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Our understanding of the formation of stars and planetary systems has changed greatly since
the first edition of this book was published. This new edition has been thoroughly updated,
and now includes material on molecular clouds, binaries, star clusters and the stellar initial
mass function (IMF), disk evolution and planet formation.

This book provides a comprehensive picture of the formation of stars and planetary sys-
tems, from their beginnings in cold clouds of molecular gas to their emergence as new suns
with planet-forming disks. At each stage gravity induces an inward accretion of mass, and
this is a central theme for the book. The author brings together current observations, rigor-
ous treatments of the relevant astrophysics, and 150 illustrations, to clarify the sequence of
events in star and planet formation. It is a comprehensive account of the underlying physical
processes of accretion for graduate students and researchers.
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Preface to the first edition

The topic of star and protoplanetary disk formation touches almost every area of astro-
physics, from galaxy formation to the origin of the solar system. Our understanding of
the early evolution of stars has advanced substantially in the last few years as a result of
improved observational techniques, particularly in the infrared and radio spectral regions.
Although many fundamental problems of star formation remain to be solved, so much has
been learned in the last decade about pre-main-sequence accretion processes that an attempt
to outline the emerging picture of low-mass star formation seems justified.

In this book I have tried to provide a discussion of accretion in early stellar evolution
which can be used at a variety of levels: as an introduction to the subject for advanced gradu-
ate students; as a reference for researchers in star formation; and as an overview for scientists
in other, related fields. The text assumes a basic familiarity with astronomical concepts and
graduate-level physics, though I have made some effort to include some astronomical defini-
tions and references to fundamental physical equations needed for my development. I have
adopted a point of view close to that of my own research, which is generally near the inter-
face between theory and observation, and so have tried to discuss basic physical concepts
in relation to observational results. Many plausible and even aesthetically pleasing theories
have been constructed which have failed to meet observational tests. Conversely, observa-
tions by themselves are not very meaningful unless (or until) they are placed into a physical
context. I have also tried to include a substantial number of references, but I warn the reader
that my selection is necessarily incomplete and probably biased in such a rapidly evolving
subject; my intent is mainly to provide entry points into the literature for further research.

I especially hope to stir the interest of specialists in other fields where accretion disks
are important. There are of course direct applications of pre-main-sequence disk physics
and evolution to the study of planet formation, which has taken on added importance with
the discovery of extrasolar planets. Beyond this, much of what we currently know about
astrophysical disks is based on studies of accreting binary systems, and the accretion disks
probably present in active galactic nuclei may have points of similarity to protostellar disks,
in that they both exhibit powerful jets and dusty infalling envelopes. One hopes that the
similarities among and differences between astrophysical accretion disks will yield further
insight into accretion processes.

In writing this book I found myself continually revising material to take current important
developments into account. Although this can be problematic, since very recent ideas or
results may not have been fully tested, it is difficult to avoid incorporating new material in

xi



xii Preface to the first edition

such a rapidly developing field. Specialists will recognize that many new results have not
been included, and I can only ask for their understanding in view of the rate at which the
literature is expanding.

I have tried to express a point of view which is not always that of the “standard models”
if the observations do not support these models. In discussing these matters I have tried
to be evenhanded and to provide enough information for the reader to make his or her own
judgements, although this can be difficult in addressing current areas of contention. Although
some of the issues of today may be of transient importance, the conflict between opposing
views seems to me to be part of the excitement of science, and the means by which we
sharpen our understanding of astrophysical objects. I have also indulged in a little historical
discussion to provide a faint hint of how science is actually done. In an area of rapidly
evolving research such as star formation, texts such as the present one serve not simply to
define the current state of knowledge, but to challenge readers to do better.

Cambridge, Massachusetts L.H.
October 6, 1997



Preface to the second edition

Initially it seemed like a good idea to revise this book, because so much has been learned
about star and planet formation over the last ten years. It eventually became clear that it was
a bad idea to revise this book, because so much has been learned about star and planet for-
mation over the last ten years. By then I was halfway through and it was too late to back out.

I therefore beg the reader’s indulgence for things I have left out or treated schematically.
At some point in a project like this “the best is the enemy of the good”, as Voltaire apparently
said; just give up and send it off. Perhaps there is some value in having a treatment that does
not try to cover everything in an enormous tome, but instead provides accessible points of
departure. As was the case for the first version, I hope that this will be a useful reference for
non-specialists as well as a starting point for researchers entering the field.

Ann Arbor, Michigan L.H.
February 27, 2008

xiii



Acknowledgments

This book could not have been written without the generous support and encouragement of
many people and institutions. The first edition was written at the Smithsonian Astrophysical
Observatory and at the Centro de Investigaciones de Astronomı́a, Mérida, Venezuela, where
Gustavo Bruzual, Nuria Calvet, and Gladis Magris provided me with a very hospitable and
supportive climate in which to do research. Most of the revisions and extensions of this
second edition were written as a member of the Astronomy Department of the University of
Michigan.

Many friends and colleagues helped me by reading and commenting upon the manuscript.
Nuria Calvet, Neal Evans, Charles Gammie, Erik Gullbring, Phil Myers, Cesar Briceño,
and James Muzerolle were especially helpful in reviewing the first edition, and Javier
Ballesteros-Paredes, Nuria Calvet, Catherine Espaillat, Fabian Heitsch, John Tobin, and
Zhaohuan Zhu provided important comments and corrections on this edition. Special thanks
go to Catherine Espaillat, John Tobin, and Zhaohuan Zhu for building the index.

I also wish to thank Doug Lin for suggesting that I write this book, and the people at
Cambridge University Press for their patience. As a practical matter, I also wish to cite the
Astrophysics Data System’s abstract service, without which I could not have finished this
effort in my remaining lifetime.

Many people including Joao Alves, Phillippe André, Sean Andrews, Matthew Bate,
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1

Overview

Much of what we presently know or surmise about the physical processes involved in star
formation is derived from the detailed study of a few nearby molecular cloud “nurseries”.
Stars in the solar neighborhood are formed from the gravitationally induced collapse of
cold molecular gas. Typical molecular gas clouds must contract by a factor of a million in
linear dimensions to form a star. Because of this dramatic (and rapid) reduction in size, any
small initial rotation of the star-forming cloud is enormously magnified by conservation of
angular momentum during collapse. In this way a modestly rotating gas cloud produces a
rapidly rotating object – a disk – in addition to a small, stellar core at the end of gravitational
collapse. Probably most of the material of a typical star is accreted through its disk, with a
small amount left behind to form planetary systems.

Advances in observational techniques spanning the electromagnetic spectrum have been
essential in developing our present understanding of star formation. The launch of the
Infrared Astronomy Satellite (IRAS) in 1983 led to the recognition that dusty disks are com-
mon around young stars. The ISO infrared satellite provided detailed mid-infrared spectra
of many bright disks. The Spitzer Space Telescope, the latest in this line of infrared observa-
tories, has now detected mid-infrared disk emission in very large samples of stars spanning
a wide range of ages. During the same period, radio-wavelength interferometry developed
to a state where it could provide high spatial resolution images of cold dust and gas in outer
disks, along with estimates of disk masses. The forthcoming Atacama Large Millimeter
Array (ALMA) is expected to produce a major advance in imaging at mm and sub-mm wave-
lengths. Optical studies using large ground-based telescopes have produced better estimates
of stellar masses and ages for large samples of stars, as well as providing new insights into
the accretion flows of young stars. The Hubble Space Telescope (HST) has provided remark-
able images of disks in a wide variety of environments, and even has produced important
constraints on accretion rates from ultraviolet observations.

Concurrently, our theoretical insight into star formation processes has improved, driven
in important ways by the remarkably rapid increase in computing power. The analytic and
steady-state models of the previous generation, which served the field so well for many
years, are now being supplemented by time-dependent numerical simulations of the complex
physical processes involved in star formation and protoplanetary disk evolution.

While a coherent picture of star formation is emerging, many mysteries remain. We do
not yet have a conclusive theory explaining the stellar initial mass function, though many
ideas have been advanced. Disk accretion is clearly an important part of the star (and
planet) formation story; although much progress has been made lately in understanding

1



2 Overview

angular momentum transport mechanisms which drive accretion, theories do not yet have
predictive power. The powerful, highly collimated outflowing jets observed from young stars
were totally unexpected, and additional surprises are probably yet in store. Finally, we now
know that extrasolar planetary systems can differ dramatically from our own, providing new
challenges to theories of planet formation.

This book attempts to survey our present understanding of the accretion processes
involved in star formation, with an extension to a few aspects relevant to planet formation.
The present chapter contains a brief outline of the processes discussed in more detail in the
rest of the book.

1.1 Molecular clouds
Young stars are not distributed at random in the Milky Way, but are generally found

close to or within clouds of relatively dense molecular gas. The Milky Way is a spiral galaxy,
probably with a central bar (e.g., Blitz & Spergel 1991; López-Corredoira et al. 2007). Most
of the gas in the galaxy is distributed near the plane of its disk with most of its molecu-
lar gas of the galaxy concentrated to inner regions in the “molecular ring” about 3–5 kpc
distant from the center. The most luminous star-forming regions of the galaxy are found in
the molecular ring. The surface density of gas near the solar circle is lower than that of the
molecular ring; locally, most of the gas is in atomic hydrogen rather than in molecular clouds
(e.g., Dame 1993). Our detailed understanding of star formation, which arises from studies
of nearby regions, is therefore somewhat biased toward low-density regions with relatively
low star formation rates; such regions are probably not typical of the sites where most stars
in the galaxy form. While exploring the formation of stars in very dense and active environ-
ments is probably best done by studying external galaxies, the solar neighborhood provides
by far the most stringent tests of general star formation theory.

The sizes and masses of molecular clouds in the Milky Way span a large range, from giant
star-forming molecular cloud complexes of masses ∼106 M� and sizes ∼100 pc to clouds
of <∼101 M� and <∼1 pc and smaller. Three of the best-studied (and closest) molecular cloud
complexes forming stars are: Taurus, at a distance of ∼140 pc, with a mass ∼104 M� extend-
ing over a region 30 pc or more (Ungerechts & Thaddeus 1987; Figure 1.1); Ophiuchus, at
a distance similar to that of Taurus, and with a similar mass and overall size, but with much
denser concentrations of gas (DeGeus et al. 1990; Loren et al. 1990); and the Orion com-
plex, at a distance of ∼450 pc, with a mass ∼105 M� spread over a region ∼100 pc, and also
possessing very dense star-forming regions (Bally et al. 1987; Genzel & Stutzski 1989). An
overview of galactic molecular clouds can be found in Dame et al. (2001), and references
therein.

Most of the gas in a molecular cloud is in H2, but this species is observable only with great
difficulty; other molecules, especially CO, are used as tracers of the dense gas. Figure 1.1
shows a map of 12CO emission from the Taurus molecular cloud complex, with the young
stellar population superimposed. The 12CO ground state rotational spectral line at ∼2.7 mm
becomes optically thick at modest column densities, thus highlighting relatively low-density
material. Rarer isotopes of CO, such as 13CO and C18O, or other, less abundant, species are
used to probe the densest regions of clouds, which occupy relatively small volumes. The
temperatures of the molecular gas are generally in the range 10–20 K, unless the material is
quite close to luminous stars.
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Fig. 1.1. The Taurus–Auriga molecular cloud complex. Grayscale shows integrated 12CO
emission, taken from Megeath et al. (2001). The positions of known young stars (ages
∼1 Myr) have been superimposed. The pre-main-sequence stars (Classes II and III) are gen-
erally clustered near regions of high gas column density; the likely protostars (Class I) are
found only in high density regions (e.g., Onishi et al. 1998).

The formation of a star requires that gravity overcome the resisting forces of thermal gas
pressure, turbulent motions, and magnetic fields. It is therefore not surprising that stars form
in dense, cold molecular cloud regions which exhibit reduced turbulent motions. The sub-
stantial dust extinction in many molecular cloud complexes (Cernicharo 1991) may play an
important role in condensing protostellar gas clouds (e.g., McKee 1989) by shielding the
radiative heating by luminous stars and therefore lowering the internal temperature. Dust
absorption of external photoionizing radiation fields also strongly reduces the level of ion-
ization in the interiors of molecular clouds. For some time it was thought that this reduced
ionization played an important role in star formation by enabling gas to diffuse across mag-
netic field lines, reducing the magnetic forces which can counteract gravity (Shu et al. 1987);
however, it now seems more likely that protostellar clouds require little if any magnetic flux
loss to allow gravitational collapse.

Molecular clouds have complex spatial structure (Falgarone 1996; Falgarone et al. 1998);
line-of-sight motions often exceed the local sound speed by as much as an order of magni-
tude. Supersonic “turbulence” is an important component of the energy balance of molecular
clouds (e.g., Larson 1981). The gas from which stars form is highly filamentary in many
places. The origin of this structure is not well understood at present, though dynamical and
thermal instabilities plus gravitational collapse probably play roles.

Substructure within molecular clouds is clearly related to the formation of stars. Older
observational estimates suggested that the number of molecular cloud clumps with mass
Mc is d Nc/d Mc ∝ M−1.5

c (Blitz 1991). This cloud mass spectrum differs strongly from the
initial mass function (IMF) of stars (see next section). More recent studies (Bontemps et al.
2001; see also Ward-Thompson et al. 2007) have suggested a closer correspondence between
the densest and smallest clumps – called “cores” – and the stellar IMF. Comparisons between
cloud and stellar masses are made difficult by uncertainties in the defining boundaries of
actual star-forming clouds (Williams et al. 1994).



4 Overview

Molecular cloud “cores” are condensations in molecular gas with densities >∼103 cm−2,
and are thought to be the predecessors of low-mass stars. Cores are typically found from
radio-frequency surveys of spectral lines of NH3 and other molecules which are excited
only at relatively high gas densities. In Taurus, cloud cores found in NH3 have densities
>∼104 cm−3 and are typically ∼0.1 pc in size (Myers & Benson 1983; Myers & Goodman
1988a,b). At such high densities, the expected gravitational collapse timescales are only a
few hundred thousand years, so that star formation could proceed quite rapidly from these
cores. This expectation is borne out by observations which indicate that almost half of these
cloud cores in Taurus have heavily extincted (presumably recently formed) stars within their
boundaries (Beichman et al. 1986).

Bok globules, visually opaque clouds found by their extinction of background stars, were
long ago proposed as sites of low-mass star formation (Bok & Reilly 1947). The globules
vary in properties, but typically have masses of a few times that of the Sun, with radii of order
a few tenths of a pc in size (Clemens & Barvainis 1988). Many of these globules have young
stars within them (Yun & Clemens 1990) and some may be undergoing collapse (Wang et al.
1995). Molecular cloud cores may be essentially equivalent to dense Bok globules, but have
not been catalogued as such because they are superimposed upon regions of generally large
visual extinction, and so are difficult to detect optically.

1.2 The IMF, clusters, and binaries
The frequency with which stars of a given mass are produced is called the stellar

initial mass function (IMF). The general form of the galactic IMF is that of a broad distribu-
tion peaking near ∼0.3 M� (Miller & Scalo 1979; Scalo 1986; Kroupa et al. 1993; Chabrier
2003). At high masses, the number of stars N of mass M in logarithmic bins appears to fol-
low a nearly power-law shape, with ξ = d log N/d log M ≈ −1.35, the so-called “Salpeter
slope”. The form of the IMF at low masses is more uncertain, but it is clear that there is a
turnover in ξ at masses below about 1 M�. Studies of the brown dwarf or substellar mass
regime (usually taken to be 0.08 M� <∼ M∗ <∼ 0.01 M�, bodies which will never fuse hydro-
gen in their interiors) suggest that the IMF may be relatively flat down to planetary masses
(∼0.01 M�, or about 10 M(Jupiter)).

It is difficult to tell whether the IMF is truly universal, given the difficulty of obtaining
sufficient statistics on the high-mass end without studying distant clusters where counts of
the much more numerous low-mass population are incomplete due to faintness, crowding,
etc. One unresolved issue is whether high-mass stars can form in low-density environments,
though it seems unlikely, given the necessity of accreting a large mass from a finite volume.
What is clear is that low-mass stars are formed in all environments (e.g., Herbig & Terndrup
1986). At present there are many explanations of the IMF; as yet none are wholly satisfying
or convincing.

Completely isolated star formation seems to be the exception rather than the rule, though
perhaps as much as 30% of all stars currently form in “distributed” rather than clustered
environments, if the Orion A cloud is any indication (Figure 1.2; S.T. Megeath, personal
communication). In the solar neighborhood, about 10% of recently formed stars are found in
clusters of ∼103 stars or larger, i.e., open clusters (which can remain gravitationally bound
for timescales of order 100 Myr; Adams & Myers 2001). Most nearby stars are probably
formed in clusters of 102–103 members (e.g., Lada & Lada 2003), although much larger
clusters may be found near the galactic center. A small fraction of stars appear to be formed
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Fig. 1.2. Young stars in the Orion A molecular cloud (shown by contours outlining the main
molecular emission) identified via their infrared excesses detected with the Spitzer Space
Telescope. The left panel shows stars with disk emission, while the right panel shows likely
protostars (§§1.4, 1.5). Most of the stars in the cloud reside in the clustered northern region
(the Orion Nebula Cluster), but a significant fraction are “distributed” along the cloud. From
Megeath et al. 2008 (in preparation).

in low-density environments like Taurus. Even in Taurus, the stars are not randomly dis-
tributed, but most are situated in extended filaments (Figure 1.1); such regions constitute the
closest approximation to isolated star formation.

Most young solar-type stars are members of binary or multiple stellar systems (Ghez et al.
1993; Leinert et al. 1993; Reipurth & Zinnecker 1993; Mathieu 1994; Simon et al. 1995).
The multiplicity of solar-type (F–G main sequence) field stars, the sample for which we
have the best statistics, is roughly 57:38:4:1 single:binary:triple:quadruple (Duquennoy &
Mayor 1991). The distribution of binary orbits is roughly Gaussian, with a median semi-
major axis of order 30 AU; this result may be affected by tidal disruption of wide binaries
with separations >∼1000 AU over time. The mass ratios in multiple systems are not well con-
strained, but are roughly consistent with the companion being drawn randomly from the IMF.
Observations of low-density star-forming regions suggest that, within certain separations,
the frequency of binaries may be higher than in the field (Simon et al. 1995), while studies
of dense clustered regions like the Orion Nebula Cluster suggest a smaller binary fraction
(Köhler et al. 2006). Binary frequencies among very low-mass stars may be considerably
lower (e.g., Ahmic et al. 2007).

