figure do not always look smooth—they are not—and we have made
no attempt at smoothing but have just connected the tabulated points by
straight lines. This is where intelligent interpolation is needed.

The second figure shows the results for an almost pure helium mix (with
X =0,Y =0.97, Z = 0.03) opacity set requested by Morris Aizenman. (This
is the Aizenman IV table and it was used in modeling the deep interiors of
evolved stars.) Here the first and second helium ionization stages are well
marked by the double-humped peaks (and see Ex. 4.6). Also note that the
opacities are about an order of magnitude lower (for a given T' and p) than
the hydrogen-rich mixture before the electron scattering threshold is reached.
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Fig. 4.3. These are the radiative opacities for the helium-rich Aizenman IV mix
X =0,Y =0.97, and Z = 0.03 from Cox and Tabor (1976). Also shown (as a
dashed line) is the conductive opacity for log p of +4 from (4.72).

In Fig. 4.3 we also show the conductive opacity for pure helium at a density
of 10* g cm~2 (from 4.72). The intersection of this opacity with the radiative
opacity at the same density and temperature is indicated by a circle. If density
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is kept fixed, then a reduction in temperature causes keond to decrease as T2
(see 4.72). At the same time the radiative opacity increases (see figure) so that
Keond < Krad- This means, in accordance with our previous arguments, that
the total opacity becomes more like the conductive opacity and the radiative
opacity begins not to count. Conversely, a rise in temperature makes K;aq
more important. Thus if the total opacity were plotted on the figure, the
opacity contours would be very different in some regions of p and T and
especially where densities are high and temperatures are low.

Figure 4.4 shows the opacities for two mixtures from Cox and Tabor
(1976). The one labeled “Pop II” is for a typical metal-rich mixture (Z =
0.02), whereas “Pop III” has no metals at all. (The density is 107 g cm™3
for both mixtures.) What is apparent is the precipitous drop-off in opacity for
temperatures below a few thousand degrees for the Pop III mixture compared
to Pop II. This is due to the virtual absence of H™ opacity, which needs metals
to provide electrons. At 1,500 K the two cases differ by over three orders of
magnitude. Were you to make zero-age main sequence models for Pop III
objects you would find that their structures are very different than normal
stars with metals. This is no idle observation because, according to Big Bang
cosmologies, the first stars were of Pop III variety and their evolution must
have been very different than succeeding generations, which were enriched in
metals.?
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Fig. 4.4. These opacities are also from Cox and Tabor (1976) and show the effect
of the H™ opacity at low temperatures. “Pop II” has Z = 0.02, whereas “Pop I11”
has no metals. The density is 107% g cm™2.

® No Pop III stars have been found but the star HE0107-5240 (a 16th mag giant
in Phoenix) comes close. Its surface iron abundance is a mere 1/200,000 that of
the sun’s. See Tytell, D. 2003, Sky&Tel, 105, 20.
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More recently, since roughly 1990, two other groups have been actively
engaged in computing opacities using improved physics. The older group,
formed in 1984, consists of an international consortium of atomic physicists
and astrophysicists. They go under the catchy name of “The Opacity Project”
(OP). The second effort involves investigators at the Lawrence Livermore
National Laboratory (LLNL) in Livermore, CA. Their opacity code is called
OPAL. Both groups make their opacity tables available (most conveniently
on the World Wide Web from which they may be downloaded) and, upon re-
quest, can usually provide tables for new mixtures. In addition, both groups
make available sophisticated interpolation routines to yield smooth and con-
sistent results. References to pertinent publications are given at the end of
this chapter, including some from groups other than LLNL or OP.
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Fig. 4.5. OPAL opacities for a X = 0.7, Z = 0.02, and solar metals mixture. The
parameter R = p/Ts. See text.

To indicate the level of physics required for the calculations of OP and
LLNL, we quote from the LLNL Website (as of February 1999):

Briefly, the calculations [for OPAL] are based on a physical picture ap-
proach that carries out a many-body expansion of the grand canonical
partition function. The method includes electron degeneracy and the lead-
ing quantum diffraction term as well as systematic corrections necessary
for strongly-coupled plasma regimes. The atomic data are obtained from
a parametric potential that is fast enough for in-line calculations while
achieving an accuracy comparable to single configuration Dirac-Fock re-
sults. The calculations use detailed term accounting; for example, the
bound-bound transitions are treated in full intermediate or pure LS cou-
pling depending on the element. Degeneracy and plasma collective effects
are included in inverse bremsstrahlung and Thomson scattering. Most line
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broadening is treated with a Voigt profile that accounts for Doppler, natural
width, electron impacts, and for neutral and singly ionized metals broaden-
ing by H and He atoms. The exceptions are one-, two-, and three-electron
systems where linear Stark broadening by the ions is included.

This is why very fast computers are needed. Also, if you read between the
lines, you should realize that equations of state are computed as part of the
program. (Both LLNL and OP provide these.) However, the question arises,
“How comparable are the opacity results from LLNL and OP?” Were you
simply to plot the results, the naked eye would have a difficult time seeing
any differences between them. But differences of, in some cases, as much as
30% do occur. It would be worth your while to look into Iglesias and Rogers
(1996) for some comparisons. This is all very difficult stuff.

To illustrate what is available, and in what form it is made available,
Fig. 4.5 shows OPAL results for the mixture X = 0.7 and Z = 0.02 with a
solar atmosphere mix of metals. Plotted is opacity as a function of tempera-
ture for four values of the parameter R = p/Tg, where p is in g cm™3 and T
is the temperature in units of 106 K. To translate this to x versus p and T
takes a little work, but the numbers for this figure were taken directly from
OPAL and it shows the range of p and T covered by the tables.

k(cm? g "

o 1t 2 3 4 5 8 7 8 9 10
~log(1-M,/M)
Fig. 4.6. This is to show how dramatically opacities differ between main sequence

stars. The opacities are plotted for 1 Mg and 15 Mg ZAMS models on the same
vertical scale. The mass scale, —log(1 — M, /M), emphasizes the outer layers.

What do opacities look like in actual stars (well, in models, at least)?
Figure 4.6 shows the run of opacity in two ZAMS models. (The mass scale is
the same as that used in Fig. 3.11.) For 1 Mg, the opacity begins to rise at a
M,./ M of about 1— 1073, which corresponds to a temperature of a fewx10°
K. This agrees with Fig. 4.2, where opacity begins to take off in that range.
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The peak opacity is reached at M,./M ~1—1075 where T'~ 5 x 10* K and
pr~1074g cm’ (as it does in Fig. 4.2). What is striking is the mountain that
radiation has to surmount in the very outer layers (by radius, not mass) in
the model. If radiation had to carry all the flux, temperature gradients would
have to be very high. At roughly the same time (or place), Va4, as shown in
Fig. 3.11, shows a deep trough. This combination is a double whammy, and
convection takes over the task of moving most of the power through the star.

