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Preface

The first edition of this text appeared in 1994. Shortly after the third printing,
our editor suggested that we attempt a second edition because new develop-
ments in stellar structure and evolution had made our original work outdated.
We (the original authors, CJH and SDK) reluctantly agreed but with reser-
vations due to the effort involved. Our initial reluctance disappeared when
we were able to convince (cajole, twist the arm of, etc.) our new coauthor-
colleague Virginia Trimble to join us. (Welcome Virginia!) We (i.e., all three
of us) hope that you agree that the present edition is a great improvement
compared to the 1994 effort.

Our objectives in this edition are the same ones we set forth in 1994:

What you will find is a text designed for our target audience: the typi-
cal senior undergraduate or beginning graduate student in astronomy
or astrophysics who wishes an overview of stellar structure and evo-
lution with just enough detail to understand the general picture. She
or he can go on from there to more specialized texts or directly to
the research literature depending on talent and interests. To this end,
this text presents the basic physical principles without chasing all the
(interesting!) details.

For those of you familiar with the first edition, you will find that some
things have not been changed substantially (F = ma is still F = ma), while
others definitely have. For example, Chapter 2 has been completely rewritten.
In many respects this chapter is the key to the text because it gives an ex-
tensive overview of the subject. The next eight chapters rely on the student’s
having absorbed large parts of Chapter 2, though complete understanding is
not necessary. Many students may wish to start with Chapter 2, although we
recommend at least a once-through of Chapter 1, which contains some fun-
damental material. And, in response to many requests, there is substantially
more observational material.

We have also attempted to improve on the graphics and have included
more than we did in the first edition. In addition, the instructor will find
many more “Exercises” at the end of chapters. They are a mixed bag (easy,
moderate, difficult) but we hope they illuminate much of what we have to
say. (Chapter 2 has more than its share; and, in fact, Chapters 1 and 2, plus
exercises, could be the basis of a mini-course.)



VI Preface

Also new is the inclusion on the inside back cover of a CD-ROM contain-
ing computer programs that make decent “zero-age main sequence” stellar
models and analyse those models for “pulsations” (radial and nonradial), and
stellar evolution codes everyone can play with. All are in FORTRAN and should
work on most computer platforms. Some of these codes are of our doing and
we thank Andy Odell and Dean Pesnell (Nomad Research) for their generous
contributions. As an additional bonus we have included portions of a colorful
and informative Stellar Evolution Tutorial put together by John Lattanzio
and his colleagues (as part of a commercial enterprise called Cantanout Ltd.).
See the README files on the CD-ROM for more information on the programs
and tutorial.

Acknowledgments: We wish to thank our many past and present senior col-
leagues and students for numerous reprints, corrections, suggestions, com-
ments, problems (i.e., exercises), book loans, help with computer glitches,
and PostScript figure files. They made our task much easier and enjoyable.
Blame the typos, mistakes, and confusion on us. In particular, for the second
edition, we thank Dave Arnett, Mitch Begelman, David Branch, Nic Brum-
mell, Joe Cassinelli, Maurice Clement, Peter Conti, Ethan Hansen, Henny
Lamers, Michael McCarthy, Cole Miller, Sean O’Brien, Dean Richardson,
Dimitar Sasselov, Ted Snow, Peter Stetson, Pat Thaddeus, Juri Toomre, Don
Vandenberg, Craig Wheeler, Matt Wood, and Ellen Zweibel. VT gives per-
sonal thanks to those people from whom she first learned that stellar struc-
ture and evolution is an exciting topic—namely, (the late) Thornton Leigh
Page, J. Beverly Oke, and Bohdan Paczyński. She also recognizes the past
encouragement and support of UCLA, CalTech, and the Stony Brook Sum-
mer School. CJH and SDK wish to thank their families and especially their
wives Camille and Leslie: may they not become computer widows yet again.
Finally, we send many kudos to our editors at Springer-Verlag.

The text was set in LATEX2ε by the authors.

Carl J. Hansen University of Colorado at Boulder
Steven D. Kawaler Iowa State University at Ames
Virginia Trimble University of California at Irvine,

University of Maryland at College Park
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1 Preliminaries

“Cosmologists have, nonetheless, made real progress
in recent years. This is because what makes things baffling

is their degree of complexity, not their sheer size
—and a star is simpler than an insect.”

— Martin Rees in Scientific American (Dec. 1999)

If you want an important insight into what makes stars work, go out and
look at them for a few nights. You will find that they appear to do nothing
much at all except shine steadily. This is certainly true from a historical
perspective: taking the sun as an example, from fossil evidence, we can extend
this period of “inactivity” to roughly three billion years. The reason for this
relative tranquility is that stars are, on the whole, very stable objects in which
self-gravitational forces are delicately balanced by steep internal pressure
gradients. The latter require high temperatures. In the deep interior of a star
these temperatures are measured in (at least) millions of degrees Kelvin and,
in most instances, are sufficiently high to initiate the thermonuclear fusion
of light nuclei. The power so produced then laboriously works its way out
through the remaining bulk of the star and finally gives rise to the radiation
we see streaming off the surface. The vast majority of stars spend most of their
active lives in such an equilibrium state, converting hydrogen into helium, and
it is only this gradual transmutation of elements by the fusion process that
eventually causes their structure to change in some marked way.

This chapter will introduce some concepts and physical processes that,
when tied together, will enable us to paint a preliminary picture of the stel-
lar interior and to make estimates of the magnitudes of various quantities
such as pressure, temperature, and lifetimes. Later chapters will expand on
these concepts and processes and bring us up to date on some modern de-
velopments in stellar structure and evolution. If, in reading this chapter, you
begin to get lost, we suggest you review Appendix A on some properties of
stars and nomenclature. Chapter 2 also contains similar material in narrative
form. For those of you who have no background in the subject at all, a good
first-year undergraduate text on astronomy for the nonscientist may be in
order, and several excellent texts are available. Some portions of the material
we present will also make considerable demands on your understanding of
physical processes. We assume that you have a decent background in under-
graduate physics. If not, you will have to catch up and review that material.

An alternative route some of you may wish to take is to start with Chap-
ter 2, which discusses stars and their evolution. If you choose this route,
however, you may have to return to this chapter for some elementary ma-
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terial. The later chapters go into more detail than you will need for now.1

Either way, go for it!

1.1 Hydrostatic Equilibrium

We first consider the theoretician’s dream: a spherically symmetric, nonro-
tating, nonmagnetic, single, etc., star on which there are no net forces acting
and, hence, no net accelerations. There may be internal motions, such as those
associated with convection, but these are assumed to average out overall. We
wish to find a relation that expresses this equilibrium. First assume that the
stellar material is so constituted that internal stresses are isotropic and thus
reduce to ordinary pressures, and define the following quantities, which will
be used throughout this text (and see Appendix B for a more complete listing
of symbols, including the values of physical and astronomical constants):

radius: r is the radial distance measured from the stellar center (cm)

total stellar radius: R
mass density: ρ(r) is the mass density at r (g cm−3)

temperature: T (r) is the temperature at r (deg K)

pressure: P (r) is the pressure at r (dyne cm−2 = erg cm−3)

mass: Mr is the mass contained within a sphere of radius r (g)

total stellar mass: M =MR

luminosity: Lr, the rate of energy flow through a sphere at r (erg s−1)
total stellar luminosity: L = LR
local gravity: g(r), local acceleration due to gravity (cm s−2)

gravitational constant G = 6.6726× 10−8 g−1 cm3 s−2

solar mass: M� = 1.9891× 1033 g
solar luminosity: L� = 3.847× 1033 erg s−1
solar radius: R� = 6.96× 1010 cm
Note that the above are expressed in cgs units. There is really no good

reason for this, but cgs seem to be the units of choice for most researchers
dealing with stars. MKS (SI) units could just as well be used instead (and
are actually preferred by those dealing with magnetic fields in astrophysics).
We will use solar units (e.g.,M/M� or R/R�) when appropriate.
1 In any case, we strongly suggest you attempt as many of the exercises found near
the end of the chapters as possible. Note also that references are given at the
end of each chapter. (Since some of the journal abbreviations we use may seem
obscure, Appendix C lists them along with the full journal name.
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First we investigate the balance of forces within a star in equilibrium.
From elementary physics, the local gravity at spherical radius r is

g(r) =
GMr

r2
= 2.74× 104

(Mr

M�

)(
r

R�

)−2
cm s−2 (1.1)

and
Mr+dr −Mr = dMr = 4πr2ρ(r) dr (1.2)

is the mass contained within a spherical shell of infinitesimal thickness dr at
r. The integral of (1.2) yields the mass within r,

Mr =
∫ r

0
4πr2ρ dr . (1.3)

Either (1.2) or (1.3) will be referred to as the mass equation or the equation
of mass conservation.

Now consider a 1–cm2 element of area on the surface of the shell at r.
There is an inwardly directed gravitational force on a volume 1 cm2 × dr of

ρg dr = ρ
GMr

r2
dr . (1.4)

To counterbalance this force we must rely on an imbalance of pressure forces;
that is, the pressure P (r) pushing outward against the inner side of the shell
must be greater than the pressure acting inward on the outer face. The net
pressure outward is P (r)−P (r+dr) = −(dP/dr) dr. Adding the gravitational
and differential pressure forces then yields

ρr̈ = −dP

dr
− GMr

r2
ρ (1.5)

as the equation of motion, where r̈ is the local acceleration d2r/dt2.
By hypothesis, all net forces are zero, with r̈ = 0, and we obtain the

equation of hydrostatic (or mechanical) equilibrium:

dP

dr
= −GMr

r2
ρ = −gρ . (1.6)

Since g, ρ ≥ 0, then dP/dr ≤ 0, and the pressure must decrease outward
everywhere. If this condition is violated anywhere within the star, then hy-
drostatic equilibrium is impossible and local accelerations must occur.

We can obtain the hydrostatic equation in yet another way and, at the
same time, introduce some new concepts.

1.2 An Energy Principle

The preceding was a local approach to mechanical equilibrium because only
local quantities at r were involved (although a gradient did appear). What we
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shall do now is take a global view wherein equilibrium is posed as an integral
constraint on the structure of the entire star.

Imagine that the equilibrium star is only one of an infinity of possible
configurations and the trick is to find the right one. (The wrong ones will not
be in equilibrium and just won’t do.) Each configuration will be specified by
an integral function so constructed that the equilibrium star is represented
by a stationary point in the series of possible functions. This begins to sound
like a problem in classical mechanics and the calculus of variations—and it
is. (We’ll ease into the mathematics.) The function in question is the total
stellar energy, and so let’s see what it is.

The total gravitational potential energy, Ω, of a self-gravitating body is
defined as the negative of the total amount of energy required to disperse all
mass elements of the body to infinity. The zero point of the potential is taken
as the final state after dispersal. In other words, Ω is the energy required to
assemble the star, in its current configuration, by collecting material from
the outside universe. Thus Ω represents (negative) work done on, or by, the
system and it must be accounted for when determining the total energy of
the star.

We can get to the dispersed state by successively peeling off spherical
shells from our spherical star. Suppose we have already done so down to an
interior mass ofMr + dMr and we are just about to remove the next shell,
which has a mass dMr. To move this shell outward from some radius r′ to
r′ + dr′ requires (GMr/r

′2) dMr dr
′ units of work. To go from r to infinity

then gives a contribution to Ω of (remembering the minus sign for Ω)

dΩ = −
∫ ∞
r

GMr

r′2
dMr dr

′ = −GMr

r
dMr.

To disperse the whole star requires that we do this for all dMr or,

Ω = −
∫ M
0

GMr

r
dMr . (1.7)

The potential energy thus has the units of GM2/R and we shall often write
it in the form

Ω = −q GM2

R . (1.8)

For a uniform density sphere, with ρ constant, it is easy to show that the
pure number q is equal to 3/5. (This should be familiar from electrostatics,
where the energy required to disperse a uniformly charged sphere to infinity is
−3e2/5R.) Because density almost always decreases outward for equilibrium
stars, the value of 3/5 is, for all practical purposes, a lower limit with q ≥ 3/5.

For the sun, GM�2/R� ≈ 3.8 × 1048 erg. If we divide this figure by
the present solar luminosity, L�, we find a characteristic time (the Kelvin–
Helmholtz time scale) of about 3 × 107 years. More will be said about this
time scale later on.
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If we neglect gross mass motions or phenomena such as turbulence, then
the total energy of the star is Ω plus the total internal energy arising from
microscopic processes. Let E be the local specific internal energy in units of
ergs per gram of material. It is to be multiplied by ρ if you want energy per
unit volume. (Thus E will sometimes have the units of erg cm−3 but you will
either be forewarned by a statement or the appearance of those units.) The
total energy, W , is then the sum of Ω and the mass integral of E,

W =
∫
M

E dMr +Ω = U +Ω (1.9)

which also defines the total internal energy

U =
∫
M

E dMr . (1.10)

The statement now is that the equilibrium state of the star corresponds to
a stationary point with respect to W . This means that W for the star in
hydrostatic equilibrium is an extremum (a maximum or minimum) relative
to all other possible configurations the star could have (with the possible
exception of other extrema). What we are going to do to test this idea is to
perturb the star away from its original state in an adiabatic but otherwise
arbitrary and infinitesimal fashion. The adiabatic part can be satisfied if
the perturbation is performed sufficiently rapidly that heat transfer between
mass elements does not take place (as in an adiabatic sound wave). We shall
show later that energy redistribution in normal stars takes place on time
scales longer than mechanical response times. On the other hand, we also
require that the perturbation be sufficiently slow that kinetic energies of
mass motions can be ignored.

If δ represents either a local or global perturbation operator (think of it
as taking a differential), then the stellar hydrostatic equilibrium state is that
for which

(δW )ad = 0

where the “ad” subscript denotes “adiabatic.” Thus if arbitrary, but small,
adiabatic changes result in no change in W , then the initial stellar state is in
hydrostatic equilibrium. To show this, we have to look how U and Ω change
when ρ, T , etc., are varied adiabatically. We thus have to look at the pieces
of

(δW )ad = (δU)ad + (δΩ)ad .

A perturbation δ causes U to change by δU with

U −→ U + δU = U + δ

∫
M

E dMr = U +
∫
M

δE dMr .

The last step follows because we choose to consider the change in specific
internal energy of a particular mass element dMr. (This is a Lagrangian
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description of the perturbation about which more will be said in Chap. 8.)
Now consider δE. We label each mass element of dMr worth of matter and
see what happens to it (and E) when its position r, and ρ, and T are changed.

For an infinitesimal and reversible change (it would be nice to be able
to put the star back together again), the combined first and second laws of
thermodynamics state that

dQ = dE + P dVρ = T dS . (1.11)

Here dQ is the heat added to the system, dE is the increase in internal specific
energy, and P dVρ is the work done by the system on its surroundings if the
“volume” changes by dVρ. This volume is the specific volume, with

Vρ = 1/ρ (1.12)

and is that associated with a given gram of material. It has the units of
cm3 g−1. (The symbol V will be reserved for ordinary volume with units of
cm3.) The entropy S, and Q, are also mass-specific quantities. If we replace
the differentials in the preceding by δs, then the requirement of adiabaticity
(δS = 0) immediately yields (δE)ad = −P δVρ. Thus,

(δU)ad = −
∫
M

P δVρ dMr .

What is δVρ? From the definition of the specific volume (1.12) and the
mass equation (1.2),

Vρ =
1
ρ
=
4πr2 dr
dMr

=
d(4πr3/3)

dMr
. (1.13)

To make life easy, we restrict all perturbations to those that maintain
spherical symmetry. Thus if the mass parcel dMr moves at all, it moves only
in the radial direction to a new position r + δr. Perturbing Vρ in (1.13) is
then equivalent to perturbing r or

Vρ −→ Vρ + δVρ =
d[4π(r + δr)3/3]

dMr
= Vρ +

d(4πr2δr)
dMr

(1.14)

to first order in δr, where we assume that |δr/r| � 1. (Later we will call this
sort of thing “linearization.”) The variation in total internal energy is then

(δU)ad = −
∫
M

P
d(4πr2 δr)

dMr
dMr . (1.15)

We now introduce two boundary conditions. The first is obvious: we don’t
allow the center of our spherically symmetric star to move. This amounts to
requiring that δr(Mr = 0) = 0. The second is called the “zero boundary
condition on pressure” and it requires that the pressure at the surface vanish.
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Thus, PS = P (Mr =M) = 0. This last is perfectly reasonable in this context
because, in our idealized star, the surface is presumably where the mass runs
out and we implicitly assume that no external pressures have been applied.
(Later, in Chap. 4, we will have to worry quite a bit more about this “surface.”
It is more subtle than may appear.) Now integrate (1.15) by parts, apply the
boundary conditions to the resulting constant term, and find

(δU)ad =
∫
M

dP

dMr
4πr2 δr dMr .

The corresponding analysis for (δΩ)ad yields

Ω −→ Ω+ δΩ = −
∫
M

GMr

r + δr
dMr = Ω+

∫
M

GMr

r2
δr dMr

to first order in δr after expansion of the denominator in the first integral.
Putting it all together, we find

(δW )ad =
∫
M

[
dP

dMr
4πr2 +

GMr

r2

]
δr dMr .

The aim is now to see what happens when this expression is set to zero.
Is hydrostatic equilibrium regained? This is an exercise from the calculus
of variations (as in Goldstein, 1981). If δr is indeed arbitrary (subject to
restrictions of symmetry), then the only way (δW )ad can vanish is for the
integrand to vanish identically; that is, we must have

dP

dMr
= −GMr

4πr4
. (1.16)

The equation of hydrostatic equilibrium (1.6) follows immediately after the
mass equation (1.2) is used to convert the differential from dMr to dr.
The version (1.16) is Lagrangian (the independent variable is dMr) and,
after introducing acceleration in the appropriate place, is often used in one-
dimensional hydrodynamical studies of stars (as in Chap. 7). Note that (1.16)
is necessary for an extremum in W but it does not give us the structure di-
rectly nor does it tell us whether more than one extremum exists or, for that
matter, whether any exist.

In this regard you may profit from considering the significance of (δ2W )ad,
which is the second variation of W . As discussed by Chiu (1968, §2.12), the
sign of the second variation determines whether the equilibrium configuration
is mechanically stable or unstable to small perturbations. This is like asking
whether a pencil balanced on its point is “stable.” You are invited to play
with this idea in Ex. 1.11 near the end of this chapter.

1.3 The Virial Theorem and Its Applications

We now derive the virial theorem and, from it, obtain some interesting and
useful relations between various global stellar quantities such as W and Ω.
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This will be primarily an exercise in classical mechanics at first, but the utility
of the virial theorem in making simple estimates of temperature, density, and
the like will soon be apparent. In addition, the theorem will be applied to
yield estimates for some important stellar time scales. Most texts on stellar
interiors contain some discussion of this topic. We shall follow Clayton (1968,
Chap. 2). A specialized reference is Collins (1978).

Consider the scalar product
∑

i pi ••• ri where pi is the vector momentum
of a free particle of mass mi located at position ri, and the sum is over
all particles comprising the star. If the mechanics are nonrelativistic, then
recognize that

d

dt

∑
i

pi ••• ri =
d

dt

∑
i

miṙi ••• ri =
1
2
d

dt

∑
i

d

dt
(mir

2
i ) =

1
2
d2I

dt2

where I is the moment of inertia, I =
∑

imir
2
i . On the other hand, the

derivative of the original sum yields

d

dt

∑
i

pi ••• ri =
∑
i

dpi
dt

••• ri +
∑
i

pi •••
dri
dt

.

The last term is just
∑

imiv
2
i (vi is the velocity of particle i) and is equal

to twice the total kinetic energy, K, of all the free particles in the star.
Furthermore, take note of Newton’s law,

dpi
dt

= Fi

where Fi is the force applied to particle i, which we will take as the force of
gravity. Putting this together, we have

1
2
d2I

dt2
= 2K +

∑
i

Fi ••• ri . (1.17)

The last term is the virial of Clausius, but to make any use of it all of the
Fi ••• ri must be specified.

That term in (1.17) is the mutual gravitational interaction of all the par-
ticles in the star. (And, remember, we are still ignoring magnetic fields, etc.
These make their own kinds of contributions.) To treat gravity, let Fij be
the gravitational force on particle i due to the presence of particle j. Because
such forces are equal and opposite, Fij = −Fji. You may verify by direct
construction (with, say, three particles) that∑

i

Fi ••• ri =
∑
i,j
i<j

(Fij ••• ri + Fji ••• rj)

where the sum is to be taken over all i and j provided that i < j. Hereafter,
this convention will be assumed and the limits on the sum will not be given.
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From elementary physics, the Newtonian gravitational force is

Fij = −Gmimj

r3ij
(ri − rj)

where rij is the interparticle distance rij = |ri − rj |. The gravitational con-
tribution to the virial is then∑

Fij ••• (ri − rj) = −
∑

Gmimj

rij
= Virial

using the equal and opposite expression to obtain the first term. It should be
apparent that the last sum (with minus sign) is just the negative of the work
required for dispersal to infinity; that is, we have recovered Ω. Thus we have

Virial = Ω .

Combining this with (1.17), we obtain

1
2
d2I

dt2
= 2K +Ω (1.18)

as the “virial theorem,” which we will often refer to as just the “virial.”
Note that this expression refers to quantities derived from sums (or in-

tegrals) over the whole star. If we had chosen instead to consider only a
portion of the star—as, say, defined by a sphere of radius rS ≤ R and vol-
ume VS—then I, K, and Ω would refer only to that portion. However, the
spherical shell containing material within radii rS < r ≤ R would contribute
an additional term to the right-hand side of (1.18) given by −3PSVS , where
PS is the pressure at the surface rS . If rS →R and PS → 0 (as in a zero
boundary condition on pressure), then (1.18) is unchanged because we have
just encompassed the whole star and no external pressures act at R. (For a
derivation of this additional term see, for example, Cox 1968, §17.2, or Clay-
ton, 1968, pp. 134–135, and you can try it yourself in Ex. 1.8.) We will not
have occasion to use this term, but its possible presence should be kept in
mind.

We now interpret what the energy K represents. For example, is it U or,
if not, how does it differ? We had

2K =
∑
i

miv
2
i =

∑
i

pi ••• vi . (1.19)

The scalar product of p and v measures the rate of momentum transfer and,
hence, from the kinetic theory of gases, must be related to the pressure. In
the continuum limit of an isotropic gas, pressure is given by2

2 This may seem to come out of the blue but, as long as the “gas” is perfect
and isotropic, it also applies to a radiation “gas” and other situations. Equation
(1.20) is the compact way of expressing derivations of ideal gas and radiation
pressures as given, for example, in §2–1 of Clayton (1968). You should be able
to construct this yourself, realizing that the factor of 1/3 comes from averaging
over angle in the isotropic gas.
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P = 1
3

∫
p

n(p)p ••• v d3p (1.20)

where n(p) is the number density of particles with momentum p and the
integration is over all momenta. The units of n(p) are number cm−3 p−3.
Since the sum in (1.19) includes all particles, it should be clear that (1.20)
need only be integrated over total volume V (in cm3) to obtain an expression
for K—namely,

2K = 3
∫
V

P dV. (1.21)

Furthermore, since dMr = ρ d( 43πr
3) = ρ dV , we find

2K = 3
∫
M

P

ρ
dMr (1.22)

and the virial theorem becomes

1
2
d2I

dt2
=
∫
M

3P
ρ

dMr +Ω . (1.23)

We now apply this to stars by looking into some possible choices for the
equation of state.

1.3.1 Application: Global Energetics

Consider a simple, but useful, relation between pressure and internal energy
of the form

P = (γ − 1)ρE (1.24)

where γ is a constant and E is still in erg g−1. This is usually called a “γ–law
equation of state” and is not just of academic interest. For example (and as
we will show later), for a monatomic ideal gas γ = cP/cV = 5/3 where cP
and cV are, respectively, the specific heats at constant pressure and volume.
In this instance P = 2

3ρE. For radiation or a completely relativistic Fermi
gas γ = 4/3. Since 2K = 3(γ − 1) ∫ E dMr—from combining (1.22) and
(1.24)—then K = 3

2 (γ − 1)U . Thus K = U only if γ = 5/3; that is, the total
kinetic energy is the same as the total internal energy only under certain
circumstances. Note that a γ of 5/3 does not necessarily mean the gas is
ideal and monatomic.

The virial theorem is now

1
2
d2I

dt2
= 3(γ − 1)U +Ω . (1.25)

If we let W = U +Ω, as in (1.9), then the theorem becomes

1
2
d2I

dt2
= 3(γ − 1)W − (3γ − 4)Ω . (1.26)
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For hydrostatic equilibrium d2I/dt2 must be zero and W is related to Ω by

W =
3γ − 4
3(γ − 1) Ω (1.27)

which shows explicitly the relation between W and Ω for hydrostatic stars
with the γ–law equation of state.

Since the energy W is that which is available to do useful work, a dynam-
ically stable star should have W < 0. Otherwise, the star would have enough
energy, at least in principle, completely to disperse all or part of itself. Equa-
tion (1.27) then implies that a star in hydrostatic equilibrium should have a γ
that exceeds 4/3. However, and as we shall find later on, even this condition
does not always guarantee safety. The star could contain a potentially explo-
sive fuel which, if ignited, could also cause W to exceed zero for a time. In
addition, we do not necessarily expect the total energy to remain absolutely
and forever constant. After all, stars do shine and lose energy in doing so.

We shall now explore some consequences of energy losses due to radiation
where the energy source is gravitational energy released by contraction.

1.3.2 Application: The Kelvin–Helmholtz Time Scale

Barring bizarre circumstances, a star derives its energy to shine from three
sources: internal energy, thermonuclear fuel, and gravitational contraction.
One or more sources are used at one time or another. Here we briefly examine
the last source. A more complete treatment will be deferred to Chapter 6,
where stellar energy sources are discussed in more depth.

Suppose a star contracts very gradually while maintaining sphericity and
hydrostatic equilibrium at all times. (Realize that contraction cannot occur
without some acceleration unless all mass elements are just coasting. What we
mean here is that hydrostatic equilibrium is to be maintained almost exactly.)
As the star contracts, Ω and, possibly, W change. Denote these changes by
ΔΩ and ΔW . If γ remains constant during contraction, then (1.27) implies

ΔW =
3γ − 4
3(γ − 1) ΔΩ . (1.28)

Because we cannot follow the star’s progress exactly (at least at this stage in
the text) we use some dimensional arguments to estimate what Ω and W do
upon contraction.

Let R be the total stellar radius (or some other representative radius) and
ΔR be its change through some stage in the contraction. We assume γ >
4/3. From (1.8), Ω ∝ −GM2/R, which implies that ΔΩ ∝ (GM2/R2)ΔR
for constant q. Since ΔR < 0 for contraction, then ΔΩ is also negative in
these circumstances and the star sinks deeper into its own potential well.
This means that energy has been liberated in some form. The virial result
(1.28) also implies that ΔW < 0 and thus the system as a whole has lost
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energy. What exactly is the energy budget here? Well, part of what has been
made available goes into internal energy. This may be seen from (1.25) (with
d2I/dt2 set to zero for equilibrium), which becomes

ΔU = − 1
3(γ − 1) ΔΩ (1.29)

and yields δU > 0 for contraction. Of the |ΔΩ| units of energy made available,
ΔU is used to “heat” up the star. The rest is lost from the system. At this
stage in our discourse, it is simplest to assume that this energy has been
radiated from the stellar surface during the contraction; that is, power has
been expended in the form of luminosity. Note that if γ = 5/3 (as for an ideal
monatomic gas), then ΔU = −ΔW = −ΔΩ/2 and the split between internal
energy and time-integrated luminosity is equal. Note also that if an increase
in temperature is associated with the increase in U , then the star has an
overall specific heat that is negative: a loss of total energy means an increase
in temperature. This phenomenon is an important self-regulating mechanism
for normal stars. Finally, if γ = 4/3, then ΔW = 0 and all the energy goes
into increasing U and the star need not radiate at all.

Suppose we now extend the above analysis and hypothesize that contrac-
tion is solely responsible for maintaining stellar luminosities. For an ideal
gas star with γ = 5/3, ΔW = ΔΩ/2 = (q/2)

(
GM2/R2

)
ΔR. If we equate

−dW/dt to the luminosity L (as a power output), then

L = −dW

dt
= −q

2
GM2

R
(
dR/dt

R
)

. (1.30)

It is clear that if L is kept constant, then this equation defines a characteristic
e-folding time for radius decrease of

tKH ≈ q

2
GM2

LR (1.31)

where the “KH” subscript stands for the originators of the idea, Baron
W.T. Kelvin and H.L.F. Helmholtz. Choosing a representative value of q
of 3/2 (which is about right for the sun),

tKH ≈ 2× 107
( M
M�

)2( L
L�

)−1( R
R�

)−1
years. (1.32)

We know that a figure of 2 × 107 years for radius changes for the sun
cannot be correct from fossil evidence: terrestrial life is the same now (ex-
cept for relatively inconsequential developments) as it was many millions of
years ago. Any major structural change in the sun would have had profound
consequences for life and there is no sign of such consequences. However, we
will find that most stars do depend on (or, more accurately, are forced into)
gravitational contraction at some stage of evolution, and the corresponding
time scales can be comparatively very short.
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1.3.3 Application: A Dynamic Time Scale

Consider a star in hydrostatic equilibrium composed purely of an ideal gas
so that W = Ω/2 ≈ −GM2/R. If, by some magic, an internal process were
to take place instantaneously whereby γ → 4/3 but W did not change signif-
icantly, then d2I/dt2 ≈ −GM2/R from (1.26). By dimensional arguments,
I ≈MR2, so we define a time scale tdyn by d2I/dt2 ≈ I/t2dyn ≈MR2/tdyn.
Equating the two expressions for d2I/dt2 yields t2dyn ≈ R3/GM or

tdyn ≈ 1

[G〈ρ〉]1/2
(1.33)

where 〈ρ〉 ≈ M/R3 is approximately the average density. The dynamic time
scale tdyn is then a measure of the e-folding time for changes in radius as the
star makes dynamic adjustments in structure. (In this example, d2I/dt2 is
negative and the star collapses.) For the sun tdyn is about an hour, which is
many orders of magnitude shorter than tKH.

Expression (1.33) is a form of the “period–mean density relation” and it
will come up again when we discuss variable stars.

1.3.4 Application: Estimates of Stellar Temperatures

We can squeeze even more out of the virial theorem. Consider a star of
uniform density and temperature composed of a monatomic ideal gas. The
internal energy density is

E = 3
2nkT =

3
2ρ

NAkT

μ
erg cm−3 (1.34)

as we shall show in Chapter 3 (although it is an elementary result). Here
n is the number density of free particles (in number cm−3); k and NA, re-
spectively, are Boltzmann’s and Avogadro’s constants; and μ is the mean
molecular weight (usually in amu) per ion or atom of the stellar mixture.
The quantity μ will be discussed in much more detail shortly (in §1.4.1), but,
for now, regard it as that thing which makes

n =
ρNA

μ
.

For a typical stellar mixture of elements it is of order unity. In the language
of μ, the ideal gas pressure is

P = nkT =
ρNAkT

μ
. (1.35)

Multiplying E by the stellar volume V yields U and, since ρV = M,
we find U = 3

2MNAkT/μ. On the other hand, U = −Ω/2 from the virial
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theorem (1.25) for the γ = 5/3 gas, and Ω = − 3
5GM2/R for the constant-

density sphere. Equate the two forms for U ; solve for T in terms of ρ, M,
and μ; eliminate R by way of the density, and find

T = 4.09× 106 μ
( M
M�

)2/3

ρ1/3 K . (1.36)

Before discussing the numerical results obtainable from this expression, it is
worthwhile deriving the main components from another perspective.

The Lagrangian expression for the equation of hydrostatic equilibrium
(1.16) is useful in this regard. In dimensional form it states that P is pro-
portional to GM2/R4. But P also varies asMT/R3μ after density has been
eliminated in the ideal gas law, P = nkT . After equating the two versions
of P we find (1.36) (but not the constant). The point is that if R is made
smaller, for example, then ρ increases as 1/R3 and, consequently, so would
the ideal gas pressure were T to stay constant. This dependence of P on
R is not strong enough, however, because P must also increase as 1/R4 for
hydrostatic equilibrium independent of the temperature. Thus the ideal gas
equation of state and hydrostatic equilibrium demand that T must increase
as 1/R ∝ ρ1/3.

Figure 1.1 shows (1.36) plotted as log T versus log ρ for μ = 1 with M
ranging between 0.3 and 100 M�. As a typical star, consider the present-
day sun, which has an average density of 〈ρ〉 ≈ 1.4 g cm−3 and a central
density of approximately 80 g cm−3. If “average” may be identified with the
quantities in (1.36), then an average temperature for the sun is a few million
degrees. Even though it doesn’t make a lot of sense to talk about an average
temperature for a star, we note that the central temperature for the present-
day sun is Tc ≈ 15 × 106 K, which close to the number just found. As we
shall see later, a temperature greater than about 106 K is just what is needed
to initiate hydrogenic nuclear fusion in stars. A star thus produces energy by
nuclear fusion because hydrostatic equilibrium requires high temperatures.

Figure 1.1 has other lines on it that partition the log ρ–log T plane into
regions where equations of state other than the ideal gas law dominate.
The “degeneracy” boundary defines that region where Fermi–Dirac degen-
erate electrons begin to play a major role (and see Chap. 3). Above a line
corresponding to about 25 M�, radiation pressure (with a γ of 4/3 and
P = 1

3aT
4) becomes important. The areas beginning at ρ ≈ 106 g cm−3 and

T ≈ mec
2/k ≈ 5× 109 K (mec

2 is the electron rest mass energy) are regions
where relativistic effects come in. All of these domains have their own pecu-
liarities, which can greatly modify the simple picture built up thus far. But
we shall have to wait for Chapter 3 to see what they are.

1.3.5 Application: Another Dynamic Time Scale

We have already found one dynamic time scale associated with readjustments
of the moment of inertia when hydrostatic equilibrium is seriously thrown out
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Fig. 1.1. The ideal gas virial result for temperature versus density for various
masses (in solar units) from Eq. (1.36). Radiation pressure dominates above the
dashed line and degenerate electrons must be considered below the dotted-dashed
line. Regions where relativistic effects are important are indicated. The location of
a constant-density “sun” is shown by the �.

of kilter. Now consider perturbations in structure induced by small-amplitude
adiabatic sound waves and, specifically, compute how long it takes an adia-
batic sound wave to travel from, say, the center of a star to the surface and
back to the center again. (A discussion of mechanisms that might make such
waves, or cause them to be reflected, we postpone until Chap. 8.) If the stellar
sound speed is vs, taken as constant for now, and Π is the “period” for one
complete traversal, then

Π =
2R
vs

. (1.37)

From elementary physics, the square of the local adiabatic sound speed is
given by

v2s =
(
dP

dρ

)
ad
= Γ1

P

ρ
(1.38)

where Γ1, our first “adiabatic exponent,” is

Γ1 =
(
d lnP
d ln ρ

)
ad
=

ρ

P

(
dP

dρ

)
ad
. (1.39)

We shall find later that Γ1, which measures how pressure changes in response
to changes in density under adiabatic conditions, is of order unity (and, of
course, it is dimensionless). For an ideal monotonic gas (1.38) yields the
elementary result vs ∝

√
T .
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If hydrostatic equilibrium is closely maintained while the weak sound wave
passes through the star, then version (1.23) of the virial theorem yields

−Ω = 3
∫
M

P

ρ
dMr = 3

∫
M

v2s
Γ1

dMr ≈ 3v2s
Γ1
M

where the sound velocity and Γ1 appearing on the right-hand side represent
suitable averages of those quantities. Since |Ω| ≈ GM2/R we then obtain
an estimate for the period of Π ≈ (R3/GM)−1/2. Constants of order unity
(such as Γ1) have been set to unity. After eliminating mass and radius in
favor of density we find

Π ≈ 1

[G〈ρ〉]1/2
≈ .04

[〈ρ〉/〈ρ�〉]1/2
days (1.40)

where 〈ρ�〉 = 1.41 g cm−3. The final factor of 0.04 days comes from taking
care with some of those quantities of order unity and inserting information
that will be dealt with in Chapter 8.

Expression (1.40) is the same as tdyn of (1.33) and rightly so because
they both describe mechanical phenomena involving the whole star. A more
careful analysis of how standing sound waves behave, however, introduces
an additional factor of (3Γ1 − 4)1/2 in the denominator of (1.40). Again, a
“gamma” of 4/3 will do curious things—as is obvious if Γ1 < 4/3. We will
postpone this discussion until it is time to examine variable stars.

1.4 The Constant-Density Model

We are now going to construct a stellar model by insisting that density be
everywhere constant. Of course, in real life, we can’t do this—the run of den-
sity is determined by many factors—but the model does have some utility.
The constant density “model” of §1.3.4 was somewhat of a fudge. There we
claimed that the star was in hydrostatic equilibrium, at constant tempera-
ture, and the ideal gas law was responsible for the pressure. A little thought,
but not very much, should convince you that those conditions are contra-
dictory. They imply that the pressure must be constant and yet hydrostatic
equilibrium is still satisfied. We will make amends now.

If we set ρ = ρc = constant, with “c” meaning center, then the mass
equation (1.2) yields Mr = 4

3πr
3ρc. This last expression is true up to the

surface where r = R andMr =M. Thus, after some trivial algebra,

Mr =
r3

R3M .

This is now used in the Lagrangian form of the hydrostatic equilibrium equa-
tion (1.16) to rid ourselves of r. The pressure gradient is then
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dP

dMr
= − GM

4πR4

(Mr

M
)−1/3

.

Integrate this using the zero pressure boundary condition at R to find

P = Pc

[
1−
(Mr

M
)2/3

]
= Pc

[
1−
( r

R
)2]

(1.41)

where Pc is the central pressure (atMr = 0) with

Pc =
3
8π

GM2

R4 = 1.34× 1015
( M
M�

)2( R
R�

)−4
dyne cm−2. (1.42)

The numerical value for Pc can be shown to be a lower limit for central pres-
sures in hydrostatic objects if it is assumed that ρ always decreases outward.
This assumption is correct except for some very unusual circumstances (which
may, in any case, signal an incipient instability in structure). That Pc is a
lower limit seems reasonable because stronger concentrations of mass toward
the center than that of constant density imply stronger gravitational fields
which, in turn, require higher pressures to maintain equilibrium. (See, for
example, the “linear star model” of Stein 1966, which we include as Ex. 1.3.
You might also try Ex. 1.2. It explores another lower limit on Pc.)

A simple exercise for the reader is to verify that the above expressions for
pressure and mass distribution satisfy the equilibrium version of the virial
theorem (1.23) with d2I/dt2 = 0 and Ω = − 3

5GM2/R.
To find a temperature distribution we have to specify an equation of

state and we again choose the monatomic ideal gas as a useful example with
P = nkT . But, before we reach our objective, we should first figure out how
to compute n or, equivalently, the mean molecular weight μ.

1.4.1 Calculation of Molecular Weights

Assume that the gas is composed of a mixture of neutral atoms, ions (in
various stages of ionization), and electrons but, overall, the gas is electrically
neutral. These are the free particles composing n. First collect the ions and
neutral atoms together into nuclear isotopic species, calling all of them “ions”
for now, and denote a specific species by an index i. Thus, for example, assign
some particular index to all the ions of 4He. Each nucleus of index i has an
integer nuclear charge Zi and a nuclear mass number, in amu (atomic mass
units), of Ai. For 4He, Zi = 2 and Ai = 4. (The atomic mass of 4He is not
exactly 4, but this is close enough.) Furthermore, let Xi be the fraction by
mass of species i in the mixture such that

∑
iXi = 1. Thus, for example,

if 70% of the mass of a sample of matter were composed of species i, then
Xi = 0.7. The ion number density, in units of cm−3, of a given species i is
then
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nI,i =
(mass/unit volume) of i
(mass of 1 ion) of i

=
ρXiNA

Ai
(1.43)

where Avogadro’s number NA = 6.022142× 1023 mole−1. Just to be sure we
understand where this comes from, recall that “amu” is so defined that an
atom of carbon isotope 12C has a mass of exactly 12 amu, NA is the number
of 12C atoms in 12 g of 12C, and a “mole” is the amount of substance in a
system that contains as many atoms as there are atoms in 12 g of 12C. You
can take it from there.

The total for all ions is

nI =
∑
i

nI,i = ρNA

∑
i

Xi

Ai
. (1.44)

Now define μI as the “total mean molecular weight of ions” such that

nI =
ρNA

μI
(1.45)

or

μI =

[∑
i

Xi

Ai

]−1
. (1.46)

The ion mean molecular weight is then a sort of mean mass of an “average”
ion in the mixture and it contains all the information needed to find the
number density of ions.

The electrons are a bit more difficult to treat. To find out how many free
electrons there are we must have prior knowledge of the states of ionization
for all species. This information is difficult to come by and we will defer until
later a discussion of how it is obtained. For now we assume that some good
soul has done the work for us and has supplied us with the quantities yi that
contain what we want. These yi are defined such that the number density of
free electrons associated with nuclear species i is given by

ne,i = yi Zi nI,i = ρNA

(
Xi

Ai

)
yiZi . (1.47)

Thus, out of the Zi electrons that a particular ion of species i could possibly
contribute to the free electron sea, only the fraction yi are, on average, actu-
ally free. We call yi the “ionization fraction.” A value yi = 1 then means that
the species is completely ionized, whereas yi = 0 implies complete neutrality.
The total electron number density is therefore

ne =
∑
i

ne,i = ρNA

∑
i

(
Xi

Ai

)
yiZi =

ρNA

μe
(1.48)

which also defines μe, the “mean molecular weight per free electron.” (Note
that in no way are we assigning a “weight” to the electron in this sense.)
Thus



1.4 The Constant-Density Model 19

μe =

[∑
i

ZiXiyi
Ai

]−1
. (1.49)

If you look carefully at the way μe is constructed you will realize that it is the
ratio of the total number of nucleons (protons plus neutrons) contained in all
nuclei to the total number of free electrons in any sample of the material.

Finally, from the definition of n as the sum of nI and ne, we easily find
that the total mean molecular weight is

μ =
[
1
μI
+
1
μe

]−1
(1.50)

with
n = nI + ne =

ρNA

μ
. (1.51)

For relatively unevolved stars, in which nuclear transformations have not
progressed to any great extent, the major nuclear constituents are hydrogen
(1H) and helium (4He). We shall refer to their mass fractions (Xi) as, respec-
tively, X and Y . All else shall collectively be called “metals” (or, sometimes,
“heavies”) and their mass fraction is denoted by Z (not to be confused with
ion charge). A typical value of Z might be, at most, a few percent. Obviously

X + Y + Z = 1 . (1.52)

A catalogue of the relative abundances of metals seen on the surfaces of
most stars, including the sun, reveals that the dominant heavy elements are
carbon, nitrogen, oxygen, and neon. Elements heavier than those, up to nickel,
contribute a little, and past there we find only traces. For the most part, the
isotopes of the major heavy elements fall along the “valley of beta-stability”
in which Zi/Ai ≈ 1/2. The same value of charge to mass number also applies
to 4He.

An example of the metal abundances, Xi, seen in the solar atmosphere
is shown in Fig. 1.2 for the elements from carbon (Zi = 6) to nickel (Zi =
28). The abscissa is the average mass number for the element using relative
isotopic abundances observed for the earth. The set is normalized so that∑

Xi = Z = 0.02, which is close to the metal mass fraction for the solar
atmosphere. Note that oxygen is the most abundant (by mass), followed by
carbon, neon, etc. Assuming that standard versions of the Big Bang are
correct, these (and the other metals) are not the result of element production
in the very early universe. Of course we wouldn’t mention this at all in this
text were it not that stars were (and are) responsible—as we shall eventually
see. (For an expanded version of Fig. 1.2 see Fig. 2.19 and the discussion in
§2.8.1.)

In the deep stellar interior, hydrogen, helium, and most of the metals are
completely ionized (yi = 1). If, in addition, metals compose only a minor
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Fig. 1.2. Shown are metal abundances for the solar atmosphere versus average
elemental mass number: from material reviewed in Grevesse and Noels (1993).

fraction of the total, with Z � 1, then you can use the results of the above
analysis to find the following convenient approximation for μe:

μe ≈ 2
1 +X

. (1.53)

Note, however, that in detailed modeling of stars, this is to be used with
great caution; ionization might not be complete (or elements may even be
completely neutral) and abundances may be quite strange.

The ion mean molecular weight can be similarly approximated under the
same conditions as above with the additional observation that Z is small
compared to an average A (A = 〈Ai〉 ≈ 14 or so). The result is

μI ≈ 4
1 + 3X

. (1.54)

Using (1.53) and (1.54), an approximation for the total mean molecular
weight is then

μ ≈ 4
3 + 5X

. (1.55)

For a star just beginning the longest active period of its natural life—a “zero-
age main sequence” star (ZAMS)—typical abundances are X≈0.7, Y ≈0.3,
and Z≈0.03 (or somewhat less for stars formed earlier on in galactic history).
These correspond to μI ≈ 1.3, μe ≈ 1.2, and μ ≈ 0.6.

Now that we have reasonable approximations for the molecular weights
and are assured that typical values are near unity, we return to the constant-
density model.
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1.4.2 The Temperature Distribution

Taking P = ρNAkT/μ, and using the central pressure of (1.42), the central
temperature for the constant-density model becomes

Tc =
1
2
GM
R

μ

NAk
= 1.15× 107 μ

( M
M�

)( R
R�

)−1
K . (1.56)

The temperature distribution with respect to r andMr is of the same form
as that of the pressure in (1.41) with Pc replaced by Tc.

For solar values of mass and radius, this central temperature is remarkably
close to that of the present-day sun found from sophisticated solar models and
is an improvement over the virial “average” estimate of (1.36). The constant-
density model result for Tc is higher than that from the virial because we have
found the detailed run of pressure in the model and not just some average
pressure.

As noted earlier, however, we cannot just assume a density distribution
and expect such a stellar model to satisfy all the equations of stellar structure.
We now discuss some of these additional constraints and equations.

1.5 Energy Generation and Transport

One goal of the effort in fusion energy research is to heat up a plasma contain-
ing potential thermonuclear fuel to temperatures exceeding about a million
degrees and then physically contain it for a sufficiently long period of time.
Most stars do that as a matter of course. They have the temperatures, con-
tainment mechanism (gravity), fuel, and time, and can fuse together light
elements into heavier ones and, by doing so, release energy. We shall not dis-
cuss here precisely what kinds of thermonuclear burning take place in stars
(see Chap. 6) but we shall extend our notion of equilibrium to include energy
generation and how it is balanced by the leakage of energy through the star.
In particular, suppose some sort of nuclear burning is taking place within a
given localized gram of material. If the energy generated in that gram is not
transferred elsewhere, then a nonequilibrium condition holds and the mater-
ial heats up. If, on the other hand, we succeed in somehow removing energy
as fast as it is liberated, and no faster, then we say the material is in “ther-
mal balance.” (Note that this term is not universally used by all authors in
this context.) The sample of material is, of course, not strictly in equilib-
rium because, in the case of fusion, the composition is changing with time
as more massive nuclear species are produced—but usually very slowly. We
shall return to that problem later.

To express thermal balance quantitatively, consider a spherically symmet-
ric shell of mass dMr and thickness dr. Within that shell denote the power
generated per gram as ε (erg g−1 s−1). We shall refer to it as the “energy gen-
eration rate.” The total power generated in the shell is 4πr2ρε dr = ε dMr.
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To balance the power generated, we must have a net flux of energy leaving
the shell. If F(r) is the flux (in units of erg cm−2 s−1), with positive values
implying a radially directed outward flow, then Lr = 4πr2F(r) is the total
power, or luminosity, in erg s−1, entering (or leaving) the shell’s inner face,
and Lr+dr = 4πr2F(r + dr) is the luminosity leaving through the outer face
at r + dr. The difference of these two terms is the net loss or gain of power
for the shell. For thermal balance that difference must equal the total power
generated within the shell. That is,

Lr+dr − Lr = dLr = 4πr2ρε dr

which yields the differential equation

dLr
dr

= 4πr2ρε . (1.57)

We will refer to this (or a more general version of it) as the “energy equation.”
Its Lagrangian form is

dLr
dMr

= ε (1.58)

by way of the mass equation. Note that we have used total differentials here.
If the “equilibrium state” were also a function of time, then partials would
appear instead. Note also that other energy sources, such as gravitational
contraction, are being completely ignored at the moment.

Since, for now, we are only considering ε ≥ 0, then Lr must either be
constant (in regions where ε = 0) or increase monotonically with r or Mr.
We will demonstrate later that ε is usually a strong function of temperature
and, because temperature is expected to decrease outward in a star, ε should
be largest in the inner stellar regions provided that fuel is present. Thus Lr
should increase rapidly from the center, starting from zero, and then level
out to its surface value of L. There are exceptions to these statements for
highly evolved stars, but they will suffice for now.

Future discussions will make extensive use of a power law expression for
ε of the form

ε = ε0ρ
λT ν (1.59)

where ε0, λ, and ν are constants over some sufficiently restricted range of T ,
ρ, and composition. As important examples, consider briefly the two ways
that stars burn hydrogen (1H) into helium (4He). These are the proton-
proton (pp) chains, and the carbon-nitrogen-oxygen (CNO) cycles. The first
is, for the most part, a simple sequence of nuclear reactions, starting with one
involving two protons, that gradually add protons to intermediate reaction
products to eventually produce helium. The second cycle uses C, N, and O as
catalysts to achieve the same end. For typical hydrogen-burning temperatures
and densities (T >∼ a few million degrees, ρ of order 1 to 100 g cm−3), the
temperature and density exponents ν and λ are given in Table 1.1. We also



1.5 Energy Generation and Transport 23

give the exponents for the “triple-alpha” reaction, which effectively combines
three 4He nuclei (alpha particles) to make one nucleus of 12C at temperatures
exceeding 108 K. The constant term ε0 need not concern us for the present,
and the derivation of all these numbers will be given in Chapter 6.

Table 1.1. Temperature and Density Exponents

Energy generation mode for ε λ ν

pp-chains 1 ≈ 4
CNO-cycles 1 ≈ 15
Triple-α 2 ≈ 40

On the hydrogen-burning main sequence (discussed in Chap. 2), the pp-
chains dominate for stars of mass less than about one solar mass, but the
CNO cycles take over for more massive stars. This sensitivity to mass reflects
the combined factors of the general tendency of temperatures to increase with
mass (see Fig. 1.1) and the relative values of the temperature exponents, ν,
for the two modes of energy generation.

The total energy released in the conversion of hydrogen to helium is ap-
proximately 6 × 1018 ergs for every gram of hydrogen consumed. To get an
idea of what this might represent, a simple calculation will easily convince
you that the sun, with its present-day hydrogen content of roughly 70% by
mass, could continue to shine for almost 1011 years at its present luminosity
just by burning all its available hydrogen.

What about the other factor in thermal balance? What determines Lr?
As we shall see, there are three major modes of energy transport: radiation
(photon) transfer, convection of hotter and cooler mass elements, and heat
conduction, with the first two being most important for most stars. (White
dwarfs depend heavily on the last mode, but those stars are in a class by
themselves.)

For those of us concerned primarily with the interiors of stars, it is for-
tunate that the transfer of energy by means of radiation is easily described.
Except for the very outermost stellar layer, the energy flux carried by radia-
tion obeys a Fick’s law of diffusion; that is, the flow is driven by a gradient
of a quantity having something to do with the radiation field. The form is

F(r) = −D d(aT 4)
dr

where aT 4 is the radiation energy density and D is a diffusion coefficient.
We shall show in Chapter 4 that the important part of D is the “opacity,”
κ, which, by its name alone, lets you know how the flow of radiation is
hindered by the medium through which it passes. We suspect that D should
be inversely proportional to κ. Without further ado, multiply F(r) by 4πr2
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to obtain a luminosity, put in the relevant factors in D to be derived later,
and find

Lr = −4πr
2c

3κρ
d aT 4

dr
. (1.60)

The alternative Lagrangian form is

Lr = − (4πr
2)2c
3κ

d aT 4

dMr
. (1.61)

We shall have ample opportunity to use both of these forms.
The calculation of opacities is no easy matter and there is a whole industry

set up for just that purpose. Chapter 4 will discuss what goes into them but,
for now, we write a generic opacity in the power law form

κ = κ0ρ
nT−s cm2 g−1. (1.62)

As in the case of ε, the coefficients and powers, κ0, n, and s, are constants.
Important examples are electron Thomson scattering opacity (n = s = 0),
which is important for completely ionized stellar regions, and Kramers’ opac-
ity (n = 1, s = 3.5), which is characteristic of radiative processes involving
atoms.

The luminosity carried by the transport of hot or colder material, which
we call convection, is a good deal more difficult to treat. We shall give a
simple prescription in the section below along with simple ideas that tie
together what has been discussed thus far.

1.6 Stellar Dimensional Analysis

Some texts on stellar evolution (and see especially Cox, 1968, Chap. 22) dis-
cuss the topics of “homology” and “homologous stars.” These terms describe
sequences of simple spherical stellar models in complete equilibrium where
one model is related to any of the others by a simple change in scale. More
specifically, assume that the models all have the same constituent physics
(equation of state, opacity, etc., as given by power laws), the same uniform
composition, and that Mr and r are related as follows. If one of the stars
in the homologous collection is chosen as a reference star—call it star 0 and
refer to it by a zero subscript—then these relations must apply in order that
the stars be homologous to one another:

r =
R
R0

r0 and (1.63)

Mr =
M
M0

Mr,0 (1.64)

where those quantities not subscripted with a zero refer to any other star
in the collection. These relations mean that the stars have the same relative
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mass distribution such that radius and the mass interior to that radius are
related by simple ratios to the corresponding quantities in the reference star.
We may also replace these equations by their derivatives keeping R, R0,M,
andM0 all constant.

A consequence of the above is that the mass equations (1.2) for two stars
may be divided one by the other to give a relation between the densities at
equivalent mass points:

ρ = ρ0
dMr

dMr,0

1
dr/dr0

(
r

r0

)−2
= ρ0

(M
M0

)( R
R0

)−3
. (1.65)

For stars of constant, but differing, densities this is obvious. It would also
be an obvious result in a comparison of average densities between any two
stars. However, (1.65) is true in general only for homologous stars.

What follows is a simplified treatment of homologous stars using a form
of dimensional analysis. We shall follow the scheme of Carson (1986), and the
results obtained will turn out to be identical to those obtained from standard
homology arguments. They will also be very useful for estimating how various
stellar quantities such as mass, radius, etc., are related. Again, however, the
results are not to be used blindly.

We start by writing the Lagrangian version of the equation of hydrostatic
equilibrium (1.16) in a form that emphasizes the dependence of pressure on
mass and radius. Fundamental constants, such as G, could be retained but,
at the end, it would be apparent that they were not needed. We have

P ∝ M
2

R4 (1.66)

whereM and R are chosen to represent mass and radius variables as in the
spirit of (1.65). The pressure is specified in power law form in the same way
as was done for the energy generation rate and opacity. Thus, we write

P = P0ρ
χρTχT . (1.67)

The constants P0 (which will not be needed), χρ, and χT , are assumed to be
the same for all stars in the collection. Note that (1.67) may also be written
in logarithmic differential form as

d lnP = χρ d ln ρ+ χT d lnT . (1.68)

If (1.66) and (1.67) are equated, we then arrive at a relation between R, ρ,
T , andM, which we also written in logarithmic differential form: namely,

4 d lnR+ χρ d ln ρ+ χT d lnT = 2 d lnM . (1.69)

The plan is to treat the energy equation (1.58), the power law form of
the energy generation rate (1.59), the diffusive radiative transfer equation
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(1.61), and the power law opacity (1.62) in the same way as we just did for
the pressure. The aim will be to construct separate R, ρ, T , and L versusM
relations as

R ∝ MαR (1.70)
ρ ∝ Mαρ (1.71)
T ∝ MαT (1.72)
L ∝ MαL (1.73)

where the exponents α are to be determined. We have the requisite number
of equations to do this. For example, (1.70–1.73) may be inserted into (1.69)
to yield one relation between the αs:

4αR + χραρ + χTαT = 2

where a common factor of d lnM has been divided out. If this sort of thing is
done for, in order, the mass equation, the equation of hydrostatic equilibrium
(just done), the energy equation, and, finally, the transfer equation, we then
obtain the matrix equation⎛

⎜⎜⎝
3 1 0 0
4 χρ 0 χT

0 λ −1 ν
4 −n −1 4 + s

⎞
⎟⎟⎠
⎛
⎜⎜⎝

αR
αρ

αL
αT

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2
−1
1

⎞
⎟⎟⎠ . (1.74)

The determinant of the matrix on the left-hand side of (1.74) is

Drad = (3χρ − 4)(ν − s− 4)− χT (3λ+ 3n+ 4) (1.75)

where the “rad” subscript reminds us that energy transfer is by radiation
in this case. We assume here that Drad is not zero but it could be for some
particular combination of temperature and density exponents. The latter
circumstance leads to some strange situations, which we defer to Ex. 7.1.

The solutions to (1.74) are then (adapted from Carson, 1986, with the
correction of a minor typographical error in αR):

αR = 1
3 [1− 2(χT + ν − s− 4)/Drad] (1.76)

αρ = 2(χT + ν − s− 4)/Drad (1.77)
αL = 1 + [2λ(χT + ν − s− 4)− 2ν(χρ + λ+ n)] /Drad (1.78)
αT = −2(χρ + λ+ n)/Drad (1.79)

where these are to be used in (1.70–1.73) in the situation where radiation is
assumed to carry all the luminosity (or where you suspect radiation transfer
seems to dominate).

If energy transport is primarily by means of convection, then the above
analysis must be modified, and we include that analysis for completeness
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(although, as we shall see, the results are of limited use). We shall have
to wait until Chapter 5 to explore convection in detail, but it will have to
suffice for now to state that vigorous and efficient convection implies that the
dependence of temperature on density as a function of radius is adiabatic.
Specifically this means that

T (r) ∝ ρ(r)Γ3−1 (1.80)

where (Γ3 − 1) is the adiabatic thermodynamic derivative

Γ3 − 1 =
(
d lnT
d ln ρ

)
ad

(1.81)

similar to Γ1 of (1.39). Γ3 is also of order unity and we shall see much more
of these Γs later. This relation replaces the radiative transfer equation of
the preceding analysis and means that the last row in the matrix of (1.74)
is replaced by (0, Γ3 − 1, 0, −1) and the last element of the right-hand
side constant column vector is now zero. A simple calculation yields the
determinant for the new system

Dconv = (3χρ − 4) + 3χT (Γ3 − 1) (1.82)

and the new exponents α are

αR = (1− 2/Dconv) /3 (1.83)
αρ = 2/Dconv (1.84)
αL = 1 + 2[ν(Γ3 − 1) + λ]/Dconv (1.85)
αT = 2(Γ3 − 1)/Dconv (1.86)

for efficient convective transport.
How well does this analysis work? The stars that we think we know the

most about are located on the hydrogen main sequence. For the most part
these stars are nearly homogeneous in composition and their masses, lumi-
nosities, and radii are relatively well determined. Figure 1.3, constructed
primarily from data given in Allen (1973, §100, and see Table 3–6 in Miha-
las and Binney 1981) illustrates the observed relation between these three
quantities.

From our previous discussion we expect that stars on the upper (more
massive and luminous part of the) main sequence should have higher central
temperatures just because they are more massive. The appropriate opacity
law to use in this case is electron scattering for which n = s = 0. Similarly, the
energy is generated primarily by the CNO cycles and thus, from Table 1.1,
λ = 1 and ν ≈ 15. Although, as we shall show, the inner regions of these
stars are convective, radiative transport of energy still dominates in the outer
regions from which the power finally escapes. Finally, although radiation
pressure is important, the pressure is mostly determined by the ideal gas
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Fig. 1.3. Luminosity and radius versus mass for main sequence stars. All quantities
are in solar units. The solid (dashed) line is that for luminosity (radius) adapted
from material in Allen (1973). Open (filled) dots are luminosity (radius) for com-
ponents of binaries, from Harris et al. (1963) and Böhm (1989).

law for which χρ = χT = 1. If these stars represent, roughly, a homologous
sequence, then the preceding analysis should give values of αR and αL that
reproduce the slopes in Fig. 1.3. Using equations (1.75) through (1.79) and
the exponents just quoted, find that αR = 0.78, and αL = 3.0. A fit to the
slopes in Fig. 1.3 for stars with masses greater than a few solar masses yields

R
R� ≈

( M
M�

)0.75

and (1.87)

L
L� ≈

( M
M�

)3.5

(1.88)

where the sun is not only used for normalization of the various quantities,
but it appears as the reference star in the homologous set of stars. Obviously
the homology relations have done fairly well. In addition, αT = 0.22 and
αρ = −1.33 so that temperature should increase with mass on the upper main
sequence whereas density should decrease. We state now, without further
proof, that this is indeed what happens (and see §2.15). Stellar models show
that central (as a homologous point) temperatures and densities do just this
and the exponents are just about what we find.

The lower (less massive) main sequence is more difficult to treat. The
pp-chains (λ = 1, ν = 4) dominate the energy generation rate and Kramers’
opacity (with n = 1, s = 3.5) operates through much of the star but, and
especially for very low mass stars, convection is important. This may seem
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to be no problem because we have derived the homology relations for con-
vection, but the trouble is that the structure of these stars may be almost
solely determined by what happens at the very outermost radiative surface
(see Chap. 7). But, being intrepid, let us see what happens if we combine the
above exponents with an ideal gas law, assume radiative transfer, and try to
duplicate stars of around a solar mass. One result is that αL ≈ 5.5. We com-
pare this to some results from the astrometric satellite Hipparcos3 reported
by Martin and Mignard (1998), Martin et al. (1998), and Lebreton (2001).
The dashed line in Fig. 1.4 is an eyeball fit to the data with αL = 3.9. Even
though the slope may be moved around a bit (and we confess that we did use
an approximation to the bolometric correction to Hipparcos magnitudes), it
would stretch the imagination to claim that αL ≈ 5.5 is a good fit for main
sequence stars of around a solar mass or less.

Fig. 1.4. Shown are luminosities versus masses for main sequence stars in binary
systems derived from Hipparcos data as reported by Martin and Mignard (1998)
and Martin et al. (1998). The dashed line corresponds to a mass–luminosity relation
L ∝M3.9 and the location of the sun is indicated by �.

3 This seemingly prosaic space mission was launched in 1989 and was designed
to measure precise positions of stars in the sky. After an operational lifetime
of nearly four years, the observations have now yielded results of fundamen-
tal importance to astronomy, including new insights into stellar evolution and
cosmology. Prosaic indeed! A good overview is given by Kovalevsky (1998).
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1.7 Evolutionary Lifetimes on the Main Sequence

It is a fact of life that stars spend most of their active life on the main sequence
converting hydrogen to helium. Another fact is that when approximately
10% of a star’s original hydrogen is converted to helium, the star undergoes
structural transformations that cause its luminosity and/or radius to change
enough that it can no longer be called a main sequence star. (Why this
happens is a later subject.) Thus the main sequence lifetime is geared to the
rate at which fusion reactions take place. To estimate that time, tnuc, all we
have to do is calculate how much energy is released by burning 10% of the
star’s available hydrogen and compare it to the main sequence luminosity.
From the figures quoted before for the energy release per gram in hydrogen
burning, it is evident that

tnuc ≈ 0.1× 0.7×M× 6× 1018
L s (1.89)

or, after converting to years and solar units,

tnuc ≈ 1010
( M
M�

)( L
L�

)−1
years . (1.90)

Note that a factor of 0.7 appears in (1.89). This is the typical value of the
hydrogen mass fraction X given previously.

To eliminate the luminosity in (1.90), use the mass–luminosity relation
(1.88) and find, for upper main sequence stars,

tnuc ≈ 1010
( M
M�

)−2.9
years . (1.91)

The main sequence lifetime of the sun is thus expected to be around 1010

years (if we accept, roughly, the luminosity slope in Fig. 1.4). This is to be
compared to the present age of the sun of 4.6× 109 years as a “middle-aged
star.” More massive stars have shorter lifetimes because they are so profligate
in using up their fuel to maintain their high luminosities. Stars on the lower
main sequence with masses not much less than the sun have lifetimes that
exceed present estimates for the age of the galaxy and universe.

This simple theoretical result explains why the main sequence for clusters—
all of whose stars are assumed to have been formed at nearly the same time—
terminates at the “turnoff point” leaving only the lower mass stars, and why
rough estimates may be made for the ages of those clusters (although more
is involved than what we have implied, as discussed in §2.3).

1.8 The Hertzsprung–Russell Diagram

Before we go on in the next chapter to describe real stars, it is essential
that we introduce the Hertzsprung–Russell diagram—or, more simply, the
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HR diagram—which we shall use extensively. This two-dimensional diagram
is the astronomer’s way of characterizing important observational properties
of stars. The vertical axis is a measure of the power output of a star while
the abscissa tells us the color or, equivalently, the temperature of the visible
surface. The units used for the axes depend on context and who is presenting
them. An observer will usually express power in magnitudes of one sort or
the other. A theoretician usually prefers luminosity (and the conversion from
magnitude to luminosity is sometimes no easy matter). Similarly, the observer
will indicate color as a difference in magnitudes between two spectral bands
but the theoretician uses effective temperature, Teff , which is a theoretical
construct. The relation between luminosity, total stellar radius, and Teff is

L = 4πσR2 T 4
eff (1.92)

where Stefan–Boltzmann’s constant σ = 5.6704 × 10−5 erg cm−2 K−4 s−1.
There are some subtleties to what is meant by radius and effective temper-
ature but, in the simplest definition, R is the radius of the visible surface
(photosphere) and Teff is the temperature on that surface. Thus (1.92) is the
blackbody radiant luminosity emitted from the surface of a sphere of radius
R whose surface temperature is Teff . The effective temperature of the sun is
Teff(�) = 5, 780 K. In solar units for L and R, (1.92) becomes

L
L� = 8.97× 10

−16
( R
R�

)2

T 4
eff . (1.93)

We shall usually use the L–Teff version of the HR diagram. One major con-
venience in doing so is that it is very easy to place straight lines of constant
radius on such a diagram if L and Teff are expressed as logarithms. Note,
however, that the effective temperature scale runs from right to left with
the highest temperatures appearing on the left (for historical reasons). Note
also, the HR diagram gives no further information than L, Teff , and R. It
says nothing (at least directly) about stellar mass, composition, or state of
evolution.

An example of an HR diagram is shown in Fig. 1.5 from the review article
by Iben (1991). It shows typical ranges of stellar luminosities and effective
temperatures and three lines of constant radius that can be deduced from
(1.92–1.93). Nearby and bright stars are also indicated (from data listed
in Allen, 1973). It is clear that most of these stars lie along a relatively
well-defined locus called the “main sequence.” Others are collectively called
“giants” (because of their large size) while a small number have radii of about
10−2R� and these are the “white dwarfs.” There are other kinds of stars than
those shown in the figure and part of the task of the next chapter will be to
explore possible evolutionary relationships between these diverse objects.
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Fig. 1.5. An illustrative Hertzsprung–Russell diagram showing nearby and bright
stars as seen from the earth. Reproduced with permission from Iben (1991).

1.9 Summary Remarks

This chapter has discussed a diverse set of topics all tied to an underly-
ing theme; namely, assuming, for the most part, that stars are spherically
symmetric and mechanically static, then the application of relatively simple
physics allows us to derive their overall characteristics. Thus, because stars
are massive they must somehow contrive to build up immense internal pres-
sures to support themselves against collapsing under their own weight. Stars
achieve this by way of high internal temperatures and densities. These state-
ments are summarized in the viral theorem (plus the accompanying mass
and hydrostatic equilibrium equations and an appropriate equation of state),
which gives reasonable estimates of internal pressures and temperatures for
most stars. But, because most stars are made up chiefly of material left over
from the earliest stages of our evolving universe, hydrogen is a prime fuel
for thermonuclear reactions and we now have an energy source. That energy
must leak out, by a variety of means, to the surface, thus making stars shine.
If we tie these last pieces of the puzzle together and describe thermal balance
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and, for example, radiative diffusion, the resulting four equations (1.3, 1.6,
1.58, and 1.60, or their variants) plus constituent equations of state, energy
generation and opacity form a complete (for now) system that may be solved
to construct stellar models. We have not done the latter in this chapter but,
using dimensional analysis, we were able to find scaling laws relating models
to one another with some success when compared to the real world.

In the next chapter we get down to business by giving an overview of stel-
lar evolution and some of the kinds of stars evolution produces. Later chapters
will be devoted to elaborating on the equations governing stellar structure
and evolution, and developing the necessary input physics and techniques
required to find their solutions.

1.10 Exercises

There’s no problem so big or complicated
that it can’t be run away from.

—Graffito, London (1979)

Exercise 1.1. This is a little exercise in some items that this book does
not cover but which are essential to an understanding of stars. It has to
do with spectral classification of stars in the UBV photometric system and
some other matters. We recommend that you browse through the second and
third chapters of Mihalas and Binney (1981). Appendix A also contains some
information. Most of what you need for this exercise may also be found in
Allen (1973, Chap. 10) or Cox (1999). Note that you will have to look up
numbers in tables and these tables are not always entirely consistent: it’s still
not an exact science. Some of the answers you get for the following questions
will therefore be estimates, but they will be good ones. In any case, you are
told that a star has been observed with a UBV color index of B–V = 1.6 and
that interstellar reddening is negligible. In addition, the parallax of the star
is π = 0.25 seconds of arc, and its apparent visual magnitude is mV = 9.8.
Detailed spectroscopy also reveals that the star has all the characteristics of
a main sequence star (luminosity class V).

1. What is the spectral class of the star?
2. What is the distance to the star (in parsecs), its distance modulus, its
absolute magnitude (MV ), bolometric correction (B.C.), bolometric mag-
nitude (Mbol), and luminosity (in L�)?

3. What is its effective temperature (Teff) and radius (in R�)?
4. Estimate the mass of the star (inM�).

Exercise 1.2.We stated, without proof, that the central pressure of the
constant density star was a lower limit (§1.4); that is, central pressures must
exceed Pc = 3GM2/(8πR4). The proof of that statement requires a bit more
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work than we wish to attempt now. There is, however, a weaker lower limit
on Pc. To get at this consider the function

f(r) = P (r) +
GM2

r

8πr4
.

1. Show that f(r) decreases outward with increasing r. (Hint: Differentiate
f(r) with respect to r and use the equation of hydrostatic equilibrium to
show df/dr < 0.)

2. Assuming zero pressure at R, demonstrate (almost immediately) that

Pc >
GM2

8πR4

which is less stringent than that given by (1.42). Note that you must
showM2

r/r
4 goes to zero as r → 0.

Exercise 1.3. A useful (albeit not terribly realistic) model for a homoge-
neous composition star may be obtained by assuming that the density is a
linear function of radius. (See Stein, 1966.) Thus assume that

ρ(r) = ρc [1− r/R]

where ρc is the central density and R is the total radius where zero boundary
conditions, P (R)=T (R)=0, apply.
1. Find an expression for the central density in terms of R and M. (You
will have to use the mass equation.)

2. Use the equation of hydrostatic equilibrium and zero boundary conditions
to find pressure as a function of radius. Your answer will be of the form
P (r) = Pc×(polynomial in r/R). What is Pc in terms ofM and R? (It
should be proportional to GM2/R4.) Express Pc numerically with M
and R in solar units.

3. In this model, what is the central temperature, Tc? (Assume an ideal gas.)
Compare this result to that obtained for the constant-density model. Why
is the central pressure higher for the linear model whereas the central
temperature is lower?

4. Verify that the virial theorem is satisfied and write down an explicit
expression for Ω (i.e., what is q of Eq. 1.8?).

Exercise 1.4.We shall discuss completely degenerate electron equations of
state in Chapter 3, but we can use them now without explaining what they
are. If the electrons are nonrelativistic, then the power law exponents for
pressure of equation (1.67) can be shown to be χρ = 5/3 and χT = 0. Use
this information to find the exponent αR inR ∝MαR of (1.70). You will find
that it does not matter whether the star is fully convective or fully radiative;
you get the same answer from the homology relations.
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Exercise 1.5.We used dimensional analysis earlier on (in §1.6) to derive
some estimates for the mass–luminosity slope of hydrogen main sequence
stars. These stars burn hydrogen into helium. Suppose, by some means, all
the hydrogen is converted to 4He and that nucleus begins to combine to form
12C by way of the triple-α reaction. We could, in principle, then imagine
equilibrium stars composed of pure 4He that form a “helium–burning main
sequence.”

1. Assuming an ideal gas, radiative transfer with electron scattering, and
using the values of λ and ν from Table 1.1 for the triple-α reaction, find
αL of (1.73) for the helium main sequence.

2. Such a main sequence may not exist in nature but that doesn’t stop
theoreticians from constructing them on the computer. The following
pairs of mass–luminosity results, in the form [M/M�, log10 L/L�], for
three helium main sequence models are from

� Hansen, C.J., & Spangenberg, W.H. 1971, ApJ, 168, 71:
[4.0, 4.24], [2.0, 3.42], and [1.0, 2.52]. Use these results to estimate αL
and compare to part (1). (Recall that an expression such as 1.73 may be
written in differential form as in 1.68.)

3. Using the computer data of part 2 and your αL result, normalize the
mass–luminosity relation and find the constant C in

L
L� = C

( M
M�

)αL
.

4. Suppose stars on the helium main sequence evolve off their main sequence
in much the same way as do stars on the hydrogen main sequence. That
is, after 10% of a star’s helium is converted to 12C they radically change
their structure. Call the time it takes to do that the “main sequence
lifetime” or tms. If conversion of a gram of 4He to 12C releases 6 × 1017
ergs, then what are D and δ in

tms = D

( M
M�

)−δ
years?

We suggest you follow the arguments of §1.7.
Exercise 1.6. (This problem is due to Ellen Zweibel.) It appears that some
stars (besides the sun) are orbited by planets. Those extra-solar planets dis-
covered thus far seem to have masses comparable to, or greater than, that of
Jupiter and they orbit the parent star close in. Suppose one of these planets
is captured by, and accreted onto, the parent. The way we imagine this to
take place is that the planet’s orbit is circular and just grazes the star before
accretion. Once accretion has taken place and the planet is completely assim-
ilated into the star, we expect the combined body to have a radius different
than that of the original star. To get a common nomenclature, letM be the
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mass of the original star, m the mass of the planet and assume m << M.
The radius of the parent star is R and what we wish to find is how much
that changes in terms of the small quantity m/M. Call the change ΔR.
1. As the planet is accreted the total energy of the star increases by some
amount ΔW . Let this amount be due solely to the orbital energy of the
planet just as it is accreted (i.e., neglect any chemical or gravitational
energy addition from the planet). What is ΔW in terms of M, m, and
R (and G)?

2. If the gravitational potential energy Ω takes the form (1.8), then find ΔΩ
to first order in the small quantities m/M and ΔR/R. (Note that part
of the change in Ω is due to the added mass m and part due to ΔR.)
Assume q of (1.8) remains constant.

3. Use the virial theorem in the form (1.28) to solve finally for ΔR/R.
4. If γ = 5/3 and q = 3/2, what would ΔR/R be for the sun if it swallowed
Jupiter?

Exercise 1.7.We shall have little to do with general relativity (GR) in this
text but here we briefly explore the “Tolman–Oppenheimer–Volkoff” (TOV)
GR equation of hydrostatic equilibrium for spherical stars. It is the daunting
expression

dP

dr
= −G

[
ρ(r) + P (r)/c2

] [M(r) + 4πr3P (r)/c2
]

r [r − 2GM(r)/c2]

where ρ is now the mass–energy density but we still haveMr =
∫
4πr2ρ dr.

Let’s see what this gives for a “star” of constant ρ. For those of you who wish
to delve into this further see

� Shapiro S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: Wiley & Sons)

or, with even more stuff,
� Misner, C.W., Thorne, K.S., & Wheeler, J.A. 1973, Gravitation (San
Francisco: Freeman).

1. Show that

P (r) = ρ(r)c2
[
(1− 2MGr2/R3c2)1/2 − (1− 2MG/Rc2)1/2

3(1− 2GM/Rc2)1/2 − (1− 2MGr2/R3c2)1/2

]

satisfies the TOV equation for ρ constant.
2. Show that this solution reduces to the constant density star solution of
§1.4 in the Newtonian limit c → ∞ and that the central pressure of
(1.41–1.42) is retrieved.

3. Define the parameter α = 2GM/Rc2 and show that the TOV GR solu-
tion does strange things as α→ 8/9.

4. If α = 8/9, then what is R, in km, as a function ofM/M�?
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5. IfM is equal toM� what is the density (in g cm−3) at α = 8/9. (Obvi-
ously we’re not fooling anyone here. This all has to do with black holes.)

Exercise 1.8. In the paragraph following the expression of the virial theorem
(1.18) we stated that an extra term −3PSVS should appear on the right hand
side if we had chosen to consider only that part of the spherical star interior
to r = rS having a volume VS and a surface pressure PS at rS .

1. Prove this for the case of hydrostatic equilibrium; that is, show that the
correct expression is

2K +Ω− 3PSVS = 0.

Hint: Integrate (1.22) by parts using the equation of hydrostatic equilib-
rium (1.5 or 1.16) and the mass equation, and remember to only go out
to rS in that integration and the one for Ω (1.7).

2. Show explicitly that this amended version works for the constant density
sphere.

Exercise 1.9. Redo the analysis of §1.3.5 and compute the period, Π, of the
sun assuming it has constant density. Take Γ1 = 5/3. Note that this involves
an integration.

Exercise 1.10. A short article by G.P. Collins in the February 2000 issue
of Scientific American (p. 20) on the equivalence principle suggests a slightly
off-the-wall, but easy, problem. Gravitational binding energies are negative
but, by mc2 arguments, so should the mass associated with this energy be
negative. Thus, for example, the total mass of the sun should be less than
the sum of its material parts when that negative mass is taken into account.
Assuming the sun to be a constant density sphere, or anything else that is
reasonable, by what fraction is the sun’s mass decreased when gravitational
binding energies are included?

Exercise 1.11. (This version of the stability problem is due to Cole Miller
of the University of Maryland.) Take the second variation of the total energy
Wad (compare with §1.2) and derive a condition for stability. Assume that
the equation of state is given by P = c1ρ

Γ1 , where c1 is some constant.

1. Write δ2Wad in its general form, assuming this equation of state. At the
end it will be most convenient to change variables fromMr to V , so you
will also need to express factors like (δr)2 in terms of V and δV , where
V is the regular volume.

2. If the adiabatic index Γ1 is a constant throughout the star, then it is
possible to show that the volume perturbations are proportional to the
volume; i.e., δV = kV , where k is a constant throughout the star. Use
this to determine a simplified condition for stability.
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1.11 References and Suggested Readings

The following format for references will be used throughout this text. In ad-
dition to listing the sources, we will occasionally make editorial comments
leading the reader to where we believe especially good discussions of some
material can be found. General references are usually listed first. These are
then followed by those keyed to sections within a chapter. Appendix C pro-
vides a key to the journal abbreviations and the sequencing of volume and
page numbers used here.

General References
Many of the quotes found at the beginning of the chapters are from
� The Oxford Dictionary of Quotations, 3rd ed. 1980 (Oxford: Oxford Uni-
versity Press)

� Metcalf, F. 1986, The Penguin Dictionary of Modern Humorous Quota-
tions (London: Penguin Books Ltd.).

The monograph by
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach),

which was written with the aid of R.T. Giuli, is a classic monograph on
stellar structure. You can sometimes find it in used bookstores, but even
then its price is beyond the means of the average student. What you will not
find in this work are modern discussions of topics such as evolution in close
binary systems, supernova models, magnetic fields, rotation, etc. Don’t let
this discourage you. The care paid to detail and accuracy, and the clarity
of style, are worth it. You will note, incidentally, that we have attempted to
conform to Cox’s nomenclature for various quantities but there is no true
standard. You may have to do some translation if you consult other texts.
We must also guide you to the excellent text by
� Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer-Verlag).

The authors pioneered much of the work in stellar structure and evolution,
and their text contains a wealth of detail regarding the results of stellar
modeling. Although much of their philosophy and nomenclature differ from
what you will find here, both texts supplement each other in many respects.
You can now purchase a paperback version (1983) of the text by
� Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill).

It, like Cox (1968), is a bit outdated, but the last four chapters on nuclear
reactions and nucleosynthesis are still the clearest and most complete. There
are also excellent sections on the calculation of opacities and other quantities
discussed from a nice physical viewpoint.
We recommend the recent text
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� Rose, W.K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge
University Press),

which covers several topics in more depth than we do here. The physics also
tends to be at a higher level.
Other texts worthy of mention are
� Huang, R.Q., & Yu, K.N. 1998, Stellar Astrophysics (Singapore: Springer-
Verlag)

� Böhm-Vitense, E. 1992, Introduction to Stellar Astrophysics: Stellar
Structure and Evolution (Cambridge: Cambridge University Press)

which is the third volume in a three-volume series, and
� DeLoore, C.W. & Doom, C. 1992, Structure and Evolution of Single and
Binary Stars (Hingham, Mass.: Kluwer).

This last text will prove especially useful for its treatment of binary systems,
which is a topic we only touch upon in Chapter 2. Another general text is
� Collins, G.W. 1989, The Fundamentals of Stellar Astrophysics (New
York: Freeman).

The text by
� Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 2nd ed. (San Fran-
cisco: Freeman)

has a wealth of material on stars and other matters astronomical and astro-
physical. We recommend it strongly as a general reference for all students.
Yet another is the monograph by
� Jaschek, C., & Jaschek, M. 1987, The Classification of Stars (Cambridge:
Cambridge University Press).

As the title implies, this work describes how and why stars are classified
observationally. Most sciences start off with observation and classification so
the importance of such work should not be underestimated.
The text (in two volumes)
� Shu, F.H. 1991, 1992, The Physics of Astrophysics, Vols. 1–2 (Mill Valley,
CA: University Science Books)

offers an interesting alternative to gathering together many texts to fill in the
physics you need for astrophysics. The two volumes are at the graduate level
but Shu gives enough introductory material for an undergraduate to follow
the presentation. Not all topics are covered but this work may fit many of
your needs. The total cost, however, is not insubstantial.
� Allen, C.W. 1973, Astrophysical Quantities, 3rd ed. (London: Athlone)

is a popular compendium of astrophysical lore, tables, etc., in a single volume,
although it is rapidly getting out of date. It should be on your shelf (if you
can find an affordable used copy). A newer version of Allen (without Allen)
is
� Cox, A.N. (editor) 1999, Allen’s Astrophysical Quantities (New York:
Springer-Verlag).

It too has a hefty price tag. Another reference to look into is



40 1 Preliminaries

� Lang, K.R. 1991,Astrophysical Data: Planets and Stars (Berlin: Springer-
Verlag).

Useful intermediate texts at the undergraduate level are hard to come by
because many are written for the nonscientist. Among those few that we
suggest are
� Shu, F.H. 1982, The Physical Universe: An Introduction to Astronomy
(Mill Valley, CA: University Science Books)

and
� Carroll, B.W., & Ostlie, D.A. 1996, An Introduction to Modern Astro-
physics (Reading: Addison-Wesley).

On a more elementary level are the many undergraduate first-year astronomy
texts for the nonscience major. There are so many available we shall not go
out on a limb and recommend one. However, just picking (almost) randomly
from our bookshelf, we have
� Chaisson, E., & McMillan, S. 1999, Astronomy Today, 3rd ed. (New
Jersey: Prentice-Hall, Inc.).

It (among other texts of its kind) has fancy acetate overlays and a CD-ROM
containing a hyperlinked version of the text plus videos and animations that
bring the discussion to life. A continuously updated website is also associated
with the text that enables the student to access resources on the WWW. (We
wish we could have done all this but, with the restricted market for advanced
texts, you would not have been able to afford ours had our publisher gone
along with such an idea!)
You might wish to check out
� Zel’dovich, Ya.B., & Raizer, Yu.P. 1966, Physics of Shock Waves and
High Temperature Hydrodynamic Phenomena, Vols. 1–2 (New York &
London: Academic Press)

from your library. It is by no means a text on astronomy but it contains a
wealth of material, of all kinds, that bears on the subject. It is written in the
Russian style, that is, clear, but not that easy.

§1.2: An Energy Principle
� Goldstein, H. 1981, Classical Mechanics, 2nd ed. (Reading: Addison-
Wesley)

is a standard text on classical mechanics. Many of us were raised on it.
If you can find
� Chiu, H.-Y. 1968, Stellar Physics, Vol. 1 (Waltham, MA: Blaisdell)

we suggest you browse through its chapters. It is unfortunate that the second
volume never appeared. The first volume covers topics you cannot find in
other standard texts in stellar astrophysics. It is now out of print.

§1.3: The Virial Theorem and Its Applications
The short monograph by
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� Collins, G.W., II 1978, The Virial Theorem in Stellar Astrophysics (Tuc-
son: Pachart)

contains many applications and variations on the virial theorem plus detailed
derivations. Our discussion of the theorem does not include important topics
such as magnetic fields, rotation, and relativistic effects. You will find them
in Collins. The references to Cox (1968) and Clayton (1968) are listed above.

§1.4: The Constant-Density Model
Take a good look at

� Stein, R.F. 1966, in Stellar Evolution, eds. Stein & Cameron, (New York:
Plenum Press), pp. 3–82.

If you can find this symposium volume, Stein’s article is worth the effort. In
it he uses simple models to bring out important points in stellar structure
and evolution.
� Clayton, D.D. 1986, AmJPhys, 54, 354,

titled Solar Structure without Computers goes at least one step further than
Stein (1966) in constructing a model. It has lots of potential for homework
problems!
� Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements,
eds. Pratze, Vangioni-Flam, & Casse (Cambridge: Cambridge University
Press), p. 15

is an excellent article to consult for abundances. (And see also the references
in Chap. 2.)

§1.6: Stellar Dimensional Analysis
The Observatory often publishes useful short articles that deserve more expo-
sure. Among these are often amusing commentaries on astronomical subjects
and historical articles. The reference to
� Carson, T.R. 1986, Obs, 106, 71

may be found there.
The observational data for the mass–luminosity and mass–radius relations of
Fig. 1.3 are from Allen (1973),
� Harris, D.L., III, Strand, K.Aa., & Worley, C.E. 1963, in Basic Astro-
nomical Data, ed. K.Aa. Strand (Chicago: University of Chicago Press),
p. 273

and
� Böhm, C. 1989, Ap&SS, 155, 241.

The second reference is one in a series of books which, though somewhat
outdated, still contain much useful material.
� Kovalevsky, J. 1998, ARA&A, 36, 99

reviews what has been learned to date from the Hipparcos mission along with
a brief description of the hardware. The material used for Fig 1.4 was taken
from
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� Martin, C., & Mignard, F. 1998, A&A , 330, 585
and
� Martin, C., Mignard, F., Hartkopf, W.I., & McAlister, H.A. 1998, A&AS,
133, 149.

See also
� Lebreton, Y. 2001, ARA&A, 38, 35

for a review of the impact of Hipparcos on our understanding of stars.

§1.8: The Hertzsprung–Russell Diagram
Figure 1.4 is from
� Iben, I. Jr. 1991, ApJS, 76, 55.

This paper contains a personal account of Iben’s work and, as is usual in his
papers, the reference list is exhaustive.
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“And now for something completely different.”

— Monty Python’s Flying Circus (Oct. 1969–Dec. 1974)

“I never know how much of what I say is true.”

— Bette Midler (1980)

“You’d look pretty simple from ten parsecs too.”

— Attributed to Fred Hoyle in response to a question from
someone who was puzzled why we do not seem to
understand so simple a thing as a star. (c. 1955)

The structure and evolution of stars is the one part of modern astrophysics
that can be described as, to a considerable extent, a solved problem. This
means we can–

1. write down a set of four differential equations (see the previous chapter
or §7.1) that describe gradients of conditions inside a star,

2. insert into these equations the necessary physics of nuclear reactions
(Chap. 6), transport of energy by radiation, convection, and occasionally
conduction (Chaps. 4 and 5), and the relationship among the thermody-
namic variables T , ρ, and P , also called the equation of state (Chap. 3).

3. We can choose reasonable boundary conditions (e.g., see §4.3),
4. integrate the equations numerically (Chap. 7) to find out what stars
should look like, and

5. compare model stars with real ones.

The happy result is that the calculated stars are very much like the observed
ones in mass, brightness, size, temperature, surface composition, age, and the
correlations between these.

This chapter is supposed to provide you with the vocabulary and a few
other tools needed to work through the rest of the book and, meanwhile, to
be able to start reading some of the research literature in stellar astronomy
without having to look something up every other sentence. Appendix A,
however, has a short glossary in case you need to and, of course, we hope you
have read the basic material in Chapter 1. The approach is that of a teller
of folk tales, beginning with the birth of the heroine, “once upon a time,”
and ending with “they exploded happily ever after.” Keep in mind, however,
that most of what is said can, nevertheless, be documented, calculated, and
otherwise shown to be the honest story. Where the accompanying pictures
are blurry or vital details are hidden in shadows, we will try to tell you so.

You will note that the main body of this chapter is almost entirely in nar-
rative form. At most, you will see hardly more than fragments of an equation.
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The idea is not to interrupt the narrative with distracting mathematics. We
will, however, often suggest that you attempt an exercise at the end of this
chapter that bears directly on some point we are making (and that’s where
we hide the equations).

The stellar formation process is actually the least well understood part of
the lives of stars and we defer its discussion until the end. You might think
that this would be a fatal flaw in all that follows. Curiously, it is not. The
structure of a newborn star is simpler than that of any later stage and is well-
explained by the “five-step process” described above. A standard analogy is
a human one: you can do a good job of talking about babies and human
life without knowing much about conception and embryology. The analogy
extends to regions of current star formation sometimes being called stellar
nurseries or even wombs. Even the difficulty in studying the two formation
processes is somewhat similar. Baby formation is hidden in the uterus and
even more private places; star formation is generally hidden by dust, at least
to the observer of visible light. Indeed the advent of high-resolution infrared
astronomy has begun to draw back some of the veils.

2.1 Young Stellar Objects (YSOs)

A protostar becomes a star when the energy released by thermonuclear fusion
(hydrogen to helium) exceeds that released by contraction from the supply of
gravitational potential energy. This is not something we can directly observe.
Thus protostars and young stars are put into classes 0, 1, and 2 based on
things we can see—ratio of infrared to visible light, amount of molecular gas
around, how the gas is moving, and so forth. The class 0’s are still contracting,
and very few members are known, primarily because of the short time scales
involved. The 1’s and 2’s are already living on nuclear energy and, typically,
blowing material off their surfaces in bipolar or jet-like outflows.

These jets gradually clear away surrounding afterbirth, opening out from
narrow beams to wide cones, until visible light can find its way from the
stellar surface (photosphere) to us without being absorbed and re-emitted as
infrared. A cartoon of this sequence in shown in Fig. 2.1.

Signatures of the YSO phase include the following:

1. We see variability in the visible light, because material ia still falling down
onto the surface of the star from a residual disk, so that both the stellar
surface and the disk have temperature irregularities that change in times
from hours to days and longer.

2. Emission lines are observed in their spectra, from the disk, or the bipolar
outflow, or both.

3. YSOs have more infrared luminosity than older stars of the same mass,
because there is more dust around.
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Fig. 2.1. This cartoon illustrates the four stages of star formation. (a) First proto-
star cores form within molecular clouds. Then, in (b), the protostar builds up from
the inside out while the surrounding nebular disk rotates around it. (c) Bipolar flows
break out along the rotation axis of the system. Finally, in (d), the surrounding
nebular material is swept away, and the newly formed star, with disk, is revealed.
From Shu et al. (1987). Reproduced with permisson, from the Annual Review of
Astronomy and Astrophysics, Vol. 25, c©1987 by Annual Reviews.

4. A high level of what is called activity is seen, meaning flares, star spots,
emission from a hot corona, and so forth, all of which are found at a low
level in the sun and other stars. The reason seems to be two-fold: young
stars are often rapid rotators (rotation periods from hours to days, versus
a month for the sun) and, because they are cooler than they will be when
settled onto the main sequence, they have surface convection that extends
deeper. The combination results in a strong dipole magnetic field, which,
in turn, drives the activity.

5. X-ray emission is seen from the hot corona. There is also radio emission,
but it is too faint to see except from very nearby, very active stars.

YSOs were first recognized from the combination of variability, emission
lines, location on the HR diagram, and location in space near clouds of gas
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and dust. The prototype low-mass YSO is T Tauri.1 T Tauri stars (or T
Taus, which rhymes with “cows”) is a common name for the whole class.

The things you need to know about the protostar stage to carry on from
here are–

1. The energy source is gravitational potential energy and the total lifetime
therefore is short. The masses, luminosities, and radii of the YSOs are not
terribly different from solar values, so using the Kelvin–Helmholtz and
nuclear time scales of (1.32) and (1.90), the contraction life of a “typical”
YSO is only about 0.1% of its potential nuclear life.

2. Protostars are convective throughout. Thus a new star is chemically ho-
mogeneous. This will change as it ages.

We shall discuss more details of the structure and evolution of protostars
in Chapter 7, but, for now, Fig. 2.2 shows some evolutionary tracks on an
HR diagram for a variety of masses. The evolution starts in the upper right
(luminous but cool) and proceeds to the point where hydrogen is ignited on
the main sequence.

Fig. 2.2. Shown are pre-main sequence evolutionary tracks adopted by Stahler
(1988) from various sources. Masses are in solar units. Also shown are the observed
locations of a number of T Tauri stars. Reproduced with permission.

1 For those of you unfamiliar with how and why stars are named, we suggest you
look through some non-technical books such as Allen (1963) or Burnham (1978).
Another source of named stars in the spirit of how stars are classified is Jaschek
and Jaschek (1987).
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2.2 The Zero-Age Main Sequence (ZAMS)

Most people pronounce this as a word, rhyming with “hams.” The main
sequence gets its name because it includes most of the stars in an honest
sample. An “honest sample” means all the stars in a particular stellar cluster
or in a given volume of space. The “naked-eye” stars are not an honest sample
because they include not only the nearest few intrinsically faint stars, but lots
of intrinsically bright stars that we can see out to large distances.

Fig. 2.3. Shown in the left panel is the HR diagram for the 101 brightest stars as
seen from earth. Compare this to the right panel that shows what happens when
only those stars (97 of them) within five parsecs are considered. The data are from
Allen (1973) as supplemented from Lang (1991). The sun is indicated by the �, and
the main sequence, white dwarfs, and red giants are labeled. The location of some
well-known stars are also shown: Betelgeuse (B), Sirius A (Sa), the white dwarf
Sirius B (Sb), α Cen A (Ca, very much like the sun), α Cen B (Cb), Proxima Cen
(PC, the nearest known star), Rigel (R), Arcturus (Ac), and Aldebaran (Al).

To illustrate this point, the left-hand panel of Fig. 2.3 shows an observer’s
HR diagram for the brightest 101 stars as seen from our vantage point. The
abscissa, B–V , is the difference in magnitudes of a star as measured using
two of the Johnson–Morgan filters. “B” denotes blue whereas “V ” means
visual. Since blue is “hotter” than most wavelengths in the visible part of the



48 2 An Overview of Stellar Evolution

spectrum, a large value of B–V implies a cool object, once you remember that
the magnitude scale is backward with respect to intensity. So, for example, a
main sequence star with B–V equal to zero has an effective temperature of
Teff ≈ 10, 000 K, whereas B–V of unity implies a considerably cooler 4,700 K.
The ordinate, MV , is the absolute visual magnitude using a standard filter.
With some effort, not to be described here, it can be converted to luminosity,
although the conversion depends on the kind of star in question. (See Fig. 1.4,
which shows a composite HR diagram.)

All the brightest star panel tells us is that the brightest stars are intrinsi-
cally luminous and most of them are distant. The least luminous of the bunch
is the sun, indicated by the sun sign, and its near twin, Cen A. This is not an
honest sample. On the other hand, the right-hand panel of Fig. 2.3 is more
to the point. It shows what happens if you plunk down all the nearest stars
on an HR diagram—at least those out to five parsecs. There are about 100 of
them, not including objects so faint we cannot pick them out, but which are
probably not true stars anyway. If you wish more nearby stars to play with,
consult Lang (1991, p. 758ff.) for over 2,200 stars within 22 parsecs.

The majority of stars in the right-hand panel constitute the main se-
quence, and are so labeled. These stars are essentially unevolved even though
they are converting hydrogen to helium. Were any of them formed very re-
cently we would call them ZAMS stars. “Zero-age” in practice means that the
star has changed so little in luminosity, radius, and Teff since it first started
hydrogen fusion that you cannot notice it. This might mean only a few thou-
sand years for a massive star, 107 years for the sun, and 109 years or more
for the least massive stars. (See §1.7 and especially Eq. 1.91 for tnuc.) And, in
a cluster of stars all formed at the same time, it is possible for the ones of 6
M� to have long ago evolved to white dwarfs (as in Fig. 2.3), those of 4M�
to be red giants (like those in the upper right of the left panel of Fig. 2.3),
those of 2 M� to be slightly off the ZAMS, those of 1 M� still on it, and
those of 0.4M� still not quite through the formation process. Note that the
HR diagram says nothing directly about the mass.

To tidy up, note that you can still follow the main sequence on the
brightest-stars panel. It continues on to hotter temperatures than the sun’s,
but then the stars plotted rise almost vertically. Part of this rise is due to
evolution of those very bright (and massive, it turns out) stars.

2.2.1 Life on the Main Sequence

The single most important thing in the life of a star is its mass, with its
initial mix of hydrogen, helium, and heavy elements a distant second. The
mass determines luminosity, size, and surface temperature (as discussed at
length in §1.6) and also which nuclear reactions will occur, how long they will
last (§1.7), when and how material gets mixed through the star (convection),
and how the star dies.
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A ball of gas whose center never gets hot enough for nuclear fusion is, by
definition, not a star. Thus you can say with great confidence that all stars
spend most of their active (nuclear burning) lives on the main sequence,
where2 their energy source is the fusion of hydrogen (1H) to helium (4He)
by one of two sequences of reactions, called the proton-proton chain and the
CN or CNO cycle, bicycle, or tricycle. The last was originally intended to be
funny but is an honest word for the three coupled sets of reactions among C,
N, and O. The details appear in §6.4.

The proton-proton chain (pp-chain) is the main energy source in stars
of less than about 1.5 M� because it is easier for two protons to get close
together then for a proton plus a carbon nucleus. Thus the pp-chain starts in
gas that is too cool for the CNO cycle. But if a star is massive enough that
the balance between gravity and pressure takes its central temperature into
the CNO regime (above about 1.8× 107 K), then CNO goes faster and pro-
duces most of the power. In either case, four hydrogen atoms are eventually
converted to one helium atom (4He), which is less massive by about 0.8%.
The mass lost comes out as photons (mostly) and neutrinos. The neutrinos
leave immediately and how much energy is lost in them has to calculated
carefully for each relevant nuclear reaction. In the case of the sun, we observe
the neutrinos as expected.3

Other differences among main sequence stars include–

1. The CNO cycle liberates energy in a much smaller region of the star
than do the pp-chains (i.e., its rate depends on a steeper power of the
temperature, and see §1.6 and Chap. 6) and so drives convection in the
stellar center. The sun may have had a small convective core when it was
young, but is now radiative there.

2. At about the same 1.5M� dividing line, there is also a difference in how
energy is transported in the stellar envelope (loosely speaking, the outer
layers, which may turn out to be quite extensive). Less massive stars
have neutral hydrogen near their surfaces. Neutral hydrogen impedes the
flow of ultraviolet photons, and convection transports most of the power.
In more massive stars, the surface gas is hotter, the hydrogen largely
ionized, and radiation carries the power. Notice that few stars (beyond
the pre-main sequence stage) are convective throughout. Thus we do not
see nuclear reaction products on their surfaces for most of their lives.

2 You might think that this should say “when their energy source is . . ..” In prac-
tice, we often say “where” (having in mind a location on the HR diagram), and
one of the subsidiary goals of a book like this one is acculturation—to enable
you to sound like one of the tribe.

3 Until quite recently, it looked as if we were seeing fewer neutrinos than expected
by a factor of three. This has now been sorted out; it was a problem in weak
interaction physics, rather than in astrophysics. Section 9.3 includes more of the
story. See Bahcall (2001) and Seife (2002) for short reviews.
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Stars with masses less than about 0.3M� are an exception and remain
fully convective for all their lives.

3. The 1.5 M� figure comes up yet again when main sequence stellar ro-
tation is considered. Stars of mass greater than this tend to rotate com-
paratively rapidly compared to lower mass stars (see Fig. 9.9). There is
definitely a good story lurking here!

4. Most of the surface opacity comes from the elements heavier than hydro-
gen and helium, namely the “metals.” (See Fig. 1.2 and discussion for a
typical “mix” of metals. And, yes, we do say “metals” in astronomer’s
primitive lingo—remember the tribes who are supposed to count one,
two, many; we count hydrogen, helium, metals.) Thus the more metals
there are the less deeply you can see into the star. The deeper you go, the
hotter the gas, and so metal–poor stars look bluer than metal–rich stars
of the same mass and age.4 This can be conspicuous enough to show even
in the integrated light of a whole cluster or galaxy of stars.

5. All of the correlations of L, T , R, and lifetime withM explored in §1.6
seem to hold up quite well.

6. The “Supplemental Material” section near the end of this chapter lists
relevant properties of ZAMS models for your reading pleasure. You can
reproduce some of these using the “ZAMS” code found on the CD-ROM.

Most main sequence stars change only very slowly (with exceptions due to
mass loss from really massive stars), in both interior structure and external
appearance. When four (ionized) hydrogen atoms fuse to one (ionized) helium
atom, eight separate particles (including electrons of course) become only
three. Thus, since P = nkT (Eq. 1.35) and a fixed central pressure is needed
to balance gravity, the stellar core must slowly contract and heat up. This
makes the nuclear reactions go faster, and the star gradually brightens. You
might think the surface temperature would increase too, but it does not, it
goes down. Thus the sun, at formation 4.6 Gyr ago, was about 25% fainter
but also somewhat bluer (and a better source for ultraviolet light for primitive
biochemistry) than the present sun. Earth has somehow adjusted and kept
its surface temperature nearly constant, despite the 20 K increase you might
expect (and see Ex. 2.7).

2.2.2 Brown Dwarfs

A gas mass that does not get hot enough to fuse hydrogen all the way to
helium is called a brown dwarf, meaning something between red and black.
Really, of course, they are infrared dwarfs. For solar composition, the brown
dwarf/main sequence cut is about 0.085M�. It is about 0.1M� (around 75
times the mass of Jupiter) for a very metal poor star with less opacity to keep
4 To show this, do Ex. 2.3 at the end of this chapter where, using homology
arguments, Teff ∝ Z−0.35 for low-mass ZAMS stars; that is, the lower the metal
content, the hotter (bluer) the star.
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the light and heat in. While ordinary hydrogen fusion sets in close to 107 K,
deuterium (2H or 2D) will burn at 106 K, via the second reaction in Table
6.1. Only one atom in a hundred thousand of hydrogen is deuterium, left over
from the early universe, but this is enough to slow the contraction and death
of brown dwarfs a good deal. Indeed, for stars less than a billion years old, the
main sequence is almost continuous in appearance across the dividing line. A
few young brown dwarfs even show some signs of “stellar” activity. But with
time, they fade, while a true star of 0.1M� will live 1011–1012 years.

The first certain brown dwarf, Gliese 229B, was discovered in 1995 and
is the companion to the red dwarf star Gliese 229A. One of the keys to its
identification, besides its being far fainter than its faint companion, was the
presence of methane in its spectrum. Any “real” star is far too hot to allow
methane to form in its atmosphere, although it is a common molecule in the
atmospheres of gas planets in our Solar System. The effective temperature of
Gliese 229B is about (only!) 900 K and it is a member of the newly minted
spectral class T (see §4.7 for additional information). The year 1995 also
saw reports of other brown dwarfs (not then confirmed to be such but some
showed lines of lithium, an element consumed by nuclear reactions in true
stars) and, by now, there are dozens in the known zoo. For reviews, see
Basri (2000a,b), Gizis (2001) and, for low-mass stars and substellar objects,
Chabrier and Baraffe (2000), and Burrows et al. (2001).

2.3 Leaving the Main Sequence

From now on, we will be making further distinctions by mass. Only stars of
initial mass more than about 0.3 M� will be coming with us to §2.4 and
beyond. The smaller, fully convective, ones keep fusing and mixing until all
the hydrogen is converted to helium after 1012 years. The universe is not old
enough for this to have happened to any real star (except a member of a
binary pair that gets stripped at some intermediate time), so we are telling
you the result of a calculation here, but it is hard to escape.5

Stars of more than 0.3M� will eventually use up all the hydrogen fuel at
their centers while much still remains in their outer envelopes. The star is, of
course, still radiating (losing energy, a conserved quantity). The core cannot
cool down to conserve the energy supply, or pressure would cease to balance
gravity. Indeed this starts to happen, and so the core contracts, releasing
gravitational potential energy to keep the star shining.

As a prelude to what is coming next, Fig. 2.4 summarizes what single, or
essentially single, stars do in their ZAMS and later lives as a function of a
series of “mass cuts” (a term you probably won’t see in the literature, but
we like it). Thus, stars of about 0.85 M�, or less, take a time of about the

5 You might wish to use some of the computer codes on the CD-ROM to check on
what we say here.
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present age of the universe (τhubble) to evolve off the main sequence. Stars of
initial mass of 1.5M�, or less, use the pp-chains to burn hydrogen, whereas
more massive stars use the CNO cycles to the same end. And so on. All will
become clear, we hope, as this chapter continues. The masses at the mass
cuts do depend on factors such as metallicity, which causes most mass cuts
to increase as metals increase. Mass loss (Ṁ) has the same effect. If the star
is in a close binary system, then the story can change dramatically. Note
also that we have not included the energy releasing effects of gravitational
contraction, which introduces a bunch of stuff at various stages that would
require a very large, separate, diagram. In any case, consider this figure a
sort of “crib sheet” to be consulted as we go along.
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Fig. 2.4. Our “Mass Cut” diagram showing the fate of single stars in various mass
classes. See text.

Some distinctions by mass again need to be made and we shall use the
evolutionary tracks from Iben (1967) shown in Fig. 2.5 and the time scales
listed in Table 2.1 as a guide. Stars of more than 1.5M� go immediately to
the phase described in the next section, whereas those of more than about 5
M� evolve without changing luminosity very much. It is not a coincidence
that this 1.5 M� cut is the same as the dividing line between pp-chain
and CNO cycle energy generation on the ZAMS. Larger mass =⇒ higher
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temperatures =⇒ nuclear reactions occur more readily. We have never been
able to decide whether agreement in mass cut between the nuclear issues and
the mode of energy transport in the envelope is a coincidence or not.

Fig. 2.5. Representative theoretical evolutionary tracks for stars of different
masses. Reproduced, with permission, from Iben (1967), Annual Review of As-
tronomy and Astrophysics, Vol. 5, c©1967 by Annual Reviews. Luminosity is in
units of L�. The stages 1, · · ·,5 are referred to in the text and Table 2.1.

Stars of less than 1.5 M� require some heating of the hydrogen outside
their inert helium cores to reach stage 4 in Fig. 2.5 and reacquire a nuclear
energy source. Thus their cores contract rapidly. Their outer layers simulta-
neously expand, soaking up more energy. The result is change in structure
on the thermal or Kelvin–Helmholtz time scale (see §1.3.2), so that we catch
very few stars doing this. In a HR diagram for the members of a cluster of
not more than 1,000 or so stars, therefore, there will be a gap, occupied by
at most one or two stars. It is called the Hertzsprung gap. The “one in a
thousand” factor is roughly the same as the ratio of thermal to nuclear time
scales. (Compare Eqs. 1.32 and 1.90 for a star like the sun.) Globular clus-
ters have so many stars (104–105) that there is no actual gap, just relative
sparsity.
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Table 2.1. Stellar Lifetimes Where (i)–(i+1) Is Interval (in yr)

M/M� (1)–(2) (2)–(3) (3)–(4) (4)–(5)

9.00 2.14× 107 6.05× 105 9.11× 104 1.48× 105
5.00 6.55× 107 2.17× 106 1.37× 106 7.53× 105
3.00 2.21× 108 1.04× 107 1.03× 107 4.51× 106
2.25 4.80× 108 1.65× 107 3.70× 107 1.31× 107
1.50 1.55× 109 8.10× 107 3.49× 108 1.05× 108
1.25 2.80× 109 1.82× 108 1.05× 109 1.46× 108

2.3.1 Cluster HR Diagrams

As we are talking about HR diagrams for clusters, it is time we showed some
examples. Much of what we know of stellar evolution derives from observation
of these usually closely knit groups of stars. Since, as is usually assumed, the
stars in a cluster form at very nearly the same time, their locations on the
HR diagram represent a snapshot taken at the present moment of where the
stars have gotten to since the cluster’s formation, the primary determinant
being the initial stellar mass on the ZAMS.

The first example is shown in Fig. 2.6, where the HR diagrams of two
“young” open clusters are superimposed. The dots are for the stars in the
Pleiades (the most prominent open cluster in the northern winter sky, also
known as M45, C0355+239, the latter an International Astronomical Union
number giving Right Ascension and Declination, etc.) and M67 (aka NGC
2682, C0847+120, etc.) gets the triangles. M67 is much further away from us
than the Pleiades (some 720 versus 125 pc) so we have moved M67 upward
so the main sequences of the two clusters coincide.6

There are problems with cluster diagrams such as these. For example, do
all the stars shown (all 652 of them) really belong to the cluster, or are they
stars that happen to be in the same field? Have the effects of interstellar
absorption by dust and gas been properly taken into account? For example,
if M67 is at 720 pc how has this affected the V magnitude (thus dimming the
stars), and has B–V been altered because absorption affects different spec-
tral bands in different ways (altering what we guess to be Teff)? Answering
questions like these is beyond the scope of this text.

Figure 2.7 shows the HR diagram for the globular cluster M3 (NGC 5272,
C1339+286), which is a popular object for amateur (and professional) as-
tronomers. There are estimated to be some 3 × 105 stars in M3. The figure
shows only a little over 10,000 because of the difficulty in obtaining UBV
photometry in a such a crowded and faint stellar field. The radius of M3 is
only about 25 pc, giving an average stellar density of some 20 stars pc−3,
6 If the initial abundances of the clusters were the same this would be called “main
sequence fitting,” a technique used to find the relative distances of clusters. In
this case the abundances are close enough for our purposes.
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Fig. 2.6. Shown are the HR diagrams of the open clusters The Pleiades
and M67. The data for the figure were downloaded from the WWW (see
ftp://cdsarc.u-strasbg.fr/cats/II/124A) and is based on Mermilliod (1986)
supplemented by Mermilliod and Bretschi (1997) for the Pleiades. The Strasbourg
catalogs may be queried from http://vizier.u-strasbg.fr/viz-bin/VizieR.

which is more than 20 times as crowded as the solar neighborhood. The cen-
tral regions of M3 are even denser. (For SciFi fans, Isaac Asimov’s Nightfall
tells it all.) The turnoff point (labeled “TOP” here but “TO” is frequently
used) from the main sequence (MS) for M3 seems to be easy to find but to
pin it down to a “point” is impossible. Thus, converting a color at the TOP
to a Teff for metal poor ZAMS stars, then to a luminosity, and finally to a
lifetime on the ZAMS and an age for the cluster (see later), is an enterprise
for optimists (but you should try Ex. 2.8, where you are to estimate the age
of M67). This is an important point because stars in globular clusters (along
with most “halo” stars permeating and surrounding our galaxy in a roughly
spherical halo) are the oldest known surviving stars with large populations
in our galaxy. Thus pinning down the age of globular clusters is tantamount
to finding a lower limit to the age of the galaxy and, by hopeful extension,
the ages of other galaxies in the universe.

Besides the turnoff point, there are other indicators that are used to de-
termine ages of globular clusters, although we shall not go into any real detail
at this point. These indicators include the combination of the location of the
tip of the red giant branch (RGB in the figure) and the asymptotic giant
branch (AGB), both of which represent advanced evolutionary stages. RGB
stars are burning hydrogen in a shell surrounding a dormant helium core af-
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Fig. 2.7. The HR diagram of the globular cluster M3. The data for the figure were
downloaded from the VizieR WWW site (see Fig. 2.6) and originally were reported
in Buonanno et al. (1994).

ter having left the subgiant branch (SGB), whereas AGB stars are evolving
rapidly while burning helium deep inside. The horizontal branch (HB) con-
sists of stars evolving more leisurely while burning core helium. Its height
above the ZAMS is an age indicator. The strange gap to the left of the HB is
the home of the RR Lyrae variable stars: they are there but their color and
luminosity vary periodically. They are standard candles that can be used to
determine distances to a cluster. The figure also shows the location of the
enigmatic blue stragglers (as “BS”) that seem never to have left the ZAMS.
See Ex. 2.5 for one guess at their history.

Cluster and Galactics Ages

So, how well are globular cluster ages known? At the time of the first edition
of this text, in 1994, ages in the range 13–18 Gyr were the norm for clusters
in our galaxy. The trouble, though, is that this range places the time of
formation of globular clusters before the Big Bang if generally accepted (but
not by all) values of the Hubble constant are used. (An excellent semi-popular
review titled Cosmology in the New Millenium by Freedman & Turner may
be found in the October 2003 issue of Sky & Telescope, p. 30. They give a
value for the Hubble constant of H0 = 72+4

−3 km s−1 Mpc−1 corresponding to
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a time of 13.7 ± 0.2 Gyr since the Big Bang.) This embarrassing situation
seems now to be resolved: the ages of the clusters are now in the range 10–13
Gyr, which now has them being formed at a reasonable time after the Big
Bang.7 Is this magic? No, a combination of factors have conspired to reduce
the ages by a few Gyr. (For reviews see, e.g., Lebreton, 2000, and, in more
popular form, Chaboyer, 2001, and the 3 Jan 2003 edition of Science starting
on p. 59.)

Firstly, newer observations with larger telescopes using greatly improved
instrumentation coupled with measurements by the astrometric satellite Hip-
parcos (see §1.6) put the globular clusters perhaps 10% further from us than
previously thought. This means that they are more luminous than supposed.
More luminous means the stars evolve faster and, hence, the clusters are
younger. But stellar evolution studies must be consistent with these new
ages. As is often the case in this business, a prod in the right direction gets
results. A combination of realistic adjustments in microphysics (equations
of state and opacities) and stellar atomosphere calculations (and this all in-
cludes better determination of stellar surface abundances, which, especially
for helium, is not easy) now give consistent ages. If a third edition of this
text ever appears, we hope we will not have to rewrite this story yet again.

Why do the HR diagrams for young and old clusters look the way they do?
The following sections will give more details of the story, but imagine a cluster
consisting of many stars all formed on the ZAMS at the same moment. As
time goes on, the more massive stars will evolve off the ZAMS first, followed
by successively less massive members. If we take snapshots of the cluster
as time progresses and superimpose these on the same HR diagram, we get
something that should look like Fig. 2.8 if the evolution is not carried on to
the very later stages (or ignored for now to simplify the diagram). Notice how
the stars have peeled off the main sequence, with each time frame (0.2–20
Gyr) having its own turnoff point. These are called isochrones and they do
demonstrate, in effect, the evolution of HR diagrams for a sample cluster.

2.3.2 Mass Loss From Massive Stars

Before we truly leave the main sequence, we must mention the early evolution
of very massive stars. Not many are made in the course of star formation,
but their high luminosities have a profound effect on the formation of their
nearby, less massive, siblings. The early course of evolution of massive stars
is governed not only by the transmutation of hydrogen into helium, but also
by how fast mass is driven from their surfaces by radiation pressure acting
on strong spectral lines. This topic is worthy of a text by itself (as are many

7 Note that not all globular clusters are old. Galactic collisions may induce intense
star formation, including the formation of globulars, and this is going on even
as we speak. See the article by S.E. Zepf and K.M. Ashman in SciAm, October,
2003, p. 46.
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Fig. 2.8. Representative theoretical isochrones for Pop II clusters of the indicated
ages. Adapted from the Revised Yale Isochrones, Green E.M., Demarque, P., and
King, C.R., 1987, The Revised Yale Isochrones and Luminosity Functions (New
Haven, CT).

other topics only mentioned here) and we recommend the text by Lamers
and Cassinelli (1999), and, for a review, Kudritzki and Puls (2000).

The rate at which mass is driven off, Ṁ = dM/dt (pronounced “Mdot”),
depends primarily on luminosity, the escape velocity at the stellar surface,
and the metal abundance Z. (And, of course, all but the last of these depend
on mass.) There is an excellent correlation between Ṁv∞R1/2 and L for
(roughly) fixed Z. Here v∞ is proportional to the escape velocity at the
stellar surface. This correlation is shown in Fig. 2.9, adapted from Lamers
and Cassinelli (1999).

An application of Fig. 2.9, derived from further material in Lamers and
Cassinelli (1999), is shown in Fig. 2.10. Although we have taken some liberties
with their analysis to simplify matters, the figure gives the flavor of what
happens (but don’t use it for a robust meal). Also shown is the ZAMS for
Z = 0.02 in mass–luminosity space; that is, choose a mass and where the
dashed line intersects a line for luminosity (only a small number are shown),
that is the luminosity for that mass. Note that the ZAMS result represents
the newborn star with mass loss having been neglected. (You may wish to
attempt Ex. 2.13 to see where Fig. 2.10 comes from.)

As an example of what this figure implies, suppose we consider an 80M�
star on the ZAMS. Its luminosity is about 106 L�. At that luminosity and
mass, the mass loss rate is a staggering Ṁ ≈ 2× 10−5 M� yr−1. From this
we can compute a mass–loss timescale of tML =M/Ṁ of about 4×106 years;
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Fig. 2.9. Ṁv∞R1/2 is shown plotted against L/L� for spectral class O and B
stars in our galaxy from radio and Hα observations. Here Ṁ is in M� yr−1, v∞
in km s−1, and R in solar units. See Ex. 2.13 for more on what this figure implies.
We thank Henny Lamers and Joe Cassinelli for providing the PostScript file from
which this figure was made. From Lamers and Cassinelli (1999) and reprinted with
the permission of Cambridge University Press.

that is, an e-folding time of only 4× 106 years with that Ṁ would effectively
evaporate almost half of the star. Compare this to our naive ZAMS lifetime
estimate (tnuc) of Eq. (1.91), which yields 2 × 105 years. In other words,
tML/tnuc is near 20. This would seem to imply that the effect of mass loss
is minor. However, we must remember that any reduction in mass means
a decrease in central temperature and, hence, for the CNO cycles, a more
dramatic decrease in energy generation, and so on. The conclusion is that
any self-respecting evolutionary calculation for massive stars must include
mass loss.

There is good observational evidence for mass loss—and not only direct
observation of winds—because in the stellar zoo we find the Wolf–Rayet
stars, which are luminous stars characterized by strong emission lines that
dominate the optical spectrum. They are near the main sequence but their
spectra indicate a strong deficiency or absence of hydrogen, and there is also
evidence that hydrogen and/or helium burning products have either been
brought to their surfaces, or that mass loss has exposed deeper layers. Even
the categories assigned to them (“WC,” with lots of carbon in their spectra,
or “WN” for nitrogen) tell the story. Because of vigorous mass loss, these
massive stars are highly evolved but, in some sense, young.

An example of the (theoretical) effects of mass loss is shown in the HR
diagram of Fig. 2.11 for a 40 M� star on or very near the ZAMS subject
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Fig. 2.10. Shown are mass loss rates, Ṁ, as a function of mass for massive stars,
along with a ZAMS. See text for discussion.

to varying rates of loss. The rate is parameterized by the multiplier N as
Ṁ = NL/c2 (cgs units). At the start on the ZAMS, N should be about
75 using the results of Fig. 2.10 (but N may change as mass is lost). Also
shown (in the insert) is how mass changes with time. The last points shown
correspond to the time the star can be said to have left the main sequence.
In any case, the naive no–mass–loss case (N = 0) differs appreciably from
what happens when mass loss is included.

2.4 Red Giants and Supergiants

For all stars that have made it this far, the hydrogen just outside the built-
up helium core is soon hot enough for fusion to continue (M >∼ 1.5M�) or
resume (M <∼ 1.5M�). This “hydrogen shell burning” always occurs via the
CNO cycle. We make a point of this because CNO hydrogen burning is the
main (perhaps only) source of nitrogen in the universe, so without it you
would not be able to eat a high protein diet. Energy production in the thin,
hot shell also drives some convection. We do not expect actual mixing to
the surface yet. Nevertheless, particularly among globular cluster members,
stars not very far up the red giant branch (RGB, which nobody tries to
pronounce as a word, and see, e.g., stage 5–6 in Fig. 2.5) often have surfaces
somewhat enriched in nitrogen and/or carbon. The code phrase is “meridional
circulation” (meaning gas flows that head north and south as well as up and
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Fig. 2.11. This shows the effect of differing rates of mass loss on main sequence
evolutionary tracks for a star with initial mass of 40M�. The rate is parameterized
by N where N = 0 means no mass lost. (See text and Lamers and Cassinelli, 1999,
discussion for their Fig. 13.1.) The insert shows stellar mass as a function of time.

down). A one-dimensional stellar model cannot reveal whether mixing of this
sort is expected. More complex models say that it probably is, though still
not so much as we see perhaps.

Do we understand why stars become red giants, that is, why the envelope
expands and the core contracts (and conversely a few stages downstream)?
Well, everybody who has solved the differential equations for stars that have
helium cores, or followed evolving stars as such cores develop, have found
bright stars with extended envelopes. Thus red giants are implied by the
underlying physics that we think we understand.

Indeed even in analytical form, the equations can be juggled to show that,
if mean molecular weight drops sharply between a core and an envelope, the
ratio of core to envelope density will be large. No one, however, has found a
set of words that answers the question “Why do stars become red giants?” in
a way that satisfies most of the community. So, rather than our attempting
to do this, we refer you to Sugimoto and Fujimoto (2000), and the many
difficult references therein.8

8 If you try Ex. 2.22, you will get an idea that something must happen if the
inert helium core gets too massive. That exercise discusses the “Chandrasekhar–
Schönberg limit,” which places limits on how much mass can be built up in
an isothermal helium core before the core can no longer support the overlying
envelope and must thus contract and heat up.
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The red giant phase lasts, on average, about 10% as long as the main se-
quence phase, because there is a comparable amount of hydrogen fuel avail-
able (about 10% of the mass of the star) and the stars are ten times as
bright. Indeed, the red giants, and supergiants, were recognized precisely
because they are so much brighter than main sequence stars of the same sur-
face temperature. This means they must be bigger as well, and, just as on
the main sequence, there are correlations among mass, luminosity, size, and
lifetimes that we understand. Larger mass means brighter, bigger, shorter
lived, and hotter but less dense at the center. The hydrogen burning shell
works its way out through the star, so that the mass of inert helium grad-
ually increases. Both central density and central temperature (ρc and Tc)
also increase. They are somehow in a race to reach §2.5. This “race” is sum-
marized below (adapted from Kippenhahn and Weigert, 1990); that is, the
destiny of the cores of most stars consists of nuclear burning, followed by fuel
exhaustion, a phase of core contraction and heating, and then the ignition of
built up fuel, and so on.

Nuclear Burning

Core Contraction

Core Heating Fuel Exhaustion
���� ����

����������

The sun will, of course, become a red giant in due course. Its surface
will probably reach beyond the present orbit of Venus, but not as far as the
earth (though some supergiants have radii of 1 AU and more). Other things
being equal, the equilibrium surface temperature of the earth will increase in
proportion as

T ( earth, now )
T ( earth, future )

=
[ L( sun, now )
L( sun, future )

]1/4

and your first thought may be, oh, well, if it’s only the 1/4 power, what
difference does it make? But 101/4 = 1.78 and 1.78 × 290 K (the present
average earth surface temperature) is 517 K, approaching the molten lead
and sulfur regimes.

2.5 Helium Flash or Fizzle

What happens next depends on the outcome of the race between central
temperature to increase from about 107 K to about 108 K and central density
to increase from its main sequence value of 102±1 to 106 g cm−3. If density
wins, the helium gas becomes degenerate (see §3.5), with pressure support
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provided by the electron momentum that is locked in by the uncertainty
relation ΔxΔp = h̄. Such gas can contract no further and can heat no further.
Some envelope may leave in a wind, but the core will be left as a helium
white dwarf. Stars of initial mass less than about 0.4M� will meet this fate.
(Remember that small mass goes with low Tc but high ρc.) The universe is
not yet old enough for this to have happened to any star left to itself. We do,
however, find helium white dwarfs as members of binary star pairs, where
rapid mass transfer to the companion has stripped an initially more massive
star down to a helium core of less than 0.4 M�. In globular clusters, the
binary may be later disrupted by close encounters with other stars, so that
we find single helium white dwarfs in some of the clusters as well.

The other extreme is that Tc reaches 108 K, while ρc is still considerably
less than 106 g cm−3. This happens in stars of more than about 1.5 M�
which, therefore, experience peaceful helium ignition and do not change their
structure rapidly at this point in their lives, although the exact mass cut
for this does depend on initial composition. Indeed, the more massive the
star, the less it is shaken up by sequential nuclear fusion episodes (aside
from explosions later on!), and those of more than about 3M� do not even
get enormously brighter upon leaving the main sequence, as may be seen in
Fig. 2.5, where the tip of the RGB at point 6 is not very much more luminous
than point 1 on the ZAMS. Compare this to the situation for 1M�.

Notice that our sun belongs to the intermediate type regime between
0.4 and 1.5 M�. (The mass of the sun is very precisely one, at least in
these units, in case we haven’t told you enough times before.) Such stars,
which also include those now leaving the main sequence in globular clusters,
ignite helium while the fuel is partly degenerate, that is, Tc reaches 108 K,
the minimum temperature for barrier penetration to allow helium nuclei to
cuddle up, when ρc is close to 106 g cm−3. “Helium flash” is the phrase used
to describe the resulting nuclear explosion.

Why an explosion? Well, in a gas where P = nkT , if you heat it up a bit,
the pressure goes up, the gas expands and all is well. But, if P is a function
only of density (or, nearly only) as it is in degenerate materials, ignition of a
new nuclear fuel will heat the gas, and it will not expand. The increased tem-
perature, however, makes the reaction go faster, which further heats the gas,
which makes the reaction go faster, which · · ·. No, this does not go on forever.
But it does continue until thermal pressure exceeds degenerate pressure, at
which time the gas “notices” that it is wildly out of equilibrium and expands
with vigor. Exactly how vigorous is this expansion is still a matter of some
controversy. It certainly is not enough to disrupt the star because we see stars
that have (peacefully?) survived the event. However, the usual evolutionary
calculations sidestep possible hydrodynamical consequences by enforcing me-
chanical equilibrium so questions remain. We have also sidestepped the issue
of exactly where the flash starts. In many calculations it does not take off at
stellar center but a bit off-center. This is due to the emission of neutrinos,



64 2 An Overview of Stellar Evolution

which are lost to the star and carry off energy, thus depressing the central
temperature somewhat.

Fig. 2.12. Central density versus central temperature for evolving stellar models.
Reproduced, with permission, from Iben (1985).

In the helium flash case, the central density of the star is reduced to about
103–104 g cm−3 and the core expansion is mirrored by envelope contraction
(the inverse of “Why does a star become a red giant?”). This is reflected in a
rapid decrease in stellar luminosity and increase of effective temperature and
the star heads to the left in the HR diagram. By the way, other nuclear fuels
may be ignited when they are degenerate, or partly so, and will also explode.
This happens to hydrogen of the surfaces of white dwarfs (nova explosions),
and to carbon and oxygen at the cores of white dwarfs that are driven above
a critical mass limit.

A summary of what we have talked about appears in Fig. 2.12, which
shows the evolution of central density and temperature for three stellar
masses. Note that the helium flash takes place shortly after lower mass
stars cross the dashed line labeled εF /kT = 10. This is the “degeneracy
boundary” to the right of which matter is degenerate (see §3.5.3 and Fig. 3.7
for the boundary at a different composition). The line “Helium Ignition” is
self-explanatory, but it does dip to lower temperatures as density increases.
(Higher densities mean the helium nuclei are closer together, although Chap-
ter 6 has more to the story.) Note, in this figure, a star of 2M� does suffer
the helium flash contrary to our mass cut of 1.5 M�. This is partially due
to a higher metallicity than we are thinking of, but it also shows the fuzzi-
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ness of some of the mass cuts, which, in part, depends on who is doing the
calculating (and in what year).

An example of a helium flash calculation is shown in Fig. 2.13, where
central density is plotted versus elapsed time for a 1 M�, Z = 0.02 model
(which could just as well be the sun in a few billion years). Note the accel-
eration of core evolution as the RGB is climbed, then the flash, followed by
core expansion. The label “1/2 & HB” refers to the time when helium is half-
exhausted in the center of the core and the star is on the horizontal branch
(as in Fig. 2.7, although stars in M3 are Pop II rather than Pop I). The den-
sity then increases again as helium is completely used up in the central core
but the central temperature is not high enough to ignite the C–O mixture
produced by the burning of helium. The AGB will be discussed shortly, but
the ultimate fate of the star will likely be that shown in Fig. 2.12; that is, it
will end up as a white dwarf of about 0.6M�—meaning, as we will discuss
later, almost half of the mass of the original star will have to be lost.

All stars that succeed in igniting helium, peacefully or explosively, are
entitled to go on to §2.6.

Fig. 2.13. Shown is the central density evolution of a 1 M� model (Z = 0.02)
from Charbonel et al. (1996). Time is measured from the ZAMS. The data for the
figure were downloaded from the VizieR WWW site (see Fig. 2.6).

2.5.1 Helium Core Burning, Clumps, & Horizontal Branches

Because there is no bound nucleus containing eight nucleons, helium fusion
can occur only when it is both hot enough for two helium nuclei to crawl
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through their mutual coulomb barrier to fuse together and dense enough for
a third helium to come along in the 10−16 s that the unbound “di-alpha” (aka
8Be) holds together (see §6.5 for the “triple-α” reaction, which we are de-
scribing). At only slightly higher temperatures, the product 12C can capture
another helium nucleus to make 16O, so that the reactions

3 4He =⇒ 12C and 12C(4He, γ)16O

in effect compete with one another until all the helium is gone. The balance
(which is very sensitive to the excited level structures of the two product
nuclei) yields more carbon in stars of the smallest mass that fuse helium
at all and more oxygen in the more massive stars. The nucleus 20Ne has
no appropriate excited level into which the product of 16O(4He, γ)20Ne can
land, so helium fusion effectively stops with carbon and oxygen; that is, the
reaction is very slow unless temperatures are very high.

Helium-burning stars have an additional energy source, because hydrogen
burning (by the CNO cycle) continues in a thin shell around the helium core.
The energy available from helium fusion is, however, considerably less than
from hydrogen fusion and the stars are brighter than they were on the ZAMS,
so that this phase has a lifetime of a few percent of the main sequence lifetime
of the same star.

Stars that are not badly shaken up by helium ignition continue on their
way through the red (super) giant part of the HR diagram, though now or
later they may make loops back to bluer colors (higher surface temperatures),
when a burning shell works its way out to a radius in the star where there
is a composition discontinuity. Such a discontinuity will occur if a massive
star, with a convective core, has that core shrink as it ages. The progenitor
of SN1987A (the first supernova observed in 1987) had made such a loop and
so exploded while blue rather than red.

Less massive stars that were shaken up by helium ignition find themselves
with colors and effective temperatures characteristic of horizontal branch
stars if their metal abundances are less than about 10% that of the sun.
Higher metallicity, low mass, helium core burners look redder because opacity
rises with Z (as discussed in full in §4.5). Thus they nestle up against the
red giant branch in HR diagrams for old, open clusters, making a clump of
dots because they are all about the same brightness. Hence the charming
name “clump stars” or “red clump stars.” In case we forget to tell you, this
is also the reason that subdwarfs (main sequence stars of low metallicity) are
bluer than ordinary main sequence stars. The color difference is fairly easy
to observe, but models that take you between observed colors and calculated
effective temperatures are less than perfect.

Helium Core Exhaustion

You have heard this story before. A time comes when the central fuel supply
is exhausted and the star must again readjust its structure, because energy
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is flowing outward, but none is being liberated by nuclear reactions at the
center. The adjustment is, however, less drastic than at the end of hydrogen
core burning, because the thin shell of CNO cycle continues to supply some
energy.