1.3 Young stars
Young low-mass stars were originally recognized as a subset of optical emission-

line objects, typically exhibiting strong hydrogen (Balmer α or Hα) line emission at
6563 Å = 0.6563 μm. The youth of these stars was suggested by their spatial correlation
with reflection nebulae and dark clouds (Joy 1945), which could be remnant natal material,
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and by their concentration near associations of high-mass stars which must necessarily be
young (Ambartsumian 1947). This grouping is now understood as the result of star forma-
tion in molecular clouds; stars of ages <∼106 yr cannot travel far from their formation sites
with typical small velocities (<∼1–2 km s−1) relative to the molecular gas (Herbig 1977a;
Jones & Herbig 1979; Hartmann et al. 1986).

Objective prism surveys for stars with strong emission lines (mostly Hα) led to the first
extensive catalogs of young stars. With the advent of infrared techniques, many additional
objects (heavily obscured by dust at optical wavelengths) were found. Some of the dens-
est known clusters of newly formed stars were only detected once infrared arrays were
employed to image molecular cloud complexes (Lada et al. 1991). X-ray emission has also
been used to identify many additional young objects, especially stars which do not exhibit
strong excess infrared or optical emission (e.g., Montmerle et al. 1983; Feigelson et al. 1987;
Walter et al. 1988).

Stellar luminosities and effective temperatures, or equivalently positions in the
Hertzsprung–Russell (HR) diagram, provide important clues to the evolutionary states of
young stars. Effective temperatures are determined from spectroscopic measurements of
optical (and now infrared) absorption line strengths; usually, spectral line ratios are used to
determine the stellar spectral type and luminosity class, which can be associated with the
stellar surface effective temperature and surface gravity. Stellar luminosities are determined
from observed optical and infrared fluxes corrected for the dimming and reddening effects
of intervening dust. Using these methods, many surveys of the properties of young stellar
populations have been made (e.g., the seminal work of Cohen & Kuhi (1979)).

Many low-mass stars associated with molecular clouds lie above the hydrogen-fusion
main-sequence in the HR diagram (Figure 1.3); their low masses M∗ and moderately large
radii R∗ indicate central temperatures too low to fuse hydrogen into helium (since the inter-
nal temperatures tend to scale as M∗/R∗). Deuterium fusion can occur at lower temperatures
than hydrogen fusion; but because the deuterium abundance is relatively low, the luminosi-
ties of typical young stars can be powered by deuterium fusion for only a million years or
less. Without fusion energy release, the young star must contract, generating gravitational
potential energy to replace the energy lost by the radiation of the stellar photosphere. This
contraction corresponds to moving downward in the HR diagram (Figure 1.3), and thus
the positions of young stars in the HR diagram can be used to estimate ages. (Stars with
masses >∼0.8 M� eventually develop radiative cores, at which point they contract in radius
but increase slowly in luminosity, moving mostly right to left in the HR diagram, as shown
in Figure 1.3.) Contraction stops when stars arrive on the main sequence, at which point
hydrogen fusion energy release replaces the energy radiated into space by the stellar pho-
tosphere. Thus the ages of stars near the “zero-age main sequence” (ZAMS) are difficult
to determine, especially when uncertainties in stellar luminosities due to distance and dust
extinction errors are taken into account.

The lowest-mass stars, the so-called “brown dwarfs” (usually taken to have masses
between 0.08 and 0.01 M�), exhibit slightly different behavior. By definition, brown dwarfs
never fuse hydrogen in their interiors; thus, apart from a brief energy release from deuterium
fusion, they can only replace the energy radiated from their surfaces by contracting, as with
the higher-mass stars. Instead of halting contraction with the onset of hydrogen fusion, inter-
nal degeneracy pressure eventually slows brown dwarf contraction, with a final cooling
at a roughly constant radius, of the order of the size of Jupiter. Evolutionary tracks for
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Fig. 1.3. HR diagram positions of young stars lying within the Taurus–Auriga molec-
ular cloud complex (Figure 1.1). For comparison, theoretical evolutionary tracks for
pre-main-sequence stars of masses 2.5, 2.0, 1.5, 1.0, 0.5, 0.3, and 0.1 M� are shown. The
dashed lines are isochrones for ages of 105, 106, and 107 yr (0.1, 1, and 10 Myr), with the
hydrogen-fusion “zero-age main sequence” or ZAMS shown as the lowest line running from
upper left to lower right. The open circles refer to weak-emission T Tauri stars (WTTS; see
text), while the filled circles denote the positions of the classical T Tauri stars (CTTS). Stellar
properties taken from Kenyon and Hartmann (1995); evolutionary tracks are from D’Antona
and Mazzitelli (1994).

these objects are particularly uncertain due to the difficulty in treating the complex molec-
ular opacities in the atmospheres of these objects; representative calculations are shown in
Figure 1.4. The rapid cooling of brown dwarfs means that it is much easier to detect them
when they are very young and proportionately much brighter.

Low-mass (M <∼ 2 M�), pre-main-sequence stars, having stellar spectral types F–M (cor-
responding to surface effective temperatures ∼7000–3000 K), are called “T Tauri” stars
(Joy 1945; Herbig 1962; Bertout 1989); higher-mass ∼2–10 M� pre-main-sequence stars
are labeled “Herbig Ae/Be” stars (Herbig 1960) to distinguish them from other types of
emission-line A-B stars (effective temperatures ∼8000–30 000 K) which are presumably
more evolved. (The mass ranges are not exact because the classification depends upon
the optical stellar spectral type or effective temperature, which can vary substantially as
a ∼2 M� star evolves; see Figure 1.3.) The rapidity with which massive stars evolve makes
study of their pre-main-sequence evolution more difficult. Stars with masses >2 M� are typ-
ically found near the ZAMS (Figure 1.3; Hillenbrand et al. 1992); age estimates for these
objects are especially uncertain.

The old systematic catalog of pre-main-sequence stars, that of Herbig and Bell
(1988 = HBC), is very useful for the best-studied pre-main-sequence stars, but it is now
highly incomplete given the vastly increased number of young stars since discovered. Many
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Fig. 1.4. A recent placement of the low-mass population of Taurus on an HR diagram, with
evolutionary tracks from Baraffe et al. (2002). Modified from Luhman (2004).

young stars have only been detected as infrared sources, so their effective temperatures,
masses, and often luminosities are poorly known.

The term “young stellar objects”, or YSOs (Strom 1972), was coined partly in the recog-
nition that the appearance of young stars may be strongly affected or altered by their
circumstellar material. It also serves as a relatively neutral term to identify objects whose
underlying nature – T Tauri star, Herbig Ae/Be star, protostar (§1.3), pre-main-sequence
accretion disk (§1.4) – is not yet understood. In this book the term YSO is used spar-
ingly, since it does not discriminate clearly between objects which can be intrinsically quite
different.

The T Tauri stars originally were identified as late-type stars with strong emission lines
and irregular light variations associated with dark or bright nebulosities (see Bertout 1989
for a discussion). Since that time, the term “T Tauri star” has come to be synonymous with
low-mass pre-main-sequence stars, whether or not they are associated with nebulosity or
have strong emission lines. Most of the variable stars first identified as T Tauri stars are
currently called “strong-emission” or “classical” T Tauri stars (CTTS), to distinguish them
from “weak-emission” pre-main-sequence stars (WTTS). The distinction between strong
and weak emission stars is usually made on the basis of Hα emission. The original definition
assigned the WTTS label to stars with Hα equivalent widths less than 10 Å but we now
know that the boundary between weak- and strong-emission stars depends upon spectral
type (White & Basri 2003). It appears that the excess emission of many WTTS can be
explained in terms of enhanced solar-type magnetic activity (Walter et al. 1988), while the
extreme levels of excess emission at optical and infrared wavelengths of many CTTS require
an external energy source. Accretion from a circumstellar disk appears to supply the energy
needed for the non-photospheric emission of CTTS (§1.7).

High-mass stars are by definition young, since they exhaust their hydrogen rapidly via
fusion. It appears that early B and O stars start their lives near or on the zero-age main
sequence, although it is difficult to say more because of the rapidity with which these stars
form and would pass through any pre-main-sequence phase. In addition, there are severe
observational difficulties in studying very young massive stars because they are generally
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heavily extincted. Moreover, the scarcity of massive stars results in the need to study these
objects at much larger distances than those of the nearest low-mass star-forming regions.
These problems have made it difficult to tell whether the accretion disk paradigm of low-
mass stars applies to high-mass stars as well. Recent interferometric studies have yielded
indications of the presence of disks around some young massive stars (Shepherd et al. 2001;
Patel et al. 2005; Reid et al. 2007), as well as bipolar outflows suggesting collimated flows
from accretion disks (e.g., Shepherd & Churchwell 1996).

1.4 Protostars
Dramatic improvements in infrared detector technology over the last three decades

have enabled astronomers to find YSOs hidden by dust absorption at optical wavelengths.
The measurement of far-infrared emission, which can penetrate through the most opaque
dust clouds, was enormously enhanced by the launch of the IRAS. In orbit, IRAS could be
more effectively shielded from the intense thermal emission of the Earth than was possible
with ground-based telescopes, and it was actively cooled to liquid He temperatures. IRAS
produced a survey of the sky at wavelengths of 12, 25, 60, and 100 μm with enough sen-
sitivity to detect many pre-main-sequence stars; the launch of the ISO satellite produced
further advances in characterizing infrared excess objects.

One of the major results of IRAS was the discovery of infrared sources with luminosi-
ties typical of T Tauri stars, but with spectral energy distributions peaking at 60–100 μm
(Beichman et al. 1986). Most of these objects are now generally identified as protostars, with
dusty envelopes that absorb energy from the central star at short wavelengths and re-emit this
energy at far-infrared wavelengths, where the envelope is sufficiently transparent for the radi-
ation to escape (Figure 1.5). The protostellar phase of star formation is thought to involve
the free-fall collapse of dusty material to stellar dimensions, resulting in very large extinc-
tions toward the central energy source (e.g., Larson 1969a,b; Appenzeller & Tscharnuter
1974). Theoretical models of the dust emission from protostellar envelopes in gravitational
free-fall can reproduce the observed infrared emission of these heavily extincted young stel-
lar objects (Adams et al. 1987 = ALS; Butner et al. 1991; Kenyon et al. 1993). So far it
has not been easy to demonstrate that these dusty envelopes are actually falling in, although
continuing efforts to observe small velocity shifts in radio-wavelength emission lines have
provided additional support for the collapse model (Walker et al. 1986; Hayashi et al. 1993;
Zhou et al. 1993; Zhou & Evans 1994; Mardones et al. 1997; Di Francesco et al. 2001).

IRAS surveys of Taurus (Beichman et al. 1986; Cohen et al. 1989; Kenyon et al. 1990,
1994; Beichman et al. 1992) indicate that the number of protostellar sources is ≈10% of the
total pre-main-sequence population. This suggests that the time for protostellar collapse is
similarly about 10% of the age of the pre-main-sequence stars in the region. The resulting
estimate of ∼105 yr for the protostellar infall phase is roughly consistent with the expected
timescale of collapse for the formation of a typical low-mass T Tauri star (Larson 1969a,b;
Shu 1977). Forthcoming results on embedded stellar populations from the Spitzer Space
Telescope should add to these results, but are unlikely to result in major revisions.

The behavior of high-mass protostars is much less clear, due in part to the observational
problems mentioned in the previous section. Nevertheless, observations of the so-called “hot
cores” (e.g., Kurtz et al. 2000) show that massive stars are formed in very dense clouds.
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Fig. 1.5. Spectral energy distributions (SEDs) of three young stellar objects which typify the
infrared classification system. The vertical axis is the flux at the Earth in arbitrary units. The
Class I object IRAS 04016 + 2610 is a protostar hidden at optical wavelengths by its dusty
infalling envelope; the dust absorbs the radiation from the central regions and re-emits it in
the far-infrared. The CTTS or Class II object AA Tau is optically visible, but exhibits long-
wavelength dust emission generally attributed to a circumstellar disk (see text). The WTTS
or Class III object LkCa 7 does not exhibit detectable dust emission; its SED is nearly that of
a single temperature blackbody, and is typical of the photospheric emission of low-mass pre-
main-sequence stars. Note the 10 μm silicate feature, which is in absorption in the Class I
object and in emission in the Class II star AA Tau (and the 15 μm CO2 ice feature absorption
in 04016 + 2610). Data from Kenyon and Hartmann (1995) and IRS Spitzer spectra from
Furlan et al. (2006).

1.5 Long-wavelength emission: dusty envelopes and disks
YSOs are frequently classified in the literature based on the shape of the emit-

ted spectrum from near- to far-infrared spectral regions, which emphasizes the properties
of circumstellar dust (Lada & Wilking 1984; Lada 1987). The emitted spectrum is usu-
ally discussed in terms of the “spectral energy distribution” or SED, which is a frequently
used shorthand for either the flux distribution λFλ observed at the Earth, or the luminosity
distribution λLλ, depending upon the context.∗

The infrared classification scheme depends upon the spectral index s of the emitted flux
F of the object, νFν = λFλ ∝ λs , typically measured between λ ∼ 2 μm and ∼50–100 μm.
Class I sources correspond to objects with s > 0, i.e., the SED rises toward long wavelengths.
An example of such a Class I source is the Taurus YSO IRAS 04016 + 2610 (shown in
Figure 1.5); this heavily extincted object is one of the protostar candidates discussed in
the previous section. The SEDs of such objects can be explained with emission from dusty
infalling envelopes.

∗ In this book we follow the typical astronomical convention of using cgs units. Thus, the flux λFλ has units of
erg cm−2 s−1, while the luminosity λLλ has units of erg s−1.
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Class II sources have −4/3 <∼ s <∼ 0, which is frequently identified as the spectrum
produced by a dusty, optically thick circumstellar disk. A typical example of a Class II
source is the T Tauri star AA Tau, shown in Figure 1.5. The CTTS AA Tau exhibits much
more infrared radiation than the WTTS Taurus object LkCa 7 (Figure 1.5); the latter is a
Class III source, because it has the Rayleigh–Jeans distribution s ∼−3 expected at long
wavelengths for a star without infrared excess emission from circumstellar dust.

Since this classification scheme was introduced, a further modification has been suggested
by the introduction of the “Class 0” sources (André et al. 1993). Class 0 sources are very red
objects, with large amounts of sub-mm emission relative to their total luminosities. Evidence
is accumulating that the Class 0 sources have especially large amounts of gas and dust in
their immediate environs, as might be expected if they represent a generally earlier phase of
protostellar evolution than Class I sources (e.g., Bontemps et al. 1996). It is difficult to plot
a typical Class 0 SED on Figure 1.5 because the spectral information available is usually
incomplete at shorter wavelengths.

ALS suggested that the infrared classification scheme can be interpreted in terms of an
evolutionary sequence. Protostars are Class I (or 0) sources, surrounded by (roughly spher-
ical) dusty infalling envelopes. The angular momentum of the infalling material causes it to
pile up in a rotating, flattened disk. After envelope infall has ceased, the dusty disk can still
produce substantial infrared emission, as it can be heated externally by radiation from the
central star and internally by viscous dissipation; however, because the disk is flat, it does
not intercept most lines of sight to the central star, and thus the latter is optically visible.
This combination of large amounts of dust in a disk geometry produces a Class II source.
Eventually, the disk dust is dissipated or coagulated, and one is left with only detectable
emission from the central star – a Class III object.

We may divide the Class III objects into additional categories due to the vast increase
in infrared sensitivity over the years. In addition to the so-called “debris-disk systems”,
stars with small amounts of optically thin dust (presumably similar in origin to our zodiacal
dust), we now recognize a small group of stars with weak or absent near-infrared emis-
sion, but strong mid- to far-infrared emission – the “transitional disks”. Both debris and
transitional disks provide evidence of inner disk clearing, presumably by large gravitating
bodies – companion stars or giant planets.

Surveys of the Taurus molecular cloud suggest that roughly half of the pre-main-sequence
stars have dusty circumstellar disks at ages of 1–3 Myr (Strom, K.M. et al. 1989; Beckwith
et al. 1990; Skrutskie et al. 1990; Strom, S.E. et al. 1993). There is some indication that
binary T Tauri stars exhibit less long-wavelength dust emission than single stars, which
may be the result of disk disruption by the tidal forces in the binary system (Jensen et al.
1994, 1996; Osterloh & Beckwith 1995). The frequency of stars with optically thick disks
decreases rapidly over typical timescales of a few Myr.

In principle, the optically thin dust emission observed at wavelengths ∼1 mm can be used
to calculate the dust mass surrounding Class II sources. In practice, masses estimated in
this way are uncertain for several reasons, but principally because the dust opacity is not
well understood. This is particularly a problem for circumstellar disks, where appreciable
evolution of dust grain sizes is expected to occur (e.g., Weidenschilling & Cuzzi 1993).
Current estimates (Beckwith et al. 1990; Osterloh & Beckwith 1995; Andrews & Williams
2005, 2007) suggest typical disk masses within an order of magnitude of 10−2 M�. This
is comparable to the so-called “minimum mass solar nebula”, i.e., the total mass of solar
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composition material that would be needed to produce the observed (condensed) material
in the planets. However, it is likely that these are underestimates, and that in many cases
T Tauri disks are up to an order of magnitude more massive than initial estimates.

1.6 Imaging of disks
We now have a remarkably diverse set of images of circumstellar disks around

young stars, some even within infalling envelopes during earliest stages of star formation.
At the moment, extant images tend to emphasize structure at a few tens of AU to a thousand
AU because of limited resolution. This situation is likely to change dramatically soon with
the development of the ALMA.

Figure 1.6 shows optical images of young stars in the Orion Nebula taken with HST.
Objects like the one in the left-hand panel were detected as very compact H II (ionized
hydrogen) regions in optical and radio-wavelength observations. It was recognized that the
most luminous central star of the Trapezium cluster, the O7 star θ1 C Ori, could photoevapo-
rate disks around T Tauri stars, accounting for the otherwise strange, tiny compact HII emis-
sion (Churchwell et al. 1987 and references therein). The lifetimes required by the source
statistics, coupled with studies of the rate of evaporation of material (e.g., McCullough et al.
1995), suggest that these objects are gaseous disks with masses of order 10−1–10−2 M�
(Churchwell et al. 1987). The HST images confirm this picture in detail (O’Dell et al. 1993;
O’Dell & Wen 1994); quantitative theory now exists which can account for the shape and
emissivity of the material boiling off these disks around young low-mass stars in the Orion
Nebula Cluster (Johnstone et al. 1998; Richling & Yorke 2000; Henney et al. 2002).

While the most spectacular structure of the ionized disks, sometimes called proplyds, is
that of the ionized gas freed from the disk, in some cases one can also see the disk itself as
a dark silhouette against the bright background (Figure 1.6, left). In addition, many objects
in the Orion Nebula Cluster have been detected which are too far away from θ1C to be
heated and ionized, but can be seen in silhouette against the bright nebular background
(McCaughrean & O’Dell 1996; Figure 1.6, right). The morphologies of these absorption
structures are very suggestive of circumstellar disks, with faint, low-mass T Tauri stars
detected at their centers.