The 15 M model is entirely different. Temperatures begin to drop below
a fewx10% K where the M, /M is only 1 — 10~7 with densities around a
low 1079 g cm™3. Looking at Fig. 4.2, we see this combination of T and p
means a relatively small opacity. And so it goes. There is a minor convection
zone in the envelope, but it is very near the surface. The central regions are
convective, but this is due to vigorous nuclear burning concentrated around
the stellar center (which is a story for the next chapter).

Finally, Fig. 4.7, from Hayashi, Hoshi, and Sugimoto (1962), shows what
regions of the log p—logT plane are dominated by various kinds of opacity.
(The composition is typical Population I.) The line labeled ¢ = 0 denotes
the onset of degeneracy and, as you may verify, corresponds roughly to the

transition line where conduction takes over.
T T T T r— & T T T

electron scattering

log T(in °K)

-3
|

10-2K0

10-1%o

conduction by
degenerate electrons

log 2 (in gcmm-3)

Fig. 4.7. This figure, from Hayashi et al. (1962), illustrates where various opac-
ities are most important as functions of temperature and density. The mixture is
Population I. The opacity nomenclature is almost the same as in the text except
that the lines are labeled in units of the electron scattering opacity here denoted
by ko(= ke) = 0.2(1 + X). Reproduced with permission.
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4.7 Some Observed Spectra

In a text such as this, saturated as it is with theory, we believe it wise to
introduce some observational material having to do with real atmospheres.
In particular, we shall discuss briefly how some stars are classified. This is
not “just” taxonomy because it draws on the physics of atmospheres and the
intricate problems of observation itself. The subject is further complicated by
the bewildering number of kinds of stars, each kind with its own peculiarities.
The last come about from differences in atmospheric temperature, pressure,
density, local gravity, fluid flows, surface composition, presence of magnetic
fields, and even external influences such as companions or incident radiation
fields.

For a short tour consider Fig. 4.8, which shows the spectra of “normal”
(i.e., no oddball) main sequence (dwarf) stars. As reviewed briefly in Ap-
pendix A, such stars belong to luminosity class V with stars of decreasing
effective temperature given the spectral class labels O, B, A, F, G, K, and M
in that order (plus two other new classes to be discussed separately below).
Further subdivision is gained by appending, for examples, a numeral 0, 1, - - -,
in order of decreasing temperature (and sometimes a 0.5 appears). The sun is
a G2V star. Stars of a given spectral class with large appended numbers are
called “late,” whereas “early,” and hotter, stars have small numbers (for now
irrelevant historical reasons). Thus the sun can be called an “early G dwarf.”
This classification scheme, which evolved over a number of years, is variously
called the “MKK” (for Morgan, Keenan, and Kellman, 1943) or the “Yerkes”
system (for the observatory where MKK did their work). An excellent short
review of the development of this scheme is given by Jaschek and Jaschek
(1987) in their Chapter 3.

Shown in the figure are the spectra of 16 dwarf stars spanning the classes
O-M with some subclasses combined (e.g., OTV-B9V) because, at this reso-
lution, intermediate spectra would not be distinguishable. (We shall, despite
the combining, refer to a particular curve as if it represents only one class
of star.) The acquisition and treatment of the data is discussed in Silva and
Cornell (1992).5 The wavelength coverage is from 351 to 893 nm at 11A res-
olution (with 1 nm=10A) with a binning interval of 5A. This means that
features of roughly 10A or less are not distinguishable in the figure. The ver-
tical separation between each spectrum has been designed for visual clarity
and has nothing to do with intrinsic luminosity.

The ordering of the curves is that the star with the highest effective
temperature starts with the topmost curve (O5V) in the left-hand panel.
The spectra of successively cooler stars then proceeds downward. The right-
hand panel continues the sequence from top to bottom. The first overall
impression is that the hotter stars emit photons predominantly in the blue
(and, most likely, the ultraviolet) parts of the spectrum, and the coolest stars

5 The data for this figure were downloaded from the WWW. See the references.
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Fig. 4.8. Spectra of main sequence (luminosity class V) stars of spectral classes
O-M derived from the work of Silva and Cornell (1992).

shine mostly in the red and near-infrared bands. (For orientation, Table 4.1,
adapted from Jaschek and Jaschek, 1987, gives the names and rough wave-
length bands for various parts of the electromagnetic spectrum.) Were these
stars to shine as blackbodies—and note that they do so only approximately—
the association of hot atmosphere with short wavelengths and cool with long
wavelengths is obviously correct. The devil, however, is in the details. But
devil aside, we also show in the figure effective temperatures for a single class
or some average when classes are combined (quoted from Lang, 1991).

All the spectra show sharp absorption lines (the dips) and these are crucial
in spectral classification. We have labeled some of these lines. Many others
are there, but, in most cases, the resolution is too coarse to show them. The
O- and B-stars in the sequence have strong lines—barely discernible here—
due to HelA4471 and HellA4541, where the numbers are the wavelengths
in A. The relative depth of these lines primarily determines the class. (We
will have a bit more to say about spectral lines in the next section.) For the
cooler stars in these two classes, the Hell lines diminish in strength because
the radiation field and/or collisions are not vigorous enough to produce the
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Table 4.1. Wavelength Regions

Name Wavelength interval unit
Extreme ultraviolet <1,000 A
Ultraviolet 1,000-3,000 A
Classical 3,000-4,900 A
Visual 4,900-7,000 A
Near infrared 7,000-10° A
Far infrared 1-10% pm
Radio 0.1-10* cm

necessary first-ionized helium. Also present, and indicated in the figure, are
the hydrogen Balmer lines HaA6562, H3A4861, and HyA4330. These repre-
sent photons absorbed by the first excited state of hydrogen (n = 2), which is
populated primarily by collisional processes. The early (i.e., hotter) A—stars
show maximum strength in these lines.

As we enter the F- and G-stars, hydrogen lines weaken but metal lines
appear. Among these are the H and K lines of Call (at 3,968A and 3,933A),
the NaDA5889 line (indicated in the figure), and numerous iron lines. The cal-
cium lines may be picked out by the “cliff” near 4,000A while the depression
known as the “G-band” (indicated) is primarily due to Fe.

The spectra of the cooler K-stars and class M-stars are dominated by
metallic lines and molecular bands from, for example, TiO (which makes a
decent white paint). These stars are obviously cool enough that such mole-
cules can escape being torn apart by vigorous collisions or the radiation field.
From our perspective, only the brave tread on ground such as that shown for
the M2V star in the figure.

But observational astronomers are brave—especially since new tools for
observing faint objects in the near-infrared have become available. In §2.2.2
we briefly discussed brown dwarfs, which, almost by definition, must be cooler
than spectral class M dwarfs and we suspect (correctly) that there are inter-
mediate objects. The next cooler spectral class after M, called the class “L”
dwarfs, is characterized by the replacement of metal oxide bands (e.g., TiO in
class M) by those of metallic hydrides and neutral alkali metals.” Descriptions
of the classification of these very cool stars are given in Martin et al. (1999)
and Kirkpatrick et al. (1999)—the 1999 date giving a clue to what new stuff
this is. Subdivisions (thus far) are L0, L1 - - - L8 with a corresponding range
of Teg from about 2,200 down to 1,500 K or so. Over 100 of these objects
have been discovered and they are a mix of (real) stars and brown dwarfs.