2.5.2 Double Shell Burning Phase or Asymptotic Giant Branch

Meanwhile, the center of the star continues to contract, getting hotter; hydro-
gen fusion continues in a thin shell between core and envelope; and, soon, the
helium just outside the carbon–oxygen core is hot enough for helium fusion to
continue there. The phase is, therefore, sometimes called “double shell burn-
ing” (as in Fig. 2.14). As in the case of the red giants of small and moderate
mass, the contracting core and composition (molecular weight) discontinuity
cause the envelope to expand and cool again. Thus the phase is also called
AGB or “asymptotic giant branch,” meaning that, in an HR diagram, either
an evolutionary track or the points representing individual stars stretch into
a sort of asymptote to the main RGB. If you use real observers’ data to check
this, you will discover that the two branches can be separated only if you have
good, modern, photoelectric colors for the stars. Thus older texts (or ones
whose authors have borrowed figures dating back to the era of photographic
photometry) will show a single, broad red giant branch. An example of a
well-defined separation of the two branches can be seen in Fig. 2.7 for the
globular cluster M3.

Original Composition

H-Burning 
    Shell

He

He-Burning
    Shell

C-O Core

Fig. 2.14. Double shell burning. Not to scale (by quite a bit) because the outer
envelope is huge, while shells and core are much smaller in real life.
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Because the stars are now quite bright, this phase will last less than 1%
of the main sequence lifetime. You can check the relative lengths of lifetimes
by, for instance, counting all the AGB, horizontal branch, and red giant stars
in a globular cluster and comparing them to the number of stars still on the
main sequence. Yes, the numbers fit. Many or most stars with double shells
are not only very bright but also unstable to pulsation. The combination
results in a wind blowing off the surface. The wind speed is comparable
with the escape velocity from the surface, 10–30 km s−1 for instance (this
is not a coincidence), and the wind density is large enough that the star is
likely to lose 10–50% of its mass before something else happens to stop the
wind. Toward the end, the density gets even larger (up to 10−4 M� yr−1

in extreme cases) and may be called a “superwind.” This helps explain the
seeming discrepancy between the 1M� initial mass of the star in Fig. 2.12
versus its final mass of about 0.6 M� as a white dwarf. A recent review of
winds from cool, but luminous, stars is due to Willson (2000).

The double shell phase is the first in which we definitely expect the surface
of the star to show evidence of the nuclear reactions occurring inside. The
reason is that each shell drives a convection zone just above itself—remember
convection occurs if you (well, all right, the nuclear reactions, not you per-
sonally) dump too much energy into a small region and thus create a steep
temperature gradient. As a result, the shell sources flash on and off (on the
dynamical time scale) and chase each other back and forth in radius, with
the outer one sometimes making contact with the convective envelope (which
is, of course, caused by the large opacity of neutral hydrogen). Each zone in
turn brings up processed material from below and leaves some where the next
zone can pick it up and carry it on out. But the star is never fully convective,
hence the continuing onion-like structure shown in Fig. 2.14.

What fusion products do you expect to see? Make a mental list before
going on.

a. Helium, you said, from pp-chain and/or CNO cycles fusion. True, but
helium atoms are so hard to excite that they introduce spectral lines
only in a very hot gas. (We will find the extra helium later, though.)

b. Carbon, you said, from the triple–α reaction. True, quite often, and seen
in the form of molecular bands due to C2 and CN.

c. Nitrogen, which you might have forgotten about, because the CNO cycle,
no matter what mix of CNO it starts with, leaves most of the catalyst
as nitrogen (because 14N(p, γ)15O is the slowest capture reaction in the
cycle). Indeed, one expects, and finds, that AGB stars have turned a
good deal of their oxygen into nitrogen, and strong CN features are also
common.

d. And, finally, one you would never have guessed. During the double shell
burning phase, the relatively abundant atoms of iron are gradually con-
verted to heavier elements, and those too are available for mixing. Thus
AGB stars are distinguished by strong features due to barium, yttrium,
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and other elements that you may not include in your favorites. Some
even show absorption lines produced by atoms of technetium. Tc has no
stable isotopes, only ones with lifetimes of a million years or less. Thus
the subset of stars with technetium spectral features constitute direct ev-
idence that stars live on nuclear reactions that are going on right now (by
astronomical standards) before our very eyes (or at least spectrographs).
(You should peruse the pioneering observations of Tc reported by Mer-
rill, 1952.) You may ask where the “relatively abundant atoms of iron”
come from, to say nothing of exotics like yttrium, etc., when, by now, we
have only really gotten to carbon and oxygen. Please wait until §2.8.1
and §2.11.2 for the story (unless you can’t wait and want to peek now).
The AGB phase, and even this section, eventually ends. But tracing out

what happens next requires us to make another mass cut. The precise value
depends on stellar metallicity and perhaps rotation and other factors. Cal-
culations indicate it should fall somewhere between 6 and 10 M�, and this
is confirmed by observations of star clusters of different ages, where stars of
different masses have just left the main sequence. The mass cut is larger in
close binaries, where mass transfer removes the envelope when the star tries
to become a giant or AGB star.

2.6 Later Phases, Initial Masses ≤6–10 M�

Notice first that we talk about initial mass, because the wind has been re-
moving envelope material for thousands to millions of years (mass dependent
as, always, shorter times but more vigorous loss for more massive stars). We
speak of post-AGB stars when enough material has been removed by the
superwind, pulsations, and the last few flashes of the helium burning shell
that we can see down to hotter (bluer) layers. The ejecta can harbor dust (so
that much of the light is reprocessed into infrared before we see it) and OH
molecular masers. The entities suffering all this are called OH/IR stars, and
it is possible to earn a precarious living by studying them (as is true of every
phase mentioned so far, and the ones to come).

As more and more envelope blows off, hotter and hotter layers are uncov-
ered (and the escape velocity and wind speed increase as well). After perhaps
104 years, photons are leaving directly from a layer that is at a tempera-
ture of 50,000 K or hotter. These photons begin dissociating the molecules
and ionizing the atoms in the ejecta. The expanding, ionized ejecta radiate a
line spectrum characterized by ordinary hydrogen lines and forbidden lines of
O, N, and C, and other species, mostly light and relatively abundant. They
looked, through the telescopes of Herschel and other early astronomers, like
the disks of Uranus and Neptune and so were called planetary nebulae (PN).
They have nothing to do with planets (though when our sun does all this the
stuff will envelop Earth, Uranus, and Neptune). They look greenish because
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of strong emission lines of oxygen, while Uranus and Neptune look greenish
because of methane in their atmospheres.

After about 10,000 years, the residual core, called a planetary nebula
nucleus (PPN), has cooled to the point of emitting few ionizing photons
and the expanding ejecta have dispersed back into the general interstellar
material. The PN is gone, and the PNN remains as a young white dwarf.
Simultaneously, the central stellar temperature declines from 108 to 107 K
as the nuclear reactions turn off. (A long review of the evolution to the PNN
stage may be found in Iben, 1995.)

Stars of less than 6–10M� thus end their lives as carbon/oxygen white
dwarfs, because their centers do not get hot enough for any reactions beyond
helium fusion by the time their centers are dense enough to be degenerate
(remember the temperature–density competition that has occurred before
helium burning started).

The core is now officially a C–O white dwarf of 0.55–1.3 M� (both as
measured and as observed). Its only available energy source is the residual
heat of the atomic nuclei, and it will cool and fade to about 10−5 L� in about
1010 years. The smallest masses have the largest radii but have the smallest
amount of heat stored and fade fastest.

There is a narrow mass range (not well defined) in which nuclear reactions
can proceed one more stage, leaving a core consisting mostly of O, Ne, and
Mg. We see evidence for all three sorts of white dwarf compositions (He,
C/O, O/Ne/Mg) when material is torn off their surfaces by nova explosions
in binary systems.

2.6.1 A Bit About White Dwarfs

This text has a whole chapter (Chap. 10) devoted to white dwarfs, but since
they keep popping up in our discussion, we’ll now give some more background
on these stars.

Single white dwarfs have an average mass of 0.6± 0.1M� and radii not
too different from the Earth’s (about 10−2 R�). Doing the arithmetic yields
an average density near 106 g cm−3. As discussed in §3.5.2, radius decreases
as mass increases—a bizarre consequence of their being supported by elec-
tron degeneracy pressure. They cool by transporting heat by conduction (as
in a metal) through their interiors until, near the surface, photons must la-
boriously work their way out by diffusion. And, following the usual rules of
thermodynamics, the hotter they are, the faster they cool.

Figure 2.15 shows a color–magnitude HR diagram for 782 well-observed
white dwarfs. You can detect some tight correlations (like beads on a string)
in the figure and this is due, in many instances, to using an empirical relation
between color and magnitude: not quite fair, but it doesn’t destroy the utility
of what’s shown. Most of the stars are “DA” white dwarfs, which have hydro-
gen Balmer lines in their spectra but no sign of helium or metals. There may
be some undetected contamination but consider their visible atmospheres to
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Fig. 2.15. A color–magnitude HR diagram for white dwarfs from data given by
McCook and Sion (1999). A ZAMS with the sun is shown to help orient you. An
effective temperature of 10,000 K is at B–V ≈ 0.

be pure hydrogen. Pure helium atmosphere white dwarfs (“DB”) are also
present, but in smaller numbers. A still not completely understood phenom-
enon is the complete absence of DBs in the effective temperature range from
30,000 K to about 45,000 K. A similar, but cooler, gap in non-DA white
dwarfs shows up between about 5,000 K and 6,000 K. It may well be that DAs
can change (in their spectra) to DBs, and visa versa. As Fontaine et al. (2001)
put it, “It is suspected that a complex interplay between mechanisms such as
hydrogen and helium separation (through diffusion) and convective dilution
is responsible for the fact that a white dwarf may show different ‘faces’ during
its lifetime.”

Following the maxim that hot things cool faster, we infer that cool things
cool more slowly. Thus the cooler (larger B–V ), and intrinsically dimmer,
white dwarfs in Fig. 2.15 should take longer and longer to cool as time goes
on. If the universe and our galaxy have a finite age, which appears to be
the case, then the very oldest stars formed should have, by now, become the
intrinsically dimmest white dwarfs. That is, we expect to see a cutoff in white
dwarf luminosity below which there are no dimmer objects. This is indeed
the case for white dwarfs near (on a galactic scale) the sun in the disk of our
galaxy. Such a sampling is shown in Fig. 2.16 where the space density of white
dwarfs drops off precipitously around 10−4.4 L�. The effective temperature
at the drop-off point is near a very cool 4.600 K. If we then do evolutionary
calculations from the ZAMS to the cool white dwarf stage, we can then
determine the age of the least luminous white dwarfs in the sample; that is,
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Fig. 2.16. Shown is the Liebert et al. (1988) and Leggett et al. (1998) luminosity
function, φ, for white dwarfs in the local galactic disk. The units of φ are the
number of white dwarfs per parsec cubed per unit interval in Mbol (as a surrogate
for luminosity). The dropoff in luminosity is around 10−4.4 L/L�, although this
figure is fuzzy because of poor statistics at the cool end and possible choices in
binning the data (and see Fontaine et al., 2001, for more on this important point).
Note also the paucity of white dwarfs at high luminosities. This is to be expected
because those stars cool so rapidly.

we can, in effect, measure the age of the local galactic disk. This has been
done by several groups and the answer lies in the range 8.5–11 Gyr (see the
review by Fontaine et al., 2001). The spread is a bit uncomfortable and results
from uncertainties in the true mix of carbon and oxygen in white dwarf C/O
cores, micro-physics, and all the usual suspects. Yet, it shows the potential of
the method—and the oldest age in the spread does turn out to be less than
the age of the universe! Of interest for the future are observations of very cool
(perhaps in the 3,000–4,000 K Teff range) galactic halo white dwarfs, which
should be older than our neighbors in the disk.9

9 As practically a note in proof, we suggest you check out Hansen et al. (2002, and
see Hansen and Liebert, 2003) who report observations of white dwarfs in M4,
which is a relatively close globular cluster. They find an age for the cluster of
12.7±0.7 Gyr using their cooling sequences. In this regard, do try Ex. 2.9.
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2.7 Advanced Evolutionary Phases, Initial Masses
Greater Than 6–10 M�

In the time it takes the sun to go from its T Tauri birth to its planetary
nebula death, several thousand generations of massive stars can come and
go, for they do everything more rapidly, spending only millions of years on
the main sequence and thousands in later stages. They have, of course, more
fuel to start out with, but they use it more profligately (see Eq. 1.7). This is
not changed by their ability to fuse more elements on beyond the hydrogen
and helium fuels available to the sun, for 90% of the available energy going
from hydrogen to iron (the most tightly bound nucleus) comes out in the first,
hydrogen-fusion reactions, and half the rest when helium burns to carbon and
oxygen. In addition, the cores of massive stars, by the time they are fusing
carbon and heavier elements, are so hot that they produce copious fluxes of
neutrinos, made in several different processes, which, like the solar neutrinos,
depart promptly, doing nothing to maintain the stellar photon luminosity.

Table 2.2. Advanced Nuclear Burning Phases of Massive stars

Dominant fuel Tc Duration Important products

Carbon 5× 108 K 103–104 yr Ne, Na
Neon 8× 108 K 102–103 yr Mg, some O
Oxygen 1× 109 K < 1 yr Si, some S, etc.
Silicon 3× 109 K days 56Ni

Table 2.2 summarizes the stages of heavy element burning. These stages
are only partially separated (that is, a bit of residual oxygen may still be
around when the dominant process is silicon burning) and the central tem-
peratures, Tc, required for ignition, do depend on density. The dominant
products are not always what you would guess. Two 12C nuclei, for instance,
do not often make a 24Mg because there is no level at the right energy, spin,
and parity to make this reaction a probable one. Instead, the main reactions
are (and see Table 6.3)

12C+ 12C −→ 20Ne + 4He
−→ 23Na + p

followed by · · · 23Na(p, α)20Ne and 23Na(p, γ)24Mg .

Notice that free protons, neutrons, and alpha particles will be floating around,
inviting capture by the assorted heavier nuclei in the soup. This remains true
through neon, oxygen, and silicon burning, so that the full range of stable
nuclides from 12C up to about zinc or gallium is produced. The group from
Mn to Zn is called the “iron peak,” because they are more abundant than
those on either side, and Fe is both in the middle and most abundant.
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Silicon burning is not achieved by two 28Si meeting head-on and fusing to
56Ni, with beta decays to 56Fe (the stable one). The coulomb barrier caused
by the mutual repulsion of the two charged 28Si is so high that, by the time
the stellar core is hot enough to raise their velocities to overcome it, high
energy photons are busily photodisintegrating (analogous to ionization of
atoms) some of the 28Si back to alpha particles. As they are liberated, most
of the alphas are quickly captured by remaining 28Si nuclei, which build
up to 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni, all of which are “alpha
nuclei” containing, in effect, many alpha particles stuck together. Capture of
free neutrons and protons yields smaller amounts of adjacent nuclides. This
process was historically called “nuclear statistical equilibrium (NSE)” or the
“e-process” as the nuclear version of chemical equilibrium (as discussed in
§3.4).

In fact, however, there is no time for all the nuclei to come into the equi-
librium abundances that would be set by beta decays. 56Ni, for example, has
a half-life of about seven days, and 44Ti a half-life measured in years. And
the whole silicon-burning phase lasts only a few days according to calcula-
tions. However, many reactions do take place rapidly enough that the term
“quasi-equilibrium” has been used to describe at least some aspects of this
burning stage.

At this stage, a color–magnitude (or HR) diagram is no longer useful in
interpreting the star’s life cycle. Everything beyond late helium fusion goes
faster than the outer layers of the star can find out about interior events and
respond to them. Indeed the star is nearly doomed. The various nuclear re-
actions of the previous sections are working outward though the star, leaving
their ashes behind (still in fairly discrete layers), and the core of iron-peak
elements is growing relentlessly toward the maximum mass that can be sup-
ported by the pressure of degenerate electrons (§3.5.2; about 1.2 M� for
heavy elements). Earlier cores of He, C+O, and so forth had also approached
this mass limit, but always before a bit of additional contraction heated them
until the next fuel ignited. But nuclei with mass numbers around A of 56 are
the most tightly bound, and there is no more nuclear energy to be got out.
The core must collapse.

As an illustration of where we have gotten to, Fig. 2.17 shows the layering
of composition in the inner 8.5 M� of a 25 M� pre-supernova model of
Arnett (1996). Following his description of the key letters at the top of the
figure, we have–

A. The core is composed of iron-peak elements.

B. Silicon burning is taking place, adding to the iron core.

C. Oxygen is being burned, leading to Si and Ca.

D. This zone contains neon, which is being burned, Mg and O, but no carbon.

E. Neon and Mg are being produced in this carbon burning shell.

F. Nothing much goes on here but this zone contains C waiting to be burned.
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G. Helium is being burned, producing C and O in this radiative zone.

H. This is an active convective zone, where He burning is going on, and which
mixes burning products outward into the star.

I. This is what’s left of the old helium core with no burning going on.

J. The letter J is not indicated but it is the rest of the star above a hydrogen
burning shell.

The quantity Ye is the number of electrons (presumed ionized) per nucleon
in the mixture. (We shall use μe = 1/Ye in Chap. 3.) For most of the star it is
equal to 0.5, corresponding to helium or nuclei composed of multiple helium
nuclei but, in the iron core, it decreases a small amount indicating,in effect,
that electrons have been captured by protons to make neutrons.

Fig. 2.17. The compositional layering in the inner core of a 25M� pre-supernova
model versus interior mass. Xi is the mass fraction. See text for an explanation and
further commentary. Reprinted with permission from Arnett (1996, his Fig. 10.8),
c©1996 by Princeton Univerity Press.

2.8 Core Collapse and Nucleosynthesis

Two triggers can contribute to core collapse. First, photodisintegrations cool
the gas, removing the support of thermal pressure. Second, the increasing
density forces electrons into ever-higher momentum states—hence higher en-
ergy states—until some of them have kinetic energies exceeding the neutron-
proton mass difference. Electron capture (inverse beta-decay) sets in, turning
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protons to neutrons and, with fewer electrons around, the degeneracy pres-
sure also drops.

At this juncture we are just past the end point of the trajectory of central
temperature, Tc, versus central density, ρc, shown in Fig. 2.18. This figure,
from Arnett (1996), derives from evolutionary calculations of an initially pure
helium 8 M� model. It is not a completely realistic star, but the evolution
of such models mimics very well what eventually happens in pre-supernova
calculations. Various burning stages are indicated by “He”, “C,” etc. (Note
that the temperatures for the burning stages are not quite what we quoted
in Table 2.2. As we warned you, density does count.) At the last point (near
ρc ≈ 6 × 109 g cm−3 and Tc ≈ 8 × 109 K) collapse is about to begin. As
Arnett (1996) puts it, “The trajectories end at the point of hydrodynamic
instability; the time-scales are now so short that these stars are not so much
objects as events!” We shall defer until later what this implies when we go
supernova, so to speak.

Fig. 2.18. The time trajectory of density and temperature at the center of an
initially pure helium 8M� model. (The lines labeled Sγ/NAk are lines of constant
radiation field entropy, which we will ignore for now.) Reprinted with permission
from Arnett (1996, his Fig. 10.3), c©1996 by Princeton University Press.

Anyway, the core collapses suddenly and catastrophically. You can figure
out what these words mean for yourself. The time scale will be something like
the dynamic time scale, tdyn, of (1.33). Evaluate it for a density of 109 g cm−3

to see that we are talking about seconds, at most. And the available energy
will be the change in gravitational potential for the inner 1.2 M� (or a bit
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more in practice) of the star contracting from a density of 109 g cm−3 to 1015

g cm−3, which is the density of a normal nucleus or of the gigantic nucleus
that is a whole star made of 1057 neutrons. Put in the numbers to show
that this is going to be something like 1053 ergs. Compare this to the energy
released by the sun over its whole main sequence life (and see Ex. 2.12).

The products are a core–collapse supernova and a neutron star, both of
which you will meet again below. You will probably feel that, if there is
something called a supernova, there must also be something called a not-so-
super or plain old nova. There is, and it lives in §2.11.

Meanwhile, however, it is clear that the core collapse process just de-
scribed is going to bring together lots of iron-peak elements, lots of neutrons,
and lots of energy. This is just the set of conditions required for another sort
of neutron capture, the r-process where “r” stands for “rapid.” The definition
of rapid in this context is that successive neutrons are captured before there
is time for beta decays, until the next neutron wouldn’t be bound at all. Then
the process hangs up until one of the nuclear neutrons decays to a proton
(and electron plus electron anti-neutrino), and the neutron capture contin-
ues. The immediate products are highly unstable nuclides. But, at leisure,
after ejection from the star in a supernova explosion, they decay back to the
most neutron-rich stable isotopes of heavy elements like 176Yb (ytterbium)
or 186W (tungsten). The r-process is also the only source in our universe of
thorium and uranium, because the reactions have to leap over polonium (Po,
84 protons), radon (Rn, 86 protons), and a bunch of other unstable elements
to get there from bismuth (Bi, 83 protons), the last stable one.

Curiously, we have now made just about all the chemical elements that
are found on earth or in the periodic table, though you probably have not
been keeping count. A score sheet is presented in Table 2.3, which includes
the few not previously mentioned.

Table 2.3. Sources of element production

Elements Source

H and He Left from Big Bang (including 2H & 3H); also
a bit of 7Li from early universe

Li, Be, B Made by cosmic ray CNO fragmentation
in interstellar medium

12C, 16O Helium burning
13C, 14N, 15N, CNO cycle burning and its extension

17C, 19C, F to higher temperature
Ne to iron peak Carbon, neon, oxygen, and silicon burning
Z = 30 and beyond s-, r-, and p-processes, the latter two

primarily in supernovae
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2.8.1 Abundances and Nucleosynthesis

If we take an inventory of the abundances of the elements in the solar system
we find what we show in Fig. 2.19 (and do read the caption). Hydrogen and
helium are, by far, the most abundant (by at least two orders of magnitude)
and, as indicated in Table 2.3, they are leftovers from the Big Bang. Their
abundances may have been modified by stellar processes, but not in any
significant way. The next three elements, Li, Be, and B, are CNO cosmic
ray fragmentation products. Then follow elements produced by the CNO
cycles, helium burning, and the peak around iron from carbon, oxygen, neon,
and silicon burning. Heavy elements, with nuclear charge greater than about
30, are the responsibility of neutron (and some photon and proton) capture
processes with the iron peak providing most of the “seed” nuclei that do the
initial capturing (and see below). An excellent review of abundances (among
many other matters), and the various means of establishing them, is given in
Chapter 2 of Arnett (1996). Other reviews, with perhaps a slightly different
slant are Trimble (1991, 1996, 1997).

A closer view of abundances is shown in Fig. 2.20 (and continued in
Fig. 2.21), where individual odd (�s) and even (• s) nuclide abundances are
plotted versus nuclear mass number 1 ≤ A ≤ 90. By “odd” and “even” we
mean odd and even numbers of nucleons within a given nucleus; for example,
3He is odd, whereas 4He is even. Because of the large number of nuclides in the
figure, we have shifted the odd nuclides down by two decades (N multiplied
by 10−2) for clarity, even though some of the impact of the information may
be lost. (Odd nuclei tend to be less abundant than their even counterparts in
any case.) For many nuclides, we indicate by what nuclear burning process
they were made (see figure caption). Note, however, some nuclides may be
produced by more than one process. For a more complete listing for each
nuclide, see Arnett (1966, App. A).

The general impression given by Fig. 2.20 is a trend downward in abun-
dance starting from 12C (ignoring hydrogen and helium as cosmological rem-
nants, and lithium, beryllium and boron, which may be involved in the pp-
chains but usually do not survive that phase of burning). Some nuclides seem
to be preferred, causing the alternating peaks at moderate mass number,
such as 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, · · ·, and 48Ti. These are the
α-particle nuclei composed of integral numbers of 4He nuclei. The trend is
interrupted, however, at the iron peak where, as pointed out earlier, it takes
a lot of energy to remove or add on nucleons. The iron isotope 56Fe is the
most abundant by far. This may seem surprising since it is not an α-particle
nucleus, but it is the β-decay product of 56Ni, which is, and the latter is an
important product of supernova explosions. The iron peak dribbles down-
ward until we reach nuclei around zinc (30 protons) where the p-, r-, and
s-processes begin to take over—which we will discuss more fully shortly.

This brings us to Fig. 2.21, which continues the story. Here we separate
out those nuclei produced by the p-, r-, and s-processes. In some cases, if not
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Fig. 2.19. “Solar” elemental abundances are plotted against nuclear charge, with
some representative element names shown as a guide. These abundances, from
Anders and Grevesse (1989), are derived from a combination of observed solar
values, carbonaceous chondrite meteorites, and with some values folded in from
ISM observations. The normalization used is that the number density of Si = 106.
Note that some elements are missing (e.g., technetium, promethium. polonium,
etc.) because all their isotopes are radioactive with half-lives short compared to the
age of the solar system.

many, the addition of a proton in the p-process (i.e., proton capture) may
in fact be the result of the high-energy photon field inducing the ejection
of a neutron—that is, a (γ,n) reaction—from a different nuclide to give the
same product. P-process nuclei tend not to be very abundant and this may
be a reason why it is not that well-understood. Some peaks are obvious in
the curves and these are associated with the neutron magic numbers 50, 82,
and 126 (forming closed shells within the nucleus not unlike closed electron
shells in the noble gases). Three nuclei usually assigned to the p-process seem
to be anomalous—namely, 138La, 176Lu, and especially 180Ta. The last may
be underabundant because it is particularly susceptible to destruction by
(γ,n). Note that (look carefully) 235U is shown with an abundance much
larger than you find at the present time (0.7% of all uranium). Anders and
Grevesse (1989) have backdated some radioactive nuclei to 4.6 Gyr ago to
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Fig. 2.20. Individual nuclide abundances for odd and even nuclides, taken primarily
from Anders and Grevesse (1989). Triangles denote odd nuclides (which have been
shifted down by two decades), whereas “dots” are for even. Some important nuclides
are labeled. Sources (e.g., nuclear burning stages) are indicated for some nuclides:
U means Big Bang; X from fragmentation of cosmic rays; H for hot (and hotter)
hydrogen burning; he=helium burning; C, O, Ne, or Si=carbon, oxygen, neon, or
silicon burning; and an occasional P-, S-, or R- for p-, s-, or r-process.

give a better idea of what nuclide abundances were available at the time of
formation of the solar system. (235U has a half-life of 7 × 108 yr, whereas
238U’s half-life is a long 4.5 × 109 yr. Both are important chronometers for
dating the formation of the earth, moon, and some meteorites. )

Our understanding of the neutron capture s-process seems to be well in
hand. Since it is “slow” (hence the “s”), relatively cool temperatures are
indicated. The first outline of the process was given in the classic paper by
Burbidge, Burbidge, Fowler and Hoyle (1957; hereafter, and forever, known
as B2FH). (A.G.W. Cameron also discussed the process at nearly the same
time, but the original paper is a Chalk River report not readily available.)
In its simplest form it is associated with helium shell burning and mixing by
convection. The neutrons are produced in the reaction sequence

12C(p, γ)13N(e+, ν)13C(α,n)16O
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Fig. 2.21. This is a continuation of Fig. 2.16 but nuclides are identified by source
mechanism, s- (• s), r- (�s), and p-process or (γ,n) (×s).

with 22Ne(α,n)25Mg also making a contribution (among perhaps others).
These neutrons are then captured by iron peak nuclei (mostly 56Fe) to form
heavier nuclei, which, in turn, may capture neutrons, etc. This chain may oc-
casionally be interrupted by the β-decay of a short-lived radioactive nuclide.
(Extensive reviews may be found in Käppeler et al., 1989, 1990; and Meyer,
1994). A sample path is shown in Fig. 2.22. We suppose that 78Se has been
produced by neutron capture (indicated by solid arrows pointing to the right)
and is ready to capture its own neutron producing 79Se. In the laboratory,
79Se has a half-life against β-decay of nearly 105 years, which would seem to
allow plenty of time for it to capture a neutron. In the stellar environment,
with a temperature of around 3 × 108 K, however, the radiation field can
cause an excited state in 79Se to be populated, thus reducing the life time to
less than a year. The dashed arrow labeled λβ shows the path of the β-decay
to 79Br, which now competes with the neutron capture (λn) to 80Se. And so
it goes. Note that 82Se cannot be reached because of a β-decay from 81Se. It
is “shielded” from the s-process and is classified as a r-process nucleus. 80Kr,
on the other hand, is shielded from the r-process and is a s-process nucleus
(or perhaps p-process).

The r-process, as mentioned earlier, is associated with more violent, higher
temperature, environments than the s-process (remember, the “r” stands for
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Fig. 2.22. Here is a portion of the Chart of the Nuclides in the selenium to stron-
tium region showing sample s-process paths of neutron capture and β-decay. Neu-
tron number is on the abscissa and element name on the ordinate. The boxes (with
total nucleon number indicated) are for either stable nuclei or those with very long
half-lives. Solid arrows are neutron capture paths, whereas dashed represent β-
decays. The source directions for p-process (or [γ,n]) and r-process are also shown
schematically. This is a standard figure and is modeled after Fig. 2 of Käppeler et
al. (1989), and see Clayton (1968, Fig. 2–26).

“rapid”). All in all, it is also more complicated because it depends on the
details of silicon burning, which, in turn, are dependent on temperature,
density, and the time scale of evolution. The final abundances of the later
phases of silicon burning, whether they are in near equilibrium or close to
it, are further determined by the ratio of total neutrons in nuclei (or free
neutrons) to the total number of neutrons plus protons. And, in an explosive
situation, how fast expansion takes place is also critical. At some point, when
the material cools sufficiently (but it is still hot!), charged particle reactions
tend to shut off because particles are not swift enough to overcome Coulomb
barriers. The reactions are said to “freeze out.” The neutrons, as electrically
neutral particles, do not have this problem, and they can busily go about
sticking onto nuclei. And we need plenty of neutrons for the r-process. If a
56Ni nucleus is a typical product of silicon burning, then to make one 238U
nucleus requires nearly 200 additional neutrons, nearly half of which must
decay into protons to keep the charge right. A detailed calculation of the r-
process is no easy matter because of the many reactions that are possible. In
addition, the physics required is at the limits of what we know about nuclei.
If we were to try to keep adding on neutrons to some seed nucleus, at some



2.9 Variable Stars: A Brief Overview 83

point a final capture would not be possible because the resulting nucleus
would be unstable against neutron decay. Those nuclei that are unstable in
this sense constitute the “neutron drip line” on the chart of the nuclides, and
although we have a good idea of where that is (from experiment and theory),
it would be better to do better.

2.9 Variable Stars: A Brief Overview

A few naked eye stars, including Mira (o Ceti) and Algol (β Persei) are, once
you are looking for the effect, wildly variable in their brightness over times
from a year or two (Mira) to a week or so (Algol). One suspects that their
behavior must have been known to the ancients (as the names “wonderful” for
Mira in Latin, and “the demon” for Algol in Arabic suggest). The first firm
records of anyone’s being aware of these recurrent and more-or-less periodic
variables date, however, only from a few decades before the invention of the
telescope. The Greeks and Chinese recorded a few “new” or “guest” stars
that appeared where none had been seen before—and then faded away in
weeks to years—from about the beginning of the Common Era,10 and that
was it.

It is now clear that, at some level, the light output of every star, including
our sun, varies with time, over virtually every length of time possible from
the dynamical time scale, tdyn of §1.3.3 (about an hour for the sun) to the
nuclear time scale, tnuc of §1.7 (which, for the sun, is about 10 billion years
as it gradually gets brighter). Both causes and manifestations are many and
varied; a recent count identified more than 70 classes of variable stars, most
of them named for a particular star (called the prototype), which belongs to
the class, or was anyhow thought to belong when the class was established.
Examples are T Tauri stars, Cepheids (for δ Cep), FK Comae stars, Miras,
and U Geminorum stars.

Here we summarize some interesting sorts, but save those of more direct
consequence for this text for later (in §9.10). These more “interesting sorts”
include the pulsational variables (§2.10) and their violent relatives the novae
and supernovae (§2.11).

2.9.1 Eclipsing and Ellipsoidal Variables

If a pair of stars orbit each other, you, the observer, may be located close
enough to the orbit plane to have one pass in front of the other and block its
light for a portion of each orbital period. Because the eclipse tells us that the
system is nearly edge on, eclipsing binaries are among the sorts particularly
useful in measuring stellar masses. Even if there is no eclipse, the gravitational
10 We shall use the nondenominational designation Common Era (C.E.) instead of
the more usual A.D. B.C. is then B.C.E. or Before Common Era.
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field of one star may distort the shape of its companion into an ellipsoid, so
that you see a larger star area when the stars are side-on to you than when
they are end on. This will also result in periodic variability, though of a less
useful sort.

2.9.2 Spotted, Rotating Stars

The sun is an example of this class. Its brightness varies both at its rotation
period (about a month) and through the 11-year sunspot cycle. The variation
is, however, only about 0.1% (and, curiously, the sun is brighter when it has
more spots because the extra brightness of the bright vein-like facular regions
of the photosphere more than makes up for the darker spots).

Larger fluctuations in brightness happen among younger, rapidly rotating
stars of types G, K, and M, and among close binary pairs, where the rotation
period is locked to the orbit period. The majority view is that rapid rotation
plus the convective atmosphere of these cool-surfaced stars permits the op-
eration of a dynamo, producing a magnetic field, which, in turn, drives spot
formation and other kinds of stellar activity. Relatively strong variability of
this sort is associated with emission of x-rays and radio waves from the solar
or stellar corona and other indications of youth and activity.

2.9.3 T Tauri Stars, FU Orionis Stars (FUORs), and Luminous
Blue Variables

These are stars that are very young (pre-main sequence) or very massive and
bright, or both. They are probably both accreting material from a disk and
blowing off material at their poles, and may be heavily spotted as well. The
result is nonperiodic flaring and variability. Surrounding gas and dust fre-
quently show up in images and spectra of these stars, and very occasionally
it is possible to tell which bits are flowing in and which are being ejected,
sometimes in jets. Rapid rotation and magnetic fields (which together colli-
mate the jets) are also part of the picture.

2.9.4 Last Helium Flash and Formation of Atmospheric Dust

These two physically different causes of variability appear together because
one is often precursor to the other. A star that has already left the AGB
phase can experience one last flash of its helium burning shell. This puffs up
the envelope so that the star quickly comes to resemble a red giant again and
to brighten (because more of the light comes out in the visible part of the
spectrum). Only three or four stars have been caught doing this in historic
times. The prototype is FG Sge, which began galloping from blue to red and
faint to bright across the HR diagram shortly after 1900. It and other mem-
bers of the class also begin to display unusual elemental abundances in their
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spectra, as a result of the flash driving an outer convection zone. Extra car-
bon, s-process elements, and sometimes lithium appear in their atmospheres
in a matter of years. A popular report of a closely related star (Sakurai’s
Object or V4334 Sgr) is due to Kerber and Asplund (2001), and see the spe-
cial issue of Ap&SS, Vol. 279 (2002) for a series of articles. An evolutionary
relationship between these (sometimes called) “born-again” stars is discussed
in Lawlor and MacDonald (2003).

Highly evolved stars with carbon–rich atmospheres (including FG Sge
stars) occasionally and unpredictably fade by many magnitudes in a few
weeks and gradually recover over months. The missing light comes out as
infrared, and the cause is sudden condensation of carbon dust in the cool
stellar atmosphere, which then gets blown out again by radiation pressure.
These are the R CrB variables (sometimes called inverse novae). About 40 are
known, and two stars of the FG Sge type have recently displayed R CrB-type
fading.

2.10 Pulsational Variables

These are the most useful variable stars because the length of time in which
they brighten and fade again—their periods—are frequently correlated with
their absolute brightnesses, so that they can be used to measure distances to
star clusters anywhere in the Milky Way and to nearby galaxies. The period–
luminosity relation (see §8.2.3) for one sort, the Classical Cepheid variables,
is generally regarded as the first, fundamental rung on the ladder that leads
to measuring distances to distant galaxies and so to measuring the speed
of expansion of the universe, its age, and other things you might want to
know. In the following, we shall set aside many technical details and refer to
our Chapter 8. For texts and reviews we recommend Cox (1980), Unno et
al. (1989), and Gautschy and Saio (1995, 1996).

Stellar pulsation can be purely in and out (radial modes) or include ma-
terial slopping around in latitude and longitude as well (nonradial modes).
The pulsation must be driven by some instability (often the repeated ion-
ization and recombination of atoms of a common element, which acts like
a faucet, letting radiation out and shutting it up). The restoring force that
brings the gas back where it started from (only to overshoot the other direc-
tion, over and over again) can be gravity or pressure or (perhaps) magnetic
fields. In this sense, the instability is intrinsic to the star and not due to ex-
ternal influences; hence, such stars are often referred to as intrinsic variables.
A really complex gravity (g-) or pressure (p-) mode with both radial and
nonradial motions is described by the number of nodes in the r, θ, and φ di-
rections (like the eigenstates of the hydrogen atom in spherical coordinates),
and stars sometimes show more than one at a time, up to dozens, or (in the
case of the sun, for which we can observe the tiniest displacements) millions.
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For purely radial pressure modes the underlying time scale is the dynam-
ical time (tdyn). The fundamental mode, which is a simple breathing in and
out with the only node at the stellar center (you don’t want the center mov-
ing off some place), is the only radial mode that shows a simple period–mean
density relation (as in §1.3.5). But, if all the stars in a class have about the
same mass and temperature, density depends only on radius, and so there
is period–luminosity relation of the sort we see (and you might try Exs. 2.2
and 2.4). If you can pick out a fundamental mode and an overtone (more
than one radial node), their ratio gives you one more handle on the star’s
properties. This can be used to learn masses (or, alternatively, to check that
you have figured out what is really going on).
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Fig. 2.23. A selection of intrinsically variable stars placed on an HR diagram. Were
we to include all known classes (real or imagined), you wouldn’t be able to read
it. The sun, itself a variable, is indicated on the ZAMS. A schematic evolutionary
track from AGB-PNN-WD stage helps place some variables. The “Cepheid Strip”
is shown by the dashed lines demarcating the Cepheid variables.

An instability strip (driven by helium ionization) extends diagonally
across the upper right of the HR diagram, and probably all in it are pul-
sational variables to some extent. (The name “Cepheid Strip” is often given
to this strip.) A selection of variable stars, in and out of this strip, include
(and see Fig 2.23)–

• Classical Cepheids, usually called just Cepheids (or Type I Cepheids), are
young, metal-rich stars crossing the instability strip with spectral types
F6–K2, with periods of days to months. The more luminous (and more
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massive) ones have the longer periods, which gives the period–luminosity
relation. They appear to be purely radial pulsators. The cause of their
pulsation was unraveled by the pioneering studies of Cox and Whitney
(1958) and Zhevakin (1953).

• W Vir variables (or Type II Cepheids) have the same sort of behavior as
the Classical Cepheids but are metal-poor, older, and lower-mass stars.

• RR Lyrae variables are horizontal branch stars in the instability strip with
spectral types A2–F2 (see Fig. 2.7). They were formerly known as cluster-
type variables or Cluster Cepheids because they are common in globular
clusters. They have periods of a day down to a couple of hours and are
useful in determining distances to globular clusters in our galaxy and
in nearby galaxies. They are subdivided into subclasses (“Baily types”),
depending on details of their light curves (i.e., their curve of magnitude
versus time). Since Smith (1995) has written an excellent monograph on
the whole subject, we defer to him (but you might try Ex. 2.11).

• β Cepheid and γ Doradus stars are main sequence stars (or close) of
spectral types A and B. They are nonradial pulsators (and, arguably,
radial) and multiple modes are common. Periods tend to be longer than
the dynamic time scale, which suggests that the modes are gravity (g-)
modes.11

• δ Scuti variables are spectral class A to early F (i.e., at the bluer end of
spectral class F) stars on or near the main sequence (luminosity class V
to III) in the instability strip. They have periods ranging from about 30
minutes to 8 hours and pulsate in radial and nonradial pressure modes,
although gravity modes may be present. Amplitudes tend to be low. As
with some other variable stars, the δ Sct variety have a well-organized
network devoted to their observation and theory. In their case, the network
is presently centered in Vienna, Austria. You may wish to access their
WWW site at http://www.deltascuti.net.

• SX Phe stars are blue stragglers (stars brighter than the main sequence
turnoff, perhaps arising from mass transfer or mergers in close binary
systems) found in globular clusters and among old field stars, and are
fundamental or first overtone pulsators.

• ZZ Ceti variable stars are white dwarfs with hydrogen atmospheres (DA
white dwarfs) sitting in their own instability strip (see Fig. 2.23) on the
white dwarf cooling curve. Only nonradial gravity modes are seen, often
many in a single star. A corresponding strip exists for white dwarfs with
helium atmospheres (the DB variables) and for carbon–oxygen–helium at-
mospheres (the PG1159 stars) and their close relatives the variable PNN
stars. Chapter 10 will consider these in more detail partly because analysis
of their often complex light curves lets us probe their interiors. The var-

11 A recent review of some nonradial near-main sequence pulsators is due to M.–A.
Dupret, part of whose Ph.D. dissertation appears in the Bulletin of the Royal
Society of Sciences of Liège, Vol. 71, 249 (2002).
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iable white dwarfs also have a network (“The Whole Earth Telescope,”
aka WET), which observes them (along with some other variables in-
cluding δ Scts). Now coordinated from Ames, Iowa, its WWW site is
http://wet.iitap.iastate.edu. As an example of a light curve of a
variable white dwarf see Fig. 2.24 where a night’s worth of data is shown
for PG1159–035 (the prototype of its class). We shall see more of this
star in Chapter 10 but, for now, let it be known that it pulsates over
100 ways at once, as is evidenced by the “beating” (the peculiar waves
superimposed over the regular ups and downs).

• Mira variables, as mentioned previously, are luminous red supergiants
belonging in the class of Long Period Variables (LPV in Fig. 2.23) with
periods ranging from roughly 100 to 700 days. Radial modes seem to be
the norm. Closely related to them are the Semi-Regular Variables (SRV),
which act as their name implies. All stars of more than main sequence
luminosity and redward of the Cepheid instability strip are to some extent
variable. Usually the period is long (as a result of low density atmospheres)
and somewhat irregular. RV Tauri stars are an extreme version, with
low mass and large luminosity, so that a second pulse starts before the
atmosphere has had time to fall down from the previous one. They display
alternating large and small amplitudes in their light variability. Many R
CrB stars are also pulsational variables of this sort.

• The Rapidly Oscillating Ap stars (roAp in Fig. 2.23) are characterized
by low amplitude, short period photometric variations (typically around
10 minutes), strong magnetic fields, and enhanced surface abundances
of exotic elements such as strontium and europium (among others less
exotic). The observed light variations are modulated in amplitude by the
rotation of the star and it is thought that the pulsations are carried around
by an off-axis magnetic field as the star rotates. This is the “oblique
rotator model,” reviewed (and named) by Kurtz (1990). We have shifted
their location in Fig. 2.23 for clarity; they should be close to the δ Scts.

• The sun is indicated in Fig. 2.23 (as a pressure mode variable with millions
of nonradial modes with periods around five minutes—see Chap. 9). But it
may be just our closest example. The sun-like star α Cen A (see Fig. 2.3)
is also variable, as discovered by Bouchy and Carrier (2001).

• Finally, in this short list, we welcome the EC14026 variable stars, which
may be the newest class discovered (see Kilkenny et al., 1997). They are
low amplitude subdwarf B (sdB) pulsators with periods of around 150 s.
Their evolutionary state is uncertain but they are probably closely related
to other sdB variables (as yet unnamed) having periods ten times as long
(and which must be g-mode pulsators, as discussed in Green et al., 2003).

The variability of pulsational variables shows in their radial velocities as
well as their light. In principle, one can integrate the velocity curves to get
radius as a function of time and then, with a temperature from their colors
or spectra, calculate the absolute luminosities. This is called the Baade–
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Fig. 2.24. The light curve of the variable white dwarf PG1159–035 shows periodic
behavior with a period of around 500 s modulated by the the interference of many
modes. The data is from a 1989 observing run by the Whole Earth Telescope
consortium. More will be said about this star in Chapter 10 (and see Fig. 10.5).

Wesselink method, and the results (mercifully) more or less agree with the
results of parallax measurements and other ways of getting the brightnesses
and distances of the stars concerned (and try Ex. 2.14).

2.11 Explosive Variables

These are the stars that release a great deal of (nuclear or gravitational)
energy in a hurry. They include the first variables (“new” or “guest” stars) to
be recognized. The cataclysmic variables (see Warner, 1995; for an exhaustive
review, Sparks et al., 1999, for a brief overview; and Sion, 1999, for the role
of white dwarfs) are close star pairs with a white dwarf in orbit with a main
sequence or red giant companion. The white dwarf accepts material from
its companion. One sort of variability arises when the rate of acceptance or
accretion and therefore the rate of release of gravitational potential energy
changes. (Think of the erratic splashing of a waterfall if the river at the stop
alternates between carrying a little water and lots.) When enough hydrogen–
rich material has accumulated on the surface of the white dwarf, it fuses
explosively. Remember what happened when we ignited degenerate helium
in a helium shell flash. Degenerate hydrogen is even worse, and need not even
be very hot when it is as dense as a white dwarf. Even more spectacular are
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supernovae, as evidenced by explosions that may temporarily outshine the
galaxy in which they occur.

2.11.1 Novae

Nova and recurrent nova explosions are the names given to the outbursts
fueled by degenerate hydrogen ignition. Actually, of course, the names were
given to the phenomena long ago (when people still used Latin for scientific
nomenclature), and understanding came later. Novae can recur, since more
hydrogen can be accreted as long as the companion star exists, and “recurrent
novae” simply means that more than one nuclear-fueled outburst has been
caught in the past century or two.

Fig. 2.25. This drawing illustrates mass accretion from a donor star to a cata-
clysmic variable with an accretion disk as an intermediary. The “hot spot” is where
the incoming material meets the already formed disk.

A drawing of a cataclysmic system is shown in Fig. 2.25. Mass is grav-
itationally drawn off a donor star and forms an accretion disk around the
cataclysmic variable (of one sort or another). The material gradually makes
its way through the disk and is eventually deposited onto the variable. How
a system gets itself into this predicament we reserve for §2.13.

Novae (often referred to as “classical novae”) may yield a total of 1044–
1045 ergs upon eruption with some 1038 ergs being radiated in the optical.
Mass lost during the explosion ranges from 10−5 to 10−4 solar masses. The
odd thing about these objects is that the pre- and post-nova stars (after
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things have finally quieted down) appear to be identical. This suggests that
the star has not suffered too much from the explosion and is waiting for
enough mass to be accreted so that it can do its thing all over again. With
estimated mass transfer rates of Ṁ ∼ 10−9–10−8 M� yr−1 and the mass
losses quoted above, the time between explosions comes out to be (by simple
division) thousands to millions of years. If we see one go off, it is unlikely
that we will see it explode again in our lifetime.

A schematic nova light curve is shown in Fig. 2.26. There is a fast rise,
lasting perhaps a day, followed by a decline in brightness that may be quite
variable from nova to nova. In the “fast” novae the decline may take a couple
of weeks to reduce the visual brightness by two magnitudes. “Slow” novae
may take a few months to accomplish the same thing. Between the initial rise
and eventual decline, there may be a plateau near the peak lasting an hour
or so in fast novae but extending over days for slow ones. As indicated in the
figure, the decline phase may be interrupted by oscillations or a pronounced
trough. This complexity should not be too surprising because we are dealing
with four objects at the same time: donor star, accretion steam, accretion
disk, and white dwarf, all interacting with one another. For example, how
the ejected material and radiation field from the explosion affect the donor
star and/or accretion process is a formidable multi-dimensional problem.

The course of the explosion itself has been modeled with fair success.
After 10−5–10−4 M� of hydrogen-rich donated material has been deposited
on the high gravity surface of the white dwarf, gravitational compression has
heated it up to ∼ 108 K with densities 103–104 g cm−3. This is a combination
sufficient to initiate a runaway thermonuclear explosion using hydrogen as
fuel. It has been established that CNO nuclei play a crucial role in controlling
how the explosion proceeds. As in main sequence hydrogen burning, the CNO
nuclei act as catalysts but, unlike quiescent burning, the time scales are so
short that many intermediate nuclei produced do not have time to decay
by positron emission until the explosion is well underway and the material
is already being ejected. The energy released by decays at later times helps
power the expansion of the ejecta.

It also appears that a successful fast nova requires that the material ac-
creted from the secondary be overabundant in CNO nuclei as compared to
the sun and the atmospheres of most other normal stars. What causes this
overabundance in the outer layers of the secondary is not known but observa-
tions of the ejected matter confirm that C, N, and O are indeed overabundant
along with other nuclei such as neon and magnesium (although the presence
of the latter may reflect the composition of the underlying white dwarf).

Dwarf novae erupt repetitively (but not with a regular period) with in-
tervals between outbursts of tens to hundreds of days. The duration of the
outburst may vary but, for the majority of systems, there is a correlation
between the duration of outburst and the interval of time before the next
one takes place: the longer the duration, the longer the interval. At outburst
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Fig. 2.26. Shown is a schematic light curve for classical novae. Reproduced, with
permission, from McLaughlin (1960), c©1960, University of Chicago Press.

peak, the optical luminosity is typically around L ≈ 1034 erg s−1 with a (usu-
ally) rapid rise to the peak and a slower decline. The total energy released for
an outburst is estimated to be of the order 1038–1039 ergs. With this combi-
nation of readily identifiable characteristics, it is not surprising that over 300
dwarf novae are now known.

Because the dwarf novae are binary systems we can view them from dif-
ferent aspects as the two stars orbit and perhaps eclipse each other. The
following is a generic description of what information has been derived from
observations of the binary light curves of many systems. (We shall note later
some variations on the following themes.) There is clear evidence for the
“hot spot” (as in Fig. 2.25) that reveals itself by a “hump” in the light curve.
In most systems, the emergence of the hot spot also coincides with a noisy
“flickering” in the light output, which most likely reflects the violence of the
collision process. In strong support of the presence of a disk is the spectrum
of the light emitted by the system: it is consistent with that expected from
a thin but (often) optically thick bright disk and this light from the disk, in
most cases, outshines both white dwarf and secondary stars. In rare cases
Doppler-shifted atomic lines are observed that directly indicate rotation of
material around the white dwarf.

What is not so clear, and is still controversial, is what causes the eruptions.
Two perfectly reasonable models are prime contenders. If the mass–losing
secondary star is subject to instabilities that cause variations in the amount



2.11 Explosive Variables 93

of mass fed to the disk, then a higher than normal transfer rate will cause
the disk to gain more energy and brighten and supplement the amount of
material crashing down onto the white dwarf. A lull in the transfer rate, on
the other hand, will result in a quiescent state. The rhythm of outbursts is
then set by the secondary. But if the secondary is a well-behaved star, we are
led to the competing model. As mass is steadily fed to the disk in this model,
the disk grows in size and gradually brightens as it stores mass. Theoretical
calculations have shown that this is a potentially unstable situation. If the
accretion continues unabated, conditions in the disk may reach a point where
the physics of ionization of hydrogen and helium cause what may best be
described as a phase transition in the properties of the disk. The end result is a
change in the mass–storage capabilities of the disk from one where additional
mass may be easily accommodated and the disk is cool to one in which the
disk rapidly heats up, glows more brightly, and dumps material down onto
the white dwarf. Neither theory nor observations are yet up to discriminating
between these models. The combination of observation and modeling of disk
structures do lead to estimates of how much the total mass flow through the
disk is modulated between outbursts and quiescent states. During quiescence
the mass transfer rate estimate is Ṁ ∼ 5×10−11 M� yr−1, which is boosted
to Ṁ ∼ 5×10−9 M� yr−1 during outburst. The factor of 100 between these
numbers is roughly consistent with the difference of power output between
the two states. An order of magnitude (or so) estimate for the mass of the
disk is found by multiplying the quiescent mass transfer rate by a typical
time between outbursts (say a month) and yieldsMdisk ∼ 10 × 10−11 M�.
Compared to the mass of the stars involved, this is a remarkably small number
considering what the disk is able to do.

The dwarf novae are not a completely homogeneous class of objects and
there are well-recognized subclasses named after their prototypes. The “Z
Camelopardalis” systems, for example, have normal outbursts but, occasion-
ally, instead of returning to the usual quiescent state, the light output from
the system stays roughly constant at a level intermediate between quiescence
and outburst peak for a few days to months. (It is somewhat difficult to
reconcile these “standstills” with a long-lasting disk instability.) “SU Ursae
Majoris” dwarf novae sometimes undergo “super-outbursts” during which the
light output far exceeds that of a normal outburst. Finally—and this is as far
as we shall go—the “U Geminorum” variables are those that fit into neither
of the above subclasses and which may be thought of as more the prototype
dwarf novae. Sample visual light curves for the three major classes are shown
in Fig. 2.27.

Note that we have not discussed variations on these systems in which
the white dwarf has a measurably strong magnetic field, in the range 10–50
MG (and the field channels the accretion, so that there is additional varia-
bility at the rotation period resulting in objects called polars, DG Her stars,
intermediate polars, and other things).
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Fig. 2.27. Visual light curves for three classes of dwarf novae: (a) a U Gem DN, (b)
Z Camelopardalis, (c) an SU UMa DN. (Panel d is for a weird beast.) From Wade
and Ward (1985), c©1985 Cambridge University Press; reproduced with permission.

2.11.2 Supernovae

Supernovae (SN or, sometimes, SNe) are the most spectacular variables of
all. At maximum light, they are as bright as a whole, smallish galaxy, and
recognizing them for what they are was part of the total process between
1900 and 1925 C.E. that sorted out the approximate size of the Milky Way
and demonstrated the existence of other galaxies. There is a sort of family
resemblance among all supernovae—they get really bright in a matter of days
and fade in months to years. Their spectra display very broad features (a
combination and emission and absorption), indicating velocities of thousands
of km s−1. And they blow out a solar mass or more of material at these large
velocities that can then be seen as a supernova remnant for thousands of years
thereafter. A large galaxy experiences one to a few per century, though the
Milky Way seems overdue for its next. Combing (mostly) Chinese, Japanese,
and European records has established supernova events in 1006 C.E., 1054
(leaving the Crab Nebula), 1181, 1572 (seen by Tycho), 1604 (seen by Kepler),
and 1685 (seen by Flamsteed, the first Astronomer Royal).12

A closer look at the spectra shows two basic supernova categories, called
inevitably Type I and Type II. Type I spectra show no evidence of any hy-
drogen, though it is the most abundant element just about any place you
12 We again refer you to Arnett’s (1996) monograph for more information on su-
pernovae. For a shorter review to start out with, see Burrows (2000). And, for a
popular review of historical SN in our galaxy, see Stephenson & Green (2003).
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Fig. 2.28. Shown are the spectra of the four major types of supernovae captured
about one week after maximum light in the B-band (“t ∼ 1 week”) or after core
collapse (“τ ∼ 1 week”). The ordinate is essentially magnitudes in a spectral band
(fν is flux) and the wavelengths of the abscissa are in the rest frame of the su-
pernova. Reproduced with permission, from Filippenko (1997), Annual Review of
Astronomy and Astrophysics, Vol. 35, c©1997 by Annual Reviews.

look in the universe, while Type II spectra have strong emission and ab-
sorption features due to hydrogen. This is illustrated in Fig. 2.28, where the
spectra of four types are plotted against wavelength.13 Three of the spectra,
corresponding to Type I subtypes Ia, Ib, and Ic, show strong features due to
ionized iron, calcium, etc., but not a sign of hydrogen. (If there is hydrogen
between us and the SN we may see some, but this would be accidental.)

The Type II spectrum, on the other hand, has strong hydrogen absorption
lines. In addition, Type II events always, or nearly always, occur in galaxies
with recent, vigorous, star formation and in regions of that star formation
(i.e., among Pop I stars), while Type I events can also occur in elliptical
galaxies and galactic bulges and halos (i.e., among Pop II stars). Type II’s
expel more mass but at lower velocity, and there are also systematic but
rather subtle differences between the two sorts of light curves. Type II’s are
considerably more likely to be picked up as radio and x-ray sources, usually
at later times than the visible light peak.
13 The University of Oklahoma hosts a WWW site devoted to archival
spectra and light curves for supernovae. The access address is
http://tor.nhn.ou.edu/˜suspect.
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The distinction between Type I and II supernova almost, but not exactly,
corresponds to a very fundamental difference in what is going on in the two
cases. Type II events (which are a commoner sort, though somewhat fainter
and so harder to discover) are the products of the collapsing cores of mas-
sive stars (where we left you hanging at the end of §2.8). The basic energy
source is the gravitational energy released in the collapse, often more than
1053 erg. Of this, most comes out in neutrinos, 1% or so in kinetic energy
of the ejecta, and less than 0.1% in visible light and other electromagnetic
radiation. Evidence for this mechanism includes the presence of the collapsed
core (pulsar or rapidly rotating magnetized neutron star) at the center of
the SN1054 remnant, the Crab Nebula, and the burst of neutrinos seen from
SN1987A, which we will come back to shortly.14
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Fig. 2.29. A selection of light curves for Type II plateau and linear subtypes along
with SN1987A and SN1993J. Also shown is “56Co,” whose radioactive decay helps
power the light curve resulting in a decline rate of roughly one magnitude per 100
days (see text). The insert is on an expanded time scale. A Hubble constant of 75
km s−1 Mpc−1 is assumed. Reproduced with permission, from Wheeler and Benetti
(1999), c©1999 by Springer–Verlag.
14 Supernova are labeled by year of discovery and the order in which they were
discovered. Thus SN1987A was not necessarily the most important event of the
year, just the first. After 26 have been ordered, the labels are SN1998aa, ab,
etc., to az, then SN1998ba to bz, and so forth. In recent years, discoveries have
reached the e’s and f’s, and eventually a new system will be needed.
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In an ordinary Type II event, there is a good deal of the original hydrogen-
rich envelope left when the core collapses, which is heated and ionized by
the outgoing blast wave, producing the hydrogen lines in the spectra. If a
massive star has lost its hydrogen envelope (in a strong wind or by transfer
to a companion star) before its core collapses, there will be no hydrogen lines.
A composite set of Type II light curves is shown in Fig. 2.29. These include
the “plateau” subtype, SN II-P, where the decline is held up for a while, and
the “linear” subtype, SN II-L, which declines with essentially no hang-up.
The best-studied event has been SN 1987A. Note that the figure has data for
times well before maximum.

SN1987A

Rather than give a general discussion of Type II supernovae, we shall con-
centrate on SN1987A in the Large Magellanic Cloud (LMC), which was first
observed visually and photographically on February 24, 1987. Despite the
fact that this is not a typical SN II object—its light curve and spectrum are
almost unique, and it is intrinsically dimmer than what is typical—the basic
physical processes driving the explosion are most certainly those of other SN
Type II. In addition, we have a wealth of information concerning this object
because of its relative proximity. We shall rely on the review by Arnett et
al. (1989, and see Arnett, 1996, §13.6, and Wheeler and Benetti, 1999) in
what follows.

First of all, we know which star exploded. It was Sanduleak–69◦ 202,
which was a B3 I blue supergiant with L ≈ 1.1 × 105 L� and Teff ≈ 16, 500
K. From various lines of evidence, it is estimated that the main sequence
mass of Sanduleak–69◦ 202 was in the range 16 to 20 M� and that during
its pre-supernova evolutionary stages it lost perhaps a few solar masses of its
hydrogen-rich envelope. Although the star was certainly a Pop I object, its
original composition was metal-poor compared to objects of similar mass in
our galaxy: low-metallicity stars are characteristic of stars in the neighbor-
hood of SN1987A and for the LMC in general.

The whole story has not yet been unraveled, but SN1987A ended up
as a blue star before it exploded. More usual SN II events are thought to
involve red supergiants and this difference explains why SN1987A is peculiar.
(However, comparatively low-luminosity supernovae such as SN1987A may
be much more common than we think: we just have a harder time finding
them than we do the “normal” brighter objects.)

Perhaps the two most important observations made of SN1987A are the
detection of neutrinos prior to the optical discovery and the later detection
of radioactive 56Co. These are the two keys to our understanding of how the
star exploded and both were anticipated by earlier theoretical work on the
modeling of Type II events. To explain this we need to recall the thermonu-
clear burning stages of a star with a mass comparable to SN1987A. This is
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Fig. 2.30. A representation of the thermonuclear burning stages of a star similar
to SN1987A. The first box is a key to the notations in the boxes following—each
of which represents a stage. Central density is in the units of g cm−3, Tc in K,
and photon and neutrino luminosities are in the units of L�. The progression of
arrows indicates the arrow of time. The figure is adapted from Table 1 of Arnett et
al. (1989).

shown schematically in Fig. 2.30, where each box represents an active burn-
ing stage at the center of the star. Also indicated is the lifetime of each stage,
the central density and temperature, the total stellar luminosity and, finally,
the total power given off in the form of neutrinos. An “onion-skin” diagram
for the last stage is shown in Fig. 2.31.

The amount of iron core that is formed by the burning of silicon is ap-
proximately 1 M� and has a radius near that of a white dwarf. This core
(or perhaps the innermost part of it), having no further source of nuclear
energy production and losing energy from neutrinos, now collapses on a time
scale of seconds or less. As it does so, the temperature rises rapidly until
the radiation bath of high-energy photons (in the form of gamma rays) in-
teracts with the iron peak nuclei and effectively boils off their constituent
nucleons. What speeds the process along is that at the very high densities
encountered during the collapse, electrons gain enough energy that they may
be captured on nuclei, thus converting protons into neutrons plus neutrinos.
These processes continue until the stellar plasma of the core is reduced to
a sea of mostly neutrons at a density comparable to or exceeding that of
nuclear matter (2.7×1014g cm−3) confined in a radius measured in only tens
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Fig. 2.31. An onion-skin diagram for the last stage of Type II presupernovae. The
thickness of the layers is not to scale.

of kilometers. Further collapse is effectively halted by the very stiff equation
of state of nuclear matter.

What has happened is that all the nuclear burning stages the core has
experienced—from hydrogen-burning through to the production of iron peak
material—have been unraveled. This means that all the energy produced in
those stages must be repaid back along with the energy lost through the
emission of neutrinos. To estimate what is owed we consider first the nuclear
energetics. The binding energy per nucleon of nuclei in the iron peak is about
9 MeV/nucleon (see Chap. 6). If an average nucleus in this peak has 56
nucleons, it then requires about 8×10−4 ergs to reduce the nucleus to neutrons
and protons and, for a unit solar mass containing about 2× 1055 such nuclei,
the total owed back for nuclear burning is about 2×1052 ergs. Finally (and as
probably a lower limit), two days of neutrino emission at a rate of 8×1011 L�
(see Fig. 2.30) totals more than 1050 ergs. Where does all this energy come
from? Actually, this is easy to answer because we have caused an object
roughly the size of a white dwarf to collapse down its gravitational potential
well to something the size of 10 km in radius. You may easily calculate that
if 1M� is involved, the total release of gravitational energy is, and see §1.2,

|ΔΩ| ≈ G(M�)2

106
≈ 3× 1053 erg .

This is more than enough to repay debts. How this energy is used to
blow up the star is still a matter of some controversy but what is involved
is some way of abstracting a portion of the energy from out of the collapsed
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(or collapsing) core and depositing it further out in the star. This may be
accomplished by having core material “bounce” as it reaches nuclear density
(or beyond) and, as it bounces, collide with infalling material thus forming a
shock that propagates outward lifting off most or all of the remainder of the
star. The alternative is to produce enough high-energy neutrinos (by various
processes ultimately relying on the energy released by collapse) so that some
fraction of them might interact with overlying material to the extent that
they effectively push off the outer layers. The calculations are very difficult
and depend on many physical parameters (plus how the numerical work is
done). Either way of doing things, however, and in the best of worlds, yields
supernova energies in the proper range and, more to the point, predicts that
high fluxes of neutrinos will pass out of the star before the event is seen
optically, and that the violence of the event will cause nuclear processing of
ejected material to iron peak nuclei—including large amounts of 56Ni.

Both of these conditions are met for SN1987A. Neutrinos were detected
about a quarter of a day before optical discovery, with energies within the
proper range and over a time scale (5 to 10 s) that seems reasonable given
the time scale estimated for their production. Furthermore, gamma-ray lines
of 56Co (half-life of 77 days) were detected well after the event (at about
160 days), consistent with the early production of 56Ni. The significance of
this is the decay sequence 56Ni ⇒ 56Co ⇒ 56Fe, which not only makes 56Fe
(see Fig. 2.20) but also provides an energy source for the expanding ejecta.
Modeling of the later light curve powered by these decays is a success story
for supernova calculations (see Arnett 1996, §13.4).

One further question remains, and this is whether a compact neutron-rich
or black hole remnant lurks within the exploding debris. All models point to
a remnant neutron star but none has been observed as yet. In its simplest
manifestation it would appear as a pulsar but this requires that the neutron
star have a strong magnetic field and that it be rotating (as the least of the
requirements).

SN Type I

In contrast to Type II events, Type I SN show no evidence for hydrogen in
their spectra, strongly suggesting that the object that explodes has lost its
hydrogen envelope (in a strong wind or by transfer to a companion star),
leaving an “undressed” core. Two subsets of Type I events, called Types
Ib and Ic (and characterized by anomalies in the lines produced by heavier
elements), are thought to be powered by the collapse of such undressed cores,
and they, like the Type II’s, are confined to regions of recent star formation.

In contrast, classic Type I events, now called Type Ia, occur in a wide
range of galaxies, locations, and stellar populations.15 There is no evidence for
15 A semi-popular discussion of Type Ia SN is by Maurer, S.M., & Howell,
D.A. 2002, Anatomy of a Supernova, Sky&Tel, 104, 22. The graphics are ex-
cellent. Also see Branch, D., 2003, Science, 3 Jan 2003, p. 53.
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formation of a neutron star or other condensed remnant. All observations are
consistent with and even suggest that the energy source for these is explosive
fusion of about one solar mass of carbon and oxygen to iron-peak elements,
especially 56Ni.

By now, you should be saying to yourself, “Aha! Explosive nuclear burn-
ing. The fuel must has been degenerate at ignition. Where might I find enough
degenerate carbon and oxygen to do this?” And your better self will answer,
“A white dwarf!” Of course a white dwarf of less than the limiting stable
massM∞ (the Chandrasekhar limiting mass discussed in §3.5.2) will just sit
and cool for the age of the universe.
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Fig. 2.32. A selection of light curves for Type I SN. The solid line is a composite
of many Type Ia events, while SN1994I is Type Ic. Reproduced with permission,
from Wheeler and Benetti (1999), c©1999 by Springer–Verlag.

Thus something must happen to increase the mass beyond the limiting
stable mass. One possibility is the merger of a pair of white dwarfs, each of
mass less thanM∞ but with the sum greater thanM∞. This is many people’s
“best buy” model. It accounts for the absence of hydrogen, the possibility of
occurrence among even very old stars, and for the rather boring sameness of
SN Ia light curves, as shown in the composite light curve of Fig. 2.32. SN
Ia are not quite standard candles (all the same peak brightness), but they
can be used as distance indicators out to redshifts of unity and beyond. (The
peak blue magnitude of Type Ia SNs is estimated to be −18.4± 0.3+5 log h,
where h is Hubble’s constant in units of 100 km s−1 Mpc−1.) “Boring,” in
reference to the light curve, means that they all decline in very much the
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same way with a slope of 0.012–0.015 mag day−1. They are currently being
used that way to provide hints of the distant past and long-range future of
the expansion of the universe.

The only problem with the white dwarf pairs as SN Ia progenitors is that
there don’t seem to be very many (not any some would say) with both ade-
quate mass and the ability to merge in the age of the universe. An alternative
progenitor class is the recurrent novae, some of which, at least, have white
dwarf masses very close toM∞ and do not blow off in the explosion all the
material they accreted to make it happen. Thus their masses are gradually
increasing. It is not entirely clear why no hydrogen emission or absorption
appears in the SN spectrum if this is what is going on, since the donor star
(though not the white dwarf accretor) is made mostly of hydrogen.

If matter is accreted onto a white dwarf with mass close toM∞, the star
gets smaller. (Recall for white dwarfs that more massive means smaller, and
less massive means bigger.) But this results in compressional heating. If the
added heat cannot be transported away sufficiently rapidly, then potential
thermonuclear fuels—such as the carbon and oxygen thought to make up
most of a white dwarf—may be ignited. Because of the extremely high den-
sities in the interior, any ignition of fuel initiates a runaway explosion and a
supernova is born.

To demonstrate the possible energetics of such an explosion, consider
the thermonuclear burning of pure carbon in the form of 12C under these
conditions. If the burning is not somehow controlled, then a sequence of
reactions rapidly processes the carbon to elements in the mass range of iron
with, yet again, 56Ni as the most abundant. The energy released by the
formation of 56Ni (from 4+2/3 12C nuclei) is 8.25 × 10−5 erg. Were we to
convert 1M� in this way, the total energy release would be about 1052 erg,
with plenty to spare for a supernova.

Details of the explosion process have been explored by many investigators
using state-of-the-art hydrodynamic computer codes but some uncertainties
remain. (For a review of SN Type Ia models, see Hillebrandt and Niemeyer,
2000.) Two crucial parameters are the rate of mass accretion onto the white
dwarf and the mass of the white dwarf. Different choices of combinations of
these parameters lead to quite different events. It is possible, for example,
completely to disrupt the white dwarf and leave no stellar remnant or to
have a partial explosion that leaves behind a white dwarf of lesser mass.
Other possibilities include the detonation of helium in a white dwarf that
has not converted all of that element to carbon and oxygen. In any case, it is
not thought that a neutron star—and, perhaps, pulsar—would be left behind
as a remnant.

SN Remnants

The supernova remnants (SNRs) we see range in age from less than 20 years
(SN1987A is just getting big enough to resolve) to 104 or more. Many are
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sources of radio waves and x-rays as well as visible light. Where there is a
central pulsar, it continues to pour energy into the remnant until the gas
is too dispersed to be seen. Pulsar-less remnants nevertheless remain bright
for as long as the expanding ejecta are plowing into surrounding interstellar
gas. They look brightest around the edges. The Crab Nebula, pulsar fed and
left from the supernova seen by the Chinese, Arabs, and possibly Europeans
in 1054 C.E., is the best known and most thoroughly studied supernova
remnant. Recent x-ray images show energy from the pulsar being beamed
out along the long axis of the prolate nebula, which is brightest at the center.
Cas A (meaning the brightest radio source in Casseiopia) is the remnant of
SN1685 (or thereabouts). Our view of its optical emission is partly blocked
by dust, but the radio and x-ray images show that it is brightest around
the edges, consistent with the absence of a detectable pulsar (though there
is a central faint, point source, which could be a residual neutron star or
black hole accreting some material from its surroundings). The gas in both of
these SNRs includes lots of hydrogen, so presumably they would have been
classified as Type II supernovae, though both Flamsteed and the medieval
Chinese unaccountably neglected to photograph the spectrum for us.

Supernova remnants are important in the great scheme of things as heaters
and stirrers of interstellar gas, probably as triggers to collapse gas clouds to
initiate star formation, and probably as the accelerators of cosmic rays—
particles, mostly protons, with kinetic energies greatly exceeding mpc

2 which
pervade the Milky Way and other galaxies. Cosmic rays produce most of our
lithium, beryllium, and boron, make 14C in the upper atmosphere, and are a
major source of mutations in terrestrial creatures.

2.12 White Dwarfs, Neutron Stars, and Black Holes

These are the three, and only three, ways we found in earlier sections that
stars could end their lives. (Note that the title of this section is a permutation
of the title of Shapiro and Teukolsky’s 1983 text Black Holes, White Dwarfs,
and Neutron Stars, which should be consulted.) Chapter 10 explains how to
calculate what the inside of a white dwarf should be like, and neutron star
structure is handled in much the same way. There are two catches, however.

First, neutron stars are compact enough that the equation in which
pressure balances gravity must be rewritten with gravity described by gen-
eral relativity, rather than its Newtonian approximation. This Tolman-
Oppenheimer–Volkoff equation (so called because it was first written down
by Lemâıtre but, in any case, you can play with it in Ex. 1.7) makes it clear
that, deep down in the potential well, Einsteinian gravity is stronger than
Newtonian by a factor of

√
(1− 2MG/rc2) in the denominator. This lowers

the maximum mass that can be supported by degenerate pressure to about
0.7M�, as Oppenheimer and Volkoff found in 1939.
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Second, the equation of state, describing how pressure depends on den-
sity, temperature (and composition), must include the nuclear force as well
as quantum mechanics and degeneracy pressure. At distances less than about
1 fm (10−15 m), the nuclear potential is repulsive and so helps balance grav-
ity, raising the mass limit. This is good. Otherwise there would probably be
no neutron stars; anything that made it past white dwarf density would con-
tinue down inside its own Schwarzschild horizon and become a black hole. The
downside is that we have no closed, complete theory of the nuclear force to
correspond to quantum electrodynamics for the electromagnetic force, and
laboratory conditions cannot quite duplicate the enormous assemblages of
neutrons needed to see just what the potential looks like. As a result, the lit-
erature includes many different equations of state for “dense nuclear matter”
that imply different internal structures for neutron stars, different limiting
masses, characteristic radii, break-up rotation velocities, and so forth. Indeed
the interior of a neutron star need not even be primarily made of neutrons.
Hyperons, muon condensates, and strange quark matter have all been sug-
gested.

In contrast, the structure of a black hole is remarkably simple. It can be
characterized by a mass (as measured by Kepler’s third law from far away), an
angular momentum (measured by how it drags space–time around up close),
and electric charge (probably zero, since free electrons and protons can flow
in). That’s it. Of course calculating things (like the shortest period orbit that
is possible for a test particle going around a black hole, or how synchrotron
radiation will be modified if both the magnetic field and relativistic particles
are being dragged around) is, at best, extremely difficult.

We can, however, summarize the expected and measured properties of
white dwarfs, neutron stars, and stellar–mass black holes, as is done in
Figs. 2.33 and 2.34. Notice that the three categories were initially defined in
very different ways: white dwarfs by their location on an HR diagram, neu-
tron stars in analogy as something supported by degenerate neutron pressure,
and black holes (the idea predates general relativity by more than a century)
by having an escape velocity larger than the speed of light. Given these de-
finitions, white dwarfs must exist, neutron stars exist on the “walks like a
duck, quacks like a duck” principle, and black holes exist on the Sherlock
Holmes principle that, if you have eliminated the impossible (neutron stars
of 10M� and so forth) whatever remains, no matter how improbable, must
be the truth. Whether astrophysical black holes have all the internal proper-
ties implied by general relativity cannot be determined from outside (and all
the students sent inside to do thesis research on this topic have so far failed
to return and submit their theses) and for our purposes does not matter.
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Property White Dwarfs

Position in HR diagramDefinition

pulsar CP1919, Hewish,
      Bell 1967-68

tentative: 1999 MACHO events
       toward galactic bulge

single

Masses

van Maanen’s star c. 1920

Pressure from degenerate neutrons

Neutron Stars

orbit of Cyg X-1, Bolton,
     Murdin 1972

interacting
  binaries

Sizes R~10 km, X-ray L & T

 106-7 K,  X-ray colors

thermal, ISM accretion
  (single, non-pulsar)

Bessell 1844, Clark 1862
WS Adams 1914 (Sir B)

wide binary

Discovery
 

Luminosity & 
  energy  sources

0.2-1.38 Msun  CBS orbits
 surface gravity, log g=8

 gravitational redshifts 30-75 km s-1

 probable correlation of M and
 interior compositions

thermal (single WD)

   accretion (cataclysmic
variables), nuclear (novae)

vesc greater than c

Michell 1784, Laplace 1798Zwicky 1933-34

Stellar Mass Black Holes

Prediction

cataclysmic variables
  Struve,Kraft 1950s

interpretation of Sco X-1
 Zeldovich et al. 1964+

0.8-1.44 Msun CBS orbits
  gravitational redshifts

6-10 Msun CBS orbits. BHXRB,
   duration of MACHO events

radius ~ Rearth, L=4πR2σT4

       eclipse timing

accretion (X-ray binaries),
nuclear (X-ray bursters),
magnetic extraction of ro-
tational KE (pulsars),

 10-4-102 Lsun

  104 Lsun in novae

0.001 of to greater than 
  Eddington limit

some limits from
 rapid variability

accretion disks 106-7 K
        X-ray colors

accretion, perhaps Blandford-
Znajek extraction of rotational
KE, X-ray binaries

very small  (advection dominated
accretion?)  to greater than
Eddington  limit

Fig. 2.33. Our “crib sheet” for the properties of white dwarfs, neutron stars, and
black holes. Codes used in this figure are: CBS = close binary systems, BHXRB =
black hole x-ray binaries, ISM = interstellar medium, LMXRB = low mass x-ray
binaries, HMXRB = high mass x-ray binaries, MACHO = MAssive Compact Halo
Objects. Continued in Fig. 2.34.

2.13 Binary Stars

Half or more of all the dots of light you see in the sky actually represent
two (or occasionally more) stars, and these gravitationally bound pairs, or
binary stars, are nearly the only source of information we have about stellar
masses, the most important thing in a star’s life. In addition, some of the
most spectacular of astronomical phenomena—novae, some supernovae, some
gamma ray bursts—and many of the favorite objects of amateur astronomers
(eclipsing variables, blue plus yellow pairs) are binaries. Why, then, are they
left almost for last? Mostly because one needs to know about the evolution
of single stars before one can put them together and follow the evolution of
pairs.

2.13.1 Types of Binaries

Binary stars can tell us about their duplicity in many ways and are classified
accordingly. Eclipsing binaries are those in which one star passes in front of
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Property White Dwarfs Stellar Mass Black HolesNeutron Stars

Rotation periods minutes to century,
most much slower than
break-up; bimodal?

1.55 ms to 1500 s,
some at breal-up J/M2=0.4 to 0.95 (c=G=1 units)  of

maximum allowed by general relativity

v sin i, polarization
      variability

pulsar periods,

LX(t)  in XRBs
line profiles

J/M2=1 maximum possiblebreak-up is seconds
     to minutes

break-up=ms

Magnetic fields hydrogen line splitting,
 circular polarization

channeling of gas accretion,
    P vs. dP/dt of pulsars

(attached to disks)

104 to 109 G, bimodal 108-9 G, LMXRB, 
    recycled pulsars

1011-13 G young pulsars, HMXRB
binaries different, fields

commoner, most 108 G

geometry: off-center dipole

disk & halo populationsSpace motions

Birthrates 1/year, by direct counts
& cooling ages, #s of PNe
and expansion ages

Composition

Core He, CO, ONeMg 
  (nova ejecta)

Surface

single=TBD,
binaries=low velocity

binaries:a few % of SN rate

no information &
doesn’t matter!

no surface

geometry: inclined dipole

single=high velocity=runaways,
binaries=low velocity

2-3/century: pulsar ages,
   SN rates

neutrons (assumed),
superconductor, superfluid
(confirmation from cooling
and pulsar glitches)

iron and neutron-rich isotopesH, or He, or CO (often
nearly pure; sometimes
metal contaminants in H or He)

Fig. 2.34. Our WD, NS, & BH “crib sheet,” continued.

the other from our point of view, wholly or partially blocking its light, so
that we see periodic variability. Eclipsing systems are generally ones in which
the stars are fairly close together, because this makes it more likely that we
be close enough to the orbit plane to see the eclipse.

Spectroscopic binaries (called SB1 and SB2 or single- and double-lined
spectroscopic binaries, depending on whether you see spectral features from
one of the two stars or both) are systems in which the periodic change of
stellar speed along our line of sight through the orbit is large enough for the
Doppler shift to be detectable. Once that meant speeds projected along our
line of sight of 10 km s−1 or more. The state of the art is now more like 1 km
s−1 (and it is this capability that has enabled the detection of Jupiter-mass
planets orbiting many dozens of nearby stars).

Spectroscopic binaries are of enormous value to astronomy, because the
velocities of the two stars plus the orbital period, the information from the
eclipse—which means the orbit is nearly edge on—and a bit of arithmetic
permit calculating the masses of the two stars. The lengths of the eclipse
tell us the radii of the stars; the spectral types contain information about the
stellar temperatures, and with bothR and Teff you can immediately calculate
the absolute luminosities of the two stars and compare all this information
with evolutionary tracks of the masses you measured.
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Pairs where you see two sets of spectral features corresponding to different
types but no Doppler shifts are called spectrum binaries (and must have
either very long orbital periods or orbits that we see nearly face on). Visual
binaries are the ones where you can two dots of light moving around each
other in the sky, and can also be analyzed to determine the masses of the
stars, though you must be patient. Most visual orbit periods are years to
decades to centuries, while spectrum binaries have periods of days to weeks.

If the two stars are too close to each other for you to resolve the two dots
of light in the sky, the centroid of the dot may still move around, or you
may see the light from a seemingly-single star wiggle back and forth across
the sky as it orbits something too faint to resolve. These are the astrometric
binaries. The first white dwarfs, Sirius B and Procyon B, were originally
recognized from astrometric orbits of the bright stars Sirius and Procyon,
otherwise known α CMa and α CMi. That the two dog stars both have white
dwarf companions is thought to be a coincidence.

Still wider pairs of stars may still be gravitationally bound but have orbit
periods too long and motions too slow to have been seen yet. But they will
move together through space and are dignified by the name common proper
motions pairs. Proper motion is not a term of social approbation but the
standard name for the motion of a star (etc.) across the sky, measured in
arcsec year−1.

2.13.2 The Roche Geometry

The need for specific investigation of stellar evolution in binaries is made
clear by the Algol (β Per) paradox. You know from earlier parts of this text
that massive stars evolve faster than petite ones (as in tnuc ∝ M−2.9 of
Eq. 1.91). Yet there is a large group of eclipsing binaries, of which Algol is
the prototype, in which a clearly evolved giant (often of spectral class K)
orbits a clearly less-evolved main sequence star (often of spectral type A or
F). And the evolved giant star is the less massive of the two. This paradox
has its resolution in the phenomenon of mass transfer in close binaries. That
is, the initially more massive star has managed to off-load a good deal of its
substance onto the initially less massive star. The donor, however, continues
to evolve as if it still had its initial mass and so will finish first.

Just what happens is always discussed within the framework of what is
called the Roche geometry (for the French mathematician; though Lagrange
of Turin also comes into the story). Think of yourself as a test particle living
somewhere near a binary star system and at rest in a coordinate system that
rotates with its orbit period. The orbit of each star is assumed to be circular.
That is, if the stars are going around their mutual center of mass in circles
with period Π or angular velocity Ω, you too are going around the center of
mass with period Π and angular velocity Ω. Now trace out the equipotential
surfaces—the ones that you can walk (or fly or rocket) around without having
to do any work, like the surface of the rotationally-distorted earth.
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Fig. 2.35. The Roche equipotential surfaces for q =M2/M1 = 1/2 in the plane
of rotation. Three surfaces (ξ1, ξ2, and ξ3) are labeled. (To find out what the ξi

represent, see the text and Ex. 2.19.) Boxes (�) enclose three of the Lagrangian
points. The boldface × is the center–of–mass of the system. The coordinates x (the
axis connecting the two stars) and y are in units of the distance between the stars.

What you will find is shown in cross-section in Fig. 2.35. (Ex. 2.19 explores
some of the mechanics necessary to set up the equipotentials in this figure.)
The two black dots are the stars,M1 the primary (more massive), andM2
the secondary with M1 > M2. (For simplicity it is assumed that the stars
are just massive dots with spherically symmetric gravitational fields.) In this
particular case M1 = 2M2, and the center of mass is at the point ×. We
will adhere to the custom of theorists in binary astronomy of continuing
to call M1 the primary no matter what happens to the stars subsequently.
Working outward from the stars, first you find that the equipotentials are
nearly spherical, with one sphere surrounding each star, just as for a single
point mass. But soon you come to ξ1, called the inner Lagrangian surface,
which is made up of two Roche lobes, one surrounding each star. The point
L1 between them is the first Lagrangian point. Clearly if one star fills its
Roche lobe and the other doesn’t, material is free to flow from the star with
the filled lobe to its companion. and if both lobes are filled, it would seem
that gas could slop back and forth between the two stars.
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The Roche geometry is responsible for another set of names for types
of binaries. In detached systems, neither star fills its lobe. In semi-detached
systems (like Algol) one does. And in contact systems both lobes are filled.
The W UMa variables are contact systems of relatively low mass, and you
see a bit of an eclipse almost no matter what direction you look at them
from. Observed binary systems have separations (that is, major axes of their
relative elliptical orbits) that range in size from the sum of the radii (contact
systems) up to about 0.1 pc or 20,000 AU. Wider systems may well have
formed but are very easily disrupted by any passing star or gas cloud.

Still further out from the stars comes the first equipotential that is open
to the rest of space at the point L2 (on the equipotential surface ξ2). Gas
that reaches this point is free to leave the system completely, as is even more
true for gas that reaches L3 (on ξ3). The points L4 and L5 have no special
significance for binary evolution but are analogous to the Trojan asteroid
orbit locations for the Sun–Jupiter system and might be good places to put
artificial satellites if you were living in the system. (In this context they
are called the “Trojan points” and form equilateral triangles with the sun
and Jupiter at two of the corners. Generally they are referred to as “triangle
solutions.”) A pair in which both stars over-fill their Roches lobes is a common
envelope pair (CEB). Gas that leaves through L2 and L3 will have more
than its fair share of angular momentum (because they are further from the
center-of-mass than the main bodies of the stars). The residual stars will
spiral together, perhaps rather rapidly. We know this must happen because
there are pairs of evolved stars (white dwarf plus red dwarf for instance)
whose present separation is smaller than the sum of their radii when they
were both on the main sequence.

2.13.3 Formation and Early Evolution

Since we do not understand star formation very well this is obviously dou-
bly so for binary star formation. It is probable, however, that two or more
modes are in operation. One might, for instance, imagine two (or more) dense
cores in a molecular cloud that happen to condense close enough together for
the resulting star pair to be gravitationally bound. Such binaries should be
wide pairs. Second, in a crowded environment with many protostars milling
about, tidal capture may occur. The extra kinetic energy of the initially hy-
perbolic encounter has to go some place, via dissipation in the protostars, and
extended disks make the process more efficient, while in turn perhaps disrupt-
ing the disks and making planet formation unlikely. This is OK, though you
wouldn’t want to try to live on a planet in a close binary system anyway. The
orbit, like most three body processes, is likely to be unstable and send your
planet careening out into distant space or crashing into one of the stars.

Third and last, a contracting core may fragment into two pieces, especially
if it is rotating rapidly. Even the gentle rotation observed for many molecular
clouds is enough that, with a contraction process that conserves angular
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momentum, many cores will be close to the break-up rotation speed (as in
Ex. 2.20, and see Bodenheimer, 1995],for a discussion of angular momentum
problems for young stars and disks). Fragmentation or fission of a single core
is expected to produce close binary pairs, arguably with the two components
of rather similar mass. Tidal capture, on the other hand, might “choose” stars
at random out of the total ensemble and favor unequal pairs. In practice, we
observe virtually all sorts of pairs that are physically possible. Notice that
this excludes pairs of main sequence stars of such different mass that one
has completed core hydrogen burning before the other even reaches the main
sequence (mass ratios of less than 0.2 or thereabouts).

Ongoing loss of angular momentum is characteristic of most stars whether
single or binary (including the sun). The usual mechanism, at least for stars
with convective envelopes, is an outgoing stellar wind, magnetically locked
to the rotation of the star close in, which then breaks loose and so carries off
a ratio of total angular momentum to mass (J/M) larger than the star (or
binary) average. In close binary systems, the rotation and orbital periods are
locked much of the time (like the moon to the earth), thus angular momentum
loss affects the system as well as the individual stars, and members gradually
spiral together. This must be how W UMa (contact) binaries form, since the
systems we see are smaller than the stars were during protostellar collapse.
Confirming evidence comes from looking at very young star clusters, which
have lots of wide pairs but no W UMa stars. Older clusters (including globular
clusters) do have W UMa pairs, and it looks like there is a steady supply of
them forming from previously detached pairs. But they then merge after
another billion years or so, only to be replaced by others coming through the
spiraling-in process.

In a system that is initially detached, the two stars live their early lives
much as they would in isolation, although they are likely to display more
activity than average for their masses and ages both because of the reduced
surface gravitational potential and because of their rotation being kept at
the orbital period, faster than they might otherwise rotate. The extremity
of this is the category called RS CVn stars, where both are slightly evolved
(F, G, or K stars as a rule) with winds vigorous enough that the collision
region is a source of both x-rays and radio emission, while the individual stars
have vigorous chromospheres (detectable as emission features inside strong
absorption lines of hydrogen, calcium, etc.).

2.13.4 The First Mass Transfer Phase and its Consequences

Sooner or later, M1 (the primary) is going to try to become a red giant,
as all stars massive enough to have done anything at all in the age of the
universe do. If its companion is sufficiently far away, neither star cares about
the other, and you can go on to the next section. A “close” binary is, by
definition, one in which the primary fills its Roche lobe at some evolutionary
phase. Aficionados distinguish three cases: Case A where the lobe is filled
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during immediate post-main sequence evolution, Case B where filling occurs
while the primary is a red giant, and Case C where Roche lobe overflow sets
in even later, for instance whenM1 becomes a AGB star. There are people
who earn a precarious living by numerically integrating through all of the
possible combinations. We will sort of average over them here. Much more
detail is given in de Loore and Doom (1992).

WhenM1 first fills its Roche lobe, material begins spilling over ontoM2
rapidly because (if you do the arithmetic—as you should in Ex. 2.21) the
mass ratio coming closer to unity brings the two stars closer together so that
the lobe is shrinking at the same time that the star is trying to expand. Now
M1 can adjust its structure and dump on its thermal or Kelvin–Helmholtz
time scale (see Eq. 1.32), butM2 can only adjust and accept on its thermal
time scale, which is longer, since things all scale roughly asM−2 (combining
Eqs. 1.32, 1.87, and 1.88). Thus its envelope puffs up until it, too, fills and
overfills its Roche lobe, producing a contact or common envelope binary. The
first person to discover this was a semi-mythical Berkeley graduate student
named Benson, who had intended to couple two stellar evolution codes and
follow both stars to the bitter end. Instead, by the time a tenth of a solar
mass had passed through L1, both lobes were full and the codes broke down.
It is said that he submitted his thesis and left astronomy forever in about
1971.

But, leaving Benson to his fate, Fig. 2.36 shows the earlier stages of Case
A evolution (from de Loore and Doom, 1992). Starting with M1 = 9 M�
and M2 = 5M�, mass exchange leaves them at 3M� and 11M�, respec-
tively, after only 18 million years of evolution. At a later stage, the (former)
secondary will do its thing also.

Several stars, including β Lyrae, have been proposed as examples of this
rapid mass transfer, whenM2 is so deeply buried in an accretion disk that all
it can do is eclipse the other star. Come back in a little while (we mean after
a few Kelvin–Helmholtz times, not 2005), however, and the ratio of masses
will have been reversed, with part of the outer layers of M1 lost forever to
the system and part settled in on topM2, and withM′

1 >M′
2 in the star’s

new guises. W Serpentis has been proposed as an example of a star at this
evolutionary state (but don’t bet money on it).

Now, further mass transfer will make the mass ratio more unequal, so that
the system expands again and so doesM′

1’s lobe. Thus continued adjustment
of its structure and further mass transfer occurs on the much longer nuclear
time scale. The prototype of this phase is—had you almost forgotten about
it?—Algol, with the evolved giant still gently overflowing its Roche lobe and
transferring material to the now-more-massive main sequence star.

In due course,M′
1, still evolving on the time scale set by its initial mass—

at least for transfer in Cases B and C (sorry!)—completes its evolution as
a white dwarf, neutron star, or black hole. The minimum main sequence
masses to make a neutron star or black hole are probably somewhat larger
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Fig. 2.36. An example of the earlier phases of Case A evolution. The two stars have
initial masses of 9 and 5M� orbiting each other with a period of 1.45 days. Times
(t) are given in millions of years. For the last four panels, the black circles represent
helium-rich material, whereas gray is original hydrogen-rich. Note the somewhat
dubious assumption here: no mass is supposed to have escaped from the system.
Reprinted from de Loore and Doom (1992) with kind permisssion of the authors
and Kluwer Academic Publishers (and see Kippenhahn and Weigert, 1967).

than for single stars, for instance 15M� versus 8–10M� for a neutron star
(though this must also depend on initial composition and perhaps rotation
and magnetic fields as well). The minimum single star mass needed to make
a black hole is not known observationally, though numbers as small as 20
M� have been proposed by theorists, but there is at least one x-ray binary
withM1 now a neutron star, whose secondary is such that the initial mass
ofM1 must have been something like 50M�.

You might suppose that the loss of mass in a planetary nebula or core col-
lapse supernova would automatically unbind the system. This is, in general,
not the case. RememberM1 is the less massive star by the time it dies, and
to unbind a gravitational pair with sudden mass loss, you must remove at
least half the total mass (which is left to you in Ex. 2.6). Thus white dwarfs
nearly always remain attached to their secondaries, and neutron stars (and
presumably black holes) will be liberated only if the supernova explosion is
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asymmetric and gives the core a reciprocal kick velocity (yes, that is the
phrase normally used).

2.13.5 Systems With One Compact Component

Binaries at the start of this evolutionary stage can be rather difficult to recog-
nize, particularly ifM1 is a white dwarf, a good deal less luminous than its
main sequence or giant M2. Consider Sirius. The white dwarf contributes
roughly one photon in 104 of those reaching us, and although Bessell showed
in 1844 that there must be a companion, it was not seen for nearly 20 years,
and even now it still gets lost in the glare during the part of its 50-year
elliptical orbit when it is closest to the main sequence star Sirius A. Inciden-
tally, Sirius is a “close” binary in the sense that, if you trace the evolution
backward, there was probably some mass transfer.

Nevertheless, binary nuclei in planetary nebulae are not uncommon (some
are eclipsing binaries), and V471 Tau, in the Hyades, is the prototype of a
class of temporarily non-interacting systems consisting of a white dwarf plus
a spectral class M star. A Mickey Mouse handful of pulsars have spectral
class B main sequence stars as companions, and there is a larger class of
neutron star and black hole binaries in which the extended star is blowing
off a vigorous wind, enough of which is captured by the neutron star or black
hole to make a bright x-ray source. There must surely also be examples of
non-accreting pairs in which a neutron star or black hole orbits an extended,
brightM2, but they are not easy to distinguish from systems in which both
stars are still on or near the main sequence and one is much more massive
and brighter than the other.

2.13.6 The Second Phase of Mass Transfer

Binary stars are perhaps at their best whenM2 in turn reaches the stage of
expansion away from the main sequence. First an enhanced wind and then
overflow of its Roche lobe provides a supply of hydrogen–rich gas for accretion
onto the compact companion. And astronomy is at its most botanical in
describing and classifying the cataclysmic variables. All are to some extent
variable in light output, and, as discussed previously, display emission as well
as absorption line features, and have at least some light coming from five
locations—two stars, an accretion disk around the white dwarf, the stream
of gas from L1 down (in potential!) toward that disk, and a hot spot where
the stream hits the disk. X-ray binaries, where the accretor is a neutron star
or black hole have the same anatomical parts and also a corona of very hot
gas above and below the accretion disk.

The x-ray binaries are classified along two axes. First, is the accretor a
neutron star or black hole? The decision depends only on mass, and there
seems to be a clean cut, with masses implied by the orbits’ being either less
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than about 2 M� (neutron stars) or more than 4 M� (black holes). The
former are more numerous by a factor of ten or so and are, in addition,
sometimes characterized by variability at the rotation period (meaning that
accretion is channeled by a magnetic field of 1011–1012 G) and short bursts,
lasting a few minutes, which represent degenerate ignition of helium on the
neutron star surfaces. (The accreted hydrogen burns steadily, but the helium
becomes degenerate before ignition and so explodes.) Some of the black hole
sources display quasi-periodic oscillations, probably at periods characteristic
of the last stable orbit around the black hole (before material plunges in
freely as a result of general relativistic gravitational effects).

The second axis of classification is the mass of the donor star, resulting
in the names “low-mass x-ray binary” (LMXRB) and “massive x-ray binary”
(MXRB). Both can have either neutron star or black hole accretors. The
LMXRB systems seem to be old, where the accretor is a neutron star, the
magnetic field has decayed to 1010–109 G or less, so that accretion is not
strongly channeled, and the evidence for both neutron star rotation and for
the orbit period took some years to acquire. Curiously, this cut is also a fairly
clean one, with donors of less than 1.5M� and more than about 8M� and
not much in between. An exception is Her X-1 (meaning the brightest x-ray
source in the direction of the constellation Hercules, previously known as the
optical variable star HZ Her), where the donor is an A or F star. This system
is a peculiarly complex and interesting one, having all the variability time
scales you would expect plus another of about 35 days, which is probably
precession of the accretion disk.

For reasons that now puzzle us, the XRBs with accretors of large mass
were for many years called “black hole candidates” rather than BHXBs. This
now seems rather silly, and perhaps arose out of some confusion about what
is meant by a “black hole.” To repeat, an astrophysicist’s black hole is merely
something with a size comparable with its Schwarzschild horizon. We make
no promises about what, or who, is inside.

In due course,M2 will also complete its evolution, leaving another white
dwarf, neutron star, or black hole. A core collapse and supernova on the
part of M2 will now remove more than half the total mass of the system,
which is more likely to be unbound at this stage than when M1 collapsed
and exploded. Thus the products at this stage can include a runaway newly
made pulsar, but also an old neutron star that has been spun back up to
rapid rotation by accretion from itsM2. This is thought to be the origin of
at least some of the single, weak field, rapidly rotating, millisecond pulsars,
of which the fastest has a rotation period of 1.55 ms.

2.13.7 Binaries With Two Compact Components

We can reasonably expect that some combination of initial star masses and
separation will leave any of the combinations of compact stars that we think
of by taking “one from column A and one from column B,” where column A is



2.13 Binary Stars 115

M1 = WD, or NS, or BH, and column B isM2 = WD, or NS, or BH. There
is observational evidence for most of the sorts of pairs we would expect to see.
Still missing from the inventory are WD + BH (not clear that any of these
will form, as a large disparity in initial masses would seem to be required),
NS+BH (but statistical considerations say that one of these should turn up
by the time the current list of known binary pulsars has doubled or tripled),
and BH+BH (but one is hard pressed to know how to look for these unless,
by rare good chance, one acts as a gravitational lens for a background star
while someone is watching).

White dwarf pairs often show spectroscopic or eclipse evidence for their
duplicity, allowing for measurement of the component masses. Some of the
systems with small total mass have separations comparable with the sum of
the stellar radii. These must be products of common envelope binary evo-
lution. The prototype is AM CVn. Such pairs will surely spiral together in
time, since they are losing material (hence angular momentum). In addition,
any orbiting binary radiates some gravitational radiation. For extended stars,
this drains energy and angular momentum very slowly indeed. For compact
pairs, it can be the dominant process, and will cause mergers of systems with
periods of 12 hours or less in less than the present age of the universe.16

Pairs of white dwarfs with total mass in excess of 1.4 M� (the Chan-
drasekhar limit) and orbit periods less than half a day should spiral together
and, as noted earlier, continue to be many people’s first choice as progenitors
of Type Ia supernovae. As we go to press, there is known to exist somewhere
between zero and one system with the requisite properties, several having
been tentatively reported in the past and the system characteristics later
corrected outside the target range.

The (rotation) periods of pulsars are a precise clock, whose periods show
Doppler effects just as precise light wavelengths or frequencies do. This per-
mits mass estimates for the pulsars and their companions, particularly where
there is some additional information from precession of the perihelion or from
an optical identification. White dwarf and neutron star companions are both
found, and it is not always clear as we would like which of the two stars was
initially the more massive.

Neutron star pairs (NSX2) and paired neutron stars and black holes will
also eventually spiral together. The prototype is the first binary pulsar dis-
covered (PSR 1913+16, where the two numbers refer to Right Ascension
and Declination, respectively), with two neutron stars and an orbit period
of about eight hours and a total mass of about 2.8M�. A handful of other
systems are known, though with the star masses, etc., less well measured.
Thus the Milky Way (and presumably other large galaxies) should have a
few such pairs merge every 108 years. The product would seem likely to in-
clude both some sort of very energetic explosion and a core that collapses
16 You should work through §16.4 of Shapiro and Teukolsky (1983) to understand
how binary orbits decay due to gravitational radiation.
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to a black hole. Models exist in which observable manifestations include a
spurt of r-process material (perhaps the source of the very heaviest nuclides,
including 244Pu, which existed when the solar system formed but has now
decayed away) and an enormous burst of gamma rays, of 1053 erg or there-
abouts, perhaps resembling a subset of observed gamma ray bursts (GRBs).17

An efficient, all-sky detection system for such GRBs records a couple each
day, coming from galaxies as far away as z = 4. NSX2 or NS+BH mergers
are a candidate model; their main competitor is collapse of single, massive,
rapidly rotating stars to rapidly rotating black holes. Arguably both happen
and make different sorts of GRBs (the binary merger ones having such short
durations that no x-ray, optical, or radio counterparts have yet been caught
and no redshifts have yet been measured).

Finally, the merger of two stellar mass black holes in a binary system
ought to make a burst of gravitational radiation describable as a chirp (that
is, both the intensity and frequency of the radiation increase over a few
moments to a few-second peak at close to a kHz). Detectors to look for these
are being built several places, and at least one (an interferometer with a
baseline of 300 meters, in Japan) had already reported some upper limits as
this is being written.

2.14 Star Formation

Within the Milky Way at present, most star formation occurs within clouds
of gas that are (a) molecular clouds (mostly H2 but with CO as an important
tracer), (b) cool (meaning 5–15 K), (c) dense with 103 or more H2 cm−3,
which is thinner than thin air, but dense compared to the galactic gas average
of about one hydrogen atom cm−3, (d) largish (sizes of parsecs and masses
up to 105 M�), and (e) primarily located in the spiral arms of the disk.
Other sites of star formation must surely be important at other times and in
other kinds of galaxies, but even less is known about them than the parochial
sort.18

About 1% of the mass is invariably in dust, and this is more than enough
to make the relevant clouds largely opaque to visible and ultraviolet light.
Thus historically a major reason for our ignorance of star formation was
that we couldn’t really observe it. Constantly increasing sizes of collecting
areas, improved angular and wavelength resolution, and better detectors for
infrared and radio photons have largely ameliorated that situation. Emission
17 The gamma ray bursters are beyond the scope of this text but you may wish to
consult Schilling, G., 2001, Science, 294, 1816 for an introduction

18 Check out the 4 January 2002 (Vol. 295) of Science, pages 63–91, where you
will find a series of articles on various topics in star formation. For a conference
proceedings devoted to this whole topic, see Holt and Mundy (1997). Going yet
further into the formation of binary stars, see Tohline, J.E., 2002. ARA&A, 40,
349.
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lines of CO and many other molecules (something like 130, with molecular
weights up to 100 or so, are known, many familiar from earth, some distinctly
odd) permit mapping out the gas clouds. An important discovery is that the
clouds are never of uniform density. All have dense cores studded through
them, some that already have protostars inside, and some that do not but,
we suppose, eventually will. Infrared astronomy permits the detection and
analysis of emission from the embedded stars themselves and the residual
disks of dust and gas from which planets presumably form. A very short list
of some of the more interesting, and perhaps surprising, interstellar and cir-
cumstellar molecules is given in Table 2.4 (material courtesy of Pat Thaddeus
who periodically updates his list). Much more information about astronom-
ical molecules, big and small, is available in the review by Ehrenfreund and
Charnley (2000). For more on the interstellar medium (ISM) of our galaxy,
see Ferrière (2001).

Table 2.4. Some Interstellar Molecules

Molecule Other names

SiH4 Silane
CH4 Methane (marsh gas)
H2CO Formaldehyde (preservative, etc.)
NH3 Ammonia
SiC Carbide (whetstones, etc.)
H2S Hydrogen sulfide (rotten eggs)
CH3CH2OH Ethanol, Ethyl alcohol (for cocktails)
CH3OH Methanol, Methyl alcohol (not for cocktails)
CH2=CH2 Ethylene (See Hale et al. 2003 for an unusual application.)
CH2CHN Vinyl cyanide

Another property of these giant molecular gas clouds is at least approxi-
mate balance between inward gravitational forces and outward pressure, the
latter made up of contributions from microscopic gas kinetics of the mole-
cules, turbulence, magnetic fields, and rotation (all of which are more or
less observed). Thus the clouds typically last longer than their free-fall time,
perhaps 108 years (the galactic rotation period) versus 105–106 years. What
makes a given cloud to decide to start contracting and forming stars is some-
times posed as a question: “Is star formation triggered?” Possible triggers for
contraction might include bumping up against another cloud, being zapped
by an expanding supernova remnant or HII region (the expanding cloud of
gas ionized and heated by a young, massive, hot star), or being swept up in
the shock wave at the front of a spiral arm as the galaxy rotates. It is not
obvious by looking but spiral arms are really sort of like standing waves, and
their rotation speed differs from that of the galactic stars and gas. After years
of careful observation and analysis, astronomers working on star formation
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have provided the answer to the question “Is star formation triggered?” The
answer is, “Sometimes.”

Approaching the problem from the other side, we can look at the prop-
erties of a population of newly formed stars (a young cluster or association,
for instance, or a ensemble average of a bunch of these). Important prop-
erties include (a) how much total mass goes into stars from a given mass
molecular cloud?, (b) What is the distribution of stellar masses formed? This
is called the Initial Mass Function, or IMF. (c) What fraction of the stars
are in binary systems (or large hierarchies)? and, (d) what are the statistical
properties of the binary ensemble (the distribution of separations, M1 and
M2 or the ratio, and of eccentricities).

Most of these questions have at least approximate answers, though not
all astronomers agree on precisely what they are or on the extent to which
any of the properties varies from one star formation region to another. The
IMF, for instance, looks rather like a power law,

ξ(M) dM = ξ0M−α dM

where, for masses less than about 0.5M�, α is typically around 1.35, and ξ0
is a constant. The units of ξ(M) are the number of stars per unit mass. (There
is also the “birthrate function,” which describes the rate at which stars are
formed in a given mass interval. See Ex. 2.17 for an example.) Notice that
this diverges as mass becomes arbitrarily small. Another description is as a
Gaussian, whose righthand side looks a lot like a power law form. This will
not diverge, but the problem of finding the mass at which the peak occurs
remains. A particular area of disagreement is how far toward small masses
the IMF continues to rise and, therefore, how much matter is more or less
hidden in very small stars or brown dwarfs whose lifetimes are longer than
the age of the universe. And is this the same everywhere? (Almost certainly
no, to the last part of the question. Some young clusters, including one near
the center of the Milky Way and in the Large and Small Magellanic Clouds,
appear to be making only rather massive stars, or at least more than their
fair share.)

As for the binaries, we noted earlier that half or more of all stars (perhaps
up to 90% in some places) are binaries and that the full range of possible
separations occurs, with perhaps some preference for the middle of the range
and periods of ten years or so (not very easy to study). The orbits are not
all circular (except for contact systems) and not all extremely eccentric, but
the distribution is not very well known. Older star populations have more
circular orbits, but this is the result of gradual dynamical evolution, not of
different initial conditions. The distribution of binary mass ratios is probably
not the same everywhere or the same for systems of all possible separations.
Some studies have found, for instance, that the binary members of some star
clusters act like pairs of stars that were selected at random from the IMF to
live together. Other studies, especially ones of short period systems, find an
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excess of pairs where the stars have roughly the same mass. Complete data
to assess any of these distributions are very difficult to acquire.

Finally, the process is generally (again in the Milky Way context) not very
efficient. Where giant molecular clouds have enough gas for 105 suns, young
clusters and associations consist of dozens, to hundreds, or at most a few
thousand stars, indicating an average efficiency of not more than 1%. Indeed
if the efficiency were very high, probably all the gas would have been turned
into stars long ago, as indeed apparently happened in elliptical galaxies. Part
of the underlying reason for the inefficiency is that the first few massive
stars that form will, via their winds and HII regions and eventual supernova
explosions, dissipate the gas that has not already also gathered into stars
very quickly.

The statement is often made by astronomers (including us) that there
is no theory of star formation. Roughly what this means is that you can
observe many of the details of molecular clouds (mass, rotation, internal
distributions of density, temperature, turbulence, and magnetic fields) and
tell a theorist about these details, but she or he will not, in turn, be able
to tell you how efficient the star formation will be, what the resulting IMF
and binary population characteristics will be, and so forth. “What makes the
IMF?” in particular is one of those questions that astronomers have asked,
and found a great many different answers to, over the years.

An early answer was that the stars should all have approximately the
Jeans mass, the minimum that can hold itself together by gravity at a given
gas density and temperature.

Another answer was that single clouds normally fragmented into little
bits smaller than stars, which later collided and stuck. This sort of statistical
process will indeed give you a power-law distribution of masses. Somewhat
later came the answer that the mass of a star was set by the end of ac-
cretion from the surroundings and the onset of (probably collimated) mass
loss. The transition is thought to happen when the core of the star gets hot
enough (about 106 K) for deuterium to fuse, setting up a convection zone
and permitting the generation of a dynamo magnetic field.

The whole story probably includes at least part of all these ideas, and also
part of the idea that when gas is turbulent there will be bits that are tossed
around and bits that are relatively quiescent backwaters, where cores might
form and condense to make stars. Why, you ask, can’t you just put it all on
a computer and let it run? Surely there is no unknown fundamental physics
in the process of star formation. True enough, but this concerns an enormous
number of particles—perhaps 1062 molecules in a largish cloud. Clearly you
cannot follow them individually through their gravitational and collisional
interactions. Suppose instead you think of the cloud as being made up of
many small fluid elements (small compared to a star, but large compared to
an atom). You will still discover, if you want to resolve entities that will be
a few AU across when the process is complete, that the largest cloud you
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can handle is perhaps 100 M�, and a good many Moore’s doubling times
in computing power will have to pass before there will be adequate dynamic
range to simulate a whole giant molecular cloud divided into bits of a Jupiter
mass or thereabouts. The problem is somewhat akin to weather forecasting,
which is often done on a grid of 100-km squares, because more smaller ones
would overwhelm number-crunching capabilities. Unfortunately, whether a
given storm will pass 50 miles off the coast or right though your beachfront
house is then impossible to predict.

Astronomers working on calculations of star formation currently receive
many fewer complaints about this problem than do weather forecasters.

2.15 Supplemental Material

To give you a better idea of some properties of ZAMS models, Tables 2.5 and
2.6 list representative models from various sources. Along with the model
mass and composition, each model is keyed by a model number (the first
column) to help bridge across the tables. The fourth and fifth columns of
Table 2.5 list the model luminosity and effective temperature and the sixth
column gives the model radius in units of 1010 cm. (We shall occasionally
use the subscript notation Sn to denote the value of a quantity S in units of
10n.) The references in the last column are as follows:

(1) Models with this reference number were made by the authors using the
computer code ZAMS.FOR that can be found on the CD-ROM on the end-
cover of this text. It uses simple physics and analytic fits to opacities and
energy generation rates. These models are perfectly fine for pedagogy.

(2) These models are from
� VandenBerg, D.A., Hartwick, F.D.A., Dawson, P., & Alexander, D.R.
1983, ApJ, 266, 747.

As with the models of reference (3), they contain much more sophisticated
physics than do our models.

(3) These very low mass models are from the “MM EOS” sequence of
� Dorman, B., Nelson, L.A., & Chau, W.Y. 1989, ApJ, 342, 1003
and see
� Burrows, A., Hubbard, W.B., & Lunine, J.I. 1989, ApJ, 345, 939.
A good review of the consequences of uncertainties in constructing models
for low-mass stars may be found in
� Renzini, A., & Pecci, F.F. 1988, ARA&A, 26, 199.

The central temperature (in units of 106 K) is Tc,6, and ρc and Pc are,
respectively, the central density and pressure in cgs units. These are listed in
Table 2.6. Finally, the last two columns in that table list qc and qenv. The
quantity qc is the fractional mass of a possible convective core in a model (see
Chap. 5). For example, in a model ofM = 60M� the inner 73% of the mass
is convective starting from model center. The corresponding quantity qenv is
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Table 2.5. Zero-Age Main Sequence Models

No.M/M� (X, Y ) logL/L� log Teff R10 Ref.

1 60 (0.74, 0.24) 5.701 4.683 70.96 (1)
2 40 (0.74, 0.24) 5.345 4.642 56.89 (1)
3 30 (0.74, 0.24) 5.066 4.606 48.53 (1)
4 20 (0.74, 0.24) 4.631 4.547 38.73 (1)
5 15 (0.74, 0.24) 4.292 4.498 32.89 (1)
6 10 (0.74, 0.24) 3.772 4.419 25.94 (1)
7 7 (0.74, 0.24) 3.275 4.341 20.99 (1)
8 5 (0.74, 0.24) 2.773 4.259 17.18 (1)
9 3 (0.74, 0.24) 1.951 4.118 12.76 (1)
10 2 (0.74, 0.24) 1.262 3.992 10.30 (1)
11 1.75 (0.74, 0.24) 1.031 3.948 9.695 (1)
12 1.50 (0.74, 0.24) 0.759 3.892 9.151 (1)
13 1.30 (0.74, 0.24) 0.496 3.834 8.827 (1)
14 1.20 (0.74, 0.24) 0.340 3.800 8.648 (1)
15 1.10 (0.74, 0.24) 0.160 3.771 8.032 (1)
16 1.00 (0.74, 0.24) -0.042 3.752 6.931 (1)
17 0.90 (0.74, 0.24) -0.262 3.732 5.902 (1)
18 0.75 (0.73, 0.25) -0.728 3.659 4.834 (2)
19 0.60 (0.73, 0.25) -1.172 3.594 3.908 (2)
20 0.50 (0.70, 0.28) -1.419 3.553 3.553 (3)
21 0.40 (0.70, 0.28) -1.723 3.542 2.640 (3)
22 0.30 (0.70, 0.28) -1.957 3.538 2.054 (3)
23 0.20 (0.70, 0.28) -2.238 3.533 1.519 (3)
24 0.10 (0.70, 0.28) -3.023 3.475 0.805 (3)
25 0.08 (0.70, 0.28) -3.803 3.327 0.650 (3)

the fractional mass contained in a fully or partially convective envelope. For
our purpose here, if qenv is not zero, then it is the fractional mass measured
from the model surface inward to a level where convection ceases. Thus, for
example, the outer 0.35% of the mass of the model numbered 16 (1 M�)
is entirely or partially convective. This is a ZAMS model of the sun and, it
turns out, it is completely convective from just under the photosphere inward
to that mass level. This corresponds, however, to the outer 17% of the radius.
A listing of “neg.” for qenv means that a negligible fraction of the envelope is
convective (say, less than 10−8 in mass) but a “1” means the model is fully
convective. A “0” in that column means that there is no convection. Finally,
a “–” implies that the information was not available to us. Now for what may
be learned from the models.

For the higher mass stars, and keeping composition fixed, radius is seen to
increase with mass as expected from the homology relation (1.87) where R ∝
M0.75. Since strict hydrostatic equilibrium holds for these models, Equation
(1.66) plus (1.87) implies that P ∝ M−1. If this pressure is taken as the
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Table 2.6. ZAMS Models (continued)

No.M/M� Tc,6 ρc logPc qc qenv

1 60 39.28 1.93 16.22 0.73 0
2 40 37.59 2.49 16.26 0.64 0
3 30 36.28 3.05 16.29 0.56 0
4 20 34.27 4.21 16.37 0.46 0
5 15 32.75 5.48 16.44 0.40 0
6 10 30.48 8.33 16.57 0.33 0
7 7 28.41 12.6 16.71 0.27 0
8 5 26.43 19.0 16.84 0.23 0
9 3 23.47 35.8 17.06 0.18 0
10 2 21.09 47.0 17.21 0.13 neg.
11 1.75 20.22 66.5 17.25 0.11 neg.
12 1.50 19.05 76.7 17.28 0.07 neg.
13 1.30 17.66 84.1 17.28 0.03 neg.
14 1.20 16.67 85.7 17.26 0.01 10−7

15 1.10 15.57 84.9 17.22 0 5× 10−5
16 1.00 14.42 82.2 17.17 0 0.0035
17 0.90 13.29 78.5 17.11 0 0.020
18 0.75 10.74 81.5 – 0 –
19 0.60 9.31 79.1 – 0 –
20 0.50 9.04 100 17.10 0 –
21 0.40 8.15 104 17.04 0 –
22 0.30 7.59 107 17.05 ∗ 1
23 0.20 6.53 180 17.24 ∗ 1
24 0.10 4.51 545 17.68 ∗ 1
25 0.08 3.30 775 17.83 ∗ 1

central pressure, then Pc should decrease with mass. It does, although not
as fast as homology would imply. The relation of density to mass and radius
of (1.62) combined with (1.87) yields ρ ∝ M−5/4, and this general behavior
is shown in Table 2.6 where ρc decreases with mass. We already know that
luminosity increases with mass (from 1.88), and it is an easy matter to show
that Teff and Tc do so also. In summary, ZAMS stars of high mass get bigger,
brighter, and less dense as mass increases.

2.16 Exercises

Exercise 2.1. By some combination of means, a binary system has been
observed and the following parameters determined for it:

• The system has zero eccentricity; i.e., the orbits are circular.
• The mass of the primary (the brighter star) isM1 = 5M�.
• The inclination of the system is i = 30◦.
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• The period is Π = 31.86 days.
• The maximum velocity of the primary along the line of sight to us is

Vr = 10.17 km s−1.

We assume that both primary and secondary stars were formed at the
same time on the ZAMS and that further evolution has been such that neither
mass nor angular momentum has been lost from either star or the system
since that time. This means that the orbital parameters have not changed
since the system was formed. The following questions require that you read
up on Kepler’s laws as applied to binary systems: see, for example,

� Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 2nd ed. (San Fran-
cisco: Freeman), pp. 79–86.

1. What is the numerical value of the semimajor axis, a , of the system?
Compare this figure to the distance of the planet Mercury from the sun.

2. What is the mass,M2, of the secondary?
3. After what period of time following ZAMS formation will the primary
expand to fill its Roche lobe as a result of normal evolution? You will
need radius versus time information to answer this. This information can
be found by reading L and Teff from Fig. 2.5 and then computing. For a
larger version of Fig. 2.5, see Fig. 6-16 of Clayton (1968). You may also
“cheat” and use the original source for these figures:

� Iben, I. Jr. 1966, ApJ, 143, 483.
The Roche lobe radius traditionally used is the radius of a sphere of
volume equal to that of the Roche lobe. There are several versions: the
one given below is due to

� Eggleton, P.P. 1983, ApJ, 268, 368.
IfM1 is the mass of the primary, q =M2/M1 ≤ 1, and a the semimajor
axis of the system, then the equivalent radius of the Roche lobe of the
primary is

RRL,1

a
≈ 0.49
0.6 + q2/3 ln

(
1 + 1/q1/3

) . (2.1)

Exercise 2.2. A Classical Cepheid variable with a period of 10 days is seen
in a distant galaxy. Its observed color and apparent visual magnitudes are,
respectively, (B–V )0 = 0.7 and mV = 14. If we assume there is no dust or gas
between us and the star, estimate the distance to the galaxy using material
from, say, Chapter 10 of Allen (1973, 3rd ed.) or Cox (1999). You should
also check how well the following period–luminosity–color (PLC) relationship
works given all the above information. From

� Iben, I. Jr. & Tuggle, R.S. 1972, ApJ, 173, 175,
we have

log
( L
L�

)
= −17.1 + 1.49 logΠ + 5.15 log Teff (2.2)

where Π is the period in days. A newer, but more complicated, version of this
may be found in
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� Iben, I. Jr. 2000, in Variable Stars as Essential Astrophysical Tools, ed.
C. İbanoǧlu (Dordrecht: Kluwer), p. 437.

Exercise 2.3. As an exercise of your skills in homology or dimensional anal-
ysis try the following:

1. Verify the following homology relations for the lower main sequence:

L ∝ Z0.35X1.55T 4.12
eff

R ∝ Z0.15X0.68M1/13

L ∝ Z−1.1X−5.0M5.46

Teff ∝ Z−0.35X−1.6M1.33. (2.3)

2. Now do the same thing for the upper main sequence where electron scat-
tering and the CNO cycles are important. Still assume diffusive radiative
transfer and the ideal gas equation of state. Since the rate for the CNO
is proportional to the abundance of CNO nuclei times that of protons
(see Chap. 6), take εCNO ∝ XZρT 15. The HR diagram (Fig. 2.37) shows
lower ZAMS models from

� Mengel, J.G., Sweigart, A.V., Demarque, P., & Gross, P.G. 1979,
ApJS, 40, 733

for metalicities Z = 0.04 and 10−4 (Y = 0.3). See how well your homology
results compare with the figure. (Answer: “So, so, but not a disaster.”)

Fig. 2.37. The results of Mengel et al. (1979) for lower main sequence models are
plotted on an HR diagram.
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Exercise 2.4. This problem will explore a key property of Classical Cepheids
pertaining to the distance scale and, in particular, you will find the distance
to the galaxy M81, as follows. In the simplest scenario, there is a correlation
between the period, Π, of variability of a Classical Cepheid Variable (CCV)
and its luminosity, L. This is the period–luminosity (Π–L) relationship and
it has the form

Π ∝ Lα
where α is some constant.

1. To estimate α, use the period–mean density relation Π ∝ 〈ρ〉−1/2 and
phrase this in terms of powers of M and R. To eliminate M in what
you found, note that there is a relation betweenM and L (derived from
theoretical evolutionary tracks) for CCVs of the form L ∝M7/2. Now use
the blackbody relation between L, R and Teff to phrase Π as a power law
in terms of only L and Teff . Finally, there is a rough relation between Teff
and L on the Cepheid Strip of the form L ∝ T−15eff . Use this to eliminate
Teff to get Π ∝ Lα and thus derive the value of α.

2. To see whether your result for α is reasonable, consider Fig. 2.38, which
shows the observed apparent visual magnitudes, mV , versus logΠ for
CCVs in the galaxy M81. (The data have been massaged slightly to
make this problem more tractable.) Fit this data to a straight line of
the form mV = −a log Π + b, where a and b are constants and Π, as
in the graph, is in the units of days. What are a and b? Convert your
expression for mV to a Π–L relation of the form given earlier; that is,
you are to convert this to Π ∝ Lβ . To do this you will need the follow-
ing: logL/L� = [Mbol(�)−Mbol] /2.5, where Mbol = MV + B.C. is the
absolute bolometric magnitude. [For the sun Mbol(�) = 4.75.] Take the
bolometric correction B.C. to be a constant for the data set. Neglect ex-
tinction and reddening in your analysis. Finally, you will need (here and
elsewhere) mV −MV = 5 log d− 5, where d is the distance to the star in
pc. Find the value of β and compare this to your result for α.

3. Now to find the distance to M81. We use the LMC as a guide. The LMC
is at a distance of 50.1 kpc and contains CCVs that are assumed to be
identical in general properties to those in M81; that is, a CCV with a
given logΠ has the same MV in either galaxy. In the LMC a CCV with
a period of 10 days has an apparent magnitude mV = 14.4. Neglecting
extinction, etc., deduce the distance to M81. Give that distance in the
units of Mpc.

Exercise 2.5.We now have the tools to investigate a curious class of stars
called “blue stragglers” that continues to baffle astronomers. One model for
these stars is that they mix up their insides somehow so that their composition
is always homogeneous. Construct a family of homologous stars in which
the mean molecular weight μ is kept as an independent variable (i.e., L ∝
μβLMαL , etc.). Assume CNO burning (ε ∝ ρT 15) and Kramers opacity (κ ∝
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Fig. 2.38. Apparent visual magnitudes of Classical Cepheids in the galaxy M81.

ρT−3.5). For simplicity, neglect the weak composition dependence of ε and κ,
and assume a nondegenerate ideal gas equation of state.

1. How does the main sequence L versus Teff vary with μ? Explain what is
happening in physical terms.

2. What is the functional form of an evolutionary track for a homogeneous
star in the HR diagram? Draw an HR diagram showing the evolutionary
track in relation to the main sequence.

3. How does the luminosity of such a homogeneously evolving star change
with μ? Such a star burns about 10 times as much fuel as a normally
evolving star before depleting hydrogen. Qualitatively, will the homoge-
neous star live 10 times as long as a normal star? Why or why not?

4. Draw a schematic HR diagram of a moderately old cluster as it would
look if some small fraction of all stars underwent homogeneous evolution.
Qualitatively, how would this diagram be modified if the “homogeneous”
stars actually retained a small outer portion of their envelopes as unmixed
hydrogen?

5. How much energy is required to mix the interior of such a star from grav-
itational considerations? Is such mixing then feasible? Can you suggest
some ways in which intermediate-mass main sequence stars could mix
themselves up?

You may wish to check out detailed computations of such mixed models. See,
for example,

� Saio, H., & Wheeler, J.C. 1980, ApJ, 242, 1176.

Exercise 2.6. In §2.13.4 it was remarked that, in the simplest circumstances,
“· · · to unbind a gravitational pair with sudden mass loss, you must remove
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at least half of the total mass.” Thus consider a binary pair of masses M1
andM2 in circular orbits about their common center of gravity. The masses
are separated by the distance a. One of them, say,M1, rapidly loses mass in
a spherically symmetric way (in, for example, an ideal supernova explosion).
The mass is lost to the system entirely. If the stars’ initial velocities are v1
and v2, then the velocity of Mrem—as what’s left of M1 as a remnant—
will still be v1 after the mass loss. (In the terms of §2.13.4, there will be
no “reciprocal kick velocity.”) Velocities and masses of the initial system are
related by M1v1 =M2v2 (as simple dynamics will show). The aim here to
show that the following is necessary to unbind the system:

Mrem

M1 +M2
≤ 1
(1 +M2/M1)(2 +M2/M1)

<
1
2
.

In the following you may wish to consult, for example,
� Carroll, B.W., & Ostlie, D.A. 1996, An Introduction to Modern Astro-
physics (Reading: Addison-Wesley), §17.5.

1. Convince yourself that the initial total energy, Winit, of the system is

Winit = U +Ω = 1
2M1v

2
1 +

1
2M2v

2
2 −GM1M2/a .

(Note the use of W , U , and Ω. The virial theorem is lurking here in
one manifestation.) The final total energy of the system, Wfin, is just the
above withM1 replaced byMrem.

2. For the final system to be unbound, Wfin must be greater than zero. You
now have enough information to prove the result desired, after just a tad
of algebra.

Exercise 2.7. It was stated that the sun’s luminosity 4.6 Gyr ago was some
25% less than it is at present. The first reaction to this is that the earth’s
surface and atmosphere should have been cooler at that remote time. So
let’s put in numbers, examining the present epoch as a start. First calculate
the solar constant, which is the flux of radiation incident upon a unit surface
perpendicular to that beam of radiation at the top of the earth’s atmosphere.
(All you need is the sun’s present luminosity and the distance to the sun;
i.e., 1 AU.) To find out how much radiation is actually absorbed by the
atmosphere, assume that the earth’s albedo is 31%; that is, 31% of the solar
flux is reflected back into space. Then, without further hints, assume that the
earth is in thermal balance and re-radiates power into space as a blackbody. In
that case, what is the effective temperature of the earth? (The answer for the
present epoch will come out to about 254 K, which turns out to be very near
the mean temperature of atmosphere for the earth we have grown to know
and love.) Now do the same for the earth at 4.6 Gyr ago assuming nothing
else has changed (including the composition of the atmosphere—which is a
nonsensical assumption) except for L�. If the present mean temperature of
the earth’s surface is around 290 K (63◦ F), what, naively, might it have been
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4.6 Gyr ago? (We really have no idea of the real answer to this but microscopic
life began at a surprisingly early time in earth’s history—perhaps as early as
3.6 Gyr ago, although there is now some controversy about the fossils.) For
those of you interested in the earth’s atmosphere, we warmly recommend the
intermediate level text Atmosphere, Weather and Climate by R.G. Barry &
R.J. Chorley, 6th (or earlier) ed., 1992 (London & New York: Methuen).

Exercise 2.8. It is obvious that of the two open clusters shown in Fig. 2.6,
the Pleiades is younger than M67 because the turnoff point is at a cooler Teff
in M67.

� Lang, K.R. 1991, Astrophysical Data: Planets and Stars (New York:
Springer–Verlag), Table 15.2

gives the age of the Pleiades as 0.08 Gyr and 4 Gyr for M67. Let’s see how
close we can come to the figure for M67. This is a tricky business, as you
will see, but you should come within 50% or so (assuming the quoted figure
is really correct to begin with!). First note that (B–V ) in the figure is as
observed and is not corrected for interstellar absorption. Since light from
different spectral bands is absorbed differently, we must make a correction
to get to the colors as emitted from the stars before absorption take place.
If (B–V )0 is the true color index, then the correction is given by the color
excess

EB−V = (B − V )− (B − V )0
where Lang gives EB−V = 0.08 for M67. (This makes stars hotter than would
be the case if you used the uncorrected color.) Thus look in the literature,
and the tables in Lang are fine, to translate (B–V ) at the turnoff point in
M67 to luminosity at the turnoff point—and remember that stars at that
point are luminosity class V main sequence stars. (Note that this can be a
bit messy. It’s not easy to guess where the turnoff point might be in some
HR diagrams. This is certain;y true for M67.) Next use the following arcane
formula quoted by

� Iben, I. Jr., & Renzini, A. 1984, PhysRep, 40
between luminosity at the turnoff point and cluster age:

log
[LTO
L�

]
≈
[
0.019 (logZ)2 + 0.065 logZ + 0.41Y − 1.179

]
log t9 +

+ 1.246− 0.028 (logZ)2 − 0.272 logZ − 1.073Y (2.4)

where t9 is the cluster age in units of 109 years and LTO/L� is at the turnoff
point. This expression adequately reflects the results of evolutionary calcu-
lations for −4 ≤ logZ ≤ −1.4, 0.2 ≤ Y ≤ 0.3, and 0.2 ≤ t9 ≤ 25, which are
ranges of general interest. If M67 is about 4 Gyr old, then a composition close
to solar seems a good guess (perhaps); that is, try something like Z = 0.02
and Y = 0.3. What do you find for the age of M67?

Exercise 2.9. You ought to be able to estimate the age of our local galactic
disk and other parts of our galaxy from the dropoff point of white dwarf
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luminosity functions, as discussed in §2.8.1. You will need the following kind
of information: The time it takes to get to the PNN stage starting from the
ZAMS has been estimated (from evolution studies) by

� Iben, I. Jr. & Laughlin, G. 1989, ApJ, 341, 312
to be

log tto PNN = 9.921− 3.6648 log
( M
M�

)
+

+ 1.9697
[
log
( M
M�

)]2
− 0.9369

[
log
( M
M�

)]3
(2.5)

for ZAMS masses 0.6 ≤ M/M� ≤ 10. Times are in units of years. (Note
these are original ZAMS masses, and assume the sample is large enough that
the WDs at dropoff started out at the maximum mass for stars ending up as
WDs. Why make this last assumption?!) Once the star is a hot and luminous
PNN, it has the mass it will have in its subsequent career as a white dwarf.

� Iben, I. Jr., & Tutukov, A.V. 1984, ApJ, 282, 615
estimate it takes the time tWD (in years) for the WD to cool to some given
luminosity with (and see Chap. 10)

tWD = 8.8× 106
(

A

12

)−1( M
M�

)5/7 (μ
2

)−2/7( L
L�

)−5/7
yr . (2.6)

Here A is the nuclear mass number (say for carbon) and μ is the mean
molecular weight (both discussed in §1.4.1). Assume a standard WD mass.
Having done this part of the problem, do the same for the halo using a Teff
of, say, 4,000 K while assuming a standard size and mass for the WD.

Exercise 2.10. In Chapter 1 (§1.7) we estimated tnuc, the hydrogen ZAMS
lifetime, by calculating the energy released by converting 10% of the available
hydrogen to helium and then dividing by luminosity. We can do the same
for a pure helium ZAMS or, more to the point, estimate the lifetime on
the HB where helium is being converted to C/O. A typical HB star has a
luminosity of 50 L� and helium core mass of 0.5 M�. If we assume, for
simplicity, that oxygen is the final product, then a total of 14.3 MeV is
released when combining four 4He nuclei (16 amu) to make one 16O nucleus.
With this information, find the lifetime of a star on the HB using the same
10% efficiency used on the hydrogen ZAMS. You might wish to experiment
and use

log
( L
L�

)
≈ 0.261 + 3.04Mcore

M�
(2.7)

from
� Iben, I. Jr., & Renzini, A. 1984, PhysRep, 40,

whereMcore is the helium core mass. This at least gives an idea of how the
luminosity on the HB varies with core mass. (Some abundance information
has been deleted by us in Eq. 2.7.) You might compare your results to an
older estimate by
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� Iben, I. Jr. 1974, ARA&A, 12, 215,
which is

log tHB ≈ 7.74− 2.2
[(Mcore

M�

)
− 0.5

]
yr .