Fig. 1.6. (Left) A so-called “proplyd” in the Orion Nebula region, consisting of a dusty
disk seen nearly edge-on in absorption against the bright nebular background, with an arc
of ionized material created by evaporation of the disk by the hot central O7 star, and swept
back around by the wind of the O star (see text). (Right) A shadow disk in the Orion Nebula,
seen more face-on than the system on the left, with the central T Tauri star visible as a bright
spot. From Bally et al. (1998).
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Fig. 1.7. HST optical image of the YSO HH 30. The double-concave reflection nebula is
produced by light from a hidden central star scattering off the upper surfaces of a dusty disk
seen nearly edge-on (see text), with some residual infalling material accounting for the outer
scattering nebula. The dust absorption in the disk plane (central lane between the upper and
the lower reflection nebulae) completely obscures the central star. The roughly vertical linear
structure is a bipolar high-velocity jet, which is observed in shock-excited emission lines. At
the distance of Taurus (140 pc), 2 arcsec corresponds to 280 AU. From Burrows et al. (1996).

Another way of improving the contrast between the disk and the illuminating central
object is to use the disk to occult the central star. This should be a rare occurrence, but
HST observations of the YSO HH 30 show such an edge-on disk (Burrows et al. 1996). As
shown in Figure 1.7, in addition to a dark lane representing the disk shadow, the scattering
surfaces of the disk are curved away from the disk midplane. Originally this structure was
attributed to the disk “flaring” expected on general principles (Kenyon & Hartmann 1987),
but more recent images suggest much flatter images of pure disk systems seen edge-on. The
most probable explanation of the extreme flaring seen in HH 30 is that there is a remnant
infalling envelope which is being evacuated by a wind (e.g., Wood et al. 1998). This example
illustrates some of the complications involved in interpreting images of young objects. The
HST image also shows a highly collimated, rapidly moving bipolar jet, which appears to be
a common feature of low-mass star formation (e.g., Edwards et al. 1993); the jet is probably
the central high-density, high-energy portion of a much more widely diverging outflow.

Dramatic progress in radio-wavelength interferometry has led to the detection of many
dense flattened structures of dust and molecular gas around young stars (Koerner et al. 1993;
Lay et al. 1994; Dutrey et al. 1996; Koerner & Sargent 1995; Koerner et al. 1995; Mundy
et al. 1996). Perhaps most importantly, studies in molecules such as CO provide clear indi-
cations of Keplerian rotation around central stars, as well as more detailed constraints on
disk structure (Dutrey et al. 1996) and in some cases the disk motion can be analyzed to
“weigh” the central star (Simon et al. 2000).



14 Overview

1.7 Disk accretion
Relatively small amounts of dust in a T Tauri disk can efficiently absorb a substan-

tial amount of light from the central star, and reradiate this energy effectively at infrared
wavelengths. These so-called “reprocessing” or “irradiated” disks emit long-wavelength
radiation simply as a result of heating by the T Tauri star, without any internal energy
source. Models of irradiated disks can account for the infrared emission of many CTTS
(Kenyon & Hartmann 1987; Chiang & Goldreich 1997; D’Alessio et al. 1999, 2001). How-
ever, some disks are much more luminous than can be explained by the amount of irradiation
from the central star, and require their own energy source. Many of these T Tauri stars also
exhibit strong excess optical and ultraviolet continuum emission along with broad emission
lines (Bertout et al. 1988; Bertout 1989; Figure 1.8). This optical and ultraviolet contin-
uum emission is dominated by hydrogen bound-free and free-free emission at temperatures
∼104 K.

Accretion of mass from a circumstellar disk is responsible for the excess emission of
the CTTS (Lynden-Bell & Pringle 1974). The dissipation of accretion energy in the disk
enhances the infrared emission, while the infall of material onto the central star produces the
high-temperature optical and ultraviolet continuum emission and strong optical emission
lines. This conjecture is supported by the strong correlation between infrared and ultraviolet
excess emission (Hartigan et al. 1990; Edwards 1995); YSOs with substantial near-infrared
excess emission (Class II sources) generally show strong optical emission lines and contin-
uum (i.e., are CTTS); stars without near-infrared excess emission (Class III sources) do not
show strong optical excess emission (are WTTS).
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Fig. 1.8. Spectrum of the CTTS BP Tau, showing evidence for excess optical and infrared
emission. The left-hand panel shows the observed spectrum (upper heavy line), which is
made up of several components; a hot continuum (dashed line), the stellar photospheric
emission (second curve from bottom), plus Balmer, Ca II, etc. emission lines. The right-hand
panel illustrates broad-band photometry (points) of BP Tau, which indicates both optical
and infrared excess emission above that expected for a normal stellar photosphere (bottom
curve). The upper curve is a model including hot continuum emission and infrared disk
emission. Reproduced from Basri and Bertout (1989).
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In some cases the optical and ultraviolet excess continuum emission far exceeds that of
the stellar photosphere. This applies to roughly 5–10% of the well-studied T Tauri stars in
the Taurus molecular cloud region (Kenyon & Hartmann 1995). In these objects, the accre-
tion energy release is the dominant luminosity source of the system. Our understanding
of the evolutionary states of strong-emission CTTS is poor, because the strong hot contin-
uum emission extends to optical wavelengths, making it very difficult to determine reliable
positions of these stars in the HR diagram.

Originally, it was thought that the high-temperature emission was produced in a shear
boundary layer between the rapidly rotating disk and the more slowly rotating star (Lynden-
Bell & Pringle 1974). It now appears more likely that the inner disk is disrupted by the
magnetic field of the central T Tauri star; this results in magnetospheric accretion, in which
the disk material is channeled along magnetic field lines to crash into the star (Camen-
zind 1990; Königl 1991; Ostriker & Shu 1995). The continuum emission is thought to arise
from the shock at the base of the magnetospheric accretion column, near the stellar surface,
while the emission lines arise in the fast-moving, essentially freely infalling magnetospheric
gas, which is heated to temperatures ∼8000 K (Calvet & Hartmann 1992; Hartmann et al.
1994a). The large velocity widths of the strong emission lines in CTTS apparently result
from the central star’s gravitational acceleration of the infalling gas lifted from the Keplerian
disk. Mass accretion rates needed to explain the observed ultraviolet, optical, and infrared
emission excesses of CTTS range from ∼10−9 to <∼10−6 M� yr−1 (Basri & Bertout 1989;
Hartigan et al. 1991; Valenti et al. 1993; Hartigan et al. 1995; Gullbring et al. 1998).

In some pre-main-sequence objects the mass accretion rate increases by orders of mag-
nitude for short periods of time (Herbig 1977b). During these “FU Orionis” outbursts,
the accretion disk becomes 2–3 orders of magnitude more luminous than the central star
(Hartmann & Kenyon 1996; Figure 1.9). Event statistics suggest that the average low-mass
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Fig. 1.9. Schematic picture of stellar accretion. Mass is fed into a circumstellar disk by
the collapsing protostellar envelope with an infall rate ∼10−5 M� yr−1. The disk generally
accretes at ∼10−7 M� yr−1 during the T Tauri phase, but during FU Ori outbursts this accre-
tion rate may increase to ∼10−4 M� yr−1. The disk ejects roughly 1–10% of the accreted
material in a high-velocity wind.
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star may undergo several FU Ori outbursts during its evolution, during which perhaps 10%
or more of the final stellar mass is accreted.

Disk accretion appears to produce the powerful highly collimated jets which commonly
emanate from young stellar objects (Figures 1.7 and 1.9). These jets can have velocities of
several hundreds of km s−1, with collimation angles of only a few degrees, and involve mass
ejection at rates as much as 10% of the accretion rate (Dopita et al. 1982; Mundt & Fried
1983; Lada 1985; Bally & Devine 1994; Hartigan et al. 1994; Hartigan et al. 1995; Bally
et al. 2007). Such jets are only observed when there is some evidence for accretion disks;
WTTS do not exhibit jets or massive outflows. The collimation of the jets is probably the
result of magnetic acceleration from the surface of the Keplerian disk (Pudritz & Norman
1983; Heyvaerts & Norman 1989), although the details of this process are uncertain (Königl
1989; Pelletier & Pudritz 1992; Lovelace et al. 1993; Shu et al. 1994; Najita & Shu 1994).

1.8 Disks and planet formation
Not all young stars exhibit strong infrared (and longer wavelength) excess emission

from dusty disks. As mentioned above, only about half of the young stars with ages of 1 Myr
or less exhibit optically thick disk emission. However, by an age of order 10 Myr, very few
stars still exhibit such strong disk emission, at a frequency of ∼10% or less. Something
dramatic happens to the disk during this interval.

Many older systems, with ages ∼10–100 Myr or more, are now known to possess tenu-
ous, optically thin dust disks, with very little gas content. Figure 1.10 shows images of two
of these “debris-disk” or “Vega-like” systems. Because the timescales for small dust ejec-
tion due to radiation pressure or inward drift due to the Poynting–Robertson effect in the
absence of significant gas drag are very short, it is thought that the dust in these systems
needs to be replenished continually, probably by the collisions of larger bodies. Most of the
known debris-disk systems are intermediate-mass or solar-mass stars, due to sensitivity lim-
its, though lower-mass nearby systems have been detected, such as the nearby K dwarf ε Eri
(e.g., Greaves et al. 1998).

Figure 1.11 compares the SED of Herbig Ae/Be star of the Taurus–Auriga molecular
complex, AB Aur, with that of the Vega-like or debris-disk system with the largest infrared

Fig. 1.10. NICMOS/HST coronographic imaging of scattered light from debris disks around
HD 141569 (left) and HR 4796 (right) (from Schneider et al. 1999; Weinberger et al. 1999).
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Fig. 1.11. Comparison of the SEDs (normalized to the stellar photospheres) of AB Aur, a
Herbig Ae/Be star (intermediate-mass equivalent of a T Tauri star), with HR 4796, a debris-
disk system – that is, a system whose dust is thought to be the product of collisions between
large bodies rather than being “primordial” dust. HR 4796 (currently) has the largest known
ratio of infrared excess luminosity to stellar luminosity (most other debris-disk systems have
an order of magnitude or more fainter infrared excesses). The absence of any excess emis-
sion at wavelengths <∼10 μm above the stellar photosphere indicates a strong evacuation
of matter at radii less than 70 AU (see Figure 1.10 for imaging confirmation). The detailed
mid-infrared spectrum of AB Aur is taken from Spitzer Space Telescope spectra (Furlan et al.
2006).

excess to date, HR 4796A. Both stars have spectral types of A0, but slightly different masses,
as AB Aur lies just above the main sequence; the age of AB Aur is roughly 2 Myr, while
the age of HR 4796A is about 8 Myr (Stauffer et al. 1995). The dramatic reduction in dust
emission in HR 4796A is evident, especially at short wavelengths, where the infrared excess
is very low if not absent. This lack of near-infrared dust emission indicates that there is a
“hole” or relative decrease of the dust content of the inner disk of HR 4796; this feature of the
SED is consistent with the image (Figure 1.10), which shows a ring structure. It is plausible
that this structure indicates the presence of massive bodies (planets) which shepherd this
ring, just as small moons shepherd the rings of Saturn.

What happens to disk gas, which originally constituted the bulk of the mass, is not clear.
In principle, extreme-ultraviolet (EUV; wavelengths shortward of the Lyman limit at 912 Å)
and far-ultraviolet (FUV; typically ∼1000–2000 Å) emission can heat and drive off outer
disk material (e.g., Hollenbach et al. 2000; Alexander et al. 2006a,b). This process seems
to be occuring in the central regions of the Orion Nebula, due to the intense radiation field
of O7 star θ1 Ori C. However, it is not at all clear that most stars are formed near an O star
which can rapidly ablate their gas disks, as in the Orion Nebula Cluster; and this might be a
good thing, as the rate of disk destruction might be so rapid (Henney et al. 2002) as to make
it difficult for planets to form. Over longer timescales, energetic radiation, particularly EUV
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radiation from stellar chromospheres, may be responsible for at least some of the elimination
of disk gas in low-mass stars. The other alternative is accretion, either into the central star or
into massive planets.

1.9 A picture of star and planet formation
The (mostly observational) findings outlined above have led to the following sce-

nario for low-mass stellar accretion (Figure 1.12). Cold, dark molecular gas fragments by
some unknown process into self-gravitating cloudlets of a few solar masses. These cloudlets
or cores evolve into a critical configuration where they cannot support themselves against
gravity, and nearly collapse at free-fall. Because of the rapidity of this collapse, any angular
momentum transfer must be relatively inefficient, and any initial rotation of the cloud results
in collapse to a multiple star system, or to a disk, or both. Since it seems rather unlikely that
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Fig. 1.12. Outline of estimated mass accretion rates during the formation of a typical low-
mass (solar-type) star. In relatively cold, isolated regions of star formation, the collapse of
the parent molecular cloud of a ∼1 M� star is thought to take approximately 0.1–0.2 Myr.
The result of this infall is to build up a stellar core and a circumstellar disk. The disk accretes
steadily onto the central star at low rates, punctuated by very brief FU Ori outbursts of rapid
disk accretion. It is thought that the FU Ori events occur preferentially during the earli-
est phases, in which mass is still falling onto the disk from the protostellar envelope, thus
replenishing the accreted material; during the outburst, as much as 10−2 M� may be dumped
onto the central star ( Ṁ ∼ 10−4 M� yr−1 for t ∼ 100 yr). Well after the protostellar enve-
lope has stopped adding mass to the circumstellar disk, the disk continues to accrete and
evolve during the T Tauri phase. The figure indicates that disk accretion slowly decays and
eventually ceases over periods of a few million years, but this timescale is uncertain, vary-
ing substantially from star to star. Many of the current WTTS probably finished accreting
from their disks in timescales <∼1 Myr, perhaps because of close binaries which disrupt inner
disks, although this seems unlikely to explain all young diskless systems. The eventual ces-
sation of accretion in many systems may signal the formation of giant planets, which can
open up gaps in the disk, accreting material otherwise destined for the central star.
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the initial angular momentum will be so small as to permit collapse directly to stellar dimen-
sions, given the large difference in size between a star and its parent gas cloud, it is plausible
to suppose that most of the mass initially lands on the disk(s). Disks are engines for the
outward transfer of angular momentum, allowing the accretion of mass to the central star.

Disk accretion rates during early stellar evolution vary widely for typical low-mass stars.
During or immediately after the protostellar phase of infall to the disk (Figure 1.12), disk
masses are likely to be relatively large, and such disks could be subject to gravitational
instabilities which would cause rapid accretion. The rate at which infall adds mass to the
disk generally may not be the same as the natural accretion rate of the disk; a mismatch
between these rates could explain the FU Ori outbursts, if matter piles up in the disk until it
can be discharged in rapid accretion events.

Eventually, infall to the disk stops. At this point the disk slowly evolves and eventually
becomes depleted in mass, due to accretion into the central star, and due to processes such as
evaporation of gas by high-energy stellar photons. Coagulation or accretion of disk material
into planets probably represent the final stages in disk clearing.

These stages of infall and disk accretion are schematically indicated in Figure 1.12. It is
difficult to set a precise boundary between the protostar and the T Tauri phases, because
infall from the envelope may not cease instantaneously. During the main infall phase the
central protostar may accrete from its disk at generally similar rates as T Tauri stars – which
suggests that if the protostar could be observed directly, it might appear quite similar to a T
Tauri star, an idea supported by recent infrared spectra (Muzerolle et al. 1998b; Doppmann
et al. 2005; White et al. 2007). Moreover, if one were to try to define a protostar as an object
which has not finished accreting its final mass, then T Tauri stars would also be protostars.
Definitions based on the relative amount of mass remaining in the disk/envelope vs. the
amount of mass already in the stellar core are difficult to implement given measurement
uncertainties. Therefore, in this book the term “protostar” is used to refer to phases where
a substantial (in the sense of extinction) infalling envelope surrounds the central star (i.e., a
Class 0 or Class I source).

There is reason to believe that the FU Ori outbursts are generally concentrated to early
phases of evolution, while infall is still occuring, but the frequency and duration of such
outbursts are poorly understood; and little is currently known about the so-called “EXor”
outbursts of T Tauri stars (Herbig 1977b). Similarly, there is a wide range of accretion rates
among T Tauri stars. The disk accretion rates at later times in Figure 1.12 are meant only to
refer to the CTTS; the WTTS may have accreted their disks much faster, assuming that they
initially did possess disks.

A further uncertainty in this picture is whether protostellar disks fragment gravitationally.
It appears increasingly likely that the collapse of the protostellar cloud to a flattened rotating
structure frequently results in fragmentation into binary or multiple stellar systems, which
then may or may not remain gravitationally bound due to gravitational interactions between
the (protostellar) fragments (e.g., Reipurth & Clarke 2001; Bate et al. 2002). The above
picture of collapse and disk evolution then needs to be modified to account for more complex
disk structure, such as truncation of the disks surrounding individual (proto)stars.

The formation of planets is thought to occur near the end of disk evolution. The most
likely mechanism for initiating planet formation is the agglomeration of dust particles in the
disk. Small dust is expected to eventually settle toward the disk midplane and accumulate
into larger bodies. Although small (micron-sized) dust particles are likely to stick together
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quite effectively, it is not clear that collisions can account for growth up to km-sized bodies,
at which point the gravity of the bodies can take over in enhancing accretional growth.
The timescales for planetary growth are uncertain, and are likely to vary substantially even
among stars of the same mass; most probably they lie in the range of a few to 10 Myr,
corresponding to the timescales for the disappearance of extensive dusty disks. Studies of
extinct radioactivities in meteoritic material suggest timescales of similar magnitude for
the main phase of solar system formation (Podosek & Cassen 1994). More precisely, it is
thought that formation of giant planets, with substantial gas accretion, occurs over several
Myr, while terrestrial planet formation is slower, taking tens of Myr.

The subject of planet formation has been revolutionized by the discovery of extrasolar
planets, many of which are quite massive (Jupiter mass or greater) on very close orbits, even
down to orbital periods of a few days. The presence of massive planets at radii unlikely to
contain sufficient mass in the original disk, plus other indications such as large eccentricity
orbits, strongly indicate that many of these planets have migrated to their present positions
from larger distances. In addition to migration due to many-body interactions, gravitational
interactions with their natal disks can cause planets to move inward for substantial distances.
Depending upon the detailed physics of these interactions and the poorly known properties
of protoplanetary disks, it is easy to develop scenarios in which most planetary embryos
and/or giant planets end up in the central star; whether these scenarios are realistic or other
effects prevent such planetary accretion is currently one of the major problems in planet
formation.

This picture of stellar and planetary accretion is mostly the result of extensive empiri-
cal studies over the last two decades, supported by theoretical calculations incorporating
expanded numerical simulations. The following chapters explore the physical arguments
and observational evidence underlying this overview.