" It would have been nicer to follow M by N but class N had been preempted by
the “carbon stars,” which are late luminosity class giant stars with strong bands
of carbon compounds but no metallic oxide bands.
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But even cooler objects have been observed in the near infrared. At L7V—
L8V there is evidence that weak features may be due to the emergence of
methane (CHy) in the spectra while the hydrides become less conspicuous.
This introduces the spectral class T, which is the newest class proposed. Here,
methane and H,O absorption bands become progressively more conspicuous
as temperature decreases. The subdivision sequence is from TOV to T8V
where, at T8V, the effective temperature is around 900 K, and here also is
where Gliese 229B lives, as discussed in §2.2.2. Recent (as of this writing)
references to spectral class T objects and their classification are McLean et
al. (2001), and Burgasser et al. (2002). By the time this text is printed, there
will be much more to talk about. So keep your infrared-sensitive eyes out.

4.8 Line Profiles and the Curve of Growth

For the professional astronomer whose specialty is stellar atmospheres, the
spectral lines in Fig. 4.8 tell a lot about the particular star. Among other
things (such as the physical state of the atmosphere), elemental abundances
may come through loud and clear—with, of course, a lot of work done be-
forehand.

This section will briefly explore some aspects of line formation and how,
in a simple model, abundances can, in principle, be determined. We will first
discuss the cross section for absorption of radiation by a classical charged
oscillator.

Think of the oscillator as an electron in an excited state of an atom. The
electron will decay to a lower energy level within some time, 7, determined
by quantum mechanics.® As examples, the lifetime for the transition 2P-1S
(Lya) in hydrogen is 7 = 1.6 x 10~ s. But, since the lifetime is not infinite,
this means, by the uncertainty principle, that there is an uncertainty in the
energy of the level given by AE x 7 = h. Since we will deal in frequencies (as
in AE = h2wv), all the above implies an uncertainty in frequency of v = 1/7.
This “gamma” (Oh, no! Not another 4?!) is called the “damping constant.”

4.8.1 The Lorentz Profile

Now back to the absorption of radiation by a classical oscillator. What we
just discussed had to do with emission of radiation, but, by detailed balance
(and see Ex. 4.9), emission and absorption are, in a sense, mirror images of
one another and quantities such as v will crop up. So, without further ado,
the following gives the absorption cross section for radiation incident on a
stationary atom in some state where 1 is the photon frequency necessary to

8 If the electron is in a high quantum state, the lifetime can be estimated us-
ing classical arguments because of the Bohr correspondence principle. See, for
example, Problem 14.21 in Jackson (1999, §16.8).
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promote an electron to a particular higher state (see Jackson, 1999; §9-1 et
seq. of Mihalas, 1978; or §4.2 of Rose, 1998, for derivations):

e (y/4m) _
me” (v — )2 + (y/4m)?

oq(Lorentz) = (4.73)

In (4.73), ~y is the sum of the damping constants for the two levels involved,
and f is the oscillator strength. We sneak in the latter because it contains all
the quantum mechanics that were not in the classical model. For the 2P-1S
transition in hydrogen it is equal to 0.416. (A simplification has been made
here by assuming the frequency v is fairly close to vp.) The shape of (4.73)
is a Lorentz profile or Lorentzian (named after H.A. Lorentz, who not only
studied the fundamental properties of electromagnetism in pre-quantum days,
but who also helped give us Lorentz length contraction). Looking ahead, a
sample Lorentzian is shown in Fig. 4.9. You can check (4.73) to find that
the half-width of the profile (in frequency) at half-maximum is /47 (and
measure it in Fig. 4.9 where it was arbitrarily set to unity). Incidentally, we
shall see something very similar to (4.73) when we discuss resonant nuclear
cross sections in Chapter 6.

In real life, however, atoms are not standing still while light bathes them—
especially in stars.

Cross Section

Fig. 4.9. Shown is the behavior of the absorption cross section from pure Lorentzian
(Avp =0, T = 0) to lines well-broadened by increasing temperature. The natural
width is taken so that /47 = 1. See text for details.
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4.8.2 Doppler Broadening

Because atoms are in motion, the arriving photons are Doppler shifted in
frequency as seen by those atoms. This does not change the basic physics
of (4.73), but if we consider an ensemble of moving atoms, then the total
ensemble average absorption cross section need not look like a Lorentzian.

Assume that the gas is ideal so that we know the distribution of velocities
that an individual photon may see; that is, the Maxwell-Boltzmann distri-
bution discussed in §3.3. Equation 3.25 is the one we want after we realize
that we must back off a step and put in some angular information. A fac-
tor of 27 comes from integration over the azimuthal angle, ¢, (in spherical
coordinates). We can always choose the z—axis to lie along a line connecting
the incoming flux of photons and the gas (assumed to be at the origin) with
the axis pointed in the direction of the incoming photons. In that case, all is
well by symmetry and we do not have to remove the 27. This leaves the co-
latitude angle ¢. This introduces the factor sin ¢ di, which, when integrated
over angle, gives a factor of two that must be removed. If we set y = cos v,
then you may easily verify that in velocity space (3.25) expands out to

dn(v, p)
n

3/2
= (27‘1’)71/2 (%) e~V 2T 2 gy (4.74)

If the photon flux is all at frequency v, then a particular atom sees a
Doppler-shifted frequency of v(1 — vu/c). Thus if, for example, the atom is
headed toward the photons (at ¥ = m or u = —1), the atom sees the photon
as being blue-shifted. Thus the denominator of (4.73) becomes

1
(1 —vp/e) = vol? + (v/4m)*

The next step is to, in effect, undo the Doppler shift on v and adjust vg. Note

that
v (1 — E,u) — 1
c

v v
v — 1 <1+E#) *(V*VO)EM

v — v (1 + %u) (4.75)

Q

where the last term in the first equation is dropped because it is the product
of two (presumably) small terms.

We now fold in the Doppler-shifted cross section with the velocity distri-
bution to get an ensemble average for the cross section; that is,
1 ( m )3/ 22 g

Ua(V7V07T) = (27{')1/2 ﬁ % E

co i+l —mv?/2kT 2 gy d
></ / c S (46)
o Jor (v —vo—wovp/c) + (/4n)
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In mathematical terms, this is a convolution of a Gaussian (the Maxwellian)
and a Lorentzian. Thus the shape of o, will turn out to be a hybrid of the
two.