Exercise 2.11. RR Lyrae variable stars are on the HB, have observed peri-
ods of roughly 2–24 hr in the “fundamental” mode of pulsation, and effective
temperatures Teff ≈ 7, 000± 500 K.

� Iben, I. Jr. 1971, PASP, 83, 697
has come up with the following expression (again a fit to calculations) that
relates almost all interesting properties of these variables:

logΠ ≈ −0.340 + 0.825(logL − 1.7)−
−3.34(log Teff − 3.85)− 0.63(logM+ 0.19) (2.8)

where L and M are in solar units, and the period Π is in days. With this
information (and perhaps hints from Ex. 2.10), find a range of typical masses
for RR Lyraes.

Exercise 2.12. In §2.8 we hinted that you should estimate the gravitational
potential energy released in the collapse of a 1.2 M� core from an initial
density of 109 g cm−3 to a final 1015 g cm−3. Do so.

Exercise 2.13. Figure 2.10 showed mass loss rates for massive and luminous
stars. The numbers for this figure were derived from material in Lamers and
Cassinelli (1999) in their §2.7. The key equation is their Eq. 2.38, which reads

log
(
Ṁv∞R1/2

)
= −1.37 + 2.07 log (L/106) (2.9)

where (in this equation alone) M, R, and L are in solar units, Ṁ is in
M� yr−1, and v∞ (the terminal velocity of the wind far from the star) is in
km s−1. This is a semi-empirical formula based on observations of spectral
class O and B stars in our galaxy, where log

(
Ṁv∞R1/2

)
is well-fit by a

straight line versus logL/L� (see their Fig. 2.19). The terminal velocity v∞,
is found to be roughly proportional to the escape velocity, vesc, at the stellar
surface, where

vesc =
√
2(1− Γe)GM/R . (2.10)

The curious term (1 − Γe) arises from the levitating effect of the radiation
field due to radiation pressure at the photosphere. It effectively lowers the
escape velocity. For now—but see later—we shall set it to unity (i.e., set Γe
to zero). For stars with Teff >∼ 21,000 K, v∞ ≈ vesc/2.6. (The factor 2.6 is less
for cooler stars.)

1. With this information, check to see if we did our arithmetic correctly in
producing Fig. 2.10.
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2. Now back to Γe. This is given as

Γe =
κpL

4πcGM (2.11)

where κp ≈ 0.3 cm2 g−1 in the winds of hot stars. Look ahead to §4.3
where we discuss the “Eddington limit,” and specifically to our (4.49),
where you will find a numerical version of (2.11). Now redo you calculation
of Ṁ and see what are the effects of reducing the escape velocity because
of radiation pressure.

Exercise 2.14.We briefly mentioned the Baade–Wesselink method for de-
termining distances, luminosities, etc., of variable stars by examining how
they pulsate. For the two original references see

� Baade, W. 1926, AstNachr, 228, 359
� Wesselink, A.J. 1946, BAN, 10, 91.

The technique goes back quite a ways. What you will do here is to look at a
piece of the method. (Only a piece because a lot is really involved.) Imagine
that you have observed the radial velocity of a spectral line in a RR Lyrae
star; that is, you have determined the velocity of material, away or toward
you in the line of sight, on the surface of the star as it pulsates. (Note that
you may get somewhat different velocities were you to observe another line.
This is one of the tricky points in the method.) Suppose the velocity curve
you have observed is the one shown below (which is decidedly a fake, but
for reasons to become obvious, it will make things simple). The velocity is
plotted in Fig. 2.39 against phase, φ, meaning that you started observing at
a zero time, said to be at φ = 0, and then observed for one complete period
of pulsation, Π, and call that φ = 1. Thus φ measures time in units of Π.
(Of course the curve goes on and on and we naively assume it repeats itself
each Π.) It has been determined by other means that Teff for the RR Lyrae
is 7000 K (typical) and the luminosity is L/L� = 54 (also typical), where
both represent some average over time as the star pulsates. The pulsation
period is Π = 0.5 days (also typical). What you are about to do is determine
how the radius varies over one period. The radius of the star, R(t), is just the
integral of the radial velocity, v(φ), making sure you get your units correct. It
so happens that, thanks to us, your velocity curve is well-fit by the function

v(φ) = −30 cos (2πφ) + 10 sin (4πφ) km s−1. (2.12)

(Remember while doing this that a negative velocity means that the stellar
surface is moving toward you.) Integrate this from φ = 0 to some φ in order,
in effect, to get R(t)−R(0). If you assume that φ = 0 represents the average
radius (taken to be the radius the star would have were it not pulsating)
derivable from the Teff and L given above, then plot R(t) (in solar units)
versus time. To see if you are on the right track, we find that the total
excursion in radius from smallest to largest is ΔR ≈ 0.6 R� (which is also
typical for many RR Lyraes).
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Fig. 2.39. Here is the velocity curve for your RR Lyrae variable. Note that velocity
is in km s−1.

Exercise 2.15. Material eventually accreted onto a white dwarf or neutron
star first forms a luminous accretion disk surrounding the accretor.

� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons)

give the following expressions for the luminosity of the disk (good to within
an order of magnitude or so):

Ldisk(WD) ∼ 1
2
GṀM
R ∼ 1034 Ṁ−9 erg s−1 (2.13)

for white dwarfs, and

Ldisk(NS) ∼ 1
2
GṀM
R ∼ 1037 Ṁ−9 erg s−1 (2.14)

for neutron stars. Here Ṁ−9 is the accretion rate in the units of 10−9M�
yr−1. If you assume the material comes effectively from infinity and most of
the luminosity comes from very near the accretor, take a stab at deriving
these for a typical white dwarf and neutron star. (The first terms on the
right-hand sides of the expressions are a giveaway.) A rate of 10−9M� per
year is in the right ballpark for these systems meaning that solar luminosities
(or much higher) are easily achievable.

Exercise 2.16. Invent an eclipsing binary system of your choosing (but don’t
attempt a system where the two stars are in contact, or nearly so—too dif-
ficult!). So, choose your two stars, big, small, whatever, luminous, dim, etc.,
separation and eccentricity of orbit, inclination, etc., and plot the radial ve-
locity and light curves over one cycle of the orbit. (Do have them eclipse,
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however.) To do this in real detail is difficult (problems of limb-darkening,
etc.) so make it simple. A nice elementary discussion of binary systems may
be found in

� Shu, F.H. 1982, The Physical Universe: An Introduction to Astronomy
(Mill Valley, CA: University Science Books).

Exercise 2.17. This exercise is essentially Problem 1.6 of Shapiro and
Teukolsky (1983, and we suggest you check their §1.3 for the necessary back-
ground on the whole question of how stellar statistics vary with time for the
galactic disk): The

� Salpeter, E.E. 1955, ApJ, 121, 161
“birth rate function” is given by

ψs d

( M
M�

)
= 2× 10−12

( M
M�

)−2.35
d

( M
M�

)
pc−3 yr−1 (2.15)

and it gives the rate at which stars are “birthed” in the galactic disk in a
sample pc−3 and is supposed to be roughly valid for 0.4 ≤ M/M� ≤ 10.
We will use this to estimate how much iron-peak material has been thrown
off into the disk of our galaxy by hypothetical supernovae in the mass range
4 ≤ (M/M�) ≤ 8 where we assume that 1.4 M� of iron-peak material is
expelled from the star. (Note that the above mass range does not agree with
what we have said about masses for pre-supernovae—and this is the main
point to the problem.) We also assume that the rate of production of stars
of a given mass has not changed during galactic history (which is somewhat
unlikely). Take the age of the galactic disk as Tgal = 10 Gyr.

1. After a time Tgal, what is the concentration of iron-peak material in the
units ofM� pc−3?

2. Show that the main sequence lifetimes of the stars in question make little
difference in the answer you obtain.

3. The Oort limit is the estimated total amount of matter in the solar neigh-
borhood necessary to explain the motions of nearby stars. The corre-
sponding density is 0.14 M� pc−3. Some of this must be composed of
iron-peak material. If all of that material were produced from supernovae
in the mass range used above, then what would be the mass fraction of
iron in the disk?

4. Compare your result to the iron mass fraction given in our Fig. 1.2,
assuming solar system abundances are representative of the disk. What
do you conclude from this exercise?

Exercise 2.18.When a supernova explodes, a shock wave travels through
the star heating up and compressing the stellar material. What we shall
now explore is a simple model which gives a rough idea of how violent this
process may be. We will use the Hugoniot–Rankine (HR) relations that tell
us how hot and dense the material is after a shock has passed. For a first-rate
reference see the first chapter of
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� Zel’dovich, Ya.B., & Raizer, Yu.P. 1966, Physics of Shock Waves and
High Temperature Hydrodynamic Phenomena, in two volumes, eds.
W.D. Hayes and R.F. Probstein (New York: Academic Press).

The HR relations are

ρ(D − v) = ρ0D mass conservation (2.16)

P + ρ(D − v)2 = P0 + ρ0D
2 momentum conservation (2.17)

E +
P

ρ
+
(D − v)2

2
= E0 +

P0

ρ0
+

D2

2
energy conservation . (2.18)

Here a zero subscript on pressure (P ), internal energy per gram (E), and
density (ρ) refers to the conditions of the stellar material before the shock hits
(and this pre-shock material is assumed to be at rest), whereas no subscript
refers to the post-shock conditions. The velocity v is that of the post-shock
material and D is the velocity of the shock wave itself. (By the way, see if you
can derive these equations.) The idea here is to specify the initial density ρ0,
temperature T0, and composition of the pre-shock material, and then choose a
value ofD. All else should follow. We shall assume initial conditions ρ0 = 0.01
g cm−3, T0 = 105 K, and a composition specified by a mean molecular weight
of μ = 1/2. This places us somewhere in the envelope of the supernova. We
further assume that the material doesn’t change its ionization state so that
μ always remains a constant. For an equation of state we will take some
combination (see below) of ideal gas and radiation. To tackle the problem
as we will pose it, it is best to eliminate v in the HR relations so as to end
up with only two equations. Then plug in directly the equation of state.
The resulting equations will then have only ρ and T as unknowns with D as
a parameter. The idea will be to choose D and then numerically solve for
density and temperature. We suggest some kind of Newton–Raphson scheme
for solving this problem. Chapter 7 of the text goes through some of this (and
see the references there).

1. First assume that the equation of state is solely due to an ideal gas.
Choose several values of D through the range 107–3 × 109 cm s−1 and
find the corresponding post-shock densities and temperatures. Plot your
results.

2. You will note that the post-shock temperatures continue to rise as D
increases but, after a while, the density doesn’t change. Show analytically
that in the limit

D2

2
� NAkT0

μ

the density levels out to ρ/ρ0 = 4 and the temperature is given by T =
3μD2/(16kNA).

3. Now do the same thing but include radiation pressure and energy along
with the ideal gas. Plot your results.
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4. Here you find the same kind of behavior as in the ideal gas case; the
density levels off but the temperature keeps increasing as D increases.
However, the ratio ρ/ρ0 = 7 is reached for this situation. Show this
analytically. Note also that the temperature in this case ends up being
less than for the ideal gas shock. Figure out why this happens and then
show, in the limit of very large D, that T 4 = 18ρ0D2/(7a) where a is the
radiation constant.

Exercise 2.19. Putting together the Roche geometry shown in Fig. 2.35 is
not easy because the computations can be very tricky. This exercise will ask
you to set up the problem (which involves a review of elementary mechanics),
and then, at the end, request from you only a single number (but you may
go on as far as you wish). The now-classic reference is

� Kitamura, M. 1970, Ap&SS, 7, 272,
which includes results for the rotation plane plus equipotentials off that plane
(plus much more).

1. The starting point is to write down the potential, gravitational plus cen-
trifugal, in the rotation plane (x–y plane, with z = 0) at some arbitrary
point (x, y). For the moment, x and y are measured from the center-
of-mass (CM) of the system. If Ω is the angular rotation velocity (with
circular orbits), r1 the distance fromM1 to (x, y), and r2 the correspond-
ing distance fromM2, then show that the total potential, Ψ(x, y), in the
CM system is

Ψ(x, y) =
GM1

r1
+

GM2

r2
+
1
2
Ω2 (x2 + y2

)
. (2.19)

(Depending on how you define gravitational and centrifugal forces as
derived from potentials, you may derive the negative of our Ψ. It doesn’t
matter, but keep track of your signs. Note also that an arbitrary constant
may be added to your result.)

2. Now shift your reference point from the CM to the location of M1 and
let x and y be measured from there. Show that the result is

Ψ(x, y) =
GM1

r1
+

GM2

r2
+
1
2
Ω2

[(
x−R

M2

M1 +M2

)2

+ y2

]
(2.20)

where r21 = x2 + y2, r22 = (R− x)2 + y2, with R being the distance from
M1 to M2. (You will have to recall the relation between masses and
distances between masses in the CM to get this.)

3. Now to find out what the ξi are in Fig. 2.35. The aim is to get Ψ in a
dimensionless form. Define ξ(x, y) by

ξ(x, y) =
R

GM1
Ψ(x, y)− M2

2

2M1 (M1 +M2)
. (2.21)
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Note that this only scales Ψ(x, y) and adds a constant. Thus if Ψ(x, y)
is a constant, as an equipotential, then ξ(x, y) is also constant and is the
same equipotential but in different guise.

4. The final step is to introduce q =M2/M1 ≤ 1 (withM1 as the primary),
and let x, y, r1, and r2 be given in units of R. Show that the final result
is

ξ(x, y) =
1
r1
+ q

(
1
r2
− x

)
+
1
2
(1 + q)

(
x2 + y2

)
. (2.22)

(You will have to show that Ω2 = G (M1 +M2) /R3 to get this. It fol-
lows from balancing centrifugal and gravitational forces in the CM.) In
principle, this is all you need to find the curves of equipotentials such as
the samples shown in Fig. 2.35. You may wish to try but, not being that
cruel, we won’t ask you to.

5. However, given that the equipotential, ξ1, for the Roche lobe is ξ1 =
2.875845 for q = 1/2, find the location of the first Lagrangian point L1.
(Check Fig. 2.35 to see if your answer is reasonable.)

Exercise 2.20. Suppose you wanted to make a star of one solar mass out
of a very large sphere of interstellar matter of mass 1 M� with a uniform
density of 1 hydrogen atom cm−3. First off, what is the radius of the sphere?
If we want to make the star in the disk of our galaxy at the location of our
sun (about 9 kpc from galactic center)—and the sun orbits the galactic center
at a speed of about 230 km s−1— what is the rotation period and angular
velocity (in radians s−1) at that location? By the way, a short listing of the
properties of the Milky Way may be found in

� Trimble, V. 1999, in Allen’s Astrophysical Quantities, 4th ed., ed. A.N.
Cox (New York: Springer–Verlag), p. 569.

What is the initial angular momentum of the cloud (assuming it participates
with the galactic rotation)? If the cloud now condenses uniformly down to
solar size, conserving angular momentum and not losing any by any means,
what is the final rotation rate (in, say, Hz)? Estimate the breakup velocity at
the sun’s surface and the corresponding rotation rate. You should now realize
why angular momentum has to be gotten rid of in star formation.

Exercise 2.21. It was stated that if the more massive star (M1) in a binary
system loses mass to the secondary (M2), then the separation between them
decreases. This is true if angular momentum isn’t lost from the system (i.e.,
all the mass lost by M1 goes to M2). Using conservation of momentum,
show that the separation does decrease. (You can use some of the results
from Ex. 2.19.)

Exercise 2.22. (We thank Cole Miller of UMD for reminding us about this
simple analysis and follow his version.) A very early, and now classic, paper
by

� Schönberg, M., & Chandrasekhar, S. 1942, ApJ, 96, 61
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discusses what happens if an isothermal core of helium tries to support a
hydrogen-rich envelope but runs into trouble if the core gets too massive.
(It is assumed that a hydrogen burning shell overlies the core.) The trouble
point is the Chandrasekhar–Schönberg limit (in mass, and you may often
see the names reversed). The following analysis is crude but is intended to
give the idea of how this works. So, assume that you have a constant density
star of total mass M and radius R. These are kept fixed throughout the
problem. The mass of the helium core, of massMcore, and its radius, Rcore,
are, however, allowed to vary. The idea will be to examine what is the pressure
at the inner surface at Rcore and compare it to the pressure exterior to that
surface where the composition has changed (and, hence, so has the mean
molecular weight). To make things simple, assume that the ideal gas law
holds everywhere. (You may wish to consult

� Stein, R.F. 1966, in Stellar Evolution (New York: Plenum Press), eds.
Stein & Cameron, pp. 3–82

for a slightly different version of what follows.)

1. Use the virial theorem in the form

2K +Ω = 3PSV (2.23)

as discussed briefly in §1.3 and Ex. 1.8 (where you are to derive it). PS

is the surface pressure at the inner surface at Rcore. Remembering that
we have an isothermal, constant density, core made up of an ideal gas,
find PS as a function ofMcore, Rcore, μcore (the mean molecular weight
in the core), and the temperature T of the core.

2. This PS is the pressure that is supposed to support the overlying layers.
We want to maximize it to give the hardest push on the envelope. Show
that the maximum, with respect to Rcore, is given by

PS(max) =
1
4π
3
4

(
15
4

)3(
NAkT

μcore

)4 1
G3M2

core
.

3. Now use the result (Eq. 1.42) for the central pressure of the constant
density sphere to find the temperature T of the core; i.e., express T in
terms ofM, R, and μcore. (Of course, for such a sphere,Mcore/R3

core =
M/R3 so you have some leeway in how to express T . Hint: see Eq. 1.56)

4. Since we really don’t want T to be discontinuous across Rcore (otherwise
heat would flow like crazy across Rcore), express PS(max) in terms ofM,
Mcore, μcore, and μenv, where the last is the mean molecular weight in
the envelope.

5. In order that the core be able to support the envelope, we must have

PS(max) ≥ PS(env) (2.24)

where PS(env) is the pressure just exterior to Rcore (otherwise the en-
velope would push in the core). Now, if you will allow for a little incon-
sistency, since T and density are constant in the core the implication is
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that pressure is everywhere constant and, so that hydrostatic equilibrium
is to be maintained at Rcore, take PS(env) to be the central pressure of
the sphere. (For a different, but similar tack, see Stein 1966.) From this
(somewhat dubious assumption) show that (2.24) is equivalent to

Mcore

M ≤
(
15
4

)3(1
2

)5(
μenv
μcore

)2

. (2.25)

Put in numbers for (2.25) using (1.55) assuming complete ionization, and
compare your result to what was said in §1.7 about lifetimes on the main
sequence. (The result isn’t bad at all.) Note that an important element
of what’s going on here is that the envelope has the advantage to begin
with. As we have emphasized several times, the mean molecular weight
in the helium core is greater than in the hydrogen-rich envelope because
there are fewer free particles per gram in the core. Thus the envelope
pressure has more free particles to use.

2.17 References and Suggested Readings

§2.1: Young Stellar Objects
Figure 2.1 is from
� Shu, F.H., Adams, F.C., & Lizano, S. 1987, ARA&A, 25, 23

entitled “Star Formation in Molecular Clouds,” which tells you what it’s
about. We recommend it highly. The evolutionary tracks and location of T
Tauri stars of Fig. 2.2 are from the review article by
� Stahler, S.W. 1988, PASP, 100, 1474.

It’s an excellent “easy” introduction to the subject.
Amateur astronomers are familiar with
� Allen, R.H. 1963, Star Names (New York: Dover)

and
� Burnham, R. Jr. 1978, Burnham’s Celestial Handbook, in three volumes
(New York: Dover)

but professionals also consult them—especially if teaching an undergraduate
course. Of a different sort is
� Jaschek, C., & Jaschek, M. 1987, Classification of Stars (Cambridge Uni-
versity Press: Cambridge),

which is a compendium of, as titled, stellar classification. An excellent mono-
graph to consult for spectral types, etc., although it is getting to be a bit
dated.

§2.2: The Zero Age Main Sequence
The most widely consulted shorter compendia of astronomical tables, etc.,
are
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� Allen, C.W. 1973, Astrophysical Quantities 3d ed. (London: Athlone)
� Cox, A.N. 1999, Editor of Allen’s Astrophysical Quantities (New York:
Springer–Verlag)

which replaces Allen(1973), and
� Lang, K.R. 1991,Astrophysical Data: Planets and Stars (Berlin: Springer–
Verlag).

Their prices, however, are unfortunate.
Brief discussions of the “solar neutrino problem” include
� Bahcall, J.N. 2001, Nature, 412, 29

and
� Seife, C. 2002, Science, 296, 632.

As more are discovered, brown dwarfs will take up more and more space in
textbooks such as this. For now, see
� Basri, G. 2000a, SciAm, 282, 77 (April 2000)
� Basri, G. 2000b, ARA&A, 38, 485

and
� Gizis, J.E. 2001, Science, 294, 801.
� Chabrier, G., & Baraffe, I. 2000, ARA&A, 38, 337

and
� Burrows, A., Hubbard, W.B., & Lunine, J.I. 2001, RevModPhys, 73, 719

discuss the general problem of substellar objects.

§2.3: Leaving the Main Sequence
Figure 2.5 is from
� Iben, I. Jr. 1967, ARA&A, 5, 571

which is now a classic and one of the first of many review articles by Icko
Iben.
� Iben, I. Jr. 1991, ApJS, 76, 55

contains a personal account of Iben’s work and, as is usual in his papers, the
reference list is exhaustive. Figure 2.12 is from
� Iben, I. Jr. 1985, QJRAS, 26, 1.

Most of the data used for Fig. 2.6 is from
� Mermilliod, J.-C. 1986, A&AS, 24, 159

supplemented by
� Mermilliod, J.-C. & Bratschi, P. 1997, A&A, 320, 74.

The source for the HR diagram of M3 is
� Buonanno, R., Corsi, C.E., Buzzoni, A., Cacciari, C., Ferraro, F.R., &
Fusi Pecci, F. 1994, A&A, 290, 68.

Much effort has made in recent years to determine globular cluster ages. Two
convergent views are to be found in
� Chaboyer, B.C. 2001, Rip Van Twinkle, SciAm, 284, #5, 44 (May 2001)

and
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� Lebreton, Y. 2000, ARA&A, 38, 35.
A very useful reference, though now somewhat outdated, that describes how
cosmological distances and time scales are derived (usually virtually all the
tools of astronomy) is
� Rowan-Robinson, M. 1985, The Cosmological Distance Ladder (New
York: Freeman).

And, just to go back in time, see
� Larson, R.B., & Bromm, V. 2001, The First Stars in the Universe, SciAm,
285, #6, 64 (Dec 2001)

The isochrones of Fig. 2.8 were derived from data in
� Green, E.M., Demarque, P., & King, C.R. 1987, The Revised Yale
Isochrones and Luminosity Functions, Yale University Observatory re-
port (New Haven, CT).

You may also make up your own isochrones using the model results of, for
example,
� Mengel, J.G., Sweigart, A.V., Demarque, P., & Gross, P.G. 1979, ApJS,
40, 733.

We are fortunate that
� Lamers, H.J.G.L.M, & Cassinelli, J.P. 1999, Introduction to Stellar Winds
(Cambridge: Cambridge University Press)

was published so we could refer to it so often. For more on winds from hot
stars see
� Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613.

§2.4: Red Giants and Supergiants
With such a basic question as “Why do stars becomes giants?” it is surprising
that people are still asking it, as in
� Sugimoto,D., & Fujimoto, M.Y. 2000, ApJ, 538, 857.

Our little diagram illustrating the cycle of nuclear burning, exhaustion, fol-
lowed by contraction and heating, is adapted from the discussion in
� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure & Evolution
(Berlin: Springer–Verlag).

§2.5: Helium Flash or Fizzle
It is often instructive to follow ρc versus Tc through time and we have chosen
� Iben, I. Jr. 1991, ApJS, 76, 55

for Fig. 2.12 to illustrate this. The evolution of ρc for a solar model is based
on data from
� Charbonel, C., Meynet, G., Maeder, & Schaerer, D. 1996, A&AS, 115,
339.

The discovery of Technetium in the atmospheres of some cooler stars has to
be one of the most important in stellar astronomy; see
� Merrill, P.W. 1952, Science, 115, 484.
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� Willson, L.A. 2000, ARA&A, 38, 573
offers an extensive review of winds from red supergiants.

§2.6: Later Phases, Initial MassesM≤6–10M�
Every few years George McCook & Ed Sion update their very useful white
dwarf catalog. The latest is
� McCook, G.P., & Sion, E.M. 1999, ApJS, 121, 1

and it is the basis for our Fig. 2.15. For white dwarf luminosity functions and
ages, see
� Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
� Liebert, J., Dahn, C.C., & Monet, D.G. 1988, ApJ, 332, 891

and
� Leggett, S.K, Ruiz, M.T., & Bergeron, P. 1998, ApJ, 497, 294.

The Fontaine et al. reference discusses the prospects of using white dwarfs to
determine the age of our galaxy (and others). Our Chapter 10 will dwell on
this further. Observations of the globular cluster M4 are reported in
� Richer, H.B. et al. 2002, ApJ, 574, L151
� Hansen, B.M.S. et al. 2002, ApJ, 574, L155.

An excellent review of the cool white dwarfs is
� Hansen, B.M., & Liebert, J. 2003, ARA&A, 41, 465.

For a review of evolution to the PNNS, see
� Iben, I. Jr. 1995, PhysRep, 250, 1.

§2.7: Advanced Phases, Initial MassesM >6–10M�
We are yet again pleased that one of our colleagues has written a text that
we can reference—instead of our having to do all the work. In this case it is
� Arnett, D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton
University Press).

We shall refer to it often because it covers supernovae and nucleosynthesis in
clear and full detail.

§2.8: Core Collapse and Nucleosynthesis
Besides Arnett (1996), the student should, at some time in her life, read the
classic
� Burbidge, E.M., Burbidge, G.R., Fowler, W.A., & Hoyle, F. 1957 (B2FH),
RevModPhys, 29, 547.

The science is important, but it also shows how papers should be written.
We have used several references in our discussion of elemental and nuclear
abundances, and the r- and s-processes. These are
� Anders, E., & Grevesse, N. 1989, GeoCosmo, 53, 197
� Trimble, V. 1997, Origins of Life, 27, 3
� Trimble, V. 1991, A&ARev, 3, 1
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� Trimble, V. 1996, in Cosmic Abundances, eds. Holt & Sonneborn, ASP
Conf. Ser., 99, 3

� Käppeler, F., Beer, H., & Wisshak, K. 1989, RepProgPhys, 52, 945
� Käppeler, F., Gallino, R., Busso, M., Picchio, G., & Raiteri, C.M. 1990,
ApJ, 354, 630

and
� Meyer, B.S. 1994, ARA&A, 32, 153.

The following should also be at your fingertips when we discuss nuclear
physics and nucleosynthesis:
� Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill).

§2.9: Variable Stars
Sakurai’s object is a fascinating example of evolution in action. For an easy
introduction, see
� Kerber, F., & Asplund, M. 2001, The Star Too Tough To Die, Sky&Tel
(Nov.), p. 48.

Evolutionary calculations for these kinds of stars are given in
� Lawlor, T.M., & MacDonald, J. 2003, ApJ, 583, 913.

§2.10: Pulsational Variables
The two major textbook references to intrinsic variable stars are
� Cox, J.P. 1980, Theory of Stellar Pulsation (Princeton: Princeton Uni-
versity Press)

and
� Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonra-
dial Oscillations of Stars, 2d ed. (Tokyo: University of Tokyo Press).

Recent reviews include
� Gautschy, A., & Saio, H. 1995, ARA&A, 33, 75
� Gautschy, A., & Saio, H. 1996, ARA&A, 34, 551

and
� Brown, T.M., & Gilliland, R.L. 1994, ARA&A, 32, 37.
� Cox, J.P., & Whitney, C.A. 1958, ApJ, 127, 561

and
� Zhevakin, S.A. 1953, RusAJ, 30, 161

essentially solved the problem of what makes Classical Cepheids pulsate,
which also gave the key to the pulsations of other variables in the Cepheid
Strip.
� Smith, H.A. 1995, RR Lyrae Stars (Cambridge: Cambridge University
Press)

has reviewed the properties of RR Lyrae variables in some detail. The oblique
rotator model for roAp variables was first discussed in detail by
� Kurtz, D.W. 1990, ARA&Ap, 28, 607
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and thanks are due
� Bouchy, F., & Carrier, F. 2001, A&A, 374, 5

and
� Kilkenny, D., Koen, C., O’Donoghue, D., & Stobie, R.S. 1997, MNRAS,
285, 640

for discovering pulsations in α Cen A and EC14026, respectively. Even newer,
but unnamed pulsators are discussed in
� Green, E.M., et al. 2003, ApJ, 583, L31.

§2.11: Explosive Variables
The text by
� Warner, B. 1995, Cataclysmic Variable Stars, (Cambridge: Cambridge
University Press)

is required reading for those interested in cataclysmic varaibles. Other refer-
ences include
� Sparks, W.M., Starrfield, S.G., Sion, E.M., Shore, S.N., Chanmugam,
G., & Webbink, R.F. 1999. in Allen’s Astrophysical Quantities, 4th ed.,
ed. A.N. Cox (New York: Springer–Verlag), p. 429

� McLaughlin, D.B. 1960, in Stellar Atmospheres, ed. J.L. Greenstein (Chi-
cago: University of Chicago Press), p. 585

and
� Wade, R.A., & Ward, M.J. 1985, in Interacting Binary Stars, eds.
J.E. Pringle and R.A. Wade (Cambridge: Cambridge University Press).

For more about white dwarfs in these systems, see
� Sion, E.M. 1999, PASP, 111, 532.

Figure 2.28 (sample SN spectra) is from
� Filippenko, A.V. 1996, ARA&A, 35, 312

and see
� Branch, D., Nomoto, K., & Filippenko, A.V. 1991, ComAp, 15, 221

while the SN Type I & II light curves of Figs. 2.29 & 2.32 appeared in
� Wheeler, J.C., & Benetti, S. 1999. in Allen’s Astrophysical Quantities,
4th ed., ed. A.N. Cox (New York: Springer–Verlag), p. 453 (Fig, 18.2),
p. 455 (Fig. 18.4), c©AIP Press, Springer–Verlag.

An introductory review of SN may be found in
� Burrows, A. 2000, Nature, 403, 727 (Feb. 17, 2000)

and, for a review of historical galactic SN, see
� Stephenson, F.R., & Green, D.A. 2003 (May), Sky&Tel, p. 40.

Note that they do not list SN1685. Our discussion of SN1987A follows that
of
� Arnett, W.D., Bahcall, J.N., Kirshner, R.P., & Woosley, S.E. 1989,
ARA&A, 27, 629

with additional material from Arnett (1996). More up-to-date material on
the explosion of massive stars may be found in
� Woosley, S.E., Heger, A., & Weaver, T.A. 2002, RevModPhys, 74, 1015.
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A thorough discussion of Type Ia models is to be found in
� Hillebrandt, W., & Niemeyer, J.C. 2000, ARA&A, 38, 191.

§2.12: White Dwarfs, Neutron Stars and Black Holes
The following reference is a bit dated but it remains the classic text:
� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons).

§2.13: Binary Stars
This is a huge subject that we have condensed down to a smidgen. For an
excellent introduction (both observationally and theoretically), see
� de Loore, C.W.H. & Doom, C. 1992, Structure and Evolution of Single
and Binary stars (Dordrecht: Kluwer Academic Publishers).

We also took Fig. 2.36 from their work (Fig. 16.1), and see
� Kippenhahn, R., & Weigert, A. 1967, ZeAp, 65, 221.

Calculating Roche surfaces is not for the weak of heart. See
� Kitamura, M. 1970, Ap&SS, 7, 272

for the best examples.

§2.14: Star Formation
For an overview of the subject see
� Holt, S.S. & Mundy, L.G. 1997, eds. Star Formation Near and Far, AIP
Conf. Ser. 393.

Angular momentum problems (always a problem because they are always
multi-dimensional) are discussed in
� Bodenheimer, P. 1995, ARA&A, 33, 199.
� Ehrenfreund, P., & Charnley, S.B. 2000, ARA&A, 38, 427

take us on an interesting voyage through a space teeming with molecules.
The ISM of our galaxy is reviewed by
� Ferrière, K.M. 2001, RevModPhys, 73,1031.
� Hale, J.R. et al. (2003), Questioning the Delphic Oracle, SciAm, 289, 67
(Aug. 2003)

suggest that the oracles at Delphi in classical Greece unwittingly used ethyl-
ene emitted from vents in the earth to pass into a trance-like state to make
their ambiguous pronouncements. Nothing to do with astronomy, but inter-
esting nevertheless.



3 Equations of State

“The worth of a State, in the long run,
is the worth of the individuals composing it.”

— John Stuart Mill (1806–1873)

“What is Matter?—Never mind.
What is Mind?—no matter.”

— from Punch (1855)

The equations of state appropriate to the interiors of most stars are simple
in one major respect: they may be derived using the assumption that the
radiation, gas, fluid, or even solid, is in a state of local thermodynamic equi-
librium, or LTE. By this we mean that at nearly any position in the star
complete thermodynamic equilibrium is as very nearly true as we could wish.
It is only near the stellar surface or in highly dynamic events, such as in
supernovae, where this assumption may no longer be valid.

The reasons that LTE works so well are straightforward: particle–particle
and photon–particle mean free paths are short and collision rates are rapid
compared to other stellar length or time scales. (A major exception to this
rule involves nuclear reactions, which are usually slow.) Thus two widely
separated regions in the star are effectively isolated from one another as far
as the thermodynamics are concerned and, for any one region, the Boltzmann
populations of ion energy levels are consistent with the local electron kinetic
temperature.1 Note, however, that different regions cannot be completely
isolated from one another in a real star because, otherwise, energy could not
flow between them. Chapter 4 will go into this further.

One typical scale length in a star is the pressure scale height, λP , given
by

λP = −
(
d lnP
dr

)−1
=

P

gρ
(3.1)

where the equation of hydrostatic equilibrium (1.6) has been used to eliminate
dP/dr. The constant–density star discussed in the first chapter easily yields
an estimate for this quantity of

λP (ρ = constant) =
R2

2r

[
1−
( r

R
)2]

using the run of pressure given by (1.41). The central value of λP is infinite
but through most of the constant–density model it is of order R. Near the
1 For further discussions of the conditions for LTE see Cox (1968, Chap. 7) and
Mihalas (1978, Chap. 5).
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surface it decreases rapidly to zero. We compare these lengths to photon
mean free paths, λphot, which we construct from the opacity by

λphot = (κρ)
−1 cm . (3.2)

This quantity is a measure of how far a photon travels before it is either
absorbed or scattered into a new direction (see Chap. 4). Note that opacity
has the units of cm2 g−1.

For Thomson electron scattering, which is the smallest opacity in most
stellar interiors, later work will show that κ ≈ 1 cm2 g−1. If we consider
the sun to be a typical star and set R = R� and ρ = 〈ρ�〉 ≈ 1 g cm−3

in the above, we then find λphot is at most a centimeter and λP ∼ 1011 cm
through the bulk of the interior. Thus λphot is smaller than λP by many orders
of magnitude. We could also have compared λphot with a temperature scale
height and found the same sort of thing because, for the sun, the temperature
decreases by only 10−4 K cm−1 on average from center to surface.

Another simple calculation yields an estimate of how much of a star is not
in LTE. If the photon mean free path is still of order 1 cm, then the relative
radius at which the pressure scale height is equal to the photon mean free
path is (r/R) ≈ 1− 10−11 using the constant–density model. This means, as
a crude estimate, that it is within only the last one part in 1011 of the radius
that the assumption of LTE fails. In realistic models, the assumption of LTE
breaks down within the region of the stellar photosphere, which is the only
part of a star we can see.

In the following sections we shall quote some results from statistical me-
chanics, which will eventually be used to derive equations of state for stellar
material consisting of gases (including photons) in thermodynamic equilib-
rium. Because several excellent texts on statistical mechanics are available for
reference, many results will be stated without proof. One particular text we
recommend is Landau and Lifshitz (1958, or later editions) for its clean style
and inclusion of many fundamental physical (and astrophysical) applications.
Additional material may be found in Cox (1968), Kippenhahn and Weigert
(1990), and Rose (1998, §3.2).

3.1 Distribution Functions

The “distribution function” for a species of particle measures the number
density of that species in the combined six–dimensional space of coordinates
plus momenta. If that function is known for a particular gas composed of
a combination of species, then all other thermodynamic variables may be
derived given the temperature, density, and composition. For the next few
sections we shall assume that the gas, including electrons and photons, is
a perfect (sometimes called ideal) gas in that particles comprising the gas
interact so weakly that they may be regarded as noninteracting as far as their
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thermodynamics is concerned. They may, however, still exchange energy and
other conserved properties. Before writing down the distribution function for
a perfect gas we first introduce what may be an unfamiliar thermodynamic
quantity.

The variables of thermodynamic consequence we have encountered thus
far are P , T , ρ (or Vρ = 1/ρ), S, E, Q, and various number densities, ni
(see §1.4.1). The latter have been, and will be, given in the units of number
cm−3. We now introduce Ni, which is the (specific) number density of an ith
species in the units of number per gram of material with Ni = ni/ρ. It is the
Lagrangian version of ni and it will prove useful because it remains constant
even if volume changes.

Another very useful thermodynamic quantity is the chemical potential,
μi, defined by2

μi =
(

∂E

∂Ni

)
S,V

(3.3)

as associated with an ith species in the material (and is not to be confused
with μI, the ion molecular weight). If there are “chemical” reactions in the
stellar mixture involving some subset of species (ions, electrons, photons,
molecules, etc.) whose concentrations could, in principle, change by dNi as
a result of those reactions, then thermodynamic (and chemical) equilibrium
requires that ∑

i

μi dNi = 0 (3.4)

which we state without proof. Changing Ni by dNi in a real mixture usually
means that other components in the mixture must change by an amount
related to dNi so that not all the dNi are independent.

As an example, consider the ionization–recombination reaction

H+ + e− ⇐⇒ H0 + γ (3.5)

where H0 is neutral hydrogen—assumed to have only one bound state in
the following discussion—H+ is the hydrogen ion (a proton), and e− is an
electron. We shall neglect the photon that appears on the righthand side of
(3.5) in the following because, as we shall show, its chemical potential is zero
and will not enter into the application of (3.4). The double-headed arrow is
to remind us that the reaction proceeds equally rapidly in both directions in
thermodynamic equilibrium. Now write (3.5) in the algebraic form

1H+ + 1 e− − 1H0 = 0

where the coefficients count how many individual constituents are destroyed
or created in a single reaction. A more general form for this equation is
2 A simple example indicating why μi is a “potential” is given as Ex. 3.6.
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i

νi Ci = 0 . (3.6)

The Ci represent H+, H0, and e− in the example and the νi, or stoichiometric
coefficients, are the numerical coefficients. Obviously the concentrations, Ni,
are constrained in the same way as the Ci. Thus if N1 changes by some
arbitrary amount dN1, then the ith concentration changes according to

dNi

νi
=

dN1

ν1
.

Equation (3.4) then becomes

∑
i

μi
dN1

ν1
νi =

dN1

ν1

∑
i

μiνi = 0

or, since dN1 is arbitrary, ∑
i

μiνi = 0 . (3.7)

This is the equation for chemical equilibrium, which must be part of thermo-
dynamic equilibrium when reactions are taking place.3

As another simple, and useful, example consider a classical blackbody
cavity filled with radiation in thermodynamic equilibrium with the walls of
the cavity. Equilibrium is maintained by the interaction of the photons with
material comprising the walls but the number of photons, Nγ , fluctuates
about some mean value; that is, photon number is not strictly conserved.
Therefore dNγ need not be zero. Nevertheless, reactions in the cavity must
satisfy a symbolic relation of the form

∑
μi dNi + μγ dNγ = 0 with dNi = 0.

The last two statements can only be reconciled if

μγ = 0 for photons. (3.8)

It is for this reason that photons were not included in the ionization and
recombination reaction of (3.5): the vanishing of μγ makes its presence su-
perfluous in the chemical equilibrium equation (3.7).

It is reasonable, and correct, to expect that given T , ρ, and a catalogue
of what reactions are possible, we should be able to find all the Ni for a
gas in thermodynamic equilibrium. In other words, information about Ni is
contained in μi for the given T and ρ. In a real gas this connection is difficult
to establish because it requires a detailed knowledge of how the particles in
the system interact. For a perfect gas things are easier. Any text on statistical
mechanics may be consulted for what follows.
3 We exclude thermonuclear reactions from this discussion for the present because
they may proceed very slowly and, usually, only in one direction during stellar
nuclear burning.
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The relation between the number density of some species of elementary
nature (ions, photons, etc.) in coordinate–momentum space and its chemical
potential in thermodynamic equilibrium is found from statistical mechanics
to be

n(p) =
1
h3

∑
j

gj
exp {[−μ+ Ej + E(p)] /kT} ± 1 . (3.9)

We call n(p) the distribution function for the species (although you will often
see this referred to as the “occupation number”). The various quantities are
as follows:

• μ is the chemical potential of the species.

• j refers to the possible energy states of the species (e.g., energy levels of
an ion).

• Ej is the energy of state j referred to some reference energy level.

• gj is the degeneracy of state j (i.e., the number of states having the same
energy Ej).

• E(p) is the kinetic energy as a function of momentum p.

• a “+” in the denominator is used for Fermi–Dirac particles (fermions of
half-integer spin) and a “−” for Bose–Einstein particles (bosons of zero
or whole integer spin).

• h is Planck’s constant h = 6.6260688× 10−27 erg s.
• n(p) is in the units of number per (cm−unit momentum)3 where the dif-

ferential element in coordinate–momentum space is d3r d3p.

As we shall demonstrate in the following discussion, (3.9) will lead to all
the familiar results from elementary thermodynamics.

To retrieve the physical space number density, n (cm−3), for the species
from (3.9) we need only integrate over all momentum space, which, from
standard arguments, is assumed to be spherically symmetric; that is,4

n =
∫
p

n(p) 4πp2 dp cm−3 . (3.10)

The factor of 4π (steradians) comes from the two angular integrations over
the surface of a unit sphere.

Because we shall want eventually to consider relativistic particles, the
correct form of the kinetic energy, E , for a particle of rest mass m is given by

E(p) = (p2c2 +m2c4)
1/2 −mc2 (3.11)

4 We explicitly assume here that the distribution of particles is angularly isotropic
in momentum. This is really part of LTE but the assumption will have to be
reexamined in Chapter 4 when we put back angular information and partially
unravel the integral.
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which reduces to E(p) = p2/2m for pc� mc2 in the nonrelativistic limit, and
E(p) = pc for extremely relativistic particles or those with zero rest mass.

We shall also need an expression for the velocity which, from Hamilton’s
equations (one of the more elegant and important subjects in the physical
sciences), is

v =
∂E
∂p

. (3.12)

(As a simple check on this definition of v, note that v → p/m for pc � mc2

and v → c for the relativistic case, both of which are elementary results.) This
is the velocity to use in the following kinetic theory expression for isotropic
pressure (as in 1.20)

P = 1
3

∫
p

n(p) pv 4πp2 dp . (3.13)

Finally, the internal energy is simply

E =
∫
p

n(p) E(p) 4πp2 dp . (3.14)

That completes all that we shall need to construct practical equations of state
in the following applications.

3.2 Blackbody Radiation

Photons are massless bosons of unit spin. Since they travel at c, they only
have two states (two spin orientations or polarizations) for a given energy
and thus the degeneracy factor in (3.9) is g = 2. From before, μγ = 0 and
E = pc. Because there is only one energy level (no excited states), Ej may be
taken as zero. Putting this together, we find that the photon number density
is given by5

nγ =
8π
h3

∫ ∞
0

p2 dp

exp (pc/kT )− 1 cm−3 . (3.15)

Let x = pc/kT and use the integral

5 It may seem contradictory to give one number for the photon density whereas we
stated earlier that the photon concentration fluctuates about some mean value—
thus giving μγ = 0. But the point is that photons must interact with matter to
equilibrate (not with each other unless you delve into quantum electrodynamics)
and this is a statistical process. What you get in (3.15) is an average. Fluctuations
about that average depend on the particulars of the matter interactions but, as
long as there are many interactions, the effect of fluctuations is very small. Much
the same can be said about even the ideal gas except there we deal with various
conservation rules involving particles, not photons. See, for example, Landau and
Lifshitz (1958, Chap. XII).
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0

x2 dx

ex − 1 = 2 ζ(3) = 2(1.202 · · ·)

where ζ(3) is a Riemann Zeta function, to find

nγ = 2π ζ(3)
(
2kT
ch

)3

≈ 20.28T 3 cm−3 . (3.16)

Find, in similar fashion, that the radiation pressure is given by

Prad =
(

k4

c3h3
8π5

15

)
T 4

3
=

aT 4

3
dyne cm−2 (3.17)

and that the energy density is

Erad = aT 4 = 3Prad erg cm−3 (3.18)

where a is the radiation constant a = 7.56577× 10−15 erg cm−3 K−4. Thus
we recover the usual results for blackbody radiation. The nice thing about
LTE radiation is that all you have to know is the ambient temperature.
Matter density, composition, etc., don’t matter, so to speak.

Note that (3.18) is a γ–law equation of state P =(γ−1)E (as in 1.24 after
E in that equation is converted to energy per unit volume) with γ = 4/3.
Thus a star whose equation of state is dominated by radiation is in danger
of approaching the γ = 4/3 limit discussed in Chapter 1.

It will be convenient for later purposes to define the energy density per
unit frequency (ν) or wavelength (λ) in the radiation field. These energy
densities are usually designated by u (with an appropriate subscript). Recall
that frequency is given by ν = E/h = pc/h and wavelength by λ = c/ν. If
up is the energy density per unit momentum (that is, the integrand of 3.14
with Erad =

∫∞
0 up dp) and uν and uλ are the corresponding densities per

unit frequency and wavelength, then you may easily show

uν dν =
8πhν3

c3
1

ehν/kT − 1 dν erg cm−3 Hz−1 Hz (3.19)

and
uλ dλ =

8πhc
λ5

1
ehc/λkT − 1 dλ erg cm−3 cm−1 cm . (3.20)

Associated quantities are the frequency-dependent Planck function

Bν(T ) =
c

4π
uν erg cm−2 (3.21)

and the integrated Planck function

B(T ) =
∫ ∞
0

Bν(T ) dν =
ca

4π
T 4 =

σ

π
T 4 erg cm−2 s−1 . (3.22)
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Fig. 3.1. A plot of the function B(x) = x3/[exp(x)− 1] corresponding to the vital
part of either uν or the Planck function Bν . The maximum is at x = hν/kT = 2.821.

The Stefan–Boltzmann constant σ = 5.6704 × 10−5 erg cm−2 K−4 s−1. We
shall make extensive use of these functions when we discuss radiative transfer
in the next chapter.

To remind you of what uν or Bν looks like, we plot the function B(x) =
x3/[exp(x) − 1] (as part of 3.19) in Fig. 3.1 where x = hν/kT and multi-
plicative constants have been ignored. The function is strongly peaked with
a maximum at x = 2.821 · · ·. For the center of the sun, with Tc ≈ 107 K, this
peak corresponds to a photon energy of 2.4 keV. (For conversions to eV units
see App. B.) Photons of these energies are capable of completely ionizing
most of the lighter elements.

3.3 Ideal Monatomic Gas

As we shall soon show, the Boltzmann distribution for an ideal gas is charac-
terized by (μ/kT )� −1. We start off by asserting that this inequality holds
for a sample of gas.

To make it simple, assume that the gas particles are nonrelativistic with
E = p2/2m, v = p/m, and that they have only one energy state E = E0. These
could be, as examples, elementary particles, or a collection of one species of
ion in a given state. If (μ/kT ) � −1, then the term ±1 in the denominator
of (3.9) may be neglected compared to the exponential and the gas becomes
purely classical in character with no reference to quantum statistics. The
expression for the number density is then



3.3 Ideal Monatomic Gas 153

n =
4π
h3

g

∫ ∞
0

p2eμ/kT e−E0/kT e−p
2/2mkT dp . (3.23)

The integral is elementary and yields μ in terms of number density:

eμ/kT =
nh3

g(2πmkT )3/2
eE0/kT . (3.24)

Because we require exp (μ/kT ) � 1 (since μ/kT � −1), the righthand
side of (3.24) must be small. Thus, nT−3/2 cannot be too large. If this is not
true, then other measures must be taken. For example, if μ/kT is negative but
not terribly less than −1, it is possible to expand the original integrand for
n (with the ±1 statistics term retained) in a power series and then integrate.
The additional terms obtained, assuming convergence of the series, represent
Fermi–Dirac or Bose–Einstein corrections to the ideal gas. This is done for
fermions in Chiu (1968, Chap. 3), and Chandrasekhar (1939, Chapt. X), for
example. In any event, μ may be computed once n and T are given. We
assume here that (3.24) is by far the largest contribution to any expansion
leading to an expression for μ for given n and T .

It is easy to take logarithmic differentials of n that yield the following
expressions, and you may easily verify from the literature that they are the
distribution functions for a Maxwell–Boltzmann ideal gas:

dn(p)
n

=
4π

(2πmkT )3/2
e−p

2/2mkT p2 dp (3.25)

and, in energy space,

dn(E)
n

=
2

π1/2
1

(kT )3/2
eE/kT E1/2 dE . (3.26)

The relevant part of (3.26), C(x) = x1/2 exp(−x), is shown in Fig. 3.2, where
the maximum corresponds to E = kT/2 (i.e., x = 1/2).

It is easy to show that the average kinetic energy of a particle in this
distribution is just 3kT/2, which gives rise to (3.29) below. (To get the av-
erage, multiply 3.26 by E and integrate from zero energy to infinity.) Thus
the “important” particles, in a manner of speaking, of a Maxwell–Boltzmann
gas are those with energies near kT . A major exception to this involves those
partaking of fusion reactions. For the solar center kT is around 1 keV, which
is small compared to nuclear energies measured in MeVs. It will turn out (in
Chap. 6) that the important fusion reactants are those in the exponential
right hand tail of Fig. 3.2, even though their population is small compared
to those in the peak of the distribution.

A similar procedure involving the neglect of the±1 statistical factor equiv-
alent to what was done for (3.23) yields the pressure

P = g
4π
h3

π1/2

8m
(2mkT )5/2eμ/kT e−E0/kT (3.27)
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Fig. 3.2. A plot of the function C(x) = x1/2 exp(−x) corresponding to the exciting
part of the Maxwell–Boltzmann distribution in energy space. The maximum is at
x = 1/2 (E = kT/2).

or, after substituting for eμ/kT of (3.24),

P = nkT dyne cm−2 (3.28)

which comes as no surprise. This last result is true even if the particles are
relativistic (as in Ex. 3.4). The internal energy is

E = 3
2nkT erg cm−3 (3.29)

using the same procedures. (Note that if reactions are present that change the
relative concentrations of particles, then E must contain information about
the energetics of such reactions; see below.) These are all elementary results
for the ideal gas so that, given n, T , and composition, then P , E, and μ
immediately follow.

To tidy up, we return to a statement made at the beginning of this chapter;
namely, that “the Boltzmann populations of ion energy levels are consistent
with the local electron kinetic temperature” in LTE. We have implicitly as-
sumed here that all species in a mixture have the same temperature, which, in
some environments, is not warranted. For the stellar interior the assumption
is fine. Thus consider an ion with two energy levels with E1 > E2. These levels
are populated or depopulated by photon absorption or emission, for example.
Because the photon chemical potential is zero, then μ1 = μ2. Dividing (3.24)
for the two levels yields, after trivial algebra,

n1
n2
=

g1
g2

e−(E1−E2)/kT (3.30)
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which is the Boltzmann population distribution and, if the statistical weights
are not strange, means that levels become more sparsely populated as their
energy increases.

3.4 The Saha Equation

In many situations the number densities of some species cannot be set a priori
because “chemical” reactions are taking place. This is the problem referred
to in §1.4 where mean molecular weights were computed. If the system is
in thermodynamic equilibrium, however, then the chemical potentials of the
reacting constituents depend on one another and this additional constraint
is sufficient to determine the number densities.

As an example, consider the ionization–recombination reaction brought
up earlier:6

H+ + e− ⇐⇒ H0 + χH (3.31)

where χH = 13.6 eV is the ionization potential from the ground state of
hydrogen (still assumed to have only one bound level). We assume that no
other reactions are taking place that involve the above constituents and, in
particular, that the gas is pure hydrogen. Reference to the photon in (3.31)
has again been deleted because its chemical potential is zero and does not
appear in the equilibrium condition (3.7), which will be invoked shortly.

To obtain the LTE number densities of the electrons and neutral and
ionized versions of hydrogen, assume that all gases are ideal so that (3.24)
applies. The reference energy levels for all species are established by taking
the zero of energy as the just-ionized H+ + e− state. (Other choices are
possible of course.) Thus E0 for electrons and H+ is zero, whereas for H0 it
is −χH = −13.6 eV lower on the energy scale. That is, we need 13.6 eV to
convert H0 to a free electron and a proton. The ground state of hydrogen
has two near-degenerate states corresponding to spin-up or spin-down of the
electron relative to the proton spin. For our purposes regard those states
as having the same energy (but of course they do not, otherwise 21-cm HI
radiation would not exist). Thus the degeneracy factor for H0 is g0 = 2.
The situation for the free electron and H+ is a bit more complicated because
of the possible problem of double counting. If the spin axis of the proton
is taken to be a fixed reference direction, then the free electron may have
two spin directions relative to the free proton. Thus, g− = 2 and g+ = 1.
The argument could be reversed without having any effect on the following
results.

With μ−, μ+, and μ0 denoting the chemical potentials of the components
in (3.31), Equation (3.24) then yields

6 See Ex. 3.1 for a more complicated problem.
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ne =
2 [2πmekT ]

3/2

h3
eμ
−/kT (3.32)

n+ =
[2πmpkT ]

3/2

h3
eμ
+/kT (3.33)

n0 =
2[2π(me +mp)kT ]3/2

h3
eμ
0/kT eχH/kT (3.34)

where me and ne denote, respectively, the electron mass and number density,
mp is the proton mass, and the neutral atom mass is set to me +mp.

Now form the ratio n+ne/n
0 and find

n+ne
n0

=
(2πkT )3/2

h3

(
memp

me +mp

)3/2

e(μ
−+μ+−μ0)/kT e−χH/kT .

But μ− + μ+ − μ0 = 0 for equilibrium by application of (3.7), so that we
obtain the Saha equation for the single-level pure hydrogen gas7

n+ne
n0

=
(
2πmekT

h2

)3/2

e−χH/kT (3.35)

where the reduced mass approximation [mem/(me +m)] ≈ me has been
used. A numerical version of part of this equation is

(
2πmekT

h2

)3/2

= 2.415× 1015 T 3/2 cm−3 (3.36)

and note that
kT = 8.6173× 10−5 T eV (3.37)

where the eV units are handy for energies on the atomic scale.
To find the number densities, and not just ratios, further constraints must

be placed on the system. A reasonable one is that of electrical neutrality,
which requires that ne = n+ for a gas of pure hydrogen. Furthermore, nucleon
number must be conserved so that n+ + n0 = n, where n is a constant if the
density (ρ) is kept fixed.

We now define the degree of ionization (as in §1.4 and Eq. 1.47)

y =
n+

n
=

ne
n

(3.38)

so that y is the fraction of all hydrogen that is ionized. The Saha equation
(3.35) is then

7 Clayton (1968, §1–2) extends this analysis to the case of multiple ionizations in
many-electron atoms, which leads to a consideration of partition functions. We
shall not need those functions but Clayton’s discussion is worth looking into.
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y2

1− y
=
1
n

(
2πmekT

h2

)3/2

e−χH/kT . (3.39)

For sufficiently high temperatures, with fixed density, we expect the radiation
field or collisions effectively to ionize all the hydrogen. This is indeed the case
because we see that as T →∞, then y → 1. Similarly, low temperatures mean
less intense radiation fields and recombination wins with y → 0.

Fig. 3.3. The half-ionization curve for a mixture of pure hydrogen undergoing the
recombination–ionization reaction H+ + e− ⇐⇒ H0 + χH (ground state only).

For the pure hydrogen mixture n = ρNA and (3.39) becomes

y2

1− y
=
4.01× 10−9

ρ
T 3/2e−1.578×10

5/T . (3.40)

The half-ionized (y = 1/2) path in the ρ-T plane for this mixture is then

ρ = 8.02× 10−9T 3/2e−1.578×10
5/T g cm−3 (3.41)

and this is shown in Fig. 3.3 as a very shallow curve for a range of what are
interesting densities.

The dominant factor in (3.40) and (3.41) is the exponential and this is
what causes the half-ionization point to depend only weakly on density. For
hydrogen ionization from the ground state, the characteristic temperature for
ionization-recombination is around 104 K and you may readily check that the
transition from y = 0 to y = 1 takes place very rapidly as the temperature
scans across that value (or, more precisely, at the temperature corresponding
to y = 1/2 at a particular density). This is shown in Fig. 3.4 for pure hydrogen
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at a density of 10−6 g cm−3. A rough rule of thumb is that the transition
temperature (where y ≈ 1/2) is such that χ/kT ∼ 10 to within a factor of
three or so depending on density. Thus, for example, the ionization potentials
for removing the first and second electrons of helium are 24.6 eV and 54.4 eV,
which correspond to transition temperatures of about 3× 104 K and 6× 104
K. (See Ex. 3.1.)

Fig. 3.4. Note how the ionization fraction y changes rapidly for pure hydrogen as
temperature is varied through 1.62× 104 K at which y = 1/2—as indicated by the
dashed lines. The density is fixed at ρ = 10−6 g cm−3.

As we shall see, the presence of these zones of ionization have profound
consequences for the structure of a star. You may wish to consider at this
point a mixture of single-level hydrogen and helium (with two stages of ion-
ization) and go through an analysis corresponding to the above to see how
the various ions compete for electrons and to find out what the transition
temperatures are for the three ionization stages involved. Even for this very
practical, but simple, problem, you will find that a computer is essential for
your sanity.

If the temperature and density of the hydrogen mixture are fixed, then
(3.40) yields the ionization fraction y. The total hydrogen number density is
clearly n = ρNA and thus n+ = ne = yn from (3.38). Chemical potentials, if
required, follow from (3.32–3.34). The partial pressures and internal energies,
which are additive, yield the total pressure

P = n(1 + y)kT (3.42)

and total internal energy



3.5 Fermi–Dirac Equations of State 159

E = 3
2n(1 + y)kT + y nχH erg cm−3. (3.43)

The last term in E appears because we have to take account of the ionization
energy. If we wish to ionize the gas (y → 1) completely, then (3nkT/2 +
nχH) erg cm−3 must be added to the system. Of this amount, nχH strips
off the electrons, and the remainder brings the system up to the common
temperature T .

The real calculation of ionization equilibria is as difficult as that for real
equations of state (and the two are intimately connected). In principle, all
species, energy levels, and reactions must be considered. In addition, the ef-
fects of real interactions must be included (and these depend on composition,
temperature, and density), which change the relations between concentration
and chemical potential. For textbook examples see Cox (1968, §15.3), and
Kippenhahn and Weigert (1990, Chap. 14), with the warning that, in prac-
tice, accurate analytic or semianalytic solutions are seldom possible: you are
usually faced with computer-generated tables of pressure and the like and
the task is to use them intelligently.

3.5 Fermi–Dirac Equations of State

The most commonly encountered Fermi–Dirac elementary particles of stel-
lar astrophysics are electrons, protons, and neutrons; all have spin one-half.
(Neutrinos also appear but in contexts not usually connected with equations
of state.) The emphasis here will be on electrons, but (almost) all that fol-
lows may apply to the other fermions as well. The prime motivation for this
discussion is that the equation of state in the inner regions of many highly
evolved stars, including white dwarfs, is dominated by degenerate electrons
and, to a great extent, this determines the structure of such stars.

The number density of Fermi–Dirac particles is given by (3.9) and (3.10)
with the choice of +1 in (3.9) and an energy reference level of E0 = mc2, where
m is the mass of the fermion. (Other choices are indeed possible for E0. They
lead to an additive constant in the definition of the chemical potential and
you have to watch out for this in the literature.) For these spin 1/2 particles,
the statistical weight g = 2. Transcribing these statements then means that
the number density is

n =
8π
h3

∫ ∞
0

p2 dp

exp {[−μ+mc2 + E(p)] /kT}+ 1 (3.44)

where, in general, from (3.11) and (3.12),

E(p) = mc2

[√
1 +
( p

mc

)2
− 1
]

(3.45)

and
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v(p) =
∂E
∂p

=
p

m

[
1 +
( p

mc

)2]−1/2
. (3.46)

We now explore some consequences of the above.

3.5.1 The Completely Degenerate Gas

The “completely degenerate” part of the title of this subsection refers to
the unrealistic assumption that the temperature of the gas is absolute zero.8

In practice this does not happen but, under some circumstances, the gas
effectively behaves as if it were at zero temperature and, for fermions in
stars, these unusual circumstances are very important. So, in (3.44), note the
peculiar behavior of the integrand as T → 0. The exponential tends either to
zero or infinity depending on, respectively, whether −μ +mc2 + E is <0 or
>0. Therefore consider the interesting part of (3.9),

F (E) = 1
exp {[E − (μ−mc2)] /kT}+ 1 (3.47)

where, as T → 0, F (E) approaches either zero or unity depending on whether
E is greater or less than μ−mc2.

The critical kinetic energy at which F (E) is discontinuous (for T → 0) is
called the “Fermi energy” and we denote it by EF ; that is, where EF = μ−mc2.
(But note that we have not yet described how μ is found.) The situation is
depicted in Fig. 3.5 where, in the unit square corresponding to particle ener-
gies 0 ≤ E ≤ EF , F (E) is unity. Fermions are contained only in that energy
range and not at energies greater than EF where the distribution function
is zero. In this situation we refer to a “filled Fermi sea” of fermions because
all the fermions present are swimming in that sea and nowhere else. (Ignore
the dashed line for the moment. It shows what happens if the temperature
is raised slightly above zero. See §3.5.3.)

The momentum corresponding to the Fermi energy is the Fermi momen-
tum pF . It is usually reduced to dimensionless form by setting x = p/mc and
defining xF = pF /mc. Then, from (3.45), we have

EF = mc2
[(
1 + x2F

)1/2 − 1] . (3.48)

In this language, the chemical potential of the system is μF = EF+mc2 and it
is the total energy, including rest mass energy, of the most energetic particle
8 This has almost been achieved in the laboratory by the elegant experiments of
DeMarco and Jin (1999), who, using atoms of 40K at temperatures less than
300 nanoKelvin (!), have made a soup of fermions in their lowest energy states.
Similar experiments by Anderson et al. (1995) have done the same for bosons
by making a “Bose–Einstein Condensate” (BEC), a form of matter long thought
possible but only now demonstrated actually to exist (and the work gained the
two senior investigators a Nobel Prize). The two groups, not so incidentally, are
in the same institute (JILA) at the University of Colorado.
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Fig. 3.5. The function F (E/EF ) of (3.47) versus particle kinetic energy in units of
EF for zero temperature. Fermions are restricted to the shaded area of unit height
and width and do not have energies greater than the Fermi energy EF . The dashed
line shows how F (E) is changed by raising the temperature slightly. (In this case
EF /kT = 20.)

(or particles) in the system. If the spin is 1/2 (g = 2), then all the rest of the
particles are locked in pair-wise with spin-up and spin-down paired at each
lower energy level by the Pauli exclusion principle.9 The Fermi sea is then
capped by the “Fermi surface” at EF .

The relation between particle number density and the Fermi energy, and
thus μF , is found as follows. Because F (E) is in the form of a unit step, (3.44)
need only be integrated up to pF . Hence

n =
8π
h3

∫ pF

0
p2 dp = 8π

(
h

mc

)−3 ∫ xF

0
x2 dx =

8π
3

(
h

mc

)−3
x3F . (3.49)

To deal with astrophysically interesting numbers we shall, from this point on,
deal exclusively with electrons unless otherwise noted.

It is traditional, but admittedly confusing, to delete the F subscript on
xF so that (3.49) is written

ne =
8π
3

(
h

mec

)−3
x3 = 5.865× 1029 x3 cm−3 (3.50)

9 The most obvious application of the Pauli exclusion principle is for atoms. Were
it not for this curious way nature works, electrons would all cascade down to the
lowest energy level of atoms and we all would become very small entities indeed.



162 3 Equations of State

for electrons where (h/mec) is the electron Compton wavelength equal to
2.426×10−10 cm. The transcription to other spin 1/2 fermions is accomplished
merely by changing the mass in (3.50).

To convert this to density units we reintroduce the electron mean molec-
ular weight, μe, of (1.48–1.49) with ne = ρNA/μe. Thus

ρ

μe
= B x3 (3.51)

with

B =
8π
3NA

(
h

mec

)−3
= 9.739× 105 g cm−3 (3.52)

for electrons. This may be looked upon as a relation that yields x (i.e., xF ),
and, hence, EF and pF , once ρ/μe is given.

Note that the demarcation between nonrelativistic and relativistic me-
chanics occurs when pF ≈ mec or x = xF ≈ 1. The corresponding density is
ρ/μe ≈ 106 g cm−3, which, incidentally, is a typical central density for white
dwarfs and is near the density at which the “helium flash” takes place (see
§2.5). It remains to be shown, however, that temperatures in these contexts
are sufficiently low to be effectively zero as far as electrons are concerned.

Looking ahead to neutron star matter, the numerical constant B in (3.51–
3.52) is B(neutrons) = 6.05 × 1015 g cm−3 and μe in that expression is set
to unity; that is, we must replace μe by the amu weight of the neutron
(essentially unity). For typical densities in a neutron star (comparable to
nuclear densities of ρ ≈ 2.7×1014 g cm−3), x ≈ 0.35 and EF ≈ 57 MeV. This
implies that the neutrons are nonrelativistic because the neutron rest mass
energy is 939.57 MeV.

The pressure of a completely degenerate electron gas is treated in the same
way as that for the number density. It is the integral in (3.13) truncated at
the Fermi momentum with F (E) of (3.47) set to unity. A little work on (3.13)
yields

Pe =
8π
3

m4
ec

5

h3

∫ xF

0

x4 dx

(1 + x2)1/2
= Af(x) (3.53)

where

A =
π

3

(
h

mec

)−3
mec

2 = 6.002× 1022 dyne cm−2 (3.54)

for electrons and

f(x) = x(2x2 − 3)(1 + x2)1/2 + 3 sinh−1 x . (3.55)

Similarly, the internal energy, from (3.14), is given by the integral

Ee = 8π
(

h

mec

)−3
mec

2
∫ xF

0
x2
[
(1 + x2)1/2 − 1

]
dx = Ag(x) (3.56)
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with
g(x) = 8x3

[
(1 + x2)1/2 − 1

]
− f(x) . (3.57)

The units for Ee are erg cm−3 as is that for A when dyne cm−2 is expressed
in those units in (3.54).

It will often prove useful to have limiting forms for f(x) and g(x) that
correspond to the limits of relativistic or nonrelativistic electrons. These are

f(x)→
{

8
5x

5 − 4
7x

7 + · · · , x� 1
2x4 − 2x2 + · · · , x� 1

(3.58)

and

g(x)→
{

12
5 x5 − 3

7x
7 + · · · , x� 1

6x4 − 8x3 + · · · , x� 1 .
(3.59)

Note that x � 1 implies nonrelativistic particles, and x � 1 is the extreme
relativistic limit. Also observe that

Pe ∝ Ee ∝
{
(ρ/μe)5/3, x� 1
(ρ/μe)4/3, x� 1

(3.60)

and the limiting ratios of Ee to Pe are

Ee

Pe
=

g(x)
f(x)

=
{
3/2 (γ = 5/3), x� 1
3 (γ = 4/3), x� 1 .

(3.61)

The values for γ are included as a reminder that for a γ–law equation of state
the completely degenerate nonrelativistic electron gas acts like a monatomic
ideal gas whereas, in the extreme relativistic limit, it behaves like a photon
gas.

3.5.2 Application to White Dwarfs

As a simple, but important, application of completely degenerate fermion
statistics, consider zero temperature stars in hydrostatic equilibrium whose
internal pressures are due solely to electron degenerate material and whose
densities and composition are constant throughout.

The easiest way to look at this is to apply the virial theorem in the
hydrostatic form 3(γ−1)U = −Ω from (1.25). Because the star is assumed to
have constant density, Ω = −(3/5)(GM2/R). If Ee is the volumetric energy
density (with no contribution from the zero temperature ions), then U = V Ee
where V is the total stellar volume V = (4π/3)R3. In the nonrelativistic
limit Ee = 12Ax5/5 from (3.56) and (3.59), x may be expressed in terms
of ρ/μe via (3.51) and ρ, in turn, may be eliminated in favor of M and
R by ρ = M/(4πR3/3). If the entire virial theorem is also cast in a form
containing onlyM and R, and if the constants B and A of (3.52) and (3.54)
are given in terms of fundamental constants, then a little algebra yields the
nonrelativistic mass–radius relation
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M =
1
4

(
3
4π

)4(
h2NA

meG

)3
N2
A

μ5e

1
R3 for constant density. (3.62)

This relation has the remarkable property that as mass increases, radius
decreases and is quite unlike the homology result for main sequence stars
discussed in the first chapter. And this result is what we promised you several
times in Chapter 2.

For electrons, this yields the numeric expression

M
M�

≈ 10−6
( R
R�

)−3( 2
μe

)5

. (3.63)

We state, without proof for now, that the interiors of white dwarf stars are
almost entirely supported by electron degeneracy pressure, and that they
typically have masses around 0.6M�. If the electrons are nonrelativistic, then
(3.63) yields a typical radius of R ≈ 0.01R� for μe = 2 (completely ionized
4He, 12C, 16O, etc.). This radius is very close to that of the earth’s with
R⊕ = 6.38×108 cm. An exact analysis involving integration of the hydrostatic
equation using the nonrelativistic equation of state shows that (3.63) gives the
correct result provided that the numerical coefficient is increased by (only!)
a factor of two.

If μe in (3.62) is replaced by unity and the particle mass is taken to be
that of the neutron, then the neutron star equivalent of (3.63) becomes

M
M�

≈ 5× 10−15
( R
R�

)−3
(neutron stars) (3.64)

in the nonrelativistic limit. For M = M�, R ≈ 11 km, which is in the
right ballpark. Note that general relativistic effects have been completely
ignored, but this is the least of our sins because the nuclear force makes our
noninteracting equation of state inaccurate.

You will have realized by now that the simple arguments outlined above
for mass–radius relations contain a serious flaw. The nonrelativistic degen-
erate electron pressure depends solely on density and composition (through
μe); that is, in numeric form and using (3.51), (3.53), and (3.58)

Pe = 1.004× 1013
(

ρ

μe

)5/3

dyne cm−2 (3.65)

and, as may easily be verified, the corresponding extreme relativistic expres-
sion is

Pe = 1.243× 1015
(

ρ

μe

)4/3

dyne cm−2. (3.66)

Thus if ρ and μe are constant, then so is Pe by virtue of the equation of
state. But a constant pressure is inconsistent with hydrostatic equilibrium
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and, in fact, (1.41) is the correct solution for the pressure through a constant–
density star. Thus Pe is not a constant and neither is Ee as assumed above.
The trouble is that we have overconstrained the problem by insisting on the
constancy of ρ combined with the degenerate equation of state.

The correct way to construct equilibrium degenerate models is to use the
general expression for the pressure given by (3.53) along with the relation
between ρ/μe and dimensionless Fermi momentum of (3.51). This yields a
pressure–density relation, which is then put into the equation of hydrostatic
equilibrium. The resulting equation is then combined with the equation of
mass conservation yielding a second-order differential equation that must be
integrated numerically. We shall not go into the tedious details here because
more than adequate discussions are given in Chandrasekhar (1939, Chap. 11)
and Cox (1968, §25.1), and, in any case, such solutions are easy to come by
using modern numerical techniques. (See, for example, Chap. 7.) Important
results are summarized below.

In the limit of extreme relativistic degeneracy, where (3.66) is appropriate,
you may easily convince yourself by using dimensional analysis that the total
stellar mass depends only on μe and not on radius. An exact analysis yields

M
M�

=
M∞
M�

= 1.456
(
2
μe

)2

(3.67)

where M∞ is the Chandrasekhar limiting mass.10 A virial analysis similar
to that used to find (3.62), but done in the relativistic limit, yields a result
differing from the above by only a change in the constant (a 1.75 instead of
1.456). We assume you will try to verify this and, if you do, you should also
find that the full virial expression (1.25) implies d2I/dt2 becomes negative if
the total mass exceeds M∞. The interpretation is that electron degenerate
objects (of fixed μe) cannot have masses exceeding the Chandrasekhar limit
without collapsing the object. Increased densities and pressure cannot halt
the collapse because the relativistic limit has already been reached. In the
nonrelativistic limit, on the other hand, a new configuration may be reached
by decreasing the radius as indicated by (3.63). Extreme relativistic equations
of state, including that for photons, are too “soft” compared to the effects
of self–gravity. (You can’t make the particles exceed the speed of light to try
to increase pressures!) This conclusion might have been anticipated because
extreme relativistic effects imply γ → 4/3.

10 The exact value of this limiting mass depends on physics we have not included
in our analysis. Hamada and Salpeter (1961), for example, consider the effects
of electrostatic interactions and electron captures on various nuclei. For single
white dwarfs with normal masses and compositions, these effects are not that
significant. However, we can imagine massive objects formed by various means
in binary systems where such effects could well give a stable maximum mass less
than the Chandrasekhar limiting mass, as discussed earlier in §2.13.
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The astrophysical significance of the Chandrasekhar limiting mass is just
as we discussed in Chapter 2. If electron degenerate configurations are good
representations of white dwarfs, and if those objects are the final end product
of evolution for most stars, then the late stages of evolution are severely
constrained. That is, if a star does not finally rid itself of enough mass to
eventually leave a white dwarf with M <∼ 1.46M� (assuming a reasonable
value of μe near 2), then something catastrophic will happen at some time
in its life. Since there are so many white dwarfs in the sky, a large fraction
of stars either start off with sufficiently low masses, or they manage to rid
themselves of the excess mass.

The regime intermediate between nonrelativistic and full relativistic de-
generacy is intractable using simple means, and full-scale models must be
calculated (and you may try this by using the code WD.FOR on the CD-ROM).
The following useful and quite accurate mass–radius relation bridging the two
regimes (fit to actual calculations) is based on one given by Eggleton (1982)
for electrons:

R
R1

= 2.02

[
1−
( M
M∞

)4/3
]1/2( M

M∞

)−1/3
. (3.68)

Here,M/M∞ is given by (3.67), and R1 is defined by

R1

R� = 5.585× 10
−3
(
2
μe

)
. (3.69)

This radius is a typical scale length for electron degenerate objects. The
relativistic and nonrelativistic limits of (3.68) go to the correct values as
R → 0 (relativistic) orM becomes small (nonrelativistic). It is shown plotted
in Fig. 3.6.

We shall have more to say about white dwarfs in Chapter 10. One crucial
item that has not been addressed here, and that pertains to these objects, is
the effect of temperature on degeneracy. After all, if white dwarfs were really
at zero temperature we wouldn’t see them.

3.5.3 Effects of Temperature on Degeneracy

The crucial step in deriving some of the thermodynamics of the completely
degenerate zero temperature fermion gas was the realization that the dis-
tribution function becomes a unit step function at a kinetic energy equal
to μ − mc2. If the zero temperature condition is relaxed, the distribution
function follows suit. Suppose the temperature is low—on some scale yet to
determined—but not zero. Fermions deep in the Fermi sea, at energies much
less than EF , need roughly an additional EF energy units to move around
in energy. That is, if the energy input to the system, as measured by kT , is
much smaller than EF , then low–energy particles are excluded from promo-
tion to already occupied upper energy levels by the Pauli exclusion principle.
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Fig. 3.6. The mass–radius relation for zero temperature white dwarfs with constant
μe. (See Eqs. 3.68–3.69.)

Fermions near the top of the Fermi sea don’t have that difficulty and they
may find themselves elevated into states with energies greater than EF . Thus
as temperature is raised from zero, the stepped end of the distribution func-
tion smooths out to higher energies. This is the effect shown in Fig. 3.5 by
the dashed line. If temperatures rise high enough, we expect the effects of
Fermi–Dirac statistics to be washed out completely and the gas should merge
into a Maxwell–Boltzmann distribution. With this discussion as a guide, it
should be apparent that a rough criterion for the transition from degeneracy
to near- or nondegeneracy is EF ≈ kT . The dashed line in Fig. 3.5 shows the
effect of a rise in temperature corresponding to E = 20kT . The effect on the
distribution function is rather small, as would be expected, but the gas is no
longer completely degenerate. A better description is that the gas is partially
degenerate. As an example of the transition to nondegeneracy we apply the
criterion E ≈ kT to nonrelativistic electrons.

The Fermi energy of a nonrelativistic electron gas is EF = mc2x2F /2,
which is easily obtained by expanding the radical in (3.48) for small xF . The
dimensionless Fermi momentum xF is then converted to ρ/μe using (3.51).
After this is applied to EF ≈ kT , and numbers put in, the criterion becomes

ρ

μe
≈ 6.0× 10−9 T 3/2 g cm−3. (3.70)

If ρ/μe exceeds the value implied by the righthand side of (3.70) for a given
temperature, then the gas is considered degenerate. Realize though that this
is a rough statement: there is no clean demarcation line on the T–ρ/μe plane
that distinguishes degenerate from nondegenerate electrons.
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The extreme relativistic equivalent to (3.70) is
ρ

μe
≈ 4.6× 10−24 T 3 g cm−3. (3.71)

The density near which special relativistic effects become important was es-
timated earlier as ρ/μe ≈ 106 g cm−3. Equations (3.70) and (3.71) are illus-
trated in Fig. 3.7 where the transition near 106 g cm−3 has been smoothed.
Note that the center of the present–day sun, as indicated in the figure, is
nondegenerate but close enough to the transition line that good solar models
include the effects of Fermi–Dirac statistics.

Fig. 3.7. The domains of nondegenerate and degenerate electrons in the T–ρ/μe

plane. The location of the center of the present-day sun in these coordinates is
indicated by the � sign.

A better idea of how the transition from degeneracy to nondegeneracy
takes place with respect to temperature and ρ/μe requires explicit evaluation
of the Fermi–Dirac integrals. In general, this involves numeric integration,
although there are some useful series expansions and we shall discuss one of
these in a bit. The reader is referred to Cox (1968) and other references at
the end of this chapter for a full discussion but the results are summarized
in Fig. 3.8, which is derived from the numeric tabulations in App. A2 of Cox
and his §24.4. Cloutman (1989) discusses some techniques for computing
the Fermi–Dirac integrals and includes a FORTRAN program listing (see also
Eggleton et al., 1973, and Antia, 1993).

Plotted versus ρ/μe in Fig. 3.8 is the ratio of electron pressure at nonzero
temperature, Pe(T, ρ/μe), to the electron pressure for complete degeneracy
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Fig. 3.8. The domains of nondegenerate and degenerate electrons in temperature
and density as expressed by the ratio Pe(T, ρ/μe)/Pe(T = 0, ρ/μe). Temperatures
are given in units of β = kT/mec

2, where β = 1 corresponds to 5.93 × 109 K.
The dashed lines are lines of constant η, which is sometimes called the “degeneracy
parameter” and is related to the chemical potential (see text). The position of the
solar center is indicated by �.

at zero temperature, Pe(T = 0, ρ/μe). Values near unity for this ratio imply
strong degeneracy for Pe(T, ρ/μe), whereas large values mean that the gas is
nondegenerate and, if large enough, the Maxwell–Boltzmann expression may
be used. The solar center is indicated in the figure, and its position implies
that degeneracy accounts for some 15% of the total pressure at that location.

Note that the effects of electron–positron pairs created by the radiation
field are not included here. These become important if temperatures approach
or exceed kT ≈ mec

2 (i.e., T >∼ 6 × 109 K). We shall discuss pair–created
electrons briefly in Chapter 6, where they play a role in creating neutrinos.

A parameter called η is plotted as dashed lines on the figure and an η of
five, for example, corresponds to the situation where the true pressure is only
about 15% greater than if the gas were completely degenerate. Along the
dashed line labeled “η = 0,” a degenerate estimate for the pressure would be
too low by about a factor of three. Transferring this line to the temperature
versus density plane results in a plot that is very similar to that of Fig. 3.7.
Finally, the parameter η, which is commonly used in the literature (but not
by everyone), is related to the electron chemical potential defined here by
η = (μ−mec

2)/kT .
For strongly, but not completely, degenerate gases, there are useful expan-

sions for number density, pressure, and internal energy that are often quoted
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in the literature. We shall not derive complete versions of those expansions
here (see the references) but they all depend on the mild relaxation of the
shape of the distribution function near EF . One of them is the following.

Following Landau and Lifshitz (1958, §57) we write any of the Fermi–
Dirac integrals (for number density, etc.) in the kinetic energy-dependent
form

I(μ, T ) =
∫ ∞
0

G(E) dE
exp [(−μ+mc2 + E) /kT ] + 1 . (3.72)

The integral I may be expressed as an asymptotic (but not necessarily con-
vergent) series whose leading terms are

I(μ, T ) =
∫ μ′

0
G(E) dE + π2

6
∂G

∂E (kT )
2 +

7π4

360
∂3G

∂E3 (kT )
4 + · · · (3.73)

where μ′ = μ −mc2 and all the partials are evaluated at μ′. It is assumed
that μ′/kT is much larger than unity.

It is a simple, but tedious, exercise to transform the integrals for n, P ,
and E of, respectively, (3.10), (3.13), and (3.14), into their energy space
counterparts and then to find G(E). Another way, however, is to transform
all of the elements in the expansion (3.73) into x = p/mc–space using (3.45);
that is, E = mc2

[(
1 + x2)1/2 − 1)]. A big part of this was done when the

expressions for the completely degenerate electron gas were written down in
the equations for ne (3.49), Pe (3.53), and Ee (3.56). Thus, for example, the
leading term in the expansion of (3.73) for ne is simply (neglecting constants)

ne (first term) ∝
∫ xf

0
x2 dx .

Here xf takes the place of μ′ = μ −mc2 and, since we have converted from
energy to x-space, it should be obvious that the relation between xf and μ′

is
μ′ = μ−mec

2 = mec
2
[(
1 + x2f

)1/2 − 1] . (3.74)

This relation is given in the same spirit as was done for the completely de-
generate case where the Fermi energy was related to the chemical potential
by EF = μ −mec

2 and EF was given in terms of xF through (3.48). In that
instance, xF and, hence, μ were found by fixing the number density ne and
using (3.49). The same sort of thing can be done here except there is an
additional complication because temperature also appears in the thermody-
namics; that is, ne must be a function of both xf (or μ) and T . This all can
be accomplished by performing the indicated operations in the expansion
(3.73). Carrying out this enterprise is left to you as an exercise in elementary
calculus, but the result, to second-order in temperature, is

ne =
8π
3

(
h

mec

)−3
x3f

[
1 + π2

1 + 2x2f
2x4f

(
kT

mec2

)2

+ · · ·
]
cm−3. (3.75)
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This expansion is useful only if the second term in the brackets is small
compared to unity. A useful rule of thumb is to be wary if it exceeds 0.1
to 0.2. In any case, given any two of ne (or ρ/μe), T , or xf (or μ), the
third follows. Looked at another way (and we shall use this shortly), (3.75)
may be used to find out how the chemical potential changes with respect to
temperature for fixed ne or ρ/μe. Note that as T → 0, the number density
approaches the completely degenerate expression (3.49) with xf → xF , and
μ′ → EF .

The corresponding expansions truncated to second order in kT for pres-
sure and internal energy are

Pe = Af(xf )

[
1 + 4π2

xf (1 + x2f )
1/2

f(xf )

(
kT

mec2

)2
]

(3.76)

Ee = Ag(xf )

[
1+4π2

(1 + 3x2f )(1 + x2f )
1/2 − (1 + 2x2f )

xf g(xf )

(
kT

mec2

)2
]
(3.77)

where f(xf ) and g(xf ) are given, respectively, by (3.55) and (3.57). Note
that Pe is in dyne cm−2 and Ee is the volumetric energy density in erg cm−3

(and not specific energy density in erg g−1).
These equations will be used to find such things as specific heats and

temperature exponents for the almost completely degenerate electron gas.
Note: As a matter of practicality, xf is often computed as if the gas were

completely degenerate. Thus if the correction term for temperature is very
small, then x (or xF ) of (3.50) is used instead of xf as a good approximation
for direct calculation of ne, Pe, and Ee in (3.75–3.77). This is what we shall
usually do here.

3.6 “Almost Perfect” Equations of State

In real gases, interactions have to be taken into account that modify the
“perfect” results given above. In addition, a stellar equation of state might
consist of many components with radiation, Maxwell–Boltzmann, and degen-
erate gases competing in importance. This short section will not attempt to
show how imperfections are treated in detail but will indicate where some
are important in practical situations. The results of this discussion are sum-
marized in Fig. 3.9 for a hypothetical gas composed of pure hydrogen.

In an almost-ideal gas, a measure of the interaction energy between ions
is the Coulomb potential between two ions. If the ionic charge is Z, then
the potential is Z2e2/a, where a is some typical separation between the ions.
Coulomb effects are expected to become important when this energy is com-
parable to kT . Thus form the ratio

ΓC ≡ Z2e2

akT
(3.78)
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Fig. 3.9. A composite showing how the ρ–T plane is broken up into regions dom-
inated by pressure ionization, degeneracy, radiation, ideal gas, crystallization, and
ionization-recombination. The gas is assumed to be pure hydrogen.

where ΓC = 1 is the rough demarcation between where Coulomb effects might
be important or not, and a ΓC > 1 implies they probably are important. The
distance a is usually taken as the radius of a Wigner–Seitz sphere whereby
(4πa3/3) = (1/nI) and nI is the ion number density. If the gas consists of
pure ionized hydrogen and ΓC = 1, then (3.78) becomes

ρ = 8.49× 10−17 T 3 g cm−3. (3.79)

If the density is greater than that implied by (3.79) for a given temperature,
then you can be reasonably certain that a perfect gas is not as perfect as
could be desired. This line is shown in Fig. 3.9. You may check, from the
material given previously, that the centers of very low mass ZAMS stars are
encroaching upon both this line and the one for degeneracy effects. Carefully
done stellar models of these stars contain corrections for these effects.

If ΓC becomes large enough, then Coulomb effects overwhelm those of
thermal agitation and the gas settles down into a crystal. The best estimates
as to how this takes place yield a ΓC of around 170 for the transition. With
this value of ΓC in a hydrogen gas (which is kind of silly for a crystallizing
composition but fine for talking purposes), (3.79) becomes

ρ = 4.2× 10−10 T 3 g cm−3. (3.80)

This is not an academic issue because some portions of very cool white dwarfs
are thought to turn crystalline, but with carbon and/or oxygen rather than
hydrogen.
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We have already discussed the Saha equation for pure hydrogen, and the
density–temperature relation for half-ionization was given by (3.41). That
relation is also shown in Fig. 3.9 as the dashed line. In deriving the Saha
equation it was implicitly assumed that the energy levels of the hydrogen
atom (had we included all of them) were known and that their energies were
independent of conditions in the ambient environment. This cannot be true
in general. If the gas is dense, then the electrostatic field of one atom should
influence a neighboring atom and hence disturb atomic levels. In the extreme,
we can imagine this continuing until electron clouds practically rub and elec-
trons are ionized off the parent atoms. This is a crude description of pressure
ionization. To estimate under what conditions this occurs, take the rubbing
picture seriously and find at what density the Wigner–Seitz radius equals
the radius of the first Bohr orbit of hydrogen (0.53× 10−8 cm). A very easy
calculation says that this takes place when

ρ ≈ 1 g cm−3. (3.81)

This density is shown in Fig. 3.9 as the line that terminates ordinary Saha
ionization. Such densities are commonplace in stellar interiors and lead to
the statement that the larger bulk of those interiors are ionized as far as
the lighter elements are concerned independent of the effects of the radiation
field.11

We finally ask under what conditions radiation pressure dominates over
ideal gas pressure or the other way round. That is, where does aT 4/3 =
ρNAkT/μ ? With the assumption of complete ionization in hydrogen this
becomes

ρ = 1.5× 10−23 T 3 g cm−3 (3.82)

as shown in the figure. This ends the discussion of the major factors deter-
mining pressures and internal energies in simple environments.12

3.7 Adiabatic Exponents and Other Derivatives

For the most part, all we need in the way of thermodynamic variables to con-
struct a simplified stellar model is the internal energy and pressure as a func-
tion of density, temperature, and composition (as was done in Chap. 1). To
construct realistic models, and to evolve them in time, however, we need sev-
eral thermodynamic derivatives. We shall assume, at first, that the detailed
11 As a side comment, note that several lines in the figure cross at T ≈ 3 × 105
K and ρ ≈ 1 g cm−3. You can be assured that computing accurate equations of
state in that region of the T–ρ plane is a nightmare.

12 We have purposely ignored equations of state at ultrahigh densities such as are
found in neutron stars and the collapsing cores of supernovae. This is a difficult
subject itself worthy of a monograph. For further reading we suggest chapters 2
and 8 of Shapiro and Teukolsky (1983) and Bethe (1990, §§3-4).
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composition, including concentrations of ions, etc., has been determined and
that chemical reactions are not taking place. We also assume that you have
some facility in transforming thermodynamic functions under reversible con-
ditions and that you are familiar with their properties.

3.7.1 Keeping the Composition Fixed

If changes in temperature and density (or volume) do not cause corresponding
changes in the relative concentrations of various species of atoms or ions in
the stellar mixture, then the calculation of thermodynamic derivatives is not
particularly difficult. We now examine this situation and ignore until later
those complications arising from chemical reactions.

Specific Heats

The first derivatives encountered in elementary thermodynamics are specific
heats. In general form these are defined by

cα =
(
dQ

dT

)
α

(3.83)

where α is kept fixed as T changes. In the following, Q will have the units of
erg g−1 and thus the specific heats will have units of erg g−1 K−1. The most
useful variables for α for us are P , ρ, or the specific volume Vρ = 1/ρ. (We
shall also have occasion to use the ordinary volume, V .) From the first law
for a reversible process (and see 1.11)

dQ = dE + P dVρ = dE + P d

(
1
ρ

)
= dE − P

ρ2
dρ (3.84)

so that

cVρ =
(
dQ

dT

)
ρ

=
(
∂E

∂T

)
ρ

erg g−1 K−1. (3.85)

For an ideal monatomic gas E = 3NAkT/2μ erg g−1 (from 3.29) so that
cVρ = 3NAk/2μ and E = cVρT . Note that the composition has not been
mentioned here except in the mean molecular weight μ: it is kept fixed by
assumption.

To find cP , recall (from any of many thermodynamic texts) that cP and
cVρ (or cV ) are related by

cP − cVρ = −T
(
∂P

∂T

)2

(ρ or Vρ)

(
∂P

∂Vρ

)−1
T

. (3.86)

To cast this in a form that will prove more suitable for later purposes we rein-
troduce the power law expression for the equation of state given in Chapter 1
by (1.67):
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P = P0ρ
χρTχT (3.87)

where P0, χρ, and χT are constants. This means that the last two are also
defined by

χT =
(
∂ lnP
∂ lnT

)
(ρ or Vρ)

=
T

P

(
∂P

∂T

)
(ρ or Vρ)

(3.88)

and

χρ =
(
∂ lnP
∂ ln ρ

)
T

= −
(

∂ lnP
∂ lnVρ

)
T

=
ρ

P

(
∂P

∂ρ

)
T

= − 1
ρP

(
∂P

∂Vρ

)
T

. (3.89)

Thus

cP − cVρ =
P

ρT

χT
2

χρ
erg g−1 K−1. (3.90)

For an ideal monatomic gas χρ = χT = 1 and

cP − cVρ =
NAk

μ
erg g−1 K−1 (ideal gas), (3.91)

which gives the elementary result cP = 5NAk/2μ.
We also define γ (yes, another γ), the ratio of specific heats, to be

γ =
cP
cVρ

= 1 +
P

ρTcVρ

χT
2

χρ
(3.92)

which will be discussed shortly. This γ need not be the γ of the γ–law equation
of state, but sometimes it is—see later.

Adiabatic Exponents

The dimensionless adiabatic exponents, the “Γs,” measure the thermody-
namic response of the system to adiabatic changes and will be used exten-
sively. (Two of them, Γ1 and Γ2, were already introduced in Chap. 1.) They
are defined as follows:

Γ1 =
(
∂ lnP
∂ ln ρ

)
ad
= −

(
∂ lnP
∂ lnVρ

)
ad

(3.93)

Γ2
Γ2 − 1 =

(
∂ lnP
∂ lnT

)
ad
=

1
∇ad

(3.94)

which also defines ∇ad, and

Γ3 − 1 =
(
∂ lnT
∂ ln ρ

)
ad
= −

(
∂ lnT
∂ lnVρ

)
ad
. (3.95)

As in Chapter 1, the subscript “ad” means that the indicated partials are to
be evaluated at constant entropy. (We shall not need it directly, but extensive
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use will be made of ∇ad in later chapters.) It will shortly become clear why
the Γi appear in such curious combinations in the definitions, but first note
that not all the Γi are independent. You may easily show that

Γ3 − 1
Γ1

=
Γ2 − 1
Γ2

= ∇ad . (3.96)

Computation of the Γi is tedious and not particularly enlightening. Com-
plete and clear derivations may be found in Cox (1968), but we suggest you
try to derive the expressions that follow using the more compact methods
given in Landau and Lifshitz (1958), for example. They start from funda-
mentals and then use powerful yet simple Jacobian transformations to derive
what is needed. All you need watch out for is the distinction between V and
Vρ. When you get done, realize that there are many variations in the ways
that the Γi may be expressed and the following may not always be the most
efficient to use; that is, you may wish to rearrange things. The adiabatic
exponents are

Γ3 − 1 = P

ρT

χT

cVρ
=
1
ρ

(
∂P

∂E

)
ρ

(3.97)

Γ1 = χT (Γ3 − 1) + χρ =
χρ

1− χT∇ad
(3.98)

Γ2
Γ2 − 1 = ∇−1ad = cP

ρT

P

χρ
χT

=
χρ

Γ3 − 1 + χT . (3.99)

The last exponent, γ, is given by

γ =
cP
cVρ

=
Γ1
χρ

= 1 +
χT

χρ
(Γ3 − 1) = Γ3 − 1

χρ

1
∇ad

. (3.100)

Note that the righthand side result for Γ3 implies that P = (Γ3 − 1)ρE so
that the γ in the γ–law equation of state of (1.24) is Γ3 and, generally, not
one of the other gammas. Lay the blame for any possible confusion here on
the quirks of historical nomenclature.

Explicit values for all the exponents and specific heats, etc., for interest-
ing gases follow below. Remember, however, that there are still no chemical
reactions going on so that the relative concentrations of ions and electrons
are fixed despite changes in temperature and density.

Mixtures of Ideal Gases and Radiation

For a monatomic ideal gas χρ and χT are equal to unity and Γ1 = Γ2 = Γ3 =
γ = 5/3. A pure radiation “gas” has χρ = 0, χT = 4, and Γ1 = Γ2 = Γ3 = 4/3.
Note that γ = Γ1/χρ →∞ in this case.

If γ = Γ1 = Γ2 = Γ3 of the same constant value, as can be satisfied by an
ideal gas, then
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P ∝ ργ (3.101)
P ∝ T γ/(γ−1) (3.102)
T ∝ ρ (γ−1) (3.103)

along adiabats. This is the result usually quoted in elementary physics texts
for adiabatic behavior: it is collectively true only if the exponents satisfy the
above equality.

In modeling simple stars, it often turns out that an equation of state
consisting of a mixture of ideal gas and radiation suffices:

P =
ρNAkT

μ
+

aT 4

3
= Pg + Prad dyne cm−2 (3.104)

and

E =
3NAkT

2μ
+

aT 4

ρ
erg g−1. (3.105)

We can find the density and temperature exponents almost by inspection so
that

χρ =
Pg

P
≡ β (3.106)

which also defines β, the ratio of gas (Pg) to total pressure, and

χT = 4− 3β . (3.107)

(This β is not to be confused with β = kT/mec
2 introduced earlier.) Further

analysis, using the general expressions given previously, yields

cVρ =
3NAk

2μ

(
8− 7β

β

)
erg g−1 K−1 (3.108)

Γ3 − 1 = 2
3

(
4− 3β
8− 7β

)
(3.109)

Γ1 = β + (4− 3β) (Γ3 − 1) (3.110)
Γ2

Γ2 − 1 =
32− 24β − 3β2

2(4− 3β) (3.111)

and, finally,

γ =
Γ1
β

. (3.112)

It is easy to confirm that all quantities go to their proper limits as β → 1
(ideal gas) or β → 0 (pure radiation) and that all quantities are intermediate
between their pure gas and radiation values for intermediate β.
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Mixtures of Degenerate and Ideal Gases

The first thing we shall find is the specific heat at constant volume for an
almost completely degenerate electron gas. Recall our earlier discussion of
the temperature corrections to such a gas where the number density, ne, was
given as a function of T and xf in (3.75). If the volume or density of the gas is
fixed while temperature is varied, then ne does not change but xf must. Thus
(∂ne/∂T )ρ = 0. If this operation is performed on (3.75), then the righthand
side of the resulting equation contains (∂xf/∂T )ρ, which may be solved to
first order in T as (

∂xf
∂T

)
ρ

= − π2k2

m2
ec

4

1 + 2x2f
3x3f

T . (3.113)

When you derive this you will find that it is missing a denominator of the
form

[
1 +O (T 2

)]
, where O (T 2

)
contains terms that are of order T 2. Those

terms must be ignored because they are of the same order as other correction
terms that would have appeared if the equation for ne had been carried out
to higher order in temperature. Thus (3.113) is correct to first order in T .

To find the specific heat we have to differentiate Ee of (3.77) with respect
to T while keeping density fixed. This operation yields, through the chain rule,
nasty terms such as [dg(xf )/dxf ] (∂xf/∂T )ρ. When these are all straightened
out (see Chandrasekhar 1939, Chap. 10, §6), we find

cVρ (e) =
8π3m4

ec
5

3h3Tρ

(
kT

mec2

)2

xf
(
1 + x2f

)1/2
(3.114)

for electrons or

cVρ (e) =
1.35× 105

ρ
T xf

(
1 + x2f

)1/2
erg g−1 K−1. (3.115)

Note the presence of ρ in the (3.115). It is required because this specific heat
is a specific specific heat (from the units). As before, it is reasonable to replace
xf with xF or x using (3.49–3.50) provided that temperature correction terms
are small in all of ne, Pe, and Ee. In any case, note the important result that
the electron specific heat for the nearly degenerate gas is proportional to
temperature.

From here on, we have to make some reasonable physical assumptions
about the nature of the stellar gas. Because of pressure ionization, we expect
all or most of the nuclear species to be completely ionized so that all electrons
are free to swim in the Fermi sea. Thus pressure and energy, as additive
quantities, are determined by bare ions and the free electrons. Radiation
should play no significant role because, if it did, the temperatures would
be so high that electrons would no longer be nearly degenerate—which we
assumed at the onset. (See Fig. 3.9.) Thus the total pressure consists of
P = Pe + PI, where “I” means “ions.” Internal energies and specific heats
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are also additive. The reason we bring this up is because the rest of the
thermodynamic derivatives are, for the most part, logarithmic (like the Γs)
and we cannot simply add them together. It is best to give an example.

The temperature exponent of pressure, χT , is (T/P ) (∂P/∂T )ρ from (3.88)
where P is the total pressure. We cannot separate χT into components de-
scribing just the electrons or just the ions. We had the same problem when
treating the gas and radiation mixture of the previous section but the calcu-
lations there were fairly straightforward. Here, however, the complexity of the
electron gas equation of state makes things computationally more difficult.
Nevertheless, we can compute all the derivatives fairly easily if we assume
that temperatures are very low. If this is the case, then electron degeneracy
pressure greatly exceeds that of the ions and Pe � PI. The same is not true for
the partials of pressure with respect to temperature. By following the same
course of analysis as was outlined above for the specific heat, you should verify
that (∂Pe/∂T )ρ ∝ T . (See 3.76.) On the other hand, (∂PI/∂T )ρ = NAkρ/μI
where μI is the ion mean molecular weight. (The ions are still assumed to
be ideal.) Thus for low enough temperatures the temperature derivative of
electron pressure may be neglected compared to that of the ions. The net
result is that for low temperatures

χT → NAk

μI

ρT

Pe
(3.116)

and, as T → 0, so does χT . The electrons have nothing to say in the matter.
The density exponent χρ = (ρ/P ) (∂P/∂ρ)T of (3.89) is easier. The elec-

tron pressure dominates both terms for low temperatures so that

χρ → ρ

Pe

(
∂Pe

∂ρ

)
T

→
{
5/3 nonrelativistic
4/3 relativistic. (3.117)

The limiting forms come directly from the pressure-density relations (3.60)
for the degenerate gas.

The rest of the derivatives require that the specific heats be found. We
already have cVρ (e) (from 3.114) and we know that the ion specific heat is
3NAk/2μI (from, e.g., 3.85) and it is a constant. Therefore, for sufficiently
low temperatures

cVρ → cVρ (I) =
3NAk

2μI
=
1.247× 108

μI
erg g−1 K−1 (3.118)

and the electrons do not matter. (But always check that the temperatures
are “sufficiently low.”) It may seem strange at first that the electrons, which
may have a lot of total kinetic energy tied up in their Fermi sea, have a low
specific heat. But most of that energy is locked in, so to speak, because of
the exclusion principle and the vast majority of electrons have nowhere to go
in energy space. Thus increasing or lowering the temperature of the electrons



180 3 Equations of State

does little to change their total kinetic energy. The ideal gas ions do not have
that constraint.

The combination of pressure dominance by electrons, low sensitivity of
pressure to temperature (small χT ), and low specific heats (only the ions
matter), all add up to a potentially explosive situation when very reactant
nuclear fuels are present, as in the helium flash.

Having found the above, it should be a simple matter for you to verify
the following: cP = cVρ (I), Γ3 − 1 = 2/3, Γ1 = χρ, and ∇ad = 2/3χρ.

3.7.2 Allowing for Chemical Reactions

We now give an example of how the thermodynamic derivatives are found
when chemical reactions are taking place. For simplicity, the ideal gas, one-
state hydrogen atom will again be used, and radiation in the equation of
state will be ignored. As usual, real calculations are very difficult and you are
referred to Cox (1968, §9.18) for a fuller discussion. As you will see, even in
the simple example given here, the analysis is made difficult because relative
concentrations of particles vary as temperatures and densities change.

Because we assume that all changes in the system take place along paths
in thermodynamic equilibrium, which implies chemical equilibrium, the Saha
equation of (3.35) holds and

n+ne
n0

= B T 3/2 e−χH/kT (3.119)

where B is

B =
(
2πmek

h2

)3/2

= 2.415× 1015 cm−3 K−3/2 (3.120)

and the other symbols are the same as those in §3.4. Define N (as in §3.1)
so that Nρ ≡ n = n+ + n0. Thus N is the total ion plus neutral atom
number density per unit mass and it is independent of density and will not
change as the system is compressed or expanded. With the usual definition
of y = n+/n = ne/n, the pressure may be written

P = (ne + n+ + n0)kT = (1 + y)NρkT dyne cm−2 (3.121)

and the specific internal energy is (see 3.43)

E = (1 + y)
n

ρ

3kT
2

+ y
n

ρ
χH erg g−1 (3.122)

or
E = (1 + y)N

3kT
2

+ yN χH erg g−1 (3.123)

where the energetics of the reaction are accounted for.
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Having the pressure and internal energy now allows us to compute the
thermodynamic derivatives. First note that the analysis leading to the deter-
mination of those derivatives in the previous discussion involved only taking
partials with respect to either temperature or density with the other kept
fixed: concentrations were never mentioned in that analysis. But this implies
that partials with respect to concentrations (i.e., the Ni) were never needed.
Thus the general expressions derived for the specific heats, the Γs, etc., are
formally correct and all we need do is put in the correct pressures and internal
energies that contain the information about chemical equilibrium. To carry
this out in detail, however, still requires some effort. We start with easier
quantities, χT and χρ, and leave most of the rest of the work to you.

The ionization fraction y is given by a slightly rewritten version of (3.39):

y2

1− y
=
B
Nρ

T 3/2 e−χH/kT . (3.124)

We now have the three relations P = P (ρ, T, y), E = E(ρ, T, y), and the
Saha equation. Take total differentials of the first two to find

dP = P

[
dT

T
+

dρ

ρ
+

dy

1 + y

]

and

dE = 3
2NkT (1 + y)

[
dT

T
+
2
3

(
3
2
+

χH
kT

)
dy

1 + y

]
.

Recall that N remains fixed because it is the number of hydrogen nuclei per
gram and cannot change with temperature, density, or volume.

Also take the differential of the Saha equation (3.124) and divide the
result by the Saha equation itself to find

dy

1 + y
= D(y)

[(
3
2
+

χH
kT

)
dT

T
− dρ

ρ

]

where

D(y) = y(1− y)
(2− y)(1 + y)

. (3.125)

Note that D(1) = D(0) = 0 and, for general 0 ≤ y ≤ 1, D(y) ≥ 0. It reaches
a maximum at the half-ionization point y = 1/2 where D(1/2) = 1/9.

The lefthand side of the differentiated Saha equation appears explicitly
in the expressions for dP and dE. Therefore, use that equation to eliminate
any reference to dy in dP and dE and find, for dE,

dE =
3
2
NkT (1 + y)

{[
1 +D2

3

(
3
2
+

χH
kT

)2
]
dT

T
−D2

3

(
3
2
+

χH
kT

)
dρ

ρ

}
.

From this find directly
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cVρ =
3
2
Nk(1 + y)

[
1 +D(y) 2

3

(
3
2
+

χH
kT

)2
]

erg g−1 K−1. (3.126)

Note that Nk = NAk/μI and Nky = NAk/μe from which may be found μI of
(1.45) and μe of (1.48).

Treating the pressure differential in like fashion we find

dP

P
=
[
1 +D

(
3
2
+

χH
kT

)]
dT

T
+ (1−D) dρ

ρ

so that
χρ = 1−D(y) (3.127)

and

χT = 1 +D(y)
(
3
2
+

χH
kT

)
. (3.128)

Because D ≥ 0, we have χρ ≤ 1 and χT ≥ 1. The interpretation here is
that if temperature rises, keeping density fixed, we get more free electrons
liberated and the pressure rises more so than the rise due to temperature
alone. Hence χT increases above its nominal value of unity without ionization
or recombination; that is, χT must be greater than or equal to unity. If density
increases, keeping temperature constant, then recombination decreases the
number of free electrons per gram and thus χρ can fall below unity.

The Γi may now be calculated using equations (3.97) through (3.99) in
the forms that contain χρ, χT , and cVρ . After a bit of algebra the results are

Γ3 − 1 = 2 + 2D(y) (3/2 + χH/kT )
3 + 2D(y) (3/2 + χH/kT )

2 (3.129)

Γ2
Γ2 − 1 =

5 + 2D(y) {χH/kT + (3/2 + χH/kT ) (5/2 + χH/kT )}
2 + 2D(y) (3/2 + χH/kT )

(3.130)

and Γ1 follows from (3.96).
Note that as y approaches zero or unity (so that D → 0) all the Γi

approach their ideal gas values of 5/3. This is as it should be. If the gas
is completely neutral or totally ionized, then the equation of state is of its
usual ideal gas form since y is not changing. It is the intermediate case that
is interesting.

To compute the Γi the scheme is, choose ρ (or n) and T , find y from
the Saha equation (3.124) (and D by means of 3.125), and then apply the
above expressions. A typical result is shown in Fig. 3.10, where Γ3 is plotted
as a function of temperature for three densities. The half-ionization point,
y = 1/2, is indicated. Note that if T is near the typical hydrogen ionization
temperature of 104 K, Γ3 drops rapidly from its value of 5/3 to much lower
values. Even the dangerous 4/3 may be passed by in the process. A word to
the wise: always watch out for temperatures near 104 K in a hydrogen-rich
mixture.
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Fig. 3.10. The adiabatic exponent Γ3 for an ionizing pure one–state hydrogen gas
is plotted as a function of temperature. Results are shown for three densities. The ◦
indicates the half-ionization point. The fiducial points 5/3 and 4/3 are also shown.

The reason why Γ3 (and the other Γs) behaves the way it does when
ionization is taking place is quite simple. First suppose no ionization or re-
combination processes can operate in an almost completely neutral gas so
that concentrations remain constant as the system is compressed adiabati-
cally. In that case Γ3 = 5/3, T ∼ ρ2/3, (as in 3.103) and the gas heats up. If,
however, we allow ionization to take place, then compression may still heat
up the gas, but ionization is much more sensitive to temperature changes
than to changes in density. Hence, ionization is accelerated. But this takes
energy and that energy is paid for at the expense of the thermal motion in
the gas. Thus the temperature tends not to rise as rapidly as ρ2/3 and Γ3 is
smaller than its value with no ionization.

As we shall see in chapters to come, all the Γi are important in some
respect or another: Γ3 says something about how the heat content of the gas
responds to compression; Γ1 is intimately tied up with dynamics (partially
through the sound speed); the behavior of Γ2 and ∇ad may be a deciding
factor in whether convection may take place. As an example, Fig. 3.11 shows
the run of∇ad through a ZAMS model sun. The abscissa is− log (1−Mr/M),
the stellar center is at the left, and the surface is to the right. Such an axis
emphasizes the outer layers of the model. Thus, a value of “9” on this axis
corresponds to 1−Mr/M = 10−9 or a mass point that is within 10−9 of the
total mass. The dips in ∇ad signal ionization. The one at “5” takes place at
a temperature of about 105 K and is the first 4He ionization zone. The broad
trough around 8–9 is at about 104 K and corresponds to a combination of
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Fig. 3.11. Plotted is ∇ad (of 3.96) versus − log (1 −Mr/M) for a ZAMS model
sun. The region from roughly “3” on this scale to almost the surface is convective
due, in part, to the depression of ∇ad.

second 4He and 1H ionization. Suffice it to say that the whole region with
depressed∇ad is convective, for reasons that will be explained in in Chapter 5.

The effects of radiation or other ionizing species and energy levels are
included in more complete analyses than what we have done here (see Cox,
1968). In addition, the effects of pressure ionization (among other things)
have to be included in many situations. Even though the results we have
obtained are useful for many calculations in stellar structure, you should
be aware that real models are usually constructed using tabular equations
of state with P , E, and, sometimes, various derivatives given as functions of
temperature and density for a fixed nuclear composition. Very often these are
included in tabulations of opacities—which we discuss in the next chapter.

3.8 Exercises

Exercise 3.1.We have already explored the Saha equation using a pure
hydrogen gas as an example. Now consider the more complicated 4He atom
with its two electrons. Assume, as in the hydrogenic example, that the neutral
atom and first ionized ion are in their respective ground states. The ionization
potential to remove the first (second) electron is χ1 = 24.587 eV (χ2 =
54.416 eV). To agree on a common nomenclature, let ne, n0, n1, and n2
be the number densities of, respectively, electrons, neutral atoms, and first
and second ionized ions. The total number density of atoms plus ions of the



3.8 Exercises 185

pure helium gas is denoted by n. Furthermore, define ze as the ratio ne/n;
and, in like manner, let zi be ni/n, where i = 0, 1, 2. The gas is assumed to
be electrically neutral. For the following you will also need the degeneracy
factors for the atoms and ions and these are to be found in Allen (1973),
Lang (1991), or Cox (1999) as the data-type references given at the end of
Chapter 1.

1. Following the hydrogenic case, construct the ratios nen1/n0 and nen2/n1.
In doing so you must take care to establish the zero points of energy for
the various constituents. One way to do this is to use mc2 arguments.
For example, the first ionization has mec

2+m1c
2 = m0c

2+χ1 in obvious
notation. The reference energies E to be used in (3.24) for each constituent
are then taken to be the mc2s. This establishes the relative order of the
Es. The final form you obtain should not contain chemical potentials (and
you must show why this is true).

2. Apply n = n0 + n1 + n2, overall charge neutrality, and recast the above
Saha equations so that only z1 and z2 appear as unknowns. The resulting
two equations have temperature and n or, equivalently, ρ = 4n/NA as
independent parameters.

3. Simultaneously solve the two Saha equations for z1 and z2 for tempera-
tures in the range 1× 104 ≤ T ≤ 2× 105 K with a fixed value of density
from among the choices ρ = 10−4, 10−6, or 10−8 g cm−3. Choose a dense
grid in temperature because you will soon plot the results. (These cases
will prove useful when discussing pure helium opacities in Chap. 4.) Once
you have found z1 and z2, also find ze and z0 for the same range of tem-
perature. Note that this is a numerical exercise and use of a computer is
strongly advised.

4. Now plot all your zi as a function of temperature for your chosen value
of ρ. (Plot z0, z1, and z2 on the same graph.) This is an essential step
because it will make clear how the ionization responds to temperature
changes.

5. Find the half-ionization points on your plot. The two temperatures you
obtain (for fixed density) will correspond to the single half-ionization
point for pure hydrogen.

Exercise 3.2.We earlier established that photon mean free paths were very
short in a star except in the very outermost layers. This means that photons
must follow a tortuous path to escape eventually from a star and must take a
long time in doing so. To estimate this time, assume that a photon is created
at the center of a star and thereafter undergoes a long series of random
walk scatterings off electrons until it finally reaches the surface. The mean
free path associated with each scattering is λphot = (neσe)

−1, where σe is
the Thomson scattering cross section σe ≈ 0.7 × 10−24 cm2 (see §4.4.1).
For simplicity, assume that the star has a constant density so that λphot is
also constant. This is an order-of-magnitude problem, so don’t worry too
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much about constants of order unity. (Real diffusion in stars is much more
complicated and your estimate for the time will be an underestimate.)

1. Using one-dimensional random walk arguments, show that L ≈ R2/λphot
is the total distance a photon must travel if it starts its scattering career
at stellar center and eventually ends up at the surface at R.

2. Since the photons travel at the speed of light, c, find the time, τphot,
required for the photon to travel from the stellar center to the surface.
(Assume that any scattering process takes place instantaneously.)

3. Give an estimate for τphot, in the units of years, for a star of massM/M�
and radius R/R�.

Exercise 3.3. Neutron stars are assumed to be objects with M ∼ M�,
R ∼ 10 km (〈ρ〉 ∼ 1014 g cm−3) where internal temperatures (kT ) are small
compared to the Fermi energies of electrons, protons, and neutrons (which
are assumed to be the only particles present). To demonstrate that the name
neutron star is apt, consider the following. Assume that the stellar tempera-
ture is zero and that chemical equilibrium exists between electrons, protons,
and neutrons. The reaction connecting them is

n⇐⇒ p + e− +Q

where Q = 0.782 MeV and we are neglecting the electron anti-neutrino,
which should appear on the right-side of the reaction. Further assume that
the electrons are completely relativistic but that protons and neutrons are
nonrelativistic.

1. Convince yourself that the “Saha” equation is

En +Q = Ep + Ee
where the Es are the Fermi energies of the respective particles. Do your
“self-convincing” two ways: (a) argue from the chemical potential equa-
tion of the reaction; (b) make a physical argument based on the energetics
of the reaction and the Pauli exclusion principle.

2. Now find the number densities of the particles as a function of density.
Assume charge neutrality, so that ne = np, and use the Saha equation to
find ne, np, and nn for densities in the range 1013 <∼ ρ <∼ 2× 1014 g cm−3.
You may take the density as being ρ = (np + nn)m where m is the mass
of either proton or neutron.

3. Plot your number density results as a function of density and, if possible,
compare to what you might find in the literature.

Exercise 3.4. Show for the ideal gas (μ/kT � −1) that P = nkT is a
general result independent of whether the particles are relativistic, nonrela-
tivistic, or anything in between. (Hint: integrate 3.13 by parts after inserting
3.12.)
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Exercise 3.5. Verify (3.29) by computing the average kinetic energy of a
Maxwell–Boltzmann distribution.

Exercise 3.6. To give an idea why the chemical potential is referred to as a
“potential,” consider the following, as discussed in Landau and Lifshitz (1958,
§25). They state that a body subject to an external field is in equilibrium if
the sum of the local chemical potential at every position in the body—here
call it μlocal(r)—and the potential of the external field , ψ(r), is a constant;
that is,

μtot ≡ μlocal(r) + ψ(r) = constant.

To make things simple, consider a one-dimensional situation where the ex-
ternal field is gravitational and the local gravity, g, is everywhere constant so
that ψ(r) = −mgz where z is height and m is the mass of a particle in the
body. Further assume that the particles compose an ideal gas.

1. Using the ideal gas results, show that(
∂P

∂μlocal

)
T

=
ρ

m
.

2. Compute dμtot/dz and finally show that

dP

dz
= −gρ

which is the elementary result for the equation of hydrostatic equilibrium
in a constant gravity field; that is, you have shown that the chemical
potential is part of a potential! For a more complicated situation, see

� Aronson, E., & Hansen, C.J. 1972, ApJ, 177, 145,
who give an example of the “gravo–thermo catastrophe.”

Exercise 3.7. This problem deals with corrections to Maxwell–Boltzmann
thermodynamics due to the effects of weak electron degeneracy. Suppose
μ/kT is still very much less than –1 as discussed in §3.3, but we wish to
include some effects of Fermi–Dirac statistics; i.e., what are the effects due
to the +1 in the distribution function (3.9)?

1. If the exponential term in (3.9) is still large then, we can use the expansion
1/(a+1) ≈ (1−1/a)/a to first order in the large quantity a. If you assume,
as an approximation, that μ/kT of (3.24) is still given by

eμ/kT =
n0h

3

2 (2πmekT )
3
/2
≡ K

where n0 is the electron number density in the pure Maxwell–Boltzmann
limit, then show that the number density, n, for weak degeneracy is

n = n0

[
1− 2−3/2K

]
.
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2. Similarly show that the new pressure is

P = n0kT
[
1− 2−5/2K

]
.

Exercise 3.8. Section 3.6 discusses “imperfections” in equations of state
that make life difficult for the stellar modeler. One of these imperfections
arises from electrostatic interactions between ions. These cause modifications
in the ideal gas equation of state. The severity of the modifications depends
on density and temperature in the sense that low temperatures and/or high
densities means you have to work harder. One method of attacking the prob-
lem is to use Debye–Hückel theory wherein it is assumed that (for, say, a
one-component composition) that the average inter-ion spacing r0 is large
compared to the Debye length

rD =
(

kT

4πe2ρ ζNA

)1/2

.

Here ζ = Z(Z + 1)/A where Z is the ion charge and A is its atomic mass (in
rounded off amu’s). This statement is equivalent to

nZ <<

(
kT

Z2e2

)3

where nZ is the ion number density. If this condition is satisfied then, we find
the following expression for the pressure:

P = nkT

[
1− e3

3
(πNAρ)1/2

(kT )3/2
μ ζ3/2

]

which becomes, after putting in numbers,

P = nkT

[
1− 0.32 ρ

1/2

T
3/2
6

μ ζ3/2

]
.

Here n is the total number density (ions plus electrons), μ is the mean mole-
cular weight, and T6 is the temperature in units of 106 K. You may check
these expressions by consulting Cox (1968, §15.5) or Clayton (1968, §2.3). In
any case, write this as

P = nkT (1−B)

where, for this analysis to work at all, B must be small compared to unity.
If it gets moderately large (say 0.1 or larger), then electrostatic effects are
considered to be significant. Now do the following.

1. Consult the literature (or the Supplemental Material section of Chap. 2)
for properties of ZAMS models. Make believe these are composed of pure
ionized hydrogen (μ = 1/2) and compute B at model center for a selection
of these models starting with 60M� and ending at 0.08M�.
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2. What do you conclude from this exercise? Where, in mass on the ZAMS,
do you think electrostatic corrections begin to be important?

Exercise 3.9. Having already found the ionization fractions for pure helium
in a previous exercise, let’s go one step further—but “we” have done most
of the work for you here. The FORTRAN program GETEOS.F90 to be found
on the CD-ROM on the endcover of this text was written by W. Dean Pes-
nell (an old colleague of ours) to compute the pressure and internal energy
(among other things) for an ideal gas plus radiation. (This code is also part
of ZAMS.FOR also found on the CD.) You input the hydrogen (one ionization
state) mass fraction X, the helium (two ionization stages) mass fraction Y ,
the temperature T , and the specific volume Vρ. The output from GETEOS
consists of pressure P , internal energy E (in ergs g−1), the electron pressure
(PE), (∂P/∂Vρ)T (PV), (∂P/∂T )Vρ (PT), (∂E/∂Vρ)T (EV), and (∂E/∂T )Vρ
(ET). The code is sparsely annotated but you should try to see what goes
on. The variable GES is our 1/μe and it is iterated upon until all the Saha
equations are satisfied. One way to unravel the code (in your mind, not when
using the code) is to set XHE and XHE2 (the helium ionization potentials)
to infinity, thus shutting off the ionization of that element. The metals con-
sist partially of Mg, Si, and Fe, included as a single element, with potential
XM. Set XM to infinity also. The rest of the metals are Na and Al, which
are always assumed to be ionized. A driver code at the beginning is just an
example and you will have to change it to get all the output quantities from
EOS. Note that this is in FORTRAN 90. In using the code be aware that it
doesn’t always like X or Y (or Z = 1−X − Y ) to be zero. But you can set
them to some very small number.

1. Use this code, with your version of the driver, to compute various pres-
sures, etc., for interesting combinations of the input quantities.

2. Find the Γs for nearly pure hydrogen and compare to what was shown in
Fig. 3.10. The output from GETEOS gives you all you need.

3. Do the same for nearly pure helium to show the effects of the two ioniza-
tion stages. And we are sure your instructor can think of lots more things
to keep you busy! Note: pressure ionization is not included in this code
but, by the time the density reaches that level, the major constituents
(H and He) are already ionized.

3.9 References and Suggested Readings

Introductory Remarks
The place to go for general information on stellar equations of state is
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).

In particular, see his Chaps. 9–11, 15, and 24. We also recommend Part III
of
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� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer–Verlag)

and §3.2 of
� Rose, W.K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge
University Press).

� Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill)

also contains useful material.

A favorite text of ours is
� Landau, L.D., & Lifshitz, E.M. 1958, Statistical Physics (London: Perg-
amon)

and its later editions. We recommend it for its clarity (but it is not easy) and
wealth of practical applications. You will even find material about neutron
stars in it.

A complete discussion of what conditions must be met to use the approxi-
mation of LTE sensibly may be found in
� Mihalas, D. 1978, Stellar Atmospheres, 2nd ed. (San Francisco: Freeman).

Anyone thinking seriously about studying stars should try to find a copy.
The last we heard, it is out of print, but permission might be granted by the
publisher to reproduce it (but check for royalty fees).

§3.3: Ideal Monatomic Gas
A complete monograph discussion of Fermi–Dirac equations of state for use
in stars was first published by
� Chandrasekhar S. 1939, An Introduction to the Study of Stellar Structure
(Chicago: University of Chicago Press).

It should be available in paperback Dover editions and is well worth buying
at modest cost. We shall refer to this work quite often. Other versions may
be found in §3.5 of
� Chiu, H.-Y. 1968, Stellar Physics, Vol. 1. (Waltham, MA: Blaisdell)

and Chapter 24 of
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).

§3.4: The Saha Equation
Systematic application of the Saha equation to multicomponent mixtures is
not easy. The bookkeeping required to keep track of all the energy levels is
a daunting task, to say nothing of getting information on level parameters.
See Chapter 15 of
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach)

and Chapter 14 of
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� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer–Verlag).

§3.5: Fermi–Dirac Equations of State
Chandrasekhar (1939) and Cox (1968) (see above) are standard references.
The references to fermionic matter and Bose–Einstein condensates are

� Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., & Cor-
nell, E.A. 1995, Science, 269, 198.

� DeMarco, B., & Jin, D.S. 1999, Science, 285, 1703.

The reference to Peter Eggleton (1982) is given as a private communication
in
� Truran, J.T., & Livio, M. 1986, ApJ, 308, 721,

who use it in some work concerning nova systems. We have extended Eggle-
ton’s mass–radius fit for white dwarfs to accommodate general μe.
� Cloutman, L.D. 1989, ApJS, 71, 677

is a good source of numerical techniques for computing the Fermi–Dirac in-
tegrals. See also
� Eggleton, P., Faulkner, J., & Flannery, B. 1973, A&A, 23, 325

for a thermodynamically self-consistent and efficient computation of the equa-
tion of state for arbitrarily degenerate and arbitrarily relativistic ionized
gases.
� Antia, H.M. 1993, ApJS, 84, 101

gives rational expansions for the Fermi–Dirac integrals. Early work on real-
istic corrections to the perfect Fermi–Dirac gas includes
� Hamada, T., & Salpeter, E.E. 1961, ApJ, 134, 683.

§3.6: “Almost Perfect” Equations of State
Our Fig. 3.9 is our version of Fig. 1 of
� Fontaine, G., Graboske, H.C., & Van Horn, H.M. 1977, ApJS, 35, 293.

This paper has an excellent discussion of the problems that arise when ioniza-
tion (including pressure effects) and electron degeneracy must be accounted
for. Their results are in the form of tables.

We have not discussed nuclear equations of state. To get an idea of what may
be involved see chapters 2, 8, and 9 of
� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons)

and the review article by
� Bethe, H.A. 1990, RevModPhys, 62, 801.



4 Radiative and Conductive Heat Transfer

“In an intuitive picture of diffusion,
one usually conceives of a slow leakage

from a reservoir of large capacity by means
of a seeping action. These ideas apply in the

radiative diffusion limit as well.”

— Dimitri Mihalas in Stellar Atmospheres (1978)

OK, this plus a little math and I suppose we’re done.

In this chapter we discuss two ways by which heat can be transported through
stars: diffusive radiative transfer by photons, and heat conduction. The third
mode of transport, which is by means of convective mixing of hot and cool
material, will be discussed in Chapter 5. For references on the theory and
application of energy transfer in stars, we recommend the following excellent
texts by Mihalas (1978) and Mihalas and Mihalas (1984). Cox (1968), Rybicki
and Lightman (1979), and Rose (1998) also contain some very useful material.
The discussion here will barely scratch the surface of this complex subject and
will be directed toward the specific end of finding approximations suitable for
the stellar interior.

4.1 Radiative Transfer

In discussing blackbody radiation and equations of state we assumed LTE as
a very good approximation. We do know, however, that LTE implies complete
isotropy of the radiation field and this, in turn, means that radiant energy
cannot be transported through the material of the star. Anisotropy in the field
is required for that to happen. On the other hand, it is easy to demonstrate
that only a small degree of anisotropy is needed to drive photons through
most of the stellar interior. Another way to phrase this is that even small
gradients in temperature can do the job. For example, a crude estimate of
the overall temperature gradient in the sun is given by the ratio (Tc/R�) ≈
10−4 K cm−1. Although convection might augment heat transport in parts
of the star, that small gradient is usually sufficient. At the solar photosphere,
however, we shall see that gradients are large and, in any case, the radiation
field must eventually become very anisotropic since radiation only leaves the
star at the surface while none enters.

What we shall examine is what near-isotropy in the radiation field implies
for the stellar interior. In the end, we shall find that the diffusion equation
discussed in the first chapter (§1.5) is more than adequate for most of our
purposes. Consideration of the very surface will be deferred until later. For a
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start, assume that all photons have the same frequency (ν). Amends will be
made shortly.

Central to a discussion of radiative transfer is the specific intensity, I(ϑ).
It is so defined that the product I(ϑ) dΩ is the radiative energy flux (in
erg cm−2 s−1) passing through a solid angle dΩ (in sr=steradians) around a
colatitude angle ϑ (in spherical coordinates ϑ and ϕ) at some position r or, in
plane parallel geometry, z. We delete, for now, reference to r, z, and ϕ in the
intensity and we make the important assumption that the energy transfer
does not depend on time. The picture is that of a thin cone of radiation
starting from r and passing through dΩ as shown in Fig. 4.1.

φ

dΩ

r 
or

 z

θ

To Surface

Fig. 4.1. The geometry associated with the specific intensity I(ϑ). The position
coordinate may either be radius r in a spherically symmetric star or vertical distance
z in a plane parallel “star.” In the latter case, symmetry in the transverse x- and y-
coordinates is assumed. The properties of the stellar medium are then independent
of azimuthal angle ϕ for either choice of geometry.

The quantity u(ϑ) dΩ is the corresponding energy density (in the units
of erg cm−3). This may be related to I(ϑ) by considering how much radiant
energy is contained in a tube of unit cross section and length 1 sec× c along
a thin cone in the direction ϑ. Thus

u(ϑ) dΩ =
I(ϑ)
c

dΩ . (4.1)

The total energy density U is obtained by integrating (4.1) over 4π steradians
with

U =
∫
4π

u(ϑ) dΩ =
2π
c

∫ 1

−1
I(μ) dμ (4.2)
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where azimuthal symmetry (for a round star or flat plane) in ϕ has been
assumed and μ = cosϑ with −1 ≤ μ ≤ 1.

Because we are eventually interested in the net outflow (or inflow) of en-
ergy along z or r, define the total flux, F , as follows. Place a unit area (1
cm2) perpendicular to the z-direction (in planar geometry to simplify mat-
ters). The projection of I(ϑ) onto this area is then I(ϑ) cosϑ× 1 cm2. If this
last is integrated over dΩ and the result is divided by 1× cm2 we then obtain
the total flux in the z-direction,

F =
∫
4π

I(ϑ) cosϑdΩ = 2π
∫ 1

−1
I(μ)μdμ erg s−1 cm−2. (4.3)

Note that if I is a constant, then the total flux is zero because the same
amount of radiation comes in as goes out. Hence I must vary with μ (or ϑ)
for radiant energy to be transported; that is, I(ϑ) must be anisotropic.

What are the sources and sinks for I(ϑ)? At any location z or r, I(ϑ) may
be fed by radiation being scattered from other directions into ϑ or by direct
emission from local atoms. We are not going to go into all the subtleties
of what these different kinds of processes mean for radiative transfer, but
will rather lump them together into the mass emission coefficient, j(ϑ) (in
erg s−1 g−1), constructed as follows.1 If ds is a distance directed along I(ϑ)
over which I(ϑ) is augmented by the amount dI(ϑ) due to scattering or
emission, then j(ϑ) is defined by

dI(put into ϑ) = j(ϑ)ρ ds .

Photons can also be removed from the beam by absorption and scattering.
These processes are accounted for by the opacity (or mass absorption coeffi-
cient), κ (in cm2 g−1), so that the amount removed from I(ϑ) is

dI(taken out of ϑ) = −κρI(ϑ) ds
and it is proportional to I(ϑ) itself because it depends on the number of
photons present locally. Note that if j is zero and κ and ρ are both constant,
then

I ∝ e−κρs

as simple attenuation of the beam. Recall that the product (κρ)−1 was pre-
viously used to compute a typical mean free path in (3.2). We see now that
it is an e–folding length for attenuation.

The net change in I(ϑ) per unit path length is then

1
ρ

dI(ϑ)
ds

= j − κI(ϑ) (4.4)

1 Note that we do not discuss here many of the processes by which photons are
emitted. See, for example, Ex. 4.9, where spontaneous versus stimulated emission
is discussed in terms of the Einstein coefficients.
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which is the equation of transfer. Note that in the form we give it, the trans-
fer equation really only holds in planar geometry: a rigorous derivation in
spherical geometry would have to contain curvature terms. Because we shall
finally get the diffusion equation, such niceties are unnecessary here.

If we had LTE and complete isotropy and spatial uniformity of the radia-
tion field, then (dI/ds) = 0 and I = (j/κ) would be constant with no radiant
energy transported. In that case the energy density of the radiation field is,
from (4.2),

U =
2π
c

∫ 1

−1
I dμ =

4π
c
I . (4.5)

But in LTE, U follows from the blackbody result U = aT 4 (as in 3.18 with
Erad replaced by U) so that

I =
j

κ
=

c

4π
aT 4 =

σ

π
T 4 = B(T ) (in LTE) (4.6)

where B(T ) is the integrated Planck function, introduced in Chapter 3 as
(3.22). The frequency-dependent Planck function is

Bν(T ) =
2hν3

c2
1(

ehν/kT − 1) erg cm−2 (4.7)

as may be deduced from (3.19) and (3.21).
If, as we suppose, the radiation field is nearly isotropic through most of

the star, then the intensity should closely resemble B(T ). The question is, by
how much? We have to work a bit harder to answer this.