2

Beginnings: molecular clouds

Star formation in our galaxy at present occurs in dense, cold clouds of molecular gas. The
efficiency of star formation is generally low. While there are localized regions of high
efficiency which produce bound star clusters, typical star formation efficiencies of nearby
molecular cloud complexes are a few percent by mass. For a long time it was thought that
this low efficiency of converting gas to stars was due to the slowing of gravitational col-
lapse by magnetic fields. However, most nearby molecular clouds of significant mass harbor
young stars, with typical ages of a few Myr, indicating that star formation is relatively rapid
and that (at least local) molecular clouds are not long-lived, casting doubt on the importance
of magnetic fields. The low efficiency of star formation is not due to the slowing gravita-
tional collapse but to the disruption of molecular gas by stellar energy input, particularly
from massive stars, which disperse clouds before all the mass can collapse.

The processes by which large molecular clouds fragment into molecular cloud cores, the
precursors of protostars, are not yet well understood. Lower-density gas must be concen-
trated into dense regions, often filamentary in structure, with low(er) “turbulent”∗ motions.
Numerical simulations show that supersonic turbulence can create protostellar cores with
the aid of rapid cooling and even thermal instability, which then gravitationally collapse.
It seems increasingly likely that this turbulence is injected as part of the cloud formation
process, with stellar energy input providing some additional motions before blowing clouds
apart. A better understanding of molecular cloud structure and its origin is needed to develop
a quantitative theory of star formation and the origin of the stellar IMF.

2.1 Large-scale properties of molecular clouds
The Milky Way is a barred spiral galaxy, although many details of the structure

are hard to discern because of our disadvantaged position in its midst. Both stars and gas
tend to collect in spiral arms, making them particularly important (though probably not
exclusive) sites of molecular clouds forming stars. The theory of spiral density waves in
galaxies (see discussion in Binney & Tremaine 1987) predicts that the gaseous material
should pass through a spiral shock, and the subsequent compression is a likely starting point
for cloud formation.

The molecular gas in the galaxy is strongly confined to the rotational plane, and con-
centrated in the inner regions. Much of the galaxy’s molecular gas is concentrated in a
feature known as the “molecular ring”, situated at about 3–5 kpc from the center. Both the
atomic and the molecular gas mass fall off with increasing radius beyond the molecular ring,

∗ “Turbulence” is used to refer to observations of large velocity widths of spectral lines, which may or may not be
the same as the turbulence seen in numerical simulations.
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with a more rapid decline in the molecular material. Near the solar circle, where we have
the most detailed information about star formation, most of the gas appears to be atomic,
with perhaps four times as much atomic as molecular gas in the interstellar medium (ISM)
(Dame 1993).

Molecular clouds exhibit supersonic “turbulent” motions; that is, the spectral lines of CO
and other low-density tracers show velocity widths much exceeding the sound speed, in
some cases with complex velocity structure. The kinetic energy in these motions is typically
comparable to the gravitational potential energy, as described in some of the correlations
known as “Larson’s laws” (Larson 1981). While such motions in principle can help prevent
gravitational collapse, complex motions on smaller scales often invoked (“turbulence”) tend
to dissipate rapidly (e.g., Stone et al. 1998); thus, such motions would need to be regenerated
continuously to maintain cloud support to support the cloud against gravity. Regeneration
is needed if clouds are long-lived; but as discussed in §2.2, many clouds are short-lived, at
least in the solar neighborhood. In addition, energy input from massive stars in the form
of supernovae and stellar winds are much more likely to blow their natal cloud apart rather
than keep it in some kind of quasi-equilibrium state (see, e.g., Blitz & Shu 1980). This stellar
energy input can also help explain why the entire 109 M� of molecular gas in the Galaxy
does not all collapse rapidly under gravity and form stars at a rate one or two orders of
magnitude higher than the observed 1 M� yr−1 (Zuckerman & Evans 1974).

Figure 2.1 shows a very large-scale view of the nearest substantial or “giant” molecular
cloud, the Orion complex, as detected in 12CO emission. While the molecular gas in the
galaxy has an overall scale height of about 75 pc from the galactic plane, Orion extends
roughly a factor of two farther below the plane. The amount of molecular gas in Orion is
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Fig. 2.1. Large-scale distribution of 12CO emission in the region of Orion, plotted in galac-
tic coordinates. The Orion A and B clouds describe an apparent broken arc of length ∼80 pc
from l ∼ 204, b ∼−13, l ∼ 214, b ∼−20, to a distance as much as ∼150 pc below the galac-
tic plane. Star symbols indicate the positions of dense clusters of young stars; the Orion
Nebula Cluster at the northern end of the A cloud, and the NGC 2023/2024 and NGC
2068/2071 complexes at the ends of the B cloud. From Wilson et al. (2005).
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Fig. 2.2. Spatial distribution (left panel) and velocities integrated over right ascension as a
function of declination (right panel) of 13CO line emission. The Orion Nebula Cluster is
centered in the famous integral-shaped filament at the northern end of the cloud, at about a
declination of −5.4◦ (1950). In addition to local supersonic motions of a few km s−1, with
significant substructure all along the cloud, there is an overall radial velocity gradient of
about 8 km s−1 from one end to the other, with an especially high-velocity gradient running
from the northern end of the cloud toward the Orion Nebula Cluster. Data taken from Bally
et al. (1987).

of order 105 M� (Bally et al. 1987; Genzel & Stutzki 1989), spread over a region almost
100 pc in length.

In addition to local “turbulence”, molecular clouds also often exhibit large-scale motions
in the form of an overall shear and/or rotational motion. For example, Figure 2.2 shows the
velocity structure inferred from 13CO line emission in the Orion A cloud. Beyond the small-
scale motions of the order of 2 km s−1, there is a substantial north–south gradient of radial
velocity, of about 8 km s−1 over a length of about 4◦ ∼ 33 pc at a distance of 470 pc, in a
region of total mass ∼105 M�. The rotational motion required to support an elongated cloud
of half-radius r = 16 pc against collapse then is

2 ×
(

G M

r

)1/2

∼ 10 km s−1. (2.1)

Thus large-scale shear or rotation plays an important dynamical role in this cloud. Similar
results hold for many other molecular complexes such as Taurus (§2.6).

2.2 Turbulence and cloud lifetimes
One of the central problems in star formation theory is to understand the origin

and nature of turbulence in molecular clouds (see Elmegreen & Scalo 2004 and Scalo &
Elmegreen 2004 for general discussions of interstellar medium turbulence). Turbulent
motions may either promote star formation by collecting additional mass into limited regions
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which can then become gravitationally unstable and collapse, or inhibit star formation in
principle by providing a “pressure” which resists gravitational collapse. Recent reviews of
turbulence and issues related to star formation can be found in Mac Low and Klessen (2004)
and Ballesteros-Paredes et al. (2007).

Older models of molecular clouds envisioned a sort of equilibrium or average steady-
state condition, partly due to the then limitations of computing power which precluded
detailed time-dependent simulations. In analogy with the thermal pressure that keeps the
Sun supported against its own self-gravity, some models assumed that the pressure could be
expressed (assuming isothermality for simplicity) as

P = ρ(c2
s + v2

turb), (2.2)

(Chandrasekhar & Ferni 1953), where ρ is the gas density, cs is the sound speed, and vturb

is the turbulent velocity. The turbulent component is essential to quasi-equilibrium models;
thermal pressure in (large) molecular clouds is far too low to provide substantial support
against gravity on a global scale. However, the approach of simply adding in a turbulent
pressure acting as equivalent to an added thermal component is problematic, because the
turbulence is in general neither time-independent nor isotropic.

Setting aside large-scale ordered motions, like rotation, smaller-scale supersonic motions
in gas generally produce shocks and dissipate their energy rapidly. If molecular clouds per-
sist for long periods of time, turbulent energy dissipation must be reduced or suppressed,
or the turbulence must be regenerated. It had been suggested that magnetohydrodynamic
turbulence might decay much more slowly than pure gasdynamic turbulence (Arons & Max
1975). In particular, Alfvén waves (see discussion in Shu 1992) can have supersonic motions
transverse to the magnetic field direction and yet be non-compressive to first order (and thus
less dissipative). However, recent numerical simulations of MHD turbulence (Mac Low et al.
1998; Stone et al. 1998) indicate that the turbulent energy dissipates rapidly, on the order
of a crossing time for the particular region involved. The reason appears to be that in any
realistic situation, the complicated magnetic field and density structure means that pure lin-
ear Alvenic modes cannot be sustained; they convert into other, compressive modes (fast
and slow modes), resulting in rapid dissipation of wave energy and turbulence (Passot &
Vazquez-Semadeni 2003). Moreover, numerical simulations suggest that supersonic turbu-
lence more generally promotes star formation via the resulting strong compressions (e.g.,
Ostriker et al. 1999; Klessen et al. 2000; Heitsch et al. 2001; Padoan & Nordlund 2002).

But are molecular clouds really long-lived? Old theories of molecular cloud formation
invoked a kind of agglomeration of subunits, which required timescales comparable to the
galactic rotation period, ∼108 yr. Blitz and Shu (1980) suggested considerably shorter life-
times, of order tens of Myr at most, based on the relative absence of massive molecular
clouds in interarm regions, which should be present if clouds form as they pass through
the spiral density wave pattern and then linger on. However, a recent re-examination by
Elmegreen (2007) of spiral arm structure suggests even shorter lifetimes.

Moreover, molecular cloud lifetimes of a few tens of Myr are much longer than the ages
of the stellar populations in these clouds. The first indication of this came from the study of
Herbig et al. (1986), who conducted a sensitive search for T Tauri stars considerably older
than the typical population age of ∼1−3 Myr, and found none. Subsequently, studies using
X-ray surveys attempted to find the so-called “post-T Tauri stars” which ought to be present
if clouds had been manufacturing stars for >∼10 Myr or so. It soon became clear that most of
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Table 2.1. Star-forming regions

Region < t > (Myr) Molecular gas? Ref. (age)

Coalsack – yes –
Cha III – yes –
Pipe Nebula – yes –
Orion Nebula 1 yes 1
Taurus 2 yes 1,2,3
Oph 1 yes 1
Cha I,II 2 yes 1
Lupus 2 yes 1
MBM 12A 2 yes 10
IC 348 2–3 yes 1,5,10
NGC 2264 2–3 yes 1

Sco OB2:
Upper Sco 5 no 5,6
Lower Cen-Crux 10–15 no 7
Upper Cen-Lup 10–15 no 7

TW HyA ∼10 no 8
η Cha ∼10 no 9

Notes: (1) Palla and Stahler (2000); (2) Hartmann (2001); (3) White and Ghez
(2001); (4) Herbig (1998); (5) Preibisch and Zinnecker (1999); (6) Preibisch
et al. (2001); (7) de Geus et al. (1989); (8) Webb et al. (1999); (9) Mamajek
et al. (1999); (10) Luhman (2001).

the young stars found in the X-ray surveys were actually much older systems, ∼30−100 Myr
old, and constituted a widespread population which had long ago dispersed from their parent
molecular clouds (Briceño et al. 1997, 1998; Covino et al. 1997).

Table 2.1 summarizes properties of nearby molecular cloud complexes with masses in
excess of ∼103 M�. It is striking that there are no significant populations of stars in
these clouds with typical ages close to 10 Myr. Conversely, young associations of ages
∼10 Myr are generally devoid of molecular gas. (A more systematic analysis is presented by
Ballesteros-Paredes & Hartmann 2007, reaching similar conclusions.) At least in the solar
neighborhood, molecular clouds form rapidly and disperse rapidly.

Note that this does not mean that older stars are not present in a given star-forming region.
There are many examples where older associations abut a younger population – for example,
when stellar winds, ionization, and/or supernovae pile up material, triggering a second gen-
eration of star formation (see following section). What does seem to be true is that once gas
becomes compressed sufficiently, star formation ensues within 1 Myr or less; otherwise we
would see many molecular clouds without any star formation, which is in contradiction with
observations (Ballesteros-Paredes & Hartmann 2007). (Some debate remains concerning the
relatively small numbers of apparently older stars in some star-forming regions; Chapter 11.)

A major factor in limiting cloud lifetimes is stellar energy input, especially when mas-
sive stars are formed. For example, in the nearest B association, Scorpius-Centaurus,
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which consists of stars with ages of ∼5–15 Myr, molecular gas is not present in the older
population; the large H I shells surround the three subconcentrations – Lower Centaurus-
Crux, Upper Centaurus-Lupus, and Upper Scorpius – which are probably the result of the
dispersal of association molecular gas by stellar winds and supernovae (de Geus 1992). As
de Geus (1992) showed, the action of a single supernova would be sufficient to remove the
gas in the 5-Myr-old Upper Scorpius subassociation (see also Preibisch & Zinnecker 1999),
while the molecular gas at the eastern end of the region remains as the Ophiuchus cloud,
with young stars (of ages ∼1 Myr or less) and forming protostars.

Short lifetimes mean that supersonic turbulence within a molecular cloud need not be
regenerated, because clouds are dispersed rapidly (Ballesteros et al. 1999; Elmegreen 2000).
Moreover, rapid dispersal leads to an alternate explanation of the low galactic star formation
rate: clouds are simply inefficient at forming stars because they don’t live long enough for all
the turbulence to decay. Indeed, it has been known for a long time that star formation occurs
with an efficiency of only a few percent, averaged over entire complexes (e.g., Cohen &
Kuhi 1979).

As noted above, the gravitational collapse timescale in the absence of resisting forces is
of order one to a few Myr at the typical densities of molecular clouds; the ages of the stellar
populations shown in Table 2.1 are comparable. The rapidity of star formation emphasizes
that molecular cloud formation and dissipation processes are crucial to understanding the
processes of protostellar core formation.

2.3 Molecular cloud formation and dispersal
The molecular clouds harboring these young stellar populations are generally quite

elongated (e.g., Figure 2.2), such that the lateral “crossing time”, defined as the largest linear
dimension of a molecular cloud complex divided by either a velocity dispersion or a velocity
gradient, is often considerably longer than the characteristic age of the stellar population in
the cloud. For example, in the Orion A cloud most of the stars have ages ∼1−2 Myr, though
the crossing time from a local velocity dispersion would be of order 10 Myr, or 4 Myr using
the overall velocity gradient (Figure 2.2). As another example, in Taurus the velocity disper-
sion of ∼2 km s−1 implies a crossing time over the >20 pc projected extent of the cloud of
>10 Myr; yet the stellar population is mostly of ages 1−4 Myr (Table 2.1; Hartmann 2002).
A more striking example of this is provided by the Sco OB2 association mentioned above, a
nearby (∼120−140 pc) massive assemblage containing about 150 B stars (and presumably
thousands of other, low-mass stars; e.g., de Geus 1992, Preibisch & Zinnecker 1999, and
references therein). Proper motions measured by the Hipparcos satellite for the more mas-
sive members indicate a velocity dispersion of <∼1.5 km s−1 in one dimension (de Bruijne
1999), comparable to typical velocity dispersions of molecular clouds. The lateral crossing
time of this complex of 150 pc in length is then ∼100 Myr, while the age spread of the stellar
population is at most 15 Myr (Table 2.1). Thus something must be coordinating or triggering
molecular cloud and star formation over large distances.

The crossing time requirement implies that molecular clouds are the product of large-
scale flows. Figure 2.3 shows a simple example of how this works. Stellar energy input from
a cluster of stars – predominantly winds from massive stars and supernova explosions – blow
out a bubble in the ISM (see also Franco et al. 1988). Eventually, enough material is accu-
mulated in the bubble periphery that star formation can occur (left figure), being “triggered”
by the pile-up of gas becoming gravitationally unstable (e.g., Elmegreen & Lada 1977). Star
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Fig. 2.3. Schematic illustration of the formation of a young stellar population in a molecu-
lar cloud, with the population age being much shorter than the lateral cloud-crossing time.
Winds and supernovae from a star cluster blow out a bubble; at some point material along the
bubble wall becomes self-gravitating and forms stars (left). The molecular gas is dispersed
rapidly, and other regions form later on (center). In general, the situation is not as simple as
this, because bubbles from differing sites can and will collide. From Hartmann et al. (2001).

Fig. 2.4. Overview of the Cep OB2 association. The region contains a large bubble of
approximately 3 × 105 M� of atomic gas; about 1 × 105 M� of molecular gas resides
at a radius of about 50 pc. The left panel shows molecular gas in the region, with clusters
indicated; the right panel is the 100 μm IRAS map, showing the bubble structure more clearly
in the warm dust. Near the middle of the bubble resides the ∼10 Myr-old cluster NGC 7160;
younger clusters lie along the periphery. The cluster Tr 37 has an age of about 3 Myr; other
stars more embedded in the molecular gas are younger. The circles denote H II regions. From
Patel et al. (1998).

formation can proceed nearly simultaneously along the bubble wall; as no information is
being propagated laterally, there is no problem with the star formation episode being faster,
and dispersing the molecular gas faster, than the lateral crossing time (middle figure). Thus,
one can consider molecular clouds as “accidental collections” of dense gas.

An example of this process with differing stellar energy sources is provided by the Cep
OB2 association (Figure 2.4). The region contains a roughly circular shell of molecular gas
of approximately 50 pc radius and mass ∼105 M�; there is a similar structure in atomic
hydrogen, though extending to larger distances, with mass ∼3 × 105 M� (Patel et al. 1998
and references therein). The cluster NGC 7160 and other hot stars of age ∼10 Myr reside
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near the center of this bubble. Along the periphery of the bubble are several H II regions
heated by groups or clusters of young stars with ages <∼3 Myr (e.g., Marschall et al. 1990;
Patel et al. 1998).

The scenario outlined by Patel et al. (1998) to explain the observations is that stellar winds
and supernovae from NGC 7160 swept up the bubble, and that after a period of several Myr
enough mass had been accumulated to result in star formation. The arc of molecular gas
along which stars are forming is many tens of pc, yet the stellar populations have ages rang-
ing from ∼1−3 Myr (e.g., Sicilia-Aguilar et al. 2005, 2006). Thus Cep OB2 is a particularly
direct example of the mechanism envisaged for making molecular clouds in Figure 2.4.

The passage of gas through shocks at spiral density waves can also have the same effect
as stellar winds and supernovae. However, it is clear from Cep OB2 and other regions that
the density wave shocks cannot be the only sites of compression needed to form stars. The
example of Cep OB2 shows that even a few OB stars can have dramatic effects on the local
gas, dispersing the molecular gas rapidly once massive stars are born.

The effects of stellar energy input can be oulined quantitatively using the simplest version
of the theory of interstellar bubbles by Castor et al. (1975). We ignore the initial stages in
which massive stars photodissociate molecular gas and then photoionize the atomic material,
leading to an expanding H II region.