The next series of steps are tedious and not particularly enlightening.
They consist of a series of substitutions plus the recognition that the denom-
inator is of the form x? + a2, which, when integrated over dx (i.e., v), yields
some arctangents. As a guide, we recommend §5.4 of Rose (1998), which
you will probably need to read to do Ex. 4.12, where you are to derive the
following expression for the cross section:

Oq = s Az 1 H(a,Av/Avp). (4.77)
mc Avp ’

The various new quantities here are

(4.78)

which is the Doppler width that measures the half-width at half~-maximum
of the cross section if Doppler broadening dominates over the natural line
width ~;

v 1
= — 4.
@ 47 AVD ( 79)

which compares the two widths;
Av=v—1y (4.80)

as the new frequency variable; and, finally, the Voigt function,

oo 7y2
H<a,u: AI/)ZG/ _evdy (4.81)

Avp T J oo 0%+ (u—y)?

So it all boils down to what the well-studied Voigt function looks like.
Mihalas (1978, §9-2) gives a series expansion (which unfortunately contains
even more integrals) for a < 1 corresponding to the usual case that Doppler
broadening overwhelms the natural width . In making our figures we have
used the FORTRAN programs (on CD) in Thompson (1997, §19.6) for H(a,u),
which he also calls the plasma dispersion function. If you wish to reproduce
some of our results, be aware that Thompson does not give limits on how
well the program works when w is large (with a still fairly small). But, for
u? > 1, Mihalas gives H(a,u) ~ a/u?r'/2. This is the behavior of o, in the
wings of the absorption line far from line center (v = 1g) in frequency.

Figure 4.9 shows the shape of the absorption cross section (sans multi-
plicative constants) for various values of Avp. The natural width is fixed by
v/4m =1 so that all frequency units may be easily scaled. The curve labeled
“Lorentzian” is self-explanatory and corresponds to Avp = 0. Note that the
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cross section near the center of the line decreases in height as Avp increases
(i.e., as temperature increases). What is happening is that more and more
photons are being absorbed at frequencies further removed from line center
and are not, in effect, available near line center.

4.8.3 Curve of Growth

If we have a hot macroscopic sample of absorbing atoms with radiation pass-
ing through the sample, we expect that the radiation will be attenuated
around v as viewed by an observer peering at the sample in the direction of
the source of radiation. The more absorbing atoms in the path, the more the
attenuation; that is, the radiation acts as a probe of both the abundance of
absorbing atoms and their temperature.

‘1//‘0

—-0.1 n ! n ! n ! n ! n ! n ! n I n I n I

Fig. 4.10. The evolution of a spectral absorption line with increasing number
density of absorbers is shown for sample values of By (see text). The ratio a =
~v/4mAvp is fixed at 1073,

In a very simple model, let radiation of uniform intensity I, = I (for
all v) be incident on a slab of thickness Ar in which the number density
of absorbers is n,. If there were no absorbers, then an observer would see
a flat spectrum with intensity Ip. Call this spectrum the continuum. We
seek deviations from the continuum. Treating this as straight attenuation
(no scattering, no angular problems, no emission—stimulated or not—etc.),
(4.4) and the discussion preceding it states that

I, _ e—'rAr _ o kupAr —NaCa,u AT

- e =e o, (4.82)

=€
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If we know the temperature of the sample (as a big “if”) plus the microscopic
physics and Ar (another big “if”), than the only variable is n,. The resulting
spectrum, I, /Iy, for a series of different 8y = nq0,,, Ar is shown in Fig. 4.10.

For small §y, where few absorbers are in the line of sight, there is only
a modest dip in I, near line center—as a “weak line.” As the number of
absorbers increases the line becomes deeper until the line becomes saturated;
that is, I, flattens out to zero near line center. “Saturation” is apt because
there are no photons left with frequencies near v to be absorbed by the time
the beam leaves the slab. As 3y increases further, all that is left are the wings
of the line. If we had done a more realistic calculation, the line shapes would
have been a little different but the overall effect would have been very similar
(as in Fig. 10-1 of Mihalas, 1978).

Saturation

log B9

Fig. 4.11. The solid curve is the curve of growth corresponding to the line profiles
of Fig. 4.10 with @ = 10™% (a o< 1/Avp). For a = 1072 (dashed line) the damping
portion of the curve begins sooner because Avp has been reduced.

Observing spectral lines with high resolution is not always possible. What
is often done is to measure the equivalent width, defined as

WU/OOO <1§’;> dy/ooo(1eﬁ0) dv . (4.83)

Thus as 3y decreases toward zero, so does W,,. In this respect, W, is a measure
of By and hence n, (all other things being equal). An example of what W,
looks like is shown in Fig. 4.11 for a = 1073 (a  1/Avp) and so corresponds
to integrating the line profiles of Fig. 4.10 through a range of 3y. Such a curve
is called a “curve of growth.”
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For small Gy (weak line), W, & [y so that on a log-log plot we have a
straight line. (See Mihalas, 1978, §10-3 for more details.) Hence the “linear
region” in the figure. In the saturated section, W, ~ +/Infy, which is a
mild dependence on (3 and thus the curve rises very slowly. For large (y,
W, ~ ﬁé/ % and we have a straight line again, but not as steep as the linear
region.
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Fig. 4.12. The composite curve of growth for some 200 lines of iron (Fe I) and
titanium (Ti I) in the sun. The quantity X is effectively our 8o and W/ is the
equivalent width divided by the central wavelength of the line. See Wright (1948).

What we have shown thus far is, obviously, pure theory. Real lines are
broadened by other processes such as turbulence (very difficult to model),
collisional processes, etc. Each of these may overwhelm the effects of Doppler
broadening. Yet, the curve of growth is a valuable diagnostic when applied to
many lines using more sophisticated atmospheric calculations. An example
is shown in Fig. 4.12 (originally due to Wright, 1948, and see Fig. 10-3 of
Mihalas, 1978) for the sun. Here 75 lines of Fe I and 137 of Ti I have been
observed to determine temperatures and abundances. We cannot go into the
details but it sure has the general features of our Fig. 4.11 if you try to fit
(by eye) a curve of growth to the observations.

4.9 Exercises

Exercise 4.1. We introduced the source function, S(7), in §4.1 but, for the
most part, had little to say about it. To rectify this partially, consider the
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emergent intensity at 7 = 0 (from 4.12)

o t
10,1 > 0) = / et/ gy
0 K
where we assume that the source function is a linear function of depth; that
is,
S(T) =Sy + 517

with Sp and S; constant. Integrate and show that I(0,u > 0) = Sp + pSs.
(This is the Eddington—Barbier relation.) Obviously this may be written as
I(0,0 > 0) = S(r = p). Thus the source function is directly a “source”
for the emergent intensity. Interpret this more fully; for example, what does
7 = p imply? (And, beware, the Eddington—Barbier relation is of limited
usefulness. See Mihalas, 1978, for comments.)

Exercise 4.2. In deriving the diffusion approximation, we computed the flux
in (4.17). It should be clear that the ratio [0B(7)/d7] /B(7) is a relative mea-~
sure of the anisotropy in the radiation field. Show that, aside from order unity
factors, this ratio is approximately (Tu/ T)4. Give a simple interpretation of
this result.