At this point we introduce frequency, ν, into all expressions and realize
that quantities such as I, j, and κ must all depend on ν so that we can talk
about photons of a given frequency being added to or subtracted from a beam
in direction ϑ, etc. In addition, we introduce the source function (which, for
us, will be merely a computational device),

Sν = jν/κν

and the optical depth, τν , with

dτν = −κνρ dz (or dr) . (4.8)

The integrated version of (4.8) is

τν(z) = τν,0 −
∫ z

z0

κνρ dz (4.9)

where z0 is some spatial reference level and τν,0 is the optical depth evaluated
at that level. If z0 corresponds to the “true surface” of the star where density
and pressure presumably go to zero, then τν,0 is taken to be zero. We shall
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make this choice and thus τν(z) measures depth from the surface in curious,
but dimensionless, units.

If we now recall that ds is measured along the direction of I(ϑ), then
dz=cosϑds=μds and, putting all together, the equation of transfer becomes

μ
dIν(τ, μ)

dτν
= Iν(τ, μ)− Sν(τ, μ) . (4.10)

The solution of the transfer equation is easy to pose but difficult to carry
out in practice. As a first step, note that (4.10) admits of the integrating
factor exp (−τ/μ) where here (and often elsewhere) the subscript ν and the
arguments ϑ or μ will be deleted for visual clarity. Thus multiply through by
that factor, recognize a perfect differential, and find

d

dτ

[
e−τ/μ I

]
= −e−τ/μ S

μ
.

If we formally integrate from some reference level τ0 to a general level τ , then
the solution is

I(τ, μ) = e−(τ0−τ)/μ I(τ0, μ) +
∫ τ0

τ

e−(t−τ)/μ
S(t)
μ

dt (4.11)

where t is a dummy integration variable.
Depending on the range of μ (or ϑ), different values for τ0 are chosen

in seeking solutions for I(τ, μ). For forward-directed radiation (heading out
toward the surface) with μ ≥ 0 (0 ≤ ϑ ≤ π/2), choose τ0 to be very large and
positive so that the reference level lies deep (at least with respect to optical
depth) within the star. Thus with τ0 →∞,

I(τ, μ ≥ 0) =
∫ ∞
τ

e−(t−τ)/μ
S(t)
μ

dt . (4.12)

If μ < 0, signifying inwardly directed radiation, use τ0 = 0 so that

I(τ, μ < 0) =
∫ 0

τ

e−(t−τ)/μ
S(t)
μ

dt. (4.13)

In the last expression, advantage has been taken of the fact that the level
τ0 = 0 has been chosen to be the true surface of the star, where it is required
that I(0, μ < 0) = 0; that is, there is no incoming radiation at the surface.
Note that this would be inapplicable to a star in a close binary where its
companion might bathe the stellar surface with radiation. A similar situation
holds for stellar winds where the wind itself may radiate profusely.

If the deep interior is to be nearly in LTE, we expect the source function
S = j/κ to be almost independent of angle and, from (4.6), to be near its
Planckian value B(T ) at depth τ (assumed to be appropriately large and still
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leaving off reference to ν). If this is so, then it seems reasonable to expand
S(t) in a Taylor series in τ which, to first order, is

S(t) = B(τ) + (t− τ)
(
∂B

∂τ

)
τ

(4.14)

where B(τ) stands for B[T (τ)]. (A more exacting discussion of this, and the
approach to the diffusion equation, may be found in Mihalas, 1978, §2–5.)

Inserting (4.14) into (4.12–4.13) yields

I(τ, μ ≥ 0) = B(τ) + μ

(
∂B

∂τ

)
τ

(4.15)

and

I(τ, μ < 0) = B(τ)
[
1− eτ/μ

]
+ μ

(
∂B

∂τ

)
τ

[
eτ/μ

(
τ

μ
− 1
)
+ 1
]
. (4.16)

Since μ < 0 in (4.16), we may neglect the exponential eτ/μ for τ large and find
that (4.15) is valid for all μ. You may easily verify that higher-order terms
in the Taylor series expansion for S(t) in (4.14) lead to additional terms in
I(τ, μ) that go as |∂nB/∂τn| ∼ B/τn (and see Exs. 4.1–4.3 at the end of this
chapter). Thus, roughly speaking, convergence is rapid if τ is greater than
unity.

This looks promising. Since we expect temperature to increase inward, as
does τ , then ∂B/∂τ > 0. Thus, because of the presence of the factor μ in
(4.15) or (4.16), the outwardly directed intensity (with μ ≥ 0) is enhanced
over its Planckian value, B(τ), whereas the intensity directed inward (with
μ ≤ 0) is reduced. The net result is a flow of radiation outward when the two
intensities are integrated over their respective angles and the two results are
added. To compute the flux of this radiation, use (4.3) and find

F(τ) = 2π
∫ 1

−1

[
B(τ) + μ

∂B(τ)
∂τ

]
μdμ =

4π
3

∂B(τ)
∂τ

(4.17)

in the units of erg cm−2 s−1. Since the integrated Planck function is propor-
tional to T 4, the amount of energy flux carried by radiation depends only on
how rapidly temperature varies with optical depth.

If (4.17) represents the total flux (implying that it contains all the fre-
quency-dependent fluxes integrated over frequency), then the luminosity for
a spherical star at radius r(τ) is

L(r) = Lr = 4πr2F(r) erg s−1. (4.18)

A measure of the anisotropy in the intensity is the comparison of I(τ)
to ∂B(τ)/∂τ of (4.15). So, calculate ∂B(τ)/∂τ from the flux by means of
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(4.17), and use (σ/π)T 4(τ) as an estimate for I(τ) from (4.6). As an ex-
ample, consider the sun. Using global values for everything in sight, a typ-
ical flux may be found from L� ∼ 4πR2

�F� ∼ 4 × 1033 erg s−1 or, F� ∼
7× 1010 erg cm−2 s−1. Thus ∂B(τ)/∂τ� ∼ 2× 1010 erg cm−2 s−1. A typical
solar temperature is T� ∼ 107 K, so that I� = B� ∼ 2× 1023 erg cm−2 s−1.
The measure of anisotropy is then [∂B(τ)/∂τ ]� /I� ∼ 10−13. (And see
Ex. 4.2.) We have, of course, used estimates for various numbers here, but the
final result is quite representative of the true situation in the deep interior.

The truncation to first order of the expansion for I(τ, μ) is reasonable
provided that τ >∼ 1. We shall find that an optical depth of unity lies very
close below the physical surface in most stars. Hence the approximations used
here will be valid for just about all of a star. The thin region above τ ≈ 1
we call the atmosphere and it is the region where radiation is processed so
that we ultimately see it. Except for some simple calculations to be considered
shortly in §4.3, the atmosphere will be left to the specialists in that important
subject.

4.2 The Diffusion Equation

To derive the diffusion approximation properly, we return to the expression
for the flux but include the frequency dependence:

Fν = 4π
3

∂Bν

∂τν
(4.19)

which may be rewritten using the definition of dτν as

Fν = −4π3
1

κνρ

∂Bν

∂r
. (4.20)

The derivative of Bν is cast into more a convenient form by using the chain
rule so that

∂Bν

∂r
=

∂Bν

∂T

dT

dr

where, if desired, ∂Bν/∂T may be found using (4.7). The flux is then

Fν = −4π3
1
ρ

dT

dr

1
κν

∂Bν

∂T
. (4.21)

To obtain the total flux integrate over frequency and define the Rosseland
mean opacity, κ, by

1
κ
=
[∫ ∞

0

1
κν

∂Bν

∂T
dν

] [∫ ∞
0

∂Bν

∂T
dν

]−1
(4.22)

so that the total flux is
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F = −4π
3
1
κρ

dT

dr

∫ ∞
0

∂Bν

∂T
dν .

The last integral is eliminated by observing that∫ ∞
0

∂Bν

∂T
dν =

∂

∂T

∫ ∞
0

Bν(T ) dν =
∂B

∂T
=

ac

π
T 3

where (4.6) and σ = ac/4 have been used. Thus, finally,

F(r) = −4ac
3

1
κρ

T 3 dT

dr
= − c

3κρ
d(aT 4)

dr
. (4.23)

This version of F is in the Fick’s law form introduced in the first chapter
(§1.5), where the diffusion coefficient D is now identified as D = c/(3κρ).
The factor of 1/3 that appears is usual in diffusion theory and the remainder
represents a velocity (c) times a mean free path λ = 1/(κρ). The derivative
term in (4.23) implies that the “driving” is caused by spatial gradients in the
energy density (aT 4) of the radiation field.

The total luminosity in the diffusion approximation to radiative transfer
is simply L = 4πr2F or

L(r) = Lr = −16πacr
2

3κρ
T 3 dT

dr
= −4πacr

2

3κρ
dT 4

dr
(4.24)

which is what was stated in (1.60). There are several other ways of expressing
Lr which will prove useful for future work. Among these are the following.

The Lagrangian form of (4.24) is obtained by using the mass equation
(1.2) to convert the radial derivative to one of mass:

Lr = −
(
4πr2

)2
ac

3κ
dT 4

dMr
(4.25)

and this was used in the dimensional arguments of §1.6. Absorbing the factor
of a and recognizing Prad = (1/3)aT 4 also yields

Lr = −
(
4πr2

)2
c

κ

dPrad

dMr
. (4.26)

For still another version, introduce the equation of hydrostatic equilibrium
(1.6) (in a slightly disguised form and note the presence of the pressure scale
height of Eq. 3.1 in the middle term) so that

−d lnP
d ln r

=
r

λP
=

GMrρ

rP
. (4.27)

Then divide both sides by (d lnT/d ln r) to find
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(d lnP/d ln r)
(d lnT/d ln r)

=
d lnP
d lnT

= −GMrρ

rP

1
(d lnT/d ln r)

.

The reciprocal of the derivative in the middle of this expression is used to
define a new quantity, ∇, called “del” with

∇ ≡ d lnT
d lnP

= − r2P

GMrρ

1
T

dT

dr
. (4.28)

Sometimes a subscript “act” is appended to ∇ to denote “actual.” The im-
plication is that ∇ represents the actual run, or logarithmic slope, of local
temperature versus pressure in the star. If ∇ is known by some means or
another, then a simple rearrangement of (4.24) yields

Lr = 16πacG
3

T 4

Pκ
Mr∇ (4.29)

as yet another way to express the relation between luminosity and a gradient.
All these variations on luminosity will be used at some point or another.

4.2.1 A Brief Diversion into “∇s”

Besides the ∇ defined above, it is useful to define another logarithmic quan-
tity, ∇rad, called “delrad,” as follows. Suppose Lr(total) is the luminosity
corresponding to an energy flux transported by any means and not necessar-
ily just by radiation. Then define ∇rad by turning (4.29) around so that

∇rad ≡
(
d lnT
d lnP

)
rad
≡ 3
16πacG

Pκ

T 4

Lr(total)
Mr

=
3r2

4acG
Pκ

T 4

Ftot

Mr
. (4.30)

(The flux Ftot is the total flux Ftot = 4πr2/Lr(total), and will be ued later.)
Thus ∇rad is the local logarithmic slope of temperature versus pressure that
would be required if all the given luminosity were to be carried by radiation.
This quantity will prove useful for future work, although, at the moment, it
may seem to be superfluous baggage. But, for example, suppose you were
given the run of density, temperature, opacity, and energy generation rate
in a star and the luminosity and ∇ and ∇rad as functions of radius. But
you don’t know how the energy is transported. It could well be that the
luminosity, L, at a given radius consists of a part from diffusive transfer,
Lrad, plus a contribution from other sources such as convection, Lconv, with
L = Lrad+Lconv. The luminosity of (4.29) is obviously Lrad because it is that
which is generated by Fick’s law with, in the present nomenclature, a gradient
term ∇; that is, ∇ is the actual driving gradient in the star and thus Lrad
follows from it. However, ∇rad derives from the total L. Thus if ∇ = ∇rad
then all the luminosity must be radiative, L = Lrad, and Lconv = 0. If, on
the other hand, ∇rad > ∇, then L > Lrad, Lconv is not zero and radiation
does not transport all of the energy.
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The preceding analysis will turn out to be not all that abstract. Recall
that yet another “del” was defined in (3.94) and (3.96) of the previous chapter
as ∇ad = (∂ lnT/∂ lnP )ad. It has the same T–P structure as ∇ but it is a
thermodynamic derivative. All three “dels” consist of logarithmic derivatives
of temperature with respect to pressure except they are computed under
different circumstances. When convection is discussed in the next chapter,
these three derivatives will serve to establish one description of how energy
is transported in the stellar interior.

4.3 A Simple Atmosphere

Later on we shall have to ask what boundary conditions should be applied to
the stellar surface to make satisfactory models. In Chapter 1 we used “zero
boundary conditions” as a first go. It will turn out that these are (barely)
satisfactory for many stars but are completely inadequate for others. The
purpose of this section is to take a small step forward and derive boundary
conditions from a simple model atmosphere that are a great improvement
over just setting everything in sight to zero at the surface. Note, however,
that our efforts are not a real substitute for accurate stellar atmospheres and
what we find should not be applied to all stars.

Recall from (4.18–4.20) that the relation between frequency-dependent
radiative flux and the Planck function is

Fν = −4π3
1

κνρ

∂Bν

∂r
=
Lν
4πr2

(4.31)

at large optical depths. This also defines the frequency-dependent luminosity,
Lν . At the same level of approximation it is easy to show that the frequency-
dependent radiation pressure is given by

Prad,ν =
4π
3c

Bν . (4.32)

This is consistent with the statement that Prad,ν = Uν/3 (with Uν being the
radiation energy density) because Uν = 4πBν/c in LTE (see Eqs. 3.19–3.21
and 4.5–4.6).

Putting this together gives

c

ρ

∂Prad,ν

∂r
= −κνLν

4πr2
. (4.33)

Integrate this over frequency so that

dPrad

dr
= − κρL

4πr2c
(4.34)

where κ is defined as
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κ =
1
L
∫ ∞
0

κνLν dν (4.35)

and it is not the Rosseland mean opacity defined previously by (4.22). (Later
we shall use this opacity but make believe it is Rosseland as one of a series
of approximations.)

Because at this juncture we are only interested in the radiation properties
of the stellar material very near the photosphere, we simplify (4.34) by replac-
ing r on the right-hand side with R, which is defined as the radius at which
we find the photosphere. We also remind you that the effective temperature,
Teff , is the temperature that satisfies the relation

L = 4πσR2T 4
eff (4.36)

(and see §1.8). Thus Teff is the temperature the photosphere (at R) would
have if that surface radiated as a black body. Note that of the three quantities
in (4.36) only L is directly observable; R and Teff may both turn out to
be convenient fictions. This is because the term “visible surface” is really
a spectrum-dependent statement (photons of one frequency may emerge to
final visibility from different depths compared to other photons) and, in any
case, no star really emits radiation into space as a pure blackbody, as we shall
demonstrate later with real spectra.

One final point before we go on. Recall from our earlier discussion that
we had defined the “true surface” as that level in the star where there was no
incoming radiation. This was set at optical depth τ=0 (see Eqs. 4.8–4.9, and
discussion). What we will have to determine is how that level is related to
the level at R or how the photosphere differs, if at all, from the true surface.

With the above in mind, now integrate (4.34) with r = R from τ = 0 to
some arbitrary depth τ and find

Prad = −
∫ arbitrary point

true surface

L
4πR2c

κρ dr =
∫ τ

0

L
4πR2c

dτ (4.37)

or

Prad(τ) =
L

4πR2c
τ + Prad(τ=0) =

σT 4
eff

c
τ + Prad(τ=0) . (4.38)

We now have to determine what the radiation pressure at the true surface
is. A general expression for radiation pressure may be constructed by consid-
ering the momentum transferred by radiation across an imaginary surface at
some position. If we realize that I(θ)/c is that flux (energy flux/c), then

Prad =
2π
c

∫ π

0
I(θ) cos2 θ sin θ dθ (4.39)

by arguments similar to those used in deriving the total flux (see 4.3). The
additional factor of cos θ comes about because we require a projection of the
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momentum to the radial direction. To make further progress, I(θ) must be
specified. There are several strategies possible here but the most straightfor-
ward is to invoke a version of the Eddington approximation. (For a much
fuller discussion of its virtues and faults, see Mihalas, 1978.) A primary con-
sequence of this approximation is that the radiation pressure is given every-
where, except at τ = 0, by its LTE value Prad = aT 4/3. This is the same
result as would be obtained were I(θ) isotropic with I = (σ/π)T 4 (from 4.6),
as should be apparent if you put this in (4.39). (Show this in Ex. 4.13.)

Assume, therefore, that I(θ) is isotropic everywhere except at the true
surface. At τ = 0 we compromise and let I(θ) be isotropic for all outgoing
angles but set it to zero for π ≥ θ > π/2. Thus no radiation enters the true
surface from the outside. Equation (4.39) then yields

Prad(τ=0) =
2π
3c

I(τ=0) . (4.40)

We now find I(τ = 0) by computing the flux at zero optical depth and
assuming, as a further minor approximation, that the position of the true
surface is at R (and remember that a relatively large change in optical depth
need not mean a correspondingly large change in radius). Using expression
(4.3) for the flux, we have

L = 4πR2 2π
∫ π/2

0
I(τ=0) cos θ sin θ dθ = 4πR2πI(τ=0) . (4.41)

Use this to eliminate I(τ=0) in (4.40) and find

Prad(τ=0) =
2
3c

L
4πR2 =

2
3c

σT 4
eff . (4.42)

The complete expression for the radiation pressure at depth is then

Prad(τ) =
1
3
aT 4(τ) =

σ

c
(τ + 2/3)T 4

eff . (4.43)

From this also obtain the run of temperature in the very outermost layers,

T 4(τ) =
1
2
T 4
eff

(
1 +

3
2
τ

)
(4.44)

after recalling that a = 4σ/c. Thus in these approximations the photosphere
lies at the optical depth τp = 2/3, where T (τp) = Teff (and “p” stands
for “photosphere”). Note also that the temperature is nonzero even at the
surface, where it has the value 2−1/4Teff , and not zero as assumed for zero
boundary conditions.2

2 Exercise 4.10 uses the Eddington result of (4.44) to examine a criterion for con-
vection. It’s a cute result. Try it.



4.3 A Simple Atmosphere 205

Before we continue, it is worth pointing out that an optical depth at the
photosphere of about unity (2/3 ≈ 1 is close enough) is to be expected. If
we see the photosphere, then it must be at a physical depth, Δr, of about
one photon mean free path (the distance an average photon travels before
something happens to it) λphot = (κρ)−1 (from 3.2 and the discussion leading
to 4.4). But, by the definition of optical depth, Δτ ≈ κρΔr; that is, the
photosphere should be at τp ≈ 1.

To find the run of total pressure in the outer layers requires solving the
hydrostatic equilibrium equation

dP

dr
= −gρ . (4.45)

If mass and radius are regarded as fixed in the local gravity, then g is a
constant, with gs = GM/R2, and the hydrostatic equation can immediately
be integrated from the true surface down to some optical depth to yield

P (τ) = gs

∫ τ

0

dτ

κ
. (4.46)

What we want is the pressure at the photosphere, which is now known to
lie at τ = 2/3 (or nearby, depending on how the previous analysis is done
in detail). To again make matters simple, consider the case where opacity
is constant (as a version of the “grey” atmosphere) and equal to its value
at the photosphere. Denote that opacity by κp. Equation (4.46) can then be
integrated and becomes

P (τp) =
2
3
gs
κp
+ P (τ=0) . (4.47)

If the material gas contributes little or nothing to the total pressure at the
true surface (as seems reasonable because nothing should act there to reverse
the flow of radiation outward), then setting P (τ=0) = Prad(τ=0) yields

P (τp) =
2
3
gs
κp

(
1 +

κpL
4πcGM

)
(4.48)

after a little algebra and the use of (4.42).
For most stars the last factor in parentheses is small with

κpL
4πcGM = 7.8× 10−5 κp

( L
L�

)( M
M�

)−1
(4.49)

and it can almost always be ignored. For some very massive and luminous
stars, however, it cannot ignored as the following argument shows.

Near the true surface where radiation pressure dominates, the hydrostatic
equation is as given above but with dP/dr replaced by dPrad/dr. If the lumi-
nosity is very high and the radiation field very intense, we can imagine that
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the force due to radiation pressure might overwhelm the local gravitational
force. This situation can be written as

−dPrad

dr
> gsρ . (4.50)

If we further make the (actually contradictory) assumption that radiative
diffusion is still responsible for energy transport, then a slightly rewritten
form of the transport equation (from 4.26) is

L = −4πR
2c

κpρ

dPrad

dr
. (4.51)

Eliminating the pressure gradient between the two equations then yields an
estimate of how large the luminosity must be so that radiative forces exceed
gravitational forces. That limiting luminosity, called the Eddington critical
luminosity or Eddington limit, is

LEdd = 4πcGM
κp

(4.52)

and this overall combination is exactly that which appears as the second
term of (4.48). If that term exceeds unity then the Eddington limit has been
exceeded. It should be obvious that this subject is intimately connected with
mass loss (and for more on the implications, see §2.3.2). As a practical mat-
ter, the opacity usually used in (4.52) is electron scattering because high
luminosities usually imply high temperatures. With a hydrogen mass frac-
tion of X = 0.7 and κe = 0.34 cm2 g−1 used for the photospheric opacity,
the Eddington limit is(LEdd

L�

)
≈ 3.5× 104

( M
M�

)
. (4.53)

It is to be understood that if the luminosity approaches 10%, or so, of this
number, then a simple static stellar atmosphere will not adequately describe
what is going on; the dynamics of momentum and energy transfer between
the radiation field and matter must be done correctly and this is very difficult.

If the Eddington term is neglected, then the photospheric pressure is given
by

P (τp) ≈ 2
3
gs
κp

. (4.54)

This may now be used to find the density at the photosphere. If the gas is
assumed to be composed only of the sum of ideal gas plus radiation, we set
(4.54) equal to that sum and find

1
3
aT 4

eff +
NAk

μ
ρpTeff =

2
3

gs

κ0ρnpT
−s
eff

(4.55)
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where the power law expression κ0ρ
n
pT

−s
eff has replaced the opacity. If n and

s are known and Teff is fixed, then ρp may be found using some iterative
method. This implies, incidentally, that one must have some idea of pho-
tospheric conditions beforehand in order that the kind of opacity and its
exponents be known. In the simple case, where it is assumed that radiation
pressure is unimportant,

ρn+1
p ≈ 2

3
gs
κ0

μ

NAk
T s−1
eff . (4.56)

We know typical ranges for Teff and gravity so we can easily find out what
kinds of numbers are associated with photospheric densities. For example, if
the gravity and Teff are chosen as solar (gs ≈ 2.7×104 cm s−2 and Teff ≈ 5780
K), and the opacity is pure electron scattering (n = s = 0), then (4.56) yields
ρp ∼ 10−7 g cm−3. Using the same conditions but with the more realistic
H− opacity (see 4.65) gives ∼ 10−6 g cm−3, which is essentially the same
number at our level of approximation. In any case, photospheric densities are
far smaller than those deeper down.

Note in all the above that it has been assumed that convection plays no
role in heat transport between the true and photospheric surfaces. This is
consistent with our notion of a radiating, static, visible surface, and we shall
continue to think of the photosphere in those terms. However, even in the
sun the effects of underlying convection may easily be seen in the form of
cells, granulation, etc., so that if the photospheric regions are to be modeled
correctly, much care must be taken (and do not forget magnetic fields, and
so on). We shall not go to such extremes, but we will find that convection
can extend right up to the base of the photosphere.

When making stellar models in practice, things can get complicated. What
is done is to construct a “grid” of realistic stellar atmospheres where each
model atmosphere in the grid is labeled by, for example, a different combi-
nation of effective temperature and surface gravity. If, during the course of
some sort of iterative procedure used in making a complete stellar model, a
set of boundary conditions is required at the photosphere, then interpolation
is done in the grid to yield these boundary conditions for a given effective
temperature and gravity. A description of one strategy for such an interpo-
lation is given in the classic paper of Kippenhahn, Weigert, and Hofmeister
(1967, §IV).

4.4 Radiative Opacity Sources

The calculation of realistic stellar opacities is easily among the most dif-
ficult problems facing the stellar astrophysicist. At the present time, the
most commonly used opacities for stellar mixtures are those generated at the
Los Alamos National Laboratory (LANL), at the Lawrence Livermore Na-
tional Laboratory (LLNL), and the “Opacity Project” (OP) group for both
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astronomers and nonastronomers. (The original need for opacities at LANL
was, needless to say, prompted not by astrophysical considerations but rather
by those of fission and fusion bomb work. How, for example, does the at-
mosphere respond to a blast of radiation?) Opacities are available in tabular
form and include many stellar mixtures with opacities computed over wide
ranges of density and temperature. The references at the end of this chapter
include published sources and it would be a worthwhile exercise for you to
plot up some opacities and get a feel for how they behave, as we shall do
shortly.

The following discussion is by no means complete and will give only
sketches (if even that) of what goes into the calculation of opacities. A phys-
ically clear, and not terribly difficult, description of the ingredients of the
calculations may be found in Clayton (1968, Chap. 3). Cox (1968, Chap. 16)
also contains some very useful material. The aim is to construct a total Rosse-
land mean opacity, κrad, which is the sum of contributions from the following
sources. We shall start with the simplest, which is electron scattering.

4.4.1 Electron Scattering

Equation (4.4) gave a prescription for calculating how much intensity is re-
moved from a beam when an opacity source is present. In the instance where
the opacity is independent of frequency, a simple relation may be found be-
tween the opacity and the cross section of the process responsible for beam
attenuation. Before we proceed, recall that a cross section is a microscopic
measure of how a particular reaction takes place, whereas the opacity is a
macroscopic quantity that tells us how a large collection of such reactions
modifies the flow of radiation. This distinction sometimes escapes the stu-
dent’s attention.

A cross section for a process may be defined quite generally as in this
example of low-energy electron scattering. If a beam of photons of a given
flux—now defined as the number of photons per cm2 per second—is incident
upon a collection of stationary electron targets, then the rate at which a given
event (a photon scattered out of the beam) takes place per target is related
to the cross section, σ, by

σ =
number of events per unit time per target

incident flux of photons
cm2. (4.57)

As we shall soon indicate, the cross section for low-energy electron scattering
is independent of energy, and the transfer equation that describes how a beam
is attenuated is (4.4) with j set to zero. Thus if ne is the number density of
free target electrons, then the product Iσne ds is the number of scatterings
in cm−2 s−1 erg over the path length ds (from the definition of σ) and this
is to be equated to Iκρ ds of (4.4). The desired relation between κ and σ is
then
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κ =
σne
ρ

cm2 g−1 (4.58)

where 1/σne may be identified with a mean free path (as in 3.2).
For electron or photon thermal energies well below the rest mass energy

of the electron (kT � mec
2 or T � 5.93 × 109 K), ordinary frequency-

independent Thomson scattering describes the process very well, and the
cross section for that is

σe =
8π
3

(
e2

mec2

)2

= 0.6652× 10−24 cm2 (4.59)

where
(
e2/mec

2
)
is the classical electron radius. Because, as it will turn

out, electron scattering is most important when stellar material is almost
completely ionized, it is customary to compute ne according to the pre-
scription of (1.48) and (1.53) if the composition is not unusual. Thus take
ne = ρNA(1 +X)/2 where X is the hydrogen mass fraction. Folding this in
with (4.58–4.59) we obtain the electron scattering opacity

κe = 0.2(1 +X) cm2 g−1. (4.60)

If heavy elements are very abundant or ionization is not complete, then ne
must be calculated in a more general way using the ionization fractions, etc.,
of (1.48). Note also that in a mixture consisting mostly of hydrogen, this
opacity decreases rapidly from the value implied by (4.60) at temperatures
less than the hydrogen ionization temperature of 104 K: there are just too
few free electrons left. The corresponding temperature for a gas consisting
mostly of helium is around 5× 104 K. (And see Figs. 4.2 and 4.3.)

As remarked upon in §1.5, this opacity depends neither on temperature
nor density if ionization is complete and hence its temperature and density
exponents s and n in κ = κ0ρ

nT−s (of 1.62) are s = n = 0.
Besides having to worry about exotic mixtures of elements and partial

ionization, the electron scattering opacity presented above must be modified
for high temperatures (relativistic effects with kT >∼ mec

2) and for the effects
of electron degeneracy at high densities where electrons may be inhibited
from scattering into already occupied energy states.

4.4.2 Free–Free Absorption

As is well known from elementary physics, a free electron cannot absorb
a photon because conservation of energy and momentum cannot both be
satisfied during the process. If, however, a charged ion is in the vicinity of the
electron, then electromagnetic coupling between the ion and the electron can
serve as a bridge to transfer momentum and energy making the absorption
possible. It should be apparent that this absorption process is the inverse of
normal bremsstrahlung wherein an electron passing by and interacting with
an ion emits a photon.
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A complete derivation will not be presented here (which would deal with
the quantum mechanics of the absorption) but a rough estimate of the
opacity may be found classically. We first compute the emission rate for
bremsstrahlung, and then turn the problem around.

Imagine an electron of charge e moving nonrelativistically at velocity v
past a stationary ion of charge Zce. As the electron goes past, it is accelerated
and radiates power according to the Larmor result

P (t) =
2
3
e2

c3
a2(t)

where a(t) is the time-dependent acceleration. If we naively assume that the
electron trajectory is roughly a straight line, then it is easy to show (as an
E&M problem in Landau and Lifshitz 1971, §73, or Jackson, 1999, Prob. 14.7)
that the time-integrated power, or energy, radiated is

Es =
Z2
c e

6π

3c3m2
e

1
vs3

where s is the impact parameter for the trajectory; that is, the distance of
closest approach were the trajectory to remain straight.

The maximum energy radiated during the scattering will peak in angular
frequency around ω ≈ v/s. Thus if Eω is the energy emitted per unit fre-
quency, then Eω must be simply related to Es, which is the energy emitted
per unit impact parameter. If 2πs ds is the area of an annular target that
intercepts a uniform velocity beam of electrons, then

Eω dω = −Es 2πs ds =
2Z2

c e
6

3c3m2
e

π2

v2
dω

where ω has been set to v/s and the minus sign comes about because ds > 0
implies dω < 0.

To get a rate of emission per unit frequency, assume that the electron
distribution is Maxwell–Boltzmann so that (3.25) applies and

ne(v) dv = 4πne
( me

2πkT

)3/2
e−mev

2/2kT v2 dv

after the transformation p = mev is used in (3.25). The product ne(v)v is
the flux of electrons per unit velocity so that Eωne(v)v dv integrated over
all permissible v is the desired rate per target ion per unit frequency. All
that remains is to multiply by the ion number density, nI, and to identify
the result as being part of the mass emission coefficient j of (4.4). The total
power emitted per unit frequency and volume is then

4πjωρ = nI

∫
v

Eωne(v)v dv
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where jω, assumed isotropic, has been integrated over 4π steradians.
The lower limit on the integral should correspond to the minimum veloc-

ity required to produce a photon of energy h̄ω, namely, (1/2)mev
2
min = h̄ω,

with h̄ = h/2π. Even though we have assumed that the electrons are nonrel-
ativistic, the upper limit is taken as infinity. (Unless temperatures are very
high, the exponential in the Maxwell–Boltzmann distribution will serve as an
effective cutoff.) The integral is elementary and yields

4πjωρ dω =
2π
3

Z2
c e

6

mec3

(
2π

mekT

)1/2

nenI e
−h̄ω/kT dω .

Finally, integrate over ω and find

4πjρ =
2π
3

Z2
c e

6

mec3h̄

(
2πkT
me

)1/2

nenI ≈ 10−27 Z2
cnIneT

1/2 erg cm−3 s−1.

This result is very nearly correct; the numerical coefficient should be 1.4 ×
10−27 and an additional quantum mechanical “gaunt factor” (gf), which is
of order unity, should appear (as in, for example, Spitzer, 1962, §5.6)

To get the absorption coefficient, we assume that the radiation field is in
LTE with j/κ = S = B(T ) and that κ is due only to free–free absorption.
Thus, κ = j/B(T ) = πj/σT 4, or, putting in the numbers, the free–free
opacity is

κff ≈ 4× 10−24Z
2
cnenIT

−3.5

ρ
∝ ρT−3.5 cm2 g−1 (4.61)

where the last proportionality arises from eliminating the number densities,
both of which are proportional to density.

The functional relation of κff to ρ and T of the above is basically correct.
The numerical coefficient is too high by a factor of ten. To use this opacity as
a Rosseland mean, we must really perform the integration indicated in (4.22)
and put in the relevant atomic physics. All this is done when constructing
opacity tables, and we defer to them. There is, however, a fair approximation
to the free–free opacity, which does prove useful in working with simplified
stellar models (and is only a factor of ten less than 4.61 if you put in the
numbers); that is,

κff ≈ 1023 ρ

μe

Z2
c

μI
T−3.5 cm2 g−1 (4.62)

where Zc is an average nuclear charge and μe and μI are the mean atomic
weights used previously on several occasions. Note that this opacity requires
the presence of free electrons: if none are present, then κff should be zero.
This is effectively taken care of by μe, where, if all ions are neutral, then
μe →∞ from the definition of μe in (1.48–1.49, with yi = 0). For a mixture
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composed of hydrogen and some helium (and traces of metals), we expect
the free–free opacity to be negligible below temperatures of around 104 K (or
perhaps a little higher if densities are relatively high: see the half-ionization
curve for hydrogen of Fig. 3.10).

The main features of (4.62) are correct and the general form is that of
a Kramers’ opacity, which was used in Chapter 1 (§1.5). Recall from there
that the opacity was written in power law form κ = κ0ρ

nT−s in Eq. (1.62)
and please note the sign in the temperature dependence. Thus the free–free
opacity may be characterized by n = 1 and s = 3.5.

The strongest dependence in κff is that of temperature. In our quick and
dirty derivation, this comes about because j is a weak function of temperature
(j ∼ T 1/2) whereas B(T ) ∼ T 4. Another closely related approach is to con-
struct directly the cross section for the free–free process. The contribution to
this quantity from electrons in the velocity band dv is σ ∝ ne(v) dv/vν3 where
ν is the frequency of the absorbed photon. (Several factors varying relatively
slowly with frequency or velocity have been neglected here.) An average for
this cross section over velocity introduces a temperature dependence going as
T−1/2 (from integrating ne[v] dv/v). The Rosseland mean integral of (4.22)
weights most heavily those photons with frequencies near ν ≈ 4kT/h (as you
may verify in Ex. 4.11). Thus ν−3 in the cross section gives a dependence of
T−3 and this is folded in with the velocity average contribution to yield a
factor of T−3.5. The opacity is proportional to the cross section and, hence,
s = 3.5.

4.4.3 Bound–Free and Bound–Bound Absorption

Bound–free absorption is absorption of a photon by a bound electron where
the photon energy is sufficient to remove the electron from the atom or ion
altogether. To do a proper job of opacity calculation, the atomic physics
of all the atoms and ions in the mixture must be handled with great care.
However, it may be shown that the frequency dependence of the opacity κν is
again 1/ν3 and that the total bound–free opacity is again of Kramers’ form.
A rough-and-ready estimate, permissible for simple stellar calculations, has
been given by Schwarzschild (1958), who gives (with some factors of order
unity deleted)

κbf ≈ 4× 1025Z(1 +X)ρT−3.5 cm2 g−1 (4.63)

where X and Z are, respectively, the hydrogen and metal mass fractions
discussed in §1.4. This expression should not be applied if temperatures are
much below T ≈ 104 K because, as only part of the story, most photons are
not energetic enough to ionize the electrons.

Bound–bound opacity is associated with photon-induced transitions be-
tween bound levels in atoms or ions. The calculation is quite complex because
it involves detailed description of absorption line profiles under a wide variety
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of conditions of line broadening, etc. The form of the opacity is of a Kramers’
type and could be included in with the preceding expressions. Since, however,
it is usually of magnitude less than κff or κbf , we shall not give any estimates
here.

Schwarzschild also gives an expression for the free–free opacity, which is
quite useful although, it makes some assumptions about the composition:

κff ≈ 4× 1022(X + Y )(1 +X)ρT−3.5 cm2 g−1 (4.64)

with the usual warning not to use this for something serious.

4.4.4 H− Opacity and Others

Among the more important sources of opacity in cooler stars is that resulting
from free–free and bound–free transitions in the negative hydrogen ion, H−

(“H-minus”). It is, for example, the most important opacity source for the
solar atmosphere. Because of the large polarizability of the neutral hydro-
gen atom, it is possible to attach an extra electron to it with an ionization
potential of 0.75 eV. But this implies that the resulting negative ion is very
fragile and is readily ionized if temperatures exceed a few thousand degrees
(kT ≈ 0.75 eV). Making the ion is not an easy task either because it requires
both neutral hydrogen and free electrons. This means that some electrons
must be made available from any existing ionized hydrogen (helium will be
neutral for T <∼ 104 K) or from outer shell electrons contributed from abun-
dant metals such as Na, K, Ca, or Al. In this respect, the H− opacity is sen-
sitive not only to temperature but also to metal abundance. If temperatures
are less than about 2,500 K, or if metal donors have very low abundances,
then insufficient numbers of free electrons are available to make H− and the
opacity becomes very small.

An estimate of the opacity contributed by H− can be obtained by us-
ing existing tabulations (to be discussed shortly, and see Fig. 4.4). The
following power-law fit, eyeballed by us, gives reasonable results (within a
factor of ten) for temperatures in the range 3, 000 <∼ T <∼ 6, 000 K, densities
10−10 <∼ ρ <∼ 10−5 gm cm−3, a hydrogen mass fraction of around X ≈ 0.7
(corresponding to main sequence atmospheric hydrogen abundances), and
a metal mass fraction 0.001 <∼ Z <∼ 0.03, assuming a solar mix of individual
metals:

κH− ≈ 2.5× 10−31
(

Z

0.02

)
ρ1/2 T 9 cm2 g−1. (4.65)

This expression should only be used for estimates when tabulated opacities
are not available. On the other hand, it does give the flavor of how this
opacity operates and it will prove useful when we examine some properties
of cool stars. Note that its power law exponents are n = 1/2 and s = −9.
Unlike Kramers’, it increases strongly with temperature until about 104 K,
above which Kramers’ and electron scattering take over (and, any case, most
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or all of the H− is gone by this temperature). This will be apparent when
curves of realistic opacities are presented later.

For very cool stars with effective temperatures of less than about 3000 K,
opacity sources due to the presence of molecules or small grains become
important. Because of the proliferation of complex molecules in cool stars
and the difficulty in modeling their abundances and opacities, there is still
a good deal of uncertainty about how the atmospheres of cool stars really
work. This situation is likely to be with us for several more years.

This ends our discussion of opacities derived from atomic processes. In
the interiors of dense objects, however, there are other processes that control
the flow of energy.

4.5 Heat Transfer by Conduction

We have already stated that the structural support of the deep interior of a
white dwarf or of some red supergiants is due to the presence of degenerate
electrons. Not only do these electrons prevent the interior from collapsing,
they also are the major means by which energy is transported outward (or,
in some instances, inward). The mechanism is by means of electron heat
conduction down a temperature gradient—as in a metal—and it is at this
point that we must do a little solid-state physics (and that’s why dealing
with stellar interiors is so much fun: you get to do almost everything).

A good approximation to heat transfer in metals is, again, Fick’s law of
diffusion:

Fcond = −De
dT

dr
. (4.66)

Here, De is a diffusion coefficient with “e” standing for electron. It is conve-
nient to recast (4.66) into a form identical to that used in diffusive radiative
transfer (i.e., Eq. 4.23 or 4.24) by defining a “conductive opacity,” κcond, with

κcond =
4acT 3

3Deρ
. (4.67)

The conductive flux is then

Fcond = − 4ac
3κcondρ

T 3 dT

dr
(4.68)

so that κcond looks like a radiative opacity.
Assuming, for the moment, that we already know how to compute κcond,

how do we combine this opacity with atomic opacities, since, if we have a
temperature gradient, photons should also flow? The total energy flux, from
radiation and conduction electrons combined, is additive. Thus, calling the
radiative component Frad, the total is Ftot = Frad + Fcond if convection is
ignored. By inspection (see 4.24), the opacities are additive as in a parallel
resistive circuit or
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1
κtot

=
1

κrad
+

1
κcond

(4.69)

with
Ftot = − 4ac

3κtotρ
T 3 dT

dr
. (4.70)

Radiative opacities are added together in simple sums as in a series circuit.
Note that whichever opacity in (4.69) is the smaller of κrad or κcond, it is
also the more important in determining the total opacity and hence the heat
flow (again, as in a current flowing through a parallel circuit). In normal
stellar material κcond is large (conduction is negligible) compared to radiative
opacities and, in those situations, only the latter need be considered. The
opposite is usually true in dense degenerate material.

The diffusion coefficient, De, has the general form (see, e.g., Kittel, 1968)
De ≈ cV veλ/3, where cV is the specific heat at constant volume of the de-
generate electrons, ve is some typical (or relevant) electron velocity, and λ is
an electron collisional mean free path. In the following, we shall derive the
diffusion coefficient for nonrelativistic electrons.

The specific heat of a nearly completely degenerate electron gas was given
by (3.114) in the last chapter. The momentum parameter xf in that equation
is very much less than unity for nonrelativistic electrons so that

cV ≈ 8π3m2
ec

3h3
k2Txf erg cm−3 K−1 (4.71)

where a factor of 1/ρ has been deleted from (3.114) to convert to the indicated
units. Since x ∝ (ρ/μe)1/3 from (3.51) is a good approximation to xf at low
temperatures, it is easy to see that cV ∝ (ρ/μe)1/3 T .

For ve and λ, we must recall an important fact of degenerate life: any
collisional process involving a degenerate electron cannot result in that elec-
tron being scattered into an already filled energy state. What this means
is that only electrons near the top of the Fermi sea can participate ef-
fectively in the conduction process. Thus the velocity ve should satisfy
meve ≈ pF ∝ x ∝ (ρ/μe)1/3. The most efficient means of scattering these elec-
trons is via Coulomb interactions with the surrounding ion gas. Thus, write
λ = 1/(σCnI) where nI is the ion number density and σC is the Coulomb
scattering cross section. A typical way to estimate σC is to consider what
electron–ion impact parameters result in a “significant” degree of scatter-
ing. Following arguments similar to those in Spitzer (1962), we can see that
an encounter in which the electron kinetic energy is about the same as the
electron–ion electrostatic potential will result in a significant scatter. Thus
consider electrons for which mev

2
e ≈ Zce

2/s. The significant impact parame-
ter is then s ∝ 1/v2e ∝ (ρ/μe)

−2/3. The cross section, in simplest terms, is
σC ≈ πs2 ∝ (ρ/μe)

−4/3. Thus λ ∝ (ρ/μe)
4/3

/nI or, after introducing the
ion mean molecular weight μI, λ ∝ (ρ/μe)

4/3 (μI/ρ), and De ∝
(
μI/μ

2
e
)
ρT .
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Inserting these results into (4.67) and accounting for all the numerical factors
previously ignored, we find that the conductive opacity is

κcond ≈ 4× 10−8 μ2e
μI

Z2
c

(
T

ρ

)2

cm2 g−1 (4.72)

(and remember that Zc is the ion charge). As crude as this derivation has
been, the final result is not so bad when compared to accurate calculations.
The temperature and density exponents are about right (s ≈ n ≈ −2) and
the coefficient is correct to within an order of magnitude (or so).

As an example of where conductive opacities are important, consider the
deep interior of a typical cool white dwarf with ρ ≈ 106 g cm−3, T ≈ 107 K,
and a composition of carbon (which is close enough). The results of the last
chapter imply that the gas is certainly degenerate and the material pressure
ionized. This implies that the radiative opacity is electron scattering with
κe ≈ 0.2 cm2 g−1. Equation (4.72) yields κcond ≈ 5 × 10−5 cm2 g−1 with
μe = 2, μI = 12, and Zc = 6. Because κcond � κrad, the total opacity
is κtot ≈ κcond after applying (4.69). Thus the radiative opacity is of no
consequence.

4.6 Tabulated Opacities

As has been emphasized repeatedly here, modern stellar structure and ev-
olution studies never use the simple kinds of expressions quoted here for
opacities except, perhaps, for pedagogic purposes. In practice, extensive ta-
bles or, sometimes, analytic fits to these tables3 are used that give radiative
and conductive opacities over wide ranges of temperature and density for
various compositions of interest. Usually a specific opacity is obtained by a
multidimensional interpolation in tables; for example, interpolation is density,
temperature, and X, Y , and Z.

The earlier efforts at large-scale computer calculations of opacities were
due to the group at the Los Alamos National Laboratory (LANL) starting
in the middle 1960s as a spin-off of nuclear weapons diagnostics.4 Figures 4.2
and 4.3 show two sets of these older radiative LANL opacities (both from
Cox and Tabor, 1976) plotted as functions of temperature and density for
two different compositions.

The first is the “King IVa” set in which the composition is X = 0.70,
Y = 0.28, and Z = 0.02 with a solar mix of metals (see, e.g., Figs. 1.2
3 One such fit is given by Stellingwerf (1975).
4 LANL was formerly known as LASL (for Los Alamos Scientific Laboratory) and
is referred to as such in the older compilations. The FORTRAN program “csotesr”
found on the CD-ROM on the endcover of this text yields opacities based on
the older LANL (Cox and Stewart) tables. This code also computes conductive
opacities.
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and 2.19). The name “King IVa” given to the tabulated set of opacities
from which this figure was generated means that it was the IVth (sub a)
set requested by David King. This kind of nomenclature is often found in
the older published LANL tables. (These opacities were used by King in
his, and his collaborators’, studies of Cepheid variables.) The most obvious
feature is the pronounced hump around T ≈ 104 K. As density increases, the
location of the peak of the hump moves out to slightly higher temperatures.
This behavior reflects the temperature versus density relation of the Saha
equation for the half-ionization point of hydrogen as given by (3.41) and that
relation is indicated on the figure. (The relation should actually be modified
because the mixture used for the figure is not pure hydrogen but it is close
enough.) The sharp drop in opacity to the left of T ≈ 104 K signals the
demise of free–free and bound–free transitions as hydrogen becomes neutral
and the radiation field cools to lower energies, but H− prevents the opacity
from disappearing altogether (see Fig. 4.4).

Fig. 4.2. Plots of the LANL radiative opacities for the King IVa mixture X = 0.7,
Y = 0.28, and Z = 0.02. The mix of metals comprising Z corresponds to those
seen in the solar atmosphere. Material for this figure comes from the tabulations
of Cox and Tabor (1976). The dashed line shows the half-ionization curve for pure
hydrogen.

Features at higher temperatures include the effects of first and second
helium ionization, which can be detected as mild increases in opacity at
temperatures a little over 104 K and near 105 K at the lower densities. These
features, although seemingly minor, are important for many variable stars,
which are “driven” by helium ionization. (See Chap. 8, and, in this case, the
devil is in the details!) Apart from such irregularities, the opacities roughly
follow a Kramers’ law and fall off in temperature until high temperatures are



218 4 Radiative and Conductive Heat Transfer

reached, whereupon electron scattering takes over (κe ≈ 0.34). At the highest
temperatures, the opacity dips below the Thompson scattering level and this
is due to relativistic effects.

Figure 4.2 also illustrates some problems with using tabulated opacities.
First of all, they do not completely cover the temperature–density plane
(that would be impossible) but rather include just enough information to
be of use for modeling certain classes of stars. If you wish to study stars
whose properties are very different from those for which the given table was
computed, then you have to extend the table or make a new one. Never
extrapolate off a table (if possible). Secondly, you will note that the lines
in the figure do not always look smooth—they are not—and we have made
no attempt at smoothing but have just connected the tabulated points by
straight lines. This is where intelligent interpolation is needed.

The second figure shows the results for an almost pure helium mix (with
X = 0, Y = 0.97, Z = 0.03) opacity set requested by Morris Aizenman. (This
is the Aizenman IV table and it was used in modeling the deep interiors of
evolved stars.) Here the first and second helium ionization stages are well
marked by the double-humped peaks (and see Ex. 4.6). Also note that the
opacities are about an order of magnitude lower (for a given T and ρ) than
the hydrogen-rich mixture before the electron scattering threshold is reached.

Fig. 4.3. These are the radiative opacities for the helium-rich Aizenman IV mix
X = 0, Y = 0.97, and Z = 0.03 from Cox and Tabor (1976). Also shown (as a
dashed line) is the conductive opacity for log ρ of +4 from (4.72).

In Fig. 4.3 we also show the conductive opacity for pure helium at a density
of 104 g cm−3 (from 4.72). The intersection of this opacity with the radiative
opacity at the same density and temperature is indicated by a circle. If density
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is kept fixed, then a reduction in temperature causes κcond to decrease as T 2

(see 4.72). At the same time the radiative opacity increases (see figure) so that
κcond < κrad. This means, in accordance with our previous arguments, that
the total opacity becomes more like the conductive opacity and the radiative
opacity begins not to count. Conversely, a rise in temperature makes κrad
more important. Thus if the total opacity were plotted on the figure, the
opacity contours would be very different in some regions of ρ and T and
especially where densities are high and temperatures are low.

Figure 4.4 shows the opacities for two mixtures from Cox and Tabor
(1976). The one labeled “Pop II” is for a typical metal-rich mixture (Z =
0.02), whereas “Pop III” has no metals at all. (The density is 10−6 g cm−3

for both mixtures.) What is apparent is the precipitous drop-off in opacity for
temperatures below a few thousand degrees for the Pop III mixture compared
to Pop II. This is due to the virtual absence of H− opacity, which needs metals
to provide electrons. At 1,500 K the two cases differ by over three orders of
magnitude. Were you to make zero-age main sequence models for Pop III
objects you would find that their structures are very different than normal
stars with metals. This is no idle observation because, according to Big Bang
cosmologies, the first stars were of Pop III variety and their evolution must
have been very different than succeeding generations, which were enriched in
metals.5

Fig. 4.4. These opacities are also from Cox and Tabor (1976) and show the effect
of the H− opacity at low temperatures. “Pop II” has Z = 0.02, whereas “Pop III”
has no metals. The density is 10−6 g cm−3.

5 No Pop III stars have been found but the star HE0107–5240 (a 16th mag giant
in Phoenix) comes close. Its surface iron abundance is a mere 1/200,000 that of
the sun’s. See Tytell, D. 2003, Sky&Tel, 105, 20.
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More recently, since roughly 1990, two other groups have been actively
engaged in computing opacities using improved physics. The older group,
formed in 1984, consists of an international consortium of atomic physicists
and astrophysicists. They go under the catchy name of “The Opacity Project”
(OP). The second effort involves investigators at the Lawrence Livermore
National Laboratory (LLNL) in Livermore, CA. Their opacity code is called
OPAL. Both groups make their opacity tables available (most conveniently
on the World Wide Web from which they may be downloaded) and, upon re-
quest, can usually provide tables for new mixtures. In addition, both groups
make available sophisticated interpolation routines to yield smooth and con-
sistent results. References to pertinent publications are given at the end of
this chapter, including some from groups other than LLNL or OP.

Fig. 4.5. OPAL opacities for a X = 0.7, Z = 0.02, and solar metals mixture. The
parameter R = ρ/T 3

6 . See text.

To indicate the level of physics required for the calculations of OP and
LLNL, we quote from the LLNL Website (as of February 1999):

Briefly, the calculations [for OPAL] are based on a physical picture ap-
proach that carries out a many-body expansion of the grand canonical
partition function. The method includes electron degeneracy and the lead-
ing quantum diffraction term as well as systematic corrections necessary
for strongly-coupled plasma regimes. The atomic data are obtained from
a parametric potential that is fast enough for in-line calculations while
achieving an accuracy comparable to single configuration Dirac-Fock re-
sults. The calculations use detailed term accounting; for example, the
bound–bound transitions are treated in full intermediate or pure LS cou-
pling depending on the element. Degeneracy and plasma collective effects
are included in inverse bremsstrahlung and Thomson scattering. Most line
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broadening is treated with a Voigt profile that accounts for Doppler, natural
width, electron impacts, and for neutral and singly ionized metals broaden-
ing by H and He atoms. The exceptions are one-, two-, and three-electron
systems where linear Stark broadening by the ions is included.

This is why very fast computers are needed. Also, if you read between the
lines, you should realize that equations of state are computed as part of the
program. (Both LLNL and OP provide these.) However, the question arises,
“How comparable are the opacity results from LLNL and OP?” Were you
simply to plot the results, the naked eye would have a difficult time seeing
any differences between them. But differences of, in some cases, as much as
30% do occur. It would be worth your while to look into Iglesias and Rogers
(1996) for some comparisons. This is all very difficult stuff.

To illustrate what is available, and in what form it is made available,
Fig. 4.5 shows OPAL results for the mixture X = 0.7 and Z = 0.02 with a
solar atmosphere mix of metals. Plotted is opacity as a function of tempera-
ture for four values of the parameter R ≡ ρ/T 3

6 , where ρ is in g cm
−3 and T6

is the temperature in units of 106 K. To translate this to κ versus ρ and T
takes a little work, but the numbers for this figure were taken directly from
OPAL and it shows the range of ρ and T covered by the tables.

Fig. 4.6. This is to show how dramatically opacities differ between main sequence
stars. The opacities are plotted for 1M� and 15M� ZAMS models on the same
vertical scale. The mass scale, − log(1−Mr/M), emphasizes the outer layers.

What do opacities look like in actual stars (well, in models, at least)?
Figure 4.6 shows the run of opacity in two ZAMS models. (The mass scale is
the same as that used in Fig. 3.11.) For 1M�, the opacity begins to rise at a
Mr/M of about 1−10−3, which corresponds to a temperature of a few×105
K. This agrees with Fig. 4.2, where opacity begins to take off in that range.
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The peak opacity is reached atMr/M≈ 1−10−6, where T ≈ 5×104 K and
ρ ≈ 10−4 g cm3

(as it does in Fig. 4.2). What is striking is the mountain that
radiation has to surmount in the very outer layers (by radius, not mass) in
the model. If radiation had to carry all the flux, temperature gradients would
have to be very high. At roughly the same time (or place), ∇ad, as shown in
Fig. 3.11, shows a deep trough. This combination is a double whammy, and
convection takes over the task of moving most of the power through the star.

The 15M� model is entirely different. Temperatures begin to drop below
a few×105 K where the Mr/M is only 1 − 10−7 with densities around a
low 10−6 g cm−3. Looking at Fig. 4.2, we see this combination of T and ρ
means a relatively small opacity. And so it goes. There is a minor convection
zone in the envelope, but it is very near the surface. The central regions are
convective, but this is due to vigorous nuclear burning concentrated around
the stellar center (which is a story for the next chapter).

Finally, Fig. 4.7, from Hayashi, Hōshi, and Sugimoto (1962), shows what
regions of the log ρ–log T plane are dominated by various kinds of opacity.
(The composition is typical Population I.) The line labeled ψ = 0 denotes
the onset of degeneracy and, as you may verify, corresponds roughly to the
transition line where conduction takes over.

Fig. 4.7. This figure, from Hayashi et al. (1962), illustrates where various opac-
ities are most important as functions of temperature and density. The mixture is
Population I. The opacity nomenclature is almost the same as in the text except
that the lines are labeled in units of the electron scattering opacity here denoted
by κ0(= κe) = 0.2(1 +X). Reproduced with permission.
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4.7 Some Observed Spectra

In a text such as this, saturated as it is with theory, we believe it wise to
introduce some observational material having to do with real atmospheres.
In particular, we shall discuss briefly how some stars are classified. This is
not “just” taxonomy because it draws on the physics of atmospheres and the
intricate problems of observation itself. The subject is further complicated by
the bewildering number of kinds of stars, each kind with its own peculiarities.
The last come about from differences in atmospheric temperature, pressure,
density, local gravity, fluid flows, surface composition, presence of magnetic
fields, and even external influences such as companions or incident radiation
fields.

For a short tour consider Fig. 4.8, which shows the spectra of “normal”
(i.e., no oddball) main sequence (dwarf) stars. As reviewed briefly in Ap-
pendix A, such stars belong to luminosity class V with stars of decreasing
effective temperature given the spectral class labels O, B, A, F, G, K, and M
in that order (plus two other new classes to be discussed separately below).
Further subdivision is gained by appending, for examples, a numeral 0, 1, · · ·,
in order of decreasing temperature (and sometimes a 0.5 appears). The sun is
a G2V star. Stars of a given spectral class with large appended numbers are
called “late,” whereas “early,” and hotter, stars have small numbers (for now
irrelevant historical reasons). Thus the sun can be called an “early G dwarf.”
This classification scheme, which evolved over a number of years, is variously
called the “MKK” (for Morgan, Keenan, and Kellman, 1943) or the “Yerkes”
system (for the observatory where MKK did their work). An excellent short
review of the development of this scheme is given by Jaschek and Jaschek
(1987) in their Chapter 3.

Shown in the figure are the spectra of 16 dwarf stars spanning the classes
O–M with some subclasses combined (e.g., O7V–B9V) because, at this reso-
lution, intermediate spectra would not be distinguishable. (We shall, despite
the combining, refer to a particular curve as if it represents only one class
of star.) The acquisition and treatment of the data is discussed in Silva and
Cornell (1992).6 The wavelength coverage is from 351 to 893 nm at 11Å res-
olution (with 1 nm=10Å) with a binning interval of 5Å. This means that
features of roughly 10Å or less are not distinguishable in the figure. The ver-
tical separation between each spectrum has been designed for visual clarity
and has nothing to do with intrinsic luminosity.

The ordering of the curves is that the star with the highest effective
temperature starts with the topmost curve (O5V) in the left-hand panel.
The spectra of successively cooler stars then proceeds downward. The right-
hand panel continues the sequence from top to bottom. The first overall
impression is that the hotter stars emit photons predominantly in the blue
(and, most likely, the ultraviolet) parts of the spectrum, and the coolest stars

6 The data for this figure were downloaded from the WWW. See the references.
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Fig. 4.8. Spectra of main sequence (luminosity class V) stars of spectral classes
O–M derived from the work of Silva and Cornell (1992).

shine mostly in the red and near-infrared bands. (For orientation, Table 4.1,
adapted from Jaschek and Jaschek, 1987, gives the names and rough wave-
length bands for various parts of the electromagnetic spectrum.) Were these
stars to shine as blackbodies—and note that they do so only approximately—
the association of hot atmosphere with short wavelengths and cool with long
wavelengths is obviously correct. The devil, however, is in the details. But
devil aside, we also show in the figure effective temperatures for a single class
or some average when classes are combined (quoted from Lang, 1991).

All the spectra show sharp absorption lines (the dips) and these are crucial
in spectral classification. We have labeled some of these lines. Many others
are there, but, in most cases, the resolution is too coarse to show them. The
O– and B–stars in the sequence have strong lines—barely discernible here—
due to HeIλ4471 and HeIIλ4541, where the numbers are the wavelengths
in Å. The relative depth of these lines primarily determines the class. (We
will have a bit more to say about spectral lines in the next section.) For the
cooler stars in these two classes, the HeII lines diminish in strength because
the radiation field and/or collisions are not vigorous enough to produce the
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Table 4.1. Wavelength Regions

Name Wavelength interval unit

Extreme ultraviolet <1,000 Å
Ultraviolet 1,000–3,000 Å
Classical 3,000–4,900 Å
Visual 4,900–7,000 Å
Near infrared 7,000–105 Å
Far infrared 1–103 μm
Radio 0.1–104 cm

necessary first-ionized helium. Also present, and indicated in the figure, are
the hydrogen Balmer lines Hαλ6562, Hβλ4861, and Hγλ4330. These repre-
sent photons absorbed by the first excited state of hydrogen (n = 2), which is
populated primarily by collisional processes. The early (i.e., hotter) A–stars
show maximum strength in these lines.

As we enter the F- and G-stars, hydrogen lines weaken but metal lines
appear. Among these are the H and K lines of CaII (at 3,968Å and 3,933Å),
the NaDλ5889 line (indicated in the figure), and numerous iron lines. The cal-
cium lines may be picked out by the “cliff” near 4,000Å while the depression
known as the “G-band” (indicated) is primarily due to Fe.

The spectra of the cooler K-stars and class M-stars are dominated by
metallic lines and molecular bands from, for example, TiO (which makes a
decent white paint). These stars are obviously cool enough that such mole-
cules can escape being torn apart by vigorous collisions or the radiation field.
From our perspective, only the brave tread on ground such as that shown for
the M2V star in the figure.

But observational astronomers are brave—especially since new tools for
observing faint objects in the near-infrared have become available. In §2.2.2
we briefly discussed brown dwarfs, which, almost by definition, must be cooler
than spectral class M dwarfs and we suspect (correctly) that there are inter-
mediate objects. The next cooler spectral class after M, called the class “L”
dwarfs, is characterized by the replacement of metal oxide bands (e.g., TiO in
class M) by those of metallic hydrides and neutral alkali metals.7 Descriptions
of the classification of these very cool stars are given in Mart́ın et al. (1999)
and Kirkpatrick et al. (1999)—the 1999 date giving a clue to what new stuff
this is. Subdivisions (thus far) are L0, L1 · · · L8 with a corresponding range
of Teff from about 2,200 down to 1,500 K or so. Over 100 of these objects
have been discovered and they are a mix of (real) stars and brown dwarfs.

7 It would have been nicer to follow M by N but class N had been preempted by
the “carbon stars,” which are late luminosity class giant stars with strong bands
of carbon compounds but no metallic oxide bands.
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But even cooler objects have been observed in the near infrared. At L7V–
L8V there is evidence that weak features may be due to the emergence of
methane (CH4) in the spectra while the hydrides become less conspicuous.
This introduces the spectral class T, which is the newest class proposed. Here,
methane and H2O absorption bands become progressively more conspicuous
as temperature decreases. The subdivision sequence is from T0V to T8V
where, at T8V, the effective temperature is around 900 K, and here also is
where Gliese 229B lives, as discussed in §2.2.2. Recent (as of this writing)
references to spectral class T objects and their classification are McLean et
al. (2001), and Burgasser et al. (2002). By the time this text is printed, there
will be much more to talk about. So keep your infrared-sensitive eyes out.

4.8 Line Profiles and the Curve of Growth

For the professional astronomer whose specialty is stellar atmospheres, the
spectral lines in Fig. 4.8 tell a lot about the particular star. Among other
things (such as the physical state of the atmosphere), elemental abundances
may come through loud and clear—with, of course, a lot of work done be-
forehand.

This section will briefly explore some aspects of line formation and how,
in a simple model, abundances can, in principle, be determined. We will first
discuss the cross section for absorption of radiation by a classical charged
oscillator.

Think of the oscillator as an electron in an excited state of an atom. The
electron will decay to a lower energy level within some time, τ , determined
by quantum mechanics.8 As examples, the lifetime for the transition 2P–1S
(Lyα) in hydrogen is τ = 1.6× 10−9 s. But, since the lifetime is not infinite,
this means, by the uncertainty principle, that there is an uncertainty in the
energy of the level given by ΔE× τ = h̄. Since we will deal in frequencies (as
in ΔE = h̄2πν), all the above implies an uncertainty in frequency of γ = 1/τ .
This “gamma” (Oh, no! Not another γ?!) is called the “damping constant.”

4.8.1 The Lorentz Profile

Now back to the absorption of radiation by a classical oscillator. What we
just discussed had to do with emission of radiation, but, by detailed balance
(and see Ex. 4.9), emission and absorption are, in a sense, mirror images of
one another and quantities such as γ will crop up. So, without further ado,
the following gives the absorption cross section for radiation incident on a
stationary atom in some state where ν0 is the photon frequency necessary to
8 If the electron is in a high quantum state, the lifetime can be estimated us-
ing classical arguments because of the Bohr correspondence principle. See, for
example, Problem 14.21 in Jackson (1999, §16.8).



4.8 Line Profiles and the Curve of Growth 227

promote an electron to a particular higher state (see Jackson, 1999; §9–1 et
seq. of Mihalas, 1978; or §4.2 of Rose, 1998, for derivations):

σa(Lorentz) =
e2

mc
f

(γ/4π)
(ν − ν0)2 + (γ/4π)

2 . (4.73)

In (4.73), γ is the sum of the damping constants for the two levels involved,
and f is the oscillator strength. We sneak in the latter because it contains all
the quantum mechanics that were not in the classical model. For the 2P–1S
transition in hydrogen it is equal to 0.416. (A simplification has been made
here by assuming the frequency ν is fairly close to ν0.) The shape of (4.73)
is a Lorentz profile or Lorentzian (named after H.A. Lorentz, who not only
studied the fundamental properties of electromagnetism in pre-quantum days,
but who also helped give us Lorentz length contraction). Looking ahead, a
sample Lorentzian is shown in Fig. 4.9. You can check (4.73) to find that
the half-width of the profile (in frequency) at half-maximum is γ/4π (and
measure it in Fig. 4.9 where it was arbitrarily set to unity). Incidentally, we
shall see something very similar to (4.73) when we discuss resonant nuclear
cross sections in Chapter 6.

In real life, however, atoms are not standing still while light bathes them—
especially in stars.

Fig. 4.9. Shown is the behavior of the absorption cross section from pure Lorentzian
(ΔνD = 0, T = 0) to lines well-broadened by increasing temperature. The natural
width is taken so that γ/4π = 1. See text for details.
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4.8.2 Doppler Broadening

Because atoms are in motion, the arriving photons are Doppler shifted in
frequency as seen by those atoms. This does not change the basic physics
of (4.73), but if we consider an ensemble of moving atoms, then the total
ensemble average absorption cross section need not look like a Lorentzian.

Assume that the gas is ideal so that we know the distribution of velocities
that an individual photon may see; that is, the Maxwell–Boltzmann distri-
bution discussed in §3.3. Equation 3.25 is the one we want after we realize
that we must back off a step and put in some angular information. A fac-
tor of 2π comes from integration over the azimuthal angle, φ, (in spherical
coordinates). We can always choose the z–axis to lie along a line connecting
the incoming flux of photons and the gas (assumed to be at the origin) with
the axis pointed in the direction of the incoming photons. In that case, all is
well by symmetry and we do not have to remove the 2π. This leaves the co-
latitude angle ϑ. This introduces the factor sinϑdϑ, which, when integrated
over angle, gives a factor of two that must be removed. If we set μ = cosϑ,
then you may easily verify that in velocity space (3.25) expands out to

dn(v, μ)
n

= (2π)−1/2
( m

kT

)3/2
e−mv2/2kT v2 dv dμ . (4.74)

If the photon flux is all at frequency ν, then a particular atom sees a
Doppler-shifted frequency of ν(1 − vμ/c). Thus if, for example, the atom is
headed toward the photons (at ϑ = π or μ = −1), the atom sees the photon
as being blue-shifted. Thus the denominator of (4.73) becomes

1
[ν(1− vμ/c)− ν0]2 + (γ/4π)

2 .

The next step is to, in effect, undo the Doppler shift on ν and adjust ν0. Note
that

ν
(
1− v

c
μ
)
− ν0 = ν − ν0

(
1 +

v

c
μ
)
− (ν − ν0)

v

c
μ

≈ ν − ν0

(
1 +

v

c
μ
)

(4.75)

where the last term in the first equation is dropped because it is the product
of two (presumably) small terms.

We now fold in the Doppler-shifted cross section with the velocity distri-
bution to get an ensemble average for the cross section; that is,

σa(ν, ν0, T ) =
1

(2π)1/2

( m

kT

)3/2 e2

mc
f

γ

4π
×

×
∫ ∞
0

∫ +1

−1

e−mv2/2kT v2 dv dμ

(ν − ν0 − ν0vμ/c)
2 + (γ/4π)2

. (4.76)
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In mathematical terms, this is a convolution of a Gaussian (the Maxwellian)
and a Lorentzian. Thus the shape of σa will turn out to be a hybrid of the
two.

The next series of steps are tedious and not particularly enlightening.
They consist of a series of substitutions plus the recognition that the denom-
inator is of the form x2 + a2, which, when integrated over dx (i.e., ν), yields
some arctangents. As a guide, we recommend §5.4 of Rose (1998), which
you will probably need to read to do Ex. 4.12, where you are to derive the
following expression for the cross section:

σa =
e2f

mc
π1/2

1
ΔνD

H(a,Δν/ΔνD) . (4.77)

The various new quantities here are

ΔνD = ν0

(
2kT
mc2

)1/2

(4.78)

which is the Doppler width that measures the half-width at half-maximum
of the cross section if Doppler broadening dominates over the natural line
width γ ;

a =
γ

4π
1

ΔνD
(4.79)

which compares the two widths;

Δν = ν − ν0 (4.80)

as the new frequency variable; and, finally, the Voigt function,

H

(
a, u =

Δν

ΔνD

)
=

a

π

∫ ∞
−∞

e−y
2
dy

a2 + (u− y)2
. (4.81)

So it all boils down to what the well-studied Voigt function looks like.
Mihalas (1978, §9–2) gives a series expansion (which unfortunately contains
even more integrals) for a� 1 corresponding to the usual case that Doppler
broadening overwhelms the natural width γ. In making our figures we have
used the FORTRAN programs (on CD) in Thompson (1997, §19.6) for H(a, u),
which he also calls the plasma dispersion function. If you wish to reproduce
some of our results, be aware that Thompson does not give limits on how
well the program works when u is large (with a still fairly small). But, for
u2 � 1, Mihalas gives H(a, u) ≈ a/u2π1/2. This is the behavior of σa in the
wings of the absorption line far from line center (ν = ν0) in frequency.

Figure 4.9 shows the shape of the absorption cross section (sans multi-
plicative constants) for various values of ΔνD. The natural width is fixed by
γ/4π = 1 so that all frequency units may be easily scaled. The curve labeled
“Lorentzian” is self-explanatory and corresponds to ΔνD = 0. Note that the
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cross section near the center of the line decreases in height as ΔνD increases
(i.e., as temperature increases). What is happening is that more and more
photons are being absorbed at frequencies further removed from line center
and are not, in effect, available near line center.

4.8.3 Curve of Growth

If we have a hot macroscopic sample of absorbing atoms with radiation pass-
ing through the sample, we expect that the radiation will be attenuated
around ν0 as viewed by an observer peering at the sample in the direction of
the source of radiation. The more absorbing atoms in the path, the more the
attenuation; that is, the radiation acts as a probe of both the abundance of
absorbing atoms and their temperature.

Fig. 4.10. The evolution of a spectral absorption line with increasing number
density of absorbers is shown for sample values of β0 (see text). The ratio a =
γ/4πΔνD is fixed at 10−3.

In a very simple model, let radiation of uniform intensity Iν = I0 (for
all ν) be incident on a slab of thickness Δr in which the number density
of absorbers is na. If there were no absorbers, then an observer would see
a flat spectrum with intensity I0. Call this spectrum the continuum. We
seek deviations from the continuum. Treating this as straight attenuation
(no scattering, no angular problems, no emission—stimulated or not—etc.),
(4.4) and the discussion preceding it states that

Iν
I0
= e−τΔr = e−κvρΔr = e−naσa,νΔr = e−β0 . (4.82)
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If we know the temperature of the sample (as a big “if”) plus the microscopic
physics and Δr (another big “if”), than the only variable is na. The resulting
spectrum, Iν/I0, for a series of different β0 ≡ naσa,νΔr is shown in Fig. 4.10.

For small β0, where few absorbers are in the line of sight, there is only
a modest dip in Iν near line center—as a “weak line.” As the number of
absorbers increases the line becomes deeper until the line becomes saturated;
that is, Iν flattens out to zero near line center. “Saturation” is apt because
there are no photons left with frequencies near ν0 to be absorbed by the time
the beam leaves the slab. As β0 increases further, all that is left are the wings
of the line. If we had done a more realistic calculation, the line shapes would
have been a little different but the overall effect would have been very similar
(as in Fig. 10–1 of Mihalas, 1978).

Fig. 4.11. The solid curve is the curve of growth corresponding to the line profiles
of Fig. 4.10 with a = 10−3 (a ∝ 1/ΔνD). For a = 10−2 (dashed line) the damping
portion of the curve begins sooner because ΔνD has been reduced.

Observing spectral lines with high resolution is not always possible. What
is often done is to measure the equivalent width, defined as

Wν =
∫ ∞
0

(
1− Iν

I0

)
dν =

∫ ∞
0

(
1− e−β0

)
dν . (4.83)

Thus as β0 decreases toward zero, so doesWν . In this respect,Wν is a measure
of β0 and hence na (all other things being equal). An example of what Wν

looks like is shown in Fig. 4.11 for a = 10−3 (a ∝ 1/ΔνD) and so corresponds
to integrating the line profiles of Fig. 4.10 through a range of β0. Such a curve
is called a “curve of growth.”
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For small β0 (weak line), Wν ≈ β0 so that on a log–log plot we have a
straight line. (See Mihalas, 1978, §10–3 for more details.) Hence the “linear
region” in the figure. In the saturated section, Wν ∼

√
lnβ0, which is a

mild dependence on β0 and thus the curve rises very slowly. For large β0,
Wν ∼ β

1/2
0 and we have a straight line again, but not as steep as the linear

region.

Fig. 4.12. The composite curve of growth for some 200 lines of iron (Fe I) and
titanium (Ti I) in the sun. The quantity Xf is effectively our β0 and W/λ is the
equivalent width divided by the central wavelength of the line. See Wright (1948).

What we have shown thus far is, obviously, pure theory. Real lines are
broadened by other processes such as turbulence (very difficult to model),
collisional processes, etc. Each of these may overwhelm the effects of Doppler
broadening. Yet, the curve of growth is a valuable diagnostic when applied to
many lines using more sophisticated atmospheric calculations. An example
is shown in Fig. 4.12 (originally due to Wright, 1948, and see Fig. 10–3 of
Mihalas, 1978) for the sun. Here 75 lines of Fe I and 137 of Ti I have been
observed to determine temperatures and abundances. We cannot go into the
details but it sure has the general features of our Fig. 4.11 if you try to fit
(by eye) a curve of growth to the observations.

4.9 Exercises

Exercise 4.1.We introduced the source function, S(τ), in §4.1 but, for the
most part, had little to say about it. To rectify this partially, consider the
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emergent intensity at τ = 0 (from 4.12)

I(0, μ ≥ 0) =
∫ ∞
0

e−t/μ
S(t)
μ

dt

where we assume that the source function is a linear function of depth; that
is,

S(τ) = S0 + S1τ

with S0 and S1 constant. Integrate and show that I(0, μ ≥ 0) = S0 + μS1.
(This is the Eddington–Barbier relation.) Obviously this may be written as
I(0, μ ≥ 0) = S(τ = μ). Thus the source function is directly a “source”
for the emergent intensity. Interpret this more fully; for example, what does
τ = μ imply? (And, beware, the Eddington–Barbier relation is of limited
usefulness. See Mihalas, 1978, for comments.)

Exercise 4.2. In deriving the diffusion approximation, we computed the flux
in (4.17). It should be clear that the ratio [∂B(τ)/∂τ ] /B(τ) is a relative mea-
sure of the anisotropy in the radiation field. Show that, aside from order unity
factors, this ratio is approximately (Teff/T )

4. Give a simple interpretation of
this result.

Exercise 4.3. Suppose you wanted to “improve” upon the diffusion equation
by adding a second-order term to the series expansion of the source function
given by (4.14). Let that term be (t− τ)2

(
∂2B/∂τ2

)
/2. Show, by explicitly

finding corresponding additional terms to the intensity (of Eqs. 4.15–4.16) for
large τ and integrating (4.3) for the flux, that your efforts have been in vain;
that is, show that the second-order term contributes nothing to the flux. You
must go to third-order to find anything new!

Exercise 4.4. Consult the references and download opacities from theWWW
and plot some (as in Figs. 4.2–4.5). Try a variety of mixes.

Exercise 4.5. Reproduce κcond of (4.72) by putting in all the numerical fac-
tors left out of the discussion leading up to that equation. In doing so it is
worthwhile getting a numerical expression for the electron mean free path λ.
You should find it is rather long compared to those associated with atomic
processes (e.g., absorption, etc.). The point here is that conduction is efficient
because the electrons can travel relatively long distances. It’s the exclusion
principle working again.

Exercise 4.6. Go back to Exercise 3.1 and find the half-ionization temper-
atures for the first and second stages of pure helium at densities 10−4, 10−6,
and 10−8 g cm−3. Plot these three results on Fig. 4.3 to verify that the bumps
in that figure do correspond to helium ionization stages.

Exercise 4.7. Plot κtot on Fig. 4.3 for densities 104 and 10 g cm−3 using
κcond of (4.72) and the parallel circuit result (4.69) to show how radically
that figure can change when conduction is taken into account. (You can go to
the Cox and Tabor, 1976, tables directly to get the numbers used in Fig. 4.3.)
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Exercise 4.8. Using the approximations (4.62–4.65) for bound–free, free–
free, and H− opacities, try to duplicate the tabulated opacities shown in
Fig. 4.2 for densities 10−4 through 10−8 g cm−3. Recall that the range of
(supposed) temperature validity for these approximations depends on the
state of hydrogen ionization. And don’t be too disappointed if the com-
parison doesn’t look that good. These are only order of magnitude, or so,
approximations.

Exercise 4.9. Consider an atom having only two levels, labeled j and i, with
energies Ej > Ei. The energy difference is Ej − Ei = hνji, where νji is the
frequency of a photon transition from level j to i. For simplicity, the states
are assumed to be nondegenerate in the sense that only one state in the atom
has energy Ej or Ei. Thus gj and gi of (3.9) are both unity. In real life, the
two levels have a small but nonzero width due to relative Doppler motions
in a mixture of such atoms and to the intrinsic lifetime of the levels. Here we
ignore these effects and assume that a line in emission is infinitely narrow and
only photons of precise frequency νji can be absorbed or emitted. What we
discuss here are the Einstein coefficients that relate the rates at which photons
are emitted from j by spontaneous emission or by “induced” (“stimulated”)
emission to absorption of photons on level i. Therefore define the Einstein
coefficient Aji such that njAji is the rate at which states j in a mixture
spontaneously decay to i where nj is the number density of atoms in state j.
Spontaneous emission, however, is not the only means of decay. The ambient
radiation field can “induce” state j to decay due to interaction of photons of
energy hνji with j. The rate at which this occurs should be proportional to
the field intensity Iν at frequency νji. Thus define Bji so that the induced
rate is njBjiIν . The last coefficient, Bij , describes the absorption rate from
i to j as niBijIν and it is, obviously, proportional to the intensity of the
radiation field. In thermodynamic equilibrium the rates up and down must
balance (as in “detailed balance”). Thus

nj(Aji +BjiIν) = niBijIν

and now for the problem.

1. Assume thermodynamic equilibrium so that Iν = Bν , and we have the
ideal gas Boltzmann result

nj
ni
= exp (−hνji/kT ) .

Show that the Einstein coefficients are related by

Bij = Bji and Aji = Bji

2hν3ji
c2

.

Thus induced emission takes place as long as we have spontaneous emis-
sion or absorption. Otherwise the laser would be impossible.
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2. Show that

rate of induced emission
total rate of emission

= exp (−hνji/kT ).

3. Compute the above ratio for the Lyman-α and 21 cm lines of hydrogen
at a temperature of 104 K.

Exercise 4.10. The Eddington result for the run of temperature with optical
depth was given by (4.44); i.e.,

T 4(τ) =
1
2
T 4
eff

(
1 +

3
2
τ

)
.

We now use this to examine what this implies for convection. Looking ahead
to Chapter 5, convection takes place if ∇ > ∇ad where

∇ = d lnT
d lnP

(Eq. 4.28) and ∇ad =
Γ2 − 1
Γ2

(Eq. 3.94) .

We wish to rephrase this as a condition on Γ2 at large optical depths by
finding what are the derivatives in ∇.
1. Show that

d lnT
dτ

=
3

8 + 12τ
.

2. After integrating (4.46) with constant opacity, combine that result with
hydrostatic equilibrium of (4.45), and then use the definition of optical
depth of (4.8), to show that

d lnP
dτ

=
1
τ

.

3. For large optical depths use the above to show that Γ2 < 4/3 implies
convection; i.e., the “magic” 4/3 strikes again.

Exercise 4.11. Show that ∂Bν/∂T in the definition of the Rosseland mean
opacity (4.22) most heavily weights those photons with frequencies ν ≈ kT/h.

Exercise 4.12. Derive (4.77) for σa in terms of the Voigt function.

Exercise 4.13. Show that (4.39) for Prad gives the usual result Prad = aT 4/3
in LTE where I = B(T ).

Exercise 4.14. Use the FORTRAN code “csotest” on the CD-ROM to repro-
duce Fig. 4.2. The correspondence will not be exact because we have not told
you what the mix of metals is.
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4.10 References and Suggested Readings

Introductory Remarks and §4.1–§4.2: Radiative Transfer & The
Diffusion Equation
We recommend the texts
� Mihalas, D. 1978, Stellar Atmospheres, 2d ed. (San Francisco: Freeman)
� Mihalas, D., & Mihalas, B.W. 1984, Foundations of Radiative Hydrody-
namics (Oxford: Oxford University Press).

The emphasis of these two is different, but complementary, and both contain
modern and practical material. Chapters 4–8 of
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach)

discusses stellar atmospheres more from the viewpoint of applications to stel-
lar interiors than do the Mihalas references.
� Rybicki, G.B., & Lightman, A.P. 1979, Radiative Processes in Astro-
physics (New York: Wiley & Sons)

and Chapters 4 and 5 of
� Rose, W.K. 1998, Stellar Astrophysics (Cambridge: Cambridge Univer-
sity Press)

also contain useful material. A little less intensive, but clear, is
� Böhm-Vitense, E. 1989, Introduction to Stellar Astrophysics, Vol. 2, Stel-
lar Atmospheres (Cambridge: Cambridge University Press).

§4.3: A Simple Atmosphere
Mihalas (1978) discusses many simplified atmospheric calculations that we
do not attempt. Various applications of the Eddington limit are discussed in
� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: Wiley Interscience).

The use of interpolation among atmospheres in making stellar models is re-
viewed in
� Kippenhahn, R., Weigert, A., & Hofmeister, E. 1967, MethCompPhys, 7,
53.

§4.4: Radiative Opacity Sources
The material in
� Clayton, D.D. 1968 Principles of Stellar Evolution and Nucleosynthesis,
(New York: McGraw-Hill)

is presented from a physicist’s point of view and we recommend it highly.
Cox, J.P. 1968, Principles of Stellar Structure, bases his exposition primarily
on the LANL method of calculating opacities. The LANL method (in an older
but still good discussion) is given by
� Cox, A.N. 1965, in Chapter 3 of Stellar Structure, Eds. L.H. Aller & D.B.
McLaughlin (Chicago: University of Chicago Press).
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The reference to
� Landau, L.D. & Lifshitz, E.M. 1971, Classical Theory of Fields (Oxford:
Pergamon Press)

can be found, as with other volumes in this classic series, in more recent
editions. Also see (the now classic)
� Jackson, J.D. 1999, Classical Electrodynamics, 3rd ed. (New York: John
wiley & Sons).

The monograph by
� Spitzer, L. 1962, Physics of Fully Ionized Gases, 2nd ed. (New York:
Interscience)

contains much of interest for the astrophysicist. Another work of his is
� Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium (New
York: Wiley & Sons).

The text by
� Schwarzschild, M. 1958, Structure and Evolution of the Stars (Princeton:
Princeton University Press)

is counted as the first modern work describing how stars evolve. It is now out
of date but still worth perusing.

§4.5: Heat Transfer by Conduction
Several undergraduate solid-state (now “condensed matter”) texts give the
basic material on thermal conduction by electrons. The text by
� Kittel, C. 1968, Introduction to Solid State Physics (New York: Wiley &
Sons)

(or later editions) is particularly clear.

Conductive opacities are discussed in
� Hubbard, W.B., & Lampe, M. 1969, ApJS, 18, 297
� Lamb, D.Q., & Van Horn, H.M. 1975, ApJ, 200, 306
� Itoh, N., Mitake, S., Iyetomi, H., & Ichimaru, S. 1983, ApJ, 273, 774
� Itoh, N., Kahyama, Y. Matsumoto, N., & Seki, M. 1984, ApJ, 285, 758.

The reference to Spitzer (1962) is given above.

§4.6: Tabulated Opacities
A relatively simple fit to opacities is given by
� Stellingwerf, R.F. 1975, ApJ, 195, 441

with a footnote correction in
� Ibid. 1975, ApJ, 199, 705.

The range of composition is somewhat limited to 0.6 < X < 0.8, 0.2 < Y <
0.4, and 0.001 < Z < 0.02. To implement his prescription, however, you must
supply the electron pressure. See also
� Iben, I. Jr. 1975, ApJ, 196, 525.
Extensive tabulations of radiative opacities from LANL may be found in

� Cox, A.N., & Stewart, J.N. 1970, ApJS, 19, pp. 243, 261
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� Cox, A.N., & Tabor, J.E. 1976, ApJS, 31, 271
� Weiss, A., Keady, J.J., & Magee, N.H. Jr. 1990, ADNDT, 45, 209.

For seminal papers of the Opacity Project (OP), see
� Mihalas, D., Hummer, D.G., Mihalas, B.W., & Däppen, W. 1990, ApJ,
350, 300

� Hummer, D.G., & Mihalas, D. 1988, ApJ, 331, 794
� Seaton, M.J. 1987, JPhysB, 20, 6363
� Seaton, M.J., Yan, Y., Mihalas, D., & Pradhan, A.K. 1994, MNRAS, 266,
805

and
� Seaton, M.J. 1995, ed. The Opacity Project, Vol. 1 (Bristol: Institute of
Physics Publishing).

Sample papers from LLNL for the OPAL code are
� Rogers, F.J., & Iglesias, C.A. 1992, ApJS, 79, 507
� Ibid. 1993, ApJ, 401, 361, & ApJ, 412, 712
� Ibid. 1994, Science, 263, 50.

The latest paper, which contains comparisons to OP and LANL, is
� Iglesias, C.A., & Rogers, F.J. 1996, ApJ, 464, 943,

and, for information about the corresponding equation of state, see
� Rogers, R.F., Swenson, F., & Iglesias, C.A. 1996, ApJ, 456, 902.

The penultimate paper also makes comparisons to the opacities of
� Alexander, D.R., & Ferguson, J.W. 1994, ApJ, 437, 879

which we have not discussed.
The following are the WWW addresses for LLNL (i.e., OPAL) and OP

as of February 1999. They will probably change at some time:
http://www-phys.llnl.gov/V Div/OPAL/

http://vizier.u-strasbg.fr/OP.html

We shall have other occasions to refer to the classic article by
� Hayashi, C., Hōshi, R., & Sugimoto, D. 1962, PTPJS, Vol. 22.

It is now outdated by modern standards but contains a particularly clear
development of the ingredients of stellar structure.

§4.7: Some Observed Spectra
For a comprehensive review of how spectra are used to classify stars, we
recommend
� Jaschek C., & Jaschek, M. 1987, The Classification of Stars, (Cambridge:
Cambridge University Press).

The MKK system is described in
� Morgan, W.W., Keenan, P.C., & Kellman, E. 1943, An Atlas of Stellar
Spectra with an Outline of Spectral Classification (Chicago: University
of Chicago Press).

Figure 4.8 derives from the work of
� Silva, D.R., & Cornell, M.E. 1992, ApJS, 81,865
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using data downloaded from
http://zebu.uoregon.edu/spectra.html

which, if still active, should be looked into because data are also available
for other luminosity classes. The effective temperatures shown in Fig. 4.8 are
from
� Lang, K.R. 1991,Astrophysical Data: Planets and Stars (Berlin: Springer-
Verlag).

Spectral class L dwarf stars and brown dwarfs are discussed in
� Mart́ın, E.L., Delfosse, X., Basri, G., Goldman, B., Forveille, T., Zapa-
tero, O., & Maria, R. 1999, AJ, 118, 2466

and
� Kirkpatrick, J.D., et al. 1999, ApJ, 519, 802

(the latter article having ten authors). Going yet further into the class T
objects, we recommend
� McLean, I.S., Prato, L., Sungsoo, S.K., Wilcox, M.K., Kirkpatrick, J.D.,
& Burgasser, A. 2001, ApJ, 561, L115

and
� Burgasser, A.J., et al. 2002, ApJ, 564, 421.

§4.8: Line Profiles and the Curve of Growth
For those of you taking graduate courses,
� Jackson, J.D. 1999, Classical Electrodynamics, 3rd ed. (New York: John
Wiley & Sons)

is the place to go for reading about the interaction of radiation with matter.
The classic text to consult is Mihalas (1978), while
� Rose, W.K. 1998, Stellar Astrophysics (Cambridge: Cambridge Univer-
sity Press)

fills in some derivations.
� Thompson, W.J. 1997, Atlas for Computing Mathematical Functions
(New York: Wiley-Interscience)

contains many FORTRAN 90 and Mathematica programs in the text and on a
compact disk. We used his program to compute the Voigt function, H(a, u).
Watch out, however. The program gives nonsensical results for very large u.
Figure 4.12 is based on
� Wright, K. 1948, Publications of the Dominion Astrophysical Observa-
tory, Victoria, 8, 1.

This is a classic paper that was almost ready to be published in 1940 before
WWII intervened. It is worth reading to see, among other things, how difficult
pre-computer astronomy was compared to how observations and analyses are
done today.



5 Heat Transfer by Convection

“Double, double toil and trouble;
Fire burn and cauldron bubble.”

— W. Shakespeare (Macbeth)

That about sums it up.

The major portion of this chapter will be devoted to a discussion of the “mix-
ing length theory,” or “MLT,” of convective heat transport in stars. Although
this theory has many faults, it has served as a useful phenomenological model
for a description of stellar convection for more than 40 years and most nu-
merical simulations of stellar evolution use it in one guise or another. Near
the end of the chapter we shall discuss alternatives to the MLT and why a
realistic description of convection is so difficult.

Our discussion of the MLT will partly parallel that of Cox (1968), where
details of the usual derivation of the MLT are the most completely laid out in
the textbook literature. (We also recommend the paper by Gough and Weiss,
1976, which is a still-not-outdated review of calibrations of the MLT.) The
first edition of this text (Hansen and Kawaler, 1994) went to considerable
effort to explore the explicit and implicit assumptions behind the MLT—a
task not attempted in standard texts. We still like that approach but many
of our colleagues told us that it just didn’t work in the classroom (and it
made the chapter too long). OK, friends and colleagues, we gave in—mostly
because we agreed with you. For those of you who would like to see the
“complete” treatment, please consult the first edition.

5.1 The Mixing Length Theory

The mixing length theory was originally formulated in its “stellar” form by
Biermann (1951), Vitense (1953), and Böhm–Vitense (1958) based on earlier
1925 work of Prandtl (see Prandtl, 1952). Since then, it has been elaborated
on and modified in many ways and one should no longer call it just the
MLT without citing exactly which version is being referred to. A “classic”
derivation of one version of the theory may be found in Cox (1968, Chap. 14).

The general idea behind the theory is to imagine that the stellar fluid
is composed of readily identifiable “eddies,” “parcels,” or “elements” (or, in
more colloquial terms, “bubbles” and “blobs”), that can move from regions
of high heat content to regions of lower heat content, or conversely; that
is, they are capable of transporting or convecting heat through the fluid.
These parcels arise from unspecified instabilities in the fluid but have prop-
erties not drastically different from their surroundings. If conditions are ripe,
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then buoyancy effects cause the parcels to, say, rise in the star through some
characteristic distance �, the mixing length, before they lose their identity
as separate parcels and break up and merge with the surrounding fluid. As
they rise, they maintain pressure equilibrium with their surroundings. Since
these particular parcels start their rise in an environment having a higher
heat content (higher temperature) than where they break up, heat is thereby
transported from the starting position up to the level at the additional height
�. To complicate matters, the parcel may radiatively release heat to its sur-
roundings as it rises. At the same time, cool parcels at a higher level sink a
distance �, and they too break up. The net effect is heat transport directed
outward in the star. The rate of transfer is established by the parcel forma-
tion rate, velocity (w) of rise, �, the heat content of the star as a function of
depth, and by how radiatively “leaky” the parcels are as they rise.

This sounds relatively simple and, in fact, it is—in the context of MLT.
We shall also see that most formulations of the theory have a major virtue for
computation: all that matters is that temperature, density, and other stellar
quantities be known at a single radius of interest. If so, then a convective
heat flux may be computed at that point. The MLT is thus a local theory.

The sequence we shall follow in discussing the MLT is first to derive the
criterion for buoyancy, and then to estimate the heat leakage from a parcel.
This will give us the equations of motion. Finally, we shall find expressions
for the convective flux in the limit of “efficient” convection and discuss how
they are used.

5.1.1 Criteria for Convection

First of all, certain general assumptions are made that should be explicitly
set forth. Besides neglecting magnetic fields, rotation, and the like, we assume
the following (with comments).

1. A readily identifiable parcel has a characteristic dimension of the same
order of size as the mixing length �.

2. The mixing length is much shorter than any scale length associated with
the structure of the star. Examples of such lengths are the pressure scale
height, λP of (3.1), and similar scale heights for temperature and density.

3. The parcel always has the same internal pressure as that of its surround-
ings. This means that however the convective processes work, the time
scales associated with them are always long enough that pressure equi-
librium is maintained. Thus, for example, if vs is the local sound speed in
the parcel, then the sound traversal time across the parcel, �/vs, is short
compared to, say, the ascent or descent time of the parcel through the
distance �.

4. Acoustic phenomena may be ignored altogether, as may shocks, etc.
5. Temperatures and densities within and outside a parcel differ by only a
small amount.
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The combination of these assumptions constitutes the “Boussinesq” approx-
imation. What it implies is that the fluid is almost incompressible and that
density variations (which may give rise to buoyancy effects) and temperature
variations in the fluid are very small. The Boussinesq approximation usually
works very well in the laboratory, where scale heights are large compared to
container sizes (which roughly set the maximum size of a convective cell). In
its application to stars, however, we shall see that the mixing length must be
near the size of λP or one of the other scale heights for reasonable results to
be obtained. Thus, in practice, the MLT will turn out to violate one of its
internal assumptions. Furthermore, it is unfortunate that laboratory-derived
constraints on the MLT are essentially nonexistent because of the follow-
ing. The dimensionless Rayleigh number (see any text in fluid dynamics and
Ex. 5.4) associated with laboratory fluids is usually less than 1011 but stellar
convection is characterized by high values, 1020—give or take a few orders
of magnitude. The same situation applies to the Prandtl number where, in
stars, it is around 10−9, but in the lab it is of order unity (and see Ex. 5.3).
Note also, in passing, the troublesome consequences of (1) in the above: how
can the parcel get very far if its dimensions are of the same order as the
distance it travels (�)?

With the above alerts in mind, consider a plane parallel fluid under the
influence of gravity, where z measures the height up through the fluid. In-
side a typical parcel created by some unspecified process, denote the interior
temperature, pressure, and density by T ′, P , and ρ′, respectively. Outside
the parcel, the corresponding quantities are denoted by T , P , and ρ. Note
that the pressures inside and out are the same by virtue of assumption (3).
Suppose that T ′ > T (but not by much) so that the parcel is hotter than its
surroundings. Normally this implies that ρ′ < ρ because of the interior versus
exterior pressure equilibration. If the volume of the parcel is V ∼ �3, then
Archimedes’ principle states that the parcel will experience a net upward
buoyancy force of

ρV g − ρ′V g (5.1)

where g is the local gravity. Note that we have not specified exactly what
the volume of the parcel is in terms of �. It could be spherical (4π[�/2]3/3),
a cube (�3), or what have you. These fine distinctions involving constants of
order unity give rise to some of the variants in mixing length theory and we
shall ignore them. In any case, the parcel now commences to rise.

We must eventually determine what is the mean velocity of the parcel as
it rises through the mixing length distance, �, and what its temperature is
compared to the ambient temperature when it merges into the surrounding
fluid. The latter comparison will tell us how much energy the parcel will
release when it loses its identity. For all this we shall first need information
about temperature gradients.

We denote β to be the negative of the ambient temperature gradient
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β = −dT

dz
(5.2)

where (almost always) β > 0. This gradient is assumed to be known despite
the fact that heat transported by rising and descending parcels may very
well establish just what that gradient is. We can relate β to other known
quantities by observing that

dT

dz
=

dT

dP

dP

dz
= T

d lnT
d lnP

d lnP
dz

= − T

λP
∇ = −β (5.3)

where ∇ is the “actual del” introduced in the preceding chapter as (4.28).
The pressure scale height in the above may be recast in terms of the local
sound speed with the aid of (1.38):

λP = −
(
d lnP
dz

)−1
=

P

gρ
=

v2s
gΓ1

(5.4)

where Γ1 is the adiabatic exponent defined by (3.93). Thus

β =
T

λP
∇ = gΓ1T

v2s
∇ . (5.5)

To describe how the temperature inside the parcel varies as the parcel
rises, first write

dT ′

dz
= T ′

d lnT ′

d lnP ′
d lnP ′

dz
.

If we assume, as a start, that the rising parcel exchanges no heat with its
surroundings, then the term d lnT ′/d lnP ′ must describe adiabatic varia-
tions of temperature with pressure. This is the thermodynamic derivative
∇ad = (d lnT/d lnP )ad introduced earlier (as in 3.94 and 3.96). Because all
fluctuations are assumed to be small, it is appropriate to replace the lone
factor of T ′ by T in the right-hand side of the above. (We can’t do the same
with the temperature gradients because they drive the motions.) In addition,
we replace P ′ with P , because of pressure equilibration, so that the last factor
may be turned into a pressure scale height. Finally we may append an “ad”
subscript to dT ′/dz because of the adiabaticity assumption and write(

dT ′

dz

)
ad
= − T

λP
∇ad = −βad . (5.6)

Thus,

β − βad =
T

λP
(∇−∇ad) . (5.7)

The question is now whether the parcel, once having commenced to rise
adiabatically, will continue to rise. It may well be that as the parcel rises to
greater heights and its internal pressure drops, its interior temperature may
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also have decreased adiabatically to a level where the parcel is cooler than its
surroundings. In that case it has negative buoyancy and it tends to sink back
down before traversing a mixing length. It is the other possibility, in which
the parcel’s temperature continues to exceed that of the surroundings, that
is of major interest. Here, the fluid is said to be convectively unstable and
the perturbation that causes the parcel to rise takes place in an environment
that encourages further rising until a mixing length is traversed. This latter
condition may be expressed as follows.

Fig. 5.1. A schematic run of temperature (normalized to some common temper-
ature Tc) versus radius for: (a) the ambient medium (solid line); (b) a convec-
tively unstable parcel (dashed line) with (dT ′/dr)ad > (dT/dr); (c) a stable parcel
(dashed-dotted line) with (dT ′/dr)ad < (dT/dr).

First observe that both dT ′/dz and dT/dz are assumed to be negative.
Thus the condition that T ′ decreases more slowly than T with height is
expressed as (

dT ′

dz

)
ad

>

(
dT

dz

)
(convectively unstable) . (5.8)

This convectively unstable situation is illustrated in Fig. 5.1. Another way to
express this is to use (5.2), (5.5), and (5.6) to write

β > βad (convectively unstable), or (5.9)
∇ > ∇ad (convectively unstable) . (5.10)

The three conditions (5.8–5.10) are equivalent to and, in the stellar context,
are often called the Schwarzschild criteria (K. Schwarzschild, 1906). These
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are local criteria and thus require information from only the one height (or
radius) of interest in the star.

The criteria (5.8–5.10) are also equivalent to the statement that if entropy
decreases outward at some point (dS/dr < 0), then the fluid is convectively
unstable (Cox, 1968, §13.4, or our §7.3.3). Put another way, convection does
not take place in hydrostatic stars where the entropy increases outward. It
will turn out that in regions where convection is very efficient, ∇ is only very
slightly greater than ∇ad. In such regions the entropy is very nearly constant
with height. (Ex. 5.1 asks you to examine the role of entropy.)

We finally begin to see what role the “dels” play in convection. If, by some
mischance, adiabatic perturbations arise where the local run of temperature
versus pressure is such that the local value of ∇ is greater than the local
thermodynamic equivalent,∇ad, then convection should be present. However,
if this is really so, then convection must change the thermal structure and,
hence, ∇, and so on.

Fig. 5.2. Shown are ∇ad (solid line) and ∇ (dashed line) versus − log(1−Mr/M)
for a model ZAMS sun. See also Fig. 3.11.

As an example of how ∇ and ∇ad behave in a typical star, Fig. 5.2 shows
their run in a ZAMS sun. The abscissa is − log(1−Mr/M) and it emphasizes
the outer layers (as in Fig. 3.11, which showed only ∇ad for the same model).
It is apparent that the model is radiative (i.e., transports heat solely by radi-
ative transfer) from the center, at − log(1−Mr/M) = 0, toMr/M≈ 0.997
because ∇ < ∇ad throughout that region. (The latter mass point corresponds
to roughly r/R = 0.8.) It is impossible to detect in this figure but past that
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point (to 1−Mr/M≈ 10−7) ∇ is very slightly larger than ∇ad; that is, that
region is convective and, as it turns out, efficiently so. The actual gradient
∇ then clearly exceeds ∇ad until very nearly the model surface after which
radiative transfer takes over again. (A different, and perhaps clearer, view
of this figure will be shown as Fig. 5.3.) The version of the MLT used to
construct this model is almost what we shall describe in the next few pages,
but it also included nonadiabatic (heat leakage) effects, which will eventually
be ignored in this chapter. The ZAMS code, found on the CD–ROM at the
end of this text, was used to make this model and that code includes heat
leakage.

5.1.2 Radiative Leakage

Real life is never adiabatic. Because our parcel is either cooler or hotter than
its surroundings, heat must be exchanged between the two. Thus consider
the energy equation

dQ′

dt
= −∇ •••FFrad (5.11)

where Q′ is the heat content per unit volume in the parcel and FFrad is the
radiant flux from the parcel out to the ambient medium. (Don’t confuse
the gradient or divergence operators used here and the various “dels.”) Now
recall that the Boussinesq conditions of no acoustic phenomena and small
fluctuations imply that the only time density perturbations are to be taken
into account is when they are coupled to gravity to cause buoyancy. Thus
in considering heat balance, P dV work terms are neglected so that (5.11)
reduces to (

∂T ′

∂t

)
= − 1

ρcP
∇ •••FFrad (5.12)

where cP is in erg g−1 K−1.
For the radiative flux we again choose a diffusion approximation, assuming

the medium to be optically thick, and write

FFrad = −K∇T (5.13)

where the diffusion constant K is assumed constant over the mixing length
�. The gradient term on the righthand side of this equation and subsequent
righthand sides of the energy equation will be taken to be some linear com-
bination of T and T ′ (as will be done shortly). We now introduce the opacity
by using a relation identical to that used in the calculation of conductive
opacities (see 4.67); namely,

K = 4acT 3

3κρ
. (5.14)

Equation (5.12) then becomes
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∂T ′

∂t

)
=
K
ρcP

∇2T =
4acT 3

3κρ2cP
∇2T . (5.15)

The ratio K/ (ρcP ) is the thermal diffusivity (or conductivity), νT , with

νT =
4acT 3

3κρ2cP
(5.16)

and it has the units of cm2 s−1. For the characteristic length in these units
choose � itself. Therefore a characteristic radiative cooling time associated
with radiation from, or into, the parcel is �2/νT . The energy equation then
becomes (

∂T ′

∂t

)
= νT ∇2T (5.17)

and, in this form, it is sometimes known as Fourier’s equation (see Landau
and Lifshitz, 1959, §50).

Since we have no way to determine the precise structure of our parcel, we
should model ∇2T as simply as we can. The obvious way is to replace it by
(T − T ′)/�2. The order of the temperatures is correct because, for example,
if T ′ > T then ∇2T and (∂T ′/∂t) are both negative as they should be: the
parcel loses heat because it is hotter than its surroundings.

At this point we have to amend the energy equation somewhat because,
as it stands, it is in Eulerian form and it describes the change in heat content
at a fixed position. To follow what happens in the parcel as it moves, convert
to Lagrangian coordinates by the following well-known transformation, which
is discussed in any text in hydrodynamics:

DT ′

Dt
=
(
∂T ′

∂t

)
+w •••∇T ′ (5.18)

where D denotes the Lagrangian (or Stokes) operator and w is the (vec-
tor) parcel velocity. Since only vertical movement is contemplated here,
w •••∇T ′ = w (∂T ′/∂z). The term ∂T ′/∂t in (5.18) takes care of the instan-
taneous heat loss so that the remaining advective term, w (∂T ′/∂z), should
describe how T ′ behaves without such loses. Thus we identify the derivative
in the last term as (

∂T ′

∂z

)
=
(
dT ′

dz

)
ad
= −βad

from (5.6), and (5.18) becomes

DT ′

Dt
=

νT
�2
(T − T ′)− βadw (5.19)

after replacing the Laplacian in (5.17) by its numerical difference analogue.
Now compare T to T ′ by introducing

ΔT = T ′ − T (5.20)



5.1 The Mixing Length Theory 249

which depends on z and t. By combining (5.19) and (5.20) and realizing that
the vertical rate of change of the ambient temperature as seen by the moving
parcel is

DT

Dt
=

dT

dz

dz

dt
= −βw

we arrive at
DΔT

Dt
= (β − βad)w − νT

�2
ΔT . (5.21)

This equation describes the time-dependent temperature contrast between
the parcel and its immediate surroundings as the parcel moves.

5.1.3 The Equation of Motion

Can we now say something about w? Because buoyancy forces are responsible
for the motion of the parcel,

dw

dt
=
(ρ− ρ′)

ρ
g (5.22)

in a first approximation to the acceleration implicit in (5.1). Note that this
expression ignores any viscous effects that might impede the flow of the parcel
(but see Hansen and Kawaler, 1994, and Ex. 5.3).

The small relative density contrast (ρ − ρ′)/ρ is related to that in tem-
perature through the coefficient of thermal expansion, −Q, taken at constant
pressure; that is,

−Q =
(

d ln ρ
d lnT

)
P

.

(The constraint is required by pressure equilibrium.) If the density is written
as a function of temperature, pressure, and composition (denoted by μ) with
ρ = ρ(T, P, μ), then −Q is

−Q =
(

∂ ln ρ
∂ lnT

)
μ,P

+
(
∂ ln ρ
∂ lnμ

)
P,T

(
∂ lnμ
∂ lnT

)
P

. (5.23)

It follows that
(ρ− ρ′)

ρ
= −Q (T − T ′)

T
=
Q
T
ΔT (5.24)

is the desired relation.
The coefficient Q is generally clumsy to compute because of the compo-

sition dependence, which should be kept in to allow for composition changes
either within the parcel (such as ionization) or in the surroundings. If com-
position changes may be neglected, then it is easy to show that

Q = χT

χρ
(5.25)
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where χT and χρ were discussed in §3.7.1. For a mixture of ideal gas and
radiation, Q = (4 − 3β)/β, where β is the ratio of gas to total pressure (as
in 3.106 and 3.107).

The equation of motion is then

dw

dt
=
Qg

T
ΔT (5.26)

which is to be considered along with the energy equation (5.21).

5.1.4 Convective Efficiencies and Time Scales

Consider the differential equations for ΔT and w given as (5.21) and (5.26).
If we suppose that all the coefficients in those equations are constant not
only over the distance � but for all time, then it is an easy matter to solve
for ΔT and w as functions of time. The solutions will be of the form ΔT
or w ∝ exp (σt), where σ is a complex angular frequency. We shall find that
1/�(σ) defines a characteristic time scale for the growth (decay) of convection
if ∇ > ∇ad (“�” means “real part of”).

To carry out this analysis, combine the two differential equations into a
single second-order equation for either w or ΔT , substitute exp (σt), and find
that σ must satisfy the characteristic equation

σ2 + σ
νT
�2
− Qg

T
(β − βad) = 0 . (5.27)

The last term in (5.27) is important not only here but in the theory of
variable stars (see Chap. 8), planetary atmospheres, and other fields, and it
deserves a name. Define the Brunt-Väisälä frequency, N , by

N2 = −Q
T
g (β − βad) (5.28)

or, if composition gradients are not present (see 5.25),

N2 = −χT

χρ
(∇−∇ad) gλP . (5.29)

If there is a gradient in the mean molecular weight because the composition
of nuclear species changes with height, then the parenthesis should contain
an additional term

+
χμ
χT

d lnμ
d lnP

with χμ =
(
∂ lnP
∂ lnμ

)
ρ,T

.

Note that the effects of ionization on μ are already automatically accounted
for through the equation of state and (5.29) should not be modified if μ
changes solely due to those effects. (See, Cox 1968, §13.3 for an analysis.)
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Since (β − βad) > 0 means the fluid is convective, so does N2 < 0, as
yet another way to express the criterion for instability. Equation (5.27) then
becomes

σ2 + σ
νT
�2
+N2 = 0 . (5.30)

Looking at the roots of σ, it is obvious that N2 < 0 means that σ is real
with one positive root; that is, both w and ΔT may increases exponentially.
What limits the motion in the context of the MLT is the ultimate breakup of
the parcel. If the radiative cooling time, �2/νT , is very long compared to 1/|N |,
then σ = |N |. This is the case of efficient convection because the parcel loses
essentially no heat during its travels until it breaks up. For �2/νT � 1 (short
cooling times) and N2 < 0, σ = −N2�2/νT � 1 so w and ΔT increase, but
slowly. From this point on, we will consider the limit νT → 0 so that no heat
is lost. This case of adiabatic convection simplifies the analysis enormously
although, when we present numerical results, we will have allowed for heat
loss in our calculations (as discussed more fully in Hansen & Kawaler 1994).

Now in the adiabatic limit but with N2 > 0 (no convection), σ is pure
imaginary and the parcel oscillates around some mean value. Inclusion of
radiative losses would cause the motion to gradually damp out.

Related to N2 is the Schwarzschild discriminant,

As(r) =
d ln ρ
dr

− 1
Γ1

d lnP
dr

(5.31)

where the logarithmic derivatives are over the actual run of ambient pressure
and density in the star. With a little effort, this can be converted into

As =
χT

χρ
(∇−∇ad)

1
λP

(5.32)

if composition gradients are again not present. It should be clear from (5.10)
that either N2 < 0 or As > 0 implies convective instability. The relation
between N2 and As is

N2 = −Asg . (5.33)

Note that the difference ∇−∇ad will appear numerous times in this chapter.
It is frequently called the superadiabatic gradient because it measures how
much larger (or smaller) the actual gradient is compared to the adiabatic
gradient. Many authors denote the superadiabatic gradient by Δ∇, but we
shall not: we have enough deltas as it stands.

Figure 5.3 shows the run of N =
√|N2| versus − log(1 −Mr/M) for

the same ZAMS sun considered in Fig. 5.2. Because we cannot plot N for
negative (convectively unstable) N2 on such a plot, radiative and convective
regions are indicated (although the tiny radiative region just near the surface
is not labeled). Here, as contrasted with Fig. 5.2, we clearly see the effects of
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Fig. 5.3. This figure corresponds to Fig. 5.2 and is the same ZAMS sun model but
shows how N =

√
|N2| varies with − log(1−Mr/M). See text.

the sign of ∇−∇ad.1 Since N is a frequency, then the time scale 1/N should
measure either how quickly potentially convective parcels are suppressed in
their motion in radiative zones or what turnover times are for parcels in
convective zones. For the radiative core in this model suppression times are
about 15 minutes. In the convection zone turnover times range from a sluggish
week or so to a vigorous few hundred seconds. However, these time scales do
not tell us how efficient the convection is.

Finally, we estimate the magnitudes of w and ΔT . It is most convenient
to measure these two quantities in terms of σ since both w = dz/dt and ΔT
vary as exp (σt). From this we have w = σz. Taking z = �, a characteristic
(or, perhaps, terminal) velocity of a convecting parcel is

w = σ� . (5.34)

Similarly (and leaving in νT for clarity),

dΔT

dt
= σΔT = (β − βad)w − νT

�2
ΔT

or, after substituting for w and solving for ΔT , the temperature contrast
between the parcel and its surroundings is (in various guises and see 5.27)

ΔT =
σ� (β − βad)
σ + νT/�2

=
σ2�T

Qg
. (5.35)

1 Note that the cusp at abscissa value 2.5 should be much sharper and should
extend down to zero as N2 changes sign. The lack of resolution in the figure is
due to the coarseness of the output from the numerical stellar model.
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5.1.5 Convective Fluxes

We are now prepared to find convective fluxes in this version of MLT. We have
assumed that a convectively unstable parcel rises a total distance � with a
characteristic velocity w, while the typical temperature contrast between the
parcel and its surroundings is ΔT . The parcel merges into the surroundings at
�. Realize that we have assumed that various ambient quantities in the star,
such as those contained in the coefficients of (5.21) and (5.26), are constant
over the vertical distance �. This assumption is only reasonable if assumption
(1) we started out with really is satisfied—namely, if � is smaller than all
other scale heights. Granting this, then the heat released by the parcel upon
dissolution is ρcPΔT erg cm−3, where cP is used here because there is still
pressure equilibration. The rate at which heat is released is then ρwcPΔT
erg cm−2 s−1 and this is the convective flux. Thus,

Fconv = ρwcPΔT =
ρcPTσ3�2

Qg
(5.36)

in a few of many forms. The convective luminosity is then

Lconv(r) = 4πr2Fconv(r) . (5.37)

For adiabatic convection with no radiative losses, σ =
√−N2, so that

(using 5.29)

Fconv =
ρcP �

2Tg1/2Q1/2 (∇−∇ad)
3/2

λ
3/2
P

. (5.38)

The above result is the same as that given by Cox (1968, Eq. 14.122) for
adiabatic convection to within factors of order unity.

The flux Fconv may also be phrased to contain the Mach number of the
convective parcels. Using (5.36) and σ = w/�,

Fconv =
ρcPT

�Qg
v3s

(
w

vs

)3

. (5.39)

The Mach number, w/vs, comes in as a high power in Fconv and it spells
possible trouble. If w/vs approaches unity, then assumption (4) of the MLT
has clearly been violated because acoustic effects are no longer ignorable.
What is usually done in practice when the Mach number approaches unity is
to limit the convective flux by setting w/vs in the above to, say, 1/2. What
this has to do with reality remains a mystery.

Finally, what to do about the mixing length � ? Here is where you can
get all kinds of advice, usually contradictory. The most popular tack is to set
it equal to some fraction α (usually called the “mixing length parameter”),
perhaps something like one-half, of the pressure scale height, thereby violat-
ing assumption (2) that we started our discussion with. Or, better yet, the
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fraction is determined by making evolutionary models and comparing them
with observations. The fraction that works best is then the fraction du jour.
What is unfortunate is that models for other classes of stars may give differ-
ent fractions of the pressure scale height (or for whatever stellar scale height
that is used). What is fortunate, however, is that it doesn’t make much of a
difference if the convection is efficient—as discussed below.

5.1.6 Calculations in the MLT

Thus far we have assumed that ∇ (or β) and � are known and that, from this,
we can then compute σ, etc., and, finally, Fconv. There are three practical
difficulties with this. The first is that there is no guarantee the system is con-
sistent; that is, Fconv, if not zero, must surely help determine the structure
of the star and, hence, ∇, ∇ad, β, and so on. Some sort of iterative process is
then required. The second difficulty, and we will see this below, is that ∇ is
very close in value to ∇ad for efficient convection and the difference (∇−∇ad)
in (5.38) is not well determined. Thirdly, in stellar structure calculations it
is very often true that it is the total flux that is relatively well determined
at some stage in the calculation and not ∇ (or, worse yet, ∇ − ∇ad). This
situation is common when examining the outer stellar regions where the lu-
minosity is nearly constant and is primarily determined by nuclear burning
deeper within the star. The issue is also complicated by the fact that the total
flux is compounded from the convective flux (if present) and the radiative
flux (which is always there). How is this last situation handled?

Well, for adiabatic convection with no radiative leakage, things are rela-
tively easy. First make believe that all the flux is carried by radiation and
compute ∇rad of (4.30, in §4.2.1)—viz.,

∇rad =
3

4acG
r2Pκ

T 4Mr
Ftot . (5.40)

If ∇ = ∇rad, then the flux is carried solely by radiation and you’re done. But
if ∇rad > ∇, then convection must contribute with

Ftot(r) = Fconv(r) + Frad(r) (5.41)

where Fconv is given by (5.38). Using (5.2), (5.5), (5.13), (5.14), and (5.16),
find

Frad(r) =
ρcPT

λP
νT∇ (5.42)

so that, after taking out common factors,

Ftot =
ρcPT�2

λP

[(Qg

λP

)1/2

(∇−∇ad)
3/2 +

νT
�2
∇
]
. (5.43)

(Note that νT appears here because of the radiative flux, not because it has
been included in leakage from parcels, which it hasn’t.) Since Ftot is known
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and we have provisional values for everything else, we can solve for (∇−∇ad)
in (5.43) and see if that is consistent with the value of∇ that the model thinks
is correct. If not, we had better iterate yet again.

5.1.7 Numeric Examples

Fig. 5.4. This plot of opacity versus mass is to be compared to Figs. 3.11, 5.2, and
5.3 for a ZAMS sun.

An illustration of what happens to ∇ and ∇ad was shown in Fig. 5.2 for
the solar ZAMS model. The core is radiative (as shown in Fig. 5.3) but from
a mass level of aboutMr/M = 1− 10−2.5 to 1− 10−6 convection is present
and ∇ = ∇ad to a few decimal places. Note that the convection continues
past this level but ∇ is greater than ∇ad by a bit. This is because radiative
leakage has been included in the model and the convection must be pushed
by a larger ∇ to make up for it.

Why is the envelope of our ZAMS sun convective? One contributing factor
was shown in Fig. 3.11 where we plotted ∇ad. Referring back to that figure
you see that ∇ad drops to low values (from 0.4 to less than 0.2) because
of ionization. This means that it is “easier” for ∇ to exceed ∇ad, and thus
convection is more likely. The second factor is the opacity, shown in Fig. 5.4
(and see Fig. 4.6). Note that the opacity (on a logarithmic scale) increases
rapidly at the same mass point that convection starts in Fig. 5.3. This is no
accident, since ∇rad of (5.40) is proportional to opacity. What happens is that
the increasing opacity acts as a dam to radiation, which, if convection were
not ready to take over, would require ∇ to increase to keep the radiative flux
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up to the required level. But increasing ∇ past a critical point (i.e., past ∇ad)
triggers convection. Things may now settle down, so to speak, as ∇ → ∇ad
and radiative transfer just goes along for the ride.

Fig. 5.5. Compare this figure for a 15M� ZAMS model with Fig. 5.3.

Now for the other side of the main sequence coin. Figure 5.5 shows |N |
for a 15M� upper ZAMS model. Compared to Fig. 5.3, the convective and
radiative zones have been switched. (Note thatMr/M is now the indepen-
dent variable so that the outer regions are no longer emphasized as they were
in Fig. 5.3.) We now have a convective core and radiative envelope. (There
is a minute convection zone way out near the surface but it doesn’t show
here.) Because the core is so hot, the stellar fluid is essentially completely
ionized, so ∇ad should not be as small as it was in the envelope of the 1M�
model. It is equal to 0.32 at the center—not 0.4—because radiation pressure
tends to depress ∇ad (as Eq. 3.111 indicates), as shown in Fig. 5.6. A high
opacity doesn’t trigger convection as it did before because electron scattering
dominates and κ is a mere 0.35 cm2 g−1, and, from Fig. 4.6, we know that
envelope opacities aren’t large either. So, what’s up now?

Again looking back to the expression for ∇rad of (4.30), we find the ratio
Lr/Mr. Can this be the culprit? From (1.58), dLr/dMr = ε, and you can
use this to show (see Chap. 7) that Lr/Mr → ε as r → 0. So what is ε deep
down? The model gives ε(r = 0) = 7× 104 erg s−1. Putting in the rest of the
numbers and taking � as the radius of the model or perhaps the size of the
convection zone itself (since λP is infinite at the center), we find ∇rad = 2.5,
which is nearly ten times larger than ∇ad and convection rules. The reason
that upper main sequence stars are prone to convect in their cores rather
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than less massive ones is that the CNO cycle is so temperature dependent
(ε ∝ T 15, as in Table 1.1). This causes a steep increase in ε as the center is
approached in these stars. Because so much power is concentrated in a small
volume, ∇rad would have to be large if radiation were called upon to carry
all the flux. This triggers convection, which can then do the job.

The radiative cooling time �2/νT can also be computed to be about 106

years, whereas a characteristic convective transport time, |N |−1, is only about
106 s (see Fig. 5.5). Comparing these two numbers implies that the convection
is indeed adiabatic—and see Fig. 5.6, where ∇ = ∇ad in the convection zone.
With w = |N |�, we find that the convective velocity is only 105 cm s−1, which
is only a little faster than the supersonic Concorde. Considering how far fluid
must travel, this is relatively sluggish. The fluid need not travel very swiftly,
however, because the dense, high heat content interior can convect a lot of
power without much effort. The convection is not only adiabatic but also
efficient.

Fig. 5.6. Compare this figure for a 15M� ZAMS model with Fig. 5.2.

From what we have seen thus far, it appears that stars with low (on some
scale) effective temperatures tend to have convective envelopes, whereas hot
stars do not. Figure 5.7 shows the HR diagram divided into two regions,
where, for hotter stars on the left, convection is inefficient or hardly present
in the outer stellar layers, whereas the cooler stars have active and efficient
envelope convection zones. The primary reason for this is that the ionization
zones in the cooler stars lie deeper in the star where opacities are high (not
electron scattering as in the hot deep interior of upper main sequence stars)
and ∇ad is relatively small. The analysis leading to Fig. 5.7 may be found
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in Cox (1968, §20.5), but it takes a bit of work. Note that the dividing line
crosses the main sequence at about spectral class F0 (Teff ≈ 7, 500 K). This
corresponds to a mass near 1.5M�, which is in accord with our “Mass Cut
Table” of Fig. 2.4.

Fig. 5.7. The dashed line in this schematic HR diagram divides those stars with
active and efficient outer convection zones (to the right of the line) from those (to
the left) that have feeble and inefficient convection. There is, of course, a gradual
transition across the line. The sun is indicated by the � sign. Adapted from Cox
(1968).

5.2 Variations on the MLT

This chapter has mentioned attempts to improve the modeling of parcels
and their motions by introducing geometrical factors, changing the method
of averaging various quantities, etc. We shall not describe these attempts
because all they tend to do is change the efficiency of convection somewhat.
As a practical matter, one has to be very careful when reading the literature
to figure out precisely what version (or version of a version) is being used.
Besides simple geometrical factors, the choice of scale height used to construct
the mixing length differs among authors. Variations here include computing
the mixing length using the pressure scale height unless that scale is longer
than the distance from the stellar position in question to the upper boundary
of the convection zone. In that case the latter distance is used (as in Böhm
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and Cassinelli, 1971). Each of the variations sounds reasonable but they are
still carried out in the framework of the MLT. Recent studies that explore the
effect on stellar evolution of varying mixing length parameters are Pedersen
et al. (1990) and Stothers and Chin (1997).

Some attempts at modeling stellar convection that are certainly not part
of generic formulations of the MLT include the following. We have imagined
our parcel rising (for example) at some characteristic velocity w and then
merging with the ambient medium and releasing heat once � has been tra-
versed. At the top of the convection zone, where ∇ finally becomes smaller
than ∇ad, all these parcels are supposed to be able to stop in their tracks and
not penetrate into the stable layer above. This does not even sound reason-
able. We expect some fluid elements to overshoot into the overlying stably
stratified medium. Below the convection zone we might also expect downward
flowing elements to penetrate into the underlying stable medium to some ex-
tent. The question is how to model this behavior without really working too
hard. Descriptions of how this is done in practice by some researchers may be
found in the references, and see the reviews by Trimble (1992) and Trimble
and Aschwanden (1998).

One way to attack this problem, however, is to consider a rising parcel
having velocity w0 at the top of a convection zone at radius r0. Assuming
that the parcel does not come to a complete halt at r0 as it begins to enter
the convectively stable region above r0, it must still experience a decelera-
tion because of negative buoyancy. The work done against the parcel by the
negative buoyancy may be estimated by combining (5.1), (5.20), and (5.24).
Consideration of the kinetic energy lost by the parcel then yields the velocity
at some position r ≥ r0

w2(r) = w2
0 + 2

∫ r

r0

gQΔT

T
dr′ (5.44)

where viscous dissipation has been neglected and the fluid is assumed to be
essentially incompressible over some distance less than a density scale height.
The temperature contrast ΔT = T ′ − T is negative in the stable fluid and
thus the parcel must eventually slow down and stop (over a distance less than
�). Because of the integral, this makes the theory nonlocal. Thus, unlike the
standard MLT, information from some range of radii is necessary to make a
statement about some point further removed. This makes the computation
(of various things) a good deal more complicated.

The effects of overshooting are twofold: it may mix matter of varying
composition past the convective interface and it may transport heat. To cal-
culate these effects requires even more work than we have implied. To be
fully consistent, the term ΔT must be handled correctly. It is the difference
in temperature between the parcel’s interior and the ambient medium. Pre-
sumably T is known but T ′ is another matter. If we are going to treat ΔT as
something that can vary with height for a particular parcel, then consider the
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following. Two parcels start rising from different positions, r1 and r2, within
the convection zone. When they reach r3 > r1, r2, their interior temperatures
will not be the same in general. What then is the meaning of T ′ − T at r3?
A little thought reveals that to do this sort of thing also requires a nonlocal
treatment of handling temperatures, etc.

There are different implementations of the above and not all give the
same kind of answer for the same kind of stellar model. For an upper main
sequence model of the sort discussed in the last section, it appears that typi-
cal overshooting lengths are a little bit less than a pressure scale height. How
much less (zero to 70% of a scale height?) is a matter of debate and the conse-
quences are important. Overshooting in the convective cores of massive stars
affects the lifetime (by mixing fuel) of that stage, and may easily cause the
products of nuclear burning to emerge at the stellar surface where they might
become visible (as in Wolf–Rayet stars). The caution here is that all these
modifications, as well intentioned as they may be, are still based primarily
on the MLT with all its potential faults.

Another consideration is whether the Boussinesq assumption of no acoustic
effects is reasonable. We have mentioned the Reynolds number only briefly
(see Hansen and Kawaler, 1994) and it can easily be estimated. For the 15
M� ZAMS core it is about 1013 and it is even larger for red supergiant en-
velopes. Because laboratory values of the Reynolds number exceeding ∼100
imply a transition from smooth to turbulent flow, we expect stellar convec-
tion to be characterized by turbulent eddies of many size scales. (What does a
parcel size of the order of a “mixing length” mean in this context?) It has been
suggested that the energy flux carried by acoustic noise due to turbulence in
some convection zones may actually be comparable to that carried by mean
flows. One model, due to Lighthill (1952, 1954), and Proudman (1952), yields
an estimate for this flux of Fturb ≈ a

∫ (
ρw3M5/�

)
dr, where the integration

is to be carried out over the extent of the convection zone, M is the Mach
number, and a is a number of order 10. If this result is really applicable to
stars, then the computation of convective fluxes for high–velocity flows must
be far more difficult than what has been outlined in this chapter.

Brave attempts to model turbulence—without doing full-scale hydrody-
namic calculations—include Canuto &Mazzitelli (1991), Canuto & Dubovikov
(1998) (and see Kupka 1999), and references therein. These attempts are
worthwhile in that they point out the defects (and virtues) of the MLT. As
we will briefly discuss shortly, the state of the art (as this text is written)
in convective modeling is in transition. We are on the verge (in how many
years?) of incorporating realistic three dimensional hydrodynamics into stel-
lar evolution calculations—but we aren’t there yet. For now, and for the most
part, we have to make due with the MLT and its variations.
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5.2.1 Beyond the MLT

Any attempt to model convection in all its glory in realistic stellar models
must be, a priori, highly nonlocal and nonlinear because the full equations
of hydrodynamics, including turbulence, must be considered. This may turn
out to be an impossible program for the near future (but see §5.3). There
has, however, been some progress on a somewhat less ambitious scale, which
we now discuss very briefly. An excellent introduction to what follows may
be found in the first few chapters of Chandrasekhar (1981). References to the
works of those involved with this program in the stellar context are listed at
the end of this chapter.

The analytical and computational thrust of this research consists in con-
sidering the equations of hydrodynamics, but where relevant variables are
separated into two parts. One corresponds to a horizontal mean of a var-
iable while the other part deals with fluctuations. For example, the spa-
tial and temporal behavior of the density (in plane parallel geometry) is
ρ(z, t) = 〈ρ(z, t)〉 + ρ′(z, t). It is the second, and fluctuating, term on the
right that will describe how mass, energy, etc., are transported. The next
step is to introduce the anelastic approximation in which ∂ρ′/∂t is neglected
in the equation of continuity(

∂ρ

∂t

)
+∇ ••• (ρv) = 0 .

The effect of this is to filter out acoustic waves (as in the MLT). The reason
this is done is that acoustic waves have higher frequencies than gravity waves
and deleting the former allows the time evolution of the convection to be
followed more efficiently on the computer. It also assumes that acoustic fluxes
are relatively unimportant in transporting energy. This may well restrict
the validity of the model to those envelopes in which convection is not too
vigorous.

The next step is to expand the horizontal structure of fluctuating quanti-
ties into a finite number of horizontal “planforms” or “modes.” These plan-
forms may be of various shapes. For example, a hexagonal planform might
be used where fluid may rise in the center of the hexagon and sink at the
edges (or the other way around). Such structures are seen in the laboratory
under the right conditions in Bénard cells, or on the surface of the sun (as a
direct consequence of the underlying convective layer). Another form might
be that of a “roll.” In any case, such planforms of various shapes and sizes
may be added together to model the convective motions.

Before we get further (but not very far) into hydrodynamic calculations,
consider a more classic problem in stellar structure.

5.2.2 Semiconvection

This important topic is related in some respects to overshooting. Briefly, the
process of semiconvection comes about as indicated in the following example.
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In a pioneering evolutionary study, Schwarzschild and Härm (1958) found
that the convective cores of massive (M > 10M�) stars behaved in a curi-
ous fashion. It turns out that the convective core of such a star tends to be
larger than the region of active CNO cycle burning and, because of the con-
tribution of radiation pressure to the equation of state, the convective core
tends to move outward as evolution proceeds. This means that if we assume
convective motions can efficiently mix material in such cores, then snapshots
of the hydrogen content of the star as it evolves might resemble that shown
in Fig. 5.8. The evolutionary stages are labeled as discontinuous “steps” in
hydrogen mass fraction starting from step zero on the main sequence when
the star is homogeneous and has an initial hydrogen mass fraction X = 0.7.
(Incidently, all special effects such as mass loss or simple overshooting are
ignored here.) What is the effect of these discontinuities on the model and
are they consistent with the equations of stellar structure developed thus far?
Consider the following.

If the standard MLT has been used to describe convection, then, as dis-
cussed previously, ∇ = ∇ad to high precision in the core. Outside the core,
∇ = ∇rad. Now ∇ad should be roughly continuous across the outer edge of
the composition discontinuity because Γ2 is roughly independent of compo-
sition provided that ionization is complete. We expect the latter to be true
since we are deep within the star. What about ∇rad? Is it continuous? That
“del” is given by equation (5.40) and, in that expression, P cannot be discon-
tinuous because that would introduce infinite radial derivatives of pressure
and, hence, infinite forces. Similarly, temperature cannot be discontinuous
because the radiative luminosity is proportional to its gradient. Lastly, Mr

and L(r) are continuous provided that density doesn’t do something bizarre
and if we stay outside the energy generation region. This leaves the opacity.

In the deep interior κ ≈ 0.2(1 + X) from electron scattering. Since X
is discontinuous, so is κ and, thus, ∇rad. However, we do see that the ratio
∇rad/κ is continuous.

If quantities interior to the composition discontinuity are indicated by an
“i” subscript, and those exterior by an “e,” then we must have

∇rad,i

κi
=
∇rad,e

κe
.