Assume that a massive star ejects a steady high-velocity wind with a luminosity Lw =
(1/2) Ṁv2

w, with Ṁw and vw being the mass loss rate and wind velocity, respectively, into
a uniform medium of density ρ◦, with mean molecular weight μ. The mass of the bubble is
assumed to be mostly swept-up material; for bubble radius Rs ,

Ms = 4πρ◦
R3

s

3
. (2.3)

The fast wind (typical velocities ∼1000−3000 km s−1) shocks and creates a hot bubble. Cal-
culations show that the interior of the bubble has a nearly uniform temperature Tb. Assuming
a perfect gas, the energy within the bubble is

Eb = 4

3
π R3

s ρb × 3

2

kTb

μm H
= 2π R3

s Pb, (2.4)

where Pb is the pressure of the interior of the bubble. This pressure drives the bubble
outward; the momentum equation is

d Msvs

dt
= d

dt

4πρ◦
3

R3
s

d Rs

dt
= πρ◦

3

d2 R4
s

dt2
= 4π R2

s Pb. (2.5)

The energy equation, neglecting radiative losses, is then

d

dt
2π R3

s Pb = Lw − 4π R2
s Pb

d Rs

dt
. (2.6)

Taking Lw to be constant, one can eliminate Pb. We then look for a similarity solution,
one in which the radius of the shell Rs ∝ tn . Substituting this form, one finds after some
algebra

Rs =
(

125Lw

154πρ◦

)1/5

t3/5. (2.7)
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Using fiducial units of 1036 erg s−1 for Lw (typical for an O star wind), ambient hydrogen
density n◦ in units of cm−3, and the time t6 in Myr,

Rs = 27L1/5
36 n−1/5◦ t3/5

6 pc. (2.8)

Alternatively, we may consider driving by a hot bubble produced by a supernova explo-
sion. Following Spitzer (1968), we calculate the bubble expansion during the phase where
most of the mass in the bubble wall is swept up from the interstellar medium, but the bubble
has not lost a significant amount of its energy through radiation. Let K1 be the fraction of
the total energy E which is in heat energy, and denote the pressure immediately behind the
shock front (post-shock gas) by p2. We further set p2 to be K2 times the mean pressure of
the heated gas within the bubble (we expect K1 and K2 to be constants of order unity). For
a perfect gas with γ = 5/3 the thermal pressure is 2/3 of the mean thermal energy density;
therefore,

p2 ∼ K2
2

3

3K1 E

4π R3
s
. (2.9)

For an adiabatic shock with a large Mach number (highly supersonic), the density contrast is
ρ2 = 4ρ1 and the pressure is p2 = (3/4)ρ2v

2
s for a perfect gas with γ =5/3 (Spitzer 1968).

Thus the shock velocity is

vs = 2K1 K2 E

3πρ◦ R3
s

. (2.10)

We then solve for Rs ,

Rs =
(

2

5

)2/5 (
2K1 K2 E

3πρ◦

)1/5

t2/5. (2.11)

Setting K1 K2 = 1.53 from detailed calculations,

Rs =
(

2

5

)2/5 (
2K1 K2 E

3πρ◦

)1/5

t2/5. (2.12)

Putting in fiducial values,

Rs = 50 pc E1/5
50 n−1/5◦ t2/5

6 , (2.13)

where E50 is the supernova kinetic energy in units of 1050 erg.
Now consider an application to Cep OB2 (Figure 2.4). The amount of molecular mass

in the ∼50 pc radius shell is ∼1 × 105 M�; if this mass has been swept up from material
originally within the volume, the average initial hydrogen density would need to have been
∼5.5 cm−3 for self-consistency. Inserting this value into equation (2.8) and assuming the
presence of a single massive O star, with L36 ∼ 1, Rs = 50 pc at t6 = 5. This is reasonably
consistent with the ∼10 Myr age of the central NGC 7160 cluster, and the ages of secondary
clusters around the periphery of the molecular shell (though it must be noted that equa-
tion (2.8) overestimates the expansion at late times (∼5−10 Myr) because of the neglect of
radiative losses). Alternatively, if we assume that a supernova originally within NGC 7160
has gone off, Rs ∼ 50 pc at 5 Myr for E50 ∼ 0.2, easily produceable by a single supernova.

Detailed models of populous star clusters with typical initial stellar mass functions suggest
that the total energy input from winds and supernovae is relatively constant over timescales
of 10 Myr (Leitherer et al. 1992), with supernovae dominating the energy input at later times.
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Overall, supernovae likely dominate the energy input to the ISM, because wind mass loss
rates decline rapidly below M ∼ 20 M�, while stars of masses M > 8 M� can become
supernovae; thus there are many more stars which become supernovae than have strong
winds.

Based on these calculations, even a small number of massive stars can efficiently dis-
rupt molecular clouds. While the general situation is more complex than can be treated by
equation (2.8) because most molecular clouds are neither uniform nor spherical, the amount
of energy and momentum available will clearly have major effects in dissipating molecular
(star-forming) clouds.

In summary, formation of massive stars will result in rapid cloud dispersal (perhaps after
some initial triggering of star formation in compressed regions), helping to explain the short
lifetimes of local molecular clouds; there is no reason why the energy injected should be
so finely tuned as to precisely balance cloud self-gravity, given typical escape velocities of
a few km s−1. On larger scales, the effect of winds and supernovae will be to drive flows
which pile up material and thus trigger star formation. The Orion molecular cloud complex,
with its arc-like shape and its large distance from the galactic plane (Figure 2.1), may be a
prime example of large-scale flow-driven formation.

The reasons for dispersal of low-mass star-forming clouds are less clear. The youngest
low-mass YSOs exhibit powerful bipolar outflows powered by disk accretion. Although the
narrow “jets” seen from such systems will not be very effective in disrupting a molecular
cloud, given the small swath they cut, it is likely that some additional ejection of material
over wider solid angles accompanies each jet, and this material could be responsible for dis-
rupting low-mass star-forming regions, which are probably less gravitationally bound than
the high-mass regions. Alternatively, supernovae in nearby massive star-forming regions are
likely eventually to disrupt low-mass clouds.

2.4 Flows, magnetic fields, and cloud formation
Magnetic fields can have important dynamical effects on cloud formation and sub-

sequent evolution. The average magnetic field B in the ISM, with a strength ∼6 μG (Beck
2001; Heiles & Troland 2005), has a pressure B2/8π ∼ 1.4 × 10−12 dyne cm−2, compara-
ble to the turbulent and cosmic ray pressures of the ISM (e.g., Boulares & Cox 1990). The
magnetic field tends to increase as the gas is compressed, resisting the formation of higher-
density condensations. However, because the magnetic field is not isotropic, it does not act
in the same way as a thermal pressure. Even in the limit of “flux freezing” (§3.6), where the
gas is confined to flow within magnetic flux “tubes”, gas can accumulate locally along field
lines until inertia or even gravity can dominate the resisting magnetic forces, to the extent of
bending the field lines (see Ostriker et al. 1999, 2001, and Heitsch et al. 2001).

Numerical simulations are essential to understanding the dynamic development of clouds.
An early attempt to look at cloud formation on a large scale was made by Passot et al. (1995).
These ideal MHD calculations have limitations, among which are that they treated only a
two-dimensional layer of the ISM in the plane of the galaxy, adopted a schematic heating
term due to stellar winds but not supernova explosions, and had a limited dynamic range
in density. Nevertheless, the treatment of a large region (1 kpc square) produced interesting
results.

Figure 2.5 shows a simulation with a 1 kpc square slice intended to represent the plane
of the Galactic disk, in a “shearing box” approximation which treats galactic differential
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Fig. 2.5. Simulation of cloud evolution at four times, (a) t = 0, (b) t = 24.7 Myr,
(c) t = 89.7 Myr, and (d) t = 124.8 Myr. Vectors indicate magnetic field directions and
strengths. The grayscale denotes the density in logarithmic units, as indicated in the
grayscale bars. “Clouds”, defined as regions where the density exceeds 15 cm3, are denoted
by the black isocontours. After about 10 Myr, “star formation” occurs in the model (when
local densities increase to the threshhold level; see text), adding energy to the simulation.
Clouds are built up by flows along field lines (bending the field lines in dense regions)
over scales of hundreds of pc, concentrating most of the mass into a small fraction of the
computational region. From Hartmann et al. (2001).

rotation as a shear in the y-direction (Passot et al. 1995). An initial set of random velocity
and density perturbations are introduced into a uniform density region of 1 cm−3 with an
initial uniform magnetic field component of 1.6 μG and a random component of 5 μG; then
the system is allowed to evolve. When a threshhold density is reached, an energy source
is introduced locally to simulate the energy input of massive stars. After several tens of
Myr, large-scale flows have been set up, mostly in the direction of galactic rotation. The
magnetic field similarly gets more ordered in the direction of rotation, though with signifi-
cant distortions. There are relatively few cloud structures in this region. Simulations which
include more energy input from supernovae tend to yield more bubble-like substructure (e.g.,
de Avillez & Mac Low 2001; Wada & Norman 2001).

The left panel of Figure 2.6 shows the evolution of energies within the entire com-
putational region. The gravitational energy (solid line) has been given the opposite sign
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Fig. 2.6. Left panel: Evolution of (negative) gravitational (Eg, solid line), thermal (Ei, long
dashed line), magnetic (Em, dotted line), and kinetic (Ek, short dashed line) energies for the
whole computational domain. Note that the internal energies are larger than the gravitational
energy, indicating that the whole computational domain is supported against collapse. Right
panel: Magnetic vs. gravitational energy for clouds in the last three timesteps in Figure 2.5
(t = 24.7, 89.7, and 124.8 Myr). Note that while the energies are comparable, and correlated,
the gravitational energy is somewhat larger for more massive clouds, implying that they are
magnetically supercritical (see text). From Hartmann et al. (2001).

to facilitate comparison. The magnetic and (internal) energies remain nearly constant for
the first 50 Myr of the simulation, decaying slightly thereafter. The overall kinetic energy
decreases slightly at first due to dissipation, and then eventually steadies or even rises due
to stellar energy input. The main evolution is in the gravitational potential energy in the vol-
ume, which rises rapidly until it becomes roughly comparable to the other energy terms. This
agrees with many observations suggesting rough equipartition of various energies within
clouds (e.g., McKee 1989; Ballesteros-Paredes 2006).

The right panel in Figure 2.6 compares the magnetic and gravitational energies of clouds
(defined as connected grid cells above a certain critical density). While the magnetic
and gravitational energies are correlated, the larger clouds are gravitationally dominated,
while the smallest clouds tend to have comparable or even higher magnetic energy than
gravitational potential energy. One can understand this behavior in a qualitative way:
denser/higher-pressure gas, especially that with higher gravitational compression, can con-
fine magnetic fields more strongly, leading to a correlation between field and gas, while
strong magnetic fields resist compression, so that low-density regions are more likely to
have relatively higher magnetic than other energies. The general equipartition of magnetic
energy with gas dynamic/thermal energy in the diffuse ISM probably reflects the origin and
maintenance of the field by the gas; a much stronger field could not be contained by the ISM
but would cause the material to expand to a much larger configuration which would result in
a state closer to force balance.

2.5 Gravity and fragmentation
Star formation is the result of the collapse of gravitationally bound cloud fragments.

The so-called “Jeans length” or “Jeans mass” can provide a useful guide to the scales over
which gravitational instabilities can grow and produce a mass concentration.
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The physical basis of the Jeans instability can be understood from the following simple
argument (Binney & Tremaine 1987). Consider an isothermal, initially uniform gas with
sound speed cs, density ρ◦, and pressure P . In this state, there are no net pressure or gravita-
tional forces. Suppose a spherical region of this gas is slightly compressed so that its density
is higher by an amount χρ◦ within a radius r . There will now be an outward pressure force,
of order of magnitude per unit mass

FP ∼ ∇ P

ρ
∼ χ

c2
s

r
. (2.14)

The higher density leads to an inward gravitational force per unit mass of

FG ∼ G M
χ

r2
∼ Gρ◦χr, (2.15)

where M is the mass of the cloud. Thus, gravity wins on large scales such that

r2 >∼
c2

s

Gρ◦
. (2.16)

A detailed analysis (Appendix 2) leads to a critical Jeans length

λJ =
(

πc2
s

Gρ◦

)1/2

, (2.17)

and a critical Jeans mass

MJ = λ3
J ρ◦ =

(
πc2

s

G

)3/2

ρ−1/2◦ . (2.18)

According to this analysis, length scales larger than the Jeans length, or masses greater than
the Jeans mass, will be unstable to gravitational collapse. Assuming a molecular hydrogen
gas with a mean molecular weight of 2.36,

MJ ∼ 540 M� T 3/2
10 n−1/2

H2
, (2.19)

where T10 is the temperature in units of 10 K and NH2 is the molecular hydrogen density in
units of cm−3.

Equation (2.18) implies that as gas condenses to higher densities, the Jeans mass
decreases. This dependence of the Jeans mass on density suggests the possibility of frag-
menting ever smaller masses out of the original larger self-gravitating cloud, a scenario for
fragmentation into star-sized clouds originally proposed by Hoyle (1953). But this does not
work in a simple manner, as discussed by Larson (1985). The basic problem is illustrated by
the dispersion relation for the Jeans analysis (Appendix 2). Assuming density perturbations
of the form δρ ∝ exp[i(ωt − kx)], the dispersion relation is

ω2 = c2
s (k2 − k2

J ) , k2
J = 4πG

ρ◦
c2

s
. (2.20)

When the wavenumber k = 2π/λ is smaller than the critical wavenumber kJ, i.e., the wave-
length of the perturbation is larger than the Jeans length λJ = 2π/kJ, ω is imaginary, and
there is an exponentially growing (unstable) mode. The growth rate −iω increases mono-
tonically with decreasing k, and is largest as λ → ∞. In other words, the largest scales
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have the fastest growth rates and thus the fastest collapse times. This faster collapse of the
larger scales makes it very hard for the cloud to fragment into smaller pieces (Larson 1985) –
unless one starts with large density perturbations to begin with.

A related difficulty of applying the Jeans analysis in the uniform density case is that
a uniform self-gravitating medium cannot be static, invalidating a central assumption of
the analysis. This inappropriate assumption is sometimes described as the “Jeans swindle”
(Binney & Tremaine 1987; Appendix 2). Some theories have assumed that “turbulent” super-
sonic motions exert an isotropic pressure, equivalent to a thermal gas pressure with a higher
temperature; however, the generally anisotropic and time-dependent nature of real turbulent
flows renders this assumption implausible (Ballesteros-Paredes 2006).

Even ignoring the difficulties posed by supersonic turbulence, and adopting the most opti-
mistic view, the above argument against fragmentation shows that the Jeans mass is at best
a lower limit to gravitationally bound condensations; larger condensations have no problem
collapsing. Thus, the Jeans criterion is a useful indicator of the minimum scales which can
collapse gravitationally, but it is not a useful means of estimating the characteristic masses
into which a cloud will fragment.

2.6 Sheets and filaments
The picture of cloud formation by large-scale flows discussed in the previous

section suggests that clouds might initially be parts of “bubble” walls, or approximately
sheet-like. In addition, molecular clouds generally show filamentary structure, with the
youngest stars (especially protostars) found in these filaments. For example, Figure 1.1
shows that many of the stars in Taurus lie in banded structures, with the Class I objects
and protostellar cores aligned even more clearly with high-density filaments such as traced
by 13CO (Schneider & Elmegreen 1979; Scalo 1990; Mizuno et al. 1995; Figure 2.7). This
kind of distribution extends even to clustered regions; as illustrated in Figure 2.8, proto-
stars are generally found in more spatially concentrated distributions, often along dense gas
filaments, while the T Tauri (older) stars are more widely distributed.
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lowing Mizuno et al. (1995). Right panel: position angles of the optically selected molecular
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Fig. 2.8. Relative distribution of pre-main-sequence stars and Class I sources (protostars) in
the vicinity of the Orion Nebula Cluster. Left: Protostars detected with the IRAC and MIPS
instruments on the Spitzer Space Telescope (large black dots) compared with a deep X-ray
survey for young stars, most of which will be Class II/III objects (small dots: Feigelson
et al. 2005). The protostars are clearly more concentrated spatially; bright nebular emission
prevents their detection in the innermost regions of the ONC. Right: IRAC Class II sources
(T Tauri stars with disks; dark circles) along with Class III/WTTS stars identified from vari-
ability (light circles: Carpenter et al. 2001). Contours show the AV ≥ 3 area. Courtesy S.T.
Megeath.

The frequent observation of star formation in filaments have led to theoretical investi-
gations of gravitational fragmentation in such structures. Infinite sheets and filaments are
equilibrium solutions to the equations of motion and thus can satisfy the Jeans assumption.
Consider an isothermal thin sheet with a surface mass density �◦. As shown in Appendix 2,
the dispersion relation indicates that surface density perturbations can grow exponentially in
time at a rate �, where

�2 = 2πG�◦k − c2
s k2. (2.21)

There is a critical wavenumber,

kc = 2πG
�◦
c2

s
, (2.22)

above which no exponential growth is possible; i.e., there is a minimum wavelength (a
“Jeans” length) for gravitational instability. However, there now is a wavenumber with a
maximum growth rate, because the growth rate is zero at both kc and k → 0. Differentiating
equation (2.21) with respect to k, we find the wavenumber at which the exponential growth
is fastest,
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kf = πG
�◦
c2

s
= kc

2
. (2.23)

This result suggests that the sheet will break up into fragments of preferred mass (Larson
1985)

M f ∼ λ2
f � = 4c4

s

G2�◦
, (2.24)

where λf = 2π/kf.
Although the assumption of an infinitely thin sheet is unrealistic, analysis of an isother-

mal, self-gravitating sheet in hydrostatic equilibrium also shows instability, with critical and
preferred wavenumbers half those of the corresponding values of the infintely thin sheet,

kc = πG�◦
c2

s
= H−1. (2.25)

where the scale height H is defined by (Spitzer 1978)

H = c2
s

πG�◦
, (2.26)

for the hydrostatic equilibrium density distribution in the coordinate z perpendicular to the
midplane

ρ(z) = ρ(0) sech2
( z

H

)
. (2.27)

A similar result holds for infinite cylindrical filaments, where again the Jeans length is a few
scale heights (see Appendix 2):

λJ ∼ 2π

0.8
H, (2.28)

where the filament scale height is given by

H = c2
s

2G�0
. (2.29)

One attraction of this picture is that it predicts a minimum fragment length larger than
the radial scale height of the filament, e.g., it predicts that self-gravitating cores would tend
to be elongated in the direction of the filament; and that is observed in Taurus (Figure 2.7,
right panel). In addition, this estimate of the characteristic scale of fragmentation in fila-
ments bears some resemblance to observed fragmentation lengths (Hartmann 2002; Teixeira
et al. 2006). Unfortunately, this analysis also suffers from the “Jeans swindle”, because finite
sheets and filaments (the only ones there are) do not constitute an equilibrium configuration.
Global gravitational modes tend to overwhelm any linear perturbations.