Exercise 4.3. Suppose you wanted to “improve” upon the diffusion equation
by adding a second-order term to the series expansion of the source function
given by (4.14). Let that term be (¢ — 7)2 (9>B/07?) /2. Show, by explicitly
finding corresponding additional terms to the intensity (of Eqs. 4.15—4.16) for
large 7 and integrating (4.3) for the flux, that your efforts have been in vain;
that is, show that the second-order term contributes nothing to the flux. You
must go to third-order to find anything new!

Exercise 4.4. Consult the references and download opacities from the WWW
and plot some (as in Figs. 4.2-4.5). Try a variety of mixes.

Exercise 4.5. Reproduce k¢onq of (4.72) by putting in all the numerical fac-
tors left out of the discussion leading up to that equation. In doing so it is
worthwhile getting a numerical expression for the electron mean free path .
You should find it is rather long compared to those associated with atomic
processes (e.g., absorption, etc.). The point here is that conduction is efficient
because the electrons can travel relatively long distances. It’s the exclusion
principle working again.

Exercise 4.6. Go back to Exercise 3.1 and find the half-ionization temper-
atures for the first and second stages of pure helium at densities 1074, 1076,
and 107% g em 3. Plot these three results on Fig. 4.3 to verify that the bumps
in that figure do correspond to helium ionization stages.

Exercise 4.7. Plot k., on Fig. 4.3 for densities 10* and 10 g cm™3 using
Keond Of (4.72) and the parallel circuit result (4.69) to show how radically
that figure can change when conduction is taken into account. (You can go to
the Cox and Tabor, 1976, tables directly to get the numbers used in Fig. 4.3.)
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Exercise 4.8. Using the approximations (4.62—4.65) for bound—free, free—
free, and H™ opacities, try to duplicate the tabulated opacities shown in
Fig. 4.2 for densities 10~* through 10® g ecm~3. Recall that the range of
(supposed) temperature validity for these approximations depends on the
state of hydrogen ionization. And don’t be too disappointed if the com-
parison doesn’t look that good. These are only order of magnitude, or so,
approximations.

Exercise 4.9. Consider an atom having only two levels, labeled j and 4, with
energies I/; > E;. The energy difference is E; — F; = hvj;, where vy; is the
frequency of a photon transition from level j to i. For simplicity, the states
are assumed to be nondegenerate in the sense that only one state in the atom
has energy E; or E;. Thus g; and g; of (3.9) are both unity. In real life, the
two levels have a small but nonzero width due to relative Doppler motions
in a mixture of such atoms and to the intrinsic lifetime of the levels. Here we
ignore these effects and assume that a line in emission is infinitely narrow and
only photons of precise frequency v;; can be absorbed or emitted. What we
discuss here are the Einstein coefficients that relate the rates at which photons
are emitted from j by spontaneous emission or by “induced” (“stimulated”)
emission to absorption of photons on level i. Therefore define the Einstein
coefficient A;; such that n;A;; is the rate at which states j in a mixture
spontaneously decay to ¢ where n; is the number density of atoms in state j.
Spontaneous emission, however, is not the only means of decay. The ambient
radiation field can “induce” state j to decay due to interaction of photons of
energy hv;; with j. The rate at which this occurs should be proportional to
the field intensity I, at frequency v;;. Thus define Bj; so that the induced
rate is n;Bj;1,. The last coeflicient, B;;, describes the absorption rate from
1 to j as n;B;;1, and it is, obviously, proportional to the intensity of the
radiation field. In thermodynamic equilibrium the rates up and down must
balance (as in “detailed balance”). Thus

nj(Aji + Bjilu) = niBiqu
and now for the problem.

1. Assume thermodynamic equilibrium so that I, = B,, and we have the
ideal gas Boltzmann result

N — exp (—hvj; [kT) .
i
Show that the Einstein coefficients are related by
2h1/]3i

—s -

Bij = Bji and Aji = Bji
C

Thus induced emission takes place as long as we have spontaneous emis-
sion or absorption. Otherwise the laser would be impossible.
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2. Show that

rate of induced emission

= —hv; /kT).
total rate of emission exp (—hv;i/kT)

3. Compute the above ratio for the Lyman-a and 21 cm lines of hydrogen
at a temperature of 10* K.

Exercise 4.10. The Eddington result for the run of temperature with optical
depth was given by (4.44); i.e.,

1 3
T(r) = 5ijf (1 + 27’) :
We now use this to examine what this implies for convection. Looking ahead

to Chapter 5, convection takes place if V > V,q where

_dlnT
T dlnP

r,—1
(Eq. 4.28) and  V,q = 2r (Eq. 3.94).
2

We wish to rephrase this as a condition on I's at large optical depths by
finding what are the derivatives in V.
1. Show that
dinT 3
dr 8+ 121°
2. After integrating (4.46) with constant opacity, combine that result with

hydrostatic equilibrium of (4.45), and then use the definition of optical
depth of (4.8), to show that

dln P 1

dr 1
3. For large optical depths use the above to show that T's < 4/3 implies

convection; i.e., the “magic” 4/3 strikes again.

Exercise 4.11. Show that 9B, /9T in the definition of the Rosseland mean
opacity (4.22) most heavily weights those photons with frequencies v = kT'/h.

Exercise 4.12. Derive (4.77) for o, in terms of the Voigt function.

Exercise 4.13. Show that (4.39) for P,.q gives the usual result P.q = aT*/3
in LTE where I = B(T).

Exercise 4.14. Use the FORTRAN code “csotest” on the CD-ROM to repro-
duce Fig. 4.2. The correspondence will not be exact because we have not told
you what the mix of metals is.
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4.10 References and Suggested Readings

Introductory Remarks and §4.1-§4.2: Radiative Transfer & The
Diffusion Equation

We recommend the texts
> Mihalas, D. 1978, Stellar Atmospheres, 2d ed. (San Francisco: Freeman)
> Mihalas, D., & Mihalas, B.W. 1984, Foundations of Radiative Hydrody-
namics (Oxford: Oxford University Press).
The emphasis of these two is different, but complementary, and both contain
modern and practical material. Chapters 4-8 of
> Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach)
discusses stellar atmospheres more from the viewpoint of applications to stel-
lar interiors than do the Mihalas references.
> Rybicki, G.B., & Lightman, A.P. 1979, Radiative Processes in Astro-
physics (New York: Wiley & Sons)
and Chapters 4 and 5 of
> Rose, W.K. 1998, Stellar Astrophysics (Cambridge: Cambridge Univer-
sity Press)
also contain useful material. A little less intensive, but clear, is
> Bohm-Vitense, E. 1989, Introduction to Stellar Astrophysics, Vol. 2, Stel-
lar Atmospheres (Cambridge: Cambridge University Press).

§4.3: A Simple Atmosphere

Mihalas (1978) discusses many simplified atmospheric calculations that we
do not attempt. Various applications of the Eddington limit are discussed in
> Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: Wiley Interscience).
The use of interpolation among atmospheres in making stellar models is re-
viewed in
> Kippenhahn, R., Weigert, A., & Hofmeister, E. 1967, MethCompPhys, 7,
53.