For the hydrogen profile evolution shown in Fig. 5.8,Xi ≤ Xe implies κi ≤ κe,
or

∇rad,e ≥ ∇rad,i

across the discontinuity in X. An illustrative run of the ratio ∇rad/∇ad with
radius is shown in Fig. 5.9 for the ZAMS stage and one later stage. Note
that ∇rad must be greater than ∇ad for points within the convection zone
(otherwise there is no convection). Because of the discontinuity in ∇rad, how-
ever, there is a small region outside the convection zone that is not radiative;
that is, this region must also be convective. If this is really so, then we have
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Fig. 5.8. Schematic profiles of the hydrogen mass fraction, X, for a massive star
as evolution proceeds from the ZAMS (step 0). As the star evolves (steps 1 through
3), the convection zone moves outward and mixing causes the hydrogen, which is
gradually being depleted by nuclear burning, to have constant abundance out to
larger radii. The convection zone is assumed to extend out to the discontinuity
in X. The radii r0, r1, etc., are the outermost radii of the convection zones and
hydrogen discontinuities in the various evolutionary stages.

a contradictory situation. Just what happens in this region is still a matter
of some debate. It is supposed that some mixing takes place in this region
so that some composition gradients are smoothed out. Exactly how this is
accomplished has not been established. But, however it is done, it is referred
to as “semiconvective mixing” and it may have a strong effect on the later
stages of evolution when shell sources are effective. Brief summaries of this
general problem may be found in Chiosi and Maeder (1986) in the context
of massive stars, in the general review by Trimble (1992), and in Hansen
(1978) for other evolved objects where chemical discontinuities play a role in
structure.

5.3 Hydrodynamic Calculations

Here we are talking numerical modeling on a huge scale. Computers keep
getting faster, can store more information, and can strain the numerical tech-
niques of the most proficient investigators. And the end is still not in sight.
The “end” being, for stellar evolutionists, the incorporation of truly real-
istic three dimensional fluid dynamic codes into their comparatively puny
evolution codes. And yet there has been a lot of progress.
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Fig. 5.9. An illustration of how the ratio ∇rad/∇ad might vary as a function of
radius for two of the evolutionary stages pictured in Fig. 5.8. The radii r0 and r3
are the same as in that figure.

One area of current interest is the calibration of stellar models and, in
particular, models of the sun. We will return to helioseismology in chapters 8
and 9, but the sun “rings” in many modes of oscillation (see §2.10). Many
of these modes penetrate (are active) to large depths and how they ring tells
us a good deal about that structure at depth. (The sun is not alone in this
respect, but that’s a story for later.) Thus if a model of the present-day
sun does not give the correct oscillation modes, something is wrong with the
model. With over a million modes to use, you shouldn’t be surprised that
some remarkable results have been forthcoming, and there may be no better
way to plumb the solar interior than using those modes.

One result concerns the structure of the convective envelope and radiative
core of the sun as they respond to the sun’s rotation. Or, put more properly
perhaps, how does the sun rotate inside? It is easy to observe the sun’s surface
rotate and it does so differentially with the equatorial regions having a shorter
rotation period than do higher latitudes. (That is, the equator slips ahead
of the higher latitudes.) This, however, tells us nothing about what happens
deeper down. Recent analysis of the helioseismological data has established
that the convective envelope also rotates differentially but the radiative core
rotates like a solid body down to a considerable depth. Between the two
zones is a thin transition region (the “tachocline”). A reasonable question to
ask is “What is the transition region like and how does rotation affect it?”
And answering this question requires modern supercomputers. (Of course one
decade’s supercomputer is the next decade’s desktop.)
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Fig. 5.10. This illustrates the complexity of modern 3D hydrodynamic modeling
of fluid motions in stars. (See text.) A full color version of this figure appeared in
Brummell et al. (2002) as their Fig. 11. Courtesy of Nic Brummell, and reproduced
with permission.

Figure 5.10 shows the results from one set of calculations (Brummel et
al., 2002; and see the beautiful color graphics in that paper and in some of
the references therein). The smudgy or lacelike structures in the two larger
boxes represent convective motions on various scales as they overlie a stable
radiative layer.2 Box (a) shows downflows (in white) and upflows (in darker
tones) as the material overturns. Material that flows down into the stable
layer, mixes with it, and alters the background state of the stable layer, is
said to be undergoing “penetration.” “Overshooting,” as we discussed earlier,
means that inertia has carried material into the stable layer but doesn’t
change the properties of the layer in any marked way. Box (b) shows the
“enstrophy” density of the flow, which is defined as the square of the vorticity;
that is ω2 = |∇×××u|2, where u is the velocity. (You may think of ω2 as a
measure of the “twistyness” of the fluid around a point—although there’s
more to it than that.) White shows strong values of ω2 while darker tones
are less so. The insert box shows ω2 for a downflow.
2 Some of these simulations had as many as 1.5× 108 mesh points!
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We are going to have to refer you to the original paper to see what the
authors conclude, but it, and papers of similar intent, are worth perusing to
see what state-of-the-art stellar hydrodynamics calculations can do.

5.4 Exercises

Exercise 5.1. Verify, in detail, that dS/dr < 0 implies local convective in-
stability in the same sense as does ∇ > ∇ad (as in the discussion following
Eq. 5.10). This takes a bit of thermodynamic manipulation.

Exercise 5.2. Verify (5.25); that is, show that the coefficient of thermal ex-
pansion, neglecting composition changes, is Q = χT/χρ.

Exercise 5.3. In the Navier–Stokes equation of motion for an incompressible
fluid (which is consistent with the Boussinesq approximation) we find a drag
term ν∇2w, where ν is the kinematic viscosity having the same units as νT .
(See, for example, Landau and Lifshitz, 1959, §15.) We replace the Laplacian
by w/�2 and amend the equation of motion (5.22) to read

dw

dt
=
(ρ− ρ′)

ρ
g − ν

�2
w .

The additional term always acts to decelerate the parcel. An estimate for ν
is from Chapter 5 of

� Spitzer, L. 1962, Physics of Fully Ionized Gases, 2nd ed. (New York:
Interscience)

and is

ν ≈ 2× 10−15
ρ

T 5/2A1/2

Z4 lnΛc
cm2 s−1

where

Λc ≈ 104T
3/2

n
1/2
e

and A and Z are the atomic weight and charge of the ions. Use this to make
an estimate of the Prandtl number

Pr =
ν

νT

for a typical point in the sun. Note that laboratory experiments work around
Pr ∼ 1. Comments?
Exercise 5.4. The dimensionless Rayleigh number, Ra, is a measure of how
well the driving of convection (as in ∇ − ∇ad terms) compares to damping
processes (νT and ν). It is defined by

Ra =
Qg

λP
(∇−∇ad)

�4

νTν
.
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Compute a sample value (say in a solar radiative zone). Laboratory experi-
ments have Ra of about 1011 or less. Comments? Also show (using Eq. 5.20,
5.21, 5.24, and the amended equation of motion given in Ex. 5.3) thatRa > 1
implies that w and DΔT/Dt have exponentially growing solutions. Labora-
tory convection usually sets in at about Ra ∼ 103.

5.5 References and Suggested Readings
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� Pedersen, B.B., VandenBerg, D.A., & Irwin, A.W. 1990, ApJ, 352, 279
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have constructed series of evolutionary models with different mixing length
parameters. You may wish to consult this paper to see how these series differ
from one to the other. An example of another attempt to manipulate the
mixing length is
� Stothers, R.B., & Chin, C-W. 1997, ApJ, 478, L103.

Early estimates of the rate of production of acoustic noise due to turbulence
may be found in
� Lighthill, M.J. 1952, PRSocL, A221, 564
� Ibid. 1954, PRSocL, A222, 1
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� Ibid. 1975, A&A, 43, 61
� Ibid. 1976, A&A, 47, 389
� Ibid. 1982, A&A, 105, 149
� Maeder, A., & Bouvier, P. 1976, A&A, 50, 309
� Maeder, A., & Mermilliod, J.C. 1981, A&A, 93, 136.
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semiconvection, is given by
� Chiosi, C., & Maeder, A. 1986, ARA&A, 24, 329.

A recent compilation of evolutionary results that summarizes 40,000 models
is
� Maeder, A. 1990, A&AS, 84, 139.

Marked differences in structure may result from varying degrees of disconti-
nuities in models. Some results are discussed in
� Hansen, C.J. 1978, ARA&A, 16, 15.

A short review containing up-to-date material on semiconvection and over-
shoot is due to
� Trimble, V. 1992, PASP, 104, 1.

Other relevant material is in
� Trimble, V., & Aschwanden, M. 1998, PASP, 111, 385.

The text by
� Chandrasekhar, S. 1981, Hydrodynamic and Hydromagnetic Stability
(New York: Dover)
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should be on every theorists’ bookshelf. It can be heavily mathematical at
times, but it is an indispensable introduction to modern developments in
convection theory.

Planform methods, with applications, are given in the following series of
papers involving many of the same names as collaborators:
� Gough, D.O., Spiegel, E.A., & Toomre, J. 1975, JFlMech, 68, 695
� Latour, J., Spiegel, E.A., Toomre, J., & Zahn, J.-P. 1976, ApJ, 207, 233
� Toomre, J., Zahn, J.-P., Latour, J., & Spiegel, E.A. 1976, ApJ, 207, 545
� Latour, J., Toomre, J., & Zahn, J.-P. 1981, ApJ, 248, 1081
� Latour, J., Toomre, J., & Zahn, J.-P. 1983, SolPhys, 82, 387
� Nordlund, Å, & Stein, R.F. 1990, CompPhysC, 59, 119.

Other examples of dealing with real convection can be found in
� Lydon, T.J., Fox, P.A., & Sofia, S. 1992, ApJ, 397, 701
� Ibid. 1993, ApJ, 403, L79.

The upper main sequence calculations, which led to our discussion of stellar
semiconvection, are those of
� Schwarzschild, M., & Härm, R. 1958, ApJ, 128, 348.

§5.3: Hydrodynamic Calculations
Figure 5.10 is a black & white version of Fig. 11 of
� Brummell, N.H., Clune, T.L., & Toomre, J. 2002, ApJ., 570, 825

produced especially for us by Nic Brummell. This paper is but one in a long
series (and see the references in that paper). If your interests lay more along
the lines of observables on the solar surface, then
� Stein, R.F., & Nordlund, Å. 1998, ApJ, 499, 914

is a prime place to look. Their aim is to use hydrodynamic calculations to
model solar granulation with, in our estimation, considerable success.



6 Stellar Energy Sources

“Don’t get smart alecksy
with the galaxy

leave the atom alone.”

— E.Y. Harburg (on the “Bomb”)

“We never met a nucleus we didn’t like.”

— We made that one up.

Now that we have explored how energy is transported in the stellar interior,
let’s backtrack and see how to generate that energy. This chapter will discuss
energy production by the conversion of gravitational energy into internal
energy and by thermonuclear processes. One section will deal with energy
loss by neutrinos.

6.1 Gravitational Energy Sources

In the first chapter (§1.3.2) we described how the virial theorem could be used
to estimate the Kelvin–Helmholtz time scale for maintaining the luminosity
of a star by means of gravitational contraction. What we obtained was a
global property of the system because the virial deals only with integrated
quantities. We now examine how this works on a local scale.

The local condition for thermal balance was discussed earlier (in §1.5).
It described how the local rate of thermonuclear energy generation, ε, is
balanced by the mass divergence of luminosity with

∂Lr
∂Mr

= ε (6.1)

for a given gram of material (with ε in erg g−1 s−1). If this equality doesn’t
hold, then the energy content decreases (increases) for ∂Lr/∂Mr greater
(less) than ε. The difference ε− (∂Lr/∂Mr) is then the rate at which heat is
added to, or removed from, each gram. This difference is just dQ/dt, where
Q is the heat content in erg g−1. Combining this with the first law of ther-
modynamics yields

dQ

dt
=

∂E

∂t
+ P

∂

∂t

(
1
ρ

)
= ε− ∂Lr

∂Mr
(6.2)

where it is understood that the partial time derivatives are applied in the
Lagrangian mode so that a particular gram of matter is followed in time.
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Now rewrite (6.2) by defining the gravitational energy generation rate

εgrav = −
[
∂E

∂t
+ P

∂

∂t

(
1
ρ

)]
(6.3)

so that (6.2) becomes
∂Lr
∂Mr

= ε+ εgrav . (6.4)

Note that εgrav may be positive, negative, or zero.
Another way of expressing εgrav is to cast it in a more useful form contain-

ing time derivatives of density and pressure rather the internal energy. This
involves a little work using thermodynamic identities and some of the ther-
modynamic derivatives discussed in Chapter 3 (see, e.g., Cox, 1968, §17.6).
The result we shall use is

εgrav = − P

ρ (Γ3 − 1)
[
∂ lnP
∂t

− Γ1 ∂ ln ρ
∂t

]
(6.5)

where, for simplicity, we assume Γ1 is constant in time. Note that εgrav is
zero for adiabatic processes where P ∝ ρΓ1 . Energy release in gravitational
sources thus arises from departures from adiabaticity during contraction or
expansion. This may also be seen by rewriting (6.5) in the form

εgrav = − P

ρ (Γ3 − 1)
∂

∂t

[
ln
(
P/ρΓ1

)]
. (6.6)

Thus, for example, if the pressure rises less rapidly than adiabatic upon com-
pression so that

P ∼ ρΓ1−δ

with δ small but positive, then

εgrav = δ
P

ρ (Γ3 − 1)
∂ ln ρ
∂t

> 0

where the greater than sign is used for compression. This result is reasonable
because a less than adiabatic rise of pressure upon compression implies that
energy is being released by P dV work.

We now improve on our earlier estimate of the Kelvin–Helmholtz time
scale. As in the discussion of §1.3.2, we ignore thermonuclear energy sources
so that (6.4) becomes (∂Lr/∂Mr) = εgrav. If we assume homologous con-
traction, which is often fairly close to the truth, then the results of §1.6, with
mass held constant, yield

ρ

ρ0
=
( R
R0

)−3
(6.7)

and
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P

P0
=
( R
R0

)−4
. (6.8)

Hydrostatic equilibrium has been used in the derivation of these relations,
which requires that time scales must be long compared to dynamic times.

If we take the “0” star to be some initial configuration at time zero,
then the time-dependent source εgrav may be found by applying (6.5) and
then expressing the result in terms of the initial values P0, ρ0, the adiabatic
exponents Γ1 and Γ3, and the rate of change of R. The total luminosity is
then found as a function of time by integrating over all mass. This sequence
yields

L(t) = −
∫
M

P0

ρ0

R0

R2(t)
dR
dt

[
3Γ1 − 4
Γ3 − 1

]
dMr . (6.9)

The time–independent factors in the integral may be reexpressed using the
virial result (1.23) with Ï = 0. Thus, for example, eliminate the initial pres-
sure and density using

−Ω0 = 3
∫
M

P0

ρ0
dMr .

If the adiabatic exponents are constant in space as well as time, then

L(t) = 1
3
Ω0R0

R2

dR
dt

[
3Γ1 − 4
Γ3 − 1

]
.

Simplify this further by using (1.8) where, as you may recall, q is a dimen-
sionless constant of order unity with Ω0 = −q

(
GM2/R0

)
. Thus

L(t) = −qGM
2

R2

dR
dt

[
Γ1 − 4/3
Γ3 − 1

]
. (6.10)

If Γ1 = Γ3 = 5/3, then we regain the luminosity relation of (1.30). Note
that here, however, we have specified a bit more carefully just which Γs are
involved in the luminosity. Before it was a generic γ from a γ–law equation of
state. Also—perhaps as expected from our discussion of the virial theorem—
if Γ1 = 4/3, then expansion or contraction supplies no power to provide
luminosity.

Real stars sometimes contract in a near-homologous fashion. It is more
usual, however, for evolving stars to contract in some regions while other
regions expand. The most familiar example of the latter is during post-main
sequence evolution where the core contracts and the outer regions expand,
as discussed in Chapter 2. In those real situations, εgrav must be treated as
the local quantity it is.

6.2 Thermonuclear Energy Sources

The major text references for this section (and most of those following) are the
excellent books by Don Clayton (1968), who emphasizes nuclear astrophysics,
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and that of Dave Arnett (1996) on supernovae and nucleosynthesis. We advise
referring to those texts for many of the details we shall be forced to leave out
in the following.

After we first consider how reaction rates are found using experimental
data supplemented by theory, we shall examine hydrogen, helium, and ad-
vanced stages of thermonuclear burning.

6.2.1 Preliminaries

We shall concern ourselves, for the moment at least, only with reactions
initiated by charged particles. Neutron–induced reactions, which are of great
importance for nucleosynthesis, will be discussed later.

Most thermonuclear reactions in stars proceed through an intermediate
nuclear state called the compound nucleus. That is, if α represents some pro-
jectile (say a proton or α-particle), and X is a target nucleus, and these react
to give rise finally to nuclear products β and Y , then the compound nucleus
Z∗ is the intermediary state. In reaction equation language this statement
reads

α+X → Z∗ → Y + β or X(α, β)Y (6.11)

where the last expression is shorthand for the net reaction. The “∗” appended
to Z implies that the compound nucleus is (almost always) in an excited state.

A basic assumption here is that Z∗ forgets how it was formed and may
decay or break up by any means consistent with conservation laws and se-
lection rules. (And see Ex. 6.4 for application of some selection rules.) One
permitted breakup “channel” is that consisting of the particles that originally
formed Z∗—in our example, α+X (the “entrance channel”). As an example,
suppose we had produced an excited state of 12C by way of proton capture
on 11B with

p + 11B→ 12C
∗
.

The compound state 12C∗ may then break up in a number of ways (“exit
channels”) such as

12C∗ → 12C∗∗ + γ

→ 11B+ p
→ 11C+ n
→ 12N+ e− + νe

→ 8Be + α, etc.

Here, a “∗∗” means another excited (or ground) state of 12C and the other
symbols, γ, p, n, e−, νe, and α refer, respectively, to gamma-ray photon,
proton, neutron, electron, electron antineutrino, and alpha particle (4He nu-
cleus).
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The state 12C∗ may be thought of as some combination of the states of all
the possible exit channels or decay modes. With each of these modes we can
associate a mean-life for decay, τi, and, through the uncertainty principle, a
width in energy, Γi, where

Γiτi = h̄ . (6.12)

Here, h̄ is Planck’s constant divided by 2π. (Excuse us for even more Γs,
but we’re just using the normal nomenclature!) Thus the more long-lived the
state is, the less likely it is that the decay will take place and the smaller is
the width in energy. The probability that 12C∗ will decay through the channel
i is measured by the comparison of τi to the sum of all the other lifetimes.
Put more precisely, the probability Pi is given by

Pi = 1/τi∑
j (1/τj)

=
τ

τi
(6.13)

where τ , the total mean-life of 12C∗, is

τ =

⎛
⎝∑

j

1
τj

⎞
⎠
−1

. (6.14)

If Γ is defined as the total energy width,
∑

j Γj , then

Pi = Γi
Γ

. (6.15)

Among the possible exit channels in our example is the channel by which
12C∗ was formed in the first place—that is, the entrance channel. Denote its
width by Γentr. If we could turn the clock backward then, in a crude sense,
the ratio Γentr/Γ should be a measure of forming 12C∗ through that channel.

For charged particle channels the Γi are broken down into two factors.
There is the intrinsic probability that the state Z∗ is composed of the charged
constituents of the ith channel in a common nuclear potential. Here is where
the nuclear physics really comes in. We shall just give it a name and a sym-
bol: that factor is the “reduced width” γ2i . The second factor describes the
probability that the separate constituents of the compound state (α +X or
Y + β of 6.11) can dissociate from one another and become distinct parti-
cles far–removed from one another. For charged particles this means that not
only must their combined energy within the nuclear potential well be posi-
tive relative to the total energy (including rest mass energy) of the separated
particles but, further, that they be able to overcome the Coulomb barrier
between them. This last probability will be denoted by P�, the Coulomb pen-
etration factor. To clarify what this means, we first digress into some nuclear
energetics.
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6.2.2 Nuclear Energetics

The total binding energy, BE , of a nucleus is defined as the energy required
to break up and disperse to infinity all the constituent nucleons (protons and
neutrons) in that nucleus. Using “mc2” arguments, this is

BE = (mass of constituent nucleons−mass of bound nucleus) c2, (6.16)

where BE is usually expressed in units of MeV. (Note that we do not worry
here about some refinements concerning just how “mass” is defined, such as
whether electronic binding energies are included or not.) The average binding
energy per nucleon, BE/A, is defined as BE divided by the total nucleon mass
number, A (in integer amu). It is a measure of the energy required to remove
the most energetic nucleon from a given nucleus in its ground state. Figure
6.1 shows a schematic of the experimentally derived BE/A for the most stable
isobar of nuclei with atomic mass number A.

Fig. 6.1. Plotted is the binding energy per nucleon, BE/A, as a function of atomic
mass number A for the most stable isobar of A. The main area is for the lighter
nuclei, whereas the insert is for most of the rest. Some nuclei discussed in the text
are given special emphasis. Data from Wapstra et al. (1988).

The important feature of the binding energy per nucleon curve is its rapid
rise from low mass number nuclei to a plateau around A of 60, and then a
gradual decline thereafter. The plateau around A ≈ 60 includes the relatively
common element iron, and thus that region is commonly referred to as the
“iron-peak” region. The significance of this curve is well known: it, unfortu-
nately, makes fission and fusion weaponry possible. The fusion branch of the
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BE/A curve is that region below A ≈ 60. Thus if we fuse two light nuclei
on that branch, energy is released. In particular, the requirement for energy
release in fusion is that BE(1) + BE(2) < BE(3) where nuclei 1 and 2 com-
bine to give nucleus 3. That is, if we tear the first two nuclei apart and then
reconstitute the remains to form the third, then energy is left over.

As an example, consider the reaction that fuses three 4He nuclei (or α-
particles) to form one nucleus of 12C. Reading roughly from Fig. 6.1, BE/A for
4He is ≈ 7.1 MeV per nucleon. For carbon, BE/A ≈ 7.7. (More exact numbers
are 7.074 and 7.680 MeV.) The total binding energies are then 4 × 7.1 ≈
28.4, and 12 × 7.7 ≈ 92.4 MeV, respectively. Taking apart three α-particles
then requires 3× 28.4 ≈ 85.2 MeV. Reconstituting the resulting protons and
neutrons into 12C gives back 92.4 MeV leaving an excess, or “Q-value,” for
the reaction of about 7.2 MeV (really 7.275 MeV). In pseudo-equation form
this reads

3× 4He −→ 12C
3× 4He (in MeV)− 12C (in MeV) = ?

3× [4× (−7.1 MeV)]− 12× (−7.7 MeV) = ?
−85.2 MeV + 92.4 MeV = 7.2 MeV = Q-value .

Since a gram of pure 4He consists of NA/4 ≈ 1.5×1023 atoms and it requires
three 4He nuclei per reaction, then a complete conversion to 12C yields ap-
proximately 6× 1017 erg g−1 after the MeV have been converted to ergs (by
multiplying by 1.602×10−6 erg MeV−1). In practice, nuclear mass or, better
yet, mass excess (Δ = [M − A]c2) tables are used to find the Q-values of
reactions (as in Wapstra et al., 1988).

Fission on the branch with A greater than about 60 achieves the same
end as the above. What this means is that nuclei around the iron peak, which
are the most tightly bound of all nuclei (per constituent nucleon), are not of
much use as an energy source. Thus any star that ends up with nuclei in the
iron peak has lost potential fuel and this is a matter of grave consequence for
the star.

Once enough nucleons have been packed into a nucleus, BE/A approaches
its saturation value of around 8 MeV. To remove one nucleon in a high-lying
state from such a nucleus then requires about 8 MeV. How much deeper is
the nuclear well below 8 MeV? We can estimate this from the observation
that nucleons in the nuclear well behave, to zeroth order, as independent
fermions of spin 1/2 in a zero-temperature sea. That is, the nuclear protons
(or neutrons) are stacked in energy in pairs from the bottom of the potential
well on up. The Fermi energy of the most energetic proton may be found
from the number density of protons in the nucleus as we did with electrons
in a Fermi sea in Chapter 3. For this, assume that the nucleus is spherical
with radius R. A perfectly good estimate for the nuclear radius is

R ≈ 1.4× 10−13A1/3 cm . (6.17)
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With A nucleons (each with a mass of about 1.67× 10−24 g) packed into the
sphere, this yields a nuclear density of around 1.5× 1014 g cm−3.

Since the proton and neutron rest mass energies are near 940 MeV, and
all other nuclear energies are in the low MeV range, the nucleons are non-
relativistic. If the protons and neutrons are considered independently, and if
Z ≈ N ≈ A/2, then a simple calculation yields (see §3.5.1), for either neu-
trons or protons, a Fermi momentum of pF ≈ 1.15 × 10−14 g cm s−1 and a
Fermi energy EF = p2F /2m of close to 25 MeV. Thus the potential depth of
the typical massive nucleus is about 25 + 8 ≈ 30 MeV.

For a charged particle seeking either to leave or enter a nucleus, there
is another important energy—the maximum height of the Coulomb barrier
between the interacting nuclei. If, for example, the charges of the target and
projectile are ZX and Zα, then that height is BC = ZαZXe2/R, where R is
now taken to be the minimum interparticle separation

R = 1.4
(
A1/3
α +A

1/3
X

)
fm (6.18)

and “fm” denotes “femtometer” or “fermi” and is 10−13 cm. The Coulomb
barrier height is then

BC ≈ 1.44 ZαZX

R
MeV (6.19)

with R in fm. For typical fusioning nuclei with, say, Zα ≈ ZX ∼ 2, and
Aα ≈ AX ∼ 4, BC ∼ MeV. The potential well energetics just described are
summarized in Fig. 6.2.

The barrier penetration factor mentioned previously is the probability
that a particle may quantum mechanically tunnel through the Coulomb bar-
rier shown in Fig. 6.2. Two situations are of interest here. A projectile, such
as α of reaction (6.11), with initial kinetic energy E , must tunnel through the
Coulomb barrier to reach the target X or, in the exit channel, the compound
state Z∗ breaks up internally into Y + β and β must have enough energy
to tunnel its way out to freedom from Y . It is usually the case in stellar
charged particle reactions that particles β of the exit channel have energies
comparable to, or greater than, BC, whereas entrance channel particles α
have much lower energies than BC. The “IN” and ”OUT” in Fig. 6.2 is our
cartoon version of these statements.

The relation between the barrier penetration factor P�, reduced width
(γ2i ), and Γi is

Γi = 2P�γ
2
i (6.20)

where, as we shall see shortly, P� can depend sensitively on the ratio of kinetic
energy to Coulomb barrier height. The subscript “� ” refers to the angular
momentum quantum number � and it implies that the effectiveness of barrier
penetration also depends on the relative angular momenta of the particles
involved in the reaction.
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Fig. 6.2. A sketch of a nuclear potential well including the 1/r Coulomb bar-
rier between the target nucleus and a hypothetical charged projectile. (Not to
scale.) “OUT” indicates an exit channel particle leaving the final nucleus above
the Coulomb barrier, while “IN” is the entrance channel particle trying to enter
the target nucleus below the Coulomb barrier.

6.2.3 Astrophysical Thermonuclear Cross Sections and Reaction
Rates

To derive a rate for a particular reaction, we need the cross section for that
reaction. For the moment, imagine that we are in the laboratory and the
target nucleus X is stationary while being bombarded by a beam of monoen-
ergetic particles, α, of velocity v. Calling σαβ the cross section for the model
reaction of (6.11), where the subscripts tell us who is doing what to whom,
we have (as in the definition 4.57 used in electron scattering)

σαβ(v) =
number of reactions per unit time per target X

incident flux of projectiles α
cm2. (6.21)

The incident projectile flux is nαv, where nα is the number density of pro-
jectiles in the beam so that the reaction rate per target nucleus is nαv σαβ .
The total reaction rate (in number of events per unit time per unit volume
of target) is

rαβ(v) = nαnX σαβ(v) v cm−3 s−1 (6.22)

where nX is the target number density. If α and X are the same species
of particle (as in the proton-proton reaction or the first stage of the triple-
α reaction), then care must be taken when applying (6.22) to avoid double
counting. In that situation, (6.22) must be divided by 2.
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The above expression for the reaction rate does not, of course, apply to
the stellar environment. In almost all situations of astrophysical interest both
targets and projectiles are in Maxwell–Boltzmann energy distributions. We
shall not go through the details here (see Clayton, Chap. 4, or Cox §17.12) but
it is easy to show that the distribution of the product nαnX is also Maxwell–
Boltzmann but it must be expressed in the center-of-mass system. The result
of integrating (6.22) over all particles in their respective distributions is the
rate per unit volume, rαβ , phrased in terms of a suitably averaged product
of cross section and velocity:

rαβ = nαnX 〈σv〉αβ cm−3 s−1 . (6.23)

The total number densities appear in this expression as nα and nX , and
〈σv〉αβ is constructed by the weighting of cross section and velocity with
the differential Maxwell–Boltzmann distribution, Ψ(E), in energy space. The
latter was given in Chapter 3 as (3.26): that is,

Ψ(E) = 2
π1/2

1
(kT )3/2

e−E/kT E1/2 . (6.24)

Note that here, and hereafter in this section (unless warned beforehand), E
will be the center-of-mass energy of an α-X pair. With this weighting 〈σv〉αβ
is given by

〈σv〉αβ =
∫∞
0 Ψ(E)σαβ(E) v dE∫∞

0 Ψ(E) dE (6.25)

where the velocity is in the center-of-mass. Note that the integral in the
denominator is unity because of normalization.

Putting in Ψ explicitly and using v = (2E/m)1/2, 〈σv〉αβ becomes

〈σv〉αβ =
(
8

πm

)1/2

(kT )−3/2
∫ ∞
0

σαβ(E) e−E/kT E dE cm3 s−1. (6.26)

The mass, m, in this expression is the reduced mass,

m = mαmX/ (mα +mX) . (6.27)

The problem is now reduced to finding σαβ(E) in the center-of-mass. It
turns out that the cross section can almost always be written in the form

σαβ(E) = πλ̄2g (2�+ 1)
ΓαΓβ
Γ2

f(E) . (6.28)

Here the widths are as defined previously, with Γα being the width of the
entrance channel (α + X), Γβ is that of the exit channel (β + Y ), and Γ
the total width. All are functions of energy. The entrance channel angular
momentum, L (and this does not include the spins of the particles), makes
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its appearance in the quantum number � (� = 0, 1, · · · , |L|). The wavelength
λ̄ is the reduced DeBroglie wavelength,

πλ̄2 =
πh̄2

2Em =
0.657
E(MeV)

1
μ

barns (1 barn = 10−24 cm2) (6.29)

where E on the right-hand side is in MeV. The quantity μ (not to be con-
fused with other μs we have defined) is the reduced mass in amu units
(with one amu equal to 931.494 MeV in μc2 units) and it is given by
μ = AαAX/(Aα +AX). The factor g is statistical and contains informa-
tion on the spins of the target, projectile, and compound nucleus (and you
are invited to derive it in Ex. 6.5). It is just a number of order unity for our
purposes. Finally, the factor f(E); we shall refer to it as a “shape factor.”1

The various important pieces of the cross section come about as follows.
For the factor containing the DeBroglie wavelength: suppose we have a nu-
cleus that is a perfect absorber. If a particle α with linear momentum p comes
within an impact parameter distance s, then its quantized angular momentum
is sp = � h̄. Thus each � has associated with it an impact parameter s�. For
angular momenta between � and �+1, the target area, or fractional cross sec-
tion, of a ring bounded by s� and s�+1 is σ�,�+1 = π

(
s2�+1 − s2�

)
= πλ̄2(2�+1),

where λ̄ = h̄/p.
The factor ΓαΓβ/ΓΓ is the joint probability of forming α+X and then β+

Y through the compound state Z∗, as was indicated by our earlier discussion.
The shape factor, f(E), hides many physical effects that we can only allude

to. We shall give it one of two forms: either the “resonant” or “nonresonant”
f(E). The first form varies rapidly with energy over some interesting energy
range whereas the second form is always slowly varying.

1. The resonant form of f(E) is that of an isolated Breit–Wigner resonance
(in its most simple guise, and see Arnett, 1996, for a sample derivation)
whereby

f(E) = Γ2

(E − Er)2 + (Γ/2)2
. (6.30)

This form of f(E) is strongly peaked at, or near, the resonance energy Er
and reflects the fact that the compound nucleus has a discrete state at
an energy E∗ corresponding to

mZ∗ c2 + E∗ = mαc
2 +mXc2 + Er . (6.31)

If Γ does not vary appreciably over the interval Er−Γ/2 ≤ E ≤ Er+Γ/2,
then the width of the state at half maximum is Γ. The Breit–Wigner
resonant cross section is then

1 Some of §6.2.3 appeared years ago (c. 1964) in a series of lecture notes derived
from lectures given by A.G.W. Cameron at Yale University. The senior author of
this text (C.J.H.) was responsible for preparing the portions that finally appear
here. This is where I (C.J.H.) learned his nuclear astrophysics. Thanks, Al.
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σα,β = πλ̄2g(2�+ 1)
ΓαΓβ

(E − Er)2 + (Γ/2)2
. (6.32)

For energies near Er, the last factor dominates and the cross section has
a sharp peak around Er.

2. The nonresonant case arises when f(E) is a constant or is slowly varying
compared to other factors in the cross section. This situation commonly
arises when E is far removed from Er, that is, when the reaction takes
place far in the tail of a resonance. It may also arise when the reac-
tion is intrinsically nonresonant (as we shall see in the example of the
proton-proton reaction). This case will be treated first because it con-
tains features common to many types of charged particle reactions.

6.2.4 Nonresonant Reaction Rates

These rates require further discussion of the Coulomb barrier penetration
factor because it is part of the widths contained in σαβ (and see 6.20). We
first note that nuclear reactions of major astrophysical interest are exother-
mic: they produce energy and the Q-value is positive in the nuclear energy
equation

mαc
2 +mXc2 = mβc

2 +mY c2 +Q . (6.33)

The Q-value is usually of order MeV and that is shared as kinetic energy
among the exit channel particles if they are in their ground states. In a real
reaction, the entrance channel kinetic energy is added on to the left-hand
side of (6.33) but reappears in the exit channel and hence does not change
what energy is added to the system—namely, Q per reaction. The entrance
channel energy is, however, very important for the cross section. In terms
of kT , entrance channel energies are typically kT = 8.6174 × 10−8 T (in K)
keV (see Eq. 3.37). The total temperature range spanning the hydrogen-,
helium-, and carbon-burning stages is about 107 <∼ T (K) <∼ 109 under normal
circumstances. In terms of kT this is 1 <∼ kT <∼ 100 keV. Thus input channel
energies are usually considerably less than those of the exit channel.

The Coulomb barrier height, BC, of (6.19) is also very large in compari-
son to input channel energies. From a classical perspective, this means that
the target and projectile can never combine under these circumstances be-
cause the Coulomb barrier of Fig. 6.2 cannot be penetrated. On the quantum
level, on the other hand, this is possible. As in other such problems involving
tunneling through a relatively high barrier, however, we expect the barrier
penetrability factor, P�, to be very sensitive to energy. We again refer the
reader to Clayton (or almost any text on nuclear physics) where the follow-
ing form for P� in the entrance channel is derived using WKBJ methods and
which is valid for BC � E :

P�(E) ∝ e−2πη (6.34)
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where η is the dimensionless Sommerfeld factor

η =
ZαZXe2

h̄v
= 0.1574ZαZX

(μ
E
)1/2

. (6.35)

Here, E is the entrance channel kinetic energy (CM) in MeV and μ is the
reduced mass of (6.27) expressed in amus. For E ∼ kT <∼ 100 keV, μ ∼ 1,
and ZαZX >∼ 2, find that 2πη >∼ 12. With this factor in the exponential of
P� it is clear that the latter is a very sensitive function of E . Other energy-
and angular momentum-dependent terms enter into a complete formulation
of P�; but, unless energies become comparable to the barrier height, these
terms are not nearly as important as the exponential. Thus, for example,
there is a factor of 1/E1/2 that belongs in (6.34), but this is usually ignored.
The effect of � > 0 (non-head-on collisions) in (6.35) is to decrease P�, but
this can usually be accommodated by modifying other factors.2 (Collisions
with � > 0 mean that the incoming particle is arriving off-center, so to speak,
and it’s tougher to catch things flying off to the side.) For energies small
compared to BC, we shall use (6.34) because it is more than adequate. Any
proportionality factors we have left out of that expression will be absorbed
in various elements of the cross section.

The situation for the exit channel is different. Here, for charged particle
channels, stellar exothermic reactions with Q-values in excess of a couple of
MeV mean that the Coulomb barrier is relatively easy to tunnel through
near or above its top and P� becomes insensitive to E . This is also true when
the exit channel is electromagnetic and a γ–ray is produced along with a
charged ion or when the exiting particle is a neutron. Thus the exit channel
width Γβ in expression (6.28) for the cross section is taken to be a constant
independent of the entrance channel energy E or, at worst, it may vary slowly
with energy. The total width, Γ, is also assumed to vary slowly with E by the
same arguments.

Putting the above elements together, and remembering that λ̄2 goes as
1/E , the nonresonant form for the cross section of (6.28) becomes

σαβ(E) = S(E)
E e−2πη . (6.36)

Here S(E) is a slowly varying function of E and contains all the energy de-
pendencies not contained in λ̄ or in the exponential of P�.

Since the form of η is known, a common procedure is to extract σαβ at
experimentally accessible laboratory energies (usually, and unfortunately, at
energies not much below 100 keV) and plot S(E) = σαβ E e2πη as a function of
E . If necessary S(E) is then extrapolated, with perhaps some help from theory,
down to astrophysically interesting energies. We shall give an example shortly.
2 To find the exact dependence of the barrier penetrability on � and E requires
calculating the Coulomb wave functions. These are discussed in most nuclear
physics texts and in some mathematical physics texts.
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Some of the major uncertainties in reaction rates derive from this procedure
because low experimental energies usually involve low cross sections and,
hence, relatively large experimental errors.

Assuming that σαβ(E) is known either from experiment and/or by ex-
trapolation of S(E), we can now introduce (6.36) into the expression (6.26)
for 〈σv〉αβ and find

〈σv〉αβ=
(
8

πm

)1/2

(kT )−3/2
∫ ∞
0

S(E) exp
[
−
( E
kT

+
b

E1/2
)]

dE . (6.37)

Here, m is the reduced mass in grams, S is in erg cm2, and b/E1/2 replaces
2πη with

b = 0.99ZαZXμ1/2 (MeV)1/2 (6.38)

and μ is in amu. As a first step in evaluating the integral in (6.37) S(E) is
either evaluated at some typical energy where most reactions take place, or
it is extrapolated to zero energy, yielding S(0), and a first-order constant
derivative, dS/dE|0, is added on to that. These are refinements (albeit often
necessary) and, for our purposes, it will be sufficient to assume that S is some
experimentally determined constant that may be taken out from inside the
integral.

With S assumed constant, the numerical form of 〈σv〉αβ is then

〈σv〉αβ = 1.6× 10−15
μ1/2(kT )3/2

S

∫ ∞
0
exp
[
−
( E
kT

+
b

E1/2
)]

dE cm3 s−1 (6.39)

where S is now in MeV-barns and E and kT are in MeV.3

The structure of the integrand in (6.39) reflects the combination of two
strongly competing factors. The barrier penetration factor contributes the
factor exp

(−b/E1/2), which increases rapidly with increasing energy, whereas
the Maxwell–Boltzmann exponential decreases rapidly as energy increases.
The integrand thus increases as energy increases because the Coulomb bar-
rier becomes more penetrable but, to offset that, the number of pairs of
particles available for the reaction decreases in the exponential tail of the
distribution. What results is a compromise between the two competing fac-
tors. This is illustrated in Fig. 6.3, where the integrand of (6.39) is plotted
for two temperatures. The reactants are protons and 12C nuclei.

The integrand of (6.39) is aptly called the “Gamow peak” because of its
shape and in honor of George Gamow, who early on investigated the problems
of quantum mechanical transmission though barriers (and who made many
contributions to astrophysics). It is easy to show that the summit of the peak
lies at an energy of

E0 = 1.22
(
Z2
αZ

2
XμT 2

6
)1/3

keV. (6.40)

3 Our continual switching of units is done not to be capricious: you will see all
these combinations in the literature.
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Fig. 6.3. The integrand of (6.39) is plotted against center-of-mass energy (in keV)
for the temperatures T6 = 20 and T6 = 22. The input channel is protons on 12C.
The figure has been scaled by dividing both integrands by 6.6×10−22, which is the
maximum (prescaled) of the integrand for T6 = 22. The short (tall) vertical arrow
indicates the summit of the Gamow peak for T6 = 20 (T6 = 22) (see text).

Here, T6 is the temperature in units of 106 K. Thus, for example, at a temper-
ature of 2.2×107 K (T6 = 22), kT = 1.896 keV and, for the p+ 12C reaction,
E0 ≈ 30.8 keV. (The p+ 12C reaction will be used as a prototype reaction for
both resonant and nonresonant rates here.) The location of the summit in
energy for these conditions is indicated by the large arrow in Fig. 6.3. Note
that this result depends only on the reaction being nonresonant; the details
of the nuclear physics are almost irrelevant. Also shown in Fig. 6.3 is the
integrand for a slightly lower temperature of T6 = 20, where the height of the
peak is lower by a factor of almost five compared to the higher temperature.
This is characteristic of low-energy charged particle reactions where the rate
is a sensitive function of temperature. If you compute logarithmic derivatives
of these numbers, you will find that the height of the peak varies as roughly
the 17th power of the temperature. This should come as no surprise because
we are dealing with one of the reactions in the CNO cycles (see §1.5).

The approximate full width of the Gamow peak (at 1/e of maximum) is

Δ ≈ 2.3 (E0 kT )1/2 (6.41)

in whatever common units are used for E0 and kT . In the above example
with T6 = 22, Δ ≈ 17.6 keV, so that roughly half of the reactions arise
from reactant pairs with energies 22 <∼ E <∼ 40 keV >> kT ∼ 2 keV. (You can
almost eyeball this from Fig. 6.3.)
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A closed expression for the integral in (6.39) does not exist, but a per-
fectly useful approximation may be derived that follows from replacing the
integrand with a Gaussian of the same height and curvature at maximum. A
full description of the procedure is given in Clayton (1968, §4–3). A simple
integration over the resulting Gaussian then yields

〈σv〉αβ = 0.72× 10−18S
μZαZX

e−τ τ2 cm3 s−1 (6.42)

where S is now in keV-barns, and

τ =
3E0
kT

. (6.43)

Correction terms that improve on the Gaussian consist of multiplying (6.42)
by 1+(5/12τ) + · · · . Because E0 is usually much greater than kT , we shall
neglect this correction (and while we have not included anything fancy for
possible slow energy variations in S, it can be expressed as a Taylor series
with knowledge of dS/dE , as in Clayton, §4–3).

We can express (6.42) in terms of temperature by unwinding τ to find

〈σv〉αβ = 0.72× 10−18Sa2
μZαZX

e−aT
−1/3
6

T
2/3
6

cm3 s−1 (6.44)

where a = 42.49
(
Z2
αZ

2
Xμ
)1/3 and S is in keV-barns. The temperature expo-

nents in the exponential and the denominator are characteristic of nonreso-
nant reactions.

Example: The 12C (p, γ) 13N Reaction

To give an example of how the above results are applied, consider the well-
studied reaction 12C (p, γ) 13N. (Clayton also uses this reaction as a proto-
type. The experiments done for this reaction in the astrophysical context
are classics, as you will see.) At typical hydrogen-burning temperatures on
the main sequence, this reaction proceeds primarily through the low-energy
tail of a resonance in 13N (at 2.37 MeV) which, in the laboratory frame, is
directly accessed by a proton with an energy of 0.46 MeV (and remember,
the 12C nuclei are stationary in the laboratory frame). The cross section for
this reaction is shown in Fig. 6.4 (taken from Fowler et al., 1967) where the
abscissa is the laboratory energy of the proton.

The laboratory to center-of-mass conversion of the total kinetic energy
of a projectile-target pair is E(CM) = E(Lab)[mX/ (mα +mX)], where, in
our example, α refers to the proton and X to 12C. For T6 = 22, the Gamow
peak (center-of-mass ) energy of E0 = 30.8 keV corresponds to a proton
laboratory energy of 33.4 keV = 0.0334 MeV. It is clear that the information
contained in Fig. 6.4 must be extrapolated down to energies well below the
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Fig. 6.4. The experimental cross section for the reaction 12C(p, γ) 13N from Fowler
et al. (1967). The solid curve is based on theory. (See also Fig. 6.5.) Reproduced,
with permission, from the Annual Review of Astronomy and Astrophysics, Vol. 5,
c©1967 by Annual Reviews, Inc.

experimental data in order that 〈σv〉 be computed. This is done, as discussed
earlier, by removing the penetration factor and 1/E dependence (of 6.36) from
the data and then plotting S(E). The results of this procedure are shown in
Fig. 6.5 (also from Fowler et al., 1967). Extrapolation to low energies yields
S(E = 0) = 1.4 keV-barns for the reaction. The rate may now be computed
using (6.42) and ancillary equations.

The result we now quote for the nonresonant reaction 12C(p, γ)13N is from
Fowler et al. (1975) where all their corrections for the energy dependence in
S(E) and adjustments to the Gaussian approximation to the shape of the
Gamow peak are included for completeness. (Note that in their notation
〈σv〉pγ becomes 〈12Cp〉γ .) Their result is

〈σv〉pγ = 3.39× 10−17(1 + 0.0304T 1/3
9 + 1.19T 2/3

9 + 0.254T9 +

+ 2.06T 4/3
9 + 1.12T 5/3

9 )× T
−2/3
9 ×

× exp
[
−13.69/T 1/3

9 − (T9/1.5)2
]
cm3 s−1. (6.45)

The correction terms alluded to in the comments following equation (6.43)
are those in the parenthesis following the unit term and in the T 2

9 term of
the exponential. You may easily verify that the rest of the expression follows
from the information already given. Note that the units of temperature are in
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Fig. 6.5. The nonresonant factor S(E) for the reaction 12C(p, γ) 13N with an ex-
trapolation to low energies (from Fowler et al., 1967). Reproduced, with permission,
from the Annual Review of Astronomy and Astrophysics, Vol. 5, c©1967 by Annual
Reviews, Inc.

billions of degrees, which is generally the case for the reaction rate material
published by Fowler and his coauthors (for a listing of those papers, see the
references at the end of this chapter). The quoted limits of applicability of
(6.45) are 0 ≤ T9 ≤ 0.55 for reasons to be made apparent shortly.
Note: From now on in this chapter we shall usually not include all correction

terms or information on all resonances for a reaction (nor electron screen-
ing terms—see later). Instead, only those terms necessary for “quick and
dirty” calculations will be given.

Once 〈σv〉 has been found, then the total reaction rate per unit volume
is given by (see 6.23 and 1.45)

rαβ = ρ2N2
A

XαXX

AαAX
〈σv〉αβ cm−3 s−1 (6.46)

where the Xi are the mass fractions of particles α and X.4

The energy generation rate per gram, εαβ , is simply the reaction rate
multiplied by the Q-value (in ergs) of the reaction divided by the density.
The units of εαβ are then erg g−1 s−1 in accordance with the discussion in
§1.5. Thus

εαβ =
rαβQ
ρ

erg g−1 s−1. (6.47)

4 If α and X are the same, then the right-hand side should be divided by 2 as
indicated in the discussion following (6.22).
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A little care must be exercised if a neutrino is produced as a result of the
reaction. Under all but the most unusual circumstances, matter is essentially
transparent to these particles and thus the energy associated with the neu-
trino is lost from the star. (In any case, the neutrino is almost never captured
where is was emitted.) Therefore, that energy must then be subtracted from
Q. Neutrinos play no role in the 12C (p, γ) 13N reaction and its Q-value is
1.944 MeV=3.115× 10−6 ergs.

The functional dependence of ε on temperature is, of course, the same
as that of the reaction rate: both go as exp (−aT−1/3)/T 2/3 using (6.44).
The density dependence for ε is obviously linear (once the ρ2 term in rαβ is
included). From these considerations it is easy to derive the temperature and
density exponents used in previous chapters. With

ε = ε0ρ
λT ν (6.48)

the logarithmic derivatives ν and λ for nonresonant reactions are

λ =
(
∂ ln ε
∂ ln ρ

)
T

= 1 (6.49)

ν =
(

∂ ln ε
∂ lnT

)
ρ

=
a

3T 1/3
6

− 2
3 . (6.50)

Note again that these expressions do not include any of the correction terms
discussed above (and given in 6.45). In addition, it is clear that ν depends
on temperature. For 12C (p, γ) 13N at T6 = 20, ν ≈ 16. This is a number
characteristic of the CNO cycles, as was stated in Chapter 1 and deduced
from Fig. 6.3.

What happens if we now systematically raise the temperature of the gas
containing protons and 12C? At some point the Gamow peak will begin to
encroach upon the resonance at 0.424 MeV (in the center-of-mass) and our
notions about how the peak is formed will break down. This temperature
is easy to estimate. If E0 + Δ/2 ≈ Er, then the peak begins to overlap the
resonance. For this reaction E0+Δ/2 = 0.393T 2/3

9 +0.213T 5/6
9 , which equals

0.42 MeV when T9 ≈ 0.6. This is the upper temperature limit quoted for
(6.45). (The width of the resonance must also be taken into account and that
can lower the temperature calculated for the limit.) Therefore, on to resonant
reactions.

6.2.5 Resonant Reaction Rates

The form of the cross section for a resonant reaction is dominated by the fac-
tor
[
(E − Er)2 + (Γ/2)2

]−1 of (6.32). Because Ψ(E), the Maxwell–Boltzmann
distribution function given by (6.24), and the Γs vary slowly over a resonance
(at least as long as Er � Γ/2), what is usually done is to evaluate Ψ(E) and
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Γα at Er, thereby letting the resonant form act like a delta function.5 Using
this approximation 〈σv〉αβ becomes

〈σv〉αβ =
πh̄2g(2�+ 1)

2m

(
8

πm

)1/2

(kT )−3/2 e−Er/kT Γα(Er)Γβ(Er)×

×
∫ ∞
0

dE
(E − Er)2 + (Γ/2)2

(6.51)

where we have used (6.26), (6.29), and (6.32). All that is left to evaluate is
the integral over the resonance denominator. Because the integrand peaks
sharply at Er and nowhere else, including negative energies, it is customary
to extend the lower limit of the integral to −∞. The integral is elementary
if Γ is taken constant and yields

〈σv〉αβ = h̄2
(
2π

mkT

)3/2

g(2�+ 1)
ΓαΓβ
Γ

e−Er/kT . (6.52)

This form is particularly useful because sometimes a low resolution exper-
iment only yields an integrated cross section,

∫
res σ(E) dE , where the integral

is only over the resonance. The same sort of delta-function trick used above
may be used here to yield

∫
res

σ(E) dE = h̄2π2

mEr

{
g(2�+ 1)

ΓαΓβ
Γ

}
. (6.53)

The term in braces is called (ωγ)r by Fowler et al. (1967) and these are
tabulated for many reactions by them. In these terms,

〈σv〉αβ =
(
2πh̄2

mkT

)3/2
(ωγ)r

h̄
e−Er/kT

= 2.56× 10−13 (ωγ)r
(μT9)3/2

e−11.605 Er/T9 (6.54)

where (ωγ)r and Er are in MeV.
Fowler et al. (1967, 1975) give (ωγ)r = 6.29 × 10−7 MeV, Γ(Er) =

0.0325 MeV, and Er = 0.424 MeV for the 0.46 MeV (lab) state in 13N.
When inserted into (6.54) these yield

〈σv〉pγ = 1.8× 10−19
T
3/2
9

e−4.925/T9 cm3 s−1 (6.55)

5 Note that this is one way to do it. Often, in practice, 〈σv〉αβ is numerically
integrated over the resonance using the experimental data. This is especially
true if the resonance is broad or Er is at low energy or at a negative energy with
respect to where the input channel produces the compound state.
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for the resonant contribution to the 12C(p,γ)13N reaction. This result is ap-
plicable for 0.25 ≤ T9 ≤ 7 and is to be added onto the nonresonant expression
(6.45). You will also want to consult Caughlan et al. (1985, 1988) for numer-
ical tabulations of this rate (and others). The temperature exponent for a
resonant rate of the form (6.52 or 6.54) is

ν =
11.61Er

T9
− 3

2 (6.56)

with Er in MeV and, of course, λ = 1.
Finally, Fig. 6.6 shows NA〈σv〉pγ as the total of (6.45) and (6.55) (mul-

tiplied by NA). Note the shallow dip near T9 ≈ 0.3 as the nonresonant rate
gives way to the resonance. What is remarkable is that the range of tempera-
ture shown (0.015 <∼ T9 <∼ 3) is of astrophysical interest and, over that range,
the rate varies by some 19 orders of magnitude. Amazing.

Fig. 6.6. The rate NA〈σv〉pγ is plotted versus T9 for the 12C(p, γ)13N reaction.
The units are cm3 s−1 mole−1. See text for details.

6.2.6 Other Forms of Reaction Rates

Thus far we have only considered reactions initiated by protons (in particular)
or charged nuclei such as alpha particles (to be dealt with in detail later). We
now consider other types of reactions that either do not fall into this category
or require special handling (such as the proton-proton reaction).
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Neutron Capture and the S-Process

It is believed that most of the elements with A >∼ 60 were formed as the
result of successions of neutron capture reactions and electron decays, as
we have already discussed in §2.8.1—and here we expand on some details.
These reactions can take place during some of the more normal stages of
evolution or in supernovae. An example of the former in helium burning is
where neutrons are formed by the reaction 13C(α,n)16O and these neutrons
are then captured on “seed” nuclei in the iron range of elements. This is
an example of “s-process” nucleosynthesis. The rapid “r-process” is usually
associated with the fast time scale of supernovae, where a myriad of reactions
take place involving many nuclei. In neither process does the production of
very heavy nuclei represent an energy source—and thus has little direct effect
on evolution—but both are important for our understanding of heavy element
abundances found in nature.

The experimental determination of neutron capture cross sections is diffi-
cult to come by because neutral particles are hard to control and the neutron
has a relatively short lifetime. (The determination by Mampe et al., 1989,
gives τ = 887.6 ± 3 s for the e-folding life). It is fortunate that the form of
the cross section is relatively simple and, for low energies, varies as v−1 (and
see Clayton 1968, §7–3). Because they are unaffected by a Coulomb barrier,
there are no strong energy dependencies. Thus, at the lowest level of approxi-
mation, 〈σv〉 is constant for any given reaction. For a summary of experiment
versus theory see Käppeler et al. (1989, 1998).

We have already shown (in Figs. 2.19 and 2.20) the abundance of nuclides
formed by the s- and r-processes as found in the solar system. These are pre-
sumably the byproducts from many stars over many generations. In each
star, moreover, there may have been more than one episode of s-processing,
each having its individual time of processing and intensity of neutron ex-
posure. A typical neutron capture reaction has a rate nnnA〈σv〉A where nn
is the neutron number density, 〈σv〉A is the average “〈σv〉” for capture of a
neutron by a nucleus of mass A with number density nA. This rate changes
that number by −dnA/dt. At the same time, ignoring β-decays, that nuclide
is fed by neutron capture on nuclei with mass A−1. Therefore, all else aside,

dnA
dt

= −nnnA〈σv〉A + nnnA−1〈σv〉A−1 . (6.57)

We now convert the time variable to a “neutron exposure time,” τ , by dτ =
vnn(t) dt so that

dnA
dτ

= −σAnA + σA−1nA−1 . (6.58)

Here v is the thermal velocity and σA is the cross section for that velocity.
The time scales for the s-process are usually relatively long so the reactions

tend to equilibrate (but never quite make it). If we assume that the reaction
chain does equilibrate, then dnA/dτ should tend to zero. If true, then the
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products σAnA should not differ significantly one from the other or, at least,
they should be smooth over extended ranges of A. This may seem a bit
surprising since the abundances in Fig. 2.21 are shown on a logarithmic scale
and they do go up and down (especially around the neutron magic numbers,
where the σAnA might show some action).

Fig. 6.7. The products of neutron capture cross section and s-process number
densities are shown plotted versus atomic mass number A. The little boxes represent
known abundances while the dots follow from calculations.

Figure 6.7, adapted from Käppeler et al. (1989), shows σns versus A
where ns is a s-process number density and σ is the neutron capture cross
section for that nucleus. The little boxes show the product for nuclei whose
abundances are known and the dots are for those whose abundances have not
been determined. (Note that some 200 neutron capture cross sections have
been fairly well-determined, which is a much larger number than abundance
determinations.) What has been done here is to choose a reasonable set of
exposure times and neutron fluxes so as to eventually match the known abun-
dances (the boxes). The dotted results then follow from the calculation. In
any case, the curve is smooth (except for some outliers and around magic neu-
tron numbers, see Fig. 2.21) and, in principle, the stellar environment leading
to Fig. 6.7 might be identified. As an example, see Käppeler et al. (1990),
where helium shell burning in low-mass stars yield s-process abundances that
closely match what is seen in the solar system.
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Weak Interactions

As an aftermath of the reaction 12C(p,γ)13N, the nucleus 13N is left in the
ground state after emission of the γ–ray. Several things may now happen to
that nucleus. One possibility is the reaction 13N(p,γ)14O (Q=4.628 MeV).
The 〈σv〉 for this reaction is

〈σv〉pγ = 6.71× 10−17
T
2/3
9

e−15.202/T
1/3
9 +

+
4.04× 10−19

T
3/2
9

e−6.348/T9 cm3 s−1 (6.59)

for temperatures appropriate to main sequence CNO cycling. You should be
able to identify both nonresonant and resonant contributions in this expres-
sion. The resonant term is only important at higher temperatures.

The time scale for destruction of 13N is clearly the number density of
that nucleus divided by the rate of the reaction (i.e., the rate of destruction
of 13N). Thus define

τpγ =
n(13N)
rp,γ

=
1

np〈σv〉pγ s (6.60)

where np is the proton number density. (We assume, in these sorts of argu-
ments, that volume is constant with time so that number density does not
change for that reason. You could better describe number density as num-
ber per gram.) The number density of protons is np = NAρX, where X is
the hydrogen mass fraction. For T6 = 20, X ≈ 1, and ρ ≈ 10, find that
np ≈ 6 × 1024 cm−3, and 〈σv〉pγ ≈ 4 × 10−40 cm3 s−1. This yields a time
scale τpγ ≈ 107 years.

There is, however, a complication here because 13N is an unstable nucleus
even in its ground state and positron decays into 13C with a half–life of only
10 minutes.6 The reaction is

13N −→ 13C+ e+ + νe, τ1/2 = 10 min (6.61)

(and see Table 6.2). We thus encounter a typical situation in nuclear astro-
physics: a choice must always be made regarding what reactions are important
in any given situation. Here it appears that the (p,γ) reaction may safely be
ignored because the 13N nuclei are whisked away by positron decay before
the protons can get at them. On the other hand, were the temperature and
6 The Q-value for the reaction is 2.22 MeV, but the neutrino carries away an
average of 0.71 MeV, leaving 1.51 MeV for the positron. This last energy is
eventually returned to the stellar gas when the positron annihilates with an
ambient electron.
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density higher, say, 2.5× 108 K and 103 g cm−3, then the resonant contribu-
tion reduces τpγ to about one minute so that the capture reaction competes
with the beta-decay. Such is the case in the explosive burning of hydrogen
near the surface of a classical nova (as discussed in §2.11.1).

Another interesting feature arises because of the rapidity of the positron
decay of 13N. Before the start of hydrogen-burning in a Pop I star the abun-
dance of 12C is about 0.5% by mass of the total but the concentration of 13N
is, of course, zero because it is unstable. When burning does commence, the
concentration of 13N begins to be built up by the 12C(p, γ)13N reaction. If
temperatures are not too high, proton captures on 13N can be ignored (as in
the above) and the rate of change of abundance for 13N is given by

d13N
dt

= np
12C 〈σv〉pγ − λ 13N cm−3 s−1 (6.62)

where 13N and 12C represent the number densities of the respective nuclei.
The beta-decay constant, λ, is related to the half-life by λ = 0.693/τ1/2.
The time development of 13N under conditions of constant temperature and
density and the assumption that elapsed times are sufficiently short that np
and 12C also remain constant is

13N(t) =
np

12C 〈σv〉pγ
λ

(
1− e−λt

)
cm−3 . (6.63)

This means that the concentration of 13N rapidly approaches an equilibrium
value and that it can just as well be computed by setting the time derivative
of 13N in (6.62) to zero and solving for 13N. This situation is also common
in nuclear astrophysics where the concentration of a nuclide involved in a
comparatively rapid reaction may often easily be computed. Other examples
arise in reaction chains where other considerations apply (as in the proton-
proton chains to be discussed shortly).

Another kind of reaction, which results in the emission of an electron
neutrino, is the capture by a nucleus of either a free electron or one in an
atomic orbital. An example from the proton-proton chains is

e− + 7Be −→ 7Li + νe . (6.64)

In the laboratory, neutral atoms of 7Be capture atomic K–shell electrons
with a half–life of about 53 days for the capture. In the hydrogen-burning
stellar interior, however, temperatures are high enough to completely ionize
essentially all of the 7Be present and the reaction must proceed using the
free electrons in the stellar plasma. The rate of the reaction is determined,
in effect, by how well the wave functions of the electrons overlap the nucleus
and by the intrinsic strength of the weak interaction process (see Chiu, 1968,
Chap. 6, for example). An effective 〈σv〉 is

〈σv〉e− νe =
2.23× 10−34

T
1/2
9

cm3 s−1 (6.65)
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exclusive of some correction terms (with restrictions for T9 ≤ 3, see Caughlin
et al. 1988). This expression has a form entirely different from those found
thus far.

To find the rate for 7Be(e−, νe)7Li, (6.65) has to be multiplied by ne,
the free electron number density, and the number density of 7Be. The energy
generation rate follows, as usual, by dividing by the density and multiplying
by the Q-value. In this reaction the total Q is 0.862 MeV but the neutrinos
(of two energies depending on what state of 7Li is produced) carry away all
but 0.046 MeV of that figure. Even though this eventually means that the
reaction is a minor direct contributor to the energy generation rate in the
proton-proton chains, the neutrinos so produced are among those seen by
neutrino detectors “focused” on the sun (of which more in Chap. 9).

Electron captures are also important in high-density situations, where
electron Fermi energies range into the MeVs—such as in at least one kind of
supernova—and we shall touch upon this in §6.8 when we discuss neutrino
emission mechanisms. Pertinent references are Fuller et al. (1982, 1985).

The Proton–Proton Reaction

The proton-proton chains are initiated by the reaction

1H+ 1H→ 2H+ e+ + νe (6.66)

where 2H is a deuteron (often given the designation 2D). This crucial but,
as it turns out, unlikely reaction requires that two protons form a coupled
system (the “diproton”) while flashing past one another and, at practically
that same instant, one of these protons must undergo a weak decay by emit-
ting a positron and electron neutrino. The two remaining massive particles,
proton and neutron, are then left together as the rather fragile deuteron
(2.22 MeV binding energy). This sequence of events is so unlikely that it prob-
ably will never be measurable with any certainty in the laboratory. However,
the theory—for once—appears to be quite reliable.

We shall not derive the rate for this reaction here (see Chiu, 1968; Clayton,
1968; and, further back in time, the pioneering work of Bethe, Critchfield,
and Salpeter listed in the references). It turns out that one of the major
uncertainties is the beta-decay lifetime for the neutron, which is needed to
compute the reverse process of proton decay. (Other problems may arise
because of unusual conditions in the stellar plasma but these are not of a
fundamental nature.)

The reaction is nonresonant and the energy dependence of the cross sec-
tion arises mostly from the Coulomb barrier between the initial proton pair.
The Q-value is 1.192 MeV if the energy carried away by the electron neu-
trino is discarded. From Caughlan and Fowler (1988) we find that for the
1H(1H, e+ + νe) 2H reaction
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〈σv〉pp = 6.34× 10−39
T
2/3
9

(
1 + 0.123T 1/3

9 + 1.09T 2/3
9 + 0.938T9

)

× exp
(
−3.380/T 1/3

9

)
cm3 s−1 . (6.67)

(New measurements of the neutron lifetime and other corrections result in an
increase of the multiplicative factor by a small number of percent. We have
not included these here. See Gould and Guessoum, 1990.)

The reaction rate is obtained by multiplying by n2p/2, where the factor of
1/2 comes about because of the double-counting problem for identical initial
particles discussed earlier. The result, excluding correction terms, is

rpp =
1.15× 109

T
2/3
9

X2ρ2 e−3.380/T
1/3
9 cm−3 s−1 (6.68)

where X is the hydrogen mass fraction. The temperature exponent for the
reaction rate and energy generation rate is

νpp =
11.3

T
1/3
6

− 2
3 (6.69)

which, for a solar center temperature of about T6 = 15, is ν ≈ 4.
It is easy to compute the mean life of a proton against destruction by the

pp-reaction—namely,
τp = − np

dnp/dt
=

np
2rpp

. (6.70)

(Note that a factor of 2 appears because each reaction destroys two protons.)
For T6 ≈ 15, ρ ≈ 100 g cm−3, and X ≈ 0.7, find that τp ≈ 6 × 109 years.
That this time scale is close to the nuclear time scale given by (1.91) is no
accident: the pp-reaction is so slow that it effectively controls the rate at
which the pp-chains operate as a whole—as will be discussed further in the
next section, and see Table 6.1.

6.2.7 Special Effects

A major modification to normal reaction rates discussed above has to do with
alterations to the Coulomb potential between reactants due to the presence
of intervening electrons. This is the problem of “electron screening.” Here
we only treat the regime where the effects are “weak” and, even then, only
approximately. The case of “strong” screening is beyond the scope of this
text and, in any event, many questions regarding this regime have not been
satisfactorily resolved. For a very readable first paper on the subject, see
Salpeter (1954).

Consider two completely ionized identical nuclear reactants of nuclear
charge Z. It is assumed that the medium consists solely of these species and
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free electrons. We introduced the Wigner–Seitz radius, a, in Chapter 3, where
it was defined by (4πa3/3) = (1/nI), where nI was the ion number density.
If Z2e2/a � kT , then a simple exercise in Debye–Hückel theory yields the
following expression for the electrostatic potential of one ion surrounded by
a cloud of electrons (see, for example, Landau and Lifshitz, 1958, §74):

φ(r) =
Ze

r
e−κdr (6.71)

where κd, the inverse of the Debye radius, is

κd =
[
4πe2

kT

(
Z2nI + ne

)]1/2
. (6.72)

The net effect of the exponential is to reduce the potential barrier below its
pure Coulomb value of Ze/r at a given radius. In other words, the electrons
screen the ions from one another to some extent.

Since we are interested in how this modified potential affects the barrier
penetrability, the radii of interest for nuclear reactions are those roughly
equal to, or less than, the classical turning point of the motion which, for
zero angular momentum, is given by rt = Z2e2/E where E is the kinetic
energy at infinite separation. For E ≈ E0 ∼ 10 keV at the Gamow peak,
and Z of unity, the turning point radius is about 10−11 cm. We can then
approximate φ(r) for r ≤ rt by

φ(r) ≈ Ze

r
(1− κdr) (6.73)

if κdrt � 1 or, in this numerical example, if (nI/kT )� 1039 cm−3 erg−1. For
a solar type main sequence star with ρc ≈ 100 and Tc ≈ 107 K, nI/kT ≈ 1034,
which seems safe enough.

The above implies that the electrostatic potential energy, U = Zeφ, has
been reduced by an amount U0 ≈ Z2e2κd because of the screening presence
of the electron cloud surrounding the ions. This, in turn, implies that the
interacting charged particles effectively have their center-of-mass kinetic en-
ergy enhanced by an amount U0; that is, they do not have to use up as much
kinetic energy in approaching one another because the Coulomb barrier has,
in effect, been reduced in height. Therefore, as a first go at seeing what this
means, replace σαβ(E) by σαβ(E+U0) in expression (6.26). The other kinetic
energies appearing in that expression are not altered in this approximation.
We then transform the variable of integration in (6.26) from E to E −U0 with
the result

〈σv〉αβ ∝
∫ ∞
U0

(E − U0)σαβ(E) e−E/kT eU0/kT dE .

Because the dominant contribution to the rate occurs for E equal to either
E0 or Er (in the nonresonant and resonant forms, respectively), and both of
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these are greater than U0 in cases where all these approximations will apply,
then notice that the major change made in the transform of the integral is
the introduction of the factor eU0/kT . The lower limit of the integral is now
U0 but this may be replaced by zero since very low energies (compared to E0
or Er) contribute little to the total and, similarly, the linear term in energy
may be replaced by E . The result is an integral identical to the original except
for the factor eU0/kT . In other words,

〈σv〉αβ (with screening) = 〈σv〉αβ (unscreened)× eU0/kT (6.74)

with eU0/kT ≥ 1. Thus the rate is increased by the screening.
If this is done consistently, with due account made for differences of charge

of the reactants, etc. (see Clayton, 1968, §4–8; or Cox, 1968, §17.15), then,
as an example, for protons on 12C in a Pop I mix at T6 = 20 and ρ = 100
g cm−3, you will find that exp (U0/kT ) ≈ 1.25.7 The effect of screening may
thus be significant even at relatively low densities and high temperatures. The
above formalism falls apart badly, however, when U0/kT approaches anything
like unity and other steps must be taken. Some of this will be brought up
again later in the context of helium-burning reactions. For now, note the
curious quantum mechanical fact that reactions may occur even at very low
or “zero” temperatures because of zero-point energy vibrations in a lattice
as the extreme in screening.

We shall not explicitly indicate that screening corrections should be ap-
plied to many reactions discussed in this chapter but keep them in mind
because nuclear burning at the higher densities may be effected strongly by
these corrections.

6.3 The Proton–Proton Chains

The major reaction sequences in the proton-proton chains are given in Table
6.1. By “major” we mean that some minor reactions have been left out of this
tabulation and that the reactions given are those appropriate to hydrogen-
burning at normal main sequence temperatures.

There are three “chains,” denoted by “PP–I,”“PP–II,” and “PP–III,” and
these are accessed by alternative reaction paths as indicated by the downward
pointing arrows (before the third and fifth reactions). The end products of
each chain are 4He nuclei. Generally speaking, these chains become more
important in the order I, II, and III as temperature increases. Starting at
the pp-reaction itself and going to the end of any of these chains eventually
involves using four protons to make each α-particle. To do so, two of the
7 In doing this simple calculation you will find that our U0 is of the opposite
sign from that used by Clayton but is consistent with Cox. This is merely a
pedagogical preference.
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Table 6.1. The Proton-Proton Chains

PP–I

⎧⎪⎨
⎪⎩

1H+ 1H −→ 2H+ e+ + νe
2H+ 1H −→ 3He + γ

⇓ 3He + 3He −→ 4He + 1H+ 1H
–or–

PP–II

⎧⎪⎨
⎪⎩

3He + 4He −→ 7Be + γ
⇓ 7Be + e− −→ 7Li + νe(+γ)

7Li + 1H −→ 4He + 4He
–or–

PP–III

{ 7Be + 1H −→ 8B+ γ
8B −→ 8Be + e+ + νe

8Be −→ 4He + 4He

protons must be converted to neutrons and this is done by means of some
combination of positron decays or electron captures.

Another “view” of Table 6.1 is shown in Fig. 6.8, where the paths for the
three chains (on an essentially charge versus mass number plot) are indicated
by arrows, one type per chain. If you follow the arrows, they all end up at
4He, as promised.

Fig. 6.8. Starting from 1H, the arrows for the reaction sequences in the three
pp-chains all end up at 4He. Adapted from Käppeler et al. (1998).
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The various reactions in the pp-chains may proceed at wildly different
rates, and this is illustrated in Fig. 6.9, where NA〈σv〉 is plotted versus tem-
perature for all capture reactions. The intrinsically slowest is the pp-reaction,
and its run of NA〈σv〉 has been multiplied by 1018 just so it could appear in
the figure. The next reaction in the PP–I chain, 2H(p, γ)3He, is so fast that
the abundance of the fragile nucleus 2H is kept at a very low level, which
may be computed using an equilibrium argument similar to that discussed
for 13N. The last reaction in the PP–I chain operates much more slowly then
the preceding, but, again, it is very fast compared to the pp-reaction and
a long-term equilibrium abundance of 3He may be calculated (see Clayton,
1968, §§5-2, 5-3, for a full discussion of equilibration and see our Ex. 6.9).

Fig. 6.9. Shown as a function of temperature are NA〈σv〉 for all the capture reac-
tions in the proton-proton chains of Table 6.1. Note that the curve for the proton-
proton reaction has been multiplied by a factor of 1018. Material for this figure
came from Caughlan and Fowler (1988).

As the temperature is raised, the equilibrium abundance of 3He decreases
until the first reaction in the PP–II chain begins to compete. Note that 4He is
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always present in main sequence hydrogen-burning because of its production
in Big Bang nucleosynthesis and the rate for the 3He+ 3He reaction depends
on the square of the number density n(3He).

The PP–II chain continues with an electron capture on 7Be. Compared
to ion capture reactions its rate is comparatively constant with temperature
(see 6.65 and recall that computation of its rate requires multiplying 〈σv〉 by
both electron and 7Be number densities). The alternative reaction in PP–III
is proton capture on 7Be. Since the number density of electrons is roughly
the same as that of protons, the crossing point of the curves for 7Be(e−, ν)7Li
and 7Be(p, γ)8B yields the temperature at which the PP–III chain begins to
compete with PP–II. This is at a temperature of around T6 ≈ 24. The 8B
nucleus produced by the proton capture is unstable to positron decay with
a half–life of about 0.8 s. The accompanying neutrino, along with that from
the 7Be electron capture, is being detected in solar neutrino experiments (see
Chap. 9).

The final nuclear event in the PP–III chain, which is the decay of 8Be
into two α-particles, is not only of great importance because it terminates
the pp-chains, but it, and its inverse, is also one of the key reactions in helium-
burning (see §6.5). The 8Be nucleus is spectacularly unstable with a mean
lifetime of about 10−16 s.

Because the slow pp-reaction starts off the pp-chains, the rate of process-
ing to helium is controlled by that reaction. Thus the energy generation rate
for the pp-chains must be proportional to 〈σv〉pp of (6.67). The overall Q-
value for the chains depends, however, on the weighted contributions of the
three subchains to the rate of processing. Each of these contributes differently
to the energy release because of the quantities and energies of the neutrinos
lost among the chains. An overall effective Q-value may be estimated and
used to compute the energy generation rate. From Fowler et al. (1975), this
effective Q-value is

Qeff(pp-chains) = 13.116
[
1 + 1.412× 108(1/X − 1) e−4.998/T 1/39

]
MeV,
(6.75)

where X is the hydrogen mass fraction. This may be used in conjunction
with (6.67) or (6.68) to form the effective energy generation rate

εeff(pp-chains) = rppQeff/ρ

≈ 2.4× 104ρX2

T
2/3
9

e−3.380/T
1/3
9 erg g−1 s−1 (6.76)

where only the leading term for Qeff has been used. Note that since the
dominant temperature dependence is still in the exponential of 〈σv〉pp, the
temperature exponent for the energy generation rate for the combined pp-
chains is again given by (6.69).
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6.3.1 Deuterium and Lithium Burning

We include this short section on deuterium and lithium not only because their
burning plays a special role in some stars but also because of the cosmological
implications of their abundances. For reviews, see Boesgaard and Steigman
(1985) and Steigman (1985). A complete compilation of cosmological results
may be found in Yang et al. (1984), for example.

Deuterium is produced in “standard models” of the Big Bang by the
reaction p + n → 2H + γ. If temperatures are still very high, however, the
reverse reaction destroys 2H as rapidly as it is formed. Only when universal
expansion has sufficiently cooled the radiation field does 2H persist and pp-
reactions can process nuclei to 4He. The amount of 4He left after this stage
is done (expressed as a mass fraction) is 0.24 < Yprim < 0.26 and this may
later be incorporated into stars. Observations of metal-poor (and, hence, old)
galaxies indicate a mass fraction at the lower end of this range. The amount
of 2H and 3He left over from the Big Bang is 1 < 105

[(
2H+ 3He

)
/1H
]
< 20

where the nuclear designations refer to number densities. Since 2H is such a
fragile nucleus, it is readily burned in stars and, in particular, in pre–main
sequence evolution if temperatures exceed T >∼ 6×105 K. It can then serve as
an energy source (for a short time) to supplement gravitational contraction.

Lithium, as 7Li, is produced and destroyed in the early universe by the
same reactions given for the pp-chains. The final primordial amount left is
0.8 <∼ 1010(7Li/1H) <∼ 10 from standard models. It too can be processed in
stars by burning, mixing, etc. (and through cosmic rays), and we expect to
see varying amounts in stellar atmospheres and the interstellar medium. Pop I
stars and their associated gas show a maximum abundance ratio by number
density of 7Li/1H < 10−9, whereas Pop II stars generally have 7Li/1H ∼
10−10. Among the many puzzles in nucleosynthesis and stellar evolution,
however, is the following—and it has to do with the sun. Among the oldest
objects in the solar system are the meteorites. The abundance of 7Li has been
measured in one class of these (the Type I Chondrites) to be 7Li/1H ∼ 10−9
and this is consistent with the sun’s being a Pop I star. The “lithium problem”
for the sun, however, is that the solar surface abundance of lithium is only(
7Li/1H

) ∼ 10−11, which is down by two orders of magnitude from what we
expect. Standard evolutionary models for the sun cannot explain this and we
raise this as a warning flag because the sun is our standard among stars.

6.4 The Carbon–Nitrogen–Oxygen Cycles

The major reactions comprising the CNO cycles at normally occurring
hydrogen-burning temperatures are given in Table 6.2.

The general structure of the CNO cycles (or you can call them the CNOF
cycles because the last involves fluorine—but few do) consists of a series of
proton captures on isotopes of CNO interspersed with positron decays, and
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Table 6.2. The Carbon-Nitrogen-Oxygen cycles

12C+ 1H −→ 13N+ γ
13N −→ 13C+ e+ + νe

13C+ 1H −→ 14N+ γ
14N+ 1H −→ 15O+ γ

15O −→ 15N+ e+ + νe
⇓ 15N+ 1H −→ 12C+ 4He

–or–
15N+ 1H −→ 16O+ γ
16O+ 1H −→ 17F + γ

17F −→ 17O+ e+ + νe
⇓ 17O+ 1H −→ 14N+ 4He

–or–
17O+ 1H −→ 18F + γ
18F + e− −→ 18O+ νe
18O+ 1H −→ 19F + γ
19F + 1H −→ 16O+ 4He

ending with a proton capture reaction yielding 4He. The first set of reac-
tions listed in Table 6.2 is called the CN cycle and the isotopes of carbon
and nitrogen act as catalysts; that is, you can start almost anywhere in the
cycle, destroy one of these isotopes, and, by looping around the cycle, even-
tually find a reaction that makes the same isotope. This does not mean that
the concentrations will remain constant through time because that depends
primarily on the relative rates of the reactions in the cycles taken as a whole.

The second set of reactions in Table 6.2, when combined with the first,
constitute the CNO cycle (sometimes called a tricycle). It arises from a com-
bination of two factors: either 16O is (very likely) in the stellar mixture in
the first place or, in any case, it will eventually be made by the reaction
15N(p, γ)16O. Note that the final reaction in the CNO cycle sends 14N right
back into the CN cycle.

The branching to the third segment of the cycle is somewhat uncertain
because the rate for the reaction 17O(p, α)14N is not well determined. We
include that branch for completeness only.

An exact description of just how the CNO cycles operate in hydrogen-
burning is not a trivial matter because of the intricate cycling of isotopes.
Both the rate of energy generation and the detailed abundances of all the
isotopes depend on the initial concentrations of the catalytic nuclei, the mean
lifetimes for the individual reactions as they depend on temperature, and how
long the processing has been going on. It was recognized early on, however,
that a key reaction in the cycles was 14N(p, γ)15O. It is relatively slow and
involves the isotope 14N, which appears in the first two cycles (see Caughlan
and Fowler, 1962). As we saw in the last section, a slow reaction in a chain
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of reactions often sets the pace for the whole. We cannot go through the
complete analysis here (see Clayton 1968, §5-4) but the important result
is that if temperatures are high enough to initiate CN or CNO hydrogen-
burning in main sequence stars, then the most abundant nucleus will end
up being 14N after long enough periods of time have elapsed. This means
that the cycles eventually convert almost all of the original CN or CNO
nuclei, depending on temperatures and time scales, to 14N. It is thought that
virtually all 14N seen in nature has been produced in this way.

If not enough time is available to allow the CN or CNO cycles to reach
equilibrium, then the above results have to be reevaluated. This means that
the differential equations that govern the creation and destruction of individ-
ual isotopes must be followed explicitly in time. This is also usually necessary
when detailed isotope ratios are desired. For example, many highly evolved
stars show abundance ratios between 12C, 13C, and 14N in their spectra that
are anomalous compared to some sort of cosmic standard. It is highly likely
that what is being seen here is the effect of CNO processed material having
being brought to the stellar surface by mixing perhaps coupled with mass
loss (in, e.g., red giant or asymptotic giant phases). Thus we see directly the
products of nuclear burning. For a review of this important topic see, for
example, Iben and Renzini (1984).

An estimate for the energy generation rate for the CN and CNO cycles
may be obtained as follows. If enough time has elapsed so that the cycles
are in equilibrium, then the reaction rate for the cycles is set by the rate
of 14N(p, γ)15O. To find the energy generation rate we then need an overall
Q-value. Fowler et al. (1975) recommend 24.97 MeV per proton capture on
14N. We also need the number densities of protons (that is easy) and 14N.
The last is tricky because, if the cycles are in equilibrium, n(14N) is the sum
of the number densities of the original (before burning) CN or CNO nuclei.
But, as discussed above, this depends on details of temperature and time
scale history.

To get an idea of what errors might arise from making the wrong choice
between CN and CNO, we should look at typical abundances of these nuclei
in nature and a good place to look is the sun. Bahcall and Ulrich (1988), in a
review on the status of solar models, quote the following relative abundances
(from L. Aller) for C, N, and O in the solar atmosphere: n(C) = 0.28, n(N) =
0.059, and n(O) = 0.498. These number densities are normalized so that the
total number density of all metals (i.e, all elements except hydrogen and
helium) is unity. Adding these up we find that CNO constitutes about 84%
of all metals by number and that O makes up about 60% of CNO by number.
Delving a little deeper into the tables in the review by Bahcall and Ulrich
and multiplying number densities by atomic weights also reveals that the
mass fraction of CNO is XCNO ≈ 0.74Z, where Z is the metal mass fraction
(see §1.4). Thus CNO elements comprise the majority of metals in the solar
atmosphere and, by extension, of the atmospheres of other normal Pop I
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stars. In addition, we find that XO ≈ 0.67XCNO. What this all means is that
considerable caution should be exercised in choosing CN or CNO to represent
14N in the CNO energy generation rate. As a compromise, and after reviewing
the above figures, a reasonable choice is to set the CN or CNO mass fraction
to Z/2 with a possible error of about 25%.

Putting this together—and after consulting Fowler et al. (1975) for the
reaction rate of 14N(p, γ)15O—we find a very useful estimate for the energy
generation rate for the CN or CNO cycles of

εCNO ≈ 4.4× 1025ρX Z

T
2/3
9

e−15.228/T
1/3
9 erg g−1 s−1. (6.77)

Detailed evolutionary calculations require more than this but it should suffice
for making simple ZAMS models.

Fig. 6.10. Plots of εpp/ρX2 and εCNO/ρXZ as a function of temperature. (The
legend on the ordinate is generic: “ε/ρX2” refers to either depending on context.)
To obtain the energy generation rates, you must multiply by the density and the
appropriate mass fractions. The temperature of the present-day solar center is in-
dicated by the sun sign.

Figure 6.10 shows the pp-chain and CNO cycle energy generation rates
derived from (6.76) and (6.77) with density and either factors of X2 (for the
pp-chains) or XZ (for CNO) removed. For a solar central temperature of
T6 ≈ 15, X = 0.7, and Z = 0.02, find that εpp ≈ 10×εCNO, so that the CNO
contribution to the total energy generation rate is roughly 10%. However, it
does not take much more massive a star on the main sequence with a higher
than solar central temperature before the greater temperature sensitivity of
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the CNO cycles wins out and the pp-chains lose their dominance. Note that
the temperature exponent for the CNO cycles is

ν(CNO) =
50.8

T
1/3
6

− 2
3 (6.78)

which is about 18 for T6 = 20.

6.5 Helium-Burning Reactions

This section will deal with the triple-α and subsequent reactions in helium-
burning. For the most part, the stellar environment is assumed to correspond
to that of the cores of normal post-main sequence stars where temperatures
do not greatly exceed 108 K. The primary reaction sequence considered here
is

α+ α −→ 8Be(α, γ)12C(α, γ)16O .

For an excellent historical review of the subject see Fowler (1986).
Helium-burning begins with the inverse of the 8Be → 2 4He decay that

terminates the PP–III chain; that is, the first reaction is 4He + 4He → 8Be,
which is endothermic (energy absorbing) by 91.78 keV. We remarked earlier
that 8Be has a lifetime of only 10−16 s. Thus to produce 8Be in any quantity
whatsoever, the α-particles must have sufficient energy to gain access to the
ground state of 8Be and the formation rate of 8Be must be sufficiently rapid to
make up for its short lifetime. Since the ground state of 8Be has a finite width
(Γαα ∼ 7 eV), we may ask at what temperature the Gamow peak begins to
encroach upon that resonance. In other words, if the reaction does not begin
to look resonant, then the reaction rate for production may not catch up with
the inverse decay. From (6.40), the location of the peak is at E0 = 3.9T 2/3

6 keV
(Zα = 2, μ = 2) and it equals 92 keV when T = 1.2 × 108 K. If the effects
of electron screening in high-density situations are ignored (for the present)
then this roughly sets the minimum temperature for helium-burning.

Assume then that temperatures exceed 108 K and the 8Be producing reac-
tion proceeds rapidly. If rapid enough, the formation rate of 8Be should begin
to match the rate at which it is destroyed by decays; that is, the concentration
of 8Be should approach equilibrium. (This should, and can, be justified—as
it is in the references.) One way to find the equilibrium concentration is to
compute the rate of production by equating n2α〈σv〉αα/2 (remember the fac-
tor of two for like particles) to λn(8Be), where λ is the decay constant for
8Be. This unfortunately requires knowing 〈σv〉αα. But there is an easier and
more illuminating way to go about it. We may assume chemical equilibrium
and use the Saha equation (3.35) except that we now have nuclei and not
atoms, ions, and electrons as was the case for the hydrogen ionization reaction
(3.31).

The equilibrium reaction we are talking about is
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α+ α⇐⇒ 8Be

and several easy modifications must be made to the Saha equation of (3.35).
The first is to replace the number densities by (n+, ne) → nα and n0 →
n(8Be). The statistical factors, g, are unity for both 4He and the ground
state of 8Be because both have zero spin. Instead of an ionization potential
χH we now have the Q-value, which is –91.78 keV. Finally, the mass, me, is
replaced by m2

α/m(
8Be) ≈ mα/2 as the reduced mass. The “nuclear” Saha

equation is then

n2α
n(8Be)

=
(
πmαkT

h2

)3/2

e−Q/kT

= 1.69× 1034T 3/2
9 e1.065/T9 . (6.79)

For typical conditions at, say, the start of the helium flash in lower mass stars
where ρ ≈ 106 g cm−3 (nα ≈ 1.5 × 1029 cm−3 if the flash starts with pure
helium) and T9 ≈ 0.1, find that the equilibrium concentration of 8Be is about
1021 cm−3 or n(8Be)/nα is only 7× 10−9.

With a seed of 8Be nuclei now in place, however, the second stage of the
triple-α reaction may now continue with the capture reaction 8Be(α, γ)12C.
This is an exothermic resonant reaction, with Q=7.367 MeV, which proceeds
through an excited state 12C∗ with zero spin at 7.654 MeV. The emission
of a γ-ray photon by 12C∗ does not come easily because once the compound
excited state is formed it almost always decays right back to 8Be and an α-
particle. Yet, as in the first step of the triple-α described above, the forward
reaction is sufficiently rapid (assuming a high enough temperature) that a
small pool of 12C nuclei in the excited state is built up and, again, the nu-
clear Saha equation may be used to find the concentration in the pool. It is
not difficult to do this and it should be obvious that it finally results in an ex-
pression for n(12C∗)/n3α as a function of temperature after (6.79) is applied.

Having found n(12C∗), we can then determine the net rate of decay of
12C∗ by γ-ray cascade (or electron–positron pair emission) rather than by an
α-particle: n(12C∗)×Γrad/h̄, where the combination Γrad/h̄ is the decay rate,
λrad, through the uncertainty relation. (The value of Γrad is only 3.67 meV.)
The overall sequence of the triple-α is illustrated in Fig. 6.11. (The entries to
the right of the 12C levels are the spins and parities of the levels.) It should be
clear that the overall rate of the triple-α reaction is the same as the formation
rate of the ground state of 12C.

The above contains all the elements for computing the energy generation
rate of the triple-α sequence. The final result we quote is taken from Harris et
al. (1983, in their Table 1) where the quantity N2

A 〈ααα〉 is to be found. This
is multiplied by ρ2Y 3NAQ/6A3

α and Q=7.367–0.0918=7.275 MeV to yield

εααα = ε3α =
5.1× 108ρ2Y 3

T 3
9

e−4.4027/T9 erg g−1 s−1. (6.80)
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Fig. 6.11. The level diagrams and energetics of the two reactions composing the
triple-α reaction (not to scale). The final result is the nucleus 12C.

Here, Aα = 4 (as part of nα), and the division by 6 in the multiplying factor
comes about because of triple counting of α-particles (as in dividing by 2
for double counting of protons in the pp chains). To verify (6.80) requires
searching through some of the papers already referenced and we suggest you
try to reproduce it to gain experience in how to use these references.8 If
intermediate rates are fast enough to satisfy the Saha equation, then the
uncertainty in (6.80) is estimated to be only 15% (Fowler, 1986).

It is easy to show from (6.80) that the temperature and density exponents
for the triple-α reaction are

λ3α = 2, and ν3α =
4.4
T9
− 3 . (6.81)

For T8 = 1, ν3α ≈ 40, which is considerably larger than the corresponding
exponent for hydrogen-burning. This means that the helium fuel is potentially
more explosive than hydrogen—a fact of considerable interest for the helium
flash, as discussed in §2.5.

The effects of screening are difficult to assess for a reaction such as the
triple-α and we shall not attempt to do so here. In addition, the above analysis
is inappropriate for temperatures much below 108 K because 4He(α)8Be no
longer samples the resonance in 8Be strongly. For an attempt to combine these
8 In particular, you will need Fowler et al. (1967, 1975) and Harris et al. (1983).
High-temperature correction factors and individual rates for the two parts of the
triple-α may be found in Caughlan and Fowler (1988).
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various elements see Fushiki and Lamb (1987), who give general expressions
for the energy generation rate, including effects of weak and strong screening
and, in the very-high-density limit, “pycnonuclear” effects (a term coined by
Cameron, 1959; see also Ichimaru et al., 1992). These corrections can be very
important.

The next step in helium-burning is α capture on 12C to form 16O. In the
12C(α, γ)16O reaction, the 12C+ α pair, at zero initial energy, enters 16O at
7.12 MeV (which is the Q-value). The nearest resonance in 16O, however, lies
some 45 keV below that energy. Hence the reaction proceeds only in the upper
tail of the resonance at temperatures near 108 K. Unfortunately the nuclear
parameters for this resonance and the detailed behavior of the resonance tail
are hard to come by experimentally: a direct measurement of the cross section
fails by a few orders of magnitude with present capabilities. To complicate
matters, there are two (at least) levels well above the entry point of 4He
that can contribute (either constructively or by distructive interference) to
the rate. A (hopefully) outdated quote by Fowler (1985) reads: “If users find
that their results in a given study are sensitive to the rate of the 12C(α, γ)16O
reaction, then they should repeat their calculations with 0.5 times and 2
times the values recommended here.” That is, give a factor of two either way.
(And see Imbriani et al., 2001, for an example of this philosophy applied to
evolutionary models.)

That situation may have been remedied by Kunz et al. (2002), who have
used older experimental data plus new results of their own to calculate (using
R–matrix theory) a new rate that they claim should be accurate to ±30%.
Whether this is an optimistic appraisal or not, their rate is (are you ready?)

NA〈σv〉(α, 12C) = a0

T 2
9

(
1 + a1T

−2/3
9

)2 exp [−a2T−1/39 − (T9/a3)2
]
+

+
a4

T 2
9

(
1 + a5T

−2/3
9

)2 exp [−a2T−1/39

]
+

+
ã9

T
1/3
9

exp
[
−a11T−1/39

]
(6.82)

in the units of cm3 s−1 mole−1. The various constants (in Kunz et al. no-
tation) are a0 = 1.21 × 108, a1 = 6.06 × 10−2, a2 = 32.12, a3 = 1.7,
a4 = 7.4 × 108, a5 = 0.47, a11 = 38.534, and ã9 = 3.06 × 1010. The tem-
perature range is 0.02 <∼ T9 <∼ 10. This may all seem picayune, but nature has
found a way to produce a ratio 12C/16O that seems to fit our needs, so pay at-
tention! Furthermore, the amounts of 16O made also control to a large extent
the amounts of heavier elements made in later burning stages.

The next reaction in the helium-burning sequence, 16O(α, γ)20Ne, is
rather slow at normal helium-burning temperatures because no appropriate
resonance in 20Ne is available nearby where the α enters 20Ne. (20Ne is one of
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those even-even nuclei that have a very low density of levels.) Thus the com-
petition between how fast 12C is produced by the triple-α and how quickly
it is converted to 16O primarily determines the final relative abundances of
these two nuclei. For the later evolutionary stages of lower-mass stars, this
may determine whether the final core, as in a white dwarf, is mostly carbon or
oxygen. For your reference, the energy generation rate for the 16O(α, γ)20Ne
reaction (Q=4.734 MeV) is, from Caughlan and Fowler (1988),

ε(α, 16O) =
6.69× 1026Y X16 ρ

T
2/3
9

×

× exp
[
−39.757T−1/39 − (0.631T9)2

]
erg g−1 s−1 (6.83)

for not overly high temperatures.
Other capture reactions using α-particles that are of some importance

to nucleosynthesis are those on various C, N, and O isotopes, where one of
the exit channel particles is a neutron—and we have discussed these briefly
before.

6.6 Carbon, Neon, and Oxygen Burning

Once α-particles have been used up in helium-burning and if temperatures
can rise to T9 ∼ 0.5–1, carbon burning commences and, at yet higher tem-
peratures (T9 >∼ 1), oxygen burning. Intermediate between these two burning
stages is neon burning, which uses high-energy photons to break down 20Ne
by “photodisintegration” (see below) via 20Ne(γ, α)16O.

The important branches of the reactions 12C+12C and 16O+16O are given
in Table 6.3, where “yield” is the percentage of time the reaction results in
the particular products on the right-hand side. The yield depends weakly on
temperature and we ignore minor branches.

Table 6.3. Carbon- and Oxygen-Burning Reactions

Reaction Yield Q (MeV)
12C+ 12C→ 20Ne + α 44% 4.621
12C+ 12C→ 23Na + p 56% 2.242
16O+ 16O→ 28Si + α 21% 9.593
16O+ 16O→ 31P + p 61% 7.678
16O+ 16O→ 31S + n 18% 1.500

The 12C+ 12C reactions are followed by 23Na(p, α)20Ne (Q=2.379 MeV),
and 23Na(p, γ)24Mg (Q=11.691 MeV) using the protons released from the
second reaction in Table 6.3. The α-particles can then be used on 16O to
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form 20Ne or on 20Ne to yield 24Mg. Depending somewhat on temperature
and density, the net result of this chain of reactions is the formation of 20Ne
followed by lesser amounts of 23Na and 24Mg for quiescent carbon burning.
(For a good review of quiescent heavy ion burning see Thielemann and Arnett,
1985.) The rate of energy generation for the two branches of the 12C + 12C
reaction is, from Caughlan and Fowler (1988),

ε(12C+ 12C) =
1.43× 1042Q ηρX2

12

T
3/2
9

e−84.165T
−1/3
9 erg g−1 s−1 (6.84)

where the proper Q-value (in MeV) is to be used and η is the yield of Table
6.3 multiplied by 10−2. If, as a convenience, you wish to make believe that the
reaction ends up as 24Mg, then use η=1 and Q=13.933 MeV. Note, however,
that the 12C + 12C rate is not very well-determined for temperatures below
T9 <∼ 1.

You may easily check that the temperature and density exponents for
(6.84) are ν = 28/T 1/3

9 −1.5 and λ= 1. The large temperature exponent is,
as usual, due to the large nuclear charge of the reactants. These heavy ion
reactions are especially susceptible to electron screening effects (and often
take place in dense environments) so take care if you require accurate rates.

Intermediate between carbon and oxygen burning are a set of reactions
that use up the neon just produced and constitute the neon burning stage.
The first of this set has been referred to briefly before and is a result of the
intensity of the radiation field as temperatures exceed T9 >∼ 1. A temperature
of T9 of unity is about 0.1 MeV and there are substantial numbers of pho-
tons with energies exceeding that figure in the tail of the Planck distribution.
These energies are in the range of those of low-lying nuclear states for some
nuclei and it is now possible to excite those unstable states. The result is often
the emission of particles from the nucleus in a “photodisintegration” reaction,
which is the analogue of ionization in atoms (and see Ex. 6.10). The relevant
reaction for neon burning is 20Ne(γ, α)16O, which is the inverse of the last re-
action in helium-burning. And, as in helium-burning, the α-particle produced
can be captured right back by a 20Ne nucleus, but, more to the point, temper-
atures are sufficiently high to allow the sequence 20Ne(α, γ)24Mg(α, γ)28Si.
(Note how, in the later burning stages, the reaction sequences get more con-
voluted with nucleons and α-particles being tossed around to make a great
variety of heavy nuclei.) The net result is a pool of 16O, 24Mg, and 28Si (see
Fig. 2.30).

The next stage is the burning of oxygen by 16O+16O. (Note that 12C+16O
is, in principle, possible at some point, but 12C is rapidly used up by carbon-
burning and the rate of 12C + 16O is intrinsically slow.) The three main
reactions and their yields and Q-values are given in Table 6.3 with an energy
generation rate of

ε(16O+ 16O) =
1.3× 1052Q ηρX2

16

T
2/3
9

e−135.93T
−1/3
9 ×
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× e

[
−0.629T 2/39 −0.445T 4/39 +0.0103T 29

]
. (6.85)

If all the reactions were somehow to proceed to 32S, the total Q would be
16.542 MeV.

Many reactions are possible after the last three in Table 6.3. Examples are
31S→ 31P+ e+ + νe, 31P(p, α)28Si(α, γ)32S, etc. Completion of this stage of
burning results in 28Si, 30Si, 32S and, depending on conditions of temperature
and density, 42Ca and 46Ti.

6.7 Silicon “Burning”

When temperatures begin to exceed some 3 × 109 K, a bewildering number
of reactions are possible. We pointed out previously the effects of photo-
disintegration during neon burning where the radiation field was capable of
“ionizing” nucleons from nuclei, which could then be used to build even more
massive nuclei. As a relevant example consider 28Si(γ, α)24Mg followed by
24Mg(α,p)27Al and, finally, 27Al(α,p)30Si. Here nucleons have been recycled
with the aid of photons effectively to add two neutrons to 28Si to produce
30Si. Amplify this to include many reactions that eventually lead up to nuclei
in the iron peak—as those with the highest binding energy per nucleon—and
you have the essentials of silicon burning (or perhaps “melting”).

To follow all these reactions in detail is a daunting task and one that was
first carried out in the pioneering calculations of Truran et al. (1966). What is
required is consideration of many nuclei and the reactions that connect them
(plus the cross sections for the reactions). One such reaction “network,” along
with the possible types of reactions, is shown in Fig. 6.12. As the burning
accelerates, the reactions proceed sufficiently rapidly that a state of “quasi-
static equilibrium” begins to take hold. By this we mean that photodisinte-
gration and particle capture reactions are nearly in equilibrium but with a
bias toward the production of nuclei in the iron peak. Because of the rapidity
of the reactions, the abundances of most nuclei may be approximated by a
nuclear version of the Saha equation where, instead of ionization potentials,
nuclear masses and energies are used. (See, for example, Bodansky, Clayton,
and Fowler, 1968.)

The result of silicon burning is production of nuclei in the iron peak. If
enough time is allowed to elapse (as in quiescent burning), then the most
abundant of these is 56Fe. If, on the other hand, the time scales are short—as
in a supernova—and electron or positron decays and electron captures do not
have enough time to go to completion, then 56Ni is the most abundant. This
is crucial to our understanding of supernovae and was discussed in Chapter 2.
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Fig. 6.12. A sample reaction network for silicon burning that also shows the re-
actions possible between nuclei in the network. Adapted by Clayton (1968) from
Truran et al. (1966). Copyright c©1968, 1983 by D.D. Clayton and reproduced by
permission.

6.8 Neutrino Emission Mechanisms

Matter at ordinary temperatures and densities is extraordinarily transparent
to neutrinos. Thus if neutrinos are produced in normal stellar interiors they
are an energy-loss mechanism because they carry off energy to space. But
there are situations where neutrinos may be intercepted by stellar material
and either be absorbed or scattered. To get an idea of how extreme those
conditions must be, consider a typical neutrino capture cross section of σν ∼
10−44E2ν cm2, where Eν is the neutrino energy in MeV. The target for capture
is unspecified here.9 The mean free path is then λ = 1/nσν , where n is the
number density of targets which, if they have a mean molecular weight near
unity, yields λ ∼ 1020E−2ν /ρ cm. To get short mean free paths we need very
high densities or neutrino energies. These conditions for stars are met, as far
as we know, only in the cores of supernovae. In the core collapse phase of Type
II supernovae densities approach and then exceed those of nuclear densities
(as discussed in Chap. 2). If a typical density is ρ ∼ 1014 g cm−3, then typical
nucleon kinetic energies are in the 20 MeV range if we choose Fermi energies
as being representative (as in §6.2.2). If neutrinos are produced with these
9 Much of this is discussed in Shapiro and Teukolsky (1983, Chap. 18), Bethe
(1990), and references therein. We make no attempt to give derivations of this
material or that which follows.
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kinds of energies then a crude estimate of λν is 25 meters. Thus, neutrinos
in this sort of environment are effectively “trapped” and whatever energy
they carry with them may be deposited in the collapsing core. This energy
transfer mechanism is one ingredient in some supernovae calculations. (For
an example of the difficulties in computing how neutrinos are transported,
see Burrows et al., 2000.)

Aside from such extreme environments, we should consider neutrinos as an
energy drain for stars. If εν represents the specific energy rate (in erg g−1 s−1)
at which neutrinos are produced, then the energy equation, excluding other
factors, is dLr/dMr = −εν where the minus sign reminds us that εν is a
power drain. What we shall briefly explore here are some important neutrino-
producing mechanisms in the later stages of evolution.

The most familiar of these are electron (or positron) decay and elec-
tron capture involving nuclei. We have seen examples of these reactions in
hydrogen-burning and more advanced stages. Usually the associated neu-
trino losses are rather modest. This is not the case, however, for the stages
immediately prior to Type II supernova core collapse. The reason is that the
Fermi energies of electrons in very dense environments are sufficiently high
that electrons near the top of the Fermi sea are capable of being captured on
protons in most nuclei. The result is not only copious neutrino production
but also a shift to neutron–rich nuclei. This process can be a first step in the
transformation of ordinary matter to neutron star matter. A brief overview
is given by Bethe (1990). More esoteric mechanisms include the following.

Pair Annihilation Neutrinos

These neutrinos come about by the annihilation of an electron by a positron
in the reaction

e− + e+ −→ νe + νe . (6.86)

But where can we get sufficient numbers of positrons to make this reaction
at all interesting? This is not that difficult if temperatures are high enough
(kT ∼ 2mec

2) so that some fraction of ambient photons are capable of pair
creation via

γ + γ ⇐⇒ e− + e+. (6.87)

If this reaction goes rapidly enough then the equilibrium number densities of
both electrons and positrons can be calculated from the condition on their
chemical potentials, μ(e−) + μ(e+) = 0 (see §3.1). Thus, in chemical equilib-
rium, μ(e−) = −μ(e+). A further requirement is that the hot gas be electri-
cally neutral, which leads to the condition on the number densities

ne−(total) = ne−(free) + ne+

where “free” refers to those electrons that would normally be associated with
nuclei were no pairs created and “total” refers to the total of free plus pair–
created electrons. The number density ne−(free) can be calculated from the
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density and composition of the material and is a “given.” Equation (3.44) for
fermion number densities as a function of chemical potential and temperature
is true for both electrons and positrons provided that −μ(e−) is used for
the positrons. This information is sufficient and both ne− and ne+ may be
found although the calculation is not easy. The rate of neutrino emission then
follows from application of the Weinberg–Salam–Glashow theory of electro-
weak interactions.

Fig. 6.13. The combined neutrino loss rates (in erg g−1 s−1) for pair annihila-
tion, photo-, and plasma neutrinos versus ρ/μe and temperature. Adapted from
the calculations of Itoh and collaborators.

Photoneutrinos and Bremsstrahlung Neutrinos

The first of these is the analogue of electron–photon scattering except that
instead of a final photon we get a neutrino–antineutrino pair. That is,

e− + γ −→ e− + νe + νe . (6.88)

The rule seems to be that if you can get an exiting photon, then it is also
possible to get a νe–νe pair. Thus ordinary bremsstrahlung, which yields a
photon when an electron is scattered off an ion, is a likely candidate. This is
an important energy loss mechanism for hot white dwarfs.
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Plasma Neutrinos

From elementary physics we know that a free photon cannot create an
electron–positron pair because energy and momentum cannot both be con-
served in the process. In a very dense plasma, however, electromagnetic waves
can be quantized in such a way that they behave like relativistic Bose parti-
cles with finite mass, “plasmons,” that can decay into either e−–e+ or νe–νe
pairs. You might look upon plasmons as heavy photons created especially to
cause trouble for some stars.

Fig. 6.14. Bremsstrahlung neutrino loss rates for pure 12C. The kinks in the curves
are due to overlap in fitting formulas. Adapted from the calculations of Itoh and
collaborators.

Figures 6.13 and 6.14 summarize the neutrino power generated by the
above reactions as functions of temperature and density. (Fig. 6.14 is for the
case of pure 12C.) In these figures μe is the usual mean molecular weight for
electrons.10 As an application of Fig. 6.13, consider SN1987A discussed in
Chapter 2 and, in particular Fig. 2.30, which gave an overview of the evolu-
tionary stages leading to explosion. The next-to-last stage, lasting some two
days, consists of the building up of a 1M� iron peak core with a central tem-
perature and density of Tc ≈ 3.7×109 K, ρc ≈ 4.9×107 g cm−3. Whether the
10 The calculations done to construct these figures were based on the work of Naoki
Itoh and his collaborators (see references). We used their analytic fits to neutrino
rates but they also include tables. If you wish to duplicate the figures using these
fits, we warn you that some of their expressions contain obvious errors.
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core is silicon or iron, μe is still about two. An eyeball estimate from Fig. 6.13
of the neutrino power under these conditions is εν ∼ 1013 erg g−1 s−1. If the
whole core released this specific power (and this is an overestimate), then the
total neutrino luminosity is Lν ∼ 5 × 1012 L� (!), which is not too far dis-
tant from the value quoted in Fig. 2.30. This extraordinary luminosity loss in
neutrinos is primarily due to the pair annihilation process but, in any event,
it shows how important these elusive particles can sometimes be for stars.

6.9 Exercises

Exercise 6.1. Derive εgrav of (6.5).

Exercise 6.2. Suppose the sun’s thermonuclear energy source had turned
itself off at the time of the hominid “Lucy” (A. Afarensis) some 3 Myr
B.P. (“Before Present”) ago but its luminosity has remained unchanged since
that time. If so, estimate the sun’s radius and effective temperature during
Lucy’s time. (We won’t ask whether she cared one way or the other.)

Exercise 6.3. Verify Eqs. (6.40)–(6.42).

Exercise 6.4. A nuclear reaction involving only nuclei (including protons
and neutrons) must obey some selection rules: otherwise the reaction can’t
proceed. This exercise explores rules pertaining to intrinsic spin, parity, and
angular momentum. You really need some quantum mechanics to understand
this fully but we will give the rules as recipes (e.g., see Clayton, 1968, §4–
4). So, imagine you have some combination of two nucleons and/or nuclei
combining to make a compound state of a nucleus. The entrance channel re-
actants have intrinsic vector spin and parity (Π = ±1) SΠi

i (where i labels the
reactant) and their relative angular momentum vector is L. The compound
nucleus has a total angular momentum vector JΠc

c made up of all the things
that go on inside the compound state. The total spin of the reactants is

S = SΠ11 + SΠ22 .

By the addition rules of QM the scalar value of S ranges between

|s1 − s2| ≤ s ≤ |s1 + s2|
where the si are either integers or half-integers. The total angular momentum
of the entrance channel is J = S+ L with permitted scalar values

|�− s| ≤ J ≤ |�+ s|
where � = 0, 1, 2, · · · , |L|. J must equal |Jc|. The parity, telling how things
look when viewed in a mirror, is either + or − and “adds” up as

Π(J) = Π(s1)Π(s2)(−1)� .
To conserve parity in strong nuclear reactions (no electrons or neutrinos in-
volved) requires Π(Jc) = Π(J). Given all this, determine the following:
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1. Our favorite CNO reaction, 12C(p, γ)13N, forms the compound states in
13N with JΠ of (in order of increasing energy) (1/2)+, and (3/2)−. What
are the permitted values of � of the entrance channel to form each of
these states? (The spin and parity of protons and neutrons is 1/2+. The
ground state of 12C is 0+.)

2. For 13C(p, γ)14N there are states in 14N with 2− and 1−. If 13C ground
is (1/2)−, what are the permissible values of � ?

Exercise 6.5. The “statistical factor” g that appears in (6.28) and subse-
quent expressions for 〈σv〉 needs some explaining. For each spin and angular
momentum in Ex. 6.4, there are, for example, (2s1 + 1) possible values (i.e,
orientations) of s1. If the entrance channel particles are not polarized, then
all of these may participate in the interaction. The factor g is such that we
sum over all possible compound state angular momenta and average over
all possible incoming angular momenta. From this show that the following
replacement holds:

g(2�+ 1) −→ (2J + 1)
(2s1 + 1)(2s2 + 1)

.

Exercise 6.6. As far as we know, helium is of no use for the metabolism of
creatures such as us despite its being the second most abundant element in the
universe. But carbon and oxygen are essential. Therefore, let’s burn helium
(as 4He) and convert it to 12C and 16O. We shall use the triple-α to make
12C, then add on another 4He to make 16O and, further, see how much 16O is
destroyed to make 20Ne in one additional reaction. The imagined site for the
burning is in the core of an intermediate mass star, where ρ = 104 g cm−3

and T9 = 0.15. (These are typical figures for nondegenerate helium-burning
in such a star.) We denote the number densities (in cm−3) of the various
elements by n4, n12, n16, and n20, and the corresponding mass fractions by
X4, X12, X16, and X20. The average of the cross section times velocity for
the reactions are denoted by 〈3α〉 for the 3-α; 〈α12〉 for 12C(α, γ)16O; 〈α16〉
for 16O(α, γ)20Ne. The 〈σv〉s are to be deduced from equations (6.80), (6.82),
(6.83), and accompanying material.

1. Show that the reaction rate equations that govern the creation and de-
struction of the nuclei are given by

dn4
dt

= −3n
3
4

6
〈3α〉 − n4n12〈α12〉 − n4n16〈α16〉

dn12
dt

=
n34〈3α〉
6

− n4n12〈α12〉
dn16
dt

= n4n12〈α12〉 − n4n16〈α16〉
dn20
dt

= n4n16〈α16〉 .
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2. Now integrate these equations as a function of time where the initial con-
dition is that of pure helium at the temperature and density given above.
You are to keep both of the latter fixed for all time. Note that this will
involve numerical integration of four simultaneous first-order differential
equations. The best way to do this is to first convert the number densi-
ties in the rate equations to mass fractions (by n = ρXNA/A) so that the
dependent variables are now the mass fractions. This will be convenient
for two reasons. First off, they all range between zero and unity, so the
scale of the variables is nice. Secondly, we know that

X4 +X12 +X16 +X20 = 1

where, initially, X4 = 1 and the others are zero. This provides a con-
servation check on the computations so that if the sum is not unity at
some stage you are in trouble. Before you integrate the dXi/dt first try
to estimate the kind of time scales you are up against. The 3α reaction
basically controls the flow of nuclear processing. Once you run out of αs,
you’re done. Therefore solve the first rate equation analytically, keeping
only the 3α reaction. Then find the time (starting from time zero) when
half of the αs are used up using that solution. (The time will be about
104 years.) Now you have a rough idea of what time steps to use at the
beginning of the time integrations and you can numerically integrate the
full set of equations until the αs are essentially used up.

3. Plot your results for the Xi as functions of time and see how much carbon
and oxygen you are left with. You may wish to redo the calculations by
changing the problematical 〈α12〉 by a ±30% either way to see what
happens.

Exercise 6.7. In the normal course of evolution of a massive star, the end
products of nuclear burning are elements in the iron region of nucleon number.
From our previous discussions, we know this is a disaster because the star
continues to contract and heat up. If the temperatures get high enough, the
radiation field is capable of initiating photodisintegration reactions and all the
iron peak elements end up as a puddle of nucleons. This can happen on such
rapid time scales that the abundances of nuclei (as functions of temperature
and density) can be calculated approximately as if the gas were in chemical
equilibrium. This sounds like the Saha equation but the folks who do high-
temperature nuclear astrophysics call it “Nuclear Statistical Equilibrium” or
NSE for short. To look at this in a very simplified version consider a gas
composed only of 56Ni and 4He where the “chemical reaction” between them
is

14 4He⇐⇒ 56Ni + Q .

You may compute the Q-value for the reaction from the mass excesses

[M −A] c2(4He) = 2.42494 MeV
[M −A] c2(56Ni) = −53.902 MeV .
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1. Set up the “Saha equation” for the reaction, making believe that you are
dealing with atoms and ions and assume that both nuclei are in their
ground states. Let the statistical weights be equal to one (and this is all
right because the spins of the ground states are zero).

2. Convert your Saha equation so that the unknowns are mass fractions X4
and X56 where X4 +X56 = 1.

3. Fix the physical density to be ρ = 107 g cm−3 and solve for X4 and X56
for temperatures in the range 4.5 ≤ T9 ≤ 6.5.

4. At what temperature is X4 = X56?
5. And, yes, plot up your results for the Xs versus T9.

Exercise 6.8.We have alluded to the nefarious helium core flash several
times, but here is your chance to actually do something about it. Suppose
you have a gram of pure helium (as 4He) in the center of a pre-helium flash
red supergiant. The density and temperature of the gram are, respectively,
ρ = 2× 105 g cm−3 and T = 1.5× 108 K. This is hot enough to burn helium
by the triple-α reaction—which is the only reaction you will use. The energy
generation rate for the reaction is given by (6.80).

You are now to follow the time evolution of the gram as helium-burning
proceeds by computing the temperature, T (t), as a function of time. Start the
clock running at time zero at the conditions stated. Assume that the density
remains constant for all time, that no heat is allowed to leave the gram, and
find T (t) until that time when the material begins to become nondegenerate.
For this use the nonrelativistic demarcation line ρ/μe = 6 × 10−9T 3/2 (see
3.70). Remember to use a specific heat that is the sum of the electron specific
heat (Eq. 3.115) and the ideal gas specific heat for pure helium. (Assume that
x may be found from ρ/μe = Bx3 of 3.51.)

Just so this problem doesn’t become too difficult, assume that the helium
concentration does not change with time. Also, plot T versus time in days.

We warn you, this is not an easy problem and you may find yourself in
trouble if you are not careful since a good solution requires solving a tough
differential equation numerically. You will be able to recognize the flash when
it happens because the temperature will suddenly skyrocket after not too
many days of burning.

Exercise 6.9. (The next two exercises were suggested by Ellen Zweibel.)
This has to do with the PP–I chain of Table 6.1. If we denote 1H by the
subscript “1,” 2H by “2,” 3He by “3,” 4He by “4,” and let 〈σv〉ij be the
average cross section times velocity connecting nuclei i and j, then show that
the differential equations for creation and destruction of the nuclei in Table
6.1 are

dn1
dt

= −2
2
〈σv〉11n21 +

2
2
〈σv〉33n23 − 〈σv〉12n1n2

dn2
dt

=
1
2
〈σv〉11n21 − 〈σv〉12n1n2
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dn3
dt

= −2
2
〈σv〉33n23 + 〈σv〉12n1n2

dn4
dt

=
1
2
〈σv〉33n23 .

According to the discussion in §6.3 and the numbers given in Fig. 6.9, the
2H(p, γ)3He and 3He(3He, 2p)4He reactions are intrinsically much faster than
the pp-reaction itself. This means that over short times (compared to the
time scale set by the pp-reaction) 2H and 3He may be regarded as being in
equilibrium (meaning their time derivatives may be taken to be zero). From
this show that, to a good approximation,

dn4
dt

=
1
4
〈σv〉11n21 . (6.89)

Argue why this is true (still assuming equilibrium) almost be inspection.

Exercise 6.10. Consider the two reactions X(α, γ)Y and Y (γ, α)X, where
the second reaction is the photodisintegration inverse of the first. The rates
for these, in obvious notation, are proportional to 〈σv〉αXnαnX and λγY nY .
At low temperatures—e.g., keV—the radiation field is not intense enough
to initiate the photodisintegration because MeVs are required. However, in
silicon burning the two reactions may be in equilibrium (or quasi-equilibrium)
so that

X + α⇐⇒ Y + γ

where the reactions proceed equally rapidly in both directions. If this is true,
then the Saha equation can be used to find λγY . (This quantity is notoriously
difficult to find experimentally.) Thus show that

λγY = 〈σv〉αX gαgX
gY

(
2πmαkT

h3

)3/2

e−Q/kT

where Q is the Q-value for X(α, γ)Y ,mα is the mass of α assuming that mass
is much less than the mass of X, and the gs are the statistical weights. For
the 24Mg(α, γ)28Si reaction the binding energies per nucleon for α, 24Mg, and
28Si are, respectively (and see Fig. 6.1), 7.074, 8.26, and 8.447 MeV. What is
Q? What kind of temperatures would this imply for equilibrium? (This is a
bit of a phony because at high temperatures excited states may be populated
and these can partake in the reaction.)

6.10 References and Suggested Readings

§6.1: Gravitational Energy Sources
Sections 17.4–17.6 of
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� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon and Breach)

contains a fuller discussion of gravitational sources.

§6.2: Thermonuclear Energy Sources
Chapters 4 and 5 of
� Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill)

are still the most effective general textbook references for thermonuclear re-
actions and nucleosynthesis in stars. Some details have changed during the
intervening years, but the overall picture he presents is still accurate.
� Arnett, D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton
University Press)

has a slightly different slant. The two works complement each other very well.
Cox (1968, Chap. 17) and
� Chiu, H.-Y. 1968, Stellar Physics, Vol. 1 (Waltham, MA: Blaisdell)

also contain useful material.

The source for mass excesses (Δ) of nuclei used in Fig. 6.1 is
� Wapstra, A.H., Audi, G., & Hoekstra, R. 1988, ADNDT, 39, 281.

The Breit–Wigner resonance cross section is derived in any number of nuclear
physics texts. We refer to Arnett (1996) because his derivation avoids the
messy details that the latter texts must go through. For those of you looking
for more information and references on barrier penetration factors as applied
to nuclear astrophysics, see
� Humbler, J., Fowler, W.A., & Zimmerman, B.A. 1987, A&A, 177, 317.

The major source for reaction rates (of many kinds) are the compilations and
critical reviews of William A. Fowler and his collaborators. The following
references should be consulted in sequence of publication because philosophy
and nomenclature carry over to the later papers:
� Fowler, W.A., Caughlan, G.R., & Zimmerman, B.A. 1967, ARA&A, 5,
525

� Harris, M.J., Fowler, W.A., Caughlan, G.R., & Zimmerman, B.A. 1983,
ARA&A, 21, 165

� Caughlan, G.R., Fowler, W.A., Harris, M.J., & Zimmerman, B.A. 1985,
ADNDT 32, 197

� Caughlan, G.R., & Fowler, W.A. 1988, ADNDT, 40, 283.

Neutron capture cross sections are reviewed by
� Käppeler, F., Thielemann, F.-K, & Wiescher, M. 1998, ARN&PS, 48, 175

and references therein.
For a full description of electron capture and other weak reactions in nucle-
osynthesis see:
� Fuller, G.M., Fowler, W.A., & Newman, M.J. 1982, ApJS, 48, 279
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� Ibid. 1985, ApJ, 293, 1.

The early developments of the physics of the pp-reaction are given in
� Bethe, H.A., & Critchfield, C.H. 1938, PhysRev, 54, 248
� Bethe, H.A. 1939, PhysRev, 55, p. 103 and 434
� Salpeter, E.E. 1952, PhysRev, 88, 547
� Ibid. 1952, ApJ, 115, 326.

Recent corrections are due to
� Gould, R.J., & Guessoum, N. 1990, ApJ, 359, L67,

and see
� Mampe, M., et al. 1989, PhysRevL, 63, 593

for an experimentally determined half-life of the neutron.
� Käppeler, F., Beer, H., & Wisshak, K. 1989, RepProgPhys, 52, 945
� Käppeler, F., Thielemann, F.-K., & Wiesher, M. 1998, ARN&PS, 48, 175
� Käppeler, F., Gallino, R., Busso, M., Picchio, G. & Raiteri, C.M. 1990,
ApJ, 354, 630

have lots of material on the s-process.
The description of electron screening used in most modern works is based on
the development of
� Salpeter, E.E. 1954, AustJPhys, 7, 373.

Debye–Hückel theory is discussed by
� Landau, L.D., & Lifshitz, E.M. 1958, Statistical Physics (London: Perg-
amon).

§6.3: The Proton–Proton Chains
The expression (6.75) for the average Q-value for the pp-chains is from
� Fowler, W.A., Caughlan, G.R., & Zimmerman, B.A. 1975, ARA&A, 13,
69.

An improved, but more complicated, estimate has been given by
� Mitalas, R. 1989, ApJ, 338, 308.

The papers cited on deuterium and lithium burning and their role in cosmol-
ogy are
� Boesgaard, A.M., & Steigman, G. 1985, ARA&A, 23 319
� Steigman, G. 1985, in Nucleosynthesis, eds. W.D. Arnett and J.W. Tru-
ran (Chicago: University of Chicago Press), p. 48

� Yang, J., Turner, M.S., Steigman, G., Schramm, D.N., & Olive, K.A. 1984,
ApJ, 281, 493.

See also
� Deliyannis, C., Demarque, P., Kawaler, S., Krauss, L., & Romanelli,
P. 1989, PhysRevL, 62, 1583.

§6.4: The Carbon–Nitrogen–Oxygen Cycles
Many of the intricacies of the CNO cycles were worked out by
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� Caughlan, G.R., & Fowler, W.A. 1962, ApJ, 136, 329.
See also
� Caughlan, G.R. 1965, ApJ, 141, 688.

“Fast” CNO cycles, which require more reactions to treat than are listed in
Table 6.2, are reviewed in
� Starrfield, S., Sparks, W.M., & Truran, J.W. 1974, ApJS, 28, 247

in the context of classical novae. The papers referring to CNO abundances
in the sun and anomalous abundances in red supergiants are
� Bahcall, J.N., & Ulrich, R.K. 1988, RevModPhys, 60, 297
� Iben, I. Jr., & Renzini, A. 1984, PhysRep, 105, 329.

§6.5: Helium-Burning Reactions
� Fowler, W.A. 1986, in Highlights of Modern. Ap., eds. S.L. Shapiro and
S.A. Teukolosky (New York: Wiley-Interscience), p. 1

is an excellent (and personal) introduction to helium-burning. Landmark pa-
pers include
� Salpeter, E.E. 1952, ApJ, 115, 326
� Ibid. 1953, ARNS, 2, 41
� Hoyle, F. 1954, ApJS, 1, 121.

Individual rates are given throughout the papers of Fowler and collaborators
as listed above. The quote from Fowler (1985) may be found in
� Fowler, W.A. 1985, in Nucleosynthesis, eds. W.D. Arnett & J.W. Truran
(Chicago: University of Chicago Press) p. 13.

See also
� Filippone, B.W. 1986, ARN&PS, 36, 717

for further comments on helium-burning.
� Buchmann, L. et al. 1993, PhysRevL, 70, 726

report some experimental results for part of the S–factor for 12C(α, γ)16O,
and the nucleosynthetic calculations of
� Weaver, T.A., & Woosley, S.E. 1993, PhysRep, 227, 1

appear to be consistent with what can be inferred from the experiment. These
results appear to have been superceded by
� Kunz, R., Fey, M., Jaeger, M., Mayer, A., Hammer, J.W., Staudt, G.,
Harissopulos, S., & Paradellis, T. 2002, ApJ, 567, 643.

For the results of varying the above rate, see
� Imbriani, G., Limongi, M., Gialanella, L., Terrasi, F., Straniero, O., &
Chieffi, A. 2001, ApJ, 558, 903.

Screening for the triple-α is discussed in
� Fushiki, I., and Lamb, D.Q. 1987, ApJ, 317, 368

and references therein. “Pycnonuclear” screening was originally discussed by
� Cameron, A.G.W. 1959, ApJ, 130, 916

and a newer prespective is offered by
� Ichimaru, S., Ogata, S., & Van Horn, H.M. 1992, ApJ, 401, L35.
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§6.6: Carbon and Oxygen Burning
� Thielemann, F.-K., & Arnett, W.D. 1985, in Nucleosynthesis, eds. W.D.
Arnett and J.W. Truran (Chicago: Univ. of Chicago Press), p. 151

give an excellent review of the various late thermonuclear burning stages for
hydrostatic stars. The rate quoted for the 12C+ 12C reaction is from
� Caughlan, G.R., & Fowler, W.A. 1988, ADNDT, 40, 283.

And, of course, see Arnett (1996).

§6.7: Silicon “Burning”
The first network calculations for silicon burning were reported in
� Truran, J.W., Cameron, A.G.W., & Gilbert, A.A. 1966, CanJPhys, 44,
576.

� Bodansky, D., Clayton, D.D., & Fowler, W.A. 1968, ApJS, 16, 299
clarified the quasi-static equilibrium (QSE) nature of this burning and, for a
more recent reference with details, see
� Woosley, S.E., Arnett, W.D., & Clayton, D.D. 1973, ApJS, 26, 231.

Another summary of advanced burning, but in the context of the radioactive
dating of the elements, may be found in
� Cowan, J.J., Thielemann, K.-R., & Truran, J.W. 1991, ARA&A, 29, 447.

§6.8: Neutrino Emission Mechanisms
Chapter 18 of
� Shapiro, S.L., & Teukolsky, S.A. 1983,White Dwarfs, Neutron Stars, and
Black Holes (New York: Wiley & Sons)

gives an overview of high-energy neutrino emission mechanisms.
� Bethe, H.A. 1990, RevModPhys, 62, 901

places some of these in the context of supernova explosions and includes a
discussion of electron capture rates.

� Chiu H.-Y. 1968, Stellar Physics (Waltham: Blaisdell)
discusses weak interactions in considerable detail. He uses an outdated the-
ory for these interactions (not the new unified electro-weak theory), but, for
low-energy reactions, his results are perfectly acceptable. The neutrino rates
shown in Figs. 6.13 and 6.14 are constructed from analytic fitting formulas
from the following papers:
� Itoh, N., & Kohyama, Y. 1983, ApJ, 275, 858
� Itoh, N., Matsumoto, N., Seki, M., & Kohyama, Y. 1984, ApJ, 279, 413
� Itoh, N., Kohyama, Y., Matsumoto, N., & Seki, M. 1984 ApJ, 280, 787
� Itoh, N., Kohyama, Y., Matsumoto, N., & Seki, M. 1984, ApJ, 285, 304
� Munakata, M., Kohyama, Y., & Itoh, N. 1987, ApJ, 316, 708
� Itoh, N., Adachi, T., Nakagawa, M., Kohyama, Y., & Munakata, H. 1989,
ApJ, 339, 354

� Itoh, N., Mutoh, H., Hikita, A., & Kohyama, Y. 1992, ApJ, 395, 622.
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You should also check on errata for some of these papers.
� Burrows, A., Young, T., Pinto, P., Eastman, R., & Thompson, T.A. 2000,
ApJ, 539, 865

illutrate how difficult it is to model neutrino transport.



7 Stellar Modeling

“To err is human,
but to really foul things up

requires a computer.”

— Anonymous

“Every novel should have
a beginning, a muddle, and an end.”

— Peter De Vries

We are now in the stellar muddling stage.

This chapter will end up having covered a diverse set of topics but all have the
same underlying theme: what analytic and numeric techniques are used to
model stars? Some of these techniques will yield approximate solutions to the
equations of stellar structure, whereas others are designed for the exacting
task of comparing model results to real stars. We start with some rather
general considerations by reviewing the equations of stellar structure.

7.1 The Equations of Stellar Structure

We shall restrict ourselves, for the moment at least, to discussing what is nec-
essary to model stars in hydrostatic equilibrium and thermal balance while
neglecting complicating factors such as nonsphericity, magnetic fields, etc.
The assumption of strict equilibrium implies that time-dependent (e.g., evo-
lutionary) processes are ignored for now.

To construct an ab initio stellar model we must first specify the total stel-
lar mass and the run of composition as a function of some coordinate such as
radius or interior mass. What should come out at the end of the calculation
is the run of mass versus radius (or the other way around), and the corre-
sponding local values of pressure, density, temperature, and luminosity. To
do this, we need the microscopic constituent physics implied in the following:

P = P (ρ, T,X) (7.1)
E = E(ρ, T,X) (7.2)
κ = κ(ρ, T,X) (7.3)
ε = ε(ρ, T,X) (7.4)

and various derivatives of these quantities. Here X is shorthand for composi-
tion (as in a specification of nuclear species). Thus given density, temperature,
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and composition, the four quantities should be available on demand by the
model builder.

The structural and thermal differential relations to be satisfied include

dP

dr
= −GMr

r2
ρ or

dP

dMr
= −GMr

4πr4
(7.5)

dMr

dr
= 4πr2ρ or

dr

dMr
=

1
4πr2ρ

(7.6)

dLr
dr

= 4πr2ερ or
dLr
dMr

= ε . (7.7)

The righthand variants of these equations are set down because, as we shall
see, it is often convenient to takeMr as the independent variable.

Accompanying the above are relations or criteria that establish what the
modes of heat transfer are. In the simplest instance of allowing only local
adiabatic convection—as in a mixing length theory—these are as follows.
Compute (as 4.30)

∇rad =
3

16πac
Pκ

T 4

Lr
GMr

(7.8)

and, as was done in Chap. 5, test to see if this exceeds ∇ad. Then set

∇ = ∇rad if ∇rad ≤ ∇ad (7.9)

for pure diffusive radiative transfer or conduction, or

∇ = ∇ad if ∇rad > ∇ad (7.10)

when adiabatic convection is present locally. The quantity ∇ is given by (as,
e.g., in 4.28)

∇ = d lnT
d lnP

= − r2P

GMrρ

1
T

dT

dr
= − 4πr

4P

GMrT

dT

dMr
. (7.11)

These computations establish the local slope of temperature with respect to
pressure.

Equations (7.5–7.11), when combined, are equivalent to a fourth-order
differential equation in space or mass. Four boundary conditions are required
to close the system. We could choose “zero” conditions which, with Mr as
the independent variable, are

at the center (Mr = 0), r = Lr = 0 (7.12)
and at the surface (Mr = M), ρ = T = 0 . (7.13)

We could also get fancy and apply some version of the photospheric boundary
condition of §4.3 (or even something more sophisticated) but the above will
do for now. Note thatM was specified beforehand but other quantities such
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as total radius, R, and total luminosity, L, must be found as a result of the
entire calculation.