To illustrate the importance of global gravity in a simple way, we follow Burkert and
Hartmann (2004) and consider an infinitely thin, uniform density circular sheet of radius R,
for which gas or magnetic pressure support is negligible (i.e., the case of a cloud containing
a large number of initial Jeans masses). The gravitational potential at a point r from the
center of this sheet is (Wyse & Mayall 1942)

� = −4G�R E
( r

R

)
, (2.30)
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where � is the surface density and E is the second complete elliptic integral. The
gravitational acceleration toward the center at r is

ar = −∂�

∂r
= 4G�

R

r

[
K
( r

R

)
− E

( r

R

)]
, (2.31)

where K is the first complete elliptic integral. The acceleration goes to infinity at d = R,
which would not occur in a sheet with finite thickness; thus we restrict use of this equation
to regions considerably more than a sheet thickness from the edge.

Figure 2.9 shows the acceleration in units of 4G� as a function of r/R. The steep increase
of inward acceleration as r → R implies that the sheet, initially at rest, will immediately
proceed to collapse, with material piling up most rapidly at the outer edge (limited by gas
pressure gradients which are ignored in the calculation).

It is useful to estimate the timescale of global collapse for comparison with numeri-
cal results. Using the expansions of the K and E integrals (Abramowitz & Stegun 1972),
equation (2.31) can be written as

ar = 1

2

dv2

dr
= πG�

[
r

R
+ 3

8

( r

R

)3 + 45

192

( r

R

)5 + · · ·
]

. (2.32)

Ignoring pressure support, a collapse timescale tc can be estimated for a subregion of size
δr lying in the inner region of the sheet of radius R. Integrating equation (2.32) using only
the linear term, starting from rest, and assuming that � does not change significantly within
the inner region (see §3.1), a typical infall velocity of the subregion is
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Fig. 2.9. Gravitational acceleration toward the center of a thin sheet (solid curve) or filament
(dotted curve) as a function of position in units of the sheet radius R or filament length 2l
(measured from the filament center). From Burkert and Hartmann (2004).
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v2 = πG�

R
(δr)2, (2.33)

and thus

tc = δr

v
=

(
R

πG�

)1/2

. (2.34)

This estimate reproduces the numerical results for of the time it takes for the edge of the
circular sheet to fall to the center.

The important feature is that tc is independent of the size of the region δr ; this means
that larger scales must be moving at larger velocities, which makes it difficult to fragment
on small scales. Indeed, the situation is similar for free-fall collapse in spherical geometry
(§4.1). In their simple simulations, Burkert and Hartmann (2004) found no fragmentation
due to linear perturbations, except at the edge of the sheet where in effect non-linear pertur-
bations result from the high local acceleration (Figure 2.9). The overall infall of the sheet
leads to “swallowing” linear perturbations in the interior by the collapsing edge.

Without rotation or some other motion, the ultimate fate of this circular sheet is to col-
lapse entirely to the center. While the inner regions have a linear acceleration (dashed
lines) and so might be stablized by a Hubble-type expansion or a solid-body rotation with
centripetal acceleration a(c)r = −�2r ∝ r , where � = constant, the non-linear acceler-
ation as r → R shows that such rotation cannot stop the edge from collapsing to a ring
whose dimensions are set by angular momentum. Moreover, the uniformly rotating sheet,
whether in the non-equilibrium case of constant surface density, or in the equilibrium case
of � ∝ [1 − (r/R)2]1/2 (Mestel 1963), is unstable to large-scale perturbations (Hunter
1963), and generally results in large-scale redistribution of material with a concentration
of mass to the center (see, e.g., Binney & Tremaine 1987, pp. 374–375). Conversely, large
rotation (such as indicated by the upper dashed curve) could prevent the inner region from
collapsing, but only at the expense of having the interior expand and the edge collapse to an
outer ring (Burkert & Hartmann 2004).

Given the complexity of velocity fields of real clouds (Figure 2.2), it is implausible that
massive clouds can be stabilized everywhere. In view of the observations indicating that
star formation occurs rapidly upon cloud formation, the difficulty of preventing collapse is
actually a desirable feature.

Molecular clouds obviously are not circular sheets in any approximation. As shown in
Figure 2.10, the collapse of a simple elliptical sheet (the next most complicated figure)
also piles up material at its edge, but with extra concentrations of density at each end.
The eventual result of the collapse of the elongated sheet is to produce a filament. This
filament contains non-linear clumps resulting from small initial non-uniformities (basically,
sampling an elliptical cloud edge on a square grid), which become highly magnified dur-
ing the collapse. It may be that given a spectrum of non-linear fluctuations in filaments,
equation (2.28) may yet provide a useful guide to the minimum scales of gravitational
collapse.

The importance of large-scale gravity acting on geometry for clouds encompassing many
initial Jeans masses means that it is difficult to imagine a velocity field which prevents not
only local but even global collapse. In the rapid star formation picture, even global molec-
ular cloud collapse can be accomodated. To demonstrate this more directly, Hartmann and
Burkert (2007) examined the collapse of an elliptical sheet with an overall density gradient
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Fig. 2.10. Collapse of an initially elliptical, static, uniform sheet in two dimensions, shown
at four different times. The grayscale indicates surface density. Material piles up at the edge
early during the collapse, with extra mass concentrations at the ends of the ellipse. In the
bottom right panel, the sheet has collapsed into a filament with non-linear perturbations of
density that result from the magnification of initial structure in the ellipse boundary, which
was sampled on a square grid. From Burkert and Hartmann (2004).

from one end to the other, set into rotation in the plane of the sheet. The collapse sequence
(Figure 2.11) results in a cloud morphology remarkably similar to that of Orion A seen
in 13CO (Figure 2.2), with a dense concentration near the upper end suggesting the accu-
mulation of large amounts of mass to form a large cluster like the ONC. Moreover, the
ridges of increased density along the lower part of the cloud appear to have at least one
corresponding feature in Orion A, as indicated by the higher concentration of younger stars
on the north-western edge (Figure 2.8). Remarkably, the entire collapse sequence takes only
1.7 Myr, consistent with the ages of the embedded stellar populations. The velocities implied
in this model are also roughly consistent with observation, taking into account the two-
dimensional nature of the model and the fact that we only observe radial velocities and not
proper motions.

Global collapse also seems plausible in the flow-driven model of cloud formation. There
is no reason why a cloud formed by large-scale flows (§2.3) should be formed in approxi-
mate equilibrium. Lateral collapse could also help in understanding the rapid transition from
atomic to molecular gas (Bergin et al. 2004), by concentrating the gas and making H2 forma-
tion faster than in one-dimensional models. More generally, global velocity fields will either
promote cloud expansion or contraction, with equilibrium unlikely; selecting dense clouds
obviously favors contraction rather than expansion. In bubble-driven cloud formation, one
would expect that expansion dominates early, but that as the bubble ages, it will slow down
and accumulate mass, eventually reaching the point where gravity can overcome expansion.

If, however, clouds are collapsing, why have investigators usually found roughly virial
motions? This is actually a natural result of collapse. Near free-fall velocities are only
a factor ∼21/2 larger than equilibrium velocities, a difference well below the geometric,
kinematic, and mass uncertainties in assessing equilibrium (Vazquez-Semadeni et al. 2007;
see Ballesteros 2006 for a discussion of problems with applying virial equilibrium to real
clouds). More generally, it seems quite clear that molecular clouds are not equilibrium
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Fig. 2.11. Evolution of an elliptical sheet with rotation. The cloud begins contracting in
the upper left panel, begins to form dense ridges as a result of the edge acceleration in the
upper right panel (Figure 2.10), forms a filament at the upper/denser end of the sheet and a
“wishbone” density structure, and finally forms dense blobs at the upper end and a twisted
filament structure (compare with Figure 2.2). Scaling this isothermal model to the mass
and size of the Orion A cloud, the entire evolution requires only 1.7 Myr. Modified from
Hartmann and Burkert (2007).

bodies, considering both the crossing-time problem (§2.3) as well as the complexity and
irregularity of their observed structure. Given that free-fall velocities are modestly higher
than equilibrium velocities, “near-equilibrium” is not equivalent to equilibrium.

This picture of global collapse requires rapid dispersal of the molecular gas to avoid high
star formation efficiencies and thus galactic star formation rates higher than observed (§2.2).
However, the most luminous star in Orion A, θ1 Ori C, is rapidly evaporating the molecular
gas in its vicinity (O’Dell 2001), and will probably remove the neighboring molecular gas on
a timescale of order 1 Myr. Furthermore, there are many examples of associations with large
H I shells around them, representing in part the dispersal of molecular gas by the energy
input of the massive stars (e.g., De Geus 1992), showing that this is a common occurence.

The collapse model for Orion A is neither unique nor conclusive, but it points out the need
to consider the global effects of gravity in developing more realistic models of star-forming
molecular clouds.

2.7 Turbulence and cloud structure
Molecular clouds exhibit turbulence on a variety of scales (e.g., Figure 2.2; Larson

1981; Elmegreen 1997; Falgarone et al. 1998), with supersonic motions seen on all but the
smallest scales. These supersonic motions can shock and condense material, in principle
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Fig. 2.12. Schematic illustration of some instabilities that molecular clouds may be subject
to. Ripples in a thin post-shock region can be subject to the non-linear thin shell instability,
which can concentrate material due to deflections in oblique shocked material. Kelvin–
Helmholtz instabilities can also generate turbulence at shear flow interfaces. Finally, regions
of overdensity can exhibit rapid or even runaway contraction due to thermal instability or
rapid radiative cooling, leading to the formation of gravitationally unstable concentrations.

producing protostellar cloud cores. Some simulations assume that gravitational attraction
becomes important only after flows have built up cores to a significant size, so that the core
mass spectrum is mostly the result of turbulence (e.g., Padoan & Nordlund 1999; Klessen &
Burkert 2000, 2001; Klessen 2001; Padoan et al. 2001). The adequacy of these assumptions
is not clear because gravity is a long-range force and probably begins to operate quite early
(Heitsch et al. 2008; Vazquez-Semadeni et al. 2007). Other simulations also assume an
initial spectrum of velocity fluctuations but include gravity at all stages (Bate et al. 2002,
2003). The problem is that the precise nature of turbulent velocity and density fields present
as initial conditions for the numerical simulations is far from clear.

A promising recent suggestion is that various instabilities are generated in the post-
shock accumulating flow which produces the molecular cloud; these instabilities may then
provide the seeds for star formation (Heitsch et al. 2005, 2006; Vazquez-Semadeni et al.
2007; Figure 2.12). As a specific example, Heitsch et al. (2005, 2006, 2007, and references
therein) considered the formation of clouds as a result of colliding supersonic flows in the
atomic interstellar medium. (One can apply this picture to the supersonic sweeping-up of
material by transforming into the rest frame of the shock.) Heitsch et al. found that small
perturbations of the shock interface lead to dynamical instabilities which concentrate mass;
rapid cooling then leads to extreme concentrations (see also Hennebelle & Audit 2007 and
Vazquez-Semadeni et al. 2007).

Figure 2.13 shows one such simulation of flows seen edge-on. The initial small pertur-
bation of the interface (left panel) rapidly results in the formation of “fingers” of material
which then contract due to thermal instability and other rapid cooling into large blobs of
material. The resulting structure can be characterized as dense regions with subsonic internal
motions surrounded by low-density regions with supersonic “turbulence” – with velocities
smaller than that of the initial shock, but larger than that of the rapidly cooling postshock gas.
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Fig. 2.13. Generation of turbulent substructure as a result of instabilities in post-shock gas
produced by colliding flows, entering the computational box in the horizontal direction. The
right-hand inflow has a higher density, intended to simulate the collision of swept-up dense
material with lower-density atomic interstellar medium (e.g., Figure 2.4). Modified from
Heitsch et al. (2007).

The outlines of these and similar calculations appear to be quite promising in explaining the
observed structure of molecular clouds. What remains to be seen is whether the mass spectra
of the gas clumps is consistent with the protostellar core mass function – can a relatively uni-
versal power-law distribution of core masses be produced from a turbulent cascade? While
some simulations suggest that this is the case, limited dynamic range remains a difficulty.
In addition, turbulence by itself is unlikely to produce a turnover in the stellar IMF (§1.2);
what role do thermal effects play? What is the role of gravity in coalescing individual con-
centrations? Simulations in the near future may provide more conclusive answers to these
questions.



3

Initial conditions for protostellar
collapse

Low-mass stars tend to form in dense concentrations called “cores” in which the supersonic
turbulent motions typical of molecular clouds are lowered or are suppressed in some fashion.
In the limit that turbulence can be neglected, and thermal gas pressure is the principal force
which counteracts gravity, the relationship between the mass Mcl and radius Rcl of a core in
or near hydrostatic equilibrium is

G Mcl

Rcl
∼ c2

s = kT

μmH
, (3.1)

where cs is the sound speed and mH is the mass of the hydrogen atom. Taking a mean molec-
ular weight μ= 2.3, appropriate for molecular hydrogen plus helium, and a typical cold
molecular cloud temperature of T = 10 K, equation (3.1) implies that a solar mass molec-
ular cloud core must have a radius Rcl ∼ 0.1 pc. Encouragingly, observations suggest that
many molecular cloud cores have roughly these properties. YSOs are detected as infrared
sources within many cores, indicating that star formation proceeds rapidly once cores are
formed.

The simple thermally supported model of molecular cloud cores is a useful limit. How-
ever, many cores are irregularly shaped, suggesting important departures from hydrostatic
equilibrium. More generally, it appears to be difficult to produce truly static structures in
molecular clouds, because thermal energy is not trapped efficiently, but instead is rapidly
radiated away; this makes it difficult to build up gas-pressure forces except at very high den-
sities on very small (essentially stellar) size scales. The short lifetimes of molecular cloud
complexes discussed in the previous chapter imply rapid evolution and fragmentation, which
also tends to suggest that cores are not generally in hydrostatic equilibrium, though internal
motions are mostly subsonic.

It had been suggested that magnetic fields might provide the restraining forces necessary
to slow dynamical evolution of clouds, rendering them more amenable to static or quasi-
static treatments; however, observations and simulations suggest that magnetic pressures
can modify, but generally do not strongly control, overall dynamics.

3.1 Molecular cloud cores
The properties of dense molecular gas clouds have mostly been inferred from

observations of cm- and mm-wavelength spectral lines. Emission from the 12CO molecule
provides the most extensive and sensitive tracer of molecular gas, because the (much more
abundant) H2 molecule is difficult to observe directly except when heated by shocks or
ultraviolet radiation fields. The lowest rotational spectral line transitions of 12CO are usually
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Fig. 3.1. Half-maximum intensity contours for a sample of dense molecular cloud cores,
as observed in a variety of molecular species. For each core a linear dimension of 0.2 pc is
indicated. Crosses indicate associated star (IRAS source). From Myers et al. (1991).

extremely optically thick in many molecular cloud regions, making it difficult to use these
lines to study the densest regions of gas. It is necessary to use other tracers whose transitions
are more strongly excited at high densities, such as NH3 or CS, or to use rare isotopes of
CO, which are less optically thick, to study dense molecular cloud cores.

Observations of molecular cloud cores in the NH3 (J, K ) = 1 − 1 inversion transition in
nearby star-forming regions (Myers 1983; Benson & Myers 1989) indicate typical molec-
ular hydrogen number densities between 2 × 103 and 2 × 105 cm−3, velocity dispersions
between 0.2 and 0.9 km s−1, and median masses ∼10 M�. On the smallest scales, the veloc-
ity dispersions of these cores approach thermal values. The median size of these objects is a
few × 0.1 pc (Figure 3.1).

The properties of cores depend somewhat on which molecular tracer is being used to
define the object. Different species and transitions reflect differing density and temperature
ranges (Zhou et al. 1989; Fuller & Myers 1993; Butner et al. 1995), and yield somewhat dif-
ferent results for velocity widths and sizes (e.g., Figure 3.1). In addition, chemical evolution
can affect the appearance of cores in differing tracers (e.g., Bergin et al. 2002). Observations
suggest that some of the smallest, least turbulent, protostellar molecular cloud cores are not
very far from hydrostatic equilibrium (Myers & Goodman 1988b; Fuller & Myers 1992;
Figure 3.2). It is difficult to prove this, however, since the difference in energy between static
and unbound systems is only a factor of two, which is within the uncertainties in estimating
masses, magnetic field pressures, appropriate velocity moments, appropriate geometry, etc.

Magnetic fields are difficult to measure in cloud cores; most observations are made
in lower-density environments. For example, in one dark cloud in the Perseus molecular
complex, B1, with a size ∼1 pc and an estimated average density ∼103 cm−3, the mea-
sured magnetic field is ∼30 μG (Goodman et al. 1989). Recent compilations of available
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the cloud, while the right-hand panel incorporates a pressure due to non-thermal motions
indicated from the velocity widths of the spectral line profiles. The solid lines are based on
a model of an isothermal pressure-bounded equilibrium sphere. Points above the upper line
correspond to conditions for which no hydrostatic equilibrium is possible; the equilibrium is
unstable if the data point lies above the middle line (§2.3). Typical estimated uncertainties
for the data points are shown by the error bars. The results suggest that most cores are near
equipartition of energies, but do not necessarily indicate equilibrium (§3.4). From Myers and
Benson (1983).

results for molecular clouds (Crutcher 1999, 2005) suggest that magnetic field pressures
are comparable to turbulent pressures, and that they are generally magnetically supercritical
(self-gravity larger than magnetic forces; §2.4) by a small factor (also Bourke et al. 2001).
More generally, it is suggested that the gravitational, magnetic, and thermal plus “turbulent
motion” energy densities are roughly comparable (Myers & Goodman 1988a,b). On small
scales in dense cores, the mass motions appear to be dominated by thermal motions and
velocity dispersions are small (Myers & Goodman 1988b; Figure 3.3). In contrast, on large
scales, velocity dispersions can be dominated by non-thermal motions (Larson 1981).

Most molecular cloud cores exhibit modest projected spatial velocity gradients corre-
sponding to ∼0.3–3 km s−1 pc−1 (Goodman et al. 1993). At the upper end of this range, the
rotation or shear at the outer edge of a cloud core of radius 0.1 pc would be ∼0.3 km s−1,
comparable to the thermal support velocity, but most clouds surveyed seem to have slower
rotation than this. In general, rotation does not appear to provide much support for molecular
cloud cores against their self-gravity.
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Current surveys suggest that, at least in the Taurus molecular cloud complex, many known
cores are associated with heavily extincted YSOs (Beichman et al. 1986). The high fre-
quency of association of known cores with young stars indicates that many cores may be
observed in a stage of collapse, because the star is presumably the result of some core mate-
rial having collapsed already (Fuller 1994). It is not known whether all cores without stars
will eventually form stars (e.g., Bonnell et al. 1996a).