§4.4: Radiative Opacity Sources

The material in
> Clayton, D.D. 1968 Principles of Stellar Evolution and Nucleosynthesis,
(New York: McGraw-Hill)
is presented from a physicist’s point of view and we recommend it highly.
Cox, J.P. 1968, Principles of Stellar Structure, bases his exposition primarily
on the LANL method of calculating opacities. The LANL method (in an older
but still good discussion) is given by
> Cox, A.N. 1965, in Chapter 3 of Stellar Structure, Eds. L.H. Aller & D.B.
McLaughlin (Chicago: University of Chicago Press).
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The reference to
> Landau, L.D. & Lifshitz, E.M. 1971, Classical Theory of Fields (Oxford:
Pergamon Press)
can be found, as with other volumes in this classic series, in more recent
editions. Also see (the now classic)
> Jackson, J.D. 1999, Classical Electrodynamics, 3rd ed. (New York: John
wiley & Sons).
The monograph by
> Spitzer, L. 1962, Physics of Fully Ionized Gases, 2nd ed. (New York:
Interscience)
contains much of interest for the astrophysicist. Another work of his is
> Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium (New
York: Wiley & Sons).

The text by
> Schwarzschild, M. 1958, Structure and Evolution of the Stars (Princeton:
Princeton University Press)
is counted as the first modern work describing how stars evolve. It is now out
of date but still worth perusing.

§4.5: Heat Transfer by Conduction

Several undergraduate solid-state (now “condensed matter”) texts give the
basic material on thermal conduction by electrons. The text by
> Kittel, C. 1968, Introduction to Solid State Physics (New York: Wiley &
Sons)
(or later editions) is particularly clear.

Conductive opacities are discussed in

> Hubbard, W.B., & Lampe, M. 1969, ApJS, 18, 297

> Lamb, D.Q., & Van Horn, H.M. 1975, ApJ, 200, 306

> Ttoh, N., Mitake, S., Iyetomi, H., & Ichimaru, S. 1983, AplJ, 273, 774

> Itoh, N., Kahyama, Y. Matsumoto, N., & Seki, M. 1984, ApJ, 285, 758.
The reference to Spitzer (1962) is given above.

§4.6: Tabulated Opacities
A relatively simple fit to opacities is given by

> Stellingwerf, R.F. 1975, ApJ, 195, 441
with a footnote correction in

> Ibid. 1975, ApJ, 199, 705.
The range of composition is somewhat limited to 0.6 < X < 0.8,0.2<Y <
0.4, and 0.001 < Z < 0.02. To implement his prescription, however, you must
supply the electron pressure. See also

> Iben, I. Jr. 1975, ApJ, 196, 525.

Extensive tabulations of radiative opacities from LANL may be found in
> Cox, A.N., & Stewart, J.N. 1970, ApJS, 19, pp. 243, 261
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> Cox, A.N., & Tabor, J.E. 1976, ApJS, 31, 271
> Weiss, A., Keady, J.J., & Magee, N.H. Jr. 1990, ADNDT, 45, 209.
For seminal papers of the Opacity Project (OP), see
> Mihalas, D., Hummer, D.G., Mihalas, B.W., & Dé&ppen, W. 1990, ApJ,
350, 300

> Hummer, D.G., & Mihalas, D. 1988, ApJ, 331, 794
> Seaton, M.J. 1987, JPhysB, 20, 6363

> Seaton, M.J., Yan, Y., Mihalas, D., & Pradhan, A.K. 1994, MNRAS, 266,
805

and
> Seaton, M.J. 1995, ed. The Opacity Project, Vol. 1 (Bristol: Institute of
Physics Publishing).
Sample papers from LLNL for the OPAL code are
> Rogers, F.J., & Iglesias, C.A. 1992, ApJS, 79, 507
> Thid. 1993, ApJ, 401, 361, & ApJ, 412, 712
> Ibid. 1994, Science, 263, 50.

The latest paper, which contains comparisons to OP and LANL, is
> Iglesias, C.A., & Rogers, F.J. 1996, ApJ, 464, 943,
and, for information about the corresponding equation of state, see
> Rogers, R.F., Swenson, F., & Iglesias, C.A. 1996, ApJ, 456, 902.
The penultimate paper also makes comparisons to the opacities of
> Alexander, D.R., & Ferguson, J.W. 1994, ApJ, 437, 879
which we have not discussed.
The following are the WWW addresses for LLNL (i.e., OPAL) and OP
as of February 1999. They will probably change at some time:
http://www-phys.llnl.gov/V_Div/OPAL/
http://vizier.u-strasbg.fr/OP.html

We shall have other occasions to refer to the classic article by

> Hayashi, C., Hoshi, R., & Sugimoto, D. 1962, PTPJS, Vol. 22.
It is now outdated by modern standards but contains a particularly clear
development of the ingredients of stellar structure.

§4.7: Some Observed Spectra
For a comprehensive review of how spectra are used to classify stars, we
recommend
> Jaschek C., & Jaschek, M. 1987, The Classification of Stars, (Cambridge:
Cambridge University Press).
The MKK system is described in
> Morgan, W.W., Keenan, P.C., & Kellman, E. 1943, An Atlas of Stellar
Spectra with an Outline of Spectral Classification (Chicago: University
of Chicago Press).
Figure 4.8 derives from the work of
> Silva, D.R., & Cornell, M.E. 1992, ApJS, 81,865
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using data downloaded from
http://zebu.uoregon.edu/spectra.html
which, if still active, should be looked into because data are also available
for other luminosity classes. The effective temperatures shown in Fig. 4.8 are
from
> Lang, K.R. 1991, Astrophysical Data: Planets and Stars (Berlin: Springer-
Verlag).
Spectral class L dwarf stars and brown dwarfs are discussed in
> Martin, E.L., Delfosse, X., Basri, G., Goldman, B., Forveille, T., Zapa-
tero, O., & Maria, R. 1999, AJ, 118, 2466
and
> Kirkpatrick, J.D., et al. 1999, ApJ, 519, 802
(the latter article having ten authors). Going yet further into the class T
objects, we recommend
> McLean, 1.S., Prato, L., Sungsoo, S.K., Wilcox, M.K., Kirkpatrick, J.D.,
& Burgasser, A. 2001, ApJ, 561, L115
and
> Burgasser, A.J., et al. 2002, ApJ, 564, 421.

§4.8: Line Profiles and the Curve of Growth
For those of you taking graduate courses,
> Jackson, J.D. 1999, Classical Electrodynamics, 3rd ed. (New York: John
Wiley & Sons)
is the place to go for reading about the interaction of radiation with matter.
The classic text to consult is Mihalas (1978), while
> Rose, W.K. 1998, Stellar Astrophysics (Cambridge: Cambridge Univer-
sity Press)
fills in some derivations.
> Thompson, W.J. 1997, Atlas for Computing Mathematical Functions
(New York: Wiley-Interscience)
contains many FORTRAN 90 and Mathematica programs in the text and on a
compact disk. We used his program to compute the Voigt function, H(a,u).
Watch out, however. The program gives nonsensical results for very large u.