In principle we may then solve for the structure. However, does a solution
always exist, and, if so, is it unique? The answer to both these questions
is “no” for many choices of total mass and composition. For the first, you
can’t make an equilibrium star out of any old thing. The second question is
a little more subtle. It turns out that, for some combinations of total mass
and composition, multiple solutions to the stellar structure equations are
indeed possible (see Ex. 7.1). This is not obvious, but a hint is contained,
for example, in the observation that the general equation of state for stellar
material is exceedingly complicated and a given pressure may be generated
at different temperatures and densities by some combination of ion ideal gas,
degenerate electrons, radiation, etc., with each of these components having
very different thermodynamic properties. The existence of multiple solutions
contradicts what was long held to be a “theorem” in stellar astrophysics due
to H. Vogt and H.N. Russell. However, the idea of uniqueness is still useful in
that among a set of models all having the same mass and run of composition,
usually only one seems to correspond to a real star or to have come from some
realistic line of stellar evolution. The others are unstable in some fundamental
way (as far as we know). Thus, for example, we now know that it is possible to
construct “main sequences” for stars having burnable fuel where the sequence
is double-valued with respect to mass.1 As fascinating as these things may
be to some theorists, we shall brush them aside and assume that if a stellar
model of given mass and run of composition can be constructed, then it is
the only one possible.

Before going into how the stellar structure equations are solved in practice,
we introduce a simplification which, albeit restrictive, turns out to be of both
practical and pedagogical value.

7.2 Polytropic Equations of State and Polytropes

The primary, and classic, reference for the beginning portions of this section
is Chandrasekhar (1939). Similar material, although not as exhaustive, may
be found in Cox (1968, §23.1), and Kippenhahn and Weigert (1990, §19).

We shall first discuss polytropes in a general way but then interrupt the
narrative to consider how these approximations to stellar models and, to some
extent, real stars are calculated in practice. This last may seem to take us far
afield but, toward the end of the section, we shall return to polytropes for a
discussion of how they are used.
1 For a review of such problems, see Hansen (1978), where this topic and the notion
of “secular stability” is discussed.
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7.2.1 General Properties of Polytropes

In previous chapters we encountered equations of state where pressure was
only a function of density (and, of course, composition). For example, the
equation of state for a completely degenerate, nonrelativistic, electron gas
was given by (3.65) as

Pe = 1.004× 1013
(

ρ

μe

)5/3

dyne cm−2 (7.14)

which is a power law equation of state with P ∝ (ρ/μe)5/3. We might then
imagine a stellar model composed of a material for which μe is a constant
throughout and in which both the equation of state and the actual run of
pressure versus density satisfy (7.14). But, if this condition is imposed be-
forehand, it is likely to result in a conflict with the complete set of stellar
structure equations and a self-consistent model would not be possible. Poly-
tropes are pseudo-stellar models for which power law equations of pressure
versus density such as (7.14) are assumed a priori but where no reference
to heat transfer or thermal balance is made. Thus only the hydrostatic and
mass equations are used and inconsistencies with respect to the complete set
of stellar structure equations are avoided. This may seem to be a high price
to pay for consistency, but the resulting polytropic structures have proven
to be remarkably useful in the interpretation of many aspects of real stellar
structure.

Another motivation for studying polytropes arises from consideration of
the structure of certain types of adiabatic convection zones. In a region of
efficient convection the actual “del” of (7.11) is given by ∇ = ∇ad = 1−1/Γ2
as in (3.94). If Γ2 is assumed constant, then integrating (7.11) yields

P (r) ∝ TΓ2/(Γ2−1)(r) . (7.15)

If, in addition, the gas is ideal with T ∝ P/ρ, then P (r) ∝ ρΓ2(r) and we
have the same situation as above: P obeys a power law relation with respect
to density as a function of radius.

In particular, we define a polytropic stellar model to be one in which the
pressure is given by

P (r) = Kρ1+1/n(r) (7.16)

where n, the polytropic index, is a constant as is the proportionality constant
K.2 Since the polytrope is to be in hydrostatic equilibrium, then the distri-
bution of pressure and density must be consistent with both the equation
of hydrostatic equilibrium and conservation of mass. To best see how this
works, divide the hydrostatic equation by ρ, multiply by r2, and then take
the derivative with respect to r of both sides to find
2 Be careful not to confuse this n with the n used as the power law density exponent
of opacity.
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d

dr

(
r2

ρ

dP

dr

)
= −GdMr

dr
= −4πGr2ρ

where the mass equation has been used to obtain the final equality. Rewrite
this as

1
r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (7.17)

which is Poisson’s equation. The latter identification is clear if we define the
potential Φ such that

g(r) =
dΦ
dr

=
GMr

r2
(7.18)

eliminate the pressure derivative (using 7.5), and find

∇2Φ = 4πGρ (7.19)

in spherical coordinates.
We now perform a sequence of transformations with the intent of making

(7.17) dimensionless. Define the dimensionless variable θ by

ρ(r) = ρc θ
n(r) (7.20)

where ρc = ρ(r = 0). The power law for pressure is then

P (r) = Kρ1+1/n
c θn+1(r) = Pc θ

1+n(r) . (7.21)

The central pressure, Pc , is clearly equal to

Pc = Kρ1+1/n
c . (7.22)

Now substitute these into Poisson’s equation and find the second-order dif-
ferential equation for θ(r)

(n+ 1)Pc

4πGρ2c

1
r2

d

dr

(
r2

dθ

dr

)
= −θn. (7.23)

Finally, introduce the new dimensionless radial coordinate, ξ, by

r = rnξ (7.24)

where the scale length, rn, is defined as

r2n =
(n+ 1)Pc

4πGρ2c
. (7.25)

We append the subscript n on rn to signal its association with the particular
polytropic index n. We will (usually) do the same for θn for the same reason,
as follows.

So, with the substitution (7.24), Poisson’s equation becomes
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1
ξ2

d

dξ

(
ξ2

dθn
dξ

)
= −θnn (7.26)

and is now called the Lane–Emden equation. Models corresponding to solu-
tions of this equation for a chosen n are called “polytropes of index n” and
the solutions themselves are “Lane–Emden solutions” and are denoted by
θn(ξ).

Note that if the equation of state for the model material is an ideal gas
with P = ρNAkT/μ, then some easy manipulations yield

P (r) = K ′Tn+1(r), T (r) = Tc θn(r) (ideal gas) (7.27)

with

K ′ =
(
NAk

μ

)n+1

K−n, Tc = Kρ1/nc

(
NAk

μ

)−1
. (7.28)

Thus in a polytrope whose material equation of state is an ideal gas with
constant μ, θn measures temperature. Finally, the radial scale factor in this
case is

r2n =
(
NAk

μ

)2 (n+ 1)T 2
c

4πGPc
=
(n+ 1)Kρ

1/n−1
c

4πG
. (7.29)

To prepare complete polytropic models that might share some resem-
blance to stars, appropriate boundary conditions must be applied to the
Lane–Emden equation. For a complete model, with center at r = 0 and a
surface that has vanishing density, these boundary conditions are as follows.
For ρc in (7.20) to really be the central density, we require that θn(ξ=0)=1.
Furthermore, spherical symmetry at the center (dP/dr vanishing at r = 0)
requires that θ′n ≡ dθn/dξ = 0 at ξ = 0. This last condition pins down the
solution at the center so that divergent solutions of the second-order system
are suppressed. The regular solutions are called “E-solutions.”

If the surface is that place where P = ρ = 0, then we require that the
solution θn vanish there also. More specifically, the surface is where the first
zero of θn occurs as measured from the center outward. (We do not want
the pressure to vanish both at the “surface” and at some interior point.) We
denote the location of the first zero by ξ1 and it depends on the value of
the polytropic index n. To summarize, the boundary conditions for a whole
model are

θn(0) = 1, θ′n(0) = 0 at ξ = 0 (the center) (7.30)

θn(ξ1) = 0 at ξ = ξ1 (the surface) . (7.31)

Since ξ1 is the location of the surface, then the total (dimensional) radius is
at

R = rnξ1 =
[
(n+ 1)Pc

4πGρ2c

]1/2
ξ1 . (7.32)

Thus specifying K, n, and either ρc or Pc, yields the radius R.
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Analytic E-solutions for θn are obtainable for n = 0, 1, and 5. Numerical
methods must be used to obtain solutions to the Lane–Emden equation for
general n.

1. The solution for n = 0 is the constant-density sphere discussed in earlier
chapters with ρ(r) = ρc. You may easily verify that

θ0(ξ) = 1− ξ2

6
with ξ1 =

√
6 (7.33)

and P (ξ) = Pcθ(ξ) = Pc

[
1− (ξ/ξ1)2

]
. Except that we have not found Pc

(which may be found once M and R are specified), this is the solution
found for the constant–density sphere as given by (1.41). Pc is easily
computed using (7.32) with ξ1 =

√
6 to be (3/8π)(GM2/R4) in accord

with (1.40).
2. For n = 1, the solution θ1 is the familiar “sinc” function

θ1(ξ) =
sin ξ
ξ

with ξ1 = π . (7.34)

The pressure and density follow from ρ = ρcθ1 and P = Pcθ
2
1.

3. The polytrope for n = 5 has a finite central density, but its radius is
unbounded, with

θ5(ξ) =
[
1 + ξ2/3

]−1/2
and ξ1 →∞ . (7.35)

Despite the infinite radius, this polytrope does has a finite amount of
mass associated with it.

Complete and regular solutions with n > 5 are also infinite in extent but
contain infinite mass. The range of n of interest to us for complete models is
then 0 ≤ n ≤ 5.

Given n and K, we can in principle find the dependence of P and ρ on
ξ. However, we cannot obtain absolute physical numbers unless R and either
ρc or Pc are first specified. This follows from (7.22) and (7.32). The main
difficulty is that R is not known beforehand. But M is what we wish to
specify and this turns out to be enough.

The mass contained in a sphere of radius r is found from (7.6) to be
Mr =

∫ r
0 4πr

2ρ(r) dr. In ξ-space this becomes

Mξ = 4πr3nρc
∫ ξ

0
ξ2θnn dξ . (7.36)

The integrand of this expression contains θnn, but this is just the (negative) of
the righthand side of the Lane–Emden equation (7.26). Therefore, make the
replacement, notice that the factors of ξ2 cancel, and what is left is a perfect
differential under the integral. The result is
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Mξ = 4πr3nρc
(−ξ2θ′n)ξ (7.37)

where
(−ξ2θ′n)ξ means “evaluate (−ξ2 dθn/dξ) at the point ξ.” The total

mass is given by M = M(ξ1). It should be clear that if M and R are
specified in physical units, then all else follows.

In what comes next, the relations betweenM, R, etc., are given without
derivation. For example,

M = (4π)−1/2
(
n+ 1
G

)3/2
P
3/2
c

ρ2c

(−ξ2θ′n)ξ1 (7.38)

which, in conjunction with (7.22), gives ρc or Pc in terms ofM. A little more
algebra yields

Pc =
1

4π(n+ 1) (θ′n)
2
ξ1

GM2

R4

=
8.952× 1014
(n+ 1) (θ′n)

2
ξ1

( M
M�

)2( R
R�

)−4
dyne cm−2. (7.39)

Note that the last result requires n, but not K.
Another result that will prove useful follows from solving for K given n,

M, and R:

K =

[
4π

ξn+1 (−θ′n)n−1
]1/n
ξ1

G

n+ 1
M1−1/nR−1+3/n . (7.40)

Note that if n = 3, K depends only on M or, turned around, M does not
depend on R for any K if n = 3.

If the equation of state is that of an ideal gas, then the central temperature
is given by

Tc =
1

(n+ 1) (−ξθ′n)ξ1
Gμ

NAk

M
R (ideal gas)

=
2.293× 107

(n+ 1) (−ξθ′n)ξ1
μ

( M
M�

)( R
R�

)−1
K . (7.41)

You may easily verify that Tc for the constant-density sphere (n = 0) is the
same as given by the earlier result (1.56, and see Table 7.1 for the numbers
you need).

A useful quantity that depends only on n is the ratio of central density
to mean density. This is given by

ρc
〈ρ〉 =

1
3

(
ξ

−θ′n

)
ξ1

. (7.42)
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We will sometimes say “this stellar model looks like a polytrope of index
so-and-so because its degree of central concentration is such-and-such.” That
is, comparison of central to mean density implies an n by way of (7.42, and
see Table 7.1). This is often a useful way to look at things—if you know what
you’re doing.3

Finally, it is an easy matter to show that the gravitational potential energy
of a polytrope is (see 1.7 and the discussion preceding that equation for a
refresher on Ω)

Ω = − 3
5− n

GM2

R . (7.43)

For the constant–density sphere the coefficient 3/(5− n) is just 3/5 and this
is the value quoted for the quantity “q” after (1.8).

Now that some of the formalism is out of the way, what are interesting
values for n?

1. The pressure of the completely degenerate but nonrelativistic electron
gas goes as ρ5/3. Hence, by the definition of the polytropic equation of
state (7.16), n for this case is 1.5 (or “a three-halves polytrope”).

2. The density exponent for the fully relativistic case is 4/3 and thus n = 3
(or “an n equal three polytrope”).

3. Recall that P ∝ ρ5/3 in an ideal gas convection zone. If no ionization
is taking place (almost a contradiction for a real convection zone) then
Γ2 = 5/3 and n = 3/2 again.

It will turn out that indices of 1.5 and 3 are the ones usually encountered in
simple situations. How unfortunate it then is that neither of these values have
analytic E-functions associated with them. Therefore, how are these nonan-
alytic cases computed? The following subsection looks into this question and
serves as a brief introduction to how some stellar models are computed. After
this, we shall use the results from the polytropic calculations.

7.2.2 Numerical Calculation of the Lane–Emden Functions

This section, and others like it, is not intended to be an introduction to
numerical analysis, but rather a guide to some techniques used to make stellar
models. The subject is obviously important because one practical end of
theory is the computation of a number. Get that wrong and you may waste
the valuable time of experimentalists and observers.

A primary reference for numerical techniques that work is Numerical
Recipes: The Art of Scientific Computing, 2nd ed., by Press et al. (1992).
(We are not biased just because the list of authors is heavily weighted by
those practicing the art of astrophysics.)

The Lane–Emden equation we wish to solve is
3 Check out Ex. 7.2, where you will check the density ratio for main sequence
models.
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1
ξ2

d

dξ

(
ξ2

dθn
dξ

)
= −θnn (7.44)

with boundary conditions for the complete E-solution, θn(0)=1, (dθn/dξ) = 0
at ξ = 0, and the vanishing of θn at the surface.

Shooting for a Solution

The first, and most straightforward, method is to treat the system as an initial
value problem by starting from the origin (ξ = 0), integrating outward, and
then stopping when θn goes to zero at the initially undetermined surface.
This is a version of the “shooting method,” whereby one “shoots” from a
starting point and hopes that the shot will end up at the right place. For this
we need an “integrator.” One of the most useful for this purpose is of the
class called “Runge–Kutta” integrators, many of which are easy to program
(even on a programmable handheld calculator—with some patience) and are
accurate and stable for simple problems. Note, however, that some problems
are not simple and special techniques are required. Runge–Kutta schemes
involve evaluating a series of derivatives of the dependent variable, y, at a
sequence of points in the interval starting at x in the independent variable
and ending at x+h. The quantity h is called the “step size.” These derivatives
are then averaged together in a particular way to eventually find y(x + h).
As will be seen below, the solution is “leap-frogged” from x to x+ h.

The most convenient way to pose the second-order Lane–Emden problem
(and many others) for use in a Runge–Kutta scheme is to cast it in the form
of two first-order equations. For notational convenience (and to make what
follows better resemble what you will find in Numerical Recipes), introduce
the new variables x = ξ, y = θn, and z = (dθn/dξ) = (dy/dx). The Lane–
Emden equation now becomes

y′ =
dy

dx
= z,

z′ =
dz

dx
= −yn − 2

x
z . (7.45)

Suppose we know the values of y and z at some point xi. Call these values
yi and zi. If h is some carefully chosen step size, then the goal is to find yi+1
and zi+1 at xi+1 = xi + h. This is, of course, just what is meant by an
initial value problem. The particular Runge–Kutta scheme we shall choose to
illustrate the technique is the fourth-order Runge–Kutta integrator. (Lower-
and higher-order schemes are available.) As promised before, y′ and z′ are
evaluated in a series of steps leading up to xi+1 as follows.

Compute the quantities

k1 = h y′(xi, yi, zi)
l1 = h z′(xi, yi, zi)
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k2 = h y′(xi + h/2, yi + k1/2, zi + l1/2)
l2 = h z′(xi + h/2, yi + k1/2, zi + l1/2)
k3 = h y′(xi + h/2, yi + k2/2, zi + l2/2)
l3 = h z′(xi + h/2, yi + k2/2, zi + l2/2)
k4 = h y′(xi + h, yi + k3, zi + l3)
l4 = h z′(xi + h, yi + k3, zi + l3) . (7.46)

As you can see, these ks and ls are rough guesses of the changes in the values
of the functions y and z at various steps along the way to xi+1. These are
then weighted and added to find

yi+1 = yi +
k1
6
+

k2
3
+

k3
3
+

k4
6

zi+1 = zi +
l1
6
+

l2
3
+

l3
3
+

l4
6

. (7.47)

It looks a bit complicated but, once you get in the swing of it, it rolls right
along. The error introduced in the integration by discrete steps in this scheme
is of the order of the fifth power of the step size h; that is, in moving from xi to
xi+1, yi+1 and zi+1 are good to O(h4). The calculation is a trade-off between
the computation time it takes to make many steps of size h and the accuracy
desired. Even unlimited time on a computer may not give arbitrary precision,
however, for the simple reason that no machine has unlimited precision in
the way it represents numbers internally. One therefore always lives with
some, albeit small, amount of error. More sophisticated versions of Runge–
Kutta (and other) methods are available that automatically adjust step size
to maintain some desired, but hopefully reasonable, level of accuracy.4

The polytrope calculation now marches from the origin to the surface.
But the origin must be treated with care because the boundary condition
θ′n(0)= z(0)=0 means that equation (7.45) for z′ is indeterminate at x=0.
Since the E-solutions are derived, in part, from the stellar structure equations,
we should resolve what to do now before worrying about the same difficulties
with more realistic models. The resolution of the problem is to expand θn(ξ)
in the Lane–Emden equation in a series about the origin using the boundary
conditions to establish constants in the expansion. This is not particularly
difficult to carry out and we quote from Cox (1968, §23.1a, and see Ex. 7.3):

θn(ξ) = 1− 16ξ
2 +

n

120
ξ4 − n(8n− 5)

15120
ξ6 + · · · . (7.48)

4 An “error-correcting” Runge–Kutta scheme that is a favorite of ours is due to
H.A. Watts and L.F. Shampine of Sandia Laboratories, Albuquerque, New Mex-
ico. For a textbook reference, discussion, and annotated listing of these programs,
see

� Forsythe, G.E., Malcolm, M.A., & Moler, C.B. 1977, Computer Methods for
Mathematical Computation (Prentice Hall: N.J.), pp. 127–147.
This is the method we use in the ZAMS and PULS codes on the CD–ROM.
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For ξ → 0, find that z′ → −1/3, which may be used to start the integration if
so desired. A better way is to start at some 0< ξ� 1, compute y, y′, z, and
z′ from (7.48), and carry on from there. This is a better procedure because
there is an irregular solution to the Lane–Emden equation that blows up at
the origin, and numerical techniques, no matter how good they are claimed
to be, sense this. Therefore, treat the origin as delicately as possible.

The outer surface of the polytrope is reached when θn = y crosses zero.
To resolve just where the first zero lies usually entails adjusting the step size
h to be smaller as θn begins to near zero and, perhaps, using some form of
interpolation scheme.

Since now you know how to compute polytropes, you may check that
Table 7.1 contains the correct values of θn and θ′n evaluated at ξ1, and ρc/〈ρ〉
for a range of n. More complete tabulations of the entire functions and other
material may be found in Appendix A.5 and Table 23.1 of Cox (1968).

Table 7.1. Some Polytropic Parameters

Index n ξ1 –θ′n(ξ1) ρc/〈ρ〉
0

√
6

√
6/3 1

1.0 π 1/π π2/3
1.5 3.6538 0.20330 5.9907
2.0 4.3529 0.12725 11.402
3.0 6.8969 0.04243 54.183
4.0 14.972 0.00802 622.41

The Fitting Method

Another method for solving the Lane–Emden equation for E-solutions, and
one that is used for real stellar models, is prompted by the following ob-
servation. In integrating from the center outward, it is possible that slight
errors introduced within the deeper parts of the polytrope will be amplified
as the low-density surface is approached. This is in the spirit of having the
low-density surface being shaken like the tip of a whip when the heavy handle
at the center is moved slightly. The same problems arise in complete stellar
models where, because of the exceedingly large contrast between central and
surface conditions of, for example, pressure and density, any inaccuracies in
numerics near the center are felt manyfold by the time the surface is reached.
One method for dealing with this is to integrate starting at both the center
and the surface and see if the solutions join in some continuous way at a
point between the two extremes. This is called the “fitting method” and it is
a standard way to construct homogeneous, zero–age main sequence models.

The difficulty, as should be clear from what we have seen for polytropes, is
that we do not know beforehand exactly where the surface ξ1 is. Furthermore,
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since the system is second-order, we require two pieces of information at the
surface to start an integration. The first is the requirement that θn(ξ) must
be zero at ξ1. As a second, we must make a guess at the first derivative of
θn at ξ1. Because pressure always decreases outward in a hydrostatic star
we at least know that the sign of θ′n(ξ1) must be negative. Therefore, make
reasonable guesses for ξ1 and θ′n(ξ1), set θn(ξ1) to zero, and let the integrator
work its way inward from there. With your other hand, integrate from the
center outward as before. At some interior point in the prospective polytrope
(say near ξ1/2) check if both θn and θ′n (or the first-order variables y and z)
of the inward and outward integrations match at that point—which we now
call the “fitting point.” They must fit for a complete E-solution because no
discontinuities are lurking in the differential equations. If the solutions do not
match, then one or both of ξ1 and θ′n(ξ1) have been chosen incorrectly. To
remedy this situation, the following strategy usually works (see, e.g., Press
et al., 1992, §17.2).

Let xs (in x-, y-, z-space, with subscript “s” denoting “surface”) be the
initial guess at the surface location (i.e., ξ1). In addition, let xf be the location
of the fitting point (“f” for “fitting”) and yo(xf ), zo(xf ), yi(xf ), and zi(xf ) be
the values of y and z obtained at xf by means of the outward (subscript “o”)
and inward (subscript “i”) integrations. The situation is shown in Fig. 7.1.
Note that in these variables y(xs) is always zero because it is the value of
θn at the surface. What we wish to do is vary xs and zs = z(xs) and see
what happens to yi(xf ) and zi(xf ). With this information, we then set up an
algorithm to eventually match at the fitting point.

To implement the algorithm, first define

Y (xs, zs) = yi(xf )− yo(xf )
Z(xs, zs) = zi(xf )− zo(xf ) (7.49)

and these are shown as the steps on Fig. 7.1 in a not-yet-converged solution.
(Note that yo(xf ) and zo(xf ) are fixed from the outward integration.) We
eventually want Y = Z = 0.

Now change xs from its initial value to xs → xs + δxs, where δxs is
small compared to xs, while keeping zs at its original value, and integrate
inward. Because xs has changed, we expect Y and Z to both change. Denote
these changes by δYz and δZz where the “z” subscript means “only xs has
changed.” Thus Y → Y + δYz and Z → Z + δZz. Similarly, if xs is fixed at
its original value but zs → zs + δzs, then Y → Y + δYx and Z → Z + δZx.
It should be clear that δYz/δxs is the difference approximation to the partial
derivative of Y with respect to xs when zs is kept fixed. In similar fashion,
δYx/δzs represents (∂Y/∂z)xs , etc. (This is more difficult to explain in words
than your just sitting down with a piece of paper and playing with it.)

The route to an E-solution is to compute the numeric derivatives, as in
the above, and then imagine first-order Taylor expansions of the form
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Fig. 7.1. An illustration of the fitting method for the two variables y = θn and
z = θ′n. The solid curves indicate solutions that do not quite satisfy the conditions
of continuity. Hence the “jumps” labeled Y and Z at xf .

Y (xs+Δxs, zs+Δzs)=Y (xs, zs)+
(
δYz
δxs

)
Δxs+

(
δYx
δzs

)
Δzs

Z(xs+Δxs, zs+Δzs)=Z(xs, zs)+
(
δZz

δxs

)
Δxs+

(
δZx

δzs

)
Δzs (7.50)

where the partial derivatives of the expansion have been replaced by their
known difference equivalents. The trick is to now find Δxs and Δzs such
that the lefthand sides of both equations in (7.50) are zero. That is, we wish
to find corrections to the initial guesses xs and zs such that Y and Z are
both zero and thus complete the fitting at xf . Thus solve the simultaneous,
inhomogeneous, but linear system (which is why 7.50 is sometimes referred
to as a “linearization” of the system)(

δYz
δxs

)
Δxs +

(
δYx
δzs

)
Δzs = −Y (xs, zs)(

δZz

δxs

)
Δxs +

(
δZx

δzs

)
Δzs = −Z(xs, zs) (7.51)

for the unknowns Δxs and Δzs. To first-order, these are the corrections
needed to solve for the two roots of the combined equations Y = 0 and
Z = 0.

Because the Lane–Emden equation is nonlinear, however, there is no guar-
antee that the new values of xs → xs+Δxs and zs → zs+Δzs will satisfy
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Y = Z = 0. (If the equation were linear, you would be done.) This method
is therefore iterated with successive corrections until both Δxs and Δzs be-
come very small or, better yet, the E-functions approach some preassigned
level of continuity at the fitting point. The method we have outlined for con-
verting a nonlinear problem into one that is linear by Taylor expansions, and
then solving for some small changes to find roots, is known by many as the
“Newton–Raphson method.” It comes up so frequently in numerical analysis
that it is worth studying carefully—as in Numerical Recipes (§9.4), where it
is called “Newton’s rule.”

In the case where the full fourth-order differential system for more realistic
stellar models is to be used, the above fitting scheme must be generalized.
It is clear that four quantities must be specified: two at the surface and two
at the center of the desired model. At the center, two could be chosen out
of the three nonzero quantities Pc, ρc, and Tc. Given the composition, they
are all connected through the equation of state. At the surface, two of R, L,
and Teff seem reasonable. Equations (7.5–7.11) are then integrated inward
and outward and an attempt is made to match quantities that should be
continuous at some interior point specified at some fixedMr. The variables
to be fitted must be four in number and a convenient choice might be r, P , Lr,
and T . The same sort of algorithm is then used in which the quartet of surface
and center quantities are varied independently and a Newton–Raphson root-
finding scheme is employed to calculate corrections. This is more easily said
than done but it is conceptually simple and is efficient when done properly. It
is a standard method for constructing ZAMS models—as on the CD–ROM.

7.2.3 The U–V Plane

The notion of fitting continuous functions in a simplified form of a stellar
model raises the question of what quantities in a star (or a model of one) are
continuous. The coordinate r must be smooth. So must the pressure be con-
tinuous in a hydrostatic star because, otherwise, terrible things would happen
to its radial derivative in the equation of motion ρr̈=−(dP/dr)−(GMrρ/r

2),
which would result in unbounded accelerations. Another continuous quantity
is Mr. A discontinuous interior mass would imply unbounded densities in
the mass equation. Density itself, however, need not be continuous. (Air rest-
ing on lead is fine.) These statements may be recast by introducing two new
dimensionless functions that, in effect, summarize the mass and hydrostatic
equations. These are

U ≡ d lnMr

d ln r
=
4πr3ρ
Mr

= 3
ρ(r)
〈ρ(r)〉

V ≡ −d lnP
d ln r

=
GMrρ

rP
=

r

λP
. (7.52)

The last part of the equation for U contains 〈ρ(r)〉, which is the average
density interior to the point r. The last equation for V implies that V is the
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local radius measured in units of the local pressure scale height λP . From the
preceding remarks it is clear that both U/ρ and V/ρ are continuous for static
stars.

We shall only use these functions to illustrate some particular points in
stellar structure and modeling but they were of great importance in the earlier
history of these subjects. It is still worthwhile to see how U and V were used
in the calculations described in Schwarzschild (1958), and Hayashi, Hōshi,
and Sugimoto (1962). A useful modern reference is Kippenhahn and Weigert
(1990, §23).

We shall need the values of U and V at the center and surface of a typical
model for future reference. The limit as r → 0 requires that we look atMr in
that limit. Later on we shall consider in detail how various stellar quantities
behave near stellar center but, for now, we state that

Mr → (4π/3)ρcr3 as r → 0 . (7.53)

All that was done here was to realize that ρ has a zero gradient at the center
(and, hence, its expansion must be in even powers of r) and to compute the
mass in a tiny sphere of radius r of constant density. The surface presents
a slightly more difficult problem. We assume here that both the density and
pressure go to zero at the surface. Thus the ratio ρ/P in V might seem to be
indeterminate but, if the gas is ideal, then ρ/P is just inversely proportional
to temperature and, if temperature approaches zero at the surface, then V
becomes unbounded. Gathering this together, the boundary conditions on U
and V are

U → 3, V→ 0 as r → 0
U → 0, V→∞ as r → R . (7.54)

The U–V variables in polytrope language are

U(ξ) =
ξθnn
(−θ′n)

V(ξ) = (n+ 1)
(−ξθ′n)

θn
(7.55)

and an E-solution phrased in terms of these for an n = 3 polytrope is illus-
trated in Fig. 7.2. This curve was produced by integrating the Lane–Emden
equation from the surface inward starting with the proper values of ξ1 and
θ′n(ξ1) ≡ θ′n(E) and continuing on to the center. We also show the U–V path
of a 5M� Pop–I ZAMS model. Its ρc/〈ρ〉 is close to that of a n = 3 polytrope
and it sits comfortably close to the E-solution.

It is instructive, however, to consider what happens if an incorrect value
of θ′n(ξ1) is chosen at the start. If θ

′
n(ξ1) is chosen so that its magnitude

is greater than θ′n(E) (i.e., |θ′n(ξ1)| > |θ′n(E)|), then—and we shall not go
through the derivation—θn(ξ) (i.e., density) increases more rapidly than the
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Fig. 7.2. E-(Lane–Emden), F-(collapsed), and M-(centrally condensed) solutions
to the Lane–Emden equation for a polytrope of n = 3 (see text). The surface radius
ξ1 was chosen to be its nominal value ξ1 = 6.8968486, while the derivatives of θ3
at the surface were θ′3(E) = −0.0424298, θ′3(F) = −0.051, and θ′3(M) = −0.038.
The M-solution goes to V→ 4 as U→ 0 for the n = 3 polytrope. Also shown, as a
dashed line, is what a 5M� ZAMS Pop–I model looks like on the U–V plane.

E-solution and the interior mass tends to zero before the center is reached
(think of dMr/dr in the mass equation). Thus U→∞ as V→ 0. These are
the “F-solutions” (named after R.H. Fowler) or “solutions of the collapsed
type” and one of these is denoted by “F” in Fig. 7.2.

If, on the other hand, |θ′n(ξ)| < |θ′n(E)|, thenMr remains finite but θn(ξ)
blows up as the center is approached. These represent irregular solutions
to the Lane–Emden equation and are called “centrally condensed” or “M-
solutions” (after E.A. Milne); one is shown in the figure.

As they stand, the M- and F- solutions cannot represent complete stellar
models because they are unphysical. If, however, polytropic equations of state
hold for some portions of stellar interiors, then these solutions are still of
some interest. They may, for example, represent pieces of the interiors of
stars where other pieces (e.g., E-solutions) are to be tacked on to them in a
continuous fashion.

7.2.4 Newton-Raphson or “Henyey” Methods

In integration by the fitting method the idea was to separate the model
into two regions and then connect those two regions by continuity. In the
Newton-Raphson or Henyey (Henyey, Forbes, and Gould, 1964) method, the
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“integration” of the stellar structure equations is performed over the model
as a whole. This is best described by a simple example such as that discussed
below.5 This is a powerful technique (not really originated by astronomers)
and is now the standard way to construct evolutionary models.

Consider the second-order system

dy

dx
= f(x, y, z)

dz

dx
= g(x, y, z) (7.56)

with boundary conditions on y and z specified at the endpoints of the interval
x1 ≤ x ≤ xN . These boundary conditions may be represented by general
functions b1 and bN such that

b1(x1, y1, z1) = 0
bN (xN , yN , zN ) = 0 (7.57)

where yi, zi are y(xi), z(xi). It is assumed that f , g, b1, and bN are well
behaved and that there is no ambiguity about the location of x1 and xN
(unlike the polytrope where ξ1 was not known beforehand, but see §7.2.5).
The differential equations are now cast in a “finite difference form” over a
predetermined “mesh” in x. That is, we choose a sequence of points x1, x2,
· · ·, xN at which y and z are to be evaluated. (This choice must be made
with some care for the sake of accuracy.) The question is how do we repre-
sent the differential equations. A perfectly respectable way is to replace the
differentials with differences and to replace the righthand sides of (7.56) with
an average of the derivatives over the interval covered by the differences. You
may think of this as a differential representation of the trapezoidal rule of
integration. It is also an example of “implicit” integration to be discussed
later. We then have

yi+1 − yi
xi+1 − xi

=
1
2
(fi+1 + fi)

zi+1 − zi
xi+1 − xi

=
1
2
(gi+1 + gi) (7.58)

where fi+1 and gi+1 are shorthand for the functions f(xi+1, yi+1, zi+1) and
g(xi+1, yi+1, zi+1), and i = 1, 2, · · · , N − 1. Expressions (7.58) then represent
2N − 2 equations but the two boundary conditions make up the difference so
that all 2N variables yi and zi may, in principle, be found all at once. This
is not an initial value problem.

To simplify the notation, we assume that the mesh in x is constant so
that xi+1 − xi = Δx for all i between i = 1 and i = N − 1. (Real life is
5 An excellent reference for these methods is the classic review by Kippenhahn,
Weigert, and Hofmeister (1967) and, in more general language, §17.3 of Press et
al. (1992), where they are called “relaxation methods.”
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hardly ever so well-behaved that this can be done without loss of accuracy.)
The errors in y and z in this order difference scheme go as |Δx|3.

The difficulty with this method is that values of y and z at i and i + 1
are all mixed up in the difference equations and boundary conditions—but
Newton-Raphson comes to the rescue. As in the example of fitting, this means
that (7.57–7.58) are to be linearized to find the solution.

Suppose we have some notion of the run of yi and zi for all i. These
“guesses” do not, in general, satisfy (7.57–7.58). We may imagine, however,
that there are corrections Δyi and Δzi

yi → yi +Δyi

zi → zi +Δzi (7.59)

that lead to new values of yi and zi that might satisfy those equations. We
now estimate the values of Δyi and Δzi for all i. If it turns out that these
do not quite do the job, then we iterate the following procedure (or “relax”
to a solution) until values are found that do.

A first-order estimate of Δyi and Δzi is obtained by introducing (7.59)
into (7.57–7.58) and expanding those equations to first-order in a Taylor
series around the original guesses. For example, the first equation in (7.58)
becomes, to first-order in the Δs and after minor arrangement,

yi+1 − yi − Δx

2
(fi + fi+1) =

+
[
Δx

2

(
∂f

∂y

)
i

+ 1
]
Δyi +

[
Δx

2

(
∂f

∂y

)
i+1
− 1
]
Δyi+1 +

+
[
Δx

2

(
∂f

∂z

)
i

]
Δzi +

[
Δx

2

(
∂f

∂z

)
i+1

]
Δzi+1 (7.60)

where the partials are taken at constant y or z as the case may be. The
corresponding equation for the z-derivative is obtained by replacing ys with
zs and fs with gs. Note that the lefthand sides of these equations are zero
when the difference equations are satisfied; that is, when the Δys and Δzs
go to zero. The linearized forms of the boundary conditions are

b(1 orN)+
(
∂b

∂y

)
(1 orN)

Δy(1 orN) +
(
∂b

∂z

)
(1 orN)

Δz(1 orN) = 0 . (7.61)

We now arrange all these equations in matrix form so that we shall ulti-
mately solve an equation of the form

M ·U = R (7.62)

where the column vector U contains the unknown quantities Δyi and Δzi, R
is the righthand side column vector, andM is the N ×N coefficient matrix.
The unknown vector is arranged like so:
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U ≡ (Δy1,Δz1,Δy2,Δz2, · · · ,ΔyN ,ΔzN )
T (7.63)

where the superscript “T” indicates transpose; note the interlacing of the
variables. Some of the elements in R we will denote by

Yi+1/2 ≡ yi+1 − yi − Δx

2
(fi+1 + fi)

Zi+1/2 ≡ zi+1 − zi − Δx

2
(fi+1 + fi) (7.64)

and come from terms such as given in (7.60). The “half-step” notation i+1/2
is meant to imply that a quantity is evaluated between i and i+ 1. The rest
of R comes from the constant terms in the linearization of the boundary
conditions (7.61), which are put in as the first and last elements in R to give

R = (−b1, Y3/2, Z3/2, · · · , YN−1/2, ZN−1/2, −bN )T. (7.65)

Parts of the matrix elements in M come from (7.60) and are denoted by

Ai ≡ Δx

2

(
∂f

∂y

)
i

, Ci ≡ Δx

2

(
∂g

∂y

)
i

Bi ≡ Δx

2

(
∂f

∂z

)
i

, Di ≡ Δx

2

(
∂g

∂z

)
i

. (7.66)

Finally (and as is implied by 7.65), the order in which the equations are
ranked in the matrix is (1) boundary condition at x1; (2) the 2N−2 difference
equations; (3) the boundary condition at xN . To conserve space, we give the
following result for M for a mesh consisting of three points i =1,2,3. Once
you construct this for yourself the entire scheme should become clear:⎛

⎜⎜⎜⎜⎜⎜⎝

(∂b/∂y)1 (∂b/∂z)1 0 0 0 0
A1 + 1 B1 A2 − 1 B2 0 0
C1 D1 + 1 C2 D2 − 1 0 0
0 0 A2 + 1 B2 A3 − 1 B3
0 0 C2 D2 + 1 C3 D3 − 1
0 0 0 0 (∂b/∂y)3 (∂b/∂z)3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7.67)

Note the particularly simple structure of this matrix in which no nonzero
element is located further than two columns away from the diagonal (as an
example of a “band diagonal” matrix). This fact makes the problem amenable
to several accurate and efficient techniques for solving simultaneous linear
equations and you are referred to §§2.4 and 17.3 of Numerical Recipes for
more details.

Once the solution set U(Δyi,Δzi) is found, then new values of yi and zi
are immediately obtained by adding Δyi and Δzi to the corresponding old
guesses. If these new values are sufficiently close to the old values, then the
solution has converged and the original difference equations and boundary
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conditions are presumably satisfied. If not, try again with the new values and
iterate until they are. Suffice it to say, the novice (and professional) very often
reaches this happy state only after many iterations in the multidimensional
solution space of ys and zs. Convergence depends on many factors, the most
important being a reasonably good initial guess and that is where experience
and intuition count. Initial guesses that bear no resemblance to the desired
solution may leave you stranded in a solution space of many dimensions
and convergence may not be possible.6 Even a good guess may not help,
however, if the original differential equations are ill-behaved or if the mesh
xi is inappropriate. Another factor often comes in when constructing stellar
models where tabulated equations of state, etc., are used. Very often such
tables are “noisy” (usually from the introduction of incomplete physics at
some temperature or density) and the difference equations see that noise.
But, if all goes well, then it goes well indeed and the corrections Δyi and Δzi
decrease as the square of their absolute values from one iteration to the next
and convergence is swift.

With the above as an example, it should be clear how to extend the
technique to differential systems of higher than second-order: the bookkeep-
ing gets messier, but the principle remains the same. The stellar problem is
fourth-order with two boundary conditions at each end as discussed in §7.1.
For stellar evolution off the main sequence, what is usually done is first to
construct a ZAMS model using the fitting method and then use that solution
as the first guess for a Henyey model.

7.2.5 Eigenvalue Problems and the Henyey Method

The above scheme, as presented, cannot solve the simple problem of an E-
solution polytrope. This is because we do not know the radius (ξ1) before-
hand. Thus, on the face of it, a grid in x cannot be established upon which
the differences equations and boundary conditions are to be applied. Yet with
some minor adjustments, this can be remedied. We note here that the fol-
lowing, and variations thereof, are calculational mainstays in some subareas
of stellar astrophysics such as variable star analysis.

Recall (7.45), which is the Lane–Emden equation phrased in terms of
y = θn, z = dy/dx, with x = ξ:

y′ =
dy

dx
= z

z′ =
dz

dx
= −yn − 2

x
z . (7.68)

6 Of course what’s even worse is if no solution exists at all! In that case, go back
and examine the logic of your analysis. See the following section for an example
of where this scheme doesn’t work as presented.
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The boundary conditions are y = 1 at x = 0, and y = 0 at some unknown
x = xs = ξ1; in addition, it is required that z = dy/dx = 0 at x = 0 to obtain
the regular E-solution.

We use the simple trick of rescaling x so that it lies within the closed
interval [0, 1] by letting

x→ x =
ξ

ξ1
=

ξ

λ
. (7.69)

Thus given ξ1 = λ, the edge of the polytrope is at unity in the new x-
coordinate. But, you say, we don’t know what this λ is, so it looks as if we
haven’t gotten anywhere. This is true, so let’s find λ as part of the overall
problem in a relaxation method.

First transform the Lane–Emden equation into the new x-coordinate:

y′ =
dy

dx
= λz

z′ =
dz

dx
= −λyn − 2

x
z . (7.70)

These equations are in the same form as we had previously but now the
parameter λ appears; that is, the functions of (7.56) are now f = f(x, y, z;λ)
and g = g(x, y, z;λ). It is no surprise that an additional variable appears
because there are now an overabundance of conditions on the problem. The
problem is still second-order but there are two boundary conditions at the
center (y = 1, z = 0), a third at the surface (y = 0 at the new x = 1), and
the system is overdetermined. With λ as an additional degree of freedom,
however, the surplus boundary condition is no longer one too many. Here
λ is an eigenvalue for the problem in much the same way that eigenvalues
appear in other situations in physics. In this situation it yields the radius.

To solve this problem we proceed as in the previous subsection and assume
we have a complete run of guesses for y and z over the mesh of 0 ≤ x ≤ 1,
but we also make a first guess for λ. We then linearize f and g, as before,
by letting yi → yi + Δyi, etc., but also allow λ → λ + Δλ. The scheme is
to solve for the 2N + 1 unknowns yi, zi, and λ. There are 2N − 2 difference
equations (as before) but now there are three boundary conditions yielding
a total of 2N +1 equations. It is easy to see (by writing out all the linearized
equations) that Δλ comes in from such terms as the last term in

f → f +
(
∂f

∂y

)
zi,λ

Δyi +
(
∂f

∂z

)
yi,λ

Δzi +
(
∂f

∂λ

)
yi,zi

Δλ .

Each difference equation thus contributes terms in Δλ to a matrix algebra
problem similar to the one encountered before except that there is now an
extra row in the main matrix corresponding to the additional boundary con-
dition and an extra column corresponding to the extra unknown, Δλ. This
set of linear equations is somewhat more cumbersome to solve (because of
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the additional column of nonzero elements) but various techniques can be
made to work.

In this specific problem the behavior of the functions near the center must
be treated carefully as discussed previously. Either the differential equations
are replaced by series solutions up to some point, or the derivatives appearing
in the difference equations have to be calculated very accurately. Just how to
incorporate series expansions into the Henyey scheme is left as an exercise,
but note that all that is required is a redefinition of the boundary conditions
so that the proper ones appear at a point slightly removed from the center.
Once this has been mastered for polytropes, you will soon find that such
eigenvalue problems hold no real terror—maybe.

7.2.6 Dynamic Problems

We can gain more insight into the difficulties of constructing stellar models
and evolutionary sequences by examining how rapidly evolving models are
handled. As will be pointed out later in this section, some of the techniques
used here are also the stock-in-trade of those who compute models for slowly
evolving stars.

By “rapidly” evolving we mean situations where evolutionary processes
take place on dynamic time scales such as in supernovae, novae, and most
variable stars. Somewhat special techniques are required for this. We shall
follow Cox, Brownlee, and Eilers (1966) because it contains a reasonably com-
plete exposition of the methods. You may also wish to consult Chapter 19 of
Numerical Recipes for more general problems involving the numerical treat-
ment of partial differential equations containing time. This discussion will be
restricted to motions that are spherically symmetric.

Consider the equation of motion given earlier in (1.5) but expressed in
the Lagrangian form

r̈ = −4πr2
(

∂P

∂Mr

)
− GMr

r2
. (7.71)

As is usual in a Lagrangian description, the elements of interest in the star
are tagged by the mass—in this instance byMr. To reduce (7.71) to a form
suitable for numeric calculation, first divide the star into concentric shells
containing masses labeledMi+1/2, where it is understood that (i+1/2) means
that the mass lies between radii ri+1 and ri as illustrated in Fig. 7.3. The
model center is at r0. The spherical surfaces corresponding to these various
radii will be referred to as “interfaces.” The mass interior to the radius at
interface ri+1 is then

Mr at ri+1 →
i∑

k=0

Mk+1/2 . (7.72)
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Fig. 7.3. This figure illustrates the shell and interface partitioning of a stellar
model. Some variables are defined within the shells whereas others are defined at
the interfaces (see text).

A natural way of expressing the mass equation is to define the density as

ρi+1/2 =
Mi+1/2

(4π/3)
(
r3i+1 − r3i

) = 1
Vi+1/2

(7.73)

where, for later purposes, we introduce the specific volume, V . (Note that we
are using a plain V here instead of our usual Vρ.) The notation implies that
the density is defined in shells and not on interfaces. Having made this choice,
we can then reasonably define Ti+1/2 and Pi+1/2 as the temperature and
pressure associated with the above density so that Pi+1/2 may be expressed
in terms of the corresponding temperature, density, and composition within
a shell.

The mass gradient of pressure in (7.71) is simply the difference of the
pressures divided by the change in mass across an interface i. The change in
mass is constructed as

∂Mr at i =
1
2

[
i∑

k=0

Mk+1/2 −
i−2∑
k=0

Mk+1/2

]

=
1
2
[Mi+1/2 +Mi−1/2

]
(7.74)

where i = 0 is not needed because the stellar center is never accelerated.
Thus (7.71) is transcribed into difference form as
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r̈i = −8πr2i
Pi+1/2 − Pi−1/2
Mi+1/2 +Mi−1/2

− G
∑i−1

k=0Mk+1/2

r2i
. (7.75)

A technical point now enters. What we are trying to do is to mock up
the hydrodynamical time development of a continuous system using discrete
time and space steps. The above equation of motion is fine for motions that
are subsonic but has real problems if shocks develop.7 The trouble is that
shocks imply some sort of discontinuous behavior in, say, density. In prac-
tice, this means that mass shells in a numerical calculation tend to “rattle”
around unacceptably near the shock front unless special steps are taken. To
alleviate this, an artificial (or numerical, pseudo-, etc.) viscosity is often in-
troduced that smooths out the shock profile and allows the computation to
proceed without undue noise. One prescription, and there are quite a few,
for an artificial viscosity is (see, for example, Richtmyer and Morton, 1967)
Qi+1/2 ∼ (ṙi+1 − ṙi)

2
ρi+1/2 if a mass shell at i+1/2 is undergoing compres-

sion but is set to zero if the shell is expanding. This viscosity is added to the
pressure in the difference form of the equation of motion. The net effect is
to increase the entropy and spread the shock discontinuity over a few shells
with a corresponding loss of resolution in the vicinity of the shock. In the
following we shall imagine that some such device is used but we delete specific
reference to it.

All the above is imagined to take place at some time tn. What is required
is the status of the system at a new time tn+1= tn+Δt, where Δt is a “time
step.” The method outlined here is called an “explicit” method because the
prediction of the system’s behavior at tn+1 depends only on knowledge of
what is happening at tn. More complicated “implicit” schemes employ an
iteration between tn and tn+1 quantities and equations such as was done in
the previous section for spatial integrations. The latter schemes have decided
advantages, but at the cost of increased complexity. In an explicit method
physical quantities march forward in time in a simple way as follows.

Define a time-centered, or average, velocity between tn and tn+1 as

ṙ
n+1/2
i = ṙ

n−1/2
i +Δtn+1/2 r̈ ni (7.76)

where ṙ
n−1/2
i is presumed known from a previous time step and Δtn+1/2

Δtn+1/2 =
tn+1 − tn

2
. (7.77)

The new radial position is then
7 An excellent pedagogic introduction to shocks is Chapter 1 of Physics of Shock

Waves and High Temperature Hydrodynamic Phenomena by Zel’dovich and
Raizer (1966). That chapter is also available as a separate monograph published
in 1968.
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rn+1
i = rni +Δt ṙ

n+1/2
i . (7.78)

Since the acceleration r̈ ni is known from (7.75), all the interface radii may be
updated in this fashion. Having these, and assuming that mass is neither
lost nor gained within a shell, we may similarly update the densities by
applying the mass equation (7.73) using the appropriate new radii. Note
that in applying the acceleration equation the pressure external to the last
radius at the surface must be specified. The most simple procedure is to set
it to zero as if a vacuum were present. (Fancier and more accurate choices are
possible.) Thus if the model has K interfaces labeled i = 1, 2, · · · ,K (with
the stationary center at r0 = 0), then PK+1/2 = 0.

The determination of what to use for Δt involves another technical point
of some importance. We have not affixed a superscript to this quantity but it
should be obvious that its choice depends on how fast the system is changing
at the time in question. If the system is evolving rapidly then Δt should be
small. A slowly evolving system need not imply that long steps may be taken,
however. There is an upper bound on the length of a time step and this is
determined by considerations of numerical stability. In an explicit scheme
such as this, the time step must be some fraction less than the time it takes
for a sound wave to traverse a shell, and all shells must be examined to find
this upper bound. (This is known as the Courant condition.) This means that
even though the system may be evolving very slowly (as in normal stellar
evolution on a nuclear time scale), the computation must proceed at a pace
comparable to sound travel times across shells—and this is the price paid for
computational simplicity. An implicit scheme, which incorporates information
about the state of the system at tn+1, is computationally more difficult but
is the one used in slow evolution analysis.

To continue further in time requires finding the new accelerations at tn+1,
and this requires computation of Pi+1/2 in (7.75) evaluated at time tn+1,
which we call Pn+1

1+1/2. Straight mechanics will not yield this pressure and
the remainder of the stellar structure equations must enter. The first is the
energy equation (6.2), which, in difference form at tn+1, becomes

En+1
i+1/2 − En

i+1/2

Δt
= −

Pn+1
i+1/2 + Pn

i+1/2

2

V n+1
i+1/2 − V n

i+1/2

Δt
−

−
(Ln+1

i+1 − Ln+1
i

)
+
(Lni+1 − Lni

)
2Mi+1/2

+

+
εn+1
i+1/2 + εni+1/2

2
. (7.79)

Note that the luminosity is defined on interfaces whereas ε is defined within
a shell (where densities, temperatures, etc., are defined). Also note that time
averaging and differencing have been used in accordance with the methods
outlined in §7.2.4.
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The internal energy, pressure, and energy generation rate in (7.79) are
functions of temperature, density, and composition (which, for simplicity, is
assumed constant in time here). If only diffusive radiative transfer holds then
Lr is given by (4.25) in Lagrangian form as

Lr = − (4πr
2)2ac
3κ

dT 4

dMr
. (7.80)

The mass derivative in (7.80) can be put into difference form in several ways
depending on how terms are combined. The simplest, although not necessar-
ily the best, way is to let r → ri, κ → κi+1/2, and let the mass gradient of
temperature (to the fourth) be modeled after the mass gradient of pressure
in the acceleration equation. In any case, it is easy to see that Li will con-
tain temperatures computed on either side of interface i ; that is, we need
Ti±1/2. It will also contain reference to ρi±1/2 through the opacity but these
are already known (as are the ri) from the dynamics that got us to time
tn+1. The pressure, internal energy, and energy generation rate may also be
computed at this time if the temperatures are known. The conclusion is that
the temperatures in the K shells are the only unknowns at tn+1. Note, how-
ever, that these temperatures are implicitly highly coupled in space in the
energy equation because Li and Li+1 both appear. Thus the energy equation
at shell i + 1/2 contains Ti±1/2 and Ti+3/2 so that three temperatures are
associated with the shell at i+1/2 (and this will result in a tridiagonal system
as indicated below).

To proceed further and find the K temperatures is relatively straightfor-
ward and a Newton–Raphson relaxation scheme is the method of choice. The
energy equation in the (i + 1/2)th shell is linearized to yield corrections to
guessed temperatures at tn+1, which we denote as ΔTi+1/2. A close inspec-
tion of the procedure will reveal that a lot of thermodynamics is required.
For example, finding out how the P dV term in the energy equation responds
to a change in temperature Ti+1/2 → Ti+1/2 + ΔTi+1/2 involves computing
the partial of pressure with respect to temperature at constant density. In
the end, a set of linear equations in ΔTi+1/2 are obtained of the form

M ·ΔT = −f . (7.81)

Here fi+1/2 is the differenced energy equation at i+ 1/2 containing temper-
ature guesses, etc., as cast in the form f = 0. If the unknown temperatures
are ordered in the column vector ΔT as(

ΔT1/2,ΔT3/2, . . . ,ΔTK−3/2,ΔTK−1/2
)T (7.82)

then the matrix M contains the relevant partials of f with respect to tem-
perature and is tridiagonal in form (zeros everywhere except along the main
diagonal and the two diagonals immediately on either side of it). This system
is simple to solve (as in Numerical Recipes, §2.4). It would be worth your
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while to try to construct such a linear system of equations on your own if for
no other reason than to see how difficult a bookkeeping job is involved.

The sequence in this explicit hydrodynamics scheme is then: compute the
accelerations and velocities, update the radii and compute the new densi-
ties, and then use the energy equation to find the new temperatures. The
transition to a calculation that does not do hydrodynamics but rather in-
sists upon hydrostatic equilibrium is now not too difficult to imagine. The
acceleration equation (7.75) is replaced by the hydrostatic equation that is
the righthand side of (7.75) set to zero, but, to maintain numerical stability,
all the quantities in that equation are time-averaged over tn and tn+1 (as in
the energy equation). The nasty part of the calculation is that the radii at
the future time tn+1 must be solved for simultaneously along with all the
other variables. This is what makes stellar evolution calculations so difficult.
There are many variations on Henyey integrations of the time-dependent stel-
lar problem. Some of these involve choosing clever combinations of variables
or rephrasing the structure and evolution equations. For examples of some
possibilities see Schwarzschild (1958), Kippenhahn, Weigert, and Hofmeister
(1967), and Kippenhahn and Weigert (1990, §11).

If nuclear transformations are present, as they almost always are, changes
in abundances must also be accommodated. Changes in mean molecular
weight due to ionization usually take place so rapidly that they may be re-
garded as taking place instantaneously and are therefore incorporated directly
into the equation of state. Abundance changes that are very slow compared
to other time scales in the system are easy: update the composition after
a time step is taken using as simple a difference scheme in time as possi-
ble. However, in the most complicated situations, where abundances change
rapidly or particular nuclear species must be followed carefully in time for
some purpose, then the rate equations for transmutations (or, possibly, an
equilibrium version thereof) must be included among the stellar structure
equations implicitly. Needless to say, such a full calculation takes its toll of
time and patience—but that’s the name of the game.

Returning to dynamic problems and, in particular, supernovae, explosive
nuclear burning presents its own difficulties. A typical reaction network (such
as shown in Fig. 6.12) consists of solving a coupled set of differential equa-
tions for the abundances of the reactants. The time scales associated with
the creation and destruction of the reactants may be slow, fast, really fast,
and everything in between. There may be situations where the creation and
destruction of a pair of nuclear species connected by forward and backward
reactions (such as capture of a proton on nucleus X to form Y followed by
photodisintegration back to X) is such that the abundances hardly change
although the rates of the reactions are rapid (as in Nuclear Statistical Equi-
librium). The net result is that the differential equations may well become
“stiff” and solutions can drift off from reality in a hurry. Ordinary methods
(such as Runge–Kutta) fail miserably for stiff equations and special steps
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must be taken. For an excellent review of such problems (in the supernova
context) see Arnett (1996, §4.4).

And now, after this long digression, back to polytropes.

7.2.7 The Eddington Standard Model

A simple example of the use of polytropes in making a stellar pseudo-model
is the “Eddington standard model” in which the energy equation and the
equation of diffusive radiative transfer are incorporated together in an ap-
proximate way.

Recall that the actual run of temperature versus pressure in situations
where there is no convection is given by (see Eqs. 7.8–7.11)

∇ = d lnT
d lnP

=
3

16πac
Pκ

T 4

Lr
GMr

. (7.83)

We may also express ∇ in different terms by introducing the radiation pres-
sure Prad = aT 4/3 and unwinding the derivatives in the definition of ∇ to
obtain

∇ = P

T

(
dT/dr

dP/dr

)
=
1
4

P

Prad

dPrad

dP
. (7.84)

Solving for the pressure derivative and combining this with (7.83) yields

dPrad

dP
=

Lκ
4πcGM

Lr/L
Mr/M (7.85)

where L andM are the total luminosity and mass.
The ratio (Lr/L)/(Mr/M) in (7.85) is a normalized average energy gen-

eration rate, as may be seen from considering the energy equation in thermal
balance. If (dLr/dMr) = ε is integrated overMr, then define

〈ε(r)〉 =
∫ r
0 ε dMr∫ r
0 dMr

=
Lr
Mr

(7.86)

with 〈ε(R)〉 = L/M. It is then traditional to introduce η(r) as

η(r) =
〈ε(r)〉
〈ε(R)〉 =

Lr/L
Mr/M (7.87)

so that (7.85) becomes

dPrad

dP
=

L
4πcGM κ(r) η(r) . (7.88)

Thus far we have made no other assumptions aside from thermal balance and
pure diffusive radiative transfer.
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We now formally integrate the last expression from the surface to an
interior point r, assuming that the surface pressure is zero and find

Prad(r) =
L

4πcGM〈κ(r) η(r)〉P (r) (7.89)

where the averaged expression is the combination

〈κ(r) η(r)〉 = 1
P (r)

∫ P (r)

0
κη dP . (7.90)

This is now put in final form by recalling the definition of β, the ratio of ideal
gas to total pressure of equation (3.106), so that

1− β(r) =
Prad(r)
P (r)

(7.91)

and, thus, after substituting in (7.89),

1− β(r) =
L

4πcGM〈κ(r) η(r)〉 . (7.92)

To make further progress we now examine 〈κη〉. The following will contain
the key to the standard model as it was introduced by Eddington (1926) well
before stellar processes were completely understood. Yet, as we shall see, this
model is not only of historical interest but it also yields insights into how
some kinds of stars work.

A reasonable opacity to insert in (7.92) is a combination of electron scat-
tering and Kramers’ (see Chap. 3). Thus let

κ = κe + κ0ρT
−3.5. (7.93)

Except for the inclusion of an H− opacity source, this is a good approximation
for most main sequence stars. The important thing to note is that this opacity
increases outward with radius if ρ does not decrease outward faster than
T 3.5—which it will not in this model.

The quantity η(r) is proportional to the average energy generation rate
and, if we restrict ourselves to main-sequence-like objects, it should decrease
outward fairly rapidly to unity because of the relatively high positive tem-
perature exponent of ε. Thus the product κη should not vary as strongly
with position as does either of its components. The crucial assumption in
the standard model is that κη varies so weakly with position that it may be
taken as a constant throughout the star. This means that the righthand side
of (7.92) is constant and so is β.

The constancy of β may be translated into a temperature versus density
relation as follows. If we assume that the pressure is made up of the sum of
ideal gas plus radiation pressure only, then
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Prad =
1− β

β
Pgas =

1− β

β

NAk

μ
ρT =

1
3
aT 4 (7.94)

from previous work. Solving for temperature then yields

T (r) =
(
3NAk

aμ

1− β

β

)1/3

ρ1/3(r) . (7.95)

Note that this relation is similar to that found using the virial theorem ap-
proach (of 1.36) but for the constant multiplying ρ1/3. What is more impor-
tant, however, is that this is not a relation between virial average quantities
but rather gives the run of T versus ρ through the star.

To proceed, we now use

P =
Pgas

β
=

NAk

μ

ρT

β
(7.96)

to find the pressure-density relation

P (r) =

[(
NAk

μ

)4 3
a

1− β

β4

]1/3
ρ4/3(r) . (7.97)

If we restrict ourselves to situations where μ is constant (homogeneous, con-
stant state of ionization, etc.), then the term within the brackets is a constant
(because β is) and what we are left with is a polytropic equation of the form
P ∼ ρ4/3. The exponent on the density immediately tells us that we are
dealing with a polytrope of index n = 3 and that the coefficient K of (7.16)
is

K =

[(
NAk

μ

)4 3
a

1− β

β4

]1/3
. (7.98)

On the other hand, K is also given by (7.40) which, for n = 3, is

K =
(4π)1/3

4
GM2/3[

ξ4 (−θ′3)2
]1/3
ξ1

. (7.99)

We now equate the two expressions for K, substitute the relevant polytropic
quantities from Table 7.1, and find

1− β

β4 = 0.002996μ4
( M
M�

)2

. (7.100)

To find the temperature, combine (7.95) and (7.100):

T (r) = 4.62× 106βμ
( M
M�

)2/3

ρ1/3(r) . (7.101)
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Note that β andM in (7.101) are not independent but are connected through
relation (7.100) so that things are not as simple as they may look. Table 7.2
summarizes this connection. The general trend is now clear and agrees with
what we know about the zero-age main sequence: more massive stars have
higher temperatures and radiation pressure plays a greater role (lower βs).

Table 7.2. Eddington Standard Model

μ2M/M� β

1.0 0.9970
2.0 0.9885
5.0 0.9412
10.0 0.8463
50.0 0.5066

What information does the standard model not provide? First of all, it
does not yield absolute numbers for temperatures, densities, and pressures
unless we specify both the mass and radius of the configuration. For example,
(7.101) yields the run of temperature versus density but where is the normal-
ization of density to be found? Equation 7.42 contains the central density but
the average density is required and, hence, the mass and radius. The reason
for this need is that, although we have shown the standard model to be a
polytrope of index three using the presumed constancy of 〈κη〉, we have not
then gone back and really solved the energy and heat transport equations. In
this sense, the analysis is incomplete. You may look into this further (q.v.,
Chandrasekhar, 1939, Chap. VI) but that will lead us far afield (and the
standard model can only be pushed so far). However, we shall assume that
both the mass and total radius of a model are specified and see how well the
standard model does with that information.

Given the mass and radius, and thus average density, the central density
for an n = 3 polytrope is ρc = 54.18〈ρ〉 from Table 7.1. The run of T versus
ρ then follows from (7.101). We can then compare this result to that from
a ZAMS model with the same mass and total radius. Figure 7.4 shows the
run of temperature versus density for a ZAMS solar model with X = 0.743,
Y = 0.237, and Z = 0.02 (yielding μ ≈ 0.6 with complete ionization). The
average density is 〈ρ〉 = 2.023 g cm−3 and central density ρc = 82.49 g cm−3.
A standard model with this average density has ρc = 109.6 g cm−3; we use
this to compute T (r) versus ρ(r) as shown in the figure. The standard model
does remarkably well compared to the ZAMS sun model in the inner regions
where density and temperature are high but does not fare so well in the outer
regions. These outer regions starting at ρ ≈ 0.1 g cm−3 behave more like an
n = 3/2 polytrope in this instance because of convection but this convective
region constitutes only about 0.6% of the mass of the star. Most of the star,
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in mass units, has a structure close to that of an n = 3 polytrope. Note that
if the interior pressure is controlled by an ideal gas, then P ∝ T 4, as can be
inferred from (7.97) and (7.101).

Fig. 7.4. The solid line is the temperature–density relation through a full-blown
model of a ZAMS sun with total radius of 6.168×1010 cm or 0.886 R�. The dashed
line shows the standard model result where the same total radius has been assumed.
The centers of the models are at the right.

7.2.8 Applications to Zero-Temperature White Dwarfs

We are sure that it has occurred to you that polytropes also represent excel-
lent approximations to zero-temperature white dwarfs in either the limits of
completely nonrelativistic or relativistic degeneracy (that is how we started
our discussion). Therefore, recall that the nonrelativistic equation of state is
Pe = 1.004 × 1013 (ρ/μe)5/3 dyne cm−2 from either (3.65) or (7.14). This is
a polytropic equation of state and, hence, we know the regular solution is a
polytrope of index n = 3/2. From (7.16) we may readily identify the equation
of state coefficient K and equate it to the polytropic K given by (7.40), use
Table 7.1, and find

K =
1.004× 1013

μ
5/3
e

= 2.477× 1014
( M
M�

)1/3( R
R�

)
. (7.102)

This yields the mass–radius relation
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M
M�

= 2.08× 10−6
(
2
μe

)5( R
R�

)−3
(7.103)

which is close to what we found in the virial estimate of (3.63). It also repro-
duces the mass–radius relation (3.68–3.69) for smallM, as you can check by
neglecting the mass term in the brackets of (3.68)—and it better do so!

The corresponding completely relativistic result is found using the equa-
tion of state (3.66), Pe = 1.243× 1015 (ρ/μe)4/3 dyne cm−3, and by realizing
that we are dealing with an n = 3 polytrope—namely,

K =
1.243× 1015

μ
4/3
e

= 3.841× 1014
( M
M�

)2/3

(7.104)

or
M∞
M�

= 1.456
(
2
μe

)2

. (7.105)

This is the Chandrasekhar limiting mass discussed in §3.52 (and see 3.67).
Real white dwarfs will be discussed in Chapter 10.

7.3 The Approach to Real Models

This section will deal with some aspects of modeling real stars. We have
already introduced sketches of various numerical modeling techniques and
now we will discuss some special problems. We will start with what is to be
done near model centers and then skip to the surface layers.

7.3.1 Central Expansions

As we saw in treating regular polytropes, the center of a stellar model presents
some peculiar problems. The hydrostatic equation and the expressions for
∇rad and ∇ (of 7.8 and 7.11) contain indeterminate ratios at r = 0, as
may easily be verified by inspection. We require, however, that everything
be regular at the origin. What is done in practice is to replace the stellar
structure equations near the model center by simple expansions in r, much
as was done for polytropes. The procedure is straightforward once regularity
and symmetry are accounted for. Application of the boundary conditions
Mr → 0 and Lr → 0 as r → 0 and the requirement of zero spatial gradients
of temperature, density, and pressure at the center yield

Mr −→ 4π
3

ρc r
3 (7.106)

P (r) −→ Pc − 2π3 Gρ2c r
2 (7.107)

Lr −→ 4π
3

ρcεc r
3 (7.108)
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where, as usual, subscript “c” means the central value of a quantity. The
behavior of temperature near the center depends on the mode of energy
transport and is

T (r) −→ Tc − 1
8ac

κcρ
2
cεc

T 3
c

r2 (7.109)

if there is no convection, and

T (r) −→ Tc − 2π3 G∇ad,c
ρ2cTc
Pc

r2 (7.110)

if adiabatic (efficient) convection is present (so that ∇ = ∇ad). An easy way
to verify the temperature relations is to eliminate r2 between P (r) and T (r)
(either version) and construct a numerical logarithmic derivative. Note that
(7.109) may be replaced with (7.110) if ∇ad is replaced by ∇rad (of Eq. 4.30)
in the latter equation.

How to treat the surface is more difficult.

7.3.2 The Radiative Stellar Envelope

The term “envelope” is used in various ways in stellar physics and you will
see it used many ways here also. Examples of its use are as follows. When
describing the structure of red supergiants, which have a dense degenerate
core surrounded by an immense diffuse region (both of which may contain
substantial mass), the latter region is often referred to as the envelope. On the
other hand, the “envelope” of a white dwarf is considered to be the very thin
(in mass and depth) nondegenerate region overlying the massive degenerate
core. For the purposes of this section, an envelope consists of the portion of
a star that starts at the surface, continues inward, but contains negligible
mass, has no thermonuclear or gravitational energy sources, and is in hydro-
static equilibrium. This implies, among other things, that the luminosity in
the envelope is fixed at its surface value with Lr = L and thatMr is essen-
tially just the total mass M. As we shall see, these requirements allow for
considerable simplification in determining the structure of the envelope.

The Structure of the Envelope

Here we look first at the structure of envelopes in which convection is neg-
ligible or nonexistent. The primary reference is Cox (1968, Chap. 20), who
gives many variations on the following.

If convection is neglected, then ∇ is equal to ∇rad with

∇ = d lnT
d lnP

=
3

16πacG
Pκ

T 4

L
M (7.111)

where we have setMr =M, Lr = L, and
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3L
16πacGM = 7.59× 109

( M
M�

)−1( L
L�

)
. (7.112)

Assume for convenience that the pressure is due solely to an ideal gas with no
radiation pressure. Once the envelope solution is obtained, this assumption
can be examined and corrections made. The opacity in (7.111) is then written
in the interpolation form κ = κ0ρ

nT−s, which, for an ideal gas, becomes

κ = κgP
nT−n−s (7.113)

where

κg = κ0

(
μ

NAk

)n
. (7.114)

With this substitution the differential equation (7.111) now contains only P
and T as the active variables and may be rewritten

Pn dP =
16πacGM
3κgL Tn+s+3 dT . (7.115)

If T0 and P0 refer to some upper reference level in the envelope (such as the
photosphere) with P (r) ≥ P0 and T (r) ≥ T0, then an easy integration of
(7.115) yields

Pn+1 =
n+ 1

n+ s+ 4
16πacGM
3κgL Tn+s+4

[
1− (T0/T )n+s+4

1− (P0/P )
n+1

]
(7.116)

for n + s + 4 �= 0. If this sum of exponents does equal zero through some
unlikely numerical accident, then the solution differs from the above but is
still easy to find.

We now examine some likely combination of exponents n and s to see what
(7.116) implies for the run of pressure versus temperature in the envelope.
Note first that if n + s + 4 and n + 1 are both positive then the terms
[T0/T (r)]

n+s+4 and [P0/P (r)]
n+1 get small rapidly as we go to deep depths

in the envelope. Thus for (n+s+4), (n+1) > 0 and T (r) >> T0, P (r) >> P0

Pn+1 −→ n+ 1
n+ s+ 4

16πacGM
3κgL Tn+s+4. (7.117)

If T0 and P0 refer to photospheric values, then, in this instance, the solution
for pressure versus temperature deep in the envelope below the photosphere
converges rapidly to a common solution independent of photospheric condi-
tions. Thus, as far as the interior structure is concerned, we could just as
well have used zero boundary conditions for pressure and temperature. Ex-
amples include Kramers’ opacity (n = 1, s = 3.5) and electron scattering
(n = s = 0).

An important counterexample to the above is where the envelope opacity
is due to H− as in the estimate given by (4.65). Here n = 1/2, s = −9
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with n + s + 4 = −4.5 and photospheric boundary conditions have a strong
influence on the underlying layers. It is also true that in cool stars where
H− opacity is important, the underlying layers are convective and the above
analysis does not apply. We shall return to this shortly.

If we assume (7.117) holds, then the logarithmic run of temperature versus
pressure at depth is

∇(r) −→ n+ 1
n+ s+ 4

=
1

1 + neff
(7.118)

where neff = (s + 3)/(n + 1) is the “effective polytropic index.” The reason
for this name is as follows. Equation (7.117) also yields

P = K ′T 1+neff (7.119)

where it is assumed that we may use zero boundary conditions on T and
P , and where K ′ may readily be established from (7.117). If the gas is ideal
and of constant composition, with P ∝ ρT/μ, then P ∝ ρ1+1/neff and the
structure is polytropic (as in 7.22). Recalling our discussion of polytropes
and ideal gases, the coefficient K ′ is the same as that identified in (7.27) and,
from the present analysis, is equal to

K ′ =
[

1
1 + neff

16πacGM
3κ0L

(
NAk

μ

)n]1/(n+1)

(7.120)

from which we may calculate the polytropic constant K by way of (7.28).8 A
practical difficulty in carrying out the analysis further in terms of polytrope
language is that the solution (7.117) must eventually be joined to the rest of
the star, and the present analysis cannot do that. Suffice it to say that you
might well imagine how this might be done (with appropriate conditions of
continuity, etc.). For now we remark that the polytropic-like solution in the
envelope corresponding to θn(ξ) of the previous sections need not be of the
complete E-solution variety and may be of F- or M-solution character.

The constancy of ∇ in (7.118) implies that the combination Pκ/T 4 is a
constant by virtue of (7.111). Specifically, if Kramers’ opacity holds in the
envelope, then (with n = 1, s = 3.5, and neff = 3.25) the solution for P
versus T is

P (r) =
[
1
4.25

16πacGM

3κ0L
NAk

μ

]1/2
T 4.25(r) (7.121)

and ∇ = 0.2353. If no ionization processes are taking place and Γ2 = 5/3,
then ∇ad = 1− 1/Γ2 = 0.4 and thus ∇ < ∇ad, which implies no convection;
the envelope is radiative as originally assumed. For electron scattering with
8 When we think “polytrope,” there is always the danger of confusing the poly-
tropic index n with the opacity exponent n in the present analysis. Don’t fall
into that trap!
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n = s = 0, neff = 3 (an “n = 3” polytrope again!), ∇ = 0.25 and the
same conclusion holds. Note, however, these results are only a rough guide
and must be applied with caution; ionization processes and convection, albeit
almost negligible, occur in the outer layers of nearly all stars and a complete
and accurate integration including all effects is necessary in modeling real
stars. The present analysis remains a rough guide but, on the other hand,
and even in practice, constant luminosity and negligible envelope mass are
often used to simplify envelope integrations.

The Radiative Temperature Structure

If the envelope is radiative with neff constant and certain restrictions given
below apply, then temperature as a function of radius may be found. We
assume that n and s are such that zero boundary conditions are adequate (as
discussed above). This means that we know ∇ = 1/(1 + neff). Thus rewrite
the equation of hydrostatic equilibrium in the form

dP

dr
=

P

∇
1
T

dT

dr
= −GM

r2
ρ (7.122)

where Mr = M is still assumed. If the gas is ideal and P = ρNAkT/μ is
used to replace the pressure in the middle term of (7.122), we find

(neff + 1)
dT

dr
= −GMμ

NAk

1
r2

. (7.123)

This is then integrated to yield T(r) as

T (r) =
1

1 + neff

GMμ

NAk

(
1
r
− 1
R
)

=
2.293× 107
1 + neff

μ

( M
M�

)( R
R�

)−1( 1
x
− 1
)
K (7.124)

where x = r/R. Note that if Kramers’ opacity could be used everywhere in
the solar envelope (so that neff = 3.25) and the composition were ionized
Pop I (μ ≈ 0.6), then the temperature at a level only 1% below the surface
(x = 0.99) would be, say, for a pseudo-sun, about 33,000 K as compared to
Teff of 5,780 K. In other words, large positive values of the temperature and
density exponents of opacity imply a rapid increase of temperature inward
and the outer boundary conditions matter little.

We may also find the envelope mass using the above. If the gas is ideal
P = ρNAkT/μ may be equated to P = K ′T 1+neff of (7.119) and the density
is ρ(r) = K ′μTneff (r)/NAk. But since T (r) is given by (7.124), we then have
ρ(r). The latter is integrated (after weighting by 4πr2) from some envelope
level r to R to give the mass, M−Mr, above that level. As an exercise
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for you, consider electron scattering opacity (κe, n = s = 0, neff = 3), use
(7.120) to compute K ′, and show that

1− Mr

M =
π2ac

12κe

(
μG

NAk

)4 M3

L ×

×
[
x3

3
− 3
2
x2 + 3x− 11

6
− lnx

]
. (7.125)

If x is very close to unity, then the term in the brackets is approximately
(1 − x)4/4. For a solar mass and luminosity, equation (7.125) implies, for
example, that traversing 15% of the total radius inward from the surface
uses up only a little less than 1% of the mass. This confirms our assumption
thatMr ≈M through the envelope.

7.3.3 Completely Convective Stars

We know from previous discussions that cool stars tend to have convective
envelopes. In this section we shall carry this to the extreme and discuss some
of the properties of fully convective stars and how such objects come to be.
The analysis may become algebraically tedious in spots, but the result will
bear directly on pre-main sequence evolution.

Consider a cool star whose surface layer is dominated by H− opacity,
which is, from (4.65),

κH− ≈ 2.5× 10−31
(

Z

0.02

)
ρ1/2T 9 cm2 g−1 (7.126)

for hydrogen mass fractions X around 0.70. We already know that the expo-
nents for this opacity (n = 1/2, s = −9) spell trouble for a simple envelope
analysis because the outer boundary conditions are felt deep down into the
envelope. Thus, from now on, we use photospheric boundary conditions with
temperature Tp = Teff and pressure Pp = 2gs/3κp as derived in §4.3. Now to
find the structure of the envelope.

Consider the pressure–temperature relation (7.116) and transform it into
an equation for ∇ as a function of temperature. You may easily verify that
the result is

∇(r) = 1
1 + neff

+
(

Teff
T (r)

)n+s+4 [
∇p − 1

1 + neff

]
(7.127)

with neff = (s+3)/(n+1) as given by (7.118). The “p” means photospheric,
∇p is ∇ evaluated at the photosphere, and (see 7.111)

∇p =
3κ0L

16πacGM
(

μ

NAk

)n Pn+1
p

Tn+s+4
eff

=
3L

16πacGM PpκpT
4
eff . (7.128)
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At the photosphere Pp = 2gs/3κp, gs = GM/R2, and, of course, L =
4πR2σT 4

eff . Inserting this information into (7.128) yields ∇p = 1/8. The run
of ∇ below the photosphere is obtained from (7.127) which, for H− opacity
(with neff = −4), is

∇(r) = −1
3
+
11
24

[
Teff
T (r)

]−9/2
. (7.129)

Note that since temperature increases with depth, so does ∇. The implica-
tion of this observation is that at some depth ∇ must eventually become
larger than the thermodynamic derivative ∇ad. If, as an approximation, we
assume that ∇ad is given by its ideal gas value ∇ad = 0.4 (with no ionization
taking place), then we can estimate where (in temperature) ∇ is equal to,
and thereafter would exceed, ∇ad. Thus we can set ∇(r) of (7.129) equal to
0.4 and solve for T (r) at this critical depth—and we shall do this in just a
bit. For now, observe that if ∇ > ∇ad, then the stellar material becomes con-
vective and, for simplicity, we assume that the convection is adiabatic. Thus
at depths deeper than the critical depth, ∇(r) = ∇ad = 0.4. As remarked
upon at the end of §7.2.1, this behavior of ∇(r), along with the ideal gas
assumption, implies a polytrope of index 3/2 and

P = K ′T 5/2 (7.130)

gives the run of pressure with temperature (see 7.27). The picture is then
that of a photosphere from which escapes the visible radiation, underlain by
a radiative layer of depth to be determined (and probably a shallow layer
at that), and, under that, convection. This represents the outer layers of the
sun as we know it.

In writing down (7.130) we note the following. In the extreme case where
convection continues down to the stellar center, the constant K ′ cannot be
arbitrary because (7.130), as a complete polytrope, must have solutions corre-
sponding to a complete model with appropriate central boundary conditions.
In other words, givenM and R, K ′ must satisfy the combination of relations
(7.40) and (7.28) for K ′ and K given earlier for ideal gas polytropes. One way
to approach this is to recast pressure and temperature in the dimensionless
variables discussed by Schwarzschild (1958, §13), where

p =
4π
G

R4

M2P (7.131)

t =
NAk

G

R
μMT . (7.132)

Equation (7.130) then becomes

p = E0t
5/2 (7.133)

with
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E0 = K ′4π
(

μ

NAk

)5/2

G3/2M1/2R3/2. (7.134)

But for an ideal gas, n = 3/2, E-solution polytrope, K ′ is given by (7.28) as

K ′
n=3/2 =

(
NAk

μ

)5/2

K
−3/2
n=3/2 . (7.135)

After substituting for K of (7.40) this becomes

K ′
n=3/2 =

2.53/2

4π

[
ξ
5/2
3/2

(
−θ′3/2

)1/2]
ξ1

×

×
(
NAk

μ

)5/2 1
G3/2M1/2R3/2 . (7.136)

Putting this together we find the surprising result that E0 does not depend
on any of the physical parameters of the model (mass, radius, composition)
but rather contains only the surface values of the polytropic variables and is
the constant

E0 =
(−125

8
ξ53/2θ

′
3/2

)1/2

ξ1

= 45.48 (7.137)

using the results from Table 7.1.
After these introductory remarks we now compute some of the parameters

of a completely convective star. In particular, we seek a relation between
mass, luminosity, effective temperature, and composition. This will take a
few steps. We first need the temperature and density at that level in the
star below the photosphere where ∇ = ∇ad = 0.4. This may be found from
(7.127) using ∇p = 1/8 and the exponents n = 1/2 and s = −9 from the
estimate for the H− opacity. You may readily check that the temperature at
that level, denoted by Tf , is given by (Tf/Teff) = (8/5)2/9 ≈ 1.11; that is,
Tf is a mere 11% higher than Teff . The implication is that convection starts
just below the photosphere. The pressure, Pf , at the top of the convective
interior is found by rewriting (7.116) in the form

(
P

Pp

)n+1

= 1 +
1

1 + neff

1
∇p

[(
T

Teff

)n+s+4

− 1
]

(7.138)

which, for the case in question, yields Pf = 22/3Pp.
We now apply (7.130) in the form Pf = K ′T 5/2

f . The polytropic parameter
K ′ is obtained from the combination of equations (7.134) to (7.137) and is

K ′ =
3.564× 10−4E0

μ2.5

( M
M�

)−1/2( R
R�

)−3/2
(7.139)
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or, in functional dependence, K ′ = K ′(M,R, μ).9 To express K ′ in terms
of Teff and L, use L = 4πσR2T 4

eff and find K ′ = K ′(M, Teff ,L, μ). Now for
Pf = 22/3Pp. The photospheric pressure is 2gs/3κp, which is a function of
M and R (from gs) and Teff and photospheric density (from κp = κ0ρ

n
pT

−s
eff ).

The density is eliminated using the ideal gas equation of state to yield

Pp =
(
2
3

GM
κ0R2

)1/(n+1)(
μ

NAk

)−n/(n+1)

T
(n+s)/(n+1)
eff (7.140)

which has the dependence Pp = Pp(M,R, μ, Teff). Again get rid ofR and find
Pp = Pp(M, Teff ,L, μ). It should now be clear that the polytropic equation
Pf = K ′T 5/2

f becomes a power law equation containing only the variables
M, Teff , L, κ0, and μ (and, in the general case, n and s). For our estimate
of H− opacity, this relation becomes

Teff ≈ 2600μ13/51
( M
M�

)7/51( L
L�

)1/102

K. (7.141)

The strange exponents appearing here are a good indication of how messy
this calculation is. Also, as will be pointed out later, the temperature coeffi-
cient of 2,600 K is too low in this simple calculation. It should be more like
4,000 K. In any case, this relation shows up as a set of nearly vertical lines in
the Hertzsprung–Russell diagram withM being the parameter labeling the
lines and where Teff is virtually independent of L for a givenM. Thus com-
pletely convective stars (with a radiative photosphere) of a given mass and
(uniform) composition in hydrostatic equilibrium lie at nearly constant low
effective temperature independent of luminosity. Or, phrased another way,
the effective temperatures of such stars are nearly independent of how the
energy is generated. The next section discusses to what kinds of stars these
models correspond.

A Question of Entropy

To interpret the above, we return to a comment made in Chapter 5 (§5.1 and
see Ex. 5.1) about the role of entropy in convective stars (and we shall follow
the excellent historical review of Stahler, 1988, in much of what follows). For
infinitesimal and reversible changes, the first and second laws state that

T dS = dE + P d

(
1
ρ

)
= dE − P

ρ2
dρ (7.142)

where E is in erg g−1 and the entropy, S, has the units erg g−1 K−1. We wish
to transform this to something more familiar in the stellar context. To do so,
9 From now on, we shall write down little in the way of explicit formulas, but will
wait until the very end to give the answer. You are advised to work out all the
tedious numbers as we go along.
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express E and ρ in terms of P and T ; that is, let E = E(P, T ) and ρ = ρ(P, T ).
The differentials are then expanded out into partials with respect to P and
T . These partials are then transformed using standard thermodynamic rules
(as in Landau and Lifshitz, 1958, §16; and Cox, 1968, §9.14) and the relation

cP∇ad =
P

ρT

χT

χρ
(7.143)

(from 3.99) is applied to finally arrive at

dS

dr
= cP (∇−∇ad)

d lnP
dr

. (7.144)

The key here is the presence of∇−∇ad. Since hydrostatic equilibrium requires
that d lnP/dr ≤ 0 everywhere, then the following are true:
1. If the star is locally radiative with ∇ < ∇ad, then dS/dr > 0 and entropy
increases outward at that location.

2. If ∇ > ∇ad so that the star is convectively unstable, then dS/dr < 0 and
entropy decreases outward. In the special case of very efficient adiabatic
convection, ∇ exceeds ∇ad by so little that ∇ −∇ad = 0+ and we may
effectively set ∇ = ∇ad. If we restrict ourselves to this situation, then S
is effectively constant through a convective region.

Combinations of these statements are shown in Fig. 7.5 for three stars; one is
completely convective, the second entirely radiative, and the last has a radia-
tive interior but convective envelope where, if you look closely, the convective
stars have thin radiative photospheres.

Having settled on the above behavior for the run of entropy, we now
determine some of the thermodynamics of entropy for an ideal gas. First
rewrite (7.142) as

T dS =
(
∂E

∂T

)
ρ

dT +
(
∂E

∂ρ

)
T

dρ− P

ρ2
dρ (7.145)

where for a constant-composition ideal monatomic gas (assumed not to be
in the process of ionization) E = 3NAkT/2μ erg g−1 and P = ρNAkT/μ.
Performing the indicated operations yields

dS

dr
=

NAk

μ

d ln
(
T 3/2/ρ

)
dr

(7.146)

which, to within an additive constant after integration, becomes

S(r) =
NAk

μ
ln
[
T 3/2(r)/ρ(r)

]
. (7.147)

This may be recast into two other convenient forms by using the equation of
state to eliminate either temperature or density. Thus
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Fig. 7.5. The run of entropy with radius for a completely convective star with very
efficient convection (solid line), a star that is radiative throughout (dashed line),
and one with a radiative core and convective envelope (dash-dot). Note that the
convective stars have thin radiative layers near their photospheres under which is
a transition layer of inefficient convection.

S(r) =
NAk

μ
ln
[
T 5/2(r)/P (r)

]
(7.148)

S(r) =
3
2
NAk

μ
ln
[
P (r)/ρ5/3(r)

]
. (7.149)

Note that various constants have been absorbed into the constant terms im-
plicit in the righthand sides of these expressions.

The first application of the last two equations is evident if ∇ = ∇ad in
an ideal gas where Γ2 = 5/3: namely, these conditions imply that P ∝ ρ5/3

and P ∝ T 5/2 so that adiabatic convection means constancy of entropy as
in Fig. 7.5. A second observation allows us to estimate the relation between
entropy and, say, total radius in a star. If the star is in hydrostatic equi-
librium, then, from dimensional considerations, pressure is approximately
P ≈ GM2/R4 and ρ ≈ M/R3. Equation (7.149) then yields the total en-
tropy Stot ≈M(3NAk/2μ) ln

(
GM1/3R), or

R ∝ exp
(
2μ
NAk

Stot
M
)

. (7.150)

This states that the total radius is a sensitive increasing function of entropy
for fixed mass and (uniform) composition. Thus if Fig. 7.5 represents the
run of entropy for stars of fixed mass, composition, and radius, then the
integrals over mass of the entropy must be very nearly the same. This is
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why, for example, the entropy in the inner regions of the radiative star is
shown to be lower than for the convective star, and the reverse is true in
the outer layers. The intermediate case in the figure shows what happens if
just the outer layers are convective. As an afternote, the standard model is
completely radiative according to the criteria given above (as it should be
for consistency). Namely, ρ ∝ T 3 for this model (from 7.101) so that S(r)
increases outward by application of (7.147).

We are now in a better position to understand the result given by (7.141).
Equation (7.148) may be evaluated for the entropy at the photosphere by sub-
stituting Teff and the photospheric pressure for the temperature and pressure
in the logarithm. For H− opacity, the entropy is easily shown to be

Sp =
NAk

μ
ln
(
3T 11.5

eff ρ0.5p /2κ0gs
)
. (7.151)

Thus as Teff is reduced, so is Sp. However, Teff cannot fall too low for two
reasons. Too low an effective temperature means that the photosphere can
become optically thin (as opacity decreases) and this violates our notion
of a photosphere. In addition, the entropy cannot drop below the interior
value in this simple picture because otherwise the very outer layers will have
decreasing entropy implying convection—and this is a contradiction. There
is then a minimum to Sp and a corresponding minimum for Teff .

Application to Pre-Main Sequence Evolution

A direct application of this discussion is to the evolution of pre-main sequence
stars. If we suppose that they have no interior thermonuclear energy sources
(although burning of deuterium, which may have been present in the pro-
tostar nebula, may play a role), then contraction from a protostellar cloud
will eventually yield high luminosities at large radii, and large luminosities
usually require convection. If accretion of matter onto the forming star may
be neglected (and this is not really true), the object follows a path on the
Hertzsprung–Russell diagram along a path of effective temperature qualita-
tively similar to that given by (7.141)—and see Fig. 2.2. At any given stage its
effective temperature cannot fall below that value because of the arguments
given above. Were this not true, then the star would enter into the “forbidden
region” on the diagram at lower effective temperatures as shown long ago by
Hayashi (1961). These paths are appropriately known as “Hayashi tracks”
and are those taken by the T Tauri stars (see below). As the star continues
to contract, however, its luminosity may decrease to the point where the deep
interior ultimately becomes radiative and the foregoing discussion does not
apply. To see what happens then, assume that the deep interior opacity is
Kramers’ and apply homology arguments. If the interior gas is ideal and there
is still no thermonuclear energy generation, then a simple exercise yields the
mass–luminosity effective temperature relation (show this because it’s easy
stuff from Chap. 1)
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L ∝M22/5T
4/5
eff . (7.152)

The implication is that when the luminosity of the contracting star falls
below a critical value, evolution proceeds along a track given by (7.152) to
higher effective temperatures until, finally, interior temperatures reach the
point of hydrogen ignition and the main sequence stage of evolution begins.
Note that if the mass is too low, then the track given by (7.152) may lie
below the intersection of the main sequence and the Hayashi track. If so,
then hydrogen burning will commence at that intersection but the star will
remain completely convective on the main sequence. If the protostar is even
less massive than this, then hydrogen burning may never begin and the result
is a brown dwarf. From such calculations, the minimum mass of a hydrogen-
burning main sequence star is estimated to be close to 0.1M�. Less massive
objects result in brown dwarfs (see §2.2.2).

The essentials of the above results were summarized in Fig. 2.2 where
Pre-main sequence evolutionary tracks were shown on the HR diagram for
various mass stars. The direction of evolution is down the Hayashi track to
lower luminosities until the equivalent of relation (7.152) is reached and then
follows the march to the main sequence. Also shown in Fig. 2.2 were the
locations of observed T Tauri stars, which are now believed to be stars in
the process of contracting to the main sequence. The heavy line that defines
an upper envelope to where these stars appear implies that we have not told
the whole story—namely, why are these T Tauri stars not seen above this
“birthline” (Stahler 1988)? A major reason is that we have neglected the
actual hydrodynamical processes of star formation from interstellar clouds.
Among these processes is accretion of gas onto the forming star. This provides
a high luminosity at the accretion surface but this is obscured by dust and
gas. It is only after the accretion ends that the star is fully revealed below
the birthline.

7.4 Exercises

Exercise 7.1. This problem has to do with uniqueness of solutions to the
stellar structure equations. Namely, suppose we wish to make a stellar model
of massM and, in this exercise, uniform composition X, Y , and Z. Such a
model would correspond to a star on a main sequence. (Note that we say “a
main sequence” and not necessarily a hydrogen main sequence.) The question
is whether a unique solution exists or whether there may be multiple solutions
with different radii, luminosities, etc. One way to look at this is to consider
a radius-mass relation of the form (see 1.70)

R ∝MαR

where
αR = αR(χρ, χT , λ, ν, s, n) .
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Here the arguments of αR are the power-law exponents defined in sections §1.5
and §1.6 of the text. In line with the text’s discussion of dimensional analysis
and homology of §1.6, we assume that these exponents are constant through
a model but may differ from model to model. Now consider the possibility of
a double-solution main sequence where, for some range of masses, two values
ofR are possible for a given mass. One example of this (and see below) is that
the solutions with larger radii might correspond to a normal main sequence
where as mass increases so does radius. A lower branch, with smaller radii,
would correspond to pathological solutions that should not appear in real
life. (For a discussion of this issue see, Hansen, C.J. 1978, ARA&A, 16, 15.)
An example of a double-valued helium main sequence is discussed in

� Hansen, C.J., & Spangenberg, W.H., 1971, ApJ, 168, 71,
where there is a minimum mass atM≈ 0.3M�. Models more massive than
this are either electron nondegenerate (and “normal”) or degenerate (and
pathological). Models with mass less than 0.3M� do not exist; that is, there
are no solutions to the stellar structure equations for masses less than 0.3M�.
Now for the problem.

It should be apparent that the minimum mass for a double-valued se-
quence occurs at that combination of exponents for which αR → ∞. Derive
that relation between the exponents. (This is really an easy problem. It just
takes a long time to explain.) You should find that the “∞” condition is
equivalent to requiring that

(4− 3χρ)(s+ 4− ν) = χT (3n+ 3λ+ 4)

and it is well-satisfied near the center of the minimum mass model of Hansen
and Spangenberg (1971). (Don’t peek, but Eq. 1.75 gives a good clue.) The
above condition is equivalent to the “Jeans’ criterion” for secular stability (the
subject of Hansen, 1978) where, in the case of double-valued main sequences,
the pathological sequence can drift out of thermal balance while maintaining
hydrostatic equilibrium. This is such an arcane subject.

Exercise 7.2. It is easy to say that a model looks like a polytrope of such-
and-such index, but don’t be fooled. Go back to Tables 2.5 and 2.6 that
list the properties of ZAMS models and compute ρc/〈ρ〉 for a large range of
masses. See if you can make sense of what you find. And, by-the-way, note
how the density ratio reaches a maximum just a few tenths of a solar mass
after 1M�. Something unusual is going on here (and is in line with our “mass
cut” of about 1.5M� emphasized in Chap. 2.).

Exercise 7.3. Verify Equation 7.48 for the series expansion of θn(ξ) about
the origin.

Exercise 7.4. Use some decent integrator to construct a polytrope with in-
dex n in the interval 2 ≤ n ≤ 4. The simplest method is to shoot for a
solution.
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Exercise 7.5. Use the same integrator (as in Ex. 7.4) to construct a zero
temperature white dwarf with μe = 2 and M ≈ M∞/2. You will have to
use (3.53–3.55) for the thermodynamics. Warning: if x becomes very small
or large watch out for cancellation of terms. Setting up the basic differential
equation is the subject of many of the references.

Exercise 7.6. Derive Equations (7.103–7.105) for the limiting forms of the
mass–radius relations for zero temperature white dwarfs.

Exercise 7.7. Derive the central expansions (7.106–7.110).

Exercise 7.8. Derive (7.141) for the Teff , M, L relation of a completely
convective star with H− opacity near the surface. (The algebra and arithmetic
are so messy we hope we got it right.)

7.5 References and Suggested Readings

§7.1: The Equations of Stellar Structure
The subject of multiple solutions to the stellar structure equations has been
reviewed by
� Hansen, C.J. 1978, ARA&A, 16, 15

in the context of secular stability.

§7.2: Polytropic Equations of State and Polytropes
The material on polytropes in this chapter is standard. We recommend
� Chandrasekhar, S. 1939, Introduction to the Study of Stellar Structure
(New York: Dover)

for more details than you might ever want. We warn you that the mathematics
can get a bit rough at times. Other references include §23.1 of
� Cox, J.P. 1968, Principles of Stellar Structure (New York: Gordon and
Breach)

and Chapter 19 of
� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer-Verlag).

Note that the symbols used for the polytropic variables in the last reference
are not standard.

We strongly recommend that you have
� Press, W.H., Teukolsky, S.A., Flannery, W.T., Vetterling, W.T. 1992,
Numerical Recipes, The Art of Scientific Computing, 2d ed. (Cambridge:
Cambridge University Press)

on your bookshelf. A calculation poorly done is an abomination in this day
of the high-speed computer (PCs and Macs included). Note that the earliest
editions of Numerical Recipes have several mistakes in the FORTRAN computer
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programs accompanying the text. These have hopefully all been corrected.
These programs are also available on floppy disks (as are “C” versions).

Again we recommend
� Hayashi, C., Hōshi, R., & Sugimoto, D. 1962, PTPhJS, No. 22.

Their use of the U-V plane is a virtuoso performance. Earlier examples are
discussed in the text by
� Schwarzschild, M. 1958, Structure and Evolution of the Stars (Princeton:
Princeton University Press).

The most complete discussion of model making is still to be found in
� Kippenhahn, R., Weigert, A., & Hofmeister, E. 1967, MethCompPhys, 7,
53.

The original “Henyey method” appears in
� Henyey, L.G., Forbes, J.E., & Gould, N.L. 1964, ApJ, 139, 306.

The original LANL (then called LASL) method for one-dimensional hydro-
dynamics is discussed in
� Cox, A.N., Brownlee, R.R., & Eilers, D.D. 1966, ApJ, 144, 1024.

There are newer techniques and some of these are reviewed in Press et
al. (1992).

The most lucid introduction to shock phenomena we know of is the first
chapter of
� Zel’dovich, Ya.B., & Raizer, Yu.P. 1966, Physics of Shock Waves and High
Temperature Hydrodynamic Phenomena, in two volumes, eds. W.D. Hayes
and R.F. Probstein (New York: Academic Press).

These two volumes contain much of interest for the astrophysicist. Chapter
1 has been reprinted separately in 1966 as Elements of Gasdynamics and the
Classical Theory of Shock Waves (also from Academic Press). There are more
recent texts containing numerical methods for dealing with shock waves but
you cannot go wrong with
� Richtmyer, R.D., & Morton, K.W. 1967, Difference Methods for Initial
Value Problems 2d ed. (New York: Wiley Interscience).

� Arnett, D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton
University Press)

gives a short review (in §4.4) of numerical techniques necessary to solve sys-
tems of stiff differential equations for following abundances in supernovae.

Sir Arthur Eddington’s name appears in many astronomical contexts during
the earlier years of the 20th century, ranging from the gravitational bending
of light to stellar interiors and variable stars. If you wish to find out how well
science can be explained read through
� Eddington, A.S. 1926, Internal Constitution of the Stars (Cambridge:
Cambridge University Press).

It is also available in a 1959 Dover edition.

The original work on constructing zero temperature white dwarfs appears in
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� Chandrasekhar, S. 1939, Introduction to the Study of Stellar Structure
(New York: Dover),

where the notion of polytropes is extended to include the combination of
nonrelativistic and relativistic degenerate equations of state.

§7.3: The Approach to Real Models
Chapter 20 of
� Cox, J.P. 1968, Principles of Stellar Structure (New York: Gordon and
Breach)

has a more complete discussion of envelope construction than we have at-
tempted. Included are fairly realistic convective envelopes and the use of the
dimensionless Schwarzschild variables.

As in Chapter 2 we recommend the review by
� Stahler, S.W. 1988, PASP, 100, 1474

for a discussion of pre-main sequence evolution. See also the original paper
of
� Hayashi, C. 1961, PASJ, 13, 450

for Hayashi tracks. For some thermodynamic conversions see
� Landau, L.D., & Lifshitz, E.M. 1958, Statistical Physics (London: Perg-
amon).
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“Shake, rattle, and roll.”

Title and most of the lyrics of a popular song.

— Bill Haley & the Comets (1954)

With few exceptions we have treated stars as hydrostatic objects in which
gravitational and pressure gradient forces are everywhere in balance. The
exceptions have been supernovae, novae, and intrinsically variable stars. This
chapter is about the last class. Variable stars may not be as spectacular as
their violent cousins, but they have a charm of their own, and they have a
special place in astronomy. Section 2.10 took us on a tour of the variable star
zoo, but here we shall see what makes them tick. The final two chapters will
go deeper into the sun as a variable star and discuss variable white dwarfs
but, as here, a constant theme will be how observations of variable stars
(supplemented by lots of theory) are used to peek into stellar interiors in
ways that you can’t do otherwise. In this sense, the title of this chapter is
self-explanatory: we shall use observed surface luminosity, radius, and color
variations to probe stellar interiors in much the same spirit as in terrestrial
seismology. This is not a new subject but it has blossomed in recent years.
A review of the list of variables we gave in Chapter 2 makes it clear that the
subject spans all phases of stellar evolution.

The plan of the chapter is as follows. We first treat small-amplitude mo-
tions that are strictly periodic and radially symmetric. If the motions are
strictly periodic, then the time-averaged energy content of the star remains
constant, which is the same as saying that the oscillations are adiabatic. This
is, of course, an approximation to a real situation where energy redistribution
within the star takes place over time scales that are very long compared to
a period of oscillation (or pulsation, or one of a few other terms used to de-
scribe the variability). We shall then introduce nonadiabatic effects to briefly
explore the causes of variability. Finally, we shall see what happens when
the motions are not radially symmetric. Since there are two excellent texts
in the literature (Cox, 1980; Unno et al., 1989; and see the monograph by
Christensen–Dalsgaard, 1997) our treatment of these topics will sometimes
be quick and dirty. Examples of applications to real stars will be given where
appropriate.
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8.1 Adiabatic Radial Pulsations

We have frequently emphasized the point that a star is an object whose struc-
ture is primarily determined by mechanics. To understand this more clearly
in the present context recall, from Chapter 1, that dynamic times (tdyn) are
usually short compared to times characteristic of internal energy redistribu-
tion within a star (e.g., tKH). This is not strictly true for all stars, or even
the outer portions of most stars, but it forms the basis of the “adiabatic
approximation” for the study of stellar pulsation. In this approximation it
is assumed that all heat exchange mechanisms may be ignored so that the
system is purely mechanical. The problem then reduces to a rather compli-
cated exercise equivalent to studying the normal modes of a coupled system of
pendulums and springs or, more appropriately, the behavior of sound waves
confined in a box. The adiabatic approximation is remarkably useful in vari-
able star theory because not only does it greatly simplify the analysis but it
also yields accurate models of dynamic response for most stars. The penalty
paid is severe, however, because it cannot tell us what causes real stars to
pulsate. In this section we shall restrict the discussion to radially symmetric
motions. This means that the star is always radially symmetric and all effects
due to rotation, magnetic fields, etc., may safely be ignored.

Since heat transfer is ignored in the adiabatic approximation, we can
completely describe the mechanical structure with only the mass and force
equations

∂Mr

∂r
= 4πr2ρ (8.1)

r̈ = −4πr2
(

∂P

∂Mr

)
− GMr

r2
(8.2)

where we explicitly introduce partial derivatives to make sure derivatives
with respect to time appear only where appropriate. If the star were purely
static, then r̈ would be zero everywhere. Imagine that this indeed is ini-
tially the case but, by some means, the star is forced to depart from this
initial hydrostatic equilibrium state in a radially symmetric, but otherwise
arbitrary, manner. Furthermore, and to make the problem tractable, suppose
that any departures from the static state are small in the following sense. Let
a zero subscript on radius (r0) or density (ρ0) denote the local values of these
quantities in the static state at some given mass level Mr. As the motion
commences both radius and density will, in general, depart from their static
values at that same mass level and be functions of time and the particular
mass level in question. This constitutes a Lagrangian description of the mo-
tion because we follow a particular mass level on which, we can imagine, all
particles are painted red for identification to distinguish them from particles
at other mass levels. We now describe the motion by letting1

1 The following discussion can be made more general, as it will for nonradial os-
cillations, but we think it best to go gently here.
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r(t,Mr) = r0(Mr)
[
1 +

δr(t,Mr)
r0(Mr)

]
(8.3)

ρ(t,Mr) = ρ0(Mr)
[
1 +

δρ(t,Mr)
ρ0(Mr)

]
(8.4)

where δr and δρ are the Lagrangian perturbations of density and radius.
These last two quantities are used to describe the motion through time at a
given mass level. The requirement that departures from the static state be
small is |δr/r0| � 1 and |δρ/ρ0| � 1.

We now “linearize” the mass and force equations by replacing the position
(radius) and density at a mass level by the perturbed values of (8.3–8.4) and,
in the result, keeping only those terms that are of first or lower order in
δr/r0 and δρ/ρ0. (Recall that we did the same sort of thing back in §1.1 in
examining a variational principle.) To see how this goes, first consider the
mass equation

∂Mr

∂ [r0(1 + δr/r0)]
= 4π [r0(1 + δr/r0)]

2 [ρ0(1 + δρ/ρ0)] . (8.5)

Now carry through the derivative in the denominator of the lefthand side
and expand out the products on the right. The first operation yields a new
denominator (1+δr/r0) ∂r0+r0 ∂(δr/r0). The derivative ∂r0 is then factored
out so that the overall lefthand side contains the factor ∂Mr/∂r0. The small
terms remaining in the denominator are then brought up using a binomial
expansion to first order to yield

∂Mr

∂r0

[
1− δr

r0
− r0

∂ (δr/r0)
∂r0

]
.

The righthand side of the mass equation is simpler because all we need do is
expand out the factors to first order to obtain

4πr20ρ0

(
1 + 2

δr

r0
+

δρ

ρ0

)
.

When the two sides of the linearized mass equation are set equal we find that
the result contains the zero-order equation

∂Mr

∂r0
= 4πr20ρ0

which is the mass equation for the unperturbed configuration. Since this is
automatically satisfied, we take advantage of the equality and subtract this
from the linearized equation. (This is a typical result of linearization about an
equilibrium state.) After some easy rearrangement we find that the following
relation between the Lagrangian perturbations must be satisfied so that mass
is conserved as the configuration evolves in time:
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δρ

ρ0
= −3 δr

r0
− r0

∂ (δr/r0)
∂r0

. (8.6)

Note that part of this equation is familiar because, if we ignore the derivative
term, it is merely the logarithmic form of the homology relation between
density and radius given by (1.65) of §1.6.

The force equation is relatively straightforward and we leave it as an
exercise to show that its linearization yields

ρ0r0
d2 δr/r0

dt2
= −

(
4
δr

r0
+

δP

P0

)
∂P0

∂r0
− P0

∂ (δP/P0)
∂r0

. (8.7)

Implicit in the derivation of this equation are the conditions r̈0 = 0 and
ṙ0 = 0, which must apply since the reference state is completely static.

At this point in the analysis we take a familiar path in perturbation theory
and assume that all perturbations prefixed by δs may be decomposed into
Fourier components with the time element represented by exponentials. Thus,
for example, introduce the space component of relative fluid displacement,
ζ(r0), by

δr(t, r0)
r0

=
δr(r0)
r0

eiσt = ζ(r0) eiσt (8.8)

where the exponential takes over the duty of describing the time evolution of
displacement and ζ(r0) [or δr(r0)/r0], which depends only on r0 (i.e., the mass
level), can be considered to be the shape of the displacement at zero time.
Note that both the frequency σ (in radians per second) and ζ(r0) can be com-
plex. The lefthand side of the force equation now becomes −ρ0r0σ2ζ(r0) eiσt.

It should be clear that we are now in trouble because the two linearized
equations for force and mass contain the three variables ζ(r0) and the space
parts of the pressure and density perturbations. This comes about because
we have neglected the energetics of the real system and so our description is
incomplete. To make sure that this is a purely mechanical problem we now
couple δρ and δP in the adiabatic approximation by recalling the Lagrangian
relation between changes in pressure to changes in density given by (3.93)

Γ1 =
(
∂ lnP
∂ ln ρ

)
ad

. (8.9)

Since this is shorthand for P ∝ ρΓ1 and δ is a Lagrangian differential operator,
we take logarithmic δ–derivatives to find

δP

P0
= Γ1

δρ

ρ0
. (8.10)

This relation takes the place of any energy and heat transfer equations that
would normally appear and we now have as many variables as equations.

There are several paths we could take now but we choose the following:
(1) make sure all perturbations are replaced by their spatial Fourier com-
ponents with common factors of eiσt cancelled; (2) replace all occurrences
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of δρ by δP using the adiabatic condition; (3) rearrange the two linearized
equations so that space derivatives appear on the lefthand side; (4) replace
partial derivatives by total space derivatives (with the understanding that all
variables depend only on r0); (5) delete all reference to zero subscripts be-
cause all that really appears are perturbations and quantities from the static
configuration. The result is

dζ

dr
= −1

r

(
3ζ +

1
Γ1

δP

P

)
(8.11)

d (δP/P )
dr

= −d lnP
dr

(
4ζ +

σ2r3

GMr
ζ +

δP

P

)
(8.12)

where the factor r3/GMr appears as a result of using the hydrostatic equa-
tion to get rid of some terms containing dP/dr (which you may wish to retain
rather than introducingMr). Note that σ2r3/GMr looks suspiciously like a
big piece of a period–mean density relation.

We now have a set of coupled first-order differential equations, but we
need boundary conditions. The first of these is simple because we require
that δr be zero at the center (r = 0). To see how this comes about consider
a particle of infinitesimal extent at the very center of the equilibrium star.
There is no place for this particle to move to (δr �= 0) without violating
the condition of radial symmetry. Physical regularity of the solutions also
requires that both ζ = δr/r and dζ/dr be finite at the center. The only way
to arrange for all this to be true is to have the term in parenthesis on the
righthand side of (8.11) vanish at stellar center. This yields the first boundary
condition

3 ζ +
1
Γ1

δP

P
= 0 at r = 0 . (8.13)

The second boundary condition is applied at the surface. For our purposes
it is adequate to assume zero boundary condition for the static model star
(as in §7.1). Specifically, we assume P → 0 as r → R. More complicated
conditions are possible—such as for a photospheric surface—but they add
nothing of real importance for our discussion. The first thing to realize is that
the leading coefficient of the righthand side of the linearized force equation
(8.12) is just 1/λP where λP is the pressure scale height of (3.1). This latter
quantity rapidly goes to zero as the surface is approached so that in order
for the relative pressure perturbation, δP/P , to remain finite we must have

4 ζ +
σ2R3

GM ζ +
δP

P
= 0 at r = R . (8.14)

Though not immediately evident, this condition is equivalent to requiring
that all interior disturbances be reflected at the surface (as it itself moves)
back into the interior; that is, no pulsation energy is lost from the star because
all is reflected back inward from the surface.
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So far, so good. We have an equal number of differential equations and
boundary conditions. But, all the equations derived thus far are linear and
homogeneous in ζ and δP/P so the question remains as to how these quan-
tities are to be normalized. As it stands, any scaling is permitted for either
perturbation at some unspecified point in the star and the overall solution
may be as small or large as we like (but not zero, otherwise everything is
zero!). To pin things down we must choose a nonzero normalization. This
is completely arbitrary but certain choices are preferred (and differ among
different investigators). We choose

ζ =
δr

r
= 1 at r = R . (8.15)

We now realize that this places an additional constraint on the problem; and,
in effect, we have exceeded the permissible number of boundary conditions.
The way out of this apparent dilemma is to recognize that the (perhaps
complex) frequency σ has not been specified. In fact, it can only take on a
value (or values) such that all boundary conditions are satisfied including
the normalization condition. (Note that σ cannot depend on the normaliza-
tion condition because the latter just scales the solutions.) Thus σ or, more
properly, σ2—because only that quantity appears in our equations—is an
eigenvalue and the corresponding perturbations are eigenfunctions for that
particular σ2. We now discuss the properties of the eigenvalues for this adi-
abatic problem and this will involve a little mathematics.

8.1.1 The Linear Adiabatic Wave Equation

First, we leave it to you to collapse the two first-order differential equations
for ζ and δP/P down into one second-order equation in ζ. (This involves dif-
ferentiating 8.11 and then eliminating any reference to δP/P or its derivative
by using 8.11 and 8.12.) The result is

L(ζ) ≡ − 1
ρr4

d

dr

(
Γ1Pr4

dζ

dr

)
− 1

rρ

{
d

dr
[(3Γ1 − 4)P ]

}
ζ = σ2ζ . (8.16)

Here L is a second-order differential operator that is shorthand for the middle
part of the whole equation, where, in this case, ζ is the operand. We can
write the above in simple form as L(ζ) = σ2ζ. It may not look like it at first
sight but, with some hindsight, this equation is a wave equation and, in this
context, is called the linear adiabatic wave equation or LAWE.2

This all may look pretty formidable but there are redeeming features. (You
should consult any decent text on mathematical physics—such as Arfken and
Weber, 1995—for what follows if you wish to do serious work with the theory
2 Some investigators refer to more general versions of this equation as the LAWE.
Cox (1980), for example, includes nonradial motions in his formulation.
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of pulsating stars.) All the quantities in L are well-behaved and L is a Sturm–
Liouville operator. Furthermore, we can symbolically integrate over the star
and show (subject to our boundary conditions and other constraints—see
Cox 1980, §8.8) that

∫ M
0

ζ∗ [L(ζ)] r2 dMr =
∫ M
0

ζ [L(ζ)]∗ r2 dMr (8.17)

where ζ∗ is the complex conjugate of ζ. Now we may as well be doing quantum
mechanics because this equality means that the Sturm–Liouville operator L
is self-adjoint (or Hermitian) and the following statements about σ2 and its
eigenfunctions are true (among other nice properties):

1. All eigenvalues σ2 of the system are real, as are the corresponding eigen-
functions. There are then two possibilities. If σ2 > 0 then σ is purely real
and the complete eigenfunction ζ(r) eiσt is oscillatory in time by virtue
of the temporal factor eiσt. (That is, we get sines and cosines of σt.) Oth-
erwise, if σ2 < 0, then σ is pure imaginary and the perturbations grow
or decay exponentially with time. We shall only concern ourselves with
the first possibility in practical situations. (But note that the σ2 < 0
possibility implies a gross dynamic event such as collapse of the star.)
Thus if σ2 > 0, then σ is the angular frequency of the oscillation with
corresponding period Π = 2π/σ.

2. There exists a minimum value for σ2 which, were we doing quantum
mechanics, would correspond to the ground state.

3. If ζj and ζk are two eigenfunction solutions for eigenvalues σ2j and σ2k,
then ∫ M

0
ζ∗j ζk r

2 dMr = 0 if j �= k . (8.18)

The eigenfunctions are then said to be orthogonal (as in the scalar prod-
uct of two perpendicular vectors).

What we then have for σ2 > 0 are standing waves such that the star passes
through the equilibrium state twice each period.

8.1.2 Some Examples

To get an idea of what is going on here first consider the (unrealistic) case
where both ζ and Γ1 are supposed constant throughout the star. (Were such
a situation possible it would correspond to homologous motions.) The LAWE
then reduces to3

3 There aren’t many easily solved analytic problems using the LAWE. To see what
might be involved, do Ex. 8.3, where you are to find the pulsation eigenvalues and
eigenfunctions for the constant density model. One result—among others—you
will obtain is (8.20).
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− 1
rρ
(3Γ1 − 4) dP

dr
ζ = σ2ζ . (8.19)

In the simple case of the constant-density model [ρ(r) = 〈ρ〉] we replace
−(1/ρr) dP/dr by GMr/r

3, which becomes 4πG〈ρ〉/3. The result is

(3Γ1 − 4) 4πG3 〈ρ〉 = σ2 . (8.20)

If Γ1 > 4/3, then σ is real and the corresponding period is

Π =
2π
σ
=

2π√
(3Γ1 − 4) 〈ρ〉 4πG/3

. (8.21)

This is just the “period–mean density” relation derived in §1.3.5, but it is
now clear how Γ1 enters. If, on the other hand, Γ1 < 4/3 we know enough to
expect trouble. Here σ is imaginary and the e-folding time for either growth
or decay of the motions is

τ =
1
|σ| =

1√|3Γ1 − 4| 〈ρ〉 4πG/3
. (8.22)

This is the free-fall time (corrected for various factors), tdyn, discussed in
§1.3.3.

More realistic examples are periodic oscillations in polytropes. Recall from
§7.2.1 that the dependent variable for polytropes is θn, which is related to
the pressure by P = Pcθ

1+n
n where n is the polytropic index. The density is

given by ρ = ρcθ
n
n and the independent variable is ξ, which is proportional

to radius. We introduce these variables into the two differential equations for
adiabatic radial pulsations (8.11) and (8.12), use various relations derived in
§7.2.1, and find

dζ

dξ
= −1

ξ

[
3 ζ +

1
Γ1

δP

P

]
(8.23)

d (δP/P )
dξ

= −(1 + n)
θ′n
θn

[
4 ζ + ω2 ξ/θ′n

(ξ/θ′n)1
ζ +

δP

P

]
(8.24)

where ω2 is the dimensionless frequency (squared)

ω2 =
R3

GM σ2 . (8.25)

The prime on θn denotes dθn/dξ and the subscript 1 in the middle term of
(8.24) means that the term is to be evaluated at the surface of the polytrope
where ξ = ξ1. Both θn(ξ) and θ′n(ξ) are known from the equilibrium polytrope
solution. We could have phrased the above in terms of δξ/ξ and δθn/θn, but
we prefer keeping the more physical variables ζ = δr/r and δP/P .
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As an example, consider the oscillations of an n = 2 polytrope with Γ1
of 5/3.4 The insert in Fig. 8.1 shows θ2(ξ) versus ξ/ξ1 for that polytrope.
The main curves show three solutions for ζ, each corresponding to a dif-
ferent eigenvalue ω2. The curves are labeled “fundamental” for the smallest
ω2(= 4.001), “first overtone” for the next largest (ω2 = 13.34), and “second
overtone” for the third largest (ω2 = 26.58). The nomenclature for these
modes of oscillation agrees with that used in acoustics. We could also cor-
rectly have called the fundamental the “first harmonic,” and the first overtone
the “second harmonic,” and so on. But beware, astronomers are not consis-
tent (nor always correct) in their use of these terms and you will often see
the first overtone given the name “first harmonic.”

Fig. 8.1. Shown are the relative radial displacements ζ = δr/r for three modes in
an n = 2 polytrope. The abscissa is the polytropic variable ξ given in units of its
value at the surface (or, in other words, r/R). Also shown in the insert is the run
of θ2(ξ) with ξ for the equilibrium polytrope.

You should note that the fundamental has no nodes (crossings of the ζ = 0
axis) for δr/r, whereas each successive overtone has one more node than
the preceding. Thus there is a one-to-one correspondence of complexity in
eigenfunction with ordering of eigenvalue and we might as well be discussing
vibrating strings, the hydrogen atom, or almost any other wave phenomenon.
The fluid motions of the fundamental mode are not homologous because ζ is
not a constant but they are still simple since the star expands and contracts
4 With some care you can do this yourself as a computing exercise. See, for exam-
ple, §38.3 in Kippenhahn and Weigert (1990), and Ex. 8.4.
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almost uniformly and in phase.5 (Some refer to this as a “breathing mode.”)
As a rough rule of thumb, the contrast between the central value of ζ to
its surface value (here normalized to one) is ζ(R)/ζ(r = 0) ∼ ρc/〈ρ〉. In
our example, the degree of central concentration for the n = 2 polytrope is
ρc/〈ρ〉 = 11.4 and the corresponding ratio of the displacements is a little over
three. The motion of the fundamental mode, and even more so the overtones,
has been likened to a whip whose heavy handle moves only slightly in contrast
to the wild excursions of the whip’s end. An n = 2 polytrope is only mildly
centrally condensed but, on the other hand, a highly evolved star, such as a
classical Cepheid variable, has a core of very high density and a comparatively
low average density. For such variable stars the fluid displacements near the
center are miniscule and, in practice, the central regions are often ignored in
pulsation calculations.

Before we press on, we wish to emphasize that the eigenfunctions shown
in Fig. 8.1 represent real (at least for polytropes) fluid motions. Each mode
is shown at an instant of time when the surface is at maximum expansion.
In the case of the fundamental, a quarter cycle later (at t = Π/4) the “star”
has already undergone enough subsequent compression that it is just passing
through the equilibrium state and the time-dependent eigenfunction is zero
everywhere. In another quarter cycle maximum compression is reached and
the eigenfunction is the mirror image of what is shown with δr/r negative
everywhere. Expansion then starts again and, a half cycle later, we are back
from where we started.

8.1.3 Asymptotic Analysis

A listing of the eigenfrequencies of the n = 2 polytrope suggests yet an-
other property of radial pulsations. In order of increasing overtone we have
ω = 2.00, 3.65, and 5.16. The spacing between successive frequencies here
is certainly not constant but it does hover around 1.6. Were we to compute
successive overtones to high radial order (in terms of number of nodes) we
would find that the spacing in frequency between modes would approach a
constant. This is a common characteristic of mechanical systems and it fol-
lows from an “asymptotic analysis” of the wave equation. To show how this
works we first convert the LAWE (8.16) into something that looks more like
a wave equation by the substitution (see Tassoul and Tassoul, 1968)

w(r) = r2 (Γ1P )
1/2

ζ(r) . (8.26)

5 The quantity Q, defined as Q = Π
√
〈ρ〉/〈ρ�〉 is equal to 0.058 days for the fun-

damental mode of an n = 2, Γ1 = 5/3 oscillating polytrope. The corresponding
value for Q in the standard model (n = 3, see §7.2.7) is 0.038 days. This last
value was used in the remarks made after equation (1.40) for the period–mean
density relation. Q depends on the central concentration of the model with the
largest value belonging to a constant-density (n = 0) model.
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A bit of manipulation then yields the new wave equation in w(r)

d2w

dr2
+
[
σ2ρ

Γ1P
− φ(r)

]
w = 0 (8.27)

where φ(r) is the not very edifying function

φ(r) =
2
r2
+

2
Γ1Pr

d (Γ1P )
dr

−
[

1
2Γ1P

d (Γ1P )
dr

]2
+

+
1

2Γ1P
d2 (Γ1P )

dr2
− 1
Γ1Pr

d

dr
[(3Γ1 − 4)P ] . (8.28)

The first term in the brackets of the new wave equation is simpler than it
appears because the combination Γ1P/ρ is just the square of the local sound
speed v2s (as in Eq. 1.38). Thus

d2w

dr2
+
[
σ2

v2s
− φ

]
w = 0 . (8.29)

Now assume that the wave function w(r) may be represented as

w(r) ∝ eikrr (8.30)

where kr is a wave number which, in general, is a function of r. Because we
shall eventually consider only large wave numbers (small wavelengths), the
terms in the brackets on the lefthand side of (8.29) can be taken as roughly
constant over a wavelength λr = 2π/kr. Hence radial derivatives of kr shall
be assumed to be negligible; that is, kr is nearly constant. The wave equation
in disguised form then becomes

k2r =
σ2

v2s
− φ (8.31)

which is a dispersion relation for kr. Thus if σ2 > v2sφ, then the argument of
the exponential in w of (8.30) is purely imaginary and w is sinusoidal. This
is characteristic of propagating or standing waves. However, if σ2 < v2sφ then
the solution for w contains exponentially decreasing or increasing components
and the solution is said to be evanescent. The quantum mechanical analogue
here is a particle in a potential well. If the particle’s energy (which might
be proportional to some σ2) is greater than that of the bottom of the well,
then the eigenfunction is sinusoidal within the well. The likelihood is small,
however, of finding the particle in regions where its energy is less than the
local potential because the solutions decay exponentially in those regions.

We now take the road into “asymptopia” and imagine that σ2/v2s � φ
and krr � 1 within some interval of radius, say, a ≤ r ≤ b. This means that
there are many wavelengths packed into that interval and the “particle” is



390 8 Asteroseismology

high above the bottom of the potential well. We idealize the situation further
by supposing that the potential well at a and b is so steep that the wave
function is contained solely within those endpoints. Under these conditions
the eigenfunction is trapped within the well and a mode, which consists of a
standing wave for the mechanical system, must have an integer or half-integer
number of wavelengths within [a, b]. To measure the number of wavelengths
we must integrate kr over the interval because kr is still a function of r. (The
simple expression kr[b − a] is not correct.) Thus our requirement for a true
mode is, as you may verify with a little thought

∫ b

a

kr dr = (n+ 1)π (8.32)

where n is the number of nodes the eigenfunction has within the interval
not including the endpoints.6 Thus n = 0 corresponds to a half-wave and
the fundamental mode, and n = 1 is the first overtone with one complete
wavelength packed into [a, b], and so on. We are, of course, not in this low-
overtone domain, but this is the general scheme.

Since φ is assumed to be small, then kr = σ/vs, which gives us

σ = (n+ 1)π

[∫ b

a

dr

vs

]−1
. (8.33)

If we define the constant frequency σ0 = π/
∫ b
a
v−1s dr, then the asymptotic

behavior for σ is
σ = (n+ 1)σ0 (8.34)

so that the eigenfrequencies σ are equally spaced from one mode to the next
with spacing σ0. To date there is only one star for which we can actually
observe high-order radial modes and this is the sun. Whether of high overtone
or not, these modes are often called radial pressure modes (p-modes), or
radial acoustic modes. The reason for this designation should be obvious
from §1.3.5 where we considered the sound travel time across a star. Sound
waves are propagating pressure disturbances and the preceding discussion
containing ratios of dr/vs, which measure travel times for sound waves, is
the same thing.

Adiabatic radial pulsations in stars are relatively well understood and
modern calculations do a good job in representing these purely mechani-
cal motions. This is a desirable state of affairs because many, and perhaps
6 We use n here to count the number of nodes and to denote mode order. This is
the usual nomenclature used by those doing solar seismology. The white dwarf
seismology community, on the other hand, tends to use k for the same purpose.
Our apologies to our colleagues among the white dwarfers, but k is too easily
confused with wave number. And please do not confuse this n with the opacity
exponent or polytropic order. There are just so many letters available.
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most, classes of intrinsically variable stars are radial pulsators (as discussed
in §2.10). However, “intrinsically” implies that it is something inside the star
that causes the pulsation. What we have done thus far cannot tell us what
that something is because the purely adiabatic periodic motions we have con-
sidered have no beginning, end, or apparent cause—which means we have to
relax the constraint of adiabaticity.

8.2 Nonadiabatic Radial Motions

By nonadiabatic we mean that heat may be exchanged between moving fluid
elements of the star. The take-off point for the analysis is the energy equation
given in time-dependent form. A good deal of the work was already done in
Chapter 6, where gravitational energy sources were discussed. We now com-
bine equations (6.4) and (6.5) from that chapter to obtain an expression for
the mass gradient of luminosity that implicitly contains gravitational terms.
Thus

∂Lr
∂Mr

= ε− P

ρ (Γ3 − 1)
[
∂ lnP
∂t

− Γ1 ∂ ln ρ
∂t

]
(8.35)

where ε is the thermonuclear energy generation rate. What we wish to do, for
reasons to be made clear later, is eventually to replace the time derivative of
pressure with one of temperature. This requires some thermodynamics, and
the first step is to use (3.97) to convert the multiplier of the brackets to

P

ρ (Γ3 − 1) =
cVρT

χT

.

The energy equation then becomes, after minor rearrangement,

∂ lnP
∂t

= Γ1
∂ ln ρ
∂t

+
χT

cVρT

[
ε− ∂Lr

∂Mr

]
. (8.36)

(Note that the adiabatic case is regained if the last term is always zero for
thermal balance.) Now use the two middle terms of (3.100) to get rid of
Γ1. It is then relatively easy to manipulate χT and χρ and ratios of partial
derivatives to obtain the desired result,

∂ lnT
∂t

= (Γ3 − 1) ∂ ln ρ
∂t

+
1

cVρT

[
ε− ∂Lr

∂Mr

]
. (8.37)

We now linearize the energy equation with the replacements

T −→T0 + δT

ρ−→ ρ0 + δρ

ε−→ ε0 + δε

Lr −→Lr,0 + δLr
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where, as usual, zero subscripts refer to the equilibrium state. (You may easily
confirm later that we need not vary cVρ or Γ3 because the resulting variations
will not appear in our final expressions.) If we insist that the equilibrium
state is in both hydrostatic equilibrium and thermal balance (with ε0 =
∂Lr,0/∂Mr and zero time derivatives of T0 and ρ0) then, after dropping zero
subscripts as before,

∂ (δT/T )
∂t

= (Γ3 − 1)∂ (δρ/ρ)
∂t

+
1

cVρT

[
δε− ∂ δLr

∂Mr

]
. (8.38)

Finally let all perturbations vary as eiωt to find our final form of the linearized
energy equation

δε− ∂ δLr
∂Mr

= i ω cVρT

[
δT

T
− (Γ3 − 1) δρ

ρ

]
. (8.39)

The δs again refer only to the space parts of the perturbations. (The perhaps
complex frequency ω used here is not the dimensionless one introduced for
polytropes.) Note, first off, that this equation contains the imaginary unit
i =

√−1 and we suspect, correctly, that the nonadiabatic problem results
in eigenvalues and eigenfunctions that are complex. The solutions then auto-
matically contain either exponentially growing (“driving” or “unstable”) or
decaying (“damping” or “stable”) properties. An intrinsically variable star is
one in which nonadiabatic effects drive the star to pulsational instability.

To go on and discuss the full nonadiabatic problem is beyond the scope
of this text. You are invited to peruse Cox (1980) to appreciate the difficulty
of the subject. We shall, however, give some relevant pointers to what is
going on by first considering an analysis due to Sir Arthur S. Eddington
(1926) that is reviewed in Cox (1980, §9.4) and Clayton (1968, §6–10). His
approximation hinges on the assumption that the motions in a variable star
are almost adiabatic in that the time scale for growth of an instability is
long compared to the period of an oscillation. That is, over the bulk of a
star the mechanics (operating on short time scales) dominate over the slower
effects of heat exchange. This is paramount to saying that if we observe
a variable star at the beginning of one cycle of oscillation (whenever that
may be), then, if we wait for one mechanically determined period, the star
will return almost precisely back to that beginning state. In fact, to the
lowest order of approximation, we shall assume that initial and final states
are thermodynamically identical. What we shall look for are higher-order
effects that give us a sense of how big is the “almost” in the above.

Consider then a shell of mass ΔM at some radius in a spherical star. If
the physical properties in this shell vary over some portion of a pulsation
cycle we can use the first law of thermodynamics to describe the relation
between the work done (dW ) by the shell on its surroundings, the internal
energy (dE) gained by the shell, and the heat added to the shell (dQ):

dQ = dE + dW. (8.40)
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For a complete cycle this becomes∮
dQ =

∮
dE +

∮
dW (8.41)

where
∮
means that we compute the integral over only one cycle. If the

shell of mass truly returns to its initial thermodynamic state over one cycle
then the whole process is reversible and

∮
dE vanishes because E is a state

variable. We are left with W =
∮

dQ as the work done by the shell on its
surroundings in one cycle. To proceed further, the change in entropy for this
reversible system is given by dS = dQ/T . Suppose we start the temperature
at T0 in the initial state. After some time has elapsed, the temperature of
the shell will have changed to, say, T = T0 + δT . To first-order the entropy
change between the two states will be

dS =
dQ

T
≈ dQ

T0
− δT

T 2
0
dQ (8.42)

where dQ is the heat added over that time. Over one reversible cycle, how-
ever,

∮
dS = 0 because S is also a state variable (and as such is a perfect

differential). This leaves us with∮
dQ

T
=
∮

dQ

T0
−
∮

δT

T 2
0
dQ = 0. (8.43)

We may pull the constant T0 from out of the first integral in the middle
term (leaving just

∮
dQ) and substitute into the expression for W to find, to

first-order,

W =
∮

δT

T
dQ (8.44)

where we have dropped the zero subscript on T0 since it is no longer needed.
This result looks peculiar because δT/T now appears in the integrand forW .
What has happened here is that W would be precisely zero over a cycle if
the star really returned to its initial state. What we have picked up by our
argument is that small piece of W that may differ from zero.

Finally, we consider all mass shells in the star by integrating over mass
to find the total work done

Wtot =
∫
M

∮
δT

T
dQdMr . (8.45)

This is interpreted as follows. IfWtot > 0, then the pulsating star has done
work on itself over one cycle (by means still to be explored) and any initial
perturbation will increase. Note that some mass elements may contribute
negatively to the whole but the overall effect is positive. In this case we say
that the star is driving the pulsations and is unstable. If we take the integral
apart, we see that a positive contribution comes about if heat is absorbed
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(dQ > 0) when temperature is on the increase (δT > 0) but heat must be lost
when temperatures are on the decline. In this sense a variable star is a self-
contained heat engine. An ordinary stable star cannot accomplish self-driven
motion because were it to try, so to speak, perturbations would be damped
out because the preponderance of perturbed mass elements would lose heat
to their surroundings as temperatures increase and gain heat as they cool.