Many molecular cloud cores seem to be elongated rather than spherical (e.g., Figure 3.1).
The observed ratios of major to minor axes in Taurus core maps are ∼2 (Myers et al. 1991).
Several studies have analyzed the observations in the context of a random distribution of
inclinations to infer that cores are more nearly prolate than oblate (Myers et al. 1991; Jones
et al. 2001; Curry 2002; Jones & Basu 2002), although their detailed structure is probably
more complicated. As discussed in the previous chapter, the cores in Taurus are preferen-
tially aligned along filaments (e.g., Figure 2.7), which almost certainly means that the cores
themselves are more prolate than oblate (but in detail neither), and that this elongation is a
remnant of their origin in filaments (Curry 2002; Hartmann 2002; §2.6).

3.2 Virial theorem and cloud stability
The classical analysis of gravitational stability of clouds starts by imagining cores

to have reasonably well-defined outer boundaries. In its simplest form, the analysis proceeds
using the virial theorem. The equations of momentum and mass conservation (e.g., Shu
1992; Appendix 1) can be combined to yield

ρ
Dv
Dt

= −∇ P − 1

8π
∇B2 + 1

4π
(B · ∇) B − ρ∇φ . (3.2)
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Since

D2r2

Dt2
= D2r · r

Dt2
= 2 (ṙ · ṙ + r · r̈) , (3.3)

taking the dot product of the momentum equation with the position vector r, and integrating
over a volume V which has a closed surface S, the left-hand side becomes

1

2

D2

Dt2

∫
r2dm −

∫
dm v2 = 1

2

D2 I

Dt2
− 2Ek, (3.4)

where Ek is the bulk kinetic energy of the material and the D/Dt operator is the time deriva-
tive following the motion. The generalized moment of intertia, I , is the integral of r2 over
the mass element dm = ρdV .

Because translational motion does not affect the basic analysis, we set Ek = 0 and con-
sider the volume to be at rest. After further manipulation and use of vector identities, we
have the virial theorem,

1

2

D2 I

Dt2
=

∫
V

dV 3P +
∫

V
dV

B2

8π
−

∫
S

(
P + B2

8π

)
r · dS

+ 1

4π

∫
S
(r · B) (B · dS) −

∫
V

dVρr · ∇φ . (3.5)

The integrals are taken over the closed surface S or the volume V which is enclosed by S;
the unit vector normal to the surface, dS, is taken to be pointing outward. The first term on
the right-hand side is a volume integral of the internal thermal energy, the second term is the
magnetic energy, and the last term is the gravitational potential energy. The third and fourth
terms constitute surface pressure effects; the magnetic field enters in two different ways
because the force involved can be separated into pressure and tension terms (e.g., Priest
1984).

To apply this relation in a simplified way, consider the case of a spherical, isothermal,
uniform, unmagnetized cloud in virial equilibrium, i.e., D2 I/Dt2 = 0. (Note that the adop-
tion of uniform density is not consistent with hydrostatic equilibrium and thus violates the
assumption of virial equilibrium, but this simplifies the problem to its essence.) The cloud
has a radius Rcl and mass Mcl, and the external medium exerts a pressure P◦ at its surface.
With these assumptions equation (3.5) reduces to (Spitzer 1978)

4π R3
cl P◦ = 3c2

s Mcl − 3

5

G M2
cl

Rcl
, (3.6)

where the term on the left-hand side of the equation results from the surface integral over
the gas pressure in equation (3.5), the first term on the right-hand side of the equation is the
integral of 3P over the volume, and the final term is the potential energy integral.

If the mass of the cloud and its internal temperature are fixed, equation (3.6) determines
the equilibrium relationship between parameters. In the limit Rcl → ∞, gravitational forces
become unimportant and equilibrium is established by a balance of the internal and external
pressures. Decreasing Rcl increases the importance of gravity. For a given Mcl and cs, there
is a minimum radius:

Rmin = 1

5

G Mcl

c2
s

, (3.7)
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below which there is no possible equilibrium state. This equation simply expresses the
inability of thermal pressure forces to support a cloud against gravity if it is too small for its
mass (e.g., equation (3.1)).

In practice this minimum radius is not the critical condition, because not all equilibria are
stable. This can be seen by considering the relationship between the external pressure and
the cloud radius in more detail. In equilibrium, the derivative of P◦ as a function of radius is

d P◦
d Rcl

= 1

4π

(
−9c2

s Mcl

R4
cl

+ 12

5

G M2
cl

R5
cl

)
. (3.8)

At large Rcl, d P◦/d Rcl < 0, so an increase in external pressure causes the radius of the cloud
to shrink. However, there is a maximum external pressure in equilibrium, because equation
(3.8) changes sign at a critical radius. The maximum pressure, from equation (3.8), occurs
when the cloud has an equilibrium radius slightly larger than Rmin,

Rcrit = 4

15

G Mcl

c2
s

; (3.9)

the corresponding maximum pressure from equation (3.6) is

Pcrit = 3.15
c8

s

G3 M2
cl

. (3.10)

There is no possible equilibrium for pressures larger than this critical value. At lower pres-
sures, collapse may still ensue if Rcl < Rcrit. In this case, equation (3.8) shows that the
equilibrium pressure must decrease with decreasing radius. This is an unstable equilib-
rium; for a fixed pressure, a perturbation decreasing the cloud radius will result in the
external pressure being larger than the maximum equilibrium value, which will cause the
cloud to contract further. The process runs away; the gas pressure becomes increasingly less
important than gravity, and free-fall collapse eventually ensues, i.e., gravitational forces are
essentially unopposed by pressure forces.

If we recast this critical condition in terms of the density ρ◦ of the uniform sphere and a
“critical mass” Mcrit = 4π R3

clρ◦/3,

Mcrit =
(

3

4π

)1/2 (
15

4

)3/2
(

c2
s

G

)3/2

ρ−1/2◦ . (3.11)

Thus the stability analysis can be transformed into a relationship between the mass of cloud
and its internal density and temperature, in a form which differs only by constants of order
unity from the Jeans mass relation (2.18). Equation (3.9) also may be converted into a more
suitable form for comparison with observations,

ρ◦
c2

s
= 45

16πG R2
crit

. (3.12)

The lines labeled “critical” in Figure 3.2 approximate this relation. The observations of
cloud cores suggest that many are near the critical equilibrium point (Myers & Benson 1983;
Myers & Goodman 1988a,b; Benson & Myers 1989).

The existence of a maximum pressure for a cloud of given mass, or a minimum radius,
arises from the assumption that the cloud internal temperature remains constant, and does not
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increase under contraction. Observations and theory suggest that in typical density regimes,
cloud temperatures do not vary much, and lie between about 12 K and ∼5 K (Goldsmith
1988; Boland & DeJong 1984; Cernicharo 1991; Shirley et al. 2005). If anything, cloud
core interiors are likely to be colder than the outer layers (Hollenbach & Natta 1995; Bergin
et al. 2006; Di Francesco et al. 2007, and references therein).

While this classical equilibrium analysis, like the Jeans mass, yields insights into the
conditions favorable to cloud collapse, it is questionable whether it can be applied to real
clouds in detail, given the difficulty in setting clear outer boundaries for some cores (e.g.,
Figure 3.1). Using a fixed external pressure is also problematic, since the supersonic turbu-
lent motions observed in clouds probably dominate the pressure, and are difficult to estimate
observationally, or are even ignored, leading to misleading conclusions (Ballesteros-Paredes
et al. 1999).

3.3 Centrally concentrated clouds
The simple virial equilibrium analysis above assumed a uniform density cloud;

however, such clouds are not in hydrostatic equilibrium, because there are no internal pres-
sure gradients to balance gravity. A more appropriate equilibrium initial state can be found
from solving the force balance equation. Assuming spherical geometry and no magnetic
pressure, the equation of hydrostatic equilibrium is

d P

dr
= −ρ

G Mr

r2
, (3.13)

where
d Mr

dr
= 4πr2ρ . (3.14)

For an isothermal cloud, these equations can be combined to yield

1

r2

d

dr
r2c2

s
d ln ρ

dr
= −4πGρ . (3.15)

Making the substitution ln(ρ/ρc) ≡ −u, one arrives at the Lane–Emden equation

1

ξ2

d

dξ
ξ2 du

dξ
= e−u , (3.16)

where ξ = r/(c2
s /4πGρc)

1/2 is the non-dimensional radial coordinate.
If ρc is taken to be the central density, then the boundary conditions of (3.16) are u(0)= 0

and du/dξ |0 = 0 (by symmetry). There is a family of solutions to this equation, known as
Bonnor–Ebert spheres (Ebert 1955; Bonnor 1956), each distinguished by an outer radius ξ1.
The results of integrating the Emden equation are shown in Figure 3.4 for the case of critical
stability (see p. 50). The limiting case, where ξ1 → ∞, is that of the singular isothermal
sphere,

ρ = c2
s

2πG
r−2 , (3.17)

which corresponds to an infinitely concentrated configuration. One may verify that this is
a solution by direct substitution into equation (3.13). Equation (3.17) provides a conve-
nient initial power-law density distribution which is often used in analyzing the collapse of
protostellar clouds (§3.2).
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Fig. 3.4. Density and mass distributions for the critical Bonnor–Ebert sphere, i.e., with the
maximum central concentration allowed by stability. The left-hand panel illustrates the den-
sity distribution with normalized radius ξ (see text), while the right-hand panel illustrates the
mass enclosed within ξ . The dashed lines show the power-law dependence of the singular
isothermal sphere for comparison.

Like the uniform sphere, the Bonnor–Ebert sphere also has a maximum external pressure
or minimum stable radius for a given mass and temperature. The variation of Po with Rcl for
solutions of equation (3.16) has basically the same form as for the uniform cloud (3.8). The
critical radius and pressure for the Bonnor–Ebert sphere exhibit the same parameter depen-
dence as in the case of the uniform sphere, but with slightly different numerical coefficients
(Spitzer 1968),

Rcrit = 0.41
G Mcl

c2
s

, (3.18)

and

Pcrit = 1.40
c8

s

G3 M2
cl

. (3.19)

Figure 3.4 illustrates the variation of density and mass with radius for this limiting solu-
tion. The density variation is similar to that of the singular isothermal sphere over roughly
the outer half of the cloud. In the inner regions, the density approaches a constant. The
central density is ∼5.8 times the mean density; this modest concentration explains why the
limiting pressure for the critical Bonnor–Ebert sphere is not much different from that calcu-
lated with the simple uniform density assumption. (Note that the singular isothermal sphere
is extremely unstable to infinitesimal perturbations, and thus cannot represent a realizable
hydrostatic equilibrium.)

For a 1 M� cloud at T = 10 K, we have Rcrit = 1.5 × 1017 cm ∼0.05 pc ∼104 AU and
Pcrit ∼ 2 × 10−11 dyne cm−2. This external pressure is about an order of magnitude higher
than typical interstellar medium pressures P ∼ 104 k ∼ 1.4 × 10−12 dyne cm−2 (Elmegreen
1991). Whether internal pressure due, for instance, to turbulent motions can provide addi-
tional confining pressure is an open question, especially as such turbulence is likely to be
anisotropic and time-dependent.
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Fig. 3.5. Left panel: near-infrared image of the Bok globule B68. Right panel: azimuthally
averaged column density, inferred from the extinction measurements, compared with a
Bonnor–Ebert sphere of ξmax = 6.9 ± 0.2. From Alves et al. (2001).

As an application of the Bonnor–Ebert family of solutions, consider the molecular core
(Bok globule) Barnard 68. B68 is an isolated object which does not lie within molecular
material (left panel of Figure 3.5); probably it is situated within low-density warm atomic
ISM, as envisaged in the boundary condition for Bonnor–Ebert spheres. Alves et al. (2001)
derived column densities along the line of sight from near-infrared extinction measurements,
and then compared the circularly averaged column density profile (ignoring the south-east
projection) with Bonnor–Ebert solutions. As shown in the right panel of Figure 3.5, the
measurements fit a slightly (gravitationally) supercritical object (ξmax ∼ 6.9) very well (the
critical limiting value for stability is ξc = 6.5).

While the fit in Figure 3.5 is quite good, it should be emphasized that it was achieved
by circular averaging, which minimizes the more complex structure of the actual object.
To illustrate this in a graphic way, consider the “Bonnor–Ebert rectangle”. Figure 3.6 shows
how a filamentary distribution of mass can be turned into something qualitatively resembling
a Bonnor–Ebert sphere by inappropriate circular averaging followed by misinterpreting the
density distribution as that of a sphere. Circular averaging of a uniform density filament on
scales less than the width of the filament will produce a flat central surface density; but on
larger scales, the inferred surface density will behave as � ∝ r−1 because the mass grows as
r while the area grows as r2. Interpreting this surface density in terms of the volume density
of a spherical object results in a flat inner density distribution and a spurious ρ ∝ r−2 on
large scales. Averaging in this way produces a very powerful smoothing which can eliminate
important features of the real object. While B68 is far from being a filament, circular averag-
ing makes it look much more regular than it really is. Other cores are much more filamentary
(Figure 3.7), and even more caution must be applied in analyzing their structure.

Studies of other, non-isolated molecular cloud cores often indicate a qualitatively similar
density structure in the sense of having a central density plateau, with an outer falloff of
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Fig. 3.6. Illustration of the dangers of assuming the incorrect symmetry. A filament (or
rectangle on the sky, in the simplest terms) will show a uniform surface density on small
scales by construction, but will have an apparent averaged surface density � ∝ r−1 if
circularly averaged, because the mass will grow as r while the surface density grows as r2. If
one then makes the further mistake of interpreting the surface density in terms of a spherical
distribution, the volume density requires a further factor of r in the outer regions, resulting in
a presumed distribution ρ ∼ constant on small scales and ρ ∝ r−2 on large scales, resulting
in an apparent Bonnor–Ebert-type structure where none is present.
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Fig. 3.7. Two starless cores, seen in exinction from ISO (grayscale) and 1.3 mm dust
continuum (contours). From Bacmann et al. 2000.

density roughly comparable to r−2 (e.g., Bacmann et al. 2000; Figure 3.7). However, most
cores are more irregularly shaped and more elongated than B68 (compare Figure 3.7 and
Figure 3.1; see also Doty et al. 2005). Other analyses suggest that Bonnor–Ebert solutions
are not strictly applicable to many cores, even after circular averaging (Harvey et al. 2003b,
Kirk et al. 2005).
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3.4 Core lifetimes and equilibrium
The virial stability analysis yields results within factors of order unity of the Jeans

mass (equation 2.18), and the Bonnor–Ebert equilibrium models provide a reasonable start-
ing point for analyzing molecular cloud cores. The broader question is: how relevant are
equilibrium models for real cloud cores? The complex structures of many cores (Figures
3.1, 3.7) suggest that these objects are not in complete hydrostatic equilibrium. Even ignor-
ing irregularities in morphology, the inference that most cores are more prolate or triaxial
than oblate or spherical (§3.1) indicates shapes that are difficult to maintain in equilibrium
(Curry 2002).

Observations of starless cores such as L1544 suggest inward motions, albeit subsonic, on
scales of order ∼0.2 pc (Tafalla et al. 1998). This would seem inconsistent with an inside-
out collapse model; such a widespread collapse would imply that a central star had already
formed (see also Williams et al. 1999). Williams et al. 2006 showed that such indications of
large-scale, slow infall are commonly present in starless cores, and made the very plausible
suggestion that these motions are induced by the process of core formation. On the contrary,
Ciolek and Basu (2000) argue that they can reproduce the observations of L1544 very well
with a magnetically supported model, though they assume that it is being observed at a
special epoch, when the core is just barely magnetically subcritical. Whether such models
can explain the frequency of slow infall found by Williams et al. (2006) is an open question.

For equilibrium to be satisfied, cores must last for more than one dynamical timescale
to “settle down” from their time-dependent, probably anisotropic, formation processes. The
lifetimes of cores are generally estimated using statistical arguments. It is generally assumed
that the protostellar phase (Class 0 plus Class I) lasts roughly one dynamical timescale,
corresponding to essentially free-fall gravitational collapse (§4.1); then the ratio of starless
cores to protostars yields the lifetime of the starless core phase in units of dynamical or
free-fall times. The assumption of a dynamical timescale for the Class I phase is supported
by studies in Taurus, where the 1:10 ratio of Class I objects to T Tauri stars, coupled with
a median age of Taurus of 2 Myr, results in a Class I lifetime of order ∼2 × 105 yr, very
consistent with theory (Kenyon et al. 1990, 1994).

Because incompleteness strongly affects results, studies of nearby star-forming regions
are most conclusive. Initial studies of nearby star-forming regions indicated that about half
of the known molecular cloud cores in Taurus contain YSOs (Beichman et al. 1986); this
suggested that starless cores do not last more than one or two dynamical times. A survey of
optically selected cores by Lee and Myers (1999) encompassing several regions estimated
that approximately 1/3 of the cores have embedded YSOs, so that the starless core lifetime
is approximately two dynamical timescales.

A detailed study of cores in Taurus and Ophiuchus by Kirk et al. (2005) suggests dense
(sub-mm detected) core lifetimes of about 3 × 105 yr (see also Onishi et al. 2002). They
estimated this is about ∼3 times the free-fall timescale, which might require a retarding force
opposing gravitational collapse, possibly magnetic fields (see following sections). However,
Kirk et al. use a “minimum central density” rather than an average (lower) density to estimate
the free-fall timescale, which is likely to be an underestimate of the true collapse timescale
(§4.1). Another estimate of the appropriate dynamical timescale is the time taken for a sound
wave to pass across the core – the minimum time needed to establish hydrostatic equilibrium
(assuming support is dominated by thermal pressure). Taking the median FWHM of the
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longest projected core dimension in this sample, ∼0.05 pc, and using a typical sound speed
of 0.2 km s−1 result in a median crossing time of ∼2.5 × 105 yr. Then the Kirk et al. results
indicate persistence of sub-mm cores for little more than one dynamical timescale.

This example indicates some of the difficulties in making precise estimates of core
lifetimes for the purposes of understanding whether they are truly equilibrium objects or
not. Nevertheless, the weight of the evidence suggests that cores are generally not very
dynamically old.

3.5 Stability of magnetized clouds
Magnetic fields can help support clouds against their self-gravity. To simplify the

analysis, Spitzer (1978) assumed a uniform density spherical cloud with a uniform inter-
nal magnetic field. Spitzer also assumed that the cloud resides in a low-density medium of
negligible mass, and that the magnetic field outside the cloud falls off as B = Bcl(Rcl/r)3,
which roughly reproduces the variation of energy density with radius in a dipole magnetic
field. These assumptions make it possible to take a large control volume with a surface suffi-
ciently far away that the magnetic surface terms are negligible. In general, these are not good
assumptions for cores other than isolated objects like B68, because most cores are situated
in regions of substantial molecular mass, with much more matter outside of cores than in
cores. However, removing these assumptions does not change the essential behavior of the
result.