Figure 4.12 is based on
> Wright, K. 1948, Publications of the Dominion Astrophysical Observa-
tory, Victoria, 8, 1.
This is a classic paper that was almost ready to be published in 1940 before
WWII intervened. It is worth reading to see, among other things, how difficult
pre-computer astronomy was compared to how observations and analyses are
done today.
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“Double, double toil and trouble;
Fire burn and cauldron bubble.”

— W. Shakespeare (Macbeth)

That about sums it up.

The major portion of this chapter will be devoted to a discussion of the “mix-
ing length theory,” or “MLT,” of convective heat transport in stars. Although
this theory has many faults, it has served as a useful phenomenological model
for a description of stellar convection for more than 40 years and most nu-
merical simulations of stellar evolution use it in one guise or another. Near
the end of the chapter we shall discuss alternatives to the MLT and why a
realistic description of convection is so difficult.

Our discussion of the MLT will partly parallel that of Cox (1968), where
details of the usual derivation of the MLT are the most completely laid out in
the textbook literature. (We also recommend the paper by Gough and Weiss,
1976, which is a still-not-outdated review of calibrations of the MLT.) The
first edition of this text (Hansen and Kawaler, 1994) went to considerable
effort to explore the explicit and implicit assumptions behind the MLT—a
task not attempted in standard texts. We still like that approach but many
of our colleagues told us that it just didn’t work in the classroom (and it
made the chapter too long). OK, friends and colleagues, we gave in—mostly
because we agreed with you. For those of you who would like to see the
“complete” treatment, please consult the first edition.

5.1 The Mixing Length Theory

The mixing length theory was originally formulated in its “stellar” form by
Biermann (1951), Vitense (1953), and Bohm—Vitense (1958) based on earlier
1925 work of Prandtl (see Prandtl, 1952). Since then, it has been elaborated
on and modified in many ways and one should no longer call it just the
MLT without citing exactly which version is being referred to. A “classic”
derivation of one version of the theory may be found in Cox (1968, Chap. 14).

The general idea behind the theory is to imagine that the stellar fluid
is composed of readily identifiable “eddies,” “parcels,” or “elements” (or, in
more colloquial terms, “bubbles” and “blobs”), that can move from regions
of high heat content to regions of lower heat content, or conversely; that
is, they are capable of transporting or convecting heat through the fluid.
These parcels arise from unspecified instabilities in the fluid but have prop-
erties not drastically different from their surroundings. If conditions are ripe,
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then buoyancy effects cause the parcels to, say, rise in the star through some
characteristic distance ¢, the mixing length, before they lose their identity
as separate parcels and break up and merge with the surrounding fluid. As
they rise, they maintain pressure equilibrium with their surroundings. Since
these particular parcels start their rise in an environment having a higher
heat content (higher temperature) than where they break up, heat is thereby
transported from the starting position up to the level at the additional height
£. To complicate matters, the parcel may radiatively release heat to its sur-
roundings as it rises. At the same time, cool parcels at a higher level sink a
distance ¢, and they too break up. The net effect is heat transport directed
outward in the star. The rate of transfer is established by the parcel forma-
tion rate, velocity (w) of rise, ¢, the heat content of the star as a function of
depth, and by how radiatively “leaky” the parcels are as they rise.

This sounds relatively simple and, in fact, it is—in the context of MLT.
We shall also see that most formulations of the theory have a major virtue for
computation: all that matters is that temperature, density, and other stellar
quantities be known at a single radius of interest. If so, then a convective
heat flux may be computed at that point. The MLT is thus a local theory.

The sequence we shall follow in discussing the MLT is first to derive the
criterion for buoyancy, and then to estimate the heat leakage from a parcel.
This will give us the equations of motion. Finally, we shall find expressions
for the convective flux in the limit of “efficient” convection and discuss how
they are used.

5.1.1 Criteria for Convection

First of all, certain general assumptions are made that should be explicitly
set forth. Besides neglecting magnetic fields, rotation, and the like, we assume
the following (with comments).

1. A readily identifiable parcel has a characteristic dimension of the same
order of size as the mixing length ¢.

2. The mixing length is much shorter than any scale length associated with
the structure of the star. Examples of such lengths are the pressure scale
height, Ap of (3.1), and similar scale heights for temperature and density.

3. The parcel always has the same internal pressure as that of its surround-
ings. This means that however the convective processes work, the time
scales associated with them are always long enough that pressure equi-
librium is maintained. Thus, for example, if v, is the local sound speed in
the parcel, then the sound traversal time across the parcel, £/vs, is short
compared to, say, the ascent or descent time of the parcel through the
distance /.

4. Acoustic phenomena may be ignored altogether, as may shocks, etc.

5. Temperatures and densities within and outside a parcel differ by only a
small amount.
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The combination of these assumptions constitutes the “Boussinesq” approx-
imation. What it implies is that the fluid is almost incompressible and that
density variations (which may give rise to buoyancy effects) and temperature
variations in the fluid are very small. The Boussinesq approximation usually
works very well in the laboratory, where scale heights are large compared to
container sizes (which roughly set the maximum size of a convective cell). In
its application to stars, however, we shall see that the mixing length must be
near the size of Ap or one of the other scale heights for reasonable results to
be obtained. Thus, in practice, the MLT will turn out to violate one of its
internal assumptions. Furthermore, it is unfortunate that laboratory-derived
constraints on the MLT are essentially nonexistent because of the follow-
ing. The dimensionless Rayleigh number (see any text in fluid dynamics and
Ex. 5.4) associated with laboratory fluids is usually less than 10! but stellar
convection is characterized by high values, 102°—give or take a few orders
of magnitude. The same situation applies to the Prandtl number where, in
stars, it is around 10~7, but in the lab it is of order unity (and see Ex. 5.3).
Note also, in passing, the troublesome consequences of (1) in the above: how
can the parcel get very far if its dimensions are of the same order as the
distance it travels (¢)?

With the above alerts in mind, consider a plane parallel fluid under the
influence of gravity, where z measures the height up through the fluid. In-
side a typical parcel created by some unspecified process, denote the interior
temperature, pressure, and density by 7", P, and p’, respectively. Outside
the parcel, the corresponding quantities are denoted by 7', P, and p. Note
that the pressures inside and out are the same by virtue of assumption (3).
Suppose that 7" > T (but not by much) so that the parcel is hotter than its
surroundings. Normally this implies that p’ < p because of the interior versus
exterior pressure equilibration. If the volume of the parcel is V ~ 2, then
Archimedes’ principle states that the parcel will experience a net upward
buoyancy force of

pVg—p'Vyg (5.1)

where ¢ is the local gravity. Note that we have not specified exactly what
the volume of the parcel is in terms of £. It could be spherical (47[¢/2]3/3),
a cube (£3), or what have you. These fine distinctions involving constants of
order unity give rise to some of the variants in mixing length theory and we
shall ignore them. In any case, the parcel now commences to rise.