We now associate dQ with (δε− ∂ δLr/∂Mr) dt (as in 8.38) because the
latter is the heat added to (or subtracted from) the mass shell over a time
dt. Thus Wtot becomes

Wtot =
∫
M

∮
δT

T

[
δε− ∂ δLr

∂Mr

]
dt dMr . (8.46)

This tells us something about the reality of eigenvalues and eigenfunctions
because the term in brackets sits at the lefthand side of equation (8.39).
Suppose that ω, δT , and δρ are all real. This implies that [δε− ∂δLr/∂Mr]
is pure imaginary and we are led to a contradiction as seen from the following.
One of the integrals forWtot is over time, so we must include the factor eiωt in
all variations. Since the spatial part of dQdt—which is the righthand side of
(8.39) multiplied by dt—contains i it must be 90◦ out of phase with δT eiωt.
If you sketch the time behavior of the integrand ofWtot on the complex plane
and then transfer the real part of the integrand to a real-time axis (to get
physical results) you will immediately see that the result is a purely periodic
curve over one period. That is, Wtot must be zero and the system is strictly
conservative. Thus, in order for stars to be self-excited, the frequency ω and
associated quantities must be complex so that the resultant phasing in Wtot
yields a nonzero result.

8.2.1 The Quasi-Adiabatic Approximation

Another way to approach the question of instability is to derive a differential
equation for δr(t,Mr)/r in nonadiabatic form. The result will be an expanded
version of the LAWE which, when used in a useful approximation, will give
estimates of the imaginary part of ω and hence the e–folding times for driving
or damping.

We first differentiate the linearized force equation (8.7) with respect to
time. The result will contain a term like ∂ [δP/P0] /∂t, which can be elimi-
nated using a linearized version of the energy equation (8.36). (This is where
we depart from the adiabatic analysis.) Terms in ∂ [δρ/ρ0] /∂t are dealt with
by using the mass equation (8.6). A fair amount of algebraic simplification
(see Cox 1980, §7.7) and introduction of δr/r = ζ eiωt then yields

i ωL(ζ)− iω3ζ = − 1
rρ

d

dr

[
ρ (Γ3 − 1)

(
δε− ∂ δLr

∂Mr

)]
(8.47)

where L is the linear operator of the LAWE (8.16). We use this as follows.
Suppose we separate ω into two parts so that
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ω = σ + i κqa (8.48)

where both σ and κqa are real. If our suspicions are correct, then σ (as the
frequency of pulsation) should be determined primarily by adiabatic and
mechanical processes and thus, as a presumably good approximation, we set
it equal to the adiabatic frequency. The quantity κqa will then measure the
rate of driving or damping because eiωt = eiσt−κqat; that is, −κqa is an inverse
e–folding time with κqa < 0 (> 0) implying driving (damping). We expect
σ � |κqa| because of the assumed rapidity of mechanical versus thermal
effects.

The next step is essentially the equivalent of first-order perturbation the-
ory in quantum mechanics. If we have a process that dominates the behavior
of a system—such as in the mechanical oscillations of a star—but this is
modified by a weaker process (the nonadiabatic effects), then the shift in the
energy of the system (the shift in eigenvalue) may be estimated by using only
the eigenfunctions of the mechanical system in an integral method without
actually solving the complete problem. It goes like this.

Assume that any eigenfunctions required in the application of (8.47) are
those obtained from an adiabatic calculation (which gives real eigenfunc-
tions). Thus we replace any occurrence of ζ by ζad where the subscript “ad”
implies adiabatic. Now multiply (8.47) on the left by ζad and integrate the
result over r2 dMr through the entire mass. This yields

i ω

∫
M

ζad L(ζad) r2 dMr − i ω3
∫
M

ζadζad r
2 dMr =

= −
∫
M

ζad
rρ

d

dr

[
ρ (Γ3 − 1)

(
δε− ∂δLr

∂Mr

)
ad

]
r2 dMr (8.49)

≡ −Cqa

and defines Cqa as the integral on the second line. The “qa” subscript that
appears here and in κqa means “quasi-adiabatic” because some of what we
are doing is adiabatic, whereas other parts contain nonadiabatic elements.7

Since σ is large compared to |κqa|, the i ω3 in the second term becomes
approximately equal to σ2 (iσ − 3κqa) after small terms are dropped. The
factor iω is just iω = iσ−κqa. We now recall from (8.17) that the integrated
LAWE is, in our new notation for the adiabatic eigenfunction,∫

M
ζad L(ζad) r2 dMr = σ2

∫
M

ζadζad r
2 dMr (8.50)

which allows us to get rid of the first integral in (8.49). We shall assume
that the star is not dynamically unstable so that σ2 is positive. Collecting all
terms and solving for κqa gives

7 The particular version of the quasi-adiabatic derivation given here is due to
H.M. Van Horn from correspondence dating back to the middle 1970s.
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κqa = − Cqa

2σ2
∫
M ζ2ad r

2 dMr
= − Cqa

2σ2J
(8.51)

where J , the oscillatory moment of inertia, is

J =
∫
M

ζ2ad r
2 dMr . (8.52)

The quantity J often appears in pulsation theory. The “moment of inertia”
part of its name comes about because

∫
r2 dMr is the moment of inertia for

the star. Since both σ2 and J are positive, the sign of the growth rate κqa
depends only on the sign of Cqa. We now show how κqa and Wtot of (8.46)
are related.

First change the integration variable in Cqa to r rather thanMr by using
the mass equation dMr = 4πr2ρ dr. An integration by parts in (8.49) yields
the constant term

4πr3ζadρ (Γ3 − 1)
(
δε− ∂δLr

∂Mr

)∣∣∣∣
R

0

which vanishes at both limits if the density at the outer surface is taken to
be zero. To deal with the remaining integral, note that

d
(
4πr3ζad

)
dr

= 4πr2
(
3ζad + r

dζad
dr

)
.

But, from the linearized mass equation (8.6),(
δρ

ρ

)
ad
= −3ζad − r

dζad
dr

(8.53)

which we use to get rid of all reference to ζad in favor of the adiabatic density
variation. The next-to-last step is to realize that adiabatic density versus
temperature perturbations are connected through Γ3 by (3.95) which, in this
context, reads (

δρ

ρ

)
ad
(Γ3 − 1) =

(
δT

T

)
ad

. (8.54)

Finally, after converting back to a mass integration, we arrive at an expression
for the quasi-adiabatic growth rate

κqa = −
∫
M (δT/T )ad (δε− ∂ δLr/∂Mr)ad dMr

2σ2J
. (8.55)

Elements of this result should be suspiciously familiar because the numer-
ator looks like the mass integral part of Wtot of (8.46). Note that the two
integrals in Wtot give the work done on the star by itself over one period. If
we divide that by the total kinetic energy of oscillation, then the resulting
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ratio gives us a rate of change increase (or decrease) of pulsation energy per
period. The kinetic energy of oscillation is derived from

KE of oscillation =

∣∣∣∣∣
∫
M

1
2

(
δṙ

r

)2

r2 dMr

∣∣∣∣∣ = σ2J

2
(8.56)

which ismv2/2 in disguise. But a time derivative of δr yields iσδr or iσrζad in
the adiabatic case. Therefore the kinetic energy of oscillation is just σ2J/2,
as indicated in (8.56). The last step is to recognize that κqa measures the
e–folding time for a change in amplitude of a perturbation, whereas energies
go as the square of amplitudes. To first-order this introduces a factor of 1/2
into Wtot/

(
σ2J/2

)
. The two formulations (Wtot versus κqa) tell us the same

thing if we accept the validity of the quasi-adiabatic approximation.
How may we use all this? Consider first the role of δε in equation (8.55)

for κqa and ignore for now the presence of (∂δLr/∂Mr). As we have often
done before, first write ε in the power law form ε ∝ ρλT ν . (See, e.g., 1.59 or
6.48.) Then, treating the perturbation operator as a differential, we find(

δε

ε

)
ad
= λ

(
δρ

ρ

)
ad
+ ν

(
δT

T

)
ad

(8.57)

where the adiabatic subscript is appended to remind us—for the last time—
that all the eigenfunctions are derived from an adiabatic calculation. We
shall leave the subscript off from now on, but only for clarity. To get every-
thing in terms of δT/T we use the adiabatic relation (8.54), which introduces
(Γ3 − 1) so that the integrand in κqa is proportional to (δT/T )

2. Except for
some very unusual circumstances not often (if ever) met in stars, λ and ν
(and certainly [Γ3 − 1]) are all positive. In other words, the integrand of κqa
is always positive and, hence, κqa is negative—implying instability. Thus the
effect of thermonuclear reactions in stars is to push them toward instability
by the “ε mechanism.” This should be obvious because ε increases and adds
heat to a compressing element experiencing a rise in temperature and this is
our criterion for driving. The fact of the matter is, however, that no intrinsi-
cally variable star has been unambiguously shown to be unstable due to this
effect (although very massive upper main sequence stars may feel the effects
of this mechanism—and we still exclude novae and the like in this discus-
sion). So, what physical mechanisms are present in stable stars that override
thermonuclear destabilization, and what causes variable stars to pulsate? To
answer this we have to look into the mass gradient term of the luminosity
perturbation in (8.55).

8.2.2 The κ- and γ-Mechanisms

Thus far we have not considered how heat is transported. Since there are
still outstanding problems associated with the interaction of convection and
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pulsation, we shall consider only heat transport by radiative diffusion and
how it is modulated by pulsation.

We first linearize the diffusion equation, say, in the form given by (4.25).
An easy exercise yields the relative variation of radiative luminosity,

δLr
Lr = 4ζ − δκ

κ
+ 4

δT

T
+

1
dT/dr

d

dr

(
δT

T

)
(8.58)

where κ is the opacity. This expression is the same as given by Cox (1980,
Eq. 7.11a). For our analysis we shall ignore the derivative term and, in the
spirit of the quasi-adiabatic calculation, assume that the variations are adia-
batic. Then, using: (1) the power law expression for the opacity, κ ∝ ρnT−s

(as in 1.62); (2) the linearized mass equation (8.6) without the derivative
term; (3) the adiabatic relation between δρ/ρ and δT/T (8.54), we find

δLr
Lr ≈ −

(
4/3 + n

Γ3 − 1
)

δT

T
+ (s+ 4)

δT

T
. (8.59)

Now use this in the quasi-adiabatic expression (8.57) which, without the ε
term, is

κqa =

∫
M(δT/T ) (∂ δLr/∂Mr) dMr

2σ2J
. (8.60)

Recall that a positive value of κqa means that the star is stable. We can get
that positive value if, through most of the star, the mass gradient of δLr is
positive upon compression (i.e., when δT > 0).

An example is a region within a star where Kramers’ opacity operates
with n = 1 and s = 3.5. From our discussion of opacities in §4.4 et seq.,
this opacity dominates in the righthand downward slopes of Fig. 4.2. There
ionization is taking place but not as vigorously as it does near the half-
ionization points (as the dashed line in Fig. 4.2). Thus set Γ3 = 5/3 (or
just a tad less) assuming a nonionizing ideal gas. Putting these numbers into
(8.59) yields δLr/Lr = 4(δT/T ). The mass derivative is then

∂ δLr
∂Mr

≈ 4Lr ∂(δT/T )
∂Mr

(8.61)

if the gradient of Lr can be neglected, as it can where there is no energy
generation going on (∂Lr/∂Mr = 0).

In the simple case of a fundamental mode the mass gradient of δT is posi-
tive upon adiabatic compression because the absolute values of the variations
in radius or density are small near the center and increase outward. Equation
(8.61) then implies that the mass gradient of δLr is also positive on compres-
sion in this case of Kramers’ opacity. Hence, in the circumstance we describe,
the quasi-adiabatic approximation states that the particular region (or entire
star) is stable because κqa of (8.60) is positive. What is happening here is
consistent with our earlier analysis. If ∂δLr/∂Mr > 0 upon compression,
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then more radiative power leaks out of a mass shell than is entering it (as is
evident from 6.2). Thus the mass shell loses energy when compressed and this
was our criteria for stability. You may turn the argument around by consider-
ing expansion and come to the same conclusion about the stabilizing nature
of the process. The root cause of the stabilization is that Kramers’ opacity
decreases upon compression with its accompanying increase of temperature:
the material becomes leakier to radiation.

If, on the other hand, we are in an active ionization zone, then κ either
may not decrease nearly as rapidly as in the above case—which means s is
considerably less than 3.5—or may actually increase with temperature—as
in the positive slope portions of Fig. 4.2. Furthermore, ionization means that
Γ3 is less than 5/3. The net combination of these two circumstances can
force the factors in front of δT in (8.59) to cause the mass gradient of δLr
to be negative when δT is positive. This situation is destabilizing: a mass
element gains heat upon compression. In the extreme form of this argument,
the destabilization due to opacity comes about because increases in opacity
due to increases in temperature tend to dam up the normal flow of radiation
from out of an ionizing mass element. The mass element, in effect, thus heats
up relative to its surroundings. Destabilization in this instance is due to the
“κ-mechanism.”

It may be the case that the exponent s in the opacity law differs only
slightly from a Kramers’–like law in an ionization zone but Γ3 − 1 is still
small. Such is the case for second helium ionization, which takes place at
about 5× 104 K (or a bit hotter and see Fig. 4.3), where the last electron of
helium is being removed and recombined. (Fig. 4.2 shows the seemingly slight
effect on opacity of second helium ionization for a typical Pop I mixture.)
The effect on Γ3 alone may be enough to cause instability when (8.59) is
applied. What happens here is that the work of compression goes partially
into ionization and temperatures do not rise as much if ionization is not
taking place. Thus an ionization region tends to be somewhat cooler than
the surrounding non-ionizing regions upon compression and heat tends to
flow into the ionizing region. This part of the destabilization process is called
the γ-mechanism. Note that in most instances the κ- and γ-mechanism go
hand-in-hand.

To go further than this local treatment requires a lot of work. You may
wish to investigate the various “one-zone models” reported in the literature.
In these, assumptions are made that expand on just hand-waving but the
analysis does go on a bit. The best summary of such models may be found
in Cox (1980, §13.1–§13.4). The conclusions are substantially as we have
described.

The Epstein Weight Function and Cepheids

In any case, stars generally have zones that are ionizing and others that are
not. Which win out? Another related question is what regions are the most
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important in establishing the mechanical response of a star. This last may
be answered by rearranging the LAWE in its integrated form (8.50) to read

σ2 =

∫
M ζ L(ζ) r2 dMr∫
M ζ2 r2 dMr

. (8.62)

All this says is that the eigenvalue is equal to a ratio of integrals containing
its eigenfunctions. It is then reasonable to suppose that the integrand of the
numerator on the righthand side of this equation is a “weight function” that
tells us where it is in the star that most of the action occurs that determines
σ2 (see Cox, 1980, §8.13). This was investigated long ago by Epstein (1950).
He specifically computed the weight functions for the fundamental modes
of centrally condensed stellar models—such as those expected for evolved
classical Cepheid variables—and found that the weight function reached a
strong peak at r/R ≈ 0.75. If this radius does correspond to the region
where we expect the pulsation properties of a centrally condensed model to
be primarily determined, then what are the thermal properties of that region
with respect to ionization?

We can easily compute the temperature of a star at r/R = 0.75 if we
assume that a simple envelope integration is justified. The temperature is
then given as a function of radius by (7.124). If, in that expression, we use
β = 1, μ = 0.6, and neff ≈ 3.25 (i.e., for Kramers’ opacity), then

T (r/R = 0.75) ≈ 1.1× 106 M/M�
R/R� K . (8.63)

A “typical” classical Cepheid variable has a mass of 7M� and radius 100R�.
This combination yields T (r/R = 0.75) of about 8 × 104 K, and ρ ≈ 7 ×
10−8 g cm−3 (from 7.121 with bound–free opacity from Fig. 4.6 coupled with
4.63), which corresponds closely to the second ionization zone of helium. (See
Exs. 3.1 and 4.6, and the opacity plot for pure helium in Fig. 4.3.) Detailed
nonadiabatic studies of classical Cepheid models have indeed confirmed that
it is this ionization zone that is responsible for their variability. Other regions
of the star may try to stabilize but this zone ultimately wins out.

8.2.3 Nonadiabaticity and the Cepheid Strip

Thus far we have relied on the quasi-adiabatic approximation as a diagnostic
tool. This is not always wise because some regions in variable stars react very
nonadiabatically to any perturbation. Our measure of how good we expected
the quasi-adiabatic approximation to be was based on the ratio of thermal to
dynamic time scales. If that ratio is large then motions are close to adiabatic.
The dynamic time scale, tdyn, for a variable star is determined by the period,
Π, of oscillation for the whole star and, for the fundamental mode, it may be
approximated by the period–mean density relation. The thermal time scale
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for a particular region in a star, on the other hand, is a measure of how long
it takes heat to be transported through the region. We can estimate this time
scale for a shell of mass content ΔM by dividing its total heat content by
the luminosity that must pass through it. (This is similar to what we did in
deriving the Kelvin–Helmholtz time scale of §1.3.2.) As an approximation to
the heat content, we use cVρT ΔM, where cVρ and T are suitable averages
within the shell. Thus the thermal time scale, tth, is

tth ≈
cVρT ΔM

L . (8.64)

The ratio we use to estimate how adiabatically or nonadiabatically the shell
responds to perturbations is tth/tdyn with

Φ(ΔM) ≡ tth
tdyn

=
cVρT ΔM
ΠL . (8.65)

If Φ is large then the motion should be nearly adiabatic and the quasi-
adiabatic approximation should be close to the truth. If, however, Φ happens
to be small then the thermal time scale is short compared to the period and
a full nonadiabatic treatment is warranted. We are not going to show you
how to do a nonadiabatic analysis here but rather we shall extract from such
analyses some properties of the classical Cepheid instability strip discussed
in §2.10.

The place we expect Φ to be small is in the outer envelope of a star
where temperatures are low and the heat content is correspondingly small.
We therefore define the “transition temperature,” TTR, as the temperature
at that point in the envelope where Φ is unity. Interior to that point motions
are quasi–adiabatic, whereas to the exterior and up to the surface all must
be treated nonadiabatically. If ΔM is now the mass of the envelope above
this transition level then TTR is given by

Φ(ΔM) =
cVρTTRΔM

ΠL = 1 (8.66)

where our “suitable average” for T is TTR itself.
We shall not go into the details here but the region of maximum driving

in a classical Cepheid variable coincides with the location of the transition
temperature which, from our previous discussion, should then also be the
temperature for second helium ionization. (Arguments for this and for what
follows are discussed in Cox, 1968, §27.7; and Cox, 1980, §10.1.) Given this, we
can then estimate the slope of the Cepheid strip in the L–Teff HR diagram.8
To start, we set Φ(ΔM) to unity as in the above, assume cVρ is roughly
constant, and delete reference to TTR because it too is constant. What is left
8 The following dimensional estimates give remarkably good answers, so much so
that they must, as is said, “be almost too good to be true.”
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is a relation between ΔM, L, and Π which, ignoring constants, is ΔM∝ ΠL.
If the mass shell ΔM is assumed to be thin, then ΔM can be eliminated by
using an estimate of the pressure at the transition point needed to support
the overlying mass ΔM; that is, P ≈ GMΔM/R4. Now equate this to
the envelope solution for pressure (from 7.119) P = K ′T 1+neff , where K ′ is
given by (7.120). The temperature T here is just a constant (TTR). Note that
K ′ goes as K ′ ∼ √M/L for Kramers’ opacity. Thus ΔM ∝ R4/(ML)1/2.
The period–mean density relation gives us the estimate Π ∝M−1/2R3/2 for
the fundamental mode so that our condition for Φ = 1 becomes, after some
simple algebra,

L ∝ R5/3 . (8.67)

This is then equated to L ∝ R2T 4
eff finally to reveal

L ∝ T−20eff (8.68)

which gives a very steep line on the L–Teff HR diagram tilting slightly to
cooler Teff . The slope is very nearly correct and matches what was shown for
the Cepheid Strip of Fig. 2.23.

We can squeeze more out of this by using the rough mass–luminosity rela-
tion (from evolutionary calculations) for helium core–burning stars crossing
the Cepheid Strip derived from Iben (2000), which is

L ∝M9/2 . (8.69)

Combining this with (8.67) and the period–mean density relation between Π,
M, and R gives

Π ∝ R1.31 . (8.70)

Recent observations by Gieren et al. (1999) of Large and Small Magellanic
Clouds, and galactic Cepheids gives

Π ∝ R(1.47±0.037) (8.71)

which is gratifyingly close to our back-of-the-envelope estimate.
Finally, Iben (2000) plots a theoretical Π–L relation that is reasonably

represented by a power law. Comparing his to ours, which is easily derived
from the above, we have

Π ∝ L0.84 (Iben); Π ∝ L0.79 (our simple stuff) . (8.72)

Nonadiabatic calculations can nicely predict the blue (hot) edge of the
instability strip but the red edge is another matter. On comparing models
of Cepheids with the observed red edge, it is found that vigorous envelope
convection begins near the low-temperature side of the strip. (See Fig. 5.7
for a sketch of where we expect efficient envelope convection on the HR
diagram.) Thus, in one way or the other, it is thought that convection must
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inhibit instability. Exactly how it does so is still not clear despite some heroic
attempts (as partially reviewed by Cox, 1980, §19.3, and see particularly
Toomre, 1982). The trouble is that convection is difficult enough without
having to couple it to pulsation.

Note that we have not even mentioned Cepheids that pulsate in modes
other than the fundamental. There are first overtone pulsators and variables
that operate in both modes. This means another handle on structure for the
latter stars and masses may be determined for some of them.

Our discussion only hints at what has been accomplished over the last 45
years (or more) with the Classical Cepheids. But we must emphasize their
importance. They are not only testbeds for advanced evolution studies but,
since they are so luminous and their luminosity is correlated with period,
they are among the key standard candles for cosmology.

A Footnote on Nonlinear Modeling

There have also been many successful studies of radially variable stars using
one-dimensional hydrodynamics. The methods used are like those briefly dis-
cussed in §7.2.6. One particularly satisfying result that illustrates instability
is described in Cox (1968, §27.8). A model classical Cepheid envelope is con-
structed in hydrostatic equilibrium with parameters (total mass, luminosity,
etc.) in the range expected for a variable. The hydrodynamics are then turned
on and the model is followed in time. By virtue of numerical noise in the ini-
tial model (no computer or calculation is perfect) the “Cepheid” quivers and
this quivering is amplified as nonadiabatic effects begin to be felt. After an
elapsed time corresponding to about 400 periods (in this particular calcula-
tion) maximum nonlinear amplitudes are reached and the model sitting in
the computer acts like a real Cepheid you might observe in the sky. This
type of work is very different from what we have described for linear theory.
There are no imposed infinitesimal bounds on amplitudes and the dynamic
model finds its own final pulsating state. The modeling of what processes
(such as atmospheric shocks) are responsible for limiting the amplitude is
still an active field of study.

Finally, we mention the work of J.R. Buchler and his collaborators. (For
a review see Buchler, 1990, and the recent paper by Kolláth et al., 2002,
for additional references.) Since we are dealing with very complex nonlinear
systems we can expect some surprises. One of the most interesting fields of
endeavor in the physical sciences in recent years is that of nonlinear dynamics.
It has been shown that even some seemingly simple systems are prone to
behavior that is almost counterintuitive. Under certain conditions, whether
in the laboratory or the computer, these systems allow for regular limit cycles
(what we have been discussing), irregular pulses and period doubling, and, in
some instances, chaotic behavior. The minor adjustment of a laboratory or
computer parameter can lead the system from one of these states to another
with astonishing rapidity. So it may be with stars. Not all variable stars
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behave as nicely as we have led you to believe in this chapter. If you review
the variables discussed in §2.10, some are indicated as being “irregular.”
It may well be that such variables, and others, are in this murky land of
near-chaos. For a taste of what is being done in this field you may want to
look through articles such as those by Kovács and Buchler (1988a,b), where
theoretical nonlinear calculations are described for Type II Cepheids and RR
Lyrae variables. They can do strange things on the computer.

8.3 An Introduction to Nonradial Oscillations

What we shall develop here are the tools necessary to describe how a star
may oscillate in modes that do not preserve radial symmetry. These are
called nonradial modes. The prime references here are Cox (1980), Unno
et al. (1989), and Ledoux and Walraven (1958).

8.3.1 Linearization of the Hydrodynamic Equations

The path we shall take differs somewhat from the preceding discussion of ra-
dial pulsations. Instead of starting with the standard stellar structure equa-
tions, we shall delve into simple fluid mechanics although, for the sake of
simplicity, adiabatic motions will still be assumed. In this vein we neglect all
dissipative effects (such as viscosity) and assume that the stellar fluid cannot
support shear stresses. (What happens when shear is introduced—as would
be the case for the earth—will be briefly touched upon later.) The equations
required to describe how the fluid behaves dynamically are Poisson’s equation
for the gravitational potential Φ (as introduced by Eq. 7.1), the equation
of continuity, and the equation of motion. In that order, these equations are
(cf. Landau and Lifshitz, 1959, §15)

∇2Φ = 4πGρ (8.73)
∂ρ

∂t
+∇ ••• (ρv) = 0 (8.74)

ρ

(
∂

∂t
+ v •••∇

)
v = −∇P − ρ∇Φ . (8.75)

Here v = v(r, t) is the fluid velocity and Φ is the gravitational potential,
which is related to the local (vector) gravity by g = −∇Φ. (The scalar
gravity g we have been using in this text is then the negative of the radial
component of g.) As phrased, these provide a Eulerian description of the
motion wherein we place ourselves at a particular location, r, in the star
and watch what happens to v(r, t), ρ(r, t), etc., as functions of time. In a
nonrotating hydrostatic star, v is zero everywhere. (We ignore fluid motions
associated with convection.)
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Observe first that we know the values of all the above physical variables
in the unperturbed spherical star as solely a function of r = |r|. Now imagine
that each fluid element in the star is displaced from its equilibrium position
at r by an arbitrary, but infinitesimal, vector distance ξ(r, t). (The radial
component of this quantity previously was called δr.) Remember that this
kind of displacement—which takes an identifiable parcel of fluid and moves
it somewhere else—is a Lagrangian displacement. If v = 0, then the Eulerian
and Lagrangian perturbations of v, denoted respectively, by v′ and δv, are
equal and are given by

v′ = δv =
Dξ

Dt
(8.76)

where D/Dt is the Stokes derivative

D

Dt
=

∂

∂t
+ v •••∇ . (8.77)

(For a complete derivation of these statements see Cox, 1980, §5.3. The Stokes
derivative was also used in §5.1.2 when discussing convection.) We shall con-
tinue to use ′ and δ to denote the Eulerian and Lagrangian perturbations of
quantities.

As the fluid is displaced, all other physical variables are perturbed accord-
ingly. Thus, for example, the pressure P (r), which was originally associated
with the fluid parcel at r, becomes P (r) + δP (r, t) when the parcel is moved
to r+ξ(r, t). The same statement applies to the density and its perturbation
δρ(r, t). Note again that these are Lagrangian displacements and thus require
the δ operator.

If the motion is adiabatic, then the relation between δP and δρ is the
same as that used for radial oscillations:

δP

P
= Γ1

δρ

ρ
. (8.78)

Note that we cannot use a like relation for the Eulerian perturbations P ′(r, t)
and ρ′(r, t) because these perturbations are used to find the new pressures
and densities at a given point r without saying where the fluid came from.
The Eulerian and Lagrangian variations are connected, however, by an easily
derived relation found in any book on hydrodynamics (or see Cox, 1980, §5.3);
namely, and using density as an example,

δρ = ρ′ + ξ •••∇ρ . (8.79)

Such relations will be used extensively later.
The analysis proceeds by replacing P , ρ, Φ, and v, by P+P ′, ρ+ρ′, Φ+Φ′,

and v′ in equations (8.73–8.75), multiplying everything out, and keeping
terms to only first order in the perturbations. We are again performing a
linear analysis of the system.9 Thus, for example, the force equation becomes
9 Note that we use Eulerian perturbations here, but we could have used Lagrangian
forms. It is a matter of taste and tradition, but see Pesnell (1990).
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ρ
∂2ξ

∂t2
= −∇P − ρ∇Φ−∇P ′ − ρ∇Φ′ − ρ′∇Φ . (8.80)

The first two terms on the righthand side cancel because

−∇P − ρ∇Φ = 0 (8.81)

is the equation of hydrostatic equilibrium for the unperturbed star. What is
left is an equation that contains only the perturbed quantities as first-order
variables. Similarly, the continuity and Poisson equations become

ρ′ +∇ ••• (ρ ξ) = 0 (8.82)
∇2Φ′ = 4πGρ′ . (8.83)

In setting down the linearized form of the continuity equation we have given
what results after an integration over time and the removal of a constant of
integration by insisting that ρ′ = 0 when ξ = 0.

Even though we have linearized the equations, the above set of partial
differential equations is still daunting because the system is second-order in
time and fourth-order in space. To reduce the system further requires a bit
more work. The aim will be to convert what we have to ordinary differential
equations. We first assume, as was done for radial oscillations, that all the
variations may be Fourier analyzed with ξ, P ′, ρ′, and Φ′ being proportional
to eiσt where σ is an angular frequency. Thus, for example,

ξ(r, t) = ξ(r) eiσt . (8.84)

With this substitution the time variable is separated out and all variations
become functions solely of the radius vector r.

The second step we take is completely to ignore the variation in gravita-
tional potential, Φ′. This step, called the “Cowling approximation” (Cowling
1941), is remarkably good, provided that little mass is thrown around during
the motion of the fluid. We cannot justify it here (see the above references)
but it introduces only minor errors in many cases of practical interest and it
reduces our labors by nearly a factor of two. With this in mind, let’s go on.

First observe that the continuity equation, (8.82), expands out to

ρ′

ρ
= −∇ ••• ξ − ξ •••∇ρ

ρ
(8.85)

with minor rearrangement and where all perturbations are only functions of
r. The last term here, however, is just the last term of (8.79) divided by
the density. Thus these two equations yield the following for the Lagrangian
variation of density:

δρ

ρ
= −∇ ••• ξ . (8.86)
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(A little thought about the meaning of ∇ ••• ξ, which is sometimes called the
dilatation, would have yielded this immediately.) This result also relates the
relative Lagrangian variation of pressure to ∇ ••• ξ through the adiabatic con-
dition (8.78).

Now to decide on geometry. Since the unperturbed star is spherical,
doesn’t rotate, and has no magnetic fields, the natural coordinate system
is, naturally, spherical coordinates. Thus we will talk about the radial (r),
co-latitude angle (θ), and angular azimuthal (ϕ) components of displacement
of ξ(r, θ, ϕ). Call these ξr(r, θ, ϕ), ξθ(r, θ, ϕ), and ξϕ(r, θ, ϕ). Using these will
enable us to make a separation of variables leading to a well-known angular
function of mathematical physics that will make things simple (at last). If
you choose to follow in detail the derivation coming up, you will need to
review what gradients, etc., look like in our geometry.

We now expand (8.80) in vector components dealing with the radial com-
ponent first, that is,

σ2ξr =
1
ρ

∂P ′

∂r
− ρ′

ρ2
dP

dr
(8.87)

where∇Φ has been replaced by –∇P/ρ using the hydrostatic condition (8.81)
for the unperturbed star. Note that P is a function of r only and thus we
do not need partials for its gradient. Now, for reasons to be made apparent
later, the term containing P ′ is manipulated so that the radial derivative acts
on P ′/ρ instead and, as you may easily check, (8.87) becomes

σ2ξr =
P ′

ρ2
dρ

dr
+

∂

∂r

(
P ′

ρ

)
− ρ′

ρ2
dP

dr
. (8.88)

The next devious steps are aimed at converting this into final form. We keep
the second term on the right-hand side as it stands but manipulate the sum of
the first and third terms so that P ′ and ρ′ are replaced by their Lagrangian
forms δP and δρ. Use (8.79) to do this. Then use the adiabatic condition
(8.78) to replace δP by δρ. Finally, get rid of δρ in favor of ∇ ••• ξ with the
help of (8.86). After the smoke clears we find

σ2ξr =
∂

∂r

(
P ′

ρ

)
−As

Γ1P
ρ

∇ ••• ξ (8.89)

for the radial equation where As(r) is the Schwarzschild discriminant of
(5.31), which played an important role in convection (with As > 0 imply-
ing convective instability). That is,

As(r) =
d ln ρ
dr

− 1
Γ1

d lnP
dr

.

Note that Γ1P/ρ in (8.89) is the square of the local sound speed vs. The
combined presence of vs and As will mean that nonradial oscillations come
in two distinct flavors and not just acoustic waves as was the case for radial
pulsations.
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The equations for the other two components of ξ are straightforward.
Gradient terms are easy and, remembering that ρ depends only on r, we find

σ2ξθ(r, θ, ϕ) =
∂

∂θ

[
1
r

P ′(r)
ρ

]
(8.90)

σ2ξϕ(r, θ, ϕ) =
1
sin θ

∂

∂ϕ

[
1
r

P ′(r)
ρ

]
. (8.91)

The final stage for the separation of variables is now set.

8.3.2 Separation of the Pulsation Equations

The three equations (8.89–8.91) contain the four unknowns ξr, ξθ, ξϕ, and
P ′(r)/ρ. We shall now show that there are really only two independent un-
knowns and that the remaining two degrees of freedom collapse down into
a well-known function from mathematical physics. Our method for demon-
strating this is to give the answer and then see if it works.

We propose the following solution for ξ(r) and P ′(r)/ρ :

ξ(r, θ, ϕ) = ξr(r, θ, ϕ) ererer + ξθ(r, θ, ϕ) eθeθeθ + ξϕ(r, θ, ϕ) eϕeϕeϕ (8.92)

=
[
ξr(r) ererer + ξt(r) eθeθeθ

∂

∂θ
+ ξt(r) eϕeϕeϕ

1
sin θ

∂

∂ϕ

]
Y�m(θ, ϕ)

and
P ′(r)
ρ

=
P ′(r)
ρ

Y�m(θ, ϕ) . (8.93)

Here the eieiei are the dimensionless unit vectors in spherical coordinates, and
ξt(r) and P ′(r)/ρ are new functions of r only, which are related to each other
by

ξt(r) =
1
σ2
1
r

P ′(r)
ρ

. (8.94)

The function ξt(r) effectively replaces P ′/ρ and the θ and ϕ components of
ξ and it will be referred to as the “tangential ( or transverse) displacement.”
Finally, the angle-dependent function Y�m(θ, ϕ) is the spherical harmonic (or
surface harmonic) of combined indices � and m. This function, which does
the angular separation for us, arises frequently in physics (such as in the
hydrogen atom and applications in electricity and magnetism) and is the
regular solution of the second-order partial differential equation

1
sin θ

∂

∂θ

(
sin θ

∂Y�m
∂θ

)
+

1
sin2 θ

∂2Y�m
∂ϕ2 + �(�+ 1)Y�m = 0 . (8.95)

Here � must be zero or a positive integer and m can only take on the integer
values –�, –� + 1, · · ·, 0, · · ·, � − 1, �. Thus for a given value of � there are
only 2� + 1 permitted values of m. The separation given above gives rise
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to “spheroidal modes.” Another separation is possible, resulting in “toroidal
modes,” but we shall ignore them. Note that � = 0 is a special case because
Y00(θ, ϕ) is a constant and, more to the point, it does not depend on either
θ or ϕ. In other words, solutions for � = 0 depend only on r and are radial
modes. Since we have already discussed them we shall concentrate only on
solutions for which � > 0. Some of the properties of the Y�m will be discussed
in a bit but the important point for now is the following.

If the angular components of equations (8.92) and (8.94) are introduced
into the angular components of the force equation (8.90) and (8.91), then
the derivatives of Y�m cancel out of both sides of the resulting equations. For
example, the lefthand side of (8.90) is (using 8.92)

σ2ξθ(r, θ, ϕ) = σ2ξt(r)
∂Y�m
∂θ

while the righthand side becomes (using 8.93–8.94)

∂

∂θ

[
1
r

P ′(r)
ρ

]
= σ2

∂ [ξt(r)Y�m]
∂θ

= σ2ξθ(r, θ, φ) .

Thus the θ component of the force equation is satisfied with our choice of ξt
and separation of variables. You may easily show that the ϕ component is
also consistent but aside from consistency it yields no further information.
We need the radial component for this.

The difficult term in the radial equation (8.89) is the divergence of
ξ(r, θ, ϕ). Written out in full it is

∇ ••• ξ =
1
r2

d

dr

(
r2ξr

)
+

+
1

r sin θ
∂

∂θ
(ξθ sin θ) +

1
r sin θ

∂

∂ϕ
(ξϕ) . (8.96)

But if (8.92) is inserted here, then you may easily verify that you regain the
first two terms of the differential equation for Y�m (of Eq. 8.95) so that

∇ ••• ξ =
1
r2

d

dr

(
r2ξr

)
Y�m − �(�+ 1)

r
ξt Y�m (8.97)

where ξr now depends only on r. On the other hand, ∇ ••• ξ is, from (8.86),
the same as –δρ/ρ, which can be written (from parts of the derivation leading
to 8.89 and 8.94) as

δρ

ρ
=

ρ

Γ1P
(
σ2r ξt − g ξr

)
(8.98)

where the equation of hydrostatic equilibrium has been used to replace the
pressure derivative by –ρg and common factors of Y�m have been eliminated.
The net result of these manipulations is that we obtain a first-order ordinary
differential equation after equating the divergence and –δρ/ρ. The final form
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of this will be given shortly after the following important frequencies are
defined.

The first of these frequencies is the Brunt-Väisälä frequency N given by
(5.31) and (5.33) as

N2 = −Asg = −g
[
d ln ρ
dr

− 1
Γ1

d lnP
dr

]
. (8.99)

Recall that N , in the simplest interpretation, is the frequency of oscillation
associated with a perturbed parcel of fluid in a convectively stable medium
(N2 > 0).

The second frequency is the Lamb frequency or critical acoustic frequency,
S�, defined by

S2
� =

�(�+ 1)
r2

Γ1P
ρ

=
�(�+ 1)

r2
v2s . (8.100)

In addition, we introduce the transverse wave number, kt (with units cm−1),

k2t =
�(�+ 1)

r2
=

S2
�

v2s
. (8.101)

If we relate a transverse wavelength λt = 2π/kt to kt then S−1� is the time it
takes a sound wave to travel the distance λt/2π.

The differential equation resulting from equating ∇ ••• ξ and –δρ/ρ now
becomes, after some easy algebra and using (8.97–8.98),

r
dξr
dr

=
[
k2t gr

S2
�

− 2
]
ξr + r2k2t

[
1− σ2

S2
�

]
ξt . (8.102)

A second differential equation is also gotten from the radial force equation
(8.89), the definition of ξt from (8.94), and using δρ/ρ of (8.98) instead of
∇ ••• ξ in (8.97). You may verify that the result is

r
dξt
dr

=
[
1− N2

σ2

]
ξr +

[
r

g
N2 − 1

]
ξt . (8.103)

We can’t apologize for the algebra you have had to go through to reach this
point, but we’re almost done.

Equations (8.102) and (8.103) taken together constitute a second-order
ordinary differential equation. If we had kept in the potential field variations
(Φ′) the system would have ended up as fourth order with the additional
variables Φ′ and its radial derivative. Except for its use in precise applications,
the second-order Cowling approximation captures the essence of the low-
amplitude behavior in stars.

The boundary conditions on our set of two equations derive from the
behavior of the oscillating star at the surface and the center. We refer you
to Cox (1980, §17.6) and Unno et al. (1989, §14.1) for the details of how
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these are derived. The central boundary condition depends on how various
hydrostatic quantities such as As and P vary with radius near the center and
the insistence that ξr and ξt be finite there. These regular solutions go as
(ξr, ξt) ∝ r�−1 for small r and the relation between them is

ξr(r) = � ξt(r) as r → 0 . (8.104)

The condition at the surface depends on the atmospheric conditions of the
static star. In the simplest instance of zero boundary conditions (as discussed
in §4.3), the perturbations must be such that the surface pressure remains
zero. This is the same as requiring that δP be zero at the surface. To express
this as a relation between ξr and ξt consider (8.98), which can be rewritten
as

δP

P
=

ρ

P

[
σ2r ξt − g ξr

]
.

Just under the surface the ratio δP/P should be finite from physical consid-
erations. As we approach the surface this should remain true even as P goes
to zero. However, the factor ρ/P outside the expression in brackets in the
above tends to infinity because, in the case of an ideal gas, for example, it is
inversely proportional to temperature and T goes to zero at the surface (as
in 4.124). Thus for the relative pressure perturbation to remain finite at the
surface we require that

ξt(R) = gsξr(R)
σ2R (8.105)

where gs is the surface gravity. As in the case of radial oscillations this gives
complete reflection and standing waves. We remark here that under some
conditions perfect reflection is not possible for real atmospheres and pulsa-
tion energy may escape through the surface causing heating of circumstellar
material and also pose a drain on the pulsations.

We now have two ordinary differential equations and two independent
boundary conditions. But, as for radial oscillations, our equations and bound-
ary conditions are linear and homogeneous and we thus have to fix a nor-
malization. Again the choice of normalization is arbitrary and we choose
ξr(R)/R = 1. The system is now overdetermined and σ2 is an eigenvalue
and the perturbations ξr(r) and ξt(r) are the eigenfunctions.

At this juncture we note an important mathematical difference between
radial and nonradial oscillations. Recall that the LAWE for radial oscilla-
tions was Sturm–Liouville and Hermitian, which led to a nice ordering of the
eigenfrequencies and eigenfunctions with a definite lower bound for σ2. Such
is not the case here even in the Cowling approximation, although the system
is still self-adjoint. This means that even though the eigenvalues, σ2, are still
real, there is no guarantee that nonradial modes are ordered in any simple
way and, in particular, there may be no lower bound on σ2. We still retain,
however, orthogonality of eigenfunctions (see Unno, et al., 1989, §14.2, for a
derivation of the self-adjointness).
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We now return briefly to the properties of the Y�m(θ, ϕ). These angular
functions are given by

Y�m(θ, ϕ) =

√
2�+ 1
4π

(�−m)!
(�+m)!

Pm
� (cos θ) e

imϕ (8.106)

where the Pm
� (cos θ) are the associated Legendre polynomials generated by

Pm
� (x) =

(−1)m
2�� !

(
1− x2

)m/2 d �+m

dx �+m

(
x2 − 1)� . (8.107)

Here x denotes cos θ.10 As noted before, the restrictions on � and m for these
functions are � = 0, 1, . . . (an integer), and m is an integer with |m| ≤ � for
reasons of regularity and single-valuedness of solution. You may wish to play
with these functions, but Fig. 8.2 shows what they look like on the surface
of a sphere where light areas correspond to positive values of the real part of
Y�m and dark areas to negative values. The symmetry axis defining θ = 0 is
almost vertical in the figure; it is actually tilted toward you by 10◦. Modes
with m = 0 are called zonal modes while those with |m| = � resemble the
segments of an orange and are called sectoral modes. Tesseral modes are those
of mixed type.

Although the figure gives some idea of what is happening on spherical
surfaces, the actual motion of the fluid is more complicated. The eigenfunc-
tions have nodal lines on the surface of a sphere at any radius and instant of
time but there may also be nodes at different radial positions within the star.
This is very difficult to picture. In addition, the oscillatory time dependence
means that fluid sloshes back and forth periodically. As a simple example,
consider the sectoral mode � = m = 1. This has one angular node passing
through the poles, but this node moves in a retrograde azimuthal direction
(to smaller ϕ) because of the factor ei(σt+mϕ) coming from the time depen-
dence and the exponential in Y�m. That is, lines of constant phase are such
that dϕ/dt = −σ/m and, for m positive, we have a running retrograde wave.
The zonal (m = 0) case is easier to visualize because we can imagine the light
and dark portions of a surface (as in the figure) alternating periodically in
brightness with a period Π = 2π/σ for σ2 positive. For one view of nonra-
dial motions see the vector displacement fields shown in Smeyers (1967) for
massive upper main sequence stars.

8.3.3 Properties of the Solutions

A great deal can be learned about the solutions to the ordinary differential
equations for ξr and ξt of (8.102) and (8.103) by performing a local analysis of
10 Depending on the author and use, you may see other factors of (−1)m appearing
in these formulas. These constitute different phase conventions but do not change
the physics. We use the convention of Jackson (1999). Arfken and Weber (1995)
and other texts use other choices of phase.
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Fig. 8.2. Shown are the patterns of light and dark on the surface of a sphere
corresponding to positive and negative values of the real part of the Y�m. This figure
gives illustrations for (clockwise from the upper left) Y30 (zonal), Y31 (tesseral), Y32

(tesseral), and Y33 (sectoral).

the system. We assume that ξr and ξt vary much more rapidly in space than
do the other physical variables appearing in those equations—such as N2—
so that those variables can be considered constant over some limited range
of radius. To quantify this, assume that both ξr and ξt vary spatially as
exp (ikrr), where the wave number kr is very large compared to r. Thus both
eigenfunctions have many wiggles over a short span of space. Inserting this
complex exponential into the differential equations then yields a homogeneous
set of algebraic equations in ξr and ξt whose coefficient determinant must be
zero in order to obtain nontrivial solutions. Keeping terms dominant in kr
then yields the dispersion relation

k2r =
k2t

σ2S2
�

(
σ2 −N2) (σ2 − S2

�

)
(8.108)

where, as before, we assume σ2 is positive. The implications of this are—

1. If σ2 is greater or less than both of N2 and S2
� , then k2r > 0 and sinusoidal

propagating solutions are present because exp (ikrr) reduces to sines and
cosines.

2. If σ2 lies between N2 and S2
� , then k2r is negative and solutions show

exponential, or evanescent, behavior.

Thus N2 and S2
� are critical frequencies for wave propagation.
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You can use the dispersion relation (8.108) to solve for σ2 in two limits
for propagating waves. To facilitate this we define the total wave number, K,
by K2 = k2r +k2t (see Unno et al., 1979, §14). This gives more of the flavor of
a wave that can travel in a combination of radial and transverse directions.
The understanding is that K is large for a local analysis. Then, if σ2 is much
greater than both N2 and S2

� , and |N2| is smaller than S2
� (which is often

the case), the “large” root of (8.108) is

σ2p ≈
K2

k2t
S2
� = (k

2
r + k2t ) v

2
s for σ2 � N2, S2

� . (8.109)

The subscript “p” has been appended to σ2 to denote “pressure” because
only the sound speed enters. These are pressure or acoustic modes but we
shall often refer to them as “p-modes.” You should note here the resemblance
to radial modes where � is zero. In that case kt is zero and we regain (8.31,
with φ = 0) derived from our earlier asymptotic analysis.

The small root follows if σ2 is much less than N2 and S2
� and is given by

σ2g ≈
k2t

k2r + k2t
N2 for σ2 � N2, S2

� . (8.110)

These are gravity or “g-modes,” so-called because buoyancy in the gravi-
tational field is the restoring force. Note that if N2 is negative, implying
convection, then σg is pure imaginary and the perturbation either grows or
decays exponentially in time. These are called g−-modes, whereas those as-
sociated with N2 > 0 are g+-modes. We will only consider g+-modes and
refer to them just as g-modes. In any case, this is the pulsation analogue to
our discussion of convective time scales in Chapter 5.

Thus, in summary, p-modes constitute the high-frequency end of the non-
radial oscillation spectrum, whereas g-modes are of low frequency. (For very
evolved and complicated models, modes may be of mixed character and this
statement may not strictly hold true.)

If each mode in a spectrum is orthogonal with respect to the others,
then the eigenfunctions corresponding to each eigenvalue σ2 must differ in
important respects. Following our local analysis as an approximation to what
happens, kr and � must measure this difference. Since kr is a wavenumber,
the corresponding local wavelength is λr = 2π/kr. The total number of nodes
(denoted by n) in either eigenfunction is then n ≈ 2 ∫R0 dr/λr where the “2”
counts the two nodes per wavelength. Thus n ≈ ∫R0 kr dr/π. If (8.109) is
integrated such that the integral of kr appears by itself and if � is small so
that k2t may be neglected (for simplicity), we again obtain the estimate

σp,n ≈ nπ

[∫ R
0

dr

vs

]−1
. (8.111)
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Thus for large n the p-mode frequencies are equispaced. (For more exact
treatments using JWKB methods see Unno et al., 1979, §15, or Tassoul, 1980.
Our estimates hide many sins.) Note that the frequency spacing depends only
on the run of the sound speed, which, for an ideal gas, depends primarily on
temperature. Thus, in stars such as the sun, p-modes effectively sample the
temperature structure, as will be discussed in the next chapter.

A corresponding estimate for the periods of g-modes is

Πg,n =
2π
σg
≈ n

2π2

[�(�+ 1)]1/2

[∫ R
0

N

r
dr

]−1
=

nΠ0

[�(�+ 1)]1/2
(8.112)

which also defines Π0 as a constant for the star (in our approximation). Here
it is the period that is equally spaced in n (a fact to be taken advantage of
when discussing variable white dwarfs in Chap. 10) and it depends sensitively
on �. Here Π0/ [�(�+ 1)]

1/2 is the period spacing between consecutive modes.
Also, the frequencies (periods) decrease (increase) with n, in direct contrast
to the p-modes. The reason the periods increase with increasing mode order
is, if we may wave our hands around a bit, that while mass is being moved
around, less massive elements are being moved as the distance between nodes
decreases. Since bouyancy is the restoring force, less mass being moved means
the restoring force is weaker and more sluggish—and sluggish implies longer
periods. We shall give a numerical example of the relative ordering of nonra-
dial modes in Fig. 8.3.

The same limits on σ2 relative to N2 and S2
� also yield the following rough

estimates for the ratio of radial to tangential eigenfunctions when used in the
differential equations (8.102) and (8.103):∣∣∣∣ξrξt

∣∣∣∣ ∼
{
rkr p-modes
�(�+ 1)/rkr g-modes . (8.113)

For large radial wavenumber (rkr � 1) the fluid motions for p-modes are
primarily radial, whereas they are primarily transverse for g-modes.

Mode Classification

We have seen that the character of a particular mode depends on n, �, and the
relative amplitudes of the radial and tangential displacements. In addition,
p-modes are of higher frequency than g-modes. The frequency of a given
mode is denoted by σn� where it is understood that two different modes
(p- and g-) may exist for a given combination of n and �. How does the
azimuthal “quantum” number m enter this picture? If the unperturbed star
is spherically symmetric, then the eigenvalue (the square of frequency) is
independent of m even though the eigenfunction must depend on m through
the appearance of eimϕ in Y�m. We know the former must be the case since the
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basic differential equations (8.102)–(8.103) and boundary conditions (8.104)–
(8.105) make no mention of m. Another way to look at this is to realize that
there is no preferred axis of symmetry in a spherically symmetric system.
We may arbitrarily choose such an axis—and this establishes the pole for
measuring the colatitude angle θ—but, since ϕ enters only as a phase factor
in eimϕ and we may choose any great polar circle to start measuring ϕ, it
cannot enter in the final analysis for the eigenvalue. (The same is true for
the isolated hydrogen atom where Y�m also appears in the eigenfunction:
the energy eigenvalue does not depend on m.) If, on the other hand, there
were effects that destroyed spherical symmetry—such as rotation or magnetic
fields—then m would play a role and we would have to include that in the
specification of σ. We will do this in a bit.

Fig. 8.3. Shown is a propagation diagram for a model of the ZAMS sun. See the
text for details of how this figure was constructed and for its significance. The modes
for this figure were computed using the ZAMS and PULS codes on the enclosed
CD-ROM.

First let’s look at a “typical” spectrum of nonradial modes. Figure 8.3 is
the result of a series of calculations for � = 2 (quadrupole) modes in a ZAMS
sun. The dashed line shows the run of N2 > 0 versus r/R whereas the solid
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line is for S2
� . (The outer layers are convective with N2 < 0.) The frequencies

(i.e., σ2 in radians s−2) of twelve modes are indicated by the horizontal lines
and they are labeled (starting from the top) p14 (and skip a few), p5 down
to p1, f, and then g1 down to g5.

Before we go into more detail about the modes, first consider why the
acoustic and Brunt–Väisälä frequencies look as they do. The behavior of S2

�

is understood as follows. As r → 0, S2
� = �(� + 1)v2s/r

2 approaches positive
infinity because of the factor r−2. Near the surface it approaches zero (neg-
ative infinity in the log) because the temperature of the ideal gas effectively
goes to zero and thus does the sound speed. On the other hand, N2 goes
to zero at the center because it contains the factor g. It then increases to a
maximum, tails off, and then drops to negative values starting at r/R ≈ 0.83.
This last precipitous drop signals the onset of vigorous envelope convection.11

You cannot see it in this figure but N2 then rises to finite positive values as
the photosphere is reached and convection turns off.

Leaving “f” and gn aside for the moment, pn is the nth p-mode with
n nodes and the nodes (in r/R) are indicted by the dots. As promised in
(8.111), the highest order p-modes have the highest frequencies. (We left
out p13 to p6 for clarity.) Note that these modes only have nodes in the
region to the right of the S2

� curve so that this is where they “wiggle” and
are propagating there, and this is consistent with what we discussed in the
previous section. (We suppose, by the way, this is why a figure like this is
called a “propagation diagram.” You can find several more such diagrams
in §15.4 of Unno et al., 1989. For highly evolved stars these diagrams can
become quite complicated.) Outside that region the modes are evanescent.
Thus the p-modes in this ZAMS sun model are primarily confined to the
outer layers and, as mode order increases, more nodes are found nearer the
surface. (And see Fig. 8.4 and discussion).

The g-modes are entirely different. As promised (by Eq. 8.112), their
frequencies decrease (periods increase) as mode order increases. (Mathemat-
ically they approach a limit point at zero frequency as n → ∞.) They are
confined to the core in this model and only have nodes within the region
bounded by the N2 curve, which is again consistent with conclusions from
(8.108). For these � = 2 modes, the shortest period is 71.6 minutes. Higher �
g-modes have shorter periods, since Π goes as 1/�(�+ 1)1/2 (as in 8.112).

Since this is a solar-like model, we ought to see solar oscillations some-
where. The latter have periods around five minutes and, if we look at our
p14, we find a calculated frequency of σ = 1.386× 10−2 rad s−1 (2.2 mHz) or
a period of Π = 7.56 minutes. We bet you that the sun is oscillating in this
� = 2 p-mode even as we speak (and see Fig. 9.10).

11 The base of the convection zone for the present-day sun is at r/R ≈ 0.73. Differ-
ences in composition, choice of mixing length, and evolutionary effects account
for the ZAMS result.
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Finally, Fig. 8.3 shows the location of the “f-mode,” which we have not
yet discussed. It has a frequency intermediate to those of the p- and g-modes,
has no nodes, and is interpreted as a surface gravity wave that causes the
whole structure to slosh in unison.

Just to confuse the issue, white dwarf oscillations are, in one important
respect, entirely different. Their p-modes are confined to the core, whereas
their g-modes are primarily envelope modes. As will be discussed in Chap-
ter 10—and which should be obvious—N2 and S2

� look entirely different than
they do in Fig. 8.3, and those frequencies are what determine where modes
propagate.

The Eigenfunctions

Figure 8.4 shows the radial eigenfunctions for (� = 2) p2 and g2 modes of the
ZAMS sun. The p2 has two nodes (at the locations shown in Fig. 8.3) and
the action is confined to the outer half of the model. On the other hand, the
g2 lives primarily in the deeper interior.12

Fig. 8.4. Shown are the relative radial displacements, ξr/r, for � = 2 p2 and g2
modes as a function of radius for a ZAMS sun model. The p2 mode eigenfunction
has been normalized to ξr/r = 4 at the surface to make the nodes show up more
clearly. These are from the same calculations used to make Fig. 8.3.

One way to interpret what is going on for the p2 mode is to consider
our short-wavelength result σ2p ≈ (k2r + k2t )v

2
s of (8.109). Suppose a wave

12 Solar g-modes have not been unambiguously observed yet and this is likely due
to the deep character of these modes: they don’t make it to the surface very well
where they might be seen.
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originates at the solar surface and travels inward. As it does so, it encounters
an increase in sound speed because temperature increases inward. But since
σ2p is a constant, this implies that K

2 = k2r + k2t must decrease. If we assume
that kr is the more rapidly varying term, then K decreases inward until
K = kt =

√
�(�+ 1)/rt where rt is the “turning radius” or “turning point.”

The reason for this terminology is that the vanishing of kr means the wave
can no longer progress radially inward but must start to move out again. The
turning point is then established by the condition

vs(rt)
rt

=
2πfn�

[�(�+ 1)]1/2
(8.114)

where fn� is the frequency (in Hz) equal to 1/Πn� for the nth mode of order
�. This is the same as the condition σ2p = S2

� (rt). The picture is similar to
that of refractive optics where ray paths are determined by the properties of
the medium through which the light passes.

An approximate value for the turning radius for p-modes in our ZAMS
sun (and for the real sun) that do not penetrate too deeply may be estimated
with the following argument. The local sound speed for an ideal gas is vs =√
Γ1NAkT/μ, where temperature as a function of radius is given by (7.124)

for zero boundary conditions. (We use this despite the observation that the
sun is convective just below the photosphere.) If Kramers’ is the opacity
source (so that neff = 3.25), μ = 0.6, and Γ1 is 5/3, then, after little effort,
(8.114) becomes

2.56× 108f2n�
�(�+ 1)

x3t + xt − 1 = 0 (8.115)

where xt = rt/R. For the p2, � = 2, mode of Fig. 8.4, the frequency is
f22 ≈ 5.4×10−4 Hz. Equation (8.115) then yields rt ≈ 0.37R. If you examine
Fig. 8.3, this is the radius at which σ2 ≈ S2

� as should be expected: the wave
becomes evanescent interior to that radius.

8.3.4 The Inverse Problem and Rotation

What we have discussed thus far for both radial and nonradial oscillations
is usually referred to as the “forward problem.” Namely, we calculate modes
in a model and then compare them to observations. If the calculations and
observations don’t match, then there is a problem—and it is usually in the
model. Theoretical opacities may be wrong or perhaps we have not quite
got the evolutionary state correct. The trouble is that it is not always clear
what has caused discrepancies or what to do about it. On the other hand, for
the sun, and to a lesser extent some variable white dwarfs, there is a wealth
of information contained in the oscillation spectrum with its many observed
modes. These modes probe the interior to different depths depending on
� and n and whether they are p-modes or perhaps g-modes. The “inverse
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problem” consists of using these probes to either detect where things have
gone astray in the model or to yield other information. We cannot treat this
topic with anywhere near the detail it deserves and shall only give a hint to
how it works and refer you to the next two chapters. For a fuller introduction
from the textbook literature, see Unno et al. (1989, §41). The subject was
originally developed by terrestrial seismologists, who have also contributed
directly to the stellar analogue.

One way to look at the inverse problem is to consider the wave equation for
adiabatic nonradial oscillations. We shall not derive it here (see, for example,
Chandrasekhar, 1964; Lynden-Bell and Ostriker, 1967; Cox, 1980, §15.2), but
it has the same form as (8.16) for adiabatic radial oscillations except we are
dealing with vector displacements. In symbolic form it is really the force
equation

∂2ξ

∂t2
= −O(ξ) (8.116)

where O is a linear operator acting on ξ(r, t). Using the time factor eiσt, we
find

σ2ξ = O(ξ). (8.117)

We now “dot” multiply each side of the above by ξ∗ and integrate over mass
and solid angle [Ω(θ, ϕ)] to find

σ2 =
∫

ξ∗ •••O(ξ) dMr dΩ∫
ξ∗ ••• ξ dMr dΩ

. (8.118)

This is a variational expression for σ2 analogous to (8.62). Thus if the eigen-
functions for the problem are known, then an appropriate integration over
those eigenfunctions convolved with variables in the problem (in our case
pressures, Lamb frequencies, etc.) yield back the eigenfrequencies. A specific
formulation of this integral in terms of the variables we have used is given in
Kawaler et al. (1985).

A useful property of this representation and its analogues in quantum me-
chanics is that the eigenfunctions may be changed by a considerable amount,
while σ2, as computed from (8.118), changes only slightly.13 We can thus
imagine the following thought experiment.

Suppose some quantity such as density is varied only slightly by an
amount Δρ(r) through a model for which we already have an eigenfrequency,
σ20 , and eigenfunction, ξ0. This variation in density will change the integrands
in (8.118) by a small amount because the model has changed slightly. At first
glance it would appear that to find the new eigenfrequency for the altered
model we have to redo the complete pulsation problem. This is unnecessary,
however, because of the stationary property of the integrals. All that needs
13 The integral is “stationary” with respect to ξ. Another way to phrase this is
to realize that eigenvalues must be calculated very precisely in order to obtain
accurate eigenfunctions.
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to be done is to recast the integrand of the numerator of (8.118) in the form
K(X0, ξ0, r)Δρ/ρ (following the nomenclature of Unno et al. 1989) where the
function K is the first-order term in the linearization of the integrand with
respect to Δρ. The arguments of K are the untouched model parameters,
X0, and the original eigenfunction ξ0. The relative change in the eigenvalue
is then

Δσ2

σ20
=
∫ M
0

K(X0, ξ0, r)
Δρ

ρ
dMr . (8.119)

This procedure is essentially that followed in first-order perturbation theory
in quantum mechanics.

If Δρ is specified in (8.119), then changes in the frequencies of various
modes may be easily computed; that is, pick a model, calculate K, and find
Δσ2. But this is just the forward problem all over again. The inverse problem
consists of computing σ20 for many modes from a fiducial standard model (thus
yielding K), calculating Δσ2 = σ2obs − σ20 as the difference between model
and observed frequency σ2obs, and, by some means, finding a best fit for what
Δρ(r) must be in order to minimize Δσ2 for many modes in, perhaps, a
least squares sense. Here is where seismology comes in. If many modes are
used and if they probe the star well, then we expect a good estimate for
Δρ(r). The application of this inversion technique is both mathematically
and computationally difficult but has yielded useful information about the
run of the solar sound speed, for example.

Probing for Internal Rotation

Another application of inverse theory is deducing the internal rotation rate
of stars. In the case of the sun, the equatorial rotation velocity of the solar
surface is 2 km s−1, which corresponds to a rotation period of about 25 days
or an angular frequency of Ω = 2.9×10−6 rad s−1. The rotation is differential,
however, in that the period increases as we move away from the equator to the
poles. Before oscillations gave us a probe into the interior, the only evidence
available for deducing the interior rotation properties came from observations
of surface oblateness or small deviations in the advance of the perihelion of
Mercury as calculated from Einstein’s general theory of relativity. These are
very indirect methods and depend sensitively on theoretical interpretation of
the observations. Solar seismology is much more direct in this respect and
relies on how pulsation modes are influenced by rotation.

The first thing to note is that rotation implies a preferred stellar axis
(assuming that the axis implied by surface rotation is the same as that for
the entire interior). This means that the frequency of an oscillation mode
depends not only on the mode order, n, and �, but also on m, which, in turn,
means we must talk about σn�m. Note also that a typical angular frequency
for a 5-minute mode in the sun is σ ≈ 0.02 rad s−1, a value much larger than Ω
for the solar surface. The same probably holds true for variable white dwarfs,
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where g-mode periods are around 10 minutes, whereas rotation periods for
white dwarfs with known periods are about an hour. We suspect, therefore,
that the effect of rotation on pulsation is small and the 2� + 1 frequencies
σn�m (with m = −�, · · · , 0, · · · , �) are close in value to those for no rotation
(σn� any m), which are degenerate with respect to m. This effect of removing
degeneracy is often called “rotational splitting.”

If rotation is “slow,” as discussed above, then changes to the variational
expression (8.118) are fairly straightforward and we will use it—eventually.
Centrifugal forces can (probably) be neglected, which means that the star is
still basically round. However, Coriolis forces, which go as 2Ω×××v per unit
mass, where v is the fluid velocity, cause deviations in the flow that were not
accounted for in our earlier pulsation analysis. (The centrifugal force goes as
the square of Ω, which is small in the first place.) We shall outline some of
the steps to take for slow rotation but a more complete discussion may be
found in Unno et al. (1989, §19.1 and §§31–34).

Suppose, as a simple case, the star were rotating uniformly. We then
place ourselves in a noninertial reference frame corotating with the star. In
that frame, the force equation is amended to take account of Coriolis forces
by appending the term −2Ω×××v to the righthand side of the force equation
(8.75). The velocity here is that caused by pulsation and, after linearization,
becomes dξ/dt. This, in turn, causes terms of order |Ωσ ξ| to appear in the
righthand sides of the pulsation equations (8.89–8.91) after time has been
separated out using eiσt. The resulting equations are very difficult to solve
because there is no longer any guarantee that spherical harmonics will do the
trick. But we assume the star rotates slowly in the sense that Ω << σ. Thus
the Coriolis term containing Ωσ is much smaller than the acceleration term
containing σ2 on the lefthand sides of (8.89–8.91) and the Coriolis force is
only a perturbation to the solution for the nonrotating sun. This sounds like
what we discussed for the inverse problem—namely, perturb the Hermitian
operator (8.117) to account for small effects due to Coriolis forces (rather
than small perturbations in density), use the eigenfunctions for the unper-
turbed problem, and then evaluate a few integrals. For uniform rotation this
is straightforward (see Unno et al., 1979, §18, or Hansen, Cox, and Van Horn,
1977) and yields the following solution.

Let σn�m be the eigenfrequency of a mode in the fictitious uniformly ro-
tating star and σn�,0 be the eigenfrequency for the same mode not influenced
by rotation (as computed, independent of m, by the methods outlined previ-
ously). The two are connected by the small perturbation in frequency Δσn�m
by

σn�m = σn�,0 +Δσn�m (8.120)

where, if we now measure eigenfrequencies in the external inertial frame of
an observer,
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Δσn�m = −mΩ
{
1−

∫M
0

[
2ξrξt + ξ2t

]
dMr∫M

0 [ξ2r + �(�+ 1) ξ2t ] dMr

}
. (8.121)

Here the eigenfunctions ξr(r) and ξt(r) are those obtained from the nonro-
tating model (and depend only on n and �) and thus the ratio of integrals,
denoted by Cn�, depends only on n and �. This solution has two parts: −mΩ
and mΩCn�. The first part comes about only because we are viewing the ro-
tating star from an inertial frame where, for m �= 0, we detect the additional
red or blue Doppler shift due to the running wave in the azimuthal direction
(Cox, 1984). That is, if we were to neglect Coriolis forces then the frequency
of a mode as viewed in the rotating frame of the star would be σn�,0. But
moving to the inertial frame means we see running azimuthal wave crests
(from eiσt+imϕ) either moving faster or slower with respect to us, depending
on whether the waves are prograde (m < 0 and moving in the same sense as
the rotation) or retrograde (m > 0 and moving in the opposite sense). The
second term contains the effect of the Coriolis force.

In this example of uniform rotation it is easy to see that the modes are
equally split in frequency with σn� m+1 − σn� m equal to σn� m − σn� m−1
and the degree of splitting (as given by these differences) is proportional to
the rotation frequency Ω. We shall see that such a “picket fence” structure in
frequency occurs in the oscillation spectra of some variable white dwarfs but
the sun is more complicated. We know from the outset that it rotates differen-
tially and not uniformly. Therefore the frequency splitting of solar p-modes
is not necessarily uniform and thus should yield information on the rota-
tion of the interior. This is again an inversion problem, where information is
used from observations of many modes to, in effect, probe the Coriolis forces
within the sun. Unfortunately the rotation frequency is actually a function of
all three space variables and many degrees of freedom are implied (unlike in-
version problems discussed earlier that assumed spherical symmetry). Yet, by
assuming some reasonable constraints, considerable progress has been made.

Solid Stars?!

Finally, as a slightly off-beat topic, we mention what happens when astro-
physicists get involved with terrestrial seismology as applied to stars. During
the last stages of cooling of white dwarfs, their cores are thought to become
crystalline. The surface layers of cooler neutron stars are also solid. Thus
shear stresses and strains have to also be considered in a pulsation analysis.
This may be standard fare for seismologists, but it is not easy. (Of course
seismologists don’t have to do nonadiabatic analyses, so we shouldn’t feel too
badly.) The equations for a nonradial adiabatic analysis in its full glory (still
for round stars) is fourth-order in space. Put in a solid and you have to deal
with a sixth-order system with some very nasty properties. For a summary of
what kinds of modes may pop up in neutron stars (besides p- and g-modes)



424 8 Asteroseismology

see, for example, McDermott et al. (1988). They find a total of seven different
flavors of modes, all of which are found, in one form or the other, in the earth.
Montgomery and Winget (1999) have looked into the effects of crystallization
in the cores of white dwarfs using a simplified version of the full pulsation
equations.

8.4 Exercises

Exercise 8.1. Derive Eq. 8.7. You may wish to consult Cox (1980, §5.3) for
a discussion about how δs and time derivatives work with one another.

Exercise 8.2. Derive the Linear Adiabatic Wave Equation (8.16) using the
hints given in the text.

Exercise 8.3. You may be beginning to think that we have something
against the constant density model of §1.4 since we refer to it so often. Per-
haps you’re correct because it will now be forced to undergo adiabatic radial
pulsations. This exercise will test the mathematical skills of some of you,
but what we are about to embark on is standard fare for mathematicians
and theoretical physicists. The aim is to find the first few eigenvalues and
eigenfunctions for the oscillations. You may wish to consult §3.2 of

� Rosseland, S. 1964, The Pulsation Theory of Variable Stars (New York:
Dover Publications)

which is a reprint of the original 1949 edition. And, yes, it is the same Svein
Rosseland of the Rosseland opacity.

1. If Γ1 is a constant, show that the following is equivalent to the LAWE of
(8.16) with ζ(r) = δr/r in that equation:

d

dr

[
Γ1P
r2

d
(
r2δr

)
dr

]
+
(
σ2 +

4g
r

)
ρ δr = 0 .

2. Now introduce the potential Φ by setting

δr =
dΦ
dr

.

Integrate over r (remembering that ρ is constant), let x = r/R, put in the
pressure P (x) (from 1.41) and g(r) = GMr/r

2 for the constant density
model, and show that the new wave equation is

1− x2

x2
d

dx

(
x2

dΦ
dx

)
+
2
Γ1
(ω2 + 4)φ = 0

where the dimensionless frequency is



8.4 Exercises 425

ω2 = σ2
R3

GM .

To save space, let

ω̃2 =
2
Γ1
(ω2 + 4) .

3. And now for something different. As with many second-order equations,
including wave equations, it is advantageous to pose a series solution of
the form

Φ(x) =
∞∑
λ=0

aλ xk+λ

where we assume that a0 �= 0. For a review of series solutions (in this
case often called the method of Frobenius) see, for example, §8.5 of

� Arfken, G.B., & Weber, H.J. 1995, Mathematical Methods for Physi-
cists, 4th ed. (New York: Academic Press).

4. Put this series into the new wave equation and show that∑
λ

aλ λ(λ+ 1)xλ−1 −
∑
λ

aλ
[
λ(λ+ 1)− ω̃2]xλ+1 = 0 .

5. Let, for example, n = λ − 2 in the first series and n = λ in the second,
and find the recursion relation

an+2 = an
n(n+ 1)− ω̃2

(n+ 2)(n+ 3)
.

6. Show that the series diverges for large n ; i.e., that limn→∞ an+2/an → 1,
which implies that the series diverges at the surface x = r/R = 1. Thus
conclude that the series must be terminated at some index m (or call it
whatever) by the condition

m(m+ 1) = ω̃2

which means that, for a given m, only certain values of ω̃2 are allowed.
Since we want solutions to be regular (finite) at the origin, argue that
only even m are allowed.

7. Verify that the first three eigenvalues and eigenfunctions are those given
in Table 8.1, where δr has been normalized so that δr(R) = 1. You will
have to show that only k = 0 in the original series is allowed. (Note that
the solution for n = 2 is the fundamental and was given earlier by 8.20.
This should come as no surprise.)

8. Finally, show that ∫ 1

0

δr2
r

δr4
r

r2 dMr = 0

as a part of showing the eigenfunctions are orthogonal (as in 8.18).
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Table 8.1. Radial Eigenvalues and Eigenfunctions of the Constant Density Model

n σ2
n δrn(x)

2 (GM/R3) (3Γ1 − 4) x

4 (GM/R3)2 (5Γ1 − 2) x
(
−5 + 7x2

)
/2

6 (GM/R3) (21Γ1 − 4) x
(
35− 126x2 + 99x4

)
/8

Exercise 8.4. Try and reproduce the adiabatic radial eigenfunctions for the
n = 2 (or an n of your choice) polytrope (i.e., Fig. 8.1). The discussion of
numerics in §7.2 may be of some help. Can you write down the period–mean
density relations from your calculations? By the way, one method of attacking
this eigenvalue calculation is to treat it as an initial value problem. That is,
make a guess at the eigenvalue, pick a normalization for ζ at the center (thus
also picking δP/P by way of 8.13), integrate out to the surface and test
whether the boundary condition (8.14) at ξ1 is satisfied. If not, change the
eigenvalue by a little bit and do everything over again. You can set up an
simple procedure to zero in on the eigenvalue this way.

Exercise 8.5. In an interesting short paper
� Fernie, J.D. 1995, AJ, 110, 2361

gives period–surface gravity (g = GM/R2) relations that seem to hold up
fairly well for all stars pulsating in the radial fundamental mode. As he points
out, there is no real theoretical justification for his relations but they may
prove useful in some circumstances. The one we chose (his Eq. 2) contains
a term involving metallicity, which we will ignore because we assume our
sample of stars all have the same Z. He finds that g ∝ Π(1.186±0.15). See how
well this holds up for Cepheid variables using the discussion leading to (8.72).
If you went through that analysis, you will have all you need (and will find
that Fernie’s relation is not that surprising).

Exercise 8.6. Verify (8.115) for the turning point radius of p-modes in a
solar-like star and compute rt for the p1 � = 2 mode of Fig. 8.3. Check to see
if S2

� ≈ σ2 at that radius.

Exercise 8.7.We have not talked that much about what nonradial eigen-
functions look like. So consider the following. How do radial and tangential
displacements compare on the surface of a nonradially pulsating star? As a
crude estimate use (8.105) for the surface boundary condition

ξt
ξr
=

gs
σ2R

to find ξt/ξr for: (1) a variable white dwarf g-mode of period 10 minutes;
(2) a 5 minute p-mode for the sun. Assume the white dwarf has a typical
mass of 0.6 M� and you can use (3.68) to get R. You will find that the
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displacement ratios are very different. You should discuss your results; i.e,
why are the results so different? (Note that what you really want in order to
compare to observation is the ratio averaged over the spherical surface and
an oscillation cycle. This introduces a factor of

√
�(�+ 1), as discussed in

§4.3.2 of Christensen–Dalsgaard, 1997.)
Exercise 8.8. Just so we see nonradial g-modes in another, and more fa-
miliar, form, consider water waves. Suppose we have a wave traveling in the
x-direction along the surface over a bottomless sea with z, the vertical coor-
dinate, starting at zero at the water’s surface. To a very good approximation,
water is imcompressible, so assume that density is constant with depth and
time.

1. If we have already decomposed displacements by exp (iσt), then show
that (8.82) implies ∇ ••• ξ (x, y) = 0, where ξ has components ξx and ξz.
Since we take gravity, g, constant (and Φ′ = 0), take the divergence of
(8.80) and show that ∇2P ′ = 0.

2. Now try the solution P ′ = w(z) cos (kx) where w(z) is to be found. Cou-
pled with exp (iσt) this describes a running wave. From what you have
thus far, you ought to be able to show that d2w/dz2 = k2w with solution
w(z) ∝ exp (−kz) if you exclude the solution that blows up with depth.

3. At the free surface the pressure perturbation, δP , should vanish, so use
(8.79) with ρ replaced by P , work through the algebra, and show that
σ2 = gk. (Realize that equilibrium means dP/dz = gρ.) OK, what this
means is that short-wavelength waves (with λ = 1/k) have high frequen-
cies, whereas long wavelengths are leisurely in how they heave up and
down. (You knew this already!)

4. As an example, tsunamis (seismic sea waves, and don’t call them “tidal
waves”) have wavelengths around 500 km (or more). What is their period
of oscillation (in minutes)? (This is a bit of a fraud because tsunami
wavelengths are so long that ocean depth has an important effect.) We
call these g-modes because gravity is the restoring force. What is the
velocity of the wave? Sketch out the waveform on the surface as a function
of time.

8.5 References and Suggested Readings

Introductory Remarks
The most useful textbook references to the theory of variable stars are
� Cox, J.P. 1980, Theory of Stellar Pulsation (Princeton: Princeton Uni-
versity Press)

� Unno, W., Osaki, Y., Ando, H., & Shibahashi, H. 1979, Nonradial Oscil-
lations of Stars (Tokyo: University of Tokyo Press)

and
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� Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonra-
dial Oscillations of Stars, 2d ed. (Tokyo: University of Tokyo Press).

The last chapter of
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon and Breach)

may also be consulted. A much more difficult, but classic, reference is
� Ledoux, P., & Walraven, Th. 1958, in Handbuch der Physik, ed. S. Flügge
(Berlin: Springer-Verlag) Vol. 51, 353.

Be advised, however, because this work reverses Lagrangian (δs) and Eulerian
(’s) operators compared to what is now the usual notation. The combination
monograph and lecture note work by
� Christensen–Dalsgaard, J. 1997, Stellar Oscillations, 4th ed. (or later)

from Aarhus, Denmark, is very useful, if you can find it. He has a lot of
material on solar oscillations. It might still be available at

www.obs.aau.dk/˜jcd/oscilnotes/.
He also has an evolution program (for UNIX platforms) available on that

site.
Review articles include

� Gautschy, A., & Saio, H. 1995, ARA&A, 33, 75
� Gautschy, A., & Saio, H. 1996, ARA&A, 34, 551

and
� Brown, T.M., & Gilliland, R.L. 1994, ARA&A, 32, 37.

§10.1: Adiabatic Radial Pulsations
Stellar pulsation theory can get very mathematical at times. A decent text,
among a few of its kind, that will answer many of the questions we raise in
this chapter is
� Arfken, G.B., & Weber, H.J. 1995,Mathematical Methods for Physicists,
4th ed. (New York: Academic Press).

Part VII of
� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer-Verlag)

discusses some of the material in our chapter but does not go into any de-
tail about helio- or white dwarf seismology. Their §38.3 gives examples of
polytropic oscillations.

� Tassoul, M., & Tassoul, J.L. 1968, ApJ, 153, 127
discuss reduction of the LAWE to an equation that looks more like a wave
equation. Their asymptotic results are much more complete than ours.

§10.2: Nonadiabatic Radial Pulsations
Although Eddington did not figure out exactly what physical processes were
responsible for variable stars he did understand what the thermodynamics
had to do. See §134 of
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� Eddington, A.S. 1926, The Internal Constitution of the Stars (Cambridge:
Cambridge University Press).

The analysis we quote is also discussed in §5–10 of
� Clayton D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis
(New York: McGraw-Hill).

Numerical investigation of weight functions for radial pulsations was origi-
nally reported by
� Epstein, I. 1950, ApJ, 112, 6.
� Iben, I., Jr. 2000, in Variable stars as Essential Astrophysical Tools,
C. Ibanoğlu ed. (Dordrecht: Kluwer Academic Publishers), p. 437

gives many handy items about evolutionary and pulsation studies of Cepheids.
The result we quote for the Cepheid period–radius relation is from
� Gieren, W.P., Moffett, T.J., & Barnes, T.G. III 1999, ApJ, 512, 553.

The tough and important problem of coupling pulsation to convection has
not really improved since the review by
� Toomre, J. 1982, in Pulsations in Classical and Cataclysmic Variable
Stars, eds. J.P. Cox & C.J. Hansen (JILA publication; Boulder, CO), p.
170.

One-dimensional hydrodynamic calculations of radially variable stars have
been done since the early 1960s. Recently, however, these have been extended
to look into questions of chaos, etc. Reviews and examples may be found in
� Buchler, J.R. 1990, Nonlinear Astrophysical Fluid Dynamics, Vol. 117 of
Annals of the New York Academy of Sciences, p. 17

� Kovács, G., & Buchler, J.R. 1988, ApJ, 334, 971
� Ibid. 1988, ApJ, 324, 1026
� Kolláth, Z., Buchler, J.R., Szabó, R., & Csubry, Z. 2002, A&A, 385, 932
� Goupil, M.-J., & Buchler, J.R. 1994, A&A, 291, 481.

§10.3: An Introduction to Nonradial Oscillations
There are several good texts on fluid dynamics. One of our favorites is
� Landau, L.D., & Lifshitz, E.M. 1959, Fluid Mechanics (London: Perga-
mon).

Our main references for nonradial oscillations use Eulerian perturbations.
� Pesnell, W.D. 1990, ApJ, 363, 227

discusses the use of a Lagrangian formalism which, under some circumstances,
is numerically superior when nonadiabatic calculations are being done.

The Cowling approximation is more than a pedagogical tool. It reduces com-
putational labor without introducing gross errors in many circumstances. See
� Cowling, T.G. 1941, MNRAS, 101, 367.

The choice of phase for the spherical harmonics is liable to lead to confusion.
We choose that of
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� Jackson, J.D. 1999, Classical Electrodynamics, 3rd ed. (New York: John
wiley & Sons).

You might be able to get a better idea of what nonradial motions look like
by consulting
� Smeyers, P. 1967, BullSocRoySci Liège, 36, 35.

Asymptotic methods for nonradial modes can involve some difficult mathe-
matics. Besides Unno et al., you might also try
� Tassoul, M. 1980, ApJS, 43, 469.

� Dziembowski, W. 1971, AcA, 21, 289
is one of a series of pioneering papers by Dziembowski. Many of us still use
the variables he introduced. See, for example,
� Osaki, Y., & Hansen, C.J. 1973, ApJ, 185, 277.

Derivations of the nonradial wave equation, among other important items,
may be found in
� Chandrasekhar, S. 1964, ApJ, 139, 644
� Lynden-Bell, D., & Ostriker, J.P. 1967, MNRAS, 136, 293.

One version of an integral formulation of the equation is given by
� Kawaler, S.D., Hansen, C.J., & Winget, D.E. 1985, ApJ, 295, 547.

The effects of both uniform and cylindrically symmetric slow rotation on
nonradial frequencies is discussed in
� Hansen, C.J., Cox, J.P., & Van Horn, H.M. 1977, ApJ, 217, 151

and, for an easy introduction to rotational splitting, see
� Cox, J.P. 1984, PASP, 96, 577.

� Hansen, C.J., & Van Horn, H.M. 1979, ApJ, 233, 253
� McDermott, P.N., Van Horn, H.M., & Hansen, C.J. 1988, ApJ, 325, 725
� Montgomery, M.H., & Winget, D.E. 1999, ApJ, 526, 976

discuss the effects of solid material on nonradial oscillations in white dwarfs
and neutron stars.



9 Structure and Evolution of the Sun

“Here comes the sun.
It’s alright.

Sun, sun, sun, here it comes.”

— George Harrison, Here Comes the Sun (1968)

On the other hand,

“I hate the beach. I hate the sun.
I’m pale and I’m red-headed.

I don’t tan—I stroke.”

— Woody Allen, Play It Again Sam (1972)

“These particles are so elusive that you do not notice
the hundred billion solar neutrinos that pass

through your thumbnail every second.”

— John N. Bahcall (2001)

Perhaps the first astronomical object that we become aware of as children is
our sun. Indeed, the sun is the prototype star, and before we can claim to
understand the stars, we must claim some mastery of current ideas about our
own sun’s origin, its internal structure, and how it has evolved to this state.
In this chapter, we shall emphasize not only what strides have been made
towards understanding this star, but also what uncertainties remain.

Our proximity to the sun and the level of detail visible from our view-
point on earth means that we see far more than we completely understand
at present. Observations over the past century have revealed a rich variety of
surface phenomena associated with magnetic fields and their almost cyclical
behavior; magnetic fields, like convection, are difficult to include in stellar
models. The general pattern of surface rotation has the equator rotating
faster than higher latitude regions; interactions between this differential ro-
tation, modulations in the magnetic field, and subsurface convection, remain
particularly thorny subjects and active areas of research. Neutrinos have been
observed emanating from the deep interior but at a rate less than that pre-
dicted from standard models (although, as we shall see, the models may be
fine but our ideas about neutrinos might have to be modified). The sun is a
variable star—albeit variable on only a low-amplitude scale—and we have to
see what this can tell us.

So while the sun is our best observed star, the uncertainties and phenom-
ena listed above, which we do not fully understand, are multiplied many-fold
when extrapolated to other far more distant objects. In light of this we shall
discuss some of these issues here.
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9.1 Vital Statistics of the Sun

The mass of the sun is determined from measurements of the dynamics
of planets and natural or artificial satellites in the solar system and it
is known far more accurately than for any other stellar object, with the
possible exception of some binary pulsars. A currently accepted figure is
M� = (1.9891 ± 0.0004) × 1033 g. The solar luminosity is known to almost
the same precision although variations of up to 0.5% have been reported.
These may be due to variations during its magnetic cycle or other short-term
effects such as solar flares and the like. A more probable variation due to the
solar magnetic cycle is only about 0.07% around a mean value for the solar
flux of (1.368±0.001)×106 erg cm−2 s−1 at one Astronomical Unit (Willson
et al., 1986, and see Newkirk, 1983). This yields L� = (3.847± 0.003)× 1033
erg s−1. Detection of a secular change in luminosity due to evolution is not
possible at this time. The solar radius appears to be as stable in size as the
luminosity and a value of 6.96× 1010 cm is currently accepted for the radius
at the optical photosphere.

The composition of the sun is not directly observable except at the pho-
tosphere, and even there it requires theoretical interpretation of spectral fea-
tures or solar wind abundances with attendant uncertainties. If no mixing has
occurred to change the surface composition of the sun during its evolution,
then it is the same as that of the material from which the sun was formed
in the first place (with the possible exception of some very reactive nuclei
such as deuterium and lithium). It appears that the current ratio of the mass
fraction of heavy elements (Z, in the nomenclature of Chap. 1) to hydrogen
(X) is Z/X = 0.0245–0.0277 to quote from Grevesse and Noels (1993) (the
lower figure) and Grevesse (1984) (the upper figure).

Not so well determined are the individual values of either X or Y (the
helium mass fraction) but it is known that Y ≈ 0.25. One way to establish
the value of Y relies on constructing evolutionary sequences for the sun and
then matching the present-day luminosity and radius to an estimated solar
age (see below). Given Z/X, the value of Y that gives the best match is
then the adopted mass fraction of helium. Note, however, that the validity of
this procedure is no better than the input physics characterizing the opacity,
nuclear reaction rates, and other processes such as convection. Another im-
portant complication is diffusion. As we will see in the extreme case of white
dwarfs in the next chapter, under the influence of “strong” gravity, heavier
elements in a stable stellar environment can sink, and lighter elements float
upward. Over the 4.6-billion- year lifetime of the sun, a small but important
fraction of helium has drained out of the upper layers of the sun. When tak-
ing this diffusion of helium into account, the initial helium abundance in the
ZAMS sun was a few percent higher than the current abundances.

Granting these caveats, Bahcall et al. (2001), for example, find a “pri-
mordial” value for the helium composition of the sun of Y = 0.2656 using
Z/X = 0.0245 in models that do not include diffusion (and Y = 0.2735 with
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an initial value of Z/X = 0.0266 in models that do). Since X + Y + Z = 1,
this yields X = 0.7169 and Z = 0.01757 without diffusion (X = 0.7077 and
Z = 0.0188 with diffusion), where the number of significant digits quoted will
most probably turn out to be illusory.

The individual “mix” of heavy elements is also important because of its
effect on opacities and, to some extent, the operation of the CNO cycles (see
Chap. 6). Given in Table 9.1 are the Grevesse and Noels (1993) fractional
abundances of the most abundant heavy elements, where Zi is the nuclear
charge for an element and ni is the number density (in cm−3) normalized to
a total of unity (

∑
i ni = 1). (Note that these are not isotopic abundances.)

We see that carbon and oxygen are, by far, the most abundant elements at
the sun’s surface after hydrogen and helium. This table formed the basis for
our earlier Fig. 1.2.

Table 9.1. Solar Heavy Element Abundances

Zi ni Zi ni Zi ni

C 6 0.24552 Al 13 0.00204 Ca 20 0.00159
N 7 0.06458 Si 14 0.02455 Ti 22 0.00008
O 8 0.51297 P 15 0.00020 Cr 24 0.00033
Ne 10 0.08321 S 16 0.01122 Mn 25 0.00017
Na 11 0.00148 Cl 17 0.00022 Fe 26 0.02188
Mg 12 0.02631 Ar 18 0.00229 Ni 28 0.00129

The age of the sun can be found in a way that is independent of the
theory of stellar evolution via radiometric dating of terrestrial rocks (plus
some geological estimates of melting and cooling times), lunar material, and
meteorites. The time of condensation of solar matter is placed at somewhat
less than five billion years ago. If the sun was formed on the main sequence
before the planets and other material, then a best estimate for the present
age of the sun is (4.57± 0.05)× 109 years. Stricter error bars are quoted by
some—as in Guenther (1989) and Bahcall and Pinsonneault (1995)—but, at
least at present, a possible error of several times 107 years is not at all serious
for stellar evolution studies.

The significance of the sun for stellar structure and evolution is clear: it
is the primary proving ground because we know its mass, luminosity, radius,
effective temperature, initial composition, and age. If model-building pro-
cedures fail to reproduce these solar properties then all other studies using
these procedures are in grave danger of being just plain wrong.
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9.2 From the ZAMS to the Present

This section will review the structure and evolution of the sun from the zero-
age main sequence (ZAMS) to the present in light of material developed in
earlier chapters. After this is completed we shall go on to discuss how well
our models compare to the real sun when it is looked at closely.

9.2.1 The Sun on the ZAMS

Constructing a consistent homogeneous ZAMS model for the sun is like do-
ing stellar evolution in reverse; the model must be such that when evolved
forward in time it yields the present-day sun at its present age. The “givens”
for our ZAMS sun are its mass and composition (see §§2.2 and 7.1). Rotation
and magnetic fields are assumed to have no effect on the evolution. Further-
more, mass loss is almost universally neglected for the main sequence stage
of solar evolution because the present mass loss rate of Ṁ ≈ 10−14 M� yr−1

(Cassinelli and MacGregor, 1986) amounts to a small fraction of the total
mass even when integrated over the main sequence lifetime of 1010 years. If
these effects are ignored, then current practice recognizes the following pa-
rameters which, aside from some practical limits, are varied in solar ZAMS
modeling until 4.6×109 years of evolution yields a model matching the radius
and luminosity of the present–day sun. These are—

• The present (and initial) helium content of the surface layers is not pre-
cisely determined by observation but it must be around Y ≈ 0.25. The
exact value (as reflecting the original solar content) affects the structure
through the mean molecular weight of the mixture, the opacity, and the
behavior of convection zones. If, as discussed previously, the metal con-
tent relative to hydrogen is fixed by observation, then Y is varied as a
parameter affecting the overall composition.

• The method of treating convective transport must be decided at the out-
set. As we discussed in Chapter 5, the majority of model builders choose
some version of the mixing length theory for this purpose because of com-
putational simplicity. The results to be reported here do this also. There
are, however, undetermined parameters in any version of the MLT. Fore-
most among these is the mixing length, �. If the pressure scale height,
λP , is taken as a measure of the mixing length, then the mixing length
parameter, α = �/λP , is the usual free parameter. From experience with
both general and solar modeling, α should be close to unity. Note, how-
ever, that a single value of α is used everywhere and for all time. There
is no guarantee that this is reasonable even in the context of the MLT.

The procedure is then to choose various combinations of Y (or Yinit) and
α in different ZAMS models, evolve them to the solar age, and settle on the
combination that gives the correct radius and luminosity.
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The results quoted here are either abstracted from the Yale models of
Guenther et al. (1989, 1992) or from calculations using similar codes and
input physics. Of course, models that include the latest OPAL opacities,
more sophisticated equations of state, and diffusion of helium (e.g.,. Bah-
call et al., 2001) produce more accurate oscillation frequencies—but for the
purposes of illustrating the general evolution of internal quantities, the sim-
pler Yale models are more than adequate. These models are representative
of “standard models,” which use just the sort of physics and techniques out-
lined in this text and do not include the gravitational settling of helium. For
example, the Yale models use the Anders and Grevesse (1989) mix of metals
with Los Alamos opacities and auxiliary tables (§4.6) and an Eddington gray
atmosphere (§4.3). The latter is computationally efficient and perfectly ade-
quate for general studies although, for some purposes (e.g., solar oscillations),
a real atmosphere should be used. To reproduce the present-day sun, a he-
lium mass fraction of Y = 0.288 and mixing length to pressure scale height of
α = 1.2 are required under these adopted input physics values. The version
of the MLT used in these calculations is that reviewed in our §5.1 (but with
radiative leakage, of course) and, more fully, in Cox (1968, Chap. 14). An
elapsed age of 4.5× 109 years for the present-day sun is assumed.

Fig. 9.1. Shown are the runs of pressure, temperature, and density for a model
of the zero-age sun. Note that the pressure has been multiplied by 10−8 and the
density by 105. The abscissa is the relative radius r/R where R = 0.886R�.

Figures 9.1 and 9.2 show some results for the ZAMS sun. The runs of
pressure, temperature, and density versus radius in Fig. 9.1 are smooth and
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show the rapid decrease in these variables to the surface. We have already
remarked (in §7.2.7) that the Eddington standard model reproduces the be-
havior of these variables through most of the model remarkably well given,
say, the average density.

Fig. 9.2. Relative luminosity, Lr/L�, and mass, Mr/M�, are plotted versus rel-
ative radius for the ZAMS (solid lines) and present-day sun (dashed lines). Total
radius and mass for the ZAMS model are R = 0.886R� and L = 0.725L�.

The solid lines in Fig. 9.2 illustrate the run of relative luminosity Lr/L
(with L = 0.725L�) andMr/M� versus relative radius for the ZAMS sun.
(The dashed lines refer to the present-day sun.) The total radius is R =
0.886R�. We note immediately that the sun on the ZAMS, at 4.5 × 109
years in the past, was some 12% smaller and 25% less luminous than it is now.
The luminosity shows the characteristic rapid rise at small radius and this is
associated with the temperature sensitivity of the nuclear reaction rate. The
proton-proton chains dominate over the CNO cycles and, as you may easily
verify from our estimates for the reaction rates in (6.76) and (6.77), εCNO/ε
is less than 1% at model center. Radiative diffusion transports all the energy
flux out to a relative radius of r/R ≈ 0.73. Thereafter, efficient convection
takes over to levels just below the visible surface (as will be illustrated more
fully for the present-day sun). Although this means that convection is most
important for some 30% of the total radius, the corresponding figure in mass
is only about 3% because of the greatly lower densities in the outer layers.
Note also thatMr and Lr rise more rapidly in the present-day sun compared
to the ZAMS. This is because the deep interior of the sun has contracted as
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evolution has gone on. And, as emphasized in Chapter 2, this core contraction
has been balanced, so to speak, by expansion of the outer layers.

How does this structure change as nuclear transmutations take place and
the sun evolves from the zero-age main sequence?

9.2.2 Evolution From the ZAMS

The most obvious changes in the sun as it evolves from the ZAMS to its
present state are increases in both radius and luminosity. This is a character-
istic of all standard calculations. To estimate the magnitude of the increase in
luminosity, for example, we shall use simple dimensional arguments plus the
fact that hydrogen burning to helium means an increase in mean molecular
weight. In doing so, we follow the discussion of Endal (1981). Almost all of
what we need can be found in the first chapter.

Recall the virial theorem analysis (§1.3.4), which yielded the relation

T ∝ μM2/3ρ1/3 (9.1)

for an ideal gas star in hydrostatic equilibrium. (Radiation pressure con-
tributes much less than 1% to the solar pressure even at the center and may
be safely ignored.) Here, as usual, μ is the mean molecular weight. If, fur-
thermore, we assume that radiative diffusion controls the energy flow, then

L ∝ RT 4

κρ
(9.2)

using (1.60). If Kramers’ is the dominant opacity with κ = κ0ρT
−3.5, then

elimination of T and application of the mass equation R ∝ (M/ρ)1/3 yields

L ∝ M
5.33ρ0.117μ7.5

κ0
. (9.3)

This expression can be used to calculate an estimate for the change in lumi-
nosity with time as composition changes.

Because of the small exponent of density (and, from knowing beforehand
how relatively little the radius will change) we neglect the term ρ0.117. From
estimates of κ0 (as in §4.4) we know that κ0 does not vary strongly with
either X or Y and so we neglect it also. And, of course, we keep mass fixed so
it will not appear. Equation (9.3) is then rewritten in time-dependent form
relating changes in L and μ from time t = 0 to some arbitrary time t—

L(t)
L(0) =

[
μ(t)
μ(0)

]7.5
. (9.4)

The task is now to find how μ varies with time.
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If the bulk of the stellar interior is assumed to be completely ionized and
the metal content is small compared to hydrogen and helium, then (1.55) is
appropriate with

μ(t) =
4

3 + 5X(t)
(9.5)

where we explicitly indicate the time dependence in X(t). But we know some-
thing about how X(t) changes with time. Because hydrogen burning releases
approximately Q = 6 × 1018 ergs for every gram of hydrogen converted to
helium, the instantaneous rate of change of a spatially averaged X is

dX(t)
dt

= −L(t)MQ
. (9.6)

Taking the time derivative of μ then yields

dμ(t)
dt

= −5
4
μ2(t)

dX

dt
=
5
4
μ2(t)

L(t)
MQ

. (9.7)

We now differentiate (9.4), substitute (9.7), get rid of μ(t) using (9.4), and
find

dL(t)
dt

=
75
8

μ(0)
MQ

L1+17/15(t)
L−1+17/15(0)

(9.8)

with solution

L(t) = L(0)
[
1− 85

8
μ(0)L(0)
MQ

t

]−15/17
. (9.9)

Putting in numbers by expressing luminosities in units of L�, introducing
the present solar age t� of 4.6× 109 years, and letting μ(0) ≈ 0.6, then gives

L(t)
L� ≈ L(0)L�

[
1− 0.3 L(0)L�

t

t�

]−15/17
. (9.10)

If t = t� (i.e., L(t) = L�), then the luminosity on the ZAMS must have been
L(0) ≈ 0.79L� from the solution of (9.10). The models we have quoted give
an agreeably close value of 0.73.

The above result is interesting from not only our stellar evolution per-
spective, but it bears on how life must have evolved on earth. The earliest
microorganisms appear in the fossil record about 3.5 × 109 years ago (or a
little later). At that time, by application of the above with an adjustment
given by the evolutionary models, the sun was nearly 25% less luminous than
now. Because descendants of some of those same microorganisms are alive
today in essentially unchanged form, there must be some explanation for how
the earlier life forms could have survived and propagated with a significantly
lower solar constant. The answer probably lies in the evolution of the earth’s
atmosphere which, as fascinating as that topic may be, we shall have to pass
by.
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Another way to look at the above is to consider what happens as the
mean molecular weight increases with time in the hydrogen-burning core of a
hydrostatic star. If P ∝ ρT/μ, then an increase in μ without a corresponding
increase in the product ρT would be accompanied by a decrease in pressure.
But since the core must still support the unchanged mass layers above it, this
situation would lead to an imbalance of forces and hydrostatic equilibrium
would be impossible to maintain. The result would then be a compression of
the core with a corresponding increase in density. This process would take
place very rapidly compared to nuclear time scales because we know that the
dynamic readjustment time of §1.3.3, tdyn, is only about an hour for the sun.
The conclusion is that ρT must increase. In particular, ρ must increase but
so should T by virtue of the virial result (9.1). An increase in T then implies
an increase in the energy generation rate (to the fourth power of T for the
proton–proton reaction) and thus the overall rate of power output increases
also.

9.2.3 The Present-Day Sun

Figure 9.3 shows the evolutionary track of a model of the sun on an HR
diagram from the ZAMS to the point where it is clearly a red giant. Elapsed
time is indicated by the labeled circles in Gyr (109 years). The present-day
sun, even after some 4.6 Gyr of evolution, is still very close in L, R, and
Teff to its original ZAMS position. The inner core, however, has changed
substantially.

Figure 9.2 showed the current run of relative luminosity and mass as a
function of relative radius (as dotted lines). The figure shows that Lr/L�
and Mr/M� for the present-day sun rise more steeply than for the ZAMS
sun. In the case of the luminosity, the reason for this is that increased central
temperatures have intensified the energy production and, from the energy
equation (1.57), the luminosity gradient must steepen accordingly. (The con-
tribution from gravitational energy sources due to contraction is always very
small during the initial stages of evolution off the main sequence.) Contrac-
tion and the implied increase in density account for the steeper gradient in
mass.

The run of pressure, temperature, and density versus relative radius at an
elapsed age of 4.6 Gyr is very similar to that of Fig. 9.1 for the ZAMS, except
that the central values are now increased to Tc = 1.53×107 K, Pc = 2.26×1017
dyne cm−2, and ρc = 146 g cm−3 as a consequence of the contraction of the
inner regions. The burning of hydrogen to helium in the still radiative core of
the sun has depleted the former, and this is shown in Fig. 9.4. No longer are
the mass fraction profiles, X(r) and Y (r), flat—as was initially assumed for
the ZAMS—and the central helium mass fraction Yc has increased by about
a factor of two, which is made up for by a corresponding decrease in Xc.
Also shown in the figure is the ratio of the energy generation rate ε(r) to
its central value εc = 16.2 erg g−1 s−1 (an increase of 17% from the ZAMS).
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Fig. 9.3. A solar model evolution track in the Hertzsprung–Russell diagram from
the ZAMS to the red giant stage. Elapsed evolutionary time from the ZAMS is
indicated by the filled circles where the units are Gyr.

The contribution from the CNO cycles is now 7% and will continue to rise as
central temperatures get hotter because of the high temperature sensitivity
of the CNO cycles.

The convection zone of the sun is moderately extensive (but not com-
pared to lower-mass main sequence stars) and occupies the outer 30% of the
radius (but only 2% of the mass). At these high levels in the star the total
luminosity is constant because little or no energy is being generated there.
Thus Fig. 9.5, which shows the run of Lr/L and convective to total luminos-
ity (Lr,conv/Ltot), indicates that a major fraction of the solar energy flux is
carried by convection before the luminous power is finally radiated to space
at the photosphere. The detailed model results show that the convection is
nearly adiabatic through almost all of the convection zone except for the very
bottom and top of the zone. Phrased another way, the gradients ∇ and ∇ad
of Chapter 5 are very nearly equal (and see Fig. 5.2).

Another way to show the extent of the convection zone is to examine the
square of the Brunt-Väisälä frequency

N2 = g

[
1
Γ1P

dP

dr
− 1

ρ

dρ

dr

]
= −χT

χρ
(∇−∇ad)

g

λP
(9.11)

which was originally given as (5.29). Remember that in a radiative zone N is
the frequency of oscillation for a fluid blob that has been displaced from its
equilibrium position when buoyancy is the restoring force (§5.1). In convec-
tively unstable regions, where ∇ > ∇ad, N2 is negative and 1/|N | measures
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Fig. 9.4. Because of hydrogen burning in the radiative solar core, the mass fraction,
Y , of helium in the present-day sun has increased while the mixture becomes less
hydrogen-rich. Also shown is the energy generation rate ε(r) as compared to its
central value εc.

the e-folding time for increases in velocity and temperature perturbations.
All the information necessary to construct N2 as a function of radius may be
found from the solar model and this is shown in Fig. 9.6. Here, the abscissa
is log (1− r/R�), which is a scale that heavily emphasizes the outer regions.
Note that the stellar center is now at the right end of the figure. The ordinate
is in the units of frequency2 (Hz2) to accommodate the other variable in the
figure (the “Lamb frequency”), which will be used later when discussing solar
oscillations, as will N2. With this abscissa the bottom of the solar convection
zone is at log (1− r/R�) ≈ −0.55, while the top is at a value of approxi-
mately −3.7. The latter corresponds to a depth of only a couple of hundred
kilometers below the photosphere—the exact value will depend on just how
the atmosphere is constructed—and is located at a height where temperatures
are sufficiently low that hydrogen recombination has finally been completed
(as discussed in §3.4).

From all external appearances, the standard model reproduces the sun
as we see it. It has been constructed so that the age, surface composition,
luminosity, radius, and effective temperature match the object in our daytime
sky. This is a significant achievement but, aside from the apparent consistency
of thinking that we have the inside right because the outside looks right,
are there other observations that probe beneath the visible surface that can
reinforce our optimism or poke holes in it? In the next three sections, we
explore some details of the solar interior that can be probed because it so
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Fig. 9.5. The ratios Ltot/LR (dashed line) and Lconv/LR (solid line) are shown as
a function of relative radius in the present-day sun. LR is equal to the luminosity
at the surface. The convective luminosity drops to zero just as the photosphere is
reached at r = R.

close to us. With lots of photons (and neutrinos!) coming from so close at
hand, we can look inside the sun as we can no other star. These up-close
insights reveal how much we really do understand, but also how much we
still need to learn.

The proximity of the sun to the earth means that we have sufficient pho-
tons, and a sufficiently detailed view of the solar surface, that we can take
advantage of its very small oscillations (nonradial pulsations) and use astero-
seismology to probe the internal structure and rotation of the sun. But first,
we can use the fact that the sun is close to try to see, directly, one of the
by-products of the nuclear reactions at the solar core.

9.3 The Solar Neutrino “Problem”

Since 1968, in the Homestake Mine, Kellogg, South Dakota, at a depth of
nearly 1,500 meters, Raymond Davis Jr. and his collaborators have been
detecting electron neutrinos emitted from deep within the sun. Using some
600 tons of the cleaning fluid compound tetrachloroethylene (C2Cl4)—and a
great deal of ingenuity—they count the rate at which the radioactive isotope
37Ar (half-life of 35 days) is produced by the reaction

νe + 37Cl −→ e− + 37Ar . (9.12)
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Fig. 9.6. Shown are N2 and S2
� /[�(�+ 1)] in a standard solar model. The abscissa

is log (1− r/R�), which places the solar center at the righthand edge of the figure.
S2

� is the square of the Lamb frequency that we discussed in Chapter 8.

This requires an incoming neutrino with an energy exceeding 0.81 MeV for
the reaction to proceed. (For a review of the history and results of this 37Cl
experiment see Rowley et al., 1985, and references therein.) Besides a small
amount accounted for from extra-solar sources, these incoming neutrinos
are produced from hydrogen-burning reactions in the sun. Ordinary mate-
rial is remarkably transparent to neutrinos, whose typical absorption cross
sections are in the 10−44-cm2 range for energies of order MeV. Thus, using
this figure, a typical mean free path for neutrino absorption within the sun is
λ = 1/σ〈n〉 ∼ 109R� (give or take a couple orders of magnitude) where 〈n〉
is the average number density of particles. Therefore, any neutrinos produced
in the sun escape easily.1

The particular reactions responsible for producing neutrinos in the solar
interior may be inferred (aside from two reactions to be given shortly) from
Tables 6.1 and 6.2 listing the pp-chains and CNO cycles. These are
1 An excellent overview of the neutrino problem is to be found in Bahcall (1989).
We strongly suggest you look through that material if you want a complete
picture up to 1989.
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1H+ 1H −→ 2H+ e+ + νe
7Be + e− −→ 7Li + νe(+γ)

8B −→ 8Be + e+ + νe
· · ·

13N −→ 13C+ e+ + νe
15O −→ 15N+ e+ + νe
17F −→ 17O+ e+ + νe

18F + e− −→ 18O+ νe.

The first reaction is the pp-reaction from the PP–I chain and the next two are
from the PP–II and PP–III chains. The last four are from the CNO(F) cycles.
Neutrinos from the pp-reaction are emitted in a continuum up to an endpoint
energy of 0.42 MeV. These cannot be detected by the Davis experiment be-
cause the endpoint energy is less than the threshold energy for the neutrino
capture on 37Cl. The decay of 8B also yields a continuum of neutrinos with
energies up to 15 MeV and these are accessible to the experiment. The 7Be
reaction is actually two reactions and the final neutrino energy depends on
the final nuclear state of 7Li. The result is a monoenergetic neutrino at an
energy of either 0.862 MeV or 0.384 MeV. The first decay is more probable
and occurs 90% of the time. The three CNO reactions yield continuum neu-
trinos with endpoint energies of 1.20, 1.73, and 1.74 MeV, respectively. Two
additional pp-chain reactions—which we have not discussed—also yield neu-
trinos. These are the three-body reactions “pep” [1H(p e−, νe)2H] and “hep”
[3He(p e−, νe)4He]. These rare reactions contribute almost nothing to energy
generation in the sun but pep does emit line neutrinos at 1.44 MeV, while
hep emits in a continuum up to 18.8 MeV.

We now examine what are the predicted fluxes of these neutrinos from
a standard solar model and what should be the rate of detection by the
chlorine experiment. It should be clear that the rate of neutrino emission
by the above individual reactions must depend sensitively on temperature
because temperature primarily determines the relative competition between
PP–I through PP–III chains and the CNO cycles. Thus neutrino-detecting
experiments potentially offer a unique probe into the solar interior and that
is why so much effort has been expended in designing such experiments.

Figure 9.7 shows the predicted electron neutrino spectrum from a stan-
dard solar model (from Bahcall, 1989, §1.4; see also Bahcall and Ulrich, 1988;
Bahcall et al., 1988). The units of the flux are cm−2 s−1 MeV−1 for contin-
uum sources and cm−2 s−1 for line sources. All fluxes are calibrated so that
they are those that should be seen at one astronomical unit from the sun.
The flux from the more energetic 7Be neutrino, which 37Cl can see, is about
1010 neutrinos cm−2 s−1. To find how many absorption reactions would take
place per second per target on targets with absorption cross section σ ∼ 10−44
cm2, we multiply σ by the flux to find 10−35 captures s−1 per target. This
estimate is not entirely correct but the final result is not too far from what is
observed by the Davis experiment. The convenient unit used in this business
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is the “solar neutrino unit,” or SNU (pronounced “snoo”), and it is defined
as 1 SNU = 10−36 captures s−1 target−1. We shall use these SNU units from
now on.

Fig. 9.7. The energy spectrum of electron neutrinos predicted from a standard solar
model. The solid (dashed) lines are pp-chain (CNO) reaction neutrinos. The units
for continuum neutrinos are cm−2 s−1 MeV−1 and, for line neutrinos, cm−2 s−1.
The fluxes are what should be observed at 1 AU. Reproduced with permission from
Bahcall (1989).

The solar neutrino “problem” became apparent when the neutrino flux
observed at the Homestake Mine was established as 2.07±0.3 (1σ error) SNU
over the period 1970–1988 (see the above references). The final value for the
Homestake experiment is not much different at 2.56± 0.23 SNU over the 30
year lifetime of the experiment. The flux predicted for this experiment from
standard models is 7.6 ± 1.2 SNU. Of the 7.6 SNU, 5.8 SNU is contributed
by the 8B decay, 1.2 SNU by the 7Be electron capture, and less than 0.5 SNU
from CNO neutrinos.

Thus the Homestake experiment reveals an effective 3σ deficit of neu-
trinos, where errors cover estimates of independent uncertainties in nuclear
reaction rates, opacities, model-building techniques, idiosyncrasies of various
researchers, and practically all the other items discussed thus far in this text
(see Bahcall, 2001a). The theoretical prediction is well outside the experi-
mental error bars.
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A total of six neutrino experiments have run (or are running). Three use
radiochemical techniques. In addition to the Davis experiment, the GALLEX
and SAGE experiments use gallium, via the reaction 71Ga(νe, e−)71Ge, with
a threshold of only 0.23 MeV, which is low enough to detect the higher en-
ergy range of pp-reaction neutrinos. The gallium experiments are in principle
sensitive to a large fraction of the predicted solar neutrino energy spectrum.
The others rely on the Cerenkov radiation produced by electrons that partici-
pate in neutrino interactions in H2O (Kamiokande and Super–Kamiokande),
with a threshold of 6.5 to 7.4 MeV. Electron neutrino-induced deuterium
dissociation in 1,000 tonnes heavy water (D2O) is explored at the Sudbury
Neutrino Observatory (SNO), which is over 2,000 meters below ground level
in Ontario.2 The water-based experiments are directional and can produce
“neutrino images” of the sun despite being deep underground. All of these
experiments detect neutrinos but at rates less than are predicted for the
particular reactions involved using standard neutrino physics.3

The factor-of-three deficit in the chlorine experiment is different than
the deficit seen in the water detectors: as Fig. 9.8 shows, the Kamiokande
and Super–Kamiokande neutrino fluxes are 50% of the predicted rate. Since
they are sensitive only to the 8B rate, that means that their results are
not consistent with the chlorine experiment, and cutting the predicted 8B
rate by 50% still results in a deficit of neutrinos in the chlorine experiment!
Thus, as articulated by John Bahcall, there are really several solar neutrino
“problems” to consider.

The pioneering work by Ray Davis and his colleagues, verified by the
results from Kamiokande, has presented physics and astronomy with a pro-
found dilemma that in turn has broad consequences—one of the reasons why
Davis and Koshiba (the Kamiokande director) shared the 2002 Nobel Prize
in physics for their work on neutrino astronomy.

The mystery deepens when we consider the gallium experiments. These
are sensitive to all of the neutrino sources in the core of the sun. The pre-
dicted rates show that approximately half of the neutrinos seen in the gallium
experiment come from the pp-reaction, and that the observed rates are con-
sistent with those being the only neutrinos coming from the sun. Allowing
for a deficit of 50% in the 8B neutrinos, this in turn leaves no room for the
7Be neutrinos—thus providing yet a third solar neutrino problem!

On one hand, we seem to have a good grasp on what makes the sun work,
but, when looked at closely using one probe that senses the deep interior,
something appears greatly amiss. There is insufficient space here to discuss
at any length “nonstandard” solar models that try to address the neutrino
2 For a semi-popular review of this experiment, see McDonald, Klein, and Wark
(April, 2003), SciAm, 288 #4, 40.

3 See, for example, the following articles: Physics Today, 1990, Vol. 43, No. 10,
p. 17; Science News, 1992, Vol. 141, p. 388; Physics Today, 1992, Vol. 45, No. 8,
p. 17, and Nature, July 2001, p. 29.
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Fig. 9.8. Observed and predicted solar neutrino rates. The central columns of this
bar graph shows the standard solar model predictions for neutrino fluxes in the
chlorine (left), H2O (center), and gallium (right) experiments. The error bars show
the predicted (“pred”) and observed fluxes (by name of experiment). Adapted from
Bahcall (2001a).

problems. These include, for example, models that have inhomogeneous outer
layers. If there were some way to cause elements to diffuse and separate in
the sun during some earlier stage of evolution, then we may be fooled by the
presently observed solar surface composition into thinking we know what the
interior composition was when the sun formed. There are several mechanisms
capable of causing elemental segregation, and numerical experiments using
these can “solve” all of the neutrino problems. There are three difficulties
with this and other solutions, however: the prescriptions tend to be ad hoc;
they are underconstrained, leaving no observational way to test them; and
typically one that solves one of the neutrino problems (say, the deficit of 8B
neutrinos) makes another problem worse. Finally, all nonstandard models do
run afoul of the observed solar oscillation spectrum, which we shall discuss
later in this chapter. No reasonable tinkering with standard models seems
capable of removing the neutrino discrepancy.

Elementary particle physics offers a solution that leaves the standard
model intact. In some grand unified theories (“GUTs”), the electron neu-
trino is not massless—and this is not ruled out by experiment—but the mass
must be small. If so, it is possible that an electron neutrino may be converted
into a muon or tau neutrino under the proper circumstances (or the other
way around). Muon neutrinos, on the other hand, are not detectable by the
chlorine and other experiments (except Kamiokande and Super–Kamiokande,
but they can’t distinguish between different kinds of neutrinos) and, hence,
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even though the sun produced electron neutrinos at exactly the rate pre-
dicted by the standard model, some fraction of them would not be detected
at the earth. This process of “neutrino oscillation” may be enhanced when
neutrinos pass through a material medium (the “MSW” effect—see Bahcall
et al., 1988; Bahcall and Bethe, 1990).

It is believed by many that this is the most promising line of inquiry to
follow and may yet turn out to do the trick. Here is how it may work. Since
all neutrinos produced in the sun are electron neutrinos, if they change “fla-
vor” among the three species of neutrinos on their way to the earth, then
detectors that see only electron neutrinos should see a deficit. The chlorine
experiment sees exactly that deficit, but the Kamiokande experiments see
more than one-third. The chlorine experiment detects only electron neutri-
nos. The Super–Kamiokande detector, though mostly sensitive to electron
neutrinos, can also detect muon and tau neutrinos. Therefore, the fact that
it shows a significantly smaller deficit works in the right direction for the
neutrino oscillation theory. However, Super–Kamiokande cannot distinguish
individual detections as either electron, muon, or tau neutrino events. SNO,
on the other hand, can identify electron neutrino events because of the extra
neutron in the heavy–water molecules. Neutrinos from the sun detected by
SNO can then be tagged as electron neutrinos and compared with the flavor-
blind results from Super–Kamiokande in the same neutrino energy range.
Results announced by the SNO collaboration in 2002 indicate that the pre-
diction of the standard solar model is nearly exactly the observed electron
neutrino rate when neutrino oscillations are taken into account. Thus it may
be that the solar neutrino problem tells us more about physical nature at its
most fundamental level than it does about stellar astrophysics.

9.4 The Role of Rotation in Evolution

It is fortunate for makers of solar models that the sun rotates slowly. Were
it to rotate rapidly, at speeds close to breaking up by centrifugal forces,
the solar test bed for stellar evolution would almost be uncomputable using
present technology. On the other hand, the sun does rotate and the effects
are observable.

Rapidly rotating stars are not unusual but, on the main sequence at least,
almost all of these are massive and bright. Less massive main sequence stars
tend to be slow rotators. The observational evidence for this is presented in
Fig. 9.9 (from Kawaler, 1987), which shows the average equatorial rotation
velocities versus mass of a large sample of main sequence stars compiled by
Fukuda (1982). The crosses denote complete samples, whereas data indicated
by circles exclude Am stars, which tend to rotate anomalously slowly, and
Be stars, which rotate rapidly but show peculiar emission features. (The
Am stars are of spectral class A but with peculiar abundances and they
are almost exclusively members of binary systems.) The nearly horizontal
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line labeled 〈v〉 = vcrit is the locus where stars of equatorial velocity v are
at breakup; that is, where surface gravitational and centrifugal forces are
equal with vcrit =

√
GM/R. It is evident that the more massive stars are

rapid rotators with equatorial velocities only about a factor of two less than
breakup.

Fig. 9.9. The observed average equatorial rotation velocity 〈v〉 is plotted as a
function of mass for main sequence stars. Note the clear change in the behavior
of 〈v〉 at log (M/M�) ≈ 0.2 (M ≈ 1.5M�). Reproduced, with permission, from
Kawaler (1987).

Once masses drop below about 1.5M� (logM/M� ≈ 0.2), however,
average rotation velocities decrease precipitously. This mass corresponds to
around spectral type F0 (L ≈ 6L�) on the main sequence and to the
mass (and Teff) below which stars have significant envelope convection (see
Fig. 5.7). Thus it appears that convective envelopes and slow rotation are
connected in some way.

Rotational angular momentum can be carried away from a star by a stel-
lar wind, but how much angular momentum is lost depends on the distance
at which the wind decouples from the stellar interior in terms of rotation.
For a simple wind, this decoupling occurs near the photosphere. However, if
the wind couples to the stellar magnetic field, it can be forced to corotate
with the star well beyond the photosphere. The magnetic field is rooted in
the stellar interior and as the corotating wind moves beyond the photosphere
it gains angular momentum at the expense of the interior. This gain of an-
gular momentum by the wind is proportional to the square of the distance
above the photosphere. Thus magnetic fields can greatly amplify the angular
momentum loss a star experiences when coupled with a wind.
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Since stars later (cooler) than F0 have significant surface convection zones
that can drive stellar winds and, through dynamo action, produce and mod-
ulate internal magnetic fields, these stars will experience much more angular
momentum loss than their higher mass cousins. Support for this idea comes
from the observation that the more massive main sequence stars generally
have feeble surface convection zones and weak magnetic fields. Even though
some have strong winds, most rotate near the average value of 1/3 vcrit. For
more on the theory of magnetic braking, see the reviews by Mestel (1984),
Collier Cameron et al. (1991), and Kawaler (1990). Observations of young
stars that lend support to the theory are reviewed in Stauffer and Hartmann
(1986) and Stauffer (1991).

The other side of this picture implies that the sun initially formed rotating
much more rapidly than it does today. Could earlier rapid rotation have
influenced evolution? Before we discuss this, it is worthwhile pointing out
some of the subtle implications of rotation for stellar structure even when
the rotation is slow.

9.4.1 von Zeipel’s Paradox

Stellar rotation, of even the simplest kind, introduces complexities in the con-
struction of realistic stellar models that are beyond our present capabilities.
This is because rotation is inherently three dimensional. We shall only touch
on one aspect of the subject. For an excellent introduction we recommend
the monograph by Tassoul (1978) and, in particular for what follows, his
Chapters 7 and 8.

Suppose we attempt to construct a chemically homogeneous stellar model
in hydrostatic and thermal balance where heat is carried solely by diffusive
radiative transfer. To complicate matters, however, let us require that the
model rotate as a rigid body. A rigidly rotating body is naturally described
in cylindrical coordinates r = r(�,ϕ, z) where the z-axis coincides with the
rotation axis and the radial coordinate � is measured from the z-axis. The
equation of hydrostatic equilibrium must now include the effects of centrifugal
forces which, in the rotating frame of the star, are given by the term ρΩ2�e�e�e�
where e�e�e� is the radial unit vector. The potential corresponding to this force
is Φcent = −Ω2�2/2. The total potential, centrifugal plus gravitational is
then

Φeff(�, z) = Φgrav(�, z)− Ω
2�2

2
. (9.13)

Note that we have assumed azimuthal symmetry (no ϕ dependence) as seems
reasonable. The equation of hydrostatic equilibrium then becomes

1
ρ
∇P = −∇Φeff = −∇Φgrav +Ω2�e�e�e� = geff . (9.14)

The acceleration geff is the local effective gravity, which now includes cen-
trifugal effects. In addition to the above we also need Poisson’s equation,
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which is still given by
∇2Φgrav = 4πGρ (9.15)

(as in §7.2.1). Note that only Φgrav appears here.
The first application of these equations comes about from considering

“level” surfaces on which Φeff is constant. The gradient ∇Φeff evaluated
on such a level surface is, of course, perpendicular to that surface. If dr is
an infinitesimal unit of length lying tangent to the surface then, by usual
arguments in the vector calculus, dr •••∇Φeff = dΦeff = 0 (as it must). But
this implies, by dotting r into (9.14), that dP = 0 on a level surface or,
equivalently, pressure is a constant on such a surface. Thus level surfaces
are also “isobaric” surfaces with P = P (Φeff). This may be reversed to read
Φeff = Φeff(P ) from which follows (from 9.14) ρ−1 = dΦeff/dP . Density is
then also constant on a level surface (making it an “isopycnic” surface).

If the equation of state of our chemically homogeneous model is that of an
ideal gas with P = ρNAkT/μ, then T = T (Φeff). Thus far, the only quantity
in sight that is not a constant on a level surface is geff . It is normal to the
surface but, because the level surfaces need not be the same distance apart
in (�,ϕ, z)-space, it may vary in magnitude over the surface. (Note that if
Ω is zero, then the level surfaces are concentric spheres and we regain the
constancy of gravity for fixed radius.)

The second constraint we have placed on the model is that of thermal
balance. That is, we require dLr/dr = 4πr2ρε of (1.57). A more general way
of putting this is in terms of the vector flux FF . Thus write

∇ •••FF = ρε . (9.16)

The requirement of radiative diffusive transfer specifies how the flux is trans-
ported through a level surface so that, with a slight rearrangement of gradi-
ents,

FF = −4ac
3

T 3

κρ

dT

dΦeff
∇Φeff . (9.17)

Note that T is regarded as a function of Φeff as above. Furthermore, ε and κ
are also functions of Φeff because they contain only ρ(Φeff) and temperature.
Thus, and still following Tassoul (1978), we write

FF = f(Φeff)∇Φeff = −f(Φeff)geff (9.18)

where the function f(Φeff) takes care of the Φeff -dependent terms in (9.17).
Now take the divergence of this expression and use the fact that ∇f and
∇Φeff are perpendicular to the level surface to find

∇ •••FF = df

dΦeff

(
dΦeff

dn

)2

+ f∇2Φeff = ρε. (9.19)

Here n is an outward unit normal to the level surface.
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A nearly final result is obtained by realizing that dΦeff/dn is the same
as |geff | so that, using Poisson’s equation and doing some rearranging, you
should find

df

dΦeff
g2eff + f(Φeff)

[
4πGρ− 2Ω2] = ρε . (9.20)

In order to satisfy all the constraints set on the model, this equation must
be satisfied everywhere. At first glance, nothing seems peculiar because it is
just the divergence of the radiative flux set equal to the energy generation
rate (per unit volume) for thermal balance. However, if the structure is such
that any two level surfaces are not spaced everywhere equidistantly apart (as
they are if there were no rotation), then there is trouble. To see this, note
that ρε and the terms within the brackets depend only on Φeff but geff is
not constant on arbitrary level surfaces. Therefore the coefficient (df/dΦeff)
must be zero because everything else is a constant. Thus drop this term from
(9.20) and what remains is a relation between variables on a level surface
and, in particular, a requirement on ε. Solving for ε yields

ε ∝
[
1− Ω2

2πGρ

]
. (9.21)

But how can this be? The energy-generation rate cannot be directly deter-
mined by how the star rotates!

The difficulty is that we have overly constrained the problem. This is von
Zeipel’s (1924) “paradox”: namely, a uniformly rotating star (and the situ-
ation is more general than this) cannot be in steady-state radiative thermal
equilibrium. Something must give.

The solution lies in relaxing the constraints. We refer you to Tassoul (1978,
Chap. 8), where this is discussed. Briefly, it appears that either the angular
rotation frequency Ω must depend on both � and z, or fluid motions (e.g.,
“meridional” circulation) must take part in the transfer of heat. Consideration
of these topics would take us into fascinating, very difficult, and not fully
resolved territory. Our stance here is to back off and assume that rotation
is sufficiently slow that—as a good approximation—many such effects can
safely be ignored. But we do so at our peril with the realization that our
description of the interiors of many stars is incomplete.

9.4.2 Rotational Mixing of Stellar Interiors

From the discussion above, we see that rotation should have little direct effect
overall on the evolutionary changes in temperature, density, and pressure
within the sun during the course of its evolution. However, some observed
properties of the sun—and, in particular, the elemental abundance of rare
species in the photosphere—may be telling us a significant story about the
internal rotation of the sun and how it has changed with time. For example,
the element 7Li has an abundance in the solar photosphere that is a factor
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of 200 smaller than the abundance of 7Li found in meteorites, terrestrial
rocks, and younger stars. (See §6.3.) This would be an easy thing to explain
if this 7Li was destroyed by nuclear reactions within the solar convection
zone. If so, then convective mixing would dilute the lithium abundance of
the entire convection zone and lead to a depleted surface value compared
to the primordial abundance. However, standard solar models indicate that
the base of the solar convection zone never gets quite hot enough to burn
7Li very much; the standard solar model depletes lithium to about one-third
of its initial value. If the solar convection zone was deeper by about half a
pressure scale height, then the observed level of 7Li destruction could occur,
but to do this would result in a solar model that is at odds with observations
of other younger stars. Rotation provides us with a way out of this dilemma.

Recall that in our discussion of convection, convective material undergoes
presumably turbulent mixing. Therefore, if such a convection zone is rotating,
then convective mixing should result in angular momentum exchange, leaving
the zone rotating essentially as a solid body. Radiatively stable material, on
the other hand, can support a gradient in angular velocity with depth. Now
consider the young sun, which started its life as a fully convective pre-main
sequence star. As such, it initially rotated as a solid body, with a much larger
angular momentum than it has today. As it settled onto the main sequence,
the interior became radiative while the envelope remained convective (see the
section on the ZAMS sun). During contraction, the early sun became more
centrally concentrated. If specific angular momentum was conserved (that is,
each mass shell had an angular momentum that did not change with time
by transfer to other mass shells), then this central concentration resulted in
a spin-up of the solar core, with decreasing angular velocity Ω(r) from the
center outward.

Recall also that for stars with surface convection zones, angular momen-
tum can be lost from the surface by a magnetized stellar wind. The surface
convection zone, which should have continued rotating as a solid body, thus
experienced a continual loss of angular momentum to space. Therefore, in
addition to a smooth gradient in Ω(r) in the radiative interior, the surface
spun down quickly and somewhat independently of the interior. At the base
of the convection zone, then, a discontinuity in Ω(r) may have developed.
Numerous analytic and laboratory studies of rotating fluids have shown that
steep gradients of Ω can be hydrodynamically unstable (see, e.g., Zahn 1987).
Thus these instabilities will trigger mixing of stellar material and its angular
momentum to reduce the gradients in Ω(r) to a state of (at least) marginal
stability. Such redistribution of angular momentum can occur on either short
time scales (i.e., the free-fall time) or longer time scales (i.e., the thermal
time scale), but it is hard to see how angular momentum redistribution can
be completely avoided. Because the principal generator of shear is the brak-
ing of the convective envelope, the base of the envelope will be where the
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angular momentum redistribution and resulting mixing of material will be
most noticeable.

Rotation therefore could result in mixing of material near the base of the
solar convection zone, and the solar lithium depletion may be a signature
of angular momentum redistribution. It should be clear that a discussion
of computations of solar evolution that includes such mixing is beyond the
scope of this text; it involves simultaneous solutions of the usual equations of
stellar evolution and, in addition, treatment of hydrodynamic instabilities on
many different time scales (and in three dimensions!). Some computational
work in this area, with simplifying assumptions about distribution of angular
momentum in latitude and longitude, has addressed the problem of rotational
mixing. Comparison of these model results with observations of the lithium
abundance seen in young stars and very old stars, as well as the sun, has
met with remarkable success. Additional work in this area stems from the
very important paper (but not one for the faint of heart) by Jean-Paul Zahn
(1994) that considers the general subject of rotationally driven instabilities
within stars and uses stars in binary systems to test the results.

We leave this very active subject at this point, and note that rotational
effects are probably even more important to consider in the evolution of stars
more massive than the sun. For results relevant to the sun, we refer you to
papers by Mark Pinsonneault and colleagues, among others, for many more
details. See, for example, Pinsonneault (1997) and the review by Sofia et
al. (1991) and references therein.

9.5 Helioseismology

One of the early “solutions” to the solar neutrino problem invoked the fact
that the rate of production of solar neutrinos is proportional to a very high
power of the central temperature, so that anything that might lead to a
suppression of the central temperature of the sun would reduce the predicted
value. However, it was recognized quite early that despite variations in some
of the input physics, construction of a standard solar model (one that matched
the solar radius and luminosity at the solar age) produced a very consistent
value for the central temperature. Some ad hoc solutions (such as an altered
metallicity in the center of the sun, or rapid rotation of the solar core) could
be ruled out by examining the nonradial pulsation frequencies, as introduced
in the previous chapter.

In this section, we introduce helioseismology—the application of nonra-
dial pulsation theory to the study of solar oscillations, and the determination
of the structure of the solar interior through examination of its oscillation
frequencies. We begin with a brief description of the observations, and then
show how the observations compare with theoretical predictions. Using inver-
sion theory, we then show how the standard solar model has been tested and
revised and how the internal rotation profile has been measured. Though we
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have been able to produce some astounding results for the sun over the past
three decades, the hope is that in the future we can make similarly detailed
tests of stellar models. But for now, the results from helioseismology will have
to stay our curiosity.

9.5.1 Observed and Predicted Pulsation Frequencies

The sun, and perhaps all stars at some level, is variable but you need keen
instruments to detect its variability. Leighton, Noyes, and Simon (1962) first
observed a five-minute correlation in velocity–induced Doppler shifts of ab-
sorption lines formed at the solar surface. These were (and are) interpreted as
vertical oscillations of large patches of fluid having velocities of 1 km s−1 or
less with a coherence time of around five minutes. It was not until nearly ten
years later that Ulrich (1970) and Leibacher and Stein (1971) independently
suggested that what was being observed was the result of global oscillations
with periods of around five minutes wherein the sun acted as a resonant cavity
for acoustic waves propagating through its interior. It is now well-established
that the majority of these waves are nonradial acoustic modes.

We shall not discuss here how these waves are excited, but it is not by
the same mechanism that is responsible for the variability of other overtly
variable stars. The best current model involves the convection zone of the
sun wherein the noise generated by turbulence effectively causes the whole
sun to quiver in response.

Nonradial modes have now been observed by several methods and it is
known that they consist of the incoherent superposition of millions of acoustic
p-modes. Over the past decade, the literature on the subject, both obser-
vational and theoretical, has expanded at a tremendous rate as observa-
tions from ground–based networks, and dedicated satellites, has flooded as-
tronomers. For very thorough discussions of the background theory and early
observations—and to get an excellent sense for the enthusiasm with which
astronomers embraced this field—we recommend the classic review articles
by Christensen–Dalsgaard et al. (1985), Leibacher et al. (1985), Libbrecht
and Woodard (1991), Toomre (1986), and Libbrecht (1988). More recent ac-
counts of the results of “modern” observational and theoretical efforts can
be found in Gough et al. (1996) (and subsequent articles in the same issue
of Science), along with the review article by Christensen–Dalsgaard (2002).
For an excellent pedagogical introduction see Gough (2003). You should also
peruse the conference proceedings literature for reports of the annual meet-
ings of the “Global Oscillation Network Group” (GONG). This consortium
of astronomers operates a global network of stations to observe oscillations
of the sun.

To give a representative picture of the observational and theoretical re-
sults, we first present Fig. 9.10 (from Libbrecht, 1988), which shows measured
p-mode frequencies, fn� (in mHz with 2πfn� = σn�), versus �. The individual
points are observed modes (from Duvall et al., 1988) where n, the mode order,
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Fig. 9.10. Measured solar p-mode frequencies, fn�, for � < 100 are shown by
the circles. Theoretical results are indicated by the solid lines where individually
computed frequencies for fixed n have been made continuous. The lowest “ridge
line” has n = 2 and n increases by one for each higher ridge. Note that the frequency
scale is in mHz so that a typical frequency of f = 3 mHz corresponds to a period
of Π = 1/f ≈ 5 minutes. From Libbrecht (1988) based on data from Duvall et
al. (1988) . Reprinted by permission of Kluwer Academic Publishers.

is as indicated in the figure caption. Such measurements are extraordinarily
difficult and involve two-dimensional Doppler imaging of the solar surface
and other techniques. The solid lines are from theoretical nonradial pulsation
calculations for an early standard model of the sun by Christensen–Dalsgaard
et al. (1985).

Recall that for the discussion of mode spectra for nonradial modes in
§8.3.3, we used a ZAMS sun model. From a seismic point of view, the present
sun isn’t all that different. The run of the Brünt–Väisälä frequency and Lamb
frequencies with radius are similar, and therefore the modal structure will be
very similar. The precise frequencies, however, are very sensitive to the total
radius of the sun, the position of the base of the surface convection zone, and
the position of composition gradients in the solar core.

9.5.2 Helioseismology and the Solar Interior

It would appear from Fig. 9.10 that the theoretical results using the early
standard solar model of Christensen–Dalsgaard et al. (1985) for p-mode fre-
quencies are very good indeed because the results match the observations
as well as the eye can detect. This tells us that that model for the sun is
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“accurate” down to appreciable depths into the interior. However, there are
discrepancies that cannot be ignored. In fact, results using a “modern” stan-
dard solar model (from Guenther et al., 1996) are shown in the left panel
of Fig. 9.11, which shows differences between observed and calculated fre-
quencies for �s ranging from � = 0 to 100. Note that the ordinate is in μHz.
Though the results look quite good—and in fact are a factor of 10 better
than results from a decade earlier—the differences between the model and
the observations is many times larger than the uncertainties in the frequencies
themselves.

Fig. 9.11. The ordinate shows the difference, Δν = νmodel − ν�, with ν as fre-
quency, between observed solar p-mode frequencies (ν�) and theoretical frequencies
(νmodel). Thick lines refer to modes with � of 10, 20, and 30. Taken, with permission,
from Guenther et al. (1996) and the AAS. The left panel represents results using a
basic standard solar model, while the right panel shows the improvements possible
by including better equation of state and opacity data along with including helium
diffusion.

The most obvious thing of note in the right panel of Fig. 9.11 is the overall
improvement for all values of � and all frequencies when the standard solar
model is modified. In this case, Guenther et al. (1996) incorporated a more
sophisticated and improved equation of state, modified opacities, and the
effects of diffusion of helium and heavy elements. The overall result was the
removal of overestimates of pulsation frequencies for low frequencies, and an
improved trend at higher frequencies.

Structural Inversions

Figure 9.11 shows the general agreement between theoretical and observed os-
cillation frequencies as a “forward problem” wherein stellar models are made,
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oscillation frequencies computed and compared with observed frequencies,
differences noted, and model adjustments made (and the process repeated).
In Section 8.3.4, we discussed a different way to derive properties from the os-
cillation frequencies. Through inversion, assuming sufficient observed modes
over a range of � as well as frequency, (8.119, or a similar expression for the
physical quantities of interest) can be used to calculate corrections to model
structures based on the observed frequencies.

One property of significance is the local sound speed vs, which, in the
adiabatic limit, is proportional to

√
Γ1T . Sound speed inversions can reveal

composition discontinuities and equation of state errors within the deep in-
terior, and minimize effects of uncertainties in the structure of the (strongly
nonadiabatic and very dynamic) outermost layers. In general, modern solar
models depart from the inversion results by no more than about 0.5 km s−1

through most of the interior (where the sound speed ranges from over 500
km s−1 near the center down to about 80 km s−1 near the surface). Fig-
ure 9.12 shows the difference between the model sound speed and the sound
speed obtained by inversion of various helioseismic data sets for the standard
solar model from Bahcall et al. (2001). The agreement between data and the
model is within 0.2% over nearly the entire interior—an extraordinary degree
of precision for astrophysics!

Low-frequency p-modes probe deeply into the sun’s interior. This is espe-
cially true for modes with low �. The most deeply penetrating are the radial
modes with � = 0 that pass right through the center; investigation of these
modes bears directly on the solar neutrino problem. Much effort has thus
gone into searching for possible errors and effects that make both theoretical
oscillation and neutrino calculations match the observations. Various versions
of nonstandard models have been tried with conflicting results. Thus, for ex-
ample, models with lower amounts of metals in the deep interior (“low-Z
models”) help the neutrino problem but worsen the match for low � modes.
One promising avenue has been to postulate that the primordial helium abun-
dance in the deep interior of the sun was higher than in the surface layers.
This tends to bring low � frequencies in line and decreases the calculated neu-
trino fluxes—but not by enough. Bahcall et al. (2001) and Basu et al. (2000)
review such attempts but, sad to say, the results are that no solar model,
standard or even imaginative, can match both the neutrino results and the
oscillation data. Bahcall et al. (2001) and Bahcall et al. (1997) (and refer-
enced works therein) conclude that the seismological constraints on the sound
speed within the sun, as well as the general frequency matching, convincingly
eliminate these models. The solar neutrino “problem” first elucidated by the
work of Ray Davis has indeed exposed an ignorance of fundamental particle
physics, and not of more traditional astrophysics.
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Fig. 9.12. Results of sound speed inversions of low degree helioseismic data, taken
(with permission) from Bahcall et al. (2001) and the AAS. The difference between
the model and the inversion result (denoted by “sun”) is plotted as a function of
fractional radius. Different lines correspond to inversions of the labeled helioseismic
frequency sets. Note that despite the small differences between these sets, the spread
in results is comparable to the overall difference between the model and the average
of the data.

Rotational Inversions

Another interesting quantity that we have noted for the sun is its rotation
rate. The surface of the sun displays differential rotation with latitude, with
the equator rotating more quickly than the poles. Given the strong feedback
between rotation and magnetic fields, and our desire to understand the origin
of both in the sun (and their behavior with depth) one of the goals that
helioseismology has is to explore the rotation rate as a function of latitude
and depth within the sun.

Determining Ω(r, θ) is an inversion problem, as discussed in Chapter 8.
Again, by using modes over a large range of � and frequency, one can invert
the frequency splittings—or, more precisely, appropriate linear combinations
of splittings that have associated kernels that are localized with respect to r—
to obtain the rotation profile within the sun. Representative of these attempts
are those shown in Fig. 9.13, where Ω(r, θ, ϕ) is assumed to have the same θ
dependence as at the photosphere. In this investigation the rotation down to
r/R� ≈ 0.7 is similar to that of the surface but for r/R� <∼ 0.6 more closely
resembles solid body rotation. The important questions these results pose is
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Fig. 9.13. The top panel shows the profile of angular rotation frequency for three
latitudes of the sun as inferred from rotational splitting of the SOHO–MDI (satel-
lite) data using inversion theory. The ordinate is in the units of nHz. The data
for deeply penetrating p-modes is inadequate to resolve Ω for r <∼ 0.4R� clearly.
Adapted, with permission, from Schou et al. (1998). The bottom panel shows the
rotational inversion nearer the stellar core, using additional data for low � modes
from SOHO’s GOLF experiment. The bottom portion of the lower panel repre-
sents the many localization kernels from the solar model used in the inversion. This
portion is from Corbard et al. (1998).

how this rotation comes about and what consequences it has for the entire
evolution of the sun.

Results quoted in §9.4.2 can now be directly tested with the observed
rotation profile with depth. The most obvious general conclusion to draw from
Fig. 9.13 is the nearly flat rotation rate at depth within the sun. Non-magnetic
rotational instabilities alone cannot account for such flatness, suggesting that
magnetic fields indeed play in important role in angular momentum transport
in deep solar interior.

9.6 References and Suggested Readings

§9.1: The Vital Statistics of the Sun
Our sources for variations in solar luminosity are
� Newkirk, G., Jr. 1983, ARA&A, 21, 429
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and an update using newer geochemical studies by G. Wasserburg in an
appendix to the paper by
� Bahcall, J., & Pinsonneault, M. 1995, RevModPhys, 67, 781.

§9.2: From the ZAMS to the Present
Unlike luminous stars, the sun does not have much of a wind. The mass loss
rate we quote is from
� Cassinelli, J.P., & MacGregor, K.B. 1986, in Physics of the Sun Vol III,
ed. P.A. Sturrock (Boston: Reidel), p. 47.

“Standard” models have become more standard through the years as model
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who used the Grevesse and Sauval (1998) abundance determinations; other
model details are outlined in
� Bahcall, J., & Pinsonneault, M. 1995, RevModPhys, 67, 781.

As usual, we recommend
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon and Breach)

for some in-depth perspectives on stellar structure.
It is always gratifying to use a simple calculation to help make sense out of
all the numbers pouring out of a computer. The virial estimate for luminosity
change of the evolving sun is from
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� Endal, A.S. 1981, in Variations of the Solar Constant, NASA Conf. Pub.
2191, 175.

§9.3: The Solar Neutrino “Problem”
The observational results of the Homestake Mine experiment are reviewed in
� Rowley, J.K., Cleveland, B.T., & Davis, R. Jr. 1985, in Solar Neutrinos
and Neutrino Astronomy, eds. M.L. Cherry, W.A. Fowler, and K. Lande
(AIP: New York), pp. 1–21

while the SNO experiment is described in
� McDonald, A., et al. 2000, NuclPhysProcSupp, 91, 21.

A good overall review of neutrinos, solar and otherwise, may be found in
� Bahcall, J.N. 1989, Neutrino Astrophysics (Cambridge: Cambridge Uni-
versity Press).

For more on solar neutrinos see also
� Bahcall, J.N., Huebner, W.F., Lubow, S.H., Parker, P.D., & Ulrich,
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� Bahcall, J.N., & Bethe, H. 1990, PhysRevL, 65, 2233.
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� Bahcall, J.N. 2001a, “Solar Interior: Neutrinos,” in Encyclopedia of
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with an update in
� Bahcall, J.N. 2001b, Nature, 412, 29.

§9.4: The Role of Rotation in Evolution
The best textbook on the subject of stellar rotation is due to
� Tassoul, J.-L. 1978, Theory of Rotating Stars (Princeton: Princeton Uni-
versity Press)

and we recommend it for your general bookshelf.

Figure 9.9 is taken from
� Kawaler, S.D. 1987, PASP, 99, 1322

using material from
� Fukuda, I. 1982, PASP, 94, 271.

Papers concerning the role of magnetic braking and rotation include
� Mestel, L. 1984, in 3d Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, eds. S. Baliunas and L. Hartmann (New York:
Springer), p. 49



9.6 References and Suggested Readings 463
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The original von Zeipel’s “paradox” are discussed in
� von Zeipel, H. 1924, MNRAS (London), 84, 665, 684.

General questions of instabilities induced by steep rotation gradients are dis-
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� Zahn, J.-P. 1987, in The Internal Solar Angular Velocity, eds. B. Durney
and S. Sofia (Dordrecht: Reidel).

and
� Zahn, J.-P. 1994, A&A, 288, 829.

Some papers concerning the sun, rotation, and the lithium problem include
� Pinsonneault, M. 1988, Evolutionary Models of the Rotating Sun and
Implications for Other Low Mass Stars, Ph.D. Dissertation, Yale Univer-
sity
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along with the paper by Zahn cited above. A general review of results of
computations of realistic stellar models that include chemical mixing (by
rotation and other processes) is
� Pinsonneault, M. 1997, ARA&A, 35, 557.

§9.5: Helioseismology
Some seminal papers in helioseismology include—
� Leighton, R.B., Noyes, R.W., & Simon, G.W. 1962, ApJ, 135, 474
� Ulrich, R.K. 1970, ApJ, 162, 993
� Leibacher, J.W., & Stein, R.F. 1972, ApJ, L7,191.

We recommend the reviews by
� Christensen–Dalsgaard, J., Gough, D.O., & Toomre, J. 1985, Science,
229, 923
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� Harvey, J. 1995 (October), Physics Today, 32,

and a more recent and comprehensive review of helioseismology can be found
in
� Christensen–Dalsgaard, J. 2002, RevModPhys, 74, 1073.

Discussions of the results of analysis of GONG data on solar oscillations
can be found in a special issue of the journal Science, (Vol. 272), from May
31, 1996. Despite a cover graphic that may represent the ultimate in in-
scrutable representations of massive data sets, many terrific review articles
appear within. In particular, the overview paper,
� Gough, D., Leibacher, J., Scherer, P., & Toomre, J. 1996, Science, 272,
1281

sets the stage for reviews of the GONG instrumentation in
� Harvey, J.W., et al., 1996, Science, 272, 1284
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� Hill, F., et al., 1996, Science, 272, 1292.

Seismic inversions and the deduced structure of the sun are then described
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� Gough, D., et al., 1996, Science, 272, 1296.

Many more details in articles that accompany this review in the same issue
of Science.
� Gough, D.O., 2003, Ap&SS, 284, 165
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Figure 9.10 is from
� Libbrecht, K.G. 1988, SpSciRev, 47, 275

who uses data from
� Duvall, T.L., Harvey, J.W., Libbrecht, K.G., Popp, B.D., & Pomerantz,
M.A. 1988, ApJ, 324, 1158.
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� Libbrecht, K.G., Woodard, M.F., & Kaufman, J.M. 1990, ApJS, 74, 1129.

There have been several tabulations of solar p-mode frequencies from the
pre–GONG era such as Duvall et al. (1988). For lower-order modes see
� Duvall, T.L. Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D., & Pomer-
antz, M.A. 1988, ApJ, 324, 1158.
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� Schou, J., et al. 2002, ApJ, 567, 1234.



10 Structure and Evolution of White Dwarfs

“Any fool can make a white dwarf.”

— Icko Iben Jr. (1985)

We have already discussed the evolutionary stages leading to the white dwarfs
(§2.6) and described their internal structure as being determined by the com-
bination of high gravities and an electron degenerate equation of state. This
chapter will elaborate on their structure, evolution, and importance as the
endpoint of evolution for most stars. The variable white dwarfs, discussed in
the final section, will be shown to play an important role in this program.
There is no one text that deals solely with these objects but, for further
reading, we suggest Liebert (1980), Shapiro and Teukolsky (1983), Iben &
Tutukov (1984), Tassoul et al. (1990), D’Antona & Mazzitelli (1990), Weide-
mann (1990), Trimble (1991, 1992), Fontaine et al. (2001), Koester (2002),
and Hansen and Leibert (2003).

10.1 Observed Properties of White Dwarfs

In most respects white dwarfs form a remarkably homogeneous class of star.
Figure 2.15 showed a color-magnitude diagram where a large sample of these
stars resident in the galactic disk were plotted on an HR diagram, and we
suggest you look at that figure again. They form a well-defined sequence to
luminosities down to around 3 × 10−5 L�, below which, as far as can be
determined, we do not find cooler objects (if we exclude those lurking in the
halo of our galaxy, as discussed in §2.6.1). The tight correlation of luminosity
with effective temperature (i.e., MV with B–V ) immediately demonstrates
that their radii are all very nearly the same with R ≈ 0.01R� ≈ 7 × 108
cm. Spectroscopic observations coupled with theoretical stellar atmosphere
calculations have determined that their surface gravities are near log g ≈ 8
(g ≈ 108 cm s−2), which, considering the radii, yields masses ofM∼ 0.6M�.
Spectroscopic results for individual single stars of the most common types
(DA and DB, as discussed later) firm this up further and indicate that an
average mass is 0.6 M� with a surprisingly low dispersion of only around
0.1M� about this figure.1

1 The realization that most single white dwarfs have nearly the same mass is a
relatively recent development. Since they have evolved from stars with different
initial masses this uniformity must be telling us a lot about how mass is lost
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White dwarfs in binary systems have a wider range of masses determined
from reliable binary orbit solutions; for example, the mass of Sirius B (α CMa
B) is 1.053 ± 0.028 M�, while 40 Eri B (σ2 Eri B) is below the single-star
mean with 0.43± 0.02M� (as reviewed in Liebert, 1980).

Spectroscopic observations also reveal that the atmospheric composition
of white dwarfs may differ wildly from one to the next. Most common are
those whose surfaces consist almost entirely of hydrogen with contamination
by other elements exceeding, in some instances, no more than one part in a
million by number of atoms. These are the DA white dwarfs and they make up
some 80% of all white dwarfs, although the exact percentage does depend on
effective temperature class. Next most common are the DB white dwarfs with
helium atmospheres, which make up almost 20% of the total. The remainder
consists of stars with hybrid atmospheres or those with peculiar abundances.
The most commonly used spectroscopic classification scheme is summarized
in Table 10.1 adapted from McCook and Sion (1999). Note that there is
evidence that the surface abundance, and therefore spectral classification,
for a given white dwarf may change as it evolves. As new data appear, we
expect the classification scheme to evolve with time also. Apparently strange
hybrids are possible, so that, for example, McCook and Sion list one star
as having the classification DAZQO, which may, however, be an indicator of
uncertainties in observing the spectrum.2

Effective temperatures for white dwarfs range from well over 100,000 K to
lower than 4,000 K. The majority of known white dwarfs have temperatures
higher than the sun and hence the “white” in their name. As in the MKK
system (§4.7), numbers are attached to the DA, DB, etc., classification to
indicate Teff . Thus, for example, we find DA.25 for a DA with Teff ≈ 200, 000
K and DA13 for Teff ≈ 3, 600 K. As will soon be apparent, we can best
explain the sequence in the HR diagram of Fig. 2.15 by cooling where, as
time progresses, hot white dwarfs gradually evolve to lower temperatures
along the sequence and, with a small number of important exceptions, become
redder as they cool. The exceptions occur at the very lowest temperatures. At
Teff ≈ 3, 600 K the white dwarf surface is cool enough that the H2 molecule
can survive. Infrared “collision induced absorption” by this molecule is so
efficient that the emergent spectrum looks bluer than for white dwarfs with
somewhat higher effective temperatures. This is very new stuff and we suggest
you peruse, for example, Saumon and Jacobson (1999) and Oppenheimer et
al. (2001).

in the AGB stage. However, there are a small number of single objects whose
masses lie in the high-mass tail of the distribution.

2 McCook and Sion also use “n” to denote WDs with very sharp, narrow lines and
“d” for those with very diffuse, broad lines. The significance of the line width
is that sharp lines may be associated with exceptionally low surface gravities
(log g <∼ 7) and “d” with exceptionally high gravities (log g <∼ 9) giving rise to
pressure broadening. These designations are to be used only when there are
good reasons to believe the gravity determinations.
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Table 10.1. White Dwarf Spectroscopic Classification Scheme

Spectral type Characteristics

DA Balmer Lines only; no He I or metals present
DB He I lines; no H or metals present
DC Continuous spectrum with no readily apparent lines
DO He II strong; He I or H present
DZ Metal lines only; no H or He lines
DQ Carbon features of any kind
P (suffix) Magnetic WDs with detectable polarization
H (suffix) Magnetic WDs without detectable polarization
X (suffix) Peculiar or unclassifiable spectrum
E (suffix) Emission lines are present
? (suffix) Uncertain classification (: may be used)
V (suffix) Variable white dwarf

White dwarfs are observed to rotate but with periods usually longer than
a few hours (Greenstein and Peterson, 1973; Pilachowski and Milkey, 1987;
and Koester and Herrero, 1988). This is a remarkable observation in itself
because if, for example, we were to let the sun evolve to the white dwarf stage
without losing either mass (an unlikely assumption) or angular momentum
(equally unlikely), then the resultant carbon–oxygen object, with a radius of
5.6×108 cm (see 3.68), would have a solid body rotation period of only about
2.5 minutes. Angular momentum loss must therefore be a common feature of
stellar evolution. We will explore rotation of variable white dwarfs in §10.4.

Many white dwarfs are variable stars (and probably the most common
overtly variable stars in the universe) and a small number also have the
strongest magnetic fields known for “normal” stars (perhaps exceeding 109

G and we exclude pulsars here for which there is only indirect evidence for
even stronger fields). The magnetic white dwarfs will be the subject of §10.3.

10.2 White Dwarf Evolution

We have yet to establish that evolutionary models of white dwarfs actually do
reproduce the observed objects, but, if our earlier ideas are correct, then the
interior should be largely electron degenerate. On the other hand, the very
surface cannot be degenerate because white dwarfs are observed to have high
effective temperatures. The surface layers should therefore be nondegenerate,
and this means very different equations of state and opacity sources. We shall
see that energy is transported rapidly through the degenerate interior but has
to diffuse gradually through the nondegenerate envelope. Thus the cooling
of white dwarfs involves the properties of matter under a wider range of
conditions than most other problems in physics or astrophysics. However,
this degenerate core–nondegenerate envelope picture results in an elegant
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simplification that permits us to construct a very simple model for how white
dwarfs evolve.

10.2.1 Cooling of White Dwarfs

The white dwarf model we shall now consider has the following elements.
Imagine that the core of the star, which comprises nearly all of the mass
and radius, is degenerate. Overlying the core is a thin envelope of nondegen-
erate material and the transition between degeneracy and nondegeneracy is
assumed to take place abruptly at a radius rtr. If the electrons are nonrel-
ativistic at rtr, then the relation between density and temperature there is
given by (3.70), ρtr ≈ 6×10−9μeT 3/2

tr . In the electron-degenerate core interior
to rtr, electron conduction is very efficient at transporting heat (according to
the arguments of §4.5) and only a mild temperature gradient is required to
drive the flux. Thus, for simplicity, assume that the core is isothermal with
temperature Tcore = Ttr.3

To determine rtr we need to be more specific about the model. If the
envelope does not support convection (and this is not true for many white
dwarfs), then the envelope approximations of §7.3.2 should describe the run
of pressure versus temperature and density. For zero boundary conditions
(7.119) states that P = K ′T 1+neff where K ′ is given by (7.120) and neff =
(s+ 3)/(n+ 1). The exponents n and s are those in κ = κ0ρ

nT−s of (1.62).
We now use this information to establish a relation between Ttr (and hence
Tcore), luminosity, and mass.

The pressure must be continuous across rtr. Above rtr the gas is nonde-
generate and we use the ideal gas law Ptr = ρtrNAkTtr/μ, so that

Ptr = K ′T 1+neff
tr = ρtr

NAk

μ
Ttr = 6× 10−9μeNAk

μ
T
1+3/2
tr (10.1)

where the transition relation between density and temperature (3.70) has
been used to eliminate density in the third term. The coefficient K ′ contains
L,M, μ, and the opacity. At this point we have to decide what is the domi-
nant opacity source, which also means specifying the composition. To make
matters as simple as possible, suppose the white dwarf is composed entirely
of elements with atomic masses heavier than 4He. In fact, we expect the cores
of most white dwarfs to be composed of some combination of ionized carbon
and oxygen. This is because 12C and 16O, both with μe = 2, are the products
of helium burning and, for single white dwarfs of average mass 0.6M�, this
is as far as core evolution has gone. Choosing the same composition for the
surface layers is not so good but, as we shall see, the final result we obtain
3 This assumption of isothermality also requires that there be no strong sources
or sinks of energy in the core such as might be associated with nuclear burning,
gravitational contraction, or neutrinos. It really only applies to WDs that are
well past the PNN stage.
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shall be quite reasonable. For the opacity we choose bound–free Kramers’
which, from (4.63), is approximated by κbf ≈ 4× 1025ρT−3.5 cm2 g−1. This
analytic opacity, while crude, still gives the flavor of what goes on, so we
use it here with no further apologies. There is no way to get what we want
without a little judicious fudging (and see Ex. 10.1).

The model we are setting up is that of a highly conductive core surrounded
by a thin insulating blanket. Heat flows easily out of the core but must work
its way out through the envelope. When we discuss cooling, it is the envelope
that controls the rate of cooling whereas the core supplies the heat.

Applying (7.120) for K ′ yields

K ′ ≈ 8.1× 10−15μ−1/2
[M/M�
L/L�

]1/2
(10.2)

where we have used κbf and neff = 3.25. Setting μe = 2 and solving the
combination of (10.1) and (10.2) for luminosity gives us the relation

L
L� ≈ 6.6× 10

−29μ
M
M�

T
7/2
tr . (10.3)

Note that for μ = 12 (12C) and M = 0.6M�, L/L� = 100 (10−4), Ttr =
Tcore is about 2.4× 108 K (4.6× 106 K).

We can now estimate the thickness of the surface layer by using (7.124),
which gives temperature as a function of r/R for a thin radiative envelope.
You may easily check that for L/L� = 10−4, rtr/R ≈ 0.99, which means that
the nondegenerate envelope can indeed be thin.

The next step is to find how the white dwarf cools. We still assume that
there are no internal energy sources such as nuclear burning or gravitational
contraction. The last means that the total radius remains roughly constant
with time. This approximation becomes better and better as the star cools
and the only energy source is the internal heat of the star.4 These are the
essentials of the now-classic Mestel (1952) cooling theory for white dwarfs
which, except for some refinements, has stood the test of time.

To apply the above results first recall that the specific heat of a nonzero
temperature degenerate gas is controlled by the ions. From (3.118), cVρ =
1.247 × 108/μI erg g−1 K−1. Since temperature is constant in the core and
the core takes up essentially all the stellar mass, then the rate at which the
ions release heat on cooling is
4 Most stars heat up when they lose energy (see the virial theorem results of §1.3.2),
which makes for a self-regulating mechanism even though it sounds peculiar—and
it is because it means they have a negative specific heat overall. Thus it is that
white dwarfs are odd because they follow what seems like the more reasonable
path and cool when they lose energy. The reason has partially to do with the very
low specific heats of degenerate electrons versus ions and the strong influence of
density on the internal energy of the electrons (§3.7.1). See the discussion in Cox
(1968, §25.3b).
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L = −dEions

dt
= −cVρM

dTtr
dt

. (10.4)

To find how luminosity changes with time, differentiate (10.3) with respect to
time, use (10.3) to get rid of Ttr, and then use (10.4) to eliminate the tempera-
ture derivative. The resulting differential equation, which should now contain
only the dependent variable L(t), is then integrated to obtain a “cooling time”

tcool = 6.3× 106
(

A

12

)−1( M
M�

) 5
7(μ
2

)− 27[( L
L�

)− 57
−
( L0
L�

)− 57]
(10.5)

where tcool is in years. Here A is the mean atomic weight of the nuclei in amu
and L0 is the luminosity at the start of cooling. After long elapsed times the
second term in the brackets becomes negligible compared to the first so we
drop it for simplicity and, at the same time, change the leading coefficient to
match more accurate results for cooling white dwarfs calculated by Iben and
Tutukov (1984, and see Iben and Laughlin, 1989). The final result is

tcool = 8.8× 106
(

A

12

)−1( M
M�

)5/7 (μ
2

)−2/7( L
L�

)−5/7
yr . (10.6)

Figure 10.1 shows cooling curves for pure carbon white dwarfs derived
from evolutionary calculations. Were these results pure Mestel (1952) cool-
ing, we would only have straight lines in this log–log plot as shown by the
dotted line in the figure for 0.6M� as derived from (10.6). The very close,
but perhaps partly fortuitous, match indicates that we have captured the
essentials of the physics of white dwarf cooling. It is evident that the hottest,
and therefore most luminous white dwarfs, cool the fastest. At the cool end,
we see by plugging L = 10−4.5L� into (10.6) that the cooling time for the
coolest white dwarfs is approximately 1010 years. We have already made this
point in §2.6.1 where, in Fig. 2.16, we plotted the “drop-off” in the number
of white dwarfs at low luminosities. For those of you who attempted Ex. 2.9
(and you should have) you will already have applied (10.6) to find Galactic
disk and halo ages. And now you know where it came from.

10.2.2 Realistic Evolutionary Calculations

The ideal calculation of evolving white dwarfs has yet to be realized. In
addition to physical processes that are difficult to model in the white dwarfs
themselves, the starting conditions require knowledge of how white dwarfs are
formed. This means that the origin of white dwarfs as planetary nebula nuclei
must be understood to provide realistic starting models. Unfortunately, the
process of planetary nebula formation is still somewhat of a mystery. White
dwarfs can play a critical role in helping explain that stage because whatever
PNN models are made must eventually reproduce the observed statistics of
those stars.
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Fig. 10.1. Cooling curves for pure carbon white dwarf models as adapted from
Winget et al. (1987). The dotted line is a Mestel (1952) cooling curve for a 0.6M�
carbon white dwarf using (10.6).

What is usually done in white dwarf evolutionary studies is to either
start off with a completely ab initio model of a very hot white dwarf where
the initial structure (run of composition, T (r), etc.) is specified beforehand
or, with the hope of realism, to start a model from the main sequence and
continue on to the white dwarf stage. The latter requires evolving the model
into the asymptotic giant branch phase and then lifting off the outer layers
in some reasonable manner to expose the underlying pre–white dwarf object.
Both methods have their champions.

It is generally assumed that the cores of most white dwarfs are composed
of a carbon–oxygen mixture. Exceptions to this may occur for special objects
such as the white dwarfs in nova systems where there is not only evidence that
these are more massive than average (about 1M�); but, from observations of
the ejecta, some may be rich in heavier elements such as those in the nuclear
mass range Na to Al (as briefly discussed in §2.11.1). We shall ignore such
anomalous objects.5

The surface layers of most white dwarfs consist initially of some combi-
nation of hydrogen and helium (but not necessarily both) contaminated by

5 There may be a selection effect operating here because the more massive objects
in close binary systems are expected to erupt more often and more brightly than
their less massive counterparts. A paucity of ejecta for the less massive objects
could also hide their true composition.
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traces of heavier elements. The exact details depend on how much mass was
lost in the AGB phase, how much nuclear processing has occurred, whether
mixing has taken place, and whether stellar winds are active in the PNN
phase. Determination of the surface composition of the just-formed and very
hot object is difficult because temperatures exceeding 100,000 K put interest-
ing details of the spectrum in the hard UV and soft x–ray. However, based on
the observation that cooler white dwarfs show either nearly pure hydrogen
(DA) or helium (DB) in their spectra, two different classes of model have
been examined in detail. The first assumes that all hydrogen has been lost.
These evolve into DB white dwarfs. The second has a hydrogen surface layer
above a layer of helium. Whether the DB-like object has trace amounts of
hydrogen (which can later “float” to the surface to convert the star to a DA)
is a matter of controversy at the present time. Similarly, the thickness of the
hydrogen layer in the DA objects is also not known very well (although one
cool variable DA star most likely has a thin layer; see §10.4). If thin enough,
convection at later stages could convert the DA to a spectroscopic DB. We
shall avoid such unresolved issues here for the moment because, for the most
part, they are refinements. However, the total mass of hydrogen cannot much
exceed 10−4M� because, if it did, nuclear burning would occur. Similarly,
the helium layer mass should not exceed about 10−2M�.

Whether DA or DB, the newly formed objects have some common char-
acteristics. The surface layers are still hot enough that shell CNO hydrogen
or helium burning may still be taking place. These energy sources can, for the
initial stages of evolution, provide the dominant energy source. There are also
energy losses due to neutrino emission. Because of the extreme conditions in
the deep interior, various processes come into play that produce neutrinos
that easily pass through the star and carry away energy. We shall not discuss
these processes here (see §6.8) but in very hot white dwarfs they are efficient
in cooling the interior and may cause a central temperature inversion. Under
the latter circumstance heat flows inward and some is eventually given to the
neutrinos. The luminosity loss due to neutrinos can rival or exceed optical
luminosity of the entire star (see below).

Several new pieces of physics enter as the white dwarf cools. We have
already mentioned solid-state effects in §3.6 and these can radically alter the
equation of state. Because these are phase changes (e.g., crystallization), the
thermal properties of the medium are also effected. Thus, for example, if the
stellar material crystallizes, then latent heat is liberated, which can slow the
cooling of the star. All these effects are incorporated into modern models
(as in Iben and Tutukov, 1984; Lamb and Van Horn, 1975; Koester and
Schönberner, 1986; Tassoul et al., 1990, and see especially §3 in the review
of Fontaine et al., 2001).

An additional subtlety comes about with crystallization in a C/O core.
The two elements do not crystallize at quite the same rate and the tendency
is for oxygen to crystallize first, separate out from the carbon, and then sink
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deeper into the interior. Not only does this affect the composition profile but
the sinking of the heavier oxygen relative to the carbon liberates some energy
(as, in effect, a form of gravitational contraction). This too affects the rate of
cooling. Without us getting involved in this complicated (and still somewhat
contentious) issue, we suggest you peruse Isern et al. (2000, and references
therein).

In the simple radiative model of the preceding section we ignored convec-
tion completely. This is a serious omission. As the white dwarf cools, surface
convection zones grow and die out, thus affecting the rate of cooling in these
important outer layers (see, e.g., Fontaine and Van Horn, 1976; Tassoul et
al., 1990; and Fontaine et al., 2001). As part of the modeling of these con-
vection zones we also require adequate and consistent equations of state and
opacities for the envelope. These can be very difficult to compute because of
nonideal effects for the multicomponent gases involved.

Mixing of elements by convection is also possible, which can change the
photospheric abundances and confuse the issue of spectral classification. We
again remind you of the theoretical difficulties in describing stellar convection.
Thus far, the MLT (see Chap. 5) is used for these evolutionary studies with
its attendant problems.

Now how do we account for the near purity of elements in the atmospheres
of DA and DB white dwarfs? This is not only an important observational issue
but it also impacts on the evolution: hydrogen and helium are different. Even
at the trace element level it has important consequences because, for example,
opacities are strongly effected by even trace amounts of heavy elements. The
prime cause of this purity is “gravitational settling.” This term, although it
is frequently used in the literature, is somewhat of a misnomer, although it
is convenient to picture light elements floating and heavy elements sinking.
It is true that the gravitational field is ultimately responsible for separation
of heavy from light, but the immediate cause is the presence of pressure
gradients and the resulting imbalance of forces on ions. The derivation of
the rate of separation is beyond what we shall do here but it contains some
very interesting physics. A classical derivation is contained in Chapman and
Cowling (1960).

Countering the effects of gravitational settling is the normal process of
diffusion whereby gradients in composition force elements to diffuse and thus
reduce the gradients. In addition, “radiative levitation” can cause elements
to rise by means of radiative forces acting on specific trace atoms through
bound–bound and bound–free transitions. The net effect of these diffusive
processes is very complex, but the bottom line is that evolutionary time
scales in high-gravity white dwarfs are amply long for separation to become
complete (although some elements in the deep core may resist). Other conse-
quences of separation and diffusion for white dwarfs are discussed in Fontaine
and Michaud (1979), Michaud and Fontaine (1984), and Iben and MacDon-
ald (1985). Some combination of these processes must at least be partially
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responsible for what seems to be the changing faces of DB to DA and back
to DB again as evolution goes on (as briefly discussed in §2.6.1). We also
remark that these processes are of considerable interest for other stars as in
the peculiar abundance spectral class A stars (Michaud, 1970).

Fig. 10.2. Shown as a function of time are luminosities during the evolution of a
0.6M� helium atmosphere white dwarf. Maximum and central temperatures are
also indicated. Reproduced, with permission, from Iben and Tutukov (1984).

Finally, we show some evolutionary results from the work of Iben and
Tutukov (1984, who give lots of graphical summaries). Their methods parallel
those of other authors and are representative of modern efforts. The model
is that of a 0.6M� DB helium atmosphere white dwarf and the mass of the
helium layer is 0.016M�. Figure 10.2 shows the time evolution of various
components of luminosity and temperature. The quantity Lg is the total
of the luminosity released from internal thermal and gravitational potential
energies. The luminosity generated by helium shell burning is denoted by
LHe and neutrino losses are represented by Lν . Also shown is the maximum
temperature in the model (Tmax) which, because of neutrino losses, is not
necessarily located at the center of the model where the temperature is Tc.

The total photon luminosity for the same DB model is shown in Fig. 10.3
as “Model B” (as are the results for a DA white dwarf sequence). Also shown
are the late evolutionary effects of liquefaction and crystallization. The leg-
ends involving Ṁacc indicate the luminosity released by gravitational poten-
tial energy if mass is accreted onto the stellar surface. All these effects are
only noticeable after the total luminosity falls below 10−2 L�. You may wish
to compare this figure to the dotted line in Fig. 10.1, which shows the simple
analytic cooling curve.
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Fig. 10.3. Luminosity versus time for two evolutionary sequences. Model “B” is
the same as in Fig. 10.3. Model “A” is a DA star with parameters given in the
figure. Reproduced, with permission, from Iben and Tutukov (1984).

10.3 The Magnetic White Dwarfs

There are two primary ways of detecting magnetic fields in white dwarfs. The
first, and most sensitive, is by measuring linear and quadratic Zeeman effects
in spectral lines if those lines can be recognized in the strong field objects.
This technique requires strong lines, but these are not always to be found,
and, even if they are present, the inherent dimness of white dwarfs often
defeats the observer. (A check on some results may be made by observing
gravitational redshifts of the lines.) The second method depends on the detec-
tion of continuum circular polarization and is especially useful when magnetic
field strengths are high. At the present time, the lower limit for detectable
fields is about 104 G, except under unusually favorable circumstances, and
that’s 100,000 times bigger than the sun’s average magnetic field!

The compilation of magnetic field strengths by Angel et al. (1981) lists
measurements for over 100 white dwarfs. The results fall into three cate-
gories: (1) upper limits of a few thousand Gauss (these are the relatively rare
cases where the observing conditions are favorable); (2) possible detections
at around 105 G (where, in most cases, the errors bars on the measurements
preclude a firm determination at that level); and (3) fields clearly in excess
of 106 G (=1 MG). Thus it appears that white dwarfs either have “weak”
fields or very strong fields. The number of these strong-field white dwarfs
is, however, very small and they are now referred to as the “magnetic white
dwarfs.” Schmidt (1988) lists 24 known magnetic white dwarfs. The inferred
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strengths of the polar field (assuming dipole geometry) range from about 2
MG up to the strongest at perhaps over 500 MG for the star PG1031+234.

The polarization in this last object is modulated with a period of three and
a half hours due to rotation and this allows the surface of star to be “scanned”
as a function of time. From this, the geometry of the magnetic field may be
inferred, and this is shown in Fig. 10.4 (from Schmidt et al., 1986). There
appears to be a global field that is dipolar in nature but the axis of the field
is inclined away from the rotation axis (an “oblique” rotator). In addition
there is a magnetic “spot” on the surface whose central field may approach
1,000 MG (Latter et al., 1987)!

Fig. 10.4. The inferred field geometry of the magnetic white dwarf PG1031+234.
A dipole-like field that is not aligned with the rotation axis is accompanied by
a magnetic “spot.” Fields on the surface of this star may approach 109 Gauss.
Reproduced, with permission, from Schmidt et al. (1986).

A more recent survey is that of Schmidt and Smith (1996) who report on
Zeeman spectropolarimetric observations of 48 DA white dwarfs. The mean
error in the longitudinal magnetic field measurement is 8,600 G. An intensive
“mini-survey” of a selected few white dwarfs brings the mean error for that
sample down to a mere 2,000 G. They note that a null result (within the
errors) may still not reveal the presence of a magnetic field because, as may
well be the case, a tangled field, although strong locally, may escape detection.
(Schmidt and Grauer, 1997, report the apparent absence of fields on three
variable white dwarfs, but that is a story for later.)
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10.3.1 Magnetic Field Decay

Are strong (or weak) fields in white dwarfs a surprise or not? The origin
and evolution of magnetic fields in stars is still not at all well understood.
Some fields may be the remains of interstellar medium magnetic fields that
were trapped during the process of star formation. It is more likely, however,
that fields are produced in situ by dynamo action caused by the interaction
of convection and rotation (see, for example, the review by Parker, 1977).
Important as it is, we shall not attempt to develop this topic. We can, on the
other hand, do some simple calculations to see if we should be surprised at
the strength of these fields.

The average surface magnetic field of the sun (as a typical white dwarf
progenitor star) is of the order of one Gauss. Suppose this is representative
of the interior down through the convection zone (although one Gauss is
probably too low). If we were to now suddenly turn off the mechanism for
producing this field, how long would the field persist? The time development
of a magnetic field is given by (see Jackson, 1999)

∂B
∂t

= ∇×××(v×××B) + c2

4πσ
∇2B . (10.7)

The units used here are Gaussian (see the Appendix of Jackson, 1999) and
there is no clear agreement within the astronomical community on a com-
mon set of units. The quantity σ is the conductivity and has the units s−1.
If we ignore the first term on the righthand side (in the spirit that no cur-
rents are flowing), then the remainder is a diffusion equation, meaning that
the magnetic field will decay away unless replenished. Taking a dimensional
approach, a characteristic diffusion time is

τ =
4πσL2

c2
(10.8)

where the length L is a measure of the spatial variation of the field. For the
remainder of the discussion this will be set equal to the stellar radius R (or
you can use a reasonable fraction thereof).

An estimate for the conductivity of the ideal ionized gas is given by Spitzer
(1962, §5.4) which is, after changing to our units,

σ = γe
2(2kT )3/2

π3/2meZe2 lnΛ
. (10.9)

The quantity γe depends on the ionic nuclear charge, Z (for complete ioniza-
tion), and ranges from unity for very large Z down to 0.582 for hydrogen. If
we assume that the sun is pure hydrogen, then its conductivity is

σ(H) ≈ 1.4× 108 T 3/2

lnΛ
(10.10)
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where an estimate for Λ is (see Spitzer 1962)

Λ ≈ 104T
3/2

n
1/2
e

.

For a typical virial estimate temperature of T ≈ 2 × 106 K from (1.36) and
average density of 〈ρ〉 = 1.4 g cm−3, the solar magnetic field decay time is
τ ∼ 7× 1018 s or 2× 1011 years. This is an overestimate (the time should be
more like ∼ 1010 years), but the end result is that the field should persist at
reasonable strength through the main sequence stage. If this field is not lost
in later stages (and planetary nebula ejection might do just that), then the
final white dwarf should retain the remnants of the field.

To estimate what the field strength in the just-formed white dwarf might
be, we return to the original equation for the magnetic field evolution. Since
the conductivity seems to be large (and, as we shall show, will remain so),
we neglect the diffusion term; that is, we go to the infinite conductivity limit.
In this limit the field lines are frozen into the plasma and the magnetic flux,
Φmag, is conserved (in a Lagrangian sense—see Jackson, 1999). This may be
put crudely as “Φmag ∼ BR2 remains constant as radius changes.” Thus if
the sun has a roughly 1-G field, then the just-formed white dwarf (with a
radius of a little over 0.01R�) should have a field of the order 104 G. Pushing
all other uncertainties aside, this means that typical white dwarfs should have
weak fields. Where do the magnetic objects come from?

A best guess is that the progenitors of the magnetic white dwarfs are the
Ap stars. (See, for example, the review by Angel, 1978, and, for the Ap stars,
the monograph by Jaschek and Jaschek, 1987.) These stars have anomalously
intense magnetic fields that may be as high as 4,000 G and their population
statistics are consistent with the number of magnetic white dwarfs versus
weak field objects. And, not so incidentally, there is a subclass called the
“rapidly oscillating Ap stars” (roAp) which are nonradial variables in which
the magnetic field is aligned obliquely to the rotation axis. (For reviews see
Kurtz, 1986; §9 of Unno et al., 1989; and our §2.10.)

Once having been formed with strong magnetic fields, these objects can
retain their fields for long times. To substantiate this we now allow for diffu-
sion and consider the finite conductivities of a nonrelativistically degenerate
pure carbon plasma given by Wendell et al. (1987):

σ = 109
T 2

ρκcond
s−1 . (10.11)

Here κcond is the conductive opacity for which we gave an estimate in (4.72).
Inserting that estimate for pure carbon we find that

σ ≈ 2× 1015 ρ s−1 . (10.12)

For an average white dwarf density of 5 × 105 g cm−3 this yields a decay
time of 2 × 1011 years. This is an overestimate (as in the case of the sun),
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but the detailed calculations of Wendell et al. (1987) indicate that the decay
times for simple dipole fields are always longer than the evolutionary time.
More complicated fields with higher multipole moments tend to decay faster,
implying that after long times the geometry of the fields should simplify.

Finally, are strong magnetic fields a factor in evolution? A rough way to
gauge their importance is to compare the magnetic field pressure Pmag =
B2/8π to the gas pressure. Wendell et al. (1987) point out that the central
values of the fields in their models are some ten times the surface values.
For a surface field of B = 109 G, as rough upper limit thus far, this implies
a central magnetic pressure of Pmag ≈ 4 × 1018 dyne cm−2. But this is far
smaller than the hydrostatic estimate P ∼ GM2/R4 ∼ 4× 1023 dyne cm−2
required for equilibrium in a typical white dwarf. They also suggest that
Pmag � P holds for all times because flux conservation (BR2 a constant)
implies Pmag ∼ R−4, which has the same dependence on R as the hydrostatic
pressure. The conclusion is that we may safely neglect the effects of magnetic
fields as far as deep interior evolutionary calculations are concerned. The
same may not be true for regions of the star near the surface because the
pressures are relatively low there. At the very least, opacities are affected by
fields because of their effects on atomic energy levels, and this, after all, is
how the fields may be detected in the first place.

10.4 The Variable White Dwarfs

It was once thought that white dwarfs were extremely stable in their light
output, so much so that they could be used as luminosity standards for faint
variable stars. Acting on this assumption, A.U. Landolt observed the white
dwarf HL Tau 76 with the intent of using it as a standard star. To his surprise,
and as reported in Landolt (1968), he found instead that this star was variable
with a period of 12 minutes and with luminosity variations of over a tenth of a
magnitude. Thirty-six these variable white dwarfs have been discovered and,
from considering the statistics of the total white dwarf population, McGraw
(1977, and see Cox, 1982) concludes that this class of variable star is the
most common in the universe among those that are obviously variable. There
are also 15 variables that we have not included at this point. These should
perhaps more properly be called pre-white dwarfs because they are either
PNNs or PNNs that have but recently lost their surrounding nebulosities.
(We suppose the question is, “When is a white dwarf a white dwarf?” As you
will see, we will often hedge on the question.) For an accessible compilation
of most of the presently known variables see Bradley (1999). In any case, the
following discussion will include the true white dwarfs and their immediate
progenitors.

The study of variable white dwarfs is still in the stages of active obser-
vational and theoretical development and we can only touch on the high
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points here. Reviews include Winget (1988), Kawaler and Hansen (1989),
and Fontaine et al. (2001).

10.4.1 The Observed Variables

As briefly discussed in §2.10, there are two major classes of variable white
dwarfs. All are multiperiodic, with periods ranging from roughly 100 to 1,000
s. The coolest are the hydrogen-surfaced DAVs or “ZZ Ceti” variables. They
lie in the effective temperature range 12, 500 >∼ Teff >∼ 11, 300 K (Bergeron et
al., 1995). The hot (cool) end of this range is called the “blue (red) edge”
because of color. At just a bit over 1,000 K, the interval in temperature (and
color) is narrow and well defined and is called the “instability strip.”6 (The
same nomenclature applies to the variable stars of the Cepheid strip discussed
in chaps. 2 and 8.) Twenty-eight of these stars have been discovered, and HL
Tau 76 is among them.

The second class are the DBVs with helium surfaces lying in the temper-
ature range 28, 000 >∼ Teff >∼ 22, 000 (Beauchamp et al., 1999). There are eight
known.

An additional class, as pre-white dwarfs, are not as well-defined as the
above two. These are very hot (8 × 104 <∼ Teff <∼ 1.7 × 105 K) and are either
DO (pre-)white dwarfs or nuclei of planetary nebulae. The prototype DOV
is PG1159-035 discovered by McGraw et al. (1979) and is otherwise known
as GW Vir. The coolest of these could very well be called very hot white
dwarfs. The prototype PNN variable (PNNV) is K1–16 that is embedded in
a planetary nebulosity, which makes it difficult to observe as a variable star
(Grauer and Bond, 1984).

These are the immediate essentials of the observational characteristics
of the white dwarf variables. More detailed observational material will be
discussed below in considering what the variables tell us about structure and
evolution.

10.4.2 White Dwarf Seismology

Because typical periods for well-studied variable white dwarfs are around a
few hundred seconds, the observed oscillations cannot be acoustic modes.
The estimate for the frequencies of p-modes given by (8.111) sets an upper
limit for periods of Πp <∼ π

∫
v−1s dr. But this is essentially the period–mean

density relationship discussed in §1.3.5. A typical average density for white
dwarfs is 〈ρ〉 ≈ 106 g cm−3, so that using (1.40) with a coefficient of 0.04
day yields Πp <∼ 4 s. This is too short by at least a factor of 20 to match
the observations. What is left are gravity modes. The following outlines the
6 There is some evidence that not all DAs in the instability strip pulsate. If not,
then the name is a misnomer. See Kepler and Nelan (1993).
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arguments originally developed by Chanmugam (1972), Warner and Robinson
(1972), and put on a firmer numerical footing by Osaki and Hansen (1973).

The periods of gravity modes depend on the run of the Brunt–Väisälä
frequency, N2, as shown by (8.112). There is really no way we can estimate
that quantity easily but it does have certain distinctive qualitative features in
white dwarfs. For example, it is very small in the electron-degenerate interior.
This may be seen by comparing (5.29), which gives a definition of N2, and
(3.116), which shows how χT varies with temperature for a degenerate gas.
The point is that for the (relatively) low temperatures deep inside white
dwarfs, N2 is small. This is not necessarily the case in the envelope and
typical values of a few thousand s−2 may be encountered. (It will, of course,
be negative in convection zones.) On the other hand, the Lamb frequency S�
is large in the interior but becomes very small in the envelope as was the case
for the sun.

If we now recall our discussion of the conditions for wave propagation (see
8.108 and following), it becomes clear that g-modes propagate in the envelope
regions, whereas p-modes (which do not seem to exist in these variables) tend
to do so in the deeper interior. Note that this is the opposite from the sun.
Thus we have the picture of gravity modes actively waving around in the
surface regions but being excluded from the core because of very small values
of N2 deep inside. Detailed numerical calculations, as reviewed in the primary
references, yield periods of the length observed.

The cause of the instability has been determined to be the same as that
which drives more classical variable stars: it is associated with some combi-
nation of the ionization zones of hydrogen or helium and perhaps carbon in
the hottest objects (Dziemboski and Koester, 1981; Dolez and Vauclair, 1981;
Winget, 1981; Starrfield et al., 1982; Winget et al., 1982a; and see O’Brien,
2000).7 Part of the great (and relatively recent) success of this program was
the search for, and discovery of, the DB variables (by Winget et al., 1982b).
The existence of these variables was predicted by theory. This is the first
class of variable star not to have been found by accident.

The calculations that test for stability for g-modes have been remarkably
successful for the DAV and DBV stars and the results agree reasonably well
with the observed location of their respective blue edges. Although there
are some differences of opinion on the details of precisely how much mass
is tied up in surface hydrogen or helium layers, the cause of instability is
now understood, and our knowledge of the overall structure of these stars is
secure.

The situation for the very hot DOV and PNNV variables is not as rosy.
Theoretical periods derived from adiabatic pulsation studies have no trouble
7 Another destabilizing mechanism for the DAVs has been proposed by

� Goldreich, P., & Wu, Y. 1999, ApJ, 523, 805
that involves efficient surface convection where ionization is not explicitly re-
sponsible for the driving.
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matching the observed periods for these stars but the exact cause of the
instability is still somewhat uncertain. The difficulty is that the evidence
from spectroscopy is not clear enough to determine the precise composition of
their photospheres. If this were known, then more reasonable guesses could be
made to model the interior layers close to the surface. It is known, however,
that helium, carbon, and oxygen are present in the photospheres and it is
very likely that ionization of some of these elements is sufficient to drive the
star to instability. To confuse the issue further, non-variables coexist along
with variables—and you can hardly tell some of them apart by their spectra
(Werner, 1995).

Another problem that arises with the hot variables is that theoretical stud-
ies suggest that these stars should be driven unstable due to the ε-mechanism
(§8.2.1) operating in hydrogen or helium burning shells left over from the pre-
vious evolutionary stages and that oscillations with periods of from 50 to 200
seconds should be seen (Kawaler, 1988; Kawaler et al., 1986). These calcu-
lations are based on standard evolutionary models in which active burning
shells are present. The problem is that the hot variables show no evidence for
such short periods (e.g., Hine and Nather, 1988). This is very disturbing and
implies that either some adjustments have to be made in our evolutionary
calculations or the pulsation work is somehow incorrect. If it is with the mod-
els, then our ideas about how white dwarfs are formed from AGB stars may
be flawed. Sounding out such things is one of the roles of asteroseismology.

Another task is detecting evolution in action. This has been reported by
Costa et al. (1999, and see Winget et al., 1991). Using data spanning 10
years (but, of course, not continuously), they were able to detect a secular
change of period in one otherwise very stable oscillation period (at 516 s)
in the hot and (presumably) rapidly evolving DOV star PG1159–035. The
latest update (Costa et al., 1999) on the rate of period change for this 516-s
g-mode is Π̇ = (+13.07± 3)× 10−11 s s−1, which corresponds to an e-folding
time (Π/Π̇) for an increase in period of about 105 years.8 This time scale
is a bit shorter than the e-folding time for luminosity decrease derived from
evolutionary models of PG1159–035-type stars, and in fair agreement with
pulsation calculations of these same models. By “fair” we mean within a
factor of ten but, considering the complexity of the problem, this is really
rather good. We shall return to PG1159–035 in a bit.

Detecting secular period changes in the cooler white dwarfs is much more
difficult because they cool and evolve so slowly. Kepler et al. (2000) have
reported a rate of period change for a Π = 215-s mode of Π̇ = (2.3± 1.4)×
10−15 s s−1 in the DAV star G117–B15A. This corresponds to an e-folding
time of 3× 109 years. If this Π̇ is due solely to processes intrinsic to the star
8 Costa et al. (1999) quote some smaller error bars for this Π̇, but, being conser-
vative, we choose the largest they obtain. In any case, their Π̇ implies that the
516-s period has increased by only about 40 ms over the 10 years of observation.
See their paper to find out how such magic is performed.
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(i.e., with no significant contributions from proper motion or orbital effects
from a distant companion), then it is consistent with DA models for G117–
B15A. So, for example, using models of Bradley (1998), this star should be
contracting (by cooling) at a rate of 1 cm year−1 and the thickness of the
hydrogen layer is a mere 1.5× 10−4 of the total stellar mass. Remarkable.

White Dwarfs and the Whole Earth Telescope

Perhaps the best way to summarize the successes of white dwarf seismology
is to review what we know about the DOV star PG1159–035 discussed above
and how that information was obtained. This is a case history in asteroseis-
mology.

One of the prime difficulties met in extracting information from a variable
star are the constraints placed on observation by the rotation of the earth
and the seasonal aspect of the constellations. If we observe from a single
telescope, then information is lost during the daylight hours and roughly
half a year is lost each year since the star is not in the nighttime sky (to
say nothing of weather). This is a serious problem for variable white dwarfs
because what is needed is resolution of the multiperiodic oscillation structure.
As an example, consider a hypothetical variable that is pulsating in two modes
whose frequencies are spaced a mere 4 μHz apart. If we were to observe this
star for eight hours over only one night then there is no way that we could
tell there were actually two periods present. This is because of the relation
between length of observation and resolution in frequency, which we can show
using the properties of Fourier transforms.

If we observe a sinusoidally periodic signal of frequency f0 over a finite
time span T, then the amplitude of the Fourier transform of that signal is
not a delta function at f0. Instead, we find a relatively broad peak around
f0 with a width in frequency of approximately 1/T with “sidelobes” of lower
amplitude extending out on either side. This means that we may see a peak
at f0 but the uncertainty in the exact location of the frequency of that peak
is perhaps as large as 1/T. (Heisenberg would be amused. This is just another
version of the uncertainty principle between time and energy as applied to as-
tronomical observations.) Thus if we observe for eight hours, the uncertainty
in frequency is 1/(8 hours) or 3.5 × 10−5 Hz, or 35 μHz, which is far larger
than the 4-μHz spacing between our two hypothetical modes. The net result
is that we would not be able to resolve the two peaks in the Fourier transform
and thus would not be able to tell there were two different signals present.
The way around this is, obviously, to observe the star long and continuously.
And this gets us back to PG1159–035.

Winget et al. (1991) reported observations of PG1159–035 taken nearly
continuously around the 24-hour clock for a period of two weeks using the
“Whole Earth Telescope” (WET). This remarkable instrument consists of
up to (depending on the circumstances) 13 or so individual telescopes, with
cooperating observers in attendance, spaced around the world in longitude
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whose duty it is to observe, during their individual nighttimes, a single white
dwarf or other kind of variable as the earth turns. You might say that even
though the earth turns, the telescope doesn’t. The data gathered from the
high-speed photometers is relayed by electronic mail to a single control site
(presently in Ames, Iowa) where the information is analyzed in almost real
time. The operation of the WET is reported in Nather et al. (1990).

The WET was used for two weeks of “dark time” (no moon) in 1989
to observe PG1159–035 almost continuously. A small sample—only about
seven hours out of a total of 264 hours of data—of the light curve from that
star is shown in the insert of Fig. 10.5 (earlier shown as Fig. 2.24), where
the ordinate is the relative intensity, in visible light, around the mean. We
have pictured this as a continuous curve but it really consists of about 2,400
individual points spaced 10 s apart, which is the integration time for the
photometers. The full light curve is displayed in Winget et al. (1991).

Fig. 10.5. Shown in the insert is a small segment of the light curve of PG1159–035
from a 1989 WET run. The main frequency peaks, around periods of 500 s, are
shown in the main figure.

If you were to take a ruler and measure off a rough spacing between
individual swings of data in the insert you would find that, on the whole, they
represent a sinusoid-like signal, or signals, with a period of about 500 s. This
is verified by the main curve in the figure, which shows the Fourier transform
of the entire 264-hour data set for a very small interval in frequency. The
largest peak (in power or amplitude squared) at f ≈ 1, 937 μHz represents a
single g-mode oscillation whose period is 516.04 s (and is the same one whose
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rate of change of period has been measured). The peak to the left of this one is
lower in frequency by 4.3 μHz. These peaks are well resolved because the two-
week duration of WET implies a frequency uncertainty of only 1/(2 weeks) or
about 0.8 μHz. You will note that there are three well-defined and equispaced
peaks in the righthand portion of the figure. (The much smaller peaks around
them are due to inevitable noise in the observations and sidelobes from gaps
in the data.) This triplet is due to the effects of rotation on an � = 1 g-mode
showing the 2� + 1 m modes (see §8.3). If the rotation were uniform, then
(8.121) gives a rotation period of 1.4 days, which is typical of white dwarfs.
There may be no way in the foreseeable future to detect this rotation by
spectroscopic means for this star.

Note that there is another triplet down at about 1,850 μHz (periods
around 538 s) and this is another � = 1 rotationally split g-mode. From
model calculations of DO stars, this mode and its neighbor at 516 s are of
harmonic order n ≈ 20 and the two modes differ by one in n. This complex
of strong peaks in the vicinity of 500 s is the cause of the curious structure of
the light curve, which shows a modulation in intensity with wide swings and
nulling superimposed on the main ups and downs of 500 s. The situation is
analogous to the musical interference beats heard from an orchestra whose
members are playing nearly the same notes. Here we see the beats.

Space prevents us from presenting the entire Fourier spectrum for PG1159,
but Winget et al. (1991) identified 101 modes in this star, including many
more with � = 1 and a number of rotationally split quintuplets for which
� = 2. Because even WET observations cannot resolve the disk of the star—
unlike the sun—it is unlikely that we can detect modes with � >∼ 3, were they
to be present, because of the effects of light cancellation over the disk of the
complicated patterns of high � spherical harmonics. Even so, from this wealth
of data, it is possible to get a period spacing between modes of given �. Using
the m = 0 (the central component of the triplets in Fig. 10.5) as the mean
for a multiplet, the average spacings between consecutive ns is ΔP�=1 = 21.6
s and ΔP�=2 = 12.5 s. Note that the ratio of these two spacings is consis-
tent with (8.112, reproduced below as Eq. 10.13), which contains the factor√

�(�+ 1); that is, 21.6/12.5 = 1.73 is the same as (within the error bars not
quoted here)

√
2(2 + 1)/1(1 + 1) =

√
3 = 1.732.

The significance of this result is the following. Recall that Π0/
√

�(�+ 1)
is the period spacing in

Πg,n =
2π
σg
≈ n

2π2

[�(�+ 1)]1/2

[∫ R
0

N

r
dr

]−1
=

nΠ0

[�(�+ 1)]1/2
(10.13)

so that Π0 = 21.6
√
2 = 30.5 s, as will be used shortly.

PG1159 has an effective temperature of 140, 000± 5, 000 K and a rather
uncertain log g = 7.0 ± 0.5 from spectroscopic observations. The luminos-
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ity is estimated to be logL/L� = 2.7 ± .5 (Werner et al., 1991).9 Kawaler
and Bradley (1994), using a grid of evolutionary models and non-radial ad-
iabatic pulsation calculations, have come up with the following fit between
mass, luminosity and qy (the fraction by mass of surface helium) versus Π0
of (10.13):

Π0 = 15.5
( M
M�

)−1.3( L
100L�

)−0.035 ( qy
10−3

)−0.00012
. (10.14)

Noting the very weak dependence on qy implied by its very small exponent,
we set that term to unity (but will make amends shortly). Then, using the
values of Π0 and logL/L� given above, find that (10.14) yields M = 0.58
M� for PG1159. Recall that this figure is the typical mass for single white
dwarfs derived from spectroscopy. The WET data and analysis yield the mass
using remote seismology.

There are, however, small and systematic deviations from the average
spacing between the � = 1 modes. This is due to the presence of the compo-
sition discontinuity between the helium/carbon/oxygen surface layer and the
carbon/oxygen core. Since nature (and eigenfunctions) abhors discontinuities
in physical properties, it is not surprising that the periods of some modes are
affected in subtle—but predictable ways. It is similar to problems in quantum
mechanics when considering a potential well with sharply varying depths. A
particle passing over these depths feels their effect and the eigenfunction and
eigenvalue (the frequency or period in our case) may behave in strange ways.
For the stellar case, a composition layer may partially “trap” the eigenfunc-
tion when a node coincides, or nearly coincides, with the discontinuity in
composition. In effect, the mode is tuned to the thickness of the layer and
the period of the mode can differ from that predicted by simple asymptotic
theory (i.e., 10.13). Modes that are “out of tune” more closely follow the
asymptotic relation. The effects of trapping are fully discussed by Brassard
et al. (1992) and depend on the thickness (in both radius and mass) of the
surface layer and the severity of the discontinuity (e.g., by how much mean
molecular weight changes). In any case, we need no longer expect that period
spacings be exactly equal.

As an example, Kawaler and Bradley (1994, and see O’Brien, 2000) have
explored the effects on PG1159 model period spacings by varying surface
composition and layer thickness and have compared their results to those
observed. They find that a composition of 27% by mass of helium with a
20%–60% mix of carbon to oxygen (consistent with spectroscopic results) in
a layer approximately qy = 0.004 of the stellar mass does very well (and
now we know what qy to put in 10.14). Our version of their Fig. 10 is shown

9 The distance to PG1159 is not well determined and thus neither is its luminosity.
The numerical result we obtain for the mass of PG1159, however, is within about
±0.01M� using the quoted error bars on the luminosity. The important factor
is the period spacing.
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Fig. 10.6. Shown is the comparison of differential period spacings for 20 modes in
a model of PG1159 (dashed curve with open circles) versus those seen in PG1159
itself (solid curve with filled circles) as a function mode period. “Differential period
spacing” here is the difference between a period of either the star or model (Π�) and
the period the mode would have if the set of periods were to follow the asymptotic
relation of (10.13) as determined by a linear fit to the sequence of mode periods.
The consecutive sequence starts with mode order n = 18 of period Π = 430 s.

in Fig. 10.6, and it compares the variation in period spacings found from
their model to those observed in PG1159.10 (Needless to say, the periods
themselves are very close: the maximum discrepancy between model and star
is only 1% and the average is 0.2% over the twenty modes shown.) The game,
so to speak, is to match the ups and downs of deviations from equal period
spacing. In the figure the maximum discrepancy between star and model is
one and a half seconds (and remember that periods are in the 500-s range).
A very satisfying result.

What about the effects of magnetic fields on the pulsations of white
dwarfs? Jones et al. (1989) looked into this using the techniques outlined
in §8.4 (and see 8.119). For simple field configurations they found that nor-
mal modes can be split in ways that, in principle, could be distinguished from
splitting due to rotation. Winget et al. (1994) suggested that some strange
splittings in GD358 (the first DBV discovered, otherwise known as V777 Her)
could be due to magnetic fields with strength 1,300 G, or so, based on the
10 Our version of this kind of figure differs from what you will find in the literature.
Our aim is to compare the effects of mode trapping on what would otherwise
be a smooth asymptotic sequence of periods. If the modes were equispaced, the
curves would be horizontal lines.
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Jones et al. (1989) analysis. Intensive spectropolarimetric observations by
Schmidt and Grauer (1997), however, failed to turn up fields of that strength
(at least within their error bars). To complicate matters, Vuille et al. (2000)
and Kepler et al. (2003), using WET, found that GD358 shows strong evi-
dence for a pulsation spectrum that is replete with signals composed of sums
and differences of frequencies, among other things. These are thought (prob-
ably correctly) to be the result of nonlinear interactions between modes. The
pulsation spectrum of that star is sufficiently complex that a magnetic field
could be hiding there but we may never pick it out from all else that is going
on.11 So, thus far, we have struck out as far as magnetic fields are concerned,
but there just might be a variable white dwarf out there that will surprise
us. For the moment, on the other hand, as for seeing evolution in action,
watching stars rotate, and dipping into the interior structure, we must say
the program has been a gratifying success for asteroseismology—especially
considering how tiny and dim these stars are.

10.5 Exercises

Exercise 10.1. In deriving the cooling time of (10.5, 10.6) we used Kramers’
bound–free opacity as the opacity source in the surface layer of the white
dwarf. Suppose, however, we had used electron scattering instead; that is,
find tcool for that much leakier opacity. Compare your result to Fig. 10.4.
(Qualitatively you know what’s going to happen.)

Exercise 10.2. Try to reproduce our Fig. 10.6 using the numbers you will
find in Table 3 of Kawaler and Bradley (1994). Remember that you will have
to fit the model and PG1159 periods to straight lines to obtain asymptotic
sequences. You might also wish to simply perform numerical differences of
the listed periods to get another version of our figure (as is usually done).

Exercise 10.3. Use what you can find in this text to estimate cooling times
for PG1159 and G117–B15A and compare your results to the Π̇s we quote
for those stars. (The effective temperature of G117–B15A is 12,400 K and
R ≈ 9.6 × 108 cm.) Don’t expect miracles. Be happy with a factor of ten,
or even more, agreement, and be aware that cooling times need not, in any
case, track period evolution exactly.

10.6 References and Suggested Readings

§10.1: Observed Properties of White Dwarfs
11 Nonlinear interactions can be a nightmare and only the simplest situations have
been explored for nonradial pulsators. For a taste of what is involved, see Buchler,
J.R., Goupil, M.-J., & Hansen, C.J. 1997, A&A, 321, 159. Simple linear analyses,
such as described here, can just be plain wrong.
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There are several texts, papers, and reviews worth reading. Among these are
chapters 3 and 4 of
� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: Wiley & Sons);

Chapter 25 of
� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon and Breach),

and Chapter 35 of
� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer–Verlag).

Important papers and reviews include
� Liebert, J. 1980, ARA&A, 18, 363
� Iben, I., Jr., & Tutukov, A.V. 1984, ApJ, 282, 615
� Tassoul, M., Fontaine, G., & Winget, D.E. 1990, ApJS, 72, 335
� Weidemann, V. 1990, ARA&A, 28, 103
� D’Antona, F., & Mazzitelli I. 1990, ARA&A, 28, 139
� Trimble, V. 1991, PASP, 104, 1, §10.5
� Trimble, V. 1992, PASP, 105, 1, §13.6
� Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
� Koester, D. 2002, A&ARev, 11, 33
� Hansen, B.M., & Liebert, J. 2003, ARA&A, 41, 465.

Masses of single white dwarfs are discussed in
� Weidemann, V., & Koester, D. 1984, A&A, 132, 195
� Oke, J.B., Weidemann, V., & Koester, D. 1984, ApJ, 281, 276
� Weidemann, V. 1990, ARA&A, 28, 103
� Bergeron, P., Saffer, R.A., & Liebert, J. 1992, ApJ, 394, 228.

The classification scheme in Table 10.1 is relatively new and a form of it
was first proposed by a group of astronomers who have had much to do with
establishing the properties of white dwarfs. See
� Sion, E.M., Greenstein, J.L., Landstreet, J.D., Liebert, J., Shipman, H.L.,
& Wegner, G. 1983, ApJ, 269, 253.

Our table is adapted from Table 1 (plus discussion) of
� McCook, G.P., & Sion, E.M. 1999, ApJS, 121, 1.

This latter work is periodically updated by McCook and Sion, and it is an
invaluable resource. It lists all known white dwarfs along with their colors,
positions, etc.

Very cool white dwarfs are a rarity but they will turn out to be important
for dating stellar populations. Two sample papers are
� Saumon, D., & Jacobson, S.B. 1999, ApJ, 511, L107,
� Oppenheimer, B.R., et al. 2001, ApJ, 550, 448.
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Detecting rotation in white dwarfs is a difficult enterprise as you may see by
reading
� Greenstein, J.L., & Peterson, D.M. 1973, A&A, 25, 29
� Pilachowski, C.A., & Milkey, R.W. 1987, PASP, 99, 836
� Koester, D., & Herrero, A. 1988, ApJ, 332, 910.

§10.2: White Dwarf Evolution
The essentials of white dwarf cooling were spelled out fifty years ago in the
classic paper by
� Mestel, L. 1952, MNRAS, 112, 583.

The cooling time of (10.6) is derived from
� Iben, I. Jr., & Tutukov, A.V. 1984, ApJ, 282, 615

and see
� Iben, I. Jr., & Laughlin, G. 1989, ApJ, 341, 312

for more material. The cooling curves of Fig. 10.2, on the other hand, are
from
� Winget, D.E., Hansen, C.J., Liebert, J., Van Horn, H.M., Fontaine, G.,
Nather, R.E., Kepler, S.O., & Lamb, D.Q. 1987, ApJ, 315, L77.

A selection of evolutionary calculations for white dwarfs includes
� Lamb, D.Q., & Van Horn, H.M. 1975, ApJ, 200, 306
� Iben, I. Jr., & Tutukov, A.V. 1984, ApJ, 282, 615
� Koester, D., & Schönberner, D. 1986, A&A, 154, 125
� Tassoul, M., Fontaine, G., & Winget, D.E. 1990, ApJS, 72, 335.

Section 3 of
� Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409

contains an excellent historical survey.

We defer any detailed discussion of crystallization and its effect on cooling
to Fontaine et al. (2001), and see
� Hansen, B.M. 1999, ApJ, 520, 680

with further comments by
� Isern, J., Garcia-Berro, E., Hernanz, M., & Chabrier, G. 2000, ApJ, 528,
397.

An older, but still useful, study of the effects of convection is the work of
� Fontaine, G., & Van Horn, H.M. 1976, ApJS, 31, 467.

Nonideal effects in multicomponent mixtures is discussed in
� Fontaine, G., Graboske, H.C. Jr., & Van Horn, H.M. 1977, ApJS, 35, 293.

The diffusion of heavy versus light elements is discussed in
� Chapman, S., & Cowling, T.G. 1960, The Mathematical Theory of Non-
Uniform Gases (Cambridge: Cambridge University Press).

Astrophysical applications, for both white dwarfs and other stars, may be
found in



10.6 References and Suggested Readings 493

� Michaud, G. 1970, ApJ, 160, 641
� Fontaine, G., & Michaud, G. 1979, ApJ, 231, 826
� Michaud, G., & Fontaine, G. 1984, ApJ, 283, 787
� Iben, I. Jr., & MacDonald, J. 1985, ApJ, 296, 540.

§10.3: The Magnetic White Dwarfs
A series of paper and reviews concerning the magnetic white dwarfs includes
� Angel, J.R.P., Borra, E.F., & Landstreet, J.D. 1981, ApJS, 45, 457
� Schmidt, G.D., West, S.C., Liebert, J., Green, R.F., & Stockman, H.S.
1986, ApJ, 309, 218

� Schmidt, G.D. 1988, in IAU Colloquium No. 95, Second Conference on
Faint Blue Stars, eds. A.G.D. Philip, P.S. Hayes, & J. Liebert (Schenec-
tady: L. Davis Press), p. 377

� Latter, W.B., Schmidt, G.D., & Green, R.F. 1987, ApJ, 320, 308.
� Schmidt, G.D, & Smith, P.S. 1995, ApJ, 448, 305

list the presence (or not, depending on the error bars) of magnetic fields in
42 DA white dwarfs.
� Schmidt, G.D., & Grauer, A.D. 1997, ApJ, 488, 827

have looked at three variable white dwarfs and find no magnetic field to the
limits of their measurements.

Generation of magnetic fields in stars is discussed in
� Parker, E.N. 1977, ARA&A, 15, 45.

Other references pertinent to our discussion include
� Wendell, C.E., Van Horn, H.M., & Sargent, D. 1987, ApJ, 313, 284
� Jackson, J.D. 1999, Classical Electrodynamics, 3nd ed. (New York: Wiley
& Sons)

� Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Interscience)
� Angel, J.R.P. 1978, ARA&A, 16, 487
� Kurtz, D.W. 1990, ARA&A, 28, 607
� Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonra-
dial Oscillations of Stars (Tokyo: University of Tokyo Press)

� Jaschek, C. , & Jaschek, M. 1987, The Classification of Stars (Cambridge:
Cambridge University Press).

§10.4: The Variable White Dwarfs
The initial discovery of the variable white dwarfs was reported in
� Landolt, A.U. 1968, ApJ, 153, 151.

That these variables are the most common in (at least) our galaxy has been
discussed by
� McGraw, J.T. 1977, The ZZ Ceti Stars: A New Class of Pulsating White
Dwarfs, Ph.D. Dissertation, University of Texas, p. 228
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� Cox, J.P. 1982, Nature, 299, 402.
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stars.
� Bradley, P. 1999, in Allen’s Astrophysical Quantities, §16.3, ed. A.N. Cox
(New York: Springer-Verlag)

lists the known white dwarf and pre-white dwarf variables as of 1999.

Useful reviews include—
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� Bergeron, P., et al. 1995, ApJ, 449, 258.
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� Koester, D., et al. 1985, A&A, 149, 423
� Liebert, J., et al. 1986, ApJ, 309, 241.
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� Beauchamp, A., et al. 1999, ApJ, 516, 887.
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� Kepler, S.O., & Nelan, E.P. 1993, AJ, 105, 608.
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� McGraw, J.T., Starrfield, S.G., Liebert, J., & Green, R.F. 1979, in IAU
Coll. 53, White Dwarfs and Variable Degenerate Stars, eds. H.M. Van
Horn and V. Weidemann (Rochester: University of Rochester), p. 377
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� Grauer, A.D., & Bond, H.E. 1984, ApJ, 277, 211.
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� Chanmugam, G. 1972, Nature PhysSci, 236, 83
� Warner, B., & Robinson, E.L. 1972, Nature PhysSci, 234, 2.

Shortly after these key papers, the first numerical experiments were per-
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� Osaki, Y., & Hansen, C.J. 1973, ApJ, 185, 277.

The cause of variability of the DAV and DBV variables was established by
� Dziemboski, W., & Koester, D. 1981, A&A, 97, 16
� Dolez, N., & Vauclair, G. 1981, A&A, 102, 375
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to search for instability. For non-variable DOVs in the “strip” see
� Werner, K 1995, Baltic Astron., 4, 340.

Possible shell-burning instabilities in the DOV’s are reviewed in
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The operation of the WET is described in
� Nather, R.E., Winget, D.E., Clemens, J.C., Hansen, C.J., & Hine, B.P.
1990, ApJ, 361, 309.

We report further observations and analysis of PG1159 given in
� Costa, J.E.S., Kepler, S.O., & Winget, D.E. 1999, ApJ, 522, 973

that refine (and correct) the results of the earlier papers.
Figure 10.5 is derived from the original 1989 WET data for PG1159.
� Kawaler, S.D., & Bradley, P.A. 1994, ApJ, 427, 415

describe how period spacing is related to stellar mass. Spectroscopic deter-
minations of gravity and Teff plus the estimate for the luminosity of PG1159
are from
� Werner, K., Heber, U., & Hunger, K. 1991, A&A, 244, 437.
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white dwarfs.
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� Schmidt, G.D., & Grauer, A.D. 1997, ApJ, 488, 827

failed to find any overt fields but their measurement sensitivity was on the
ragged edge of that suggested for GD358. The WET observations of
� Vuille, F., et al. 2000, MNRAS, 314, 689

and
� Kepler, S.O., et al. 2003, A&A, in press

show that GD358 is a very complicated pulsator.



A Mini Stellar Glossary

This short glossary of elementary astronomical terms associated with stars
is not intended to be complete or very detailed. It is meant mostly for those
of you who have no earlier experience in the subject. For the most part, we
only list terms not specifically treated in the main text. An excellent overall
reference to this material is
� Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 3d ed. (San Fran-
cisco: Freeman & Co.)

and, on a more elementary level,
� Böhm–Vitense, E. 1989, Introduction to Stellar Astrophysics, Vol. 2 (Stel-
lar Atmospheres) (Cambridge: Cambridge University Press).

1. Stellar populations: These are useful shorthand designations for stars
sharing common properties of kinematics, location in a galaxy, and com-
position.
a) Population I stars have a small scale height (confined to the disk of
a spiral galaxy, if that’s where you’re looking), rotate with the disk,
generally have a surface composition not too different from the sun’s,
and have a large range of masses since the young ones are still on
the main sequence. Also look for them in any galaxy having active
star-forming regions.

b) Population II stars usually have a very large scale height (mostly
found in the halo of a spiral galaxy), high space velocities, are poor in
metals, and are of low mass since the more massive stars have already
evolved. Hence Pop II stars are old stars.

c) Population III: These are stars that must have been around at the
time when the first stars were forming. They should have contained
no metals because none were produced in the Big Bang. Thus far none
have been observed either because they destroyed themselves early on
or, more likely, the remaining ones accreted metal-rich material and
are hence in disguise.

2. Star clusters: These are useful since they are generally composed of
many stars of roughly the same composition and age. The turn-off point
from the main sequence provides an age when compared to models or
relative ages when one cluster is compared to another.
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a) “O–B” associations consist of a loose cluster dominated in light
by bright stars that are still associated with the interstellar gas that
begat them. The cluster is not gravitationally bound and the stars
are associated only because of their tender youth.

b) Open clusters or galactic clusters are galactic disk (young Pop I
or somewhat older Pop I) stars or stars in regions of star formation in
other types of galaxies. The clusters are bound together by gravita-
tion. They contain both massive and low-mass stars. The Milky Way
(our galaxy) contains at least 1,200 clusters. Many others must be
present but we cannot see them because of intervening dust and gas
in the disk (where we reside). The Large and Small Magellanic Clouds
(galaxies relatively nearby to us) contain a total of more than 6,000.
They are conspicuous because of the bright massive stars. Compared
to globular clusters they have fewer stars in total number. Stellar
membership ranges (at least) between 10 and 200. The Pleiades is a
conspicuous open cluster in the northern night sky (and see Fig 2.6).

c) Globular clusters are gravitationally tightly bound and contain
many low-mass Pop II stars. Their stars have surface metal contents
between 1/2 and 1/200th that of the sun. They are associated with
the halo of a galaxy and were formed early in the history of the galaxy.
Our galaxy contains about 150 clusters with memberships of roughly
2000–106 stars. Figure 2.7 shows a HR diagram for one of them (M3).

3. Observation of stars—Photometry: Photometry refers to observing
stars over one or more wavelength bands where details of the spectrum
are not necessarily important.
a) The magnitude scale is an astronomical scale for brightness con-
structed along the same lines as the decibel scale for sound. It is
logarithmic, as are all such scales, so that the mind can handle the
broad dynamic range of real external stimuli. There are two main
magnitude scales. (Note that in what immediately follows we assume
that the stars in question are observed over the same band of wave-
lengths or colors.)
i. Apparent magnitude,m, is the brightness of a star as observed
from earth and is thus a function of the intrinsic brightness of the
star, its distance, and what is between us and the star. Unlike
the decibel scale it runs backwards: the larger the magnitude,
the apparently dimmer the star. An arithmetic difference of 5
in magnitude means a multiplicative factor of 100 in brightness
(in, say, apparent luminosity). If bi is the apparent brightness in
physical units of star i, then the rule is

b1
b2
= 2.512m2−m1 .



A Mini Stellar Glossary 499

A rough guide to apparent magnitudes is that a star with mag-
nitude 6 is just visible to the naked eye while stars of magnitude
0 are among the brightest in the sky.

ii. The absolute magnitude, M , of a star is the apparent mag-
nitude the star would have if we placed the star at a standard
distance of 10 parsecs (1 pc equals 3.086×1018 cm or 3.2616 light
years). If absorption of light by intervening gas or dust may be
ignored, then the relation between apparent and absolute magni-
tude is

M = m+ 5− 5 log d
where d is the actual distance to the star in parsecs. The difference
m−M is called the distance modulus.

iii. The bolometric magnitude is the magnitude integrated over
all wavelengths (i.e., the entire electromagnetic spectrum). Since
absolute magnitudes are standardized by the common distance 10
parsecs there must be a relation between luminosity and absolute
bolometric magnitude, Mbol. Using the sun as a normalization
this relation for a star (�) is

log(L�/L�) = [Mbol(�)−Mbol(�)] /2.5

where Mbol(�) is +4.75.
b) Colors of stars are a reflection of the relative dominance of various
wavelengths in their spectra and hence their effective temperatures.
Observational magnitudes are always quoted for some range of wave-
lengths, which is standardized. An example of a standardized system
is the Johnson–Morgan UBV system. The U filter lets in a band of
light centered around 3,650Å in the ultraviolet. The B (blue) and V
(visual) filters are centered around 4,400Å and 5,500Å , respectively.
The magnitudes in these wavelength ranges are usually denoted by
their letters. Thus the absolute magnitude of the sun in the V range
of the UBV system is V = −26.7. The “color” of a star can be de-
scribed by the difference in brightness in two filters. Thus, for exam-
ple, and keeping in mind the backward scale for magnitudes, (B–V )
is negative for blue (hot) stars and positive for red (cool) stars.

c) Bolometric correction: To obtain the bolometric magnitude you
must assume an energy distribution as a function of wavelength to
find the spectrum at unobserved wavelengths (as, e.g., in the far ul-
traviolet for surface-based telescopes). Since the color, as well as the
energy distribution, is related to the temperature, given the color
you can estimate the correction to a magnitude to give the bolomet-
ric magnitude. Specifically, the bolometric correction, B.C., is defined
as

Mbol =MV +B.C.

where MV is the absolute visual magnitude (usually V ).
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d) Color–magnitude diagram: This is the observer’s version of the
Hertzsprung–Russell diagram (as in Figs. 2.6, 2.7, and more in the
text). The abscissa is color (B–V , for example) and the ordinate is
some magnitude (V ,MV , etc.). Color is the effective temperature sur-
rogate and the single magnitude plays the role of luminosity. Needless
to say, there is a lot of witchcraft involved in passing back and forth
between these variables.

e) Time-resolved photometry is what the name implies. Snapshots
are taken of the star to get magnitudes or intensities over intervals of
time. The resulting times series is then used to infer dynamic prop-
erties such as those seen in variable stars.

4. Observations of stars—Spectroscopy: Here the details are impor-
tant and one or more spectral absorption or emission lines are used for
diagnostic purposes.
a) Spectral types or classes: This refers to the Henry Draper clas-
sification scheme, which is based on the appearance of spectral lines
of hydrogen, helium, and various metals. An “O” star shows strong
HeII (second ionization) lines of helium. Since the ionization potential
is high, such stars are the hottest in terms of effective temperature.
Spectral type “B” stars show strong HeI plus some HI lines. The
Balmer lines reach their peak in the “A” stars and begin to disap-
pear in “F.” Calcium H&K lines strengthen in “G” and the “K” stars
show other metallic lines. The “M” stars have strong molecular bands
(particularly TiO). The effective temperatures decrease in the order
O, B, A, F, G, K, M. The historical reasons for the lettering of this
sequence are worth looking up in the literature. Subdivisions such as
G0, G1, G2, · · · are in order of decreasing temperature. The sun is
a G2 spectral class star. Our Figure 4.8 shows spectra for the nor-
mal range of classes for main sequence stars (and see accompanying
discussion). Our §4.7 briefly discusses the new classes L and T for
dwarfs (luminosity class V below).

b) Luminosity classes were introduced because stars of the same spec-
tral type may have very different luminosities. The Morgan–Keenan
(MK) classification uses spectral class and luminosity class as a two-
dimensional scheme to phrase the HR diagram another way. The im-
plementation of the scheme depends on details of spectral lines (such
as width and depth) and reflects the density and gravity of the pho-
tosphere. Luminosity class I stars are the most intrinsically luminous.
Because they are usually large (especially the cooler ones) they are
also called supergiants. Luminosity class II (giants) are intrinsi-
cally bright, but not as bright as class I. The numbers increase until
luminosity class V is reached. These are the dwarfs and primarily
refer to main sequence stars. The sun is a G2V star. An M3I star
is huge, intrinsically very luminous, and very cool. There are some
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intermediate classes such as Ia and Ib. White dwarfs are not included
in this luminosity scheme.

c) Abundances are derived from spectral lines and are usually com-
pared to the sun or the abundance of hydrogen in the star—or both.
Thus the number density of iron, n(Fe), in a star (�) as compared to
the sun might be expressed as

[Fe/H] = log [n(Fe)/n(H)]� − log [n(Fe)/n(,H)]� .

As an example, the metal-poor and old globular cluster M3 (of
Fig. 2.7) has [Fe/H] = –1.57. Since the surface hydrogen abundance
of the sun is probably not too different from stars in M3, the conclu-
sion is that the sun’s surface abundance of iron is roughly 40 times
greater.
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Values for most of the fundamental constants and conversions in this list are
from
� Mohr, P.J., & Taylor, B.N. 1999, JPhysChemRefData, 28, 1713.

Note that many symbols have multiple meanings, and those used only once
or so may not be listed. In some cases we refer to the number of the equation
that defines or contains the symbol as it appears early in the text.

a Radiation constant, 7.56577× 10−15 erg cm−3 K−4
Age of � (4.57± 0.05)× 109 years
amu Atomic mass unit, 1 amu = 1.6605402 × 10−24 g, 941.494

MeV in energy units

A Coefficient of energy for completely degenerate gas (Eq. 3.54)

Ai Mass of nuclear species i, atomic mass units

As Schwarzschild discriminant (Eq. 5.32)

AU Astronomical unit, 1.496× 1013 cm
b A reaction rate factor (Eq. 6.38)

B Coefficient of pressure for completely degenerate gas
(Eq. 3.52)

B Magnetic (induction) field (Eq. 10.7)

B(T ) Planck function, erg cm−2 s−1 (Eq. 3.22)

Bν(T ) Frequency-dependent Planck function, erg cm−2 (Eq. 4.7)

BC Coulomb barrier height, usually in MeV (Eq. 6.19)

BE Binding energy, usually in MeV (Eq. 6.16)

BE/A Binding energy per nucleon

c Speed of light in vacuum, 2.99792458×1010 cm s−1 (exact)

cP Specific heat at constant pressure, erg g−1 K−1 (Eq. 3.83)

cV Specific heat at constant volume, erg cm−3 K−1 (Eq. 3.83)
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cVρ Specific heat at constant specific volume, erg g−1 K−1

(Eq. 3.85)

D Diffusion constant

dΩ Differential solid angle

e Elementary charge, 4.8032068× 10−10 esu
e− electron

e+ Positron

eV Electron volt, 1 eV = 1.60217733× 10−12 erg
E Thermodynamic internal energy, erg g−1 or erg cm−3, de-

pending on context

Erad Energy density of radiation field, erg cm−3 (Eq. 3.18)

E Kinetic energy of individual particle

E0 Peak of the Gamow peak (Eq. 6.40)

EF Fermi energy (Eq. 3.48)

f Frequency in Hz (for example); oscillator strength (Eq. 4.73);
“shape factor” (Eq. 6.30)

fn� Frequency of orders n and � (Eq. 8.114)

F Energy flux, erg cm−2 s−1 (Eq. 4.3)

FF Vector energy flux, erg cm−2 s−1

Fconv Convective flux (Eq. 5.36)

Frad Radiative flux (Eq. 4.3)

Ftot Total flux (Eq. 5.41)

g Local gravitational acceleration (Eq. 1.1); gravity mode (g–
mode)

geff Effective gravity, geff = −∇Φeff (Eq. 9.14)

g⊕ Standard surface gravity of earth, 980.665 cm s−2 (exact)

g Vector local gravitational acceleration

G Gravitational constant, G = 6.6726× 10−8 g−1 cm3 s−2

h Planck’s constant, 6.6260688× 10−27 erg s ; step size in an
integrator (Eq. 7.46)

h̄ h/2π

H(a, u) Voigt function (Eq. 4.81)

H− H-minus ion
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Iν(ϑ) Specific intensity (Eq. 4.1)

� Imaginary part of a number

J Ocillatory moment of inertia (Eq. 8.52)

jν(ϑ) Mass emission coefficient, erg s g−1 (before Eq. 4.8)

k Boltzmann’s constant, 1.380650×10−16 erg K−1, 8.617386×
10−5 eV K−1; wave number

k Vector wave number

kr Radial wave number (Eq. 8.30)

kt Transverse wave number, cm−1 (Eq. 8.101)

K Kinetic energy (Eq. 1.19); polytropic constant (Eq. 7.16)

K ′ Polytropic constant for ideal gas (Eq. 7.28)

K Diffusion constant

L Linear operator, as in the LAWE (Eq. 8.16); vector angular
momentum

LAWE Linear Adiabatic Wave Equation (Eq. 8.16)

� Mixing length; latitudinal index of Y�m(θ, ϕ); angular mo-
mentum quantum number

L Luminosity, erg s−1 (Eq. 1.57)

Lconv Convective luminosity

Lrad Radiative luminosity

Ltot Total luminosity

L� Solar luminosity, (3.847± 0.003)× 1033 erg s−1
m Mass, grams; azimuthal order in Y�m(θ, ϕ)

me Electron rest mass, 9.1093898×10−28 g, 5.4858×10−4 amu,
0.5109991 MeV c−2

mn Neutron rest mass, 1.6749286 × 10−24 g, 1.0086649 amu,
939.56563 MeV c−2

mp Proton rest mass, 1.6726231 × 10−24 g, 1.00727647 amu,
938.27231 MeV c−2

M Stellar mass, usually in units of grams

M� Solar mass, (1.9891± 0.0004)× 1033 g
Mr Mass contained within a sphere of radius r (Eq. 1.3)

M∞ Chandrasekhar limiting mass (Eq. 3.67)
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n Density exponent of opacity (Eq. 1.62); number density
(Eq. 1.51); polytropic index (Eq. 7.16); mode order (Eq. 8.34)

ne Electron number density, cm−3 (Eq. 1.48)

nI Ion number density, cm−3 (Eqs. 1.44–1.45)

neff Effective polytropic index (Eq. 7.118)

nγ Number density of radiation field, cm−3 (Eq. 3.15)

N Brunt–Väisälä frequency (Eq. 5.28); number density per
gram

NA Avogadro’s number, 6.022142× 1023 mole−1
p Linear momentum, g cm s−1

p Vector linear momentum

p- Pressure (p-) mode

pF Fermi momentum (before Eq. 3.48)

pc Parsec, 3.086× 1018 cm
P Pressure, usually in dyne cm−2; orbital period

Pc Central pressure

Pe Electron pressure

Pg Ideal gas pressure (Eq. 3.104)

PI Ion pressure

Prad Radiation pressure (Eq. 3.17)

P� Barrier penetration factor (Eq. 6.20)

P�(x) Legendre polynomial of degree � with argument x = cos θ
(Eq. 8.107)

Pm
� (x) Associated Legendre polynomial of degree � and order m

with argument x = cos θ (Eq. 8.107)

Pr Prandtl number (Ex. 5.3)

Q Specific heat content, erg g−1 (Eq. 1.11); pulsation Q

Q Q-value of nuclear reaction

−Q Coefficient of thermal expansion

Qeff Effective Q-value for pp-chains (Eq. 6.75)

r Radius, cm

r Radius vector

rn Polytropic radial scale (Eq. 7.24)
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rt Turning point or radius (Eq. 8.114)

rαβ Sample nuclear reaction rate, cm−3 (Eq. 6.22)

R Nuclear radius (Eq. 6.17)

R Total radius; gas constant, NAk = 8.314511× 107
erg K−1 mole−1

R� Solar radius, R� = 6.96× 1010 cm
R⊕ Radius of earth, 6.38× 108 cm
Ra Rayleigh number (Ex. 5.4)

� Real part of a number

s The negative of the temperature exponent of opacity
(Eq. 1.62); impact parameter

S Entropy, erg gm K−1 or erg cm−3 K−1 (Eq. 1.11)

S(E) Nuclear “S” factor (Eq. 6.36)

Sν Source function (before Eq. 4.8, Ex. 4.1)

S� Lamb frequency (Eq. 8.100)

t Time

tcool Cooling time of white dwarfs (Eq. 10.5)

tdyn Dynamic time scale (Eq. 1.33)

tKH Kelvin–Helmholtz time scale (Eq. 1.31)

tML Mass-loss time scale

tth Thermal time scale (Eq. 8.64)

tnuc Nuclear time scale (Eq. 1.89)

T Temperature (K)

Tc Central temperature

Tn Temperature in units of 10n (K)

Teff Effective temperature, K (Eq. 1.92)

Teff(�) Solar effective temperature, 5780 K

TTR, Ttr Transition temperature in pulsation (Eq. 8.66) or white
dwarfs (Eq. 10.1)

u Energy density of radiation field (Eq. 3.19 et seq.)

uν Energy density of radiation field per unit frequency (Eq. 3.19)

uλ Energy density of radiation field per unit wavelength
(Eq. 3.20)
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U Variable in the U–V plane (Eq. 7.52)

U Total internal energy (Eq. 1.10)

v Velocity

v Velocity vector

vs Sound speed (Eq. 1.38)

V Variable in the U–V plane (Eq. 7.52)

V Volume

Vρ Specific volume, Vρ = 1/ρ (Eq. 3.12)

W Total energy, erg (Eq. 1.9)

Wtot Work done over pulsation cycle (Eq. 8.44)

xF or x Dimensionaless Fermi momentum (Eq. 3.48); x = cos θ

X Hydrogen mass fraction (Eq. 1.52)

Xi Mass fraction of nuclear species i

yi Ionization fraction of species i (Eq. 1.47)

Y Helium mass fraction (Eq. 1.52)

Y�m(θ, ϕ) Spherical harmonic of degree � and azimuthal order m
(Eqs. 8.95, 8.106)

Z Mass fraction of metals (Eq. 1.52)

Zi Integer nuclear charge of species i

α Mixing length parameter, dimensionless

αR Radius homology exponent,MαR (Eq. 1.70)

αρ Density homology exponent,Mαρ (Eq. 1.71)

αL Luminosity homology exponent,MαL (Eq. 1.73)

αT Temperature homology exponent,MαT (Eq. 1.72)

β Ratio of gas to total pressure, β = Pg/P (Eq. 3.106);
kT/mec

2; −dT/dz (Eq. 5.2)
γ As in a “γ-law equation of state” (Eq. 1.24); ratio of specific

heats (Eq. 3.92); damping constant (Eq. 4.73)

γ2 Reduced width of a nuclear energy state (Eq. 6.20)

Γ Width of a nuclear energy state (usually MeV) (Eq. 6.12)

ΓC Coulomb interaction factor (dimensionless) (Eq. 3.78)

Γ1 Adiabatic exponent Γ1 = (∂ lnP/∂ ln ρ)ad (Eqs. 1.39, 3.93)
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Γ2 Adiabatic exponent Γ2/ (Γ2 − 1) = (∂ lnP/∂ lnT )ad
(Eq. 3.94)

Γ3 Adiabatic exponent Γ3 − 1 = (∂ lnT/∂ ln ρ)ad (Eqs. 1.81,
3.95)

δ δ refers to the Lagrangian perturbation of a quantity (e.g.,
Eq. 8.3); infinitesimal operator

Δ Width of Gamow peak (Eq. 6.41)

ΔT Temperature excess of a convective parcel, ΔT = T ′ − T
(Eq. 5.20)

ΔνD Doppler width (Eq. 4.78)

∇ Logarithmic gradient d lnT/d lnP (Eq. 4.28)

∇ Gradient or divergence operator

∇ad Adiabatic gradient (∂ lnT/∂ lnP )ad (Eq. 3.94)

∇rad Radiative gradient (Eq. 4.30)

ε Energy generation rate, erg g−1 s−1 (Eq. 1.57)

εαβ Sample energy generation rate (Eq. 6.47)

ε3α Triple-α energy generation rate (Eq. 6.80)

εν Neutrino energy loss rate

εCNO Simple energy generation rate for the CNO cycle (Eq. 6.77)

εeff Energy generation rate for pp–chains (Eq. 6.76)

εgrav Gravitational energy generation rate (Eq. 6.3)

ζ Relative radius variation δr/r (Eq. 8.8)

η Degeneracy parameter; Sommerfeld factor (Eq. 6.35)

θ or ϑ Colatitude angle

θn Dependent polytropic variable (Eq. 7.20)

κ Opacity (mass absorption coefficent), cm2 g−1 (Eq. 1.62)

κqa Quasi-adiabatic growth rate, s−1 (Eq. 8.48)

κbb Bound–bound opacity

κbf Bound–free opacity (Eq. 4.63)

κe Electron scattering opacity (Eq. 4.60)

κff Free–free opacity (Eq. 4.61)

κH− H− opacity (Eq. 4.65)

κcond Conductive “opacity” (Eq. 4.67)
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κtot Total opacity cm2 g−1 (Eq. 4.69)

λ Density exponent of the energy generation rate (Eq. 1.59);
wavelength; decay constant

λ̄ DeBroglie wavelength (Eq. 6.29)

λP Pressure scale height, λP = P/gρ (Eq. 3.1)

λphot Photon mean free path

μ Mean molecular weight (Eqs. 1.50, 1.55); chemical potential
(Eq. 3.3)

μe Mean molecular weight of electrons (Eqs. 1.49, 1.53)

μI Mean molecular weight of ions (Eqs. 1.46, 1.54)

ν Temperature exponent of the energy generation rate
(Eq. 1.59); photon frequency; kinematic viscosity (Ex. 5.3)

νe Electron neutrino

νe Electron antineutrino

νT Thermal diffusivity (or conductivity), cm2 s−1 (Eq. 5.16)

ξ Independent polytropic radius, dimensionless (Eq. 7.24);
nonradial displacement

ξ Vector nonradial displacement (Eq. 8.76)

ξ1 Location of first zero of polytropic θn(ξ) (Eq. 7.31)

ξr Radial displacement (Eq. 8.87)

ξt Tangential displacement (Eq. 8.92)

Π Period of oscillation or variability (Eq. 1.37); orbital period;
parity

Πp P-mode period

Πg G-mode period

Π̇ Rate of period change, s s−1

Π0 Period spacing times
√

�(�+ 1) (Eq. 8.112)

� Radial distance from axis in cylindrical coordinates

ρ Density, g cm−3

ρc Central density

〈ρ〉 Average density, g cm−3

〈ρ�〉 Average density of the sun, 1.41 g cm−3

σ Stefan–Boltzmann constant, 5.67040× 10−5
erg cm−2 K−4 s−1; angular frequency (2πf = σ)
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σp P-mode frequency (Eq. 8.109)

σg G-mode freqency (Eq. 8.110)

σαβ Sample nuclear cross section, cm2 or barn (Eq. 6.21)

〈σv〉αβ Average nuclear cross section times velocity cm3 s−1

(Eq. 6.25)

τ Mean- or half-life (Eq. 6.12); reaction rate parameter
(Eq. 6.43)

τν Optical depth (Eq. 4.8)

φ or ϕ Azimuthal angle; phase

Φ Gravitational potential (Eq. 7.18)

Φeff Effective potential, gravitational plus centrifugal (Eq. 9.13)

χρ Density exponent of pressure (Eq. 1.67)

χT Temperature exponent of pressure (Eq. 1.67)

χH Ionization potential of hydrogen (Eq. 3.31)

Ψ(E) Maxwell–Boltzmann distribution (Eq. 6.24)

ω Angular frequency; dimensionless frequency (Eq. 8.25)

(ωγ)r Fowler’s factor for nuclear reactions (Eq. 6.54)

Ω Total gravitational energy (erg) (Eq. 1.7); solid angle; ro-
tation frequency;

� Sun symbol

’ ’ refers to the Eulerian perturbation of a quantity
∗ Denotes complex conjugate

( )ad Indicates an adiabatic process



C List of Journal Abbreviations

The journal abbreviation and reference style used in this text is modeled
after the vanilla-flavored ones favored by The Astrophysical Journal and the
WWW site of the NASA Astrophysics Data System (ADS) archives, even
though some of these abbreviations tend to be obscure. Some popular journals
we name in full, such as Nature, or as they are pronounced by everyone, such
as PhysRev or ApJ. Some periodicals mentioned in the text are not listed
here (as obscure examples) and, in those rare cases, we spell out the title in
the text.

A typical reference appears as:
� Writer, I’ma 2001, ApJ, 706, 19

where the author’s name comes first, then the year of publication, abbre-
viated journal name, volume number, and, lastly, page number. (The more
useful older scheme had the volume number in bold print to keep the various
numbers straight.) In this example ApJ means “The Astrophysical Journal.”

AAS American Astronomical Society
A&A Astronomy and Astrophysics
A&AS Astronomy and Astrophysics Supplement
A&ARev Astronomy and Astrophysics Reviews
AcA Acta Astronomica
ADNDT Atomic Data & Nuclear Data Tables
AJ Astronomical Journal
AmJPh American Journal of Physics
ApJ Astrophysical Journal. Note that the “Letters” issue of

this journal is signaled by an “L” preceding the page
number.

ApJS Astrophysical Journal Supplement
Ap&SS Astrophysics and Space Science
ARA&A Annual Review of Astronomy and Astrophysics
ARNS Annual Review of Nuclear Science
ARN&PS Annual Review of Nuclear & Particle Science
ASP Astronomical Society of the Pacific
AstNachr Astronomische Nachrichten
AustJPhys Australian Journel of Physics
BAAS Bulletin of the American Astronomical Society
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BAN Bulletin of the Astronomical Institute of the Nether-
lands

CanJPhys Canadian Journal of Physics
ComAp Comments on Astrophysics
CoPhC Computational Physics Communications
GeoCosmo Geochimica et Cosmochimica
IAU International Astronomical Union
JFlMech Journal of Fluid Mechanics
JPhB Journal of Physics, Part B
MNRAS Monthly Notices of the Royal Astronomical Society
MethCompPhys Methods of Computational Physics
Nature Nature
Obs The Observatory
PASJ Publications of the Astronomical Society of Japan
PASP Publications of the Astronomical Society of the Pacific
PhysRep Physics Reports
PhysRev Physical Review (with final letters A-E depending on

subject)
PhysRevL Physical Review Letters
PhysScr Physica Scripta
PRSocL Proceedings of the Royal Society of London
PTPhJS Progress of Theoretical Physics, Japan, Supplement
QJRAS Quarterly Journal of the Royal Astronomical Scoiety
RepProgPhys Reports of Progree in Physics
RevModPhys Reviews of Modern Physics
RusAJ Russian Astronomical Journal
Science Science
SciAm Scientific American
Sky&Tel Sky & Telescope
SoPh Solar Physics
SpSciRev Space Science Reviews
SvA Soviet Astronomy
SSRv Space Science Reviews
ZeAp Zeitshrift für Astrophysik
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absorption coefficent see opacity
abundance of nuclides 78
abundances of elements 78
accretion disk cartoon see Fig. 2.25
acoustic modes 390
actual gradient (∇) 201, 244
through the ZAMS sun 184

adiabat 177
adiabatic convection 251
adiabatic exponent (Γ1) 15, 175
adiabatic exponent (Γ3) 27, 175
adiabatic exponent (Γ2) 175
adiabatic exponents 173–184
with ionization 182

adiabatic gradient (∇ad) 175, 244
through the ZAMS sun 184

adiabatic perturbation 5, 380, 404
adiabatic radial pulsations 380–391
adiabatic sound speed (vs) see sound

speed
adiabatic wave equation see linear

adiabatic wave equation
advanced evolution
M > 6–10M� 73
M≤ 6–10M� 69

advection 248
AGB see asymptotic giant branch
AGB surface abundances 69
age of the galaxy 55, 129
ages
globular clusters 55, 56
open clusters 128
sun 30, 433
white dwarfs 72, 472

Algol 83, 107
alpha (α) Cen A 47, 88
alpha nuclei 74, 78
alpha-12C reaction 310

AM CVn 115
angular momentum
quantum number (�) 278
star formation 136

Ap stars 88, 480
asteroseismology 379–424
white dwarfs 482

astrometric binaries 107
asymptopia 390
asymptotic giant branch (AGB) 55,

67
atmosphere, grey 205
atmosphere, stellar see Chapter 4

B-V 48
Baade–Wesselink method 89, 131
barn 281
barrier penetration factor (P�) 278,

282
beta (β) Cepheid variables 87
beta decay 295
binary stars 105–116
types of 105

binary system disruption 127
binary systems 133
binding energy (BE) 276
binding energy per nucleon (BE/A)

276
birth rate function 118
black holes 103
blackbody radiation 150–152
blue stragglers 56, 126
bolometric correction 499
bolometric magnitude 499
Boltzmann population distribution

155
Bose–Einstein statistics 149
bound–bound opacity (κbb) 212
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bound–free absorption 212
bound–free opacity (κbf) 212
boundary conditions
central 339, 362
nonradial pulsations 411
photospheric 202
radial pulsations 383
surface 202, 364

Boussinesq approximation 243
Breit–Wigner resonance 281
brightest stars see Fig. 2.3
brown dwarfs 50, 225
Brunt–Väisälä frequency (N) 250, 410
in massive star 256
in sun 251

buoyancy
in MLT 243

carbon-burning 73, 311
Cas A 103
Case A evolution see Fig. 2.36
Case A, B, C mass transfer 111
cataclysmic variables 90, 113
Centaurus A & B 47
central expansions 362
Cepheid Strip 86, 125, 401, 402
Chandrasekhar limiting mass (M∞)

165
Chandrasekhar–Schönberg limit 61,

137
chemical equilibrium 147–148
chemical potential
as a potential 187
degenerate electrons 160, 169
ideal gas 153
photons 148

chemical reactions 180–184
Classical Cepheids 85, 125, 403
classical electron radius 209
classical novae see novae
close binaries 110
clump stars 66
cluster ages 56
clusters of stars
galactic or open 54, 498
globular 54, 498

CM-Lab energy conversion 287
CNO cycles 22, 49, 303–307
CNO reactions, 12C(p, γ)13N 286, 291

CNO reactions, 13N(e+νe)13C 294
CNO reactions, 13N(p, γ)14O 294
coefficient of thermal expansion (−Q)

249
collapsed solutions 345
collapsed stars see black holes,

neutron stars
color–magnitude diagrams
for clusters 54
for white dwarfs 70

color-magnitude diagrams 498
common envelope pair 109
common proper motion pairs 107
completely convective stars 367–370
completely degenerate gas 159
compound nucleus 274
Compton wavelength 162
conduction 214
conductive opacity (κcond) 214, 219
constant density model 16
pressure distribution 17
radial pulsations 424
temperature distribution 21

constants, physical and astronomical
503–511

contact binary systems 109
continuum 230
contraction
gravitational 4, 12, 62, 271
homologous 272
Kelvin–Helmholtz 4, 12, 271
protostars 44

convection
Brunt–Väisälä in 250
15M� ZAMS 256
adiabatic 251
homology analysis 27
hydrodynamic models 263
mixing length theory 241
opacity effect 256
radiative leakage 247
role of ∇s (Fig. 5.2) 247
Schwarzschild criterion 251
solar 255

convective core (massive star) 256
convective criteria 242–247
convective efficiency 250
convective envelope (�) 256
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convective envelopes 367
convective flux (Fconv) 253
convective instability 245, 251
convective luminosity (Lconv) 253
convective overshooting 259
convective stars 367–370
convective time scale 250
convective velocity 252
cooling curves, white dwarfs 472
core collapse, supernovae 77
Coriolis force in rotation 422
cosmic rays 103
Coulomb barrier 278
height (BC) 278

Coulomb effects
equations of state 171

Coulomb penetration factor (P�) 275,
278, 282

Courant condition 354
Cowling approximation 406
Crab Nebula 94, 103
Crab pulsar 103
crib sheet, WDs, NSs & BHs see

Figs. 2.23 & 2.24
criteria for convection 242–247
critical acoustic frequency see Lamb

frequency
cross section
in opacity 208
nonresonant 283
nuclear 279
resonant 290
Thomson scattering 209

cross section × velocity (〈σv〉) 280,
290

crystallization 172
in white dwarfs 474

curve of growth 230

DA white dwarfs 70, 87, 468
damping constant, γ 226
damping of pulsation 394
DAV white dwarfs 482
DB variables 87
DB white dwarfs 70, 87, 468
DBV white dwarfs 482
DeBroglie wavelength (λ̄) 281
degeneracy
complete degeneracy 160

criteria for 167
effects of temperature 167
in neutron stars 163
in white dwarfs 163
partial degeneracy 171

degeneracy boundary 64
degeneracy of states (gj) 149
degeneracy parameter (η) 169
degenerate gas 62, 159
del (∇) see actual gradient
delad (∇ad) see adiabatic gradient
delrad (∇rad) see radiative gradient
delta (δ) Scuti variables 87
density exponents
nuclear (λ)
CNO-cycles 307
pp-reaction 297
resonant reactions 289
triple-alpha 309
opacity (n)
H− 214
conductive 216
Kramers’ 212
Thomson (electron) scattering
209

pressure (χρ)
degenerate gas 179
ideal gas 177

density exponents defined
energy generation rate (λ) 22
opacity (n) 24
pressure (χρ) 25

density, central
in ZAMS models 120

detached binary systems 109
detailed balance 234
deuterium burning 303
difference equations 346
diffusion
of chemical elements in white dwarfs
475

of radiation 199
diffusion coefficient (D) 24, 200
diffusion constant (K) 247
diffusion equation 24
derivation 199
linearization of 398

dimensional analysis 24–29
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dimensionless Fermi momentum (xF ,
x) 160

dispersion relation 389, 413
distance modulus 499
distribution functions 146–150
DO white dwarfs 468
Doppler broadening 228
Doppler shift 228
double counting
nuclear 279

double shell burning 67
DOV variables 482
driving or damping of pulsations see

pulsational instability
dwarf nova light curves see Fig. 2.27
dwarf novae 91–93
dwarfs see main sequence phase
dynamic problems 351
dynamic time scale (tdyn) 13, 15

e-process 74, 313, 320
E-solutions 334, 344
Earth’s atmospheric temperature 127
EC14026 variables 88
eclipsing binaries 105
eclipsing variables 84
Eddington approximation 204
Eddington limit 206
Eddington standard model 357
Eddington–Barbier relation see

Ex. 4.1
effective polytropic index 365
effective temperature (Teff) 31, 203
eigenfunctions 384
eigenvalue problems 349
eigenvalues 384
Einstein coefficients 234
electron capture 295
electron captures
in SN 315

electron mean molecular weight see
mean molecular weights

electron number density
degenerate 161
partially degenerate 171

electron number density (ne) 18
electron scattering opacity 146, 208
electron screening 297–299
electron-positron pairs 317

element abundances 78
ellipsoidal variables 84
emission coefficient (jν) 195
endothermic reactions 307
energy
total internal (U) 5
gravitational potential (Ω) 4

energy density
blackbody 151, 196
degenerate electrons 163
ideal gas 154
partial degeneracy 171

energy equation 22
energy flux (F) 22
energy generation rate
density exponent (λ) 22, 289, 291
power law 22
temperature exponent (ν) 22, 289,
291

energy generation rate (ε) 21, 288
energy width (Γ) 275
energy, internal (E) 5
energy, total stellar (W ) 5
entrance channel 274
entropy
and convection 246, 370
in convection 266

envelope 363
envelope models
convective 367
radiative 363

epsilon mechanism 397
Epstein weight function 400
equation of motion
basic one-dimensional 3
convective 249
in variable stars
nonradial 406
radial 382
numerical tratment of 353

equation of state
γ–law 10, 163
blackbody 151
Coulomb effects 171
degenerate 163
imperfect 171
mixture degenerate & ideal gas 178
mixture ideal gas & radiation 176
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partially degenerate 171
with chemical reactions 180

equation of state code 189
equation of transfer 195
solution 197

equations of stellar structure 329–331
equations of stellar structure, unique-

ness of 331, 375
equilibrium
chemical 180
hydrostatic 2
local thermodynamic (LTE) 74,
145, 196

nuclear statistical 313, 320
thermal balance 21

Eulerian perturbation 405
evanescent waves 389, 413, 417
evolution of sun 437
evolutionary lifetimes see Table 2.1
evolutionary tracks see Fig. 2.5
exit channel 274
exothermic reactions 282
explicit difference scheme 353

f-mode 418
F-solutions 345
Fermi energy (EF ) 160
Fermi momentum (pF ) 160
Fermi sea 160
Fermi–Dirac equation of state

159–171
Fermi–Dirac statistics 149, 159
FG Sge 85
fitting method 340
flux
convective (Fconv) 253
radiative (Frad) 195, 200
total (Ftot) 254

forbidden region 373
forward problem 419
Fourier transform 485
free–free absorption 209
free–free opacity (κff) 211, 213
freeze out 82
frequency splitting (rotation) 487
frequency-dependent Planck function

see Planck function
FU Orionis 84
fundamental mode 86

fundamental radial mode 387
fusion products 68

g-modes 85, 414, 483
G117–B15A 484
galactic clusters 54, 498
GALLEX 446
gamma(γ)-law equation of state 10,

176
gamma-(γ)-mechanism 399
gamma–ray bursts 116
Gamow peak 284
Gamow penetration factor (P�) 278,

282
GD358 489
Gliese 229B see brown dwarfs
globular clusters 54, 498
GONG 455
gravitational binding energy
Ex. 1.10 37

gravitational contraction 11, 271–273
gravitational energy generation rate

(εgrav) 272
gravitational potential energy (Ω) 4
for polytropes 337
in contraction 273

gravitational radiation 115
gravitational settling 475
gravity modes see g-modes
grey atmosphere 205
growth rate
quasi-adiabatic 396

GW Vir 482

H-minus opacity (H−) 213, 367
half-ionization curve
hydrogen 157

halo 55
harmonic modes 387
Hayashi track 373
HB see horizontal branch
HB lifetimes 129
heat transfer
conduction 214
radiation 193

heavy ion reactions 311
helioseismology 264, 454
helium core burning 65
helium core exhaustion 66
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helium flash 62, see Fig. 2.13
Ex. 6.8 321

helium ignition 63
helium main sequence 35, 375
helium mass fraction (Y ) 19
helium-burning 66, 319

12C(α, γ)16O 310
triple-alpha reaction 307

helium-burning reactions 307–311
Henyey method 346
Her X-1 114
Hertzsprung gap 53
Hertzsprung–Russell diagram 30–31,

47
HII region 117
Hipparcos 29
HL Tau 76 481
Homestake neutrino experiment 445
homologous stars 24
homology 24–29
homology relations 124
horizontal branch (HB) 56
hot spot 92
HR diagram 30, 47
Hubble constant 57
Hugoniot–Rankine relations 133
hump (in light curve) 92
hydrodynamic methods 353–357
hydrogen ionization-recombination

147, 180
Saha equation see Saha equation

hydrogen mass fraction (X) 19
hydrogen shell burning 66
hydrogen-burning
CNO cycles 22, 303
energy output 23
pp-chains 22, 299
pp-reaction 296

hydrogen-burning shell 62
hydrostatic equilibrium 3
general relativistic 36
Lagrangian form 7

ideal gas 152–154
chemical potential 153
distribution function 153
internal energy 154
number density 153
pressure 153

weak degeneracy 187
ideal gas polytrope 334
IMF see initial mass function
impact parameter 210, 281
imperfect equations of state 171–173
implicit difference scheme 346
induced emission 234
initial mass function 118
inner Lagrangian surface 108
instability strip 86, 401
integrated Planck function see Planck

function
internal energy
degenerate 163
ideal gas 13, see ideal gas
integral representation 150
radiation 151
with ionization 158, 180

internal energy (E) 5
interstellar molecules see Table 2.4
intrinsic variables 85
inverse problem 419
ion molecular weight see mean

molecular weights
ion number density (nI) 18
ionization fraction
hydrogen 156

ionization fraction (yi) 18
ionization of stellar matter
partial ionization 155
pressure ionization 173
Saha equation 155
thermodynamics 181

ionization potential
hydrogen (χH) 155

iron 56 (56Fe) 78
iron peak 73, 277, 313
isobaric surface 451
isochrones see Fig. 2.8
isopycnic surface 451
isotropic radiation field 196

Jean’s criterion
secular stability 375

Johnson–Morgan 47

Kamiokande 446
kappa-(κ)-mechanism 399
Kelvin–Helmholtz time scale 4, 272
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solar 12
kinetic energy, relativistic 149
Kramers’ opacity 24, 212

Lagrangian differential operator 248
Lagrangian perturbation 381, 405
Lagrangian points 108
Lamb frequency (S�) 410
Lane–Emden equation 334
later evolutionary phases 69
LAWE see linear adiabatic wave

equation
Lawrence Livermore National Labora-

tory (LLNL) 207, 219
line broadening
Doppler 228
natural 229

line saturation 231
linear adiabatic wave equation 384
linear density model, Ex. 1.3 34
lithium burning 303
LMC 97
local gravity 3
local thermodynamic equilibrium

(LTE) 145, 193
long period variables 88
Lorentz profile 226
Lorentzian 226
Los Alamos National Laboratory

(LANL) 207, 216
LPV see long period variables
Lucy, A. Afarensis 318
luminosity 12, 22, 198
accretion disk 132

luminosity class V 223
luminosity classes 500
luminosity function
white dwarfs 72, 129

luminous blue variables 84

M-solutions 345
M3 see Fig. 2.7
M3 (globular cluster) 54
M45 (Pleiades) 54
M67 see Fig. 2.6, 128
M67 (open cluster) 54
M81 distance 125
Mach number 253
convection 253

magic numbers 79
magnetic field decay 481
magnetic splitting, white dwarfs 489
magnetic white dwarfs 477–481
main sequence 30, 31, 48
lifetime 30
solar 30

main sequence fitting 54
main sequence ZAMS 120
mass
in polytropes 335

mass absorption coefficient see
opacity

mass emission coefficient (j) 195
mass equation 3
in radial pulsations 380

mass excess 277
mass fractions (Xi) 17
mass loss 57–60, 68, 130, 206
mass transfer 90, 93, 111
mass, interior (Mr) 3
mass–density relation 26
mass–luminosity relation 26
lower main sequence 28
upper main sequence 28

mass–radius relation 26
neutron stars 164
upper main sequence 28
white dwarfs 163

mass–temperature relation 26
mass-cuts see Fig. 2.4
Maxwell–Boltzmann gas see ideal gas
Mdot (Ṁ) 58
mean free path
electrons 215
neutrinos 315
photons 205, 209, 233

mean life (τ) 275
mean molecular weight of electrons (μe)

18
mean molecular weight of ions (μI) 18
mean molecular weight, total (μ) 19
mean molecular weights 17–20
meridional circulation 452
metals mass fraction (Z) 19
millisecond pulsars 114
Mira 83
Mira variables 83



522 Index

miximg length (�) 242
mixing length parameter (α) 254, 434
mixing length theory (MLT) 241–258
MLT see mixing length theory
assumptions of 242

mode trapping 488
model calculations
fitting method 340
Henyey methods 346

molecular clouds 110, 116
moment of inertia 8
oscillatory 396

nearest stars see Fig. 2.3
neon burning 312
neutrino energy losses
from white dwarfs 476
pair annihilation 315
photoneutrinos 316
plasma neutrinos 317

neutrinos (SN1977A) 97
neutrinos from the sun 442
neutron cross sections 292
neutron drip line 83
neutron exposure time 292
neutron production
s-process 81

neutron stars
general discussion 103
mass–radius relation 164
Saha equation (Ex. 3.3) 186

Newton’s rule 343
Newton–Raphson method 343
nickel 56 (56Ni) 78
nonadiabatic radial pulsations

391–394
nonradial modes 85
nonradial pulsations 404–424
nonresonant reactions 282–289
nova lightcurve see Fig. 2.26
novae 90–91
nuclear burning phases see Table 2.2
nuclear cross section 279
nuclear energetics 277
nuclear potential well 278
nuclear radius 277
nuclear reaction network 313
nuclear statistical equilibrium 74, 313
Ex. 6.7 320

nuclear time scale (tnuc) 30
nucleosynthesis 78
r-process 292

nuclide abundances 78
number density
electrons 161
integral representation 149

numerical techniques 337–357

O–B associations 498
oblique rotator model 88
occupation number (n(p)) 149
OH/IR stars 69
onion skin (SN1987A) see Fig. 2.31
Oort limit 133
opacity 195
H− 213
bound–bound 212
bound–free 212
conductive 214, 219
density exponent (n) 24
electron scattering 208
free–free 209, 213
general discussion 207–216
Kramers’ 24
power law 24
Rosseland mean 199
tabulated see tabulated opacities
temperature exponent (s) 24

Opacity Project (OP) 207, 219
OPAL opacity code 219
open clusters 54, 498
optical depth (τν)
photosphere 204
true surface 196

orthogonality 385
oscillations see pulsations
oscillator strength 227
oscillatory moment of inertia (J) 396
overshooting 259
overtone modes 387
oxygen burning 312

p-modes 85, 390, 414
p-process 78
pair annihilation 315
partial degeneracy 166–171
temperature corrections 171

Pauli exclusion principle 161
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period (Π) 15
period spacing 415, 488
period–mean density relation 13, 16,

386
PG1159 variables 87
PG1159–035 484
photodisintegration 74, 312
photon mean free path (λphot) 146
photon number density (nγ) 150
photoneutrinos 316
photosphere 31, 203
photospheric boundary conditions

202
Planck function
frequency dependent (Bν(T )) 151,
196

integrated (B(T )) 151, 196
planetary nebula nucleus (PNN) 70
planetary nebulae (PN) 69
plasma neutrinos 317
Pleiades see Fig. 2.6
Pleiades (open cluster) 54
PN see planetary nebulae
PNN see planetary nebula nucleus
PNN variables 87
PNNV variables 482
Poisson’s equation 333
polytropes 332–345
polytropic index (n) 332
Pop I, II 497
Pop III 219, 497
positron decay 294
PP–I chain 300
PP–II chain 302
PP–III chain 302
pp-chains 22, 49, 299–302
pp-reaction 296–297
Prandtl number (Pr) 243, 266
pre-main sequence evolution 367, 373
pre-MS evolution see Fig. 2.2
pre-supernova model see Fig. 2.17
pressure
degenerate 162
density exponent (χρ) 25, 175
density exponent with ionization
182

ideal gas see ideal gas
in polytropes 333, 336

integral representation 10, 150
power law 25
radiation 151
temperature exponent (χT ) 25, 175
temperature exponent with ionization
182

with ionization 158, 180
pressure ionization 173
pressure modes 85, 390, 414
pressure scale height (λP ) 145, 244
Procyon B 107
prograde waves 423
propagating waves 389
propagation diagram 417
proton-proton chains 49, 299–302
protostars 44, 109
disks 44

Proxima Cen 47
pseudo-viscosity 353
pulsar 96, 103, 115
pulsation constant Q 388
pulsational instability 391–404
pulsational variables 85–89
pulsations
nonradial 404–424
radial adiabatic 380–391
radial nonadiabatic 391–394

pycnonuclear reactions 299, 310

Q-value, nuclear 277, 282
quasi-adiabatic approximation

394–400
quasi-adiabatic growth rate 396
quasi-equilibrium 74

R CrB 85
r-process 77, 78, 82
radial modes 85
radial wave number 413
radiation energy density 151, 194
radiation pressure 151
radiative envelope 363–367
radiative flux (F) 195
radiative gradient (∇rad) 201
radiative levitation 476
radiative temperature structure 366
radiative transfer 193–201
diffusion equation 24

random walk for photons
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Ex. 3.2 185
rapidly oscillating Ap stars 88, 480
rate of period change (Π̇) 484
ratio of specific heats (γ) 175
Rayleigh number (Ra) 243, 266
reaction rate
average 280

reciprocal kick velocity 113
recurrent novae 90
red clump stars 66
red giant branch (RGB) 55, 61
red giants 60–62
red supergiants 60–62
reduced mass 156
reduced mass (μ) 281
reduced width (γ2) 275
relativistic kinetic energy 149
relativistic velocity 150, 159
relaxation methods 346
resonance energy (Er) 281
resonant reactions 289–291
retrograde waves 412, 423
reversible change 6
Reynold’s number 260
RGB see red giant branch
roAp see rapidly oscillating Ap stars
Roche equipotential surfaces see

Fig. 2.35
Roche geometry 107–109, 135
Roche lobe 108
Rosseland mean opacity 199
rotation, solar 450
rotational mixing 452
rotational splitting of modes 422
rotational splitting, white dwarfs 487
RR Lyrae variables 56, 87, 130
RS CVn 110
Runge–Kutta integrators 338
RV Tauri variables 88

s–process 292
S-factor [S(E)] 283
s-process 78, see Fig. 2.22
s-process shielding 81
SAGE 446
Saha equation 155–159
helium (Ex. 3.1) 184
hydrogen ionization-recombination
155

in neutron stars (Ex. 3.3) 186
triple-α 308

Sakurai’s object 85
Salpeter birth rate function 133
Sanduleak–69◦ 202 97
saturation see line saturation
Schönberg–Chandrasekhar limit 137
Schwarzschild criterion 246
Schwarzschild discriminant (As) 251
Schwarzschild variables 368
screening see electron screening
sectoral modes 412
secular stability 375
selection rules 318
semi-detached binary systems 109
semi-periodic variables 88
semiconvection 261–263
SGB see subgiant branch
shape factor [f(E)] 281
shell flashes 68
shielding (in s-process) 81
shock waves 133
shooting for a solution 338
silicon burning 74, 82, 313
Sirius A 47, 107
Sirius B 47, 113, 468
SN see supernovae
SN spectra see Fig. 2.28
SN Type I light curves see Fig. 2.32
SN Type II light curves see Fig. 2.29
SN1572 (Tycho) 94
SN1604 (Kepler) 94
SN1987A 66, 97–100
SNR see supernova remnants
SNU 445
SOHO 460
solar
abundances 432
age 433
evolution from ZAMS 437
luminosity (L�) 432
mass (M�) 432
neutrinos 442
rotation 450
structure 439

solar constant 128, 432
solar neutrino unit 445
solar neutrinos 49, 302
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solar oscillations 88
Sommerfeld factor (η) 283
sound speed (vs) 15, 244, 389
source function (Sν) 196
sources of element production see

Table 2.3
specific heat, negative 12, 471
specific heats 174–175
with ionization 181

specific intensity (I) 194
specific volume (Vρ) 6
spectra
main sequence stars 223
observed 223

spectral class L 225
spectral class T 226
spectral classes 223, 224, 500
spectropolarimetry 478
spectroscopic binaries 106
spectrum binaries 107
spherical harmonics Y�m(θ, ϕ) 408
spheroidal modes 408
spotted stars 84
SPV see semi-periodic variables
standard model, Eddington 357
standing waves 389
standstills 93
star formation 116–120, 136
statistical factor
nuclear g 319

stellar populations 497
stellar winds 58, 68
stiff equations 356
stimulated emission 234
stoichiometric coefficients 148
Stokes derivative 248
Sturm–Liouville operator 385
SU UMa 93
subgiant branch (SGB) 56
Sudbury Neutrino Observatory 446
sun see solar
Super–Kamiokande 446
super-outbursts 93
superadiabatic gradient 251
supernova remnants 102
supernovae 77, 94–103
superwind 68

surface boundary conditions see
boundary conditions

SX Phe variables 87

T Tauri stars 45, 373, 374
tabulated opacities 216–222
technetium 69
temperature exponents
nuclear (ν)
CNO-cycles 307
nonresonant reactions 289
pp-reaction 297
triple-alpha 309
opacity (s)
H− 214
conductive 216
Kramers’ 212
Thomson (electron) scattering
209

pressure (χT )
degenerate gas 179
ideal gas 177

temperature exponents defined
energy generation rate (ν) 22
opacity (s) 24
pressure (χT ) 25

temperature, central
in ZAMS models 120

tesseral modes 412
thermal balance 21
thermal diffusivity (νT ) 248
thermodynamic equilibrium 147
thermonuclear reactions see Chap. 6
Thomson scattering opacity 24, 208
time step 353
time-centered velocity 353
Tolman–Oppenheimer–Volkoff see

Ex. 1.7, 103
total flux (F) 195
total kinetic energy (K) 8
total mean molecular weight see

mean molecular weights
transfer equation, radiative 195
transition temperature (TTR) 401
transverse wave number (kt) 410
trapping (of modes) 488
triangle solutions 109
triple-α reaction 23, 66, 68, 307
Trojan points 109
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tsunamis 427
turbulence
in convection 260

turning point 419
turnoff point 30, 55, 57, 128
Type I cepheids 86
Type I SN 94, 100–102
Type Ia SN 100
Type II Cepheids 87
Type II SN 94

U Gem 93
U–V plane 343

V471 Tau 113
valley of β-stabilty 19
variable stars (intrinsic) 85–89
variable white dwarfs 481–490
velocity curve 131
virial of Clausius 8
virial theorem 7, 9, 10
accretion 35
Kelvin–Helmholtz time scale 12
surface pressure see Ex. 1.8, 2.22
temperature estimates 14
white dwarfs 163

visual binaries 107
Vogt-Russell theorem 331
Voigt function 229
von Zeipel’s paradox 450

W UMa 109
W Vir variables 87
wave number 389
wavelength regions 224
WDs see white dwarfs
weak interactions 294–296
weak line 231

WET 88, 485
white dwarf cooling 469–472
white dwarfs 70–72, 163–166, 467–496
Chandrasekhar mass 165
cooling 72
crystallization 474
evolution 476
gravitational settling 475
HR diagram 70
luminosity function 72
magnetic 477, 489
mass–radius relation 163–166
masses 467, 488
rotation 469, 487
spectral classification 468
variable 481
very cool 468

white dwarfs (as polytropes) 361
white dwarfs, neutron stars, & black

holes 103–104
Whole Earth Telescope 88, 485
Wolf–Rayet stars 59

x-ray binaries 113
x-ray bursters 114

young stellar objects 44
YSOs see young stellar objects

Z Camelopardalis 93
ZAMS see zero-age main sequence
ZAMS models see Tables 2.5 & 2.6
ZAMS sun 434
zero-age main sequence 47
zero-pressure boundary condition 6
zonal modes 412
ZZ Ceti variables 87, 482
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