We must eventually determine what is the mean velocity of the parcel as
it rises through the mixing length distance, ¢, and what its temperature is
compared to the ambient temperature when it merges into the surrounding
fluid. The latter comparison will tell us how much energy the parcel will
release when it loses its identity. For all this we shall first need information
about temperature gradients.

We denote 3 to be the negative of the ambient temperature gradient
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dr
=—— 5.2
p=-= (52)
where (almost always) 3 > 0. This gradient is assumed to be known despite
the fact that heat transported by rising and descending parcels may very
well establish just what that gradient is. We can relate 8 to other known
quantities by observing that

dT _dT dP _  dWnT dwP T

G ap s Tamp 4 - apv =Y (5:3)

where V is the “actual del” introduced in the preceding chapter as (4.28).
The pressure scale height in the above may be recast in terms of the local
sound speed with the aid of (1.38):

dnP\"' P 2
A\p = — - = s 5.4
r < dz ) gp 9T (54)

where T’y is the adiabatic exponent defined by (3.93). Thus

T T
f=—v="1

- 2
)\p Vg

v. (5.5)

To describe how the temperature inside the parcel varies as the parcel

rises, first write

dTr’ _ dInT" dln P’

dz = dlnP dz
If we assume, as a start, that the rising parcel exchanges no heat with its
surroundings, then the term dIn7’/dIn P’ must describe adiabatic varia-
tions of temperature with pressure. This is the thermodynamic derivative
Vad = (dInT/dIn P),, introduced earlier (as in 3.94 and 3.96). Because all
fluctuations are assumed to be small, it is appropriate to replace the lone
factor of T' by T in the right-hand side of the above. (We can’t do the same
with the temperature gradients because they drive the motions.) In addition,
we replace P’ with P, because of pressure equilibration, so that the last factor
may be turned into a pressure scale height. Finally we may append an “ad”
subscript to dT”/dz because of the adiabaticity assumption and write

dr’ T
( dz )ad - _Evad - _ﬂad . (56)
Thus,
T
ﬁ - ﬁad = )\7 (V - va,d) . (57)
P

The question is now whether the parcel, once having commenced to rise
adiabatically, will continue to rise. It may well be that as the parcel rises to
greater heights and its internal pressure drops, its interior temperature may
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also have decreased adiabatically to a level where the parcel is cooler than its
surroundings. In that case it has negative buoyancy and it tends to sink back
down before traversing a mixing length. It is the other possibility, in which
the parcel’s temperature continues to exceed that of the surroundings, that
is of major interest. Here, the fluid is said to be convectively unstable and
the perturbation that causes the parcel to rise takes place in an environment
that encourages further rising until a mixing length is traversed. This latter
condition may be expressed as follows.

T/Te

AMBIENT

r/R

Fig. 5.1. A schematic run of temperature (normalized to some common temper-
ature T) versus radius for: (a) the ambient medium (solid line); (b) a convec-
tively unstable parcel (dashed line) with (d1"/dr), , > (dT'/dr); (c) a stable parcel
(dashed-dotted line) with (d1"/dr)_, < (dT'/dr).

First observe that both dT”/dz and dT'/dz are assumed to be negative.
Thus the condition that 7' decreases more slowly than T with height is

expressed as
a1’ ar
(dz)ad > <dz) (convectively unstable) . (5.8)

This convectively unstable situation is illustrated in Fig. 5.1. Another way to
express this is to use (5.2), (5.5), and (5.6) to write

B > Baa (convectively unstable), or (5.9)
V > Vaa (convectively unstable) . (5.10)

The three conditions (5.8-5.10) are equivalent to and, in the stellar context,
are often called the Schwarzschild criteria (K. Schwarzschild, 1906). These
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are local criteria and thus require information from only the one height (or
radius) of interest in the star.

The criteria (5.8-5.10) are also equivalent to the statement that if entropy
decreases outward at some point (dS/dr < 0), then the fluid is convectively
unstable (Cox, 1968, §13.4, or our §7.3.3). Put another way, convection does
not take place in hydrostatic stars where the entropy increases outward. It
will turn out that in regions where convection is very efficient, V is only very
slightly greater than V,q4. In such regions the entropy is very nearly constant
with height. (Ex. 5.1 asks you to examine the role of entropy.)

We finally begin to see what role the “dels” play in convection. If, by some
mischance, adiabatic perturbations arise where the local run of temperature
versus pressure is such that the local value of V is greater than the local
thermodynamic equivalent, V ,q, then convection should be present. However,
if this is really so, then convection must change the thermal structure and,

hence, V, and so on.

0.5 —
]

0.4 :

! ! !

0.0 .
0 1 2 3 4 5 6 7 8 9 10

—log(1=M;/M)

Fig. 5.2. Shown are V.q (solid line) and V (dashed line) versus — log(1 — M,/ M)
for a model ZAMS sun. See also Fig. 3.11.

As an example of how V and V,q behave in a typical star, Fig. 5.2 shows
their run in a ZAMS sun. The abscissa is — log(1—M,./M) and it emphasizes
the outer layers (as in Fig. 3.11, which showed only V.q for the same model).
It is apparent that the model is radiative (i.e., transports heat solely by radi-
ative transfer) from the center, at —log(1 — M, /M) =0, to M,./M = 0.997
because V < V,q throughout that region. (The latter mass point corresponds
to roughly /R = 0.8.) It is impossible to detect in this figure but past that
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point (to 1 —M,./M ~ 1077) V is very slightly larger than V,q; that is, that
region is convective and, as it turns out, efficiently so. The actual gradient
V then clearly exceeds V,q until very nearly the model surface after which
radiative transfer takes over again. (A different, and perhaps clearer, view
of this figure will be shown as Fig. 5.3.) The version of the MLT used to
construct this model is almost what we shall describe in the next few pages,
but it also included nonadiabatic (heat leakage) effects, which will eventually
be ignored in this chapter. The ZAMS code, found on the CD-ROM at the
end of this text, was used to make this model and that code includes heat
leakage.

5.1.2 Radiative Leakage

Real life is never adiabatic. Because our parcel is either cooler or hotter than
its surroundings, heat must be exchanged between the two. Thus consider
the energy equation

dQ’

dt

where @’ is the heat content per unit volume in the parcel and F.q is the
radiant flux from the parcel out to the ambient medium. (Don’t confuse
the gradient or divergence operators used here and the various “dels.”) Now
recall that the Boussinesq conditions of no acoustic phenomena and small
fluctuations imply that the only time density perturbations are to be taken
into account is when they are coupled to gravity to cause buoyancy. Thus
in considering heat balance, P dV work terms are neglected so that (5.11)

reduces to o7 )
. V.F. 5.12
( : ) VT (5.12)

= -V eFq (5.11)

where ¢ is in erg g7! K—1.
For the radiative flux we again choose a diffusion approximation, assuming
the m