Taking the bounding surface S to be far outside the cloud at a radius Rb � Rcl, the mag-
netic surface integral terms become negligible by assumption. Then the terms in equation
(3.5) are

0 = 3c2
s Mcl +

∫ Rb

Rcl

dV 3P◦ − 4π R3
b P◦ + 1

6
B2

cl R
3
cl +

∫ Rb

Rcl

dV
B2

8π

− 3

5

G M2
cl

Rcl
−

∫ Rb

Rcl

dV ρr∇φ . (3.20)

The very last term in (3.20) can be written as
∫

d M(r∇φ), and since (again by assumption)
the mass exterior to the cloud is negligible, we may set this term to zero. It is straightfoward
to show that the integral of the magnetic energy density outside of the cloud equals the
volume integral inside the cloud as Rb/Rcl → ∞. Finally, the volume integral of the external
pressure term outside the cloud is 4π P◦(R3

b − R3
cl). With this result, equation (3.20) becomes

4π R3
cl P◦ = 3c2

s Mcl − 3

5

G M2
cl

Rcl
+ 1

3
R3

cl B
2
cl . (3.21)

When the gas is sufficiently conducting, the magnetic flux passing through a given parcel
of gas remains constant (e.g., Priest 1984). This “flux-freezing” condition requires that the
magnetic flux �B = π R2

cl Bcl remains constant. Under this condition, the gravitational and
magnetic terms in equation (3.21) both vary as R−1

cl , i.e., they remain in the same ratio. Thus,
with magnetic flux freezing, if magnetic forces do not prevent collapse at one time, they will
not be able to prevent collapse at any later time. Conversely, flux-freezing implies that clouds
in which magnetic forces dominate (and therefore resist) gravity will always maintain this
relationship and therefore gravitationally induced collapse cannot occur.
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The gravitational energy term in equation (3.21) exceeds the magnetic energy term if
the mass of the cloud is larger than a critical value, which depends upon the magnetic flux
through the cloud,

MB = 1

π

(
5

9G

)1/2

�B . (3.22)

This result can also be written in terms of the mean density of the cloud ρc,

MB = 53/2

48π2

B3
cl

G3/2ρ2
c

. (3.23)

Gravitational collapse can occur only if Mcl > MB . As in the case of the non-magnetized
sphere, the external pressure at the critical equilibrium point is

Pcrit = 3.15c8
s

G3 M2
cl[1 − (MB/Mcl)2/3]3

. (3.24)

Comparison with equation (3.10) illustrates the effect of the magnetic field in resisting col-
lapse. Clouds with masses >MB are termed “magnetically supercritical”; those with masses
<MB are called “magnetically subcritical”.

More sophisticated calculations allowing departures from uniformity and sphericity
(which must be present since the magnetic field is not isotropic) have been made which
exhibit the same basic behavior as this simple model, but differ modestly in numerical
coefficients. Calculations of flattened, centrally condensed, equilibrium clouds suggest that
equation (3.22) is more accurately written as (Mouschovias & Spitzer 1976)

MB ∼ 0.13

G1/2
�B . (3.25)

From equation (3.25) we find immediately that the maximum magnetic flux that a 1 M�
cloud core can have and still contract gravitationally is 4 × 1030 G cm2; for a typical cloud
core of radius ∼0.1 pc, the critical field strength is B∼10 μG.

Alternatively, we may write

MB ∼ 3.5 × 10−3 B3
o

G3/2ρ2
c

≈ 70 M�
(

Bcl

100 μG

)3 (
NH2

104 cm−3

)−2

, (3.26)

where we have assumed that the gas is entirely composed of molecular hydrogen and has
a mean molecular weight of 2.3. At typical cloud core densities 104 cm−3, a Mcl ∼ 1 M�
core will be able to collapse only if Bcl <∼ 20 μG. With this magnetic field, and assuming
an internal core temperature of 10 K, the ratio of gas pressure to magnetic pressure is β =
ρcc2

s /(B2
cl/8π)∼ 1, i.e., the magnetic energy (pressure) is roughly in equipartion with the

thermal energy (pressure).

3.6 Ambipolar diffusion of magnetic flux
The classical view of low-mass star formation recognized the potential of mag-

netic fields to prevent gravitational collapse. However, the effects of magnetic fields can
be reduced if the field is not perfectly “frozen” to the gas. The large extinctions through
a molecular cloud core can prevent the ultraviolet radiation field of the galaxy (or of the
nearby hot stars) from penetrating into the core interior. These radiation fields photoionize
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species, and the resulting ions help couple the gas to the magnetic field. In a dark cloud inte-
rior, where the external ionizing radiation fields do not penetrate, the ion fraction drops to
very low values. Although the ions are “frozen” to the magnetic fields by the Lorentz force
(e.g., Priest 1984), the neutral species are not. The neutrals are affected by the magnetic field
only indirectly through collisions with ions, which are following the field. If the frequency
of collisions between ions and neutrals is sufficiently low, as may occur in dark cloud cores,
the neutral gas can “slip” through the field lines on interesting timescales. In principle, this
process of “ambipolar diffusion” represents a means by which the molecular gas can be slip
through the field lines; gravity pulls material mass in through the resisting magnetic field,
concentrating the cloud as the magnetic field is slowly “left behind”.

To illustrate this process in an approximate way, we follow Spitzer (1978) in considering
an infinite cylinder of uniform density molecular gas. We distinguish between the neutral
particles, which have a mass density ρn = nnmHμ, where μ is the mean molecular weight,
and the ions, which have a number density ni . Assuming the neutral particles comprise most
of the mass, Gauss’ law (e.g., Priest 1984) applied to the cylindrical configuration yields the
gravitational force per unit mass

−∇φ = 2π R Gρn , (3.27)

where φ is the gravitational potential and R is the distance measured from the cylinder’s axis.
For simplicity we assume that the magnetic field is responsible for providing the balancing
force against gravity. In this situation the neutrals do not directly feel the magnetic restoring
force, but are affected indirectly by collisions with the ions, which are tied to the field. The
momentum transfer to the neutrals from the ions is

ρn (ni < uσ > )wD , (3.28)

where u is the relative velocity (assumed to be a thermal or random velocity) between ions
and neutrals, σ is the collisional cross-section, and wD is the drift velocity of the neutrals
relative to the ions. The term in brackets is the net collision rate. Balancing this force against
gravity, and solving for a characteristic diffusion time,

tD ≡ R

wD
= < uσ >

2πGmHμ

(
ni

nH

)
, (3.29)

where we have scaled the neutral density in terms of the density of hydrogen atoms nH .

Often < uσ > varies slowly with temperature. Taking < uσ > ∼2 × 10−9 cm3 s
−1

,

tD ∼ 5 × 1013
(

ni

n(H2)

)
yr , (3.30)

now incorporating a scaling to the number density of neutral hydrogen molecules n(H2)

since these are likely to be the dominant constituents of regions where ambipolar diffusion
may be applicable. It is clear that the ambipolar diffusion process will be important for
star formation only if ni/n(H2)<∼ 10−7. Typical estimates based on cosmic-ray ionization
of the molecular gas suggest ni/n(H2)∼ 10−7(n(H2)/104 cm−3)−1/2 (McKee 1989). Thus
it appears that in conditions representative of molecular cloud cores, ambipolar diffusion
can remove a substantial amount of magnetic flux over timescales of ∼ 107 yr (see also
Umebeyashi & Nakano 1990).
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3.7 The magnetic flux “problem(s)”
The idea of a magnetic flux “problem” in star formation dates to Mestel and Spitzer

(1956), who pointed out that the (then) recent recognition of galactic interstellar magnetic
fields in the diffuse ISM implied critical masses of order 103 M� (using equation 3.26),
and then argued ambipolar diffusion had to take place before clouds of stellar mass could
collapse. This idea was developed by Shu and coworkers (e.g., Shu et al. 1987 and refer-
ences therein; also Nakano 1984 and Mouschovias 1991) into a detailed picture of slowly
evolving magnetically supported cloud cores. The diffusion time was assumed to be much
longer than the free-fall time (see previous section); thus, this model predicted slow star
formation in relatively long-lived molecular clouds, explaining the low rate of galactic star
formation.

As discussed in Chapter 2, current observational evidence suggests that molecular clouds
are not long-lived; that the onset of star formation closely follows cloud formation; and that
the low rate of galactic star formation is the result of low efficiency rather than slow evo-
lution. In addition, as discussed previously in this chapter, the irregular, complex structure
observed for nearby cores strongly suggests they are not equilibrium, long-lived objects,
consistent with the evidence for short lifetimes discussed in §3.4. Thus, the modern evi-
dence suggests that ambipolar diffusion is either not needed or provides only a small delay
prior to cloud collapse. What happened to all the magnetic flux?

As discussed in §2.4, simulations of the large-scale flow of material in the ISM show
that cloud masses tend to be accumulated along magnetic flux tubes; that is, the mass is
concentrating along the field, increasing mass-to-flux ratios naturally. This mechanism was
dismissed by Mestel and Spitzer (1956), who argued that the length over which mass needed
to be accumulated from the diffuse ISM (hundreds of pc) would greatly exceed the Jeans
length and thus the medium would fragment into “sub-cylinders”. However, the accumula-
tion of material from the diffuse ISM occurs in supersonic flows, which are not describable
by Jeans analyses. In any event, it is worth noting that giant molecular clouds, as a whole,
are thought to be magnetically supercritical (McKee 1989; McKee & Ostriker 2007); the
increase in the mass-to-flux ratio from the diffuse ISM cannot be due to ambipolar diffu-
sion, given the high ionization state of the medium; instead, it must be the result of flow
along field lines, with possibly some enhancement due to reconnection.

The fundamental reason why massive clouds, both observationally and theoretically (e.g.,
Figure 2.6), tend to be magnetically supercritical can be seen schematically from the terms
in equation 3.21. A magnetically subcritical cloud, by definition, is one in which the final
term on the right-hand side (the magnetic term) exceeds in magnitude the second term on
the right-hand side (the self-gravitational term). To attain anything close to equilibrium, the
external pressure (left-hand side of the equation) must be sufficiently large to prevent the
cloud from expanding. Adding in the internal thermal support term (or, in real clouds, any
turbulent or rotational or shearing motions) makes the demand on the external pressure even
worse. A substantially subcritical cloud requires an external pressure of the same order as
the gravitational acceleration to confine the cloud; otherwise it will simply expand away (see
Figure 3.8). Invoking external turbulent pressure confinement is problematic, given its gen-
eral time-dependence and anisotropy. Invoking a strong external magnetic field to provide
the confinement simply displaces the problem of rooting the magnetic fields in gas to larger
scales.



58 Initial conditions for protostellar collapse

?

?

Subcritical Supercritical

? ?

Fig. 3.8. Schematic illustration of the difficulty with making subcritical dense cloud regions
(left figure). Because the internal pressure (magnetic plus gas) exceeds gravity, there must be
some confining pressure to prevent the cloud from expanding. As by definition the surround-
ings are less dense, and therefore of lower thermal pressure, there must be in general some
kind of external turbulent or magnetic pressure (dashed arrows) to confine the cloud. Pro-
viding this high external pressure using low-density regions is problematic. On the contrary,
supercritical clouds can be held together by gravity, without the need for confining pressure
in the outer, lower density regions (right panel).

Note also that, given the tendency of material to collapse along field lines, one would
expect clouds to be elongated perpendicular to the field; this would require the confining
pressure to be applied at the elongated ends of the cloud to prevent expansion. Such a
requirement is hardly credible given, for instance, the morphology of the Orion clouds (Fig-
ures 2.1, 2.2). On the contrary, if massive molecular clouds are magnetically supercritical,
then gravity can hold the cloud together without requiring a dynamically significant exter-
nal pressure. This is why molecular clouds are estimated to be supercritical, given typical
estimates of pressures in the surrounding ISM.

A globally supercritical cloud must have more mass in supercritical regions than subcrit-
ical regions, by definition. One might expect that subcritical regions would tend to resist
collapse, so that the supercritical regions would be the ones to form stars, at least first; and
as star formation is rapid, these most favorable sites would constitute the majority, or even
all, of the star formation.

Recent attempts to retain aspects of the ambipolar diffusion picture show that the obser-
vational constraints may be explained if cores are only slightly subcritical initially (e.g.,
Ciolek & Basu 2001). In other words, if the amount of magnetic flux that must be lost is
small, the ambipolar diffusion timescale is reduced by a similar amount, to the point where
it has at most a modest impact on evolutionary timescales. Whether this is an important
modification to the overall picture of cloud core evolution and collapse is an open question.
In the context of near-critical clouds, turbulent motions may play some role in removing
magnetic flux from subregions (Fatuzzo & Adams 2002; Nakamura & Li 2005).

Sometimes another stellar magnetic flux “problem” is considered. The critical magnetic
flux for a 0.5 M� star, �B ∼ 2×1030 G cm2, corresponds to a magnetic field of ∼3 × 107 G
at the radius of a typical pre-main-sequence star. Current estimates for T Tauri stars suggest
much lower stellar surface magnetic fields, a few kG (Basri, Marcy, & Valenti 1992). In the
absence of diffusive or reconnective processes, this stellar field strength implies a very low
magnetic field strength at the point of cloud core collapse; once the collapse gets underway,
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the free-fall time is so much shorter than the diffusion time that the magnetic field is effec-
tively dragged in with the gas (e.g., Galli & Shu 1993a,b). It is implausible that ambipolar
diffusion continues until the magnetic flux is three or four orders of magnitude below values
that would permit collapse (Mouschovias 1991). Other processes which occur after collapse
must be responsible for the low magnetic fields of T Tauri stars.

One possibility is that the magnetic field decouples from the infalling material because
of the decrease in ionization fraction at high densities; calculations suggest this may occur
in the very innermost regions of the collapsing cloud, where densities are ∼1010–1012 cm3

(Umebeyashi & Nakano 1990). In addition, magnetic reconnection may play an important or
even dominant role in reducing the magnetic flux which remains in pre-main-sequence stars.
If most of the mass of stars is accumulated by accretion from a circumstellar disk, as seems
very likely (Chapter 4), the bulk of magnetic field loss could occur through reconnection and
diffusion in the disk. However, the details of this evolution in magnetic flux passing through
the disk are very complicated and uncertain (e.g., Shu et al. 2006).

Early theoretical investigations of star formation emphasized the potential role of the mag-
netic field of the molecular cloud in solving the “angular momentum problem” (Ebert et al.
1960; Mestel 1965) by transferring core angular momentum to the external cloud. However,
many observed molecular cloud cores do appear to retain significant angular momentum, in
amounts that are not important in supporting the core against gravity (Goodman et al. 1993),
but are much larger than would permit collapse to stellar dimensions.

Once dynamical collapse begins, the angular momentum should be retained (because the
free-fall time is necessarily comparable to or shorter than the angular momentum transport
time; Shu (1995)). This retention of angular momentum during collapse now does not seem
to be a problem for two reasons: first, the outcome of collapse must in general be a binary
system (at least for stars of solar and larger masses); and second, accretion disks are present
around many young stars. As discussed in Chapters 7–9, observed disks are likely to posess
enough angular momentum to solve much of the angular momentum “problem” for star
formation.
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Protostellar cloud collapse

The developments described in the previous chapter suggest that molecular cloud cores may
evolve into gravitationally unstable configurations, because of the inability of the cloud cores
to heat up as they contract. One may anticipate the general nature of the collapse for a ther-
mally supported spherical molecular cloud core by estimating that the initial infall velocity
should be of the order of the free-fall velocity from the outer cloud radius,

vin ∼
(

G M

R

)1/2

∼ cs ; (4.1)

therefore, the collapse time is of order tin ∼ R/cs and the mass infall rate is

Ṁ ∼ M

tin
∼ c3

s

G
. (4.2)

The collapse can be halted basically for one of two reasons. First, if the gas temperature
increases to the point that the sound speed is comparable to the escape velocity, the thermal
pressure will become large enough to combat gravity. Numerical simulations indicate that
this can occur only on distance scales much smaller than the initial cloud, where the optical
depths become large enough to trap the radiant energy released by infall. It is likely that
in many cases a second reason is more important in stopping collapse, namely the angular
momentum of the infalling material, which causes it to fall out onto a rotating disk, a possible
site for the formation of multiple stars as well as planets.

In this chapter we review some simple physical models for collapsing protostellar clouds.
The predictions of these and similar models are compared with observations of likely
protostars in Chapter 5.

4.1 Free-fall collapse of a uniform cloud
The simplest model one might imagine of a molecular cloud core is that of a

spherical cloud of uniform density. As discussed in Chapter 2, cloud cores can become
gravitationally unstable because the internal pressure forces can no longer balance gravity.
As a limiting case, consider the collapse of a uniform, spherical cloud with no gas pressure
to counteract gravity. The equation of motion of a shell of material which starts at radius r◦ is

d2r

dt2
= −G Mr

r2
= −4πGρ◦r3◦

3 r2
, (4.3)

where ρ◦ is the initial density and Mr is the mass interior to radius r . Here we have taken
advantage of Newton’s result that, for a spherical mass configuration, only the mass inte-
rior to the point in question has any gravitational effect. Multiplying through by dr/dt and
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integrating once with respect to time, and then making the substitution r/r◦ = cos2 β, the
resulting solution is

β + 1

2
sin 2β =

(
8πGρ◦

3

)1/2

t , (4.4)

where t is the time from the beginning of the collapse (when r = r◦).
At a given time t , β is fixed no matter what the original starting radius r◦ was. Therefore,

the shells do not cross, and they all reach the center at the (same) “free-fall” time,

tff =
(

3π

32Gρ◦

)1/2

∼ 3.4 × 107

N 1/2
H2

yr , (4.5)

where NH2 is the number density of molecular hydrogen in a gas of solar composition.
A ∼1 M� cloud core in hydrostatic equilibrium maintained by thermal pressure support

at ∼10 K has a radius of approximately 0.1 pc (Chapter 2). If for some reason the supporting
gas pressure were “turned off”, equation (4.5) implies a free-fall time of ∼5 × 105 yr. Even
with pressure forces retarding the infall, it is clear that the protostellar collapse phase is
likely to be fairly rapid.

The free-fall result also helps provide some insight into the Jeans stability results of
Chapter 2. The pressureless collapse calculation becomes increasingly relevant on the largest
scales, where pressure forces are relatively unimportant. Because the free-fall time scales as
tff ∝ ρ

−1/2◦ , a (pressureless) uniform density sphere collapses with material from all radii
arriving at the center simultaneously. This means that the outermost radii must fall in fastest,
i.e., must have the fastest growth rates, as illustrated by the dispersion relation for the
standard Jeans analysis.

4.2 Similarity solution for collapse
The simple free-fall collapse discussed above is not directly applicable to the gen-

eral problem of protostellar collapse, because pressure forces are likely to be important
initially. Numerical solutions of protostellar cloud collapse have been presented by Larson
(1969a,b), Appenzeller and Tscharnuter (1974), Bodenheimer (1978), Winkler and Newman
(1980a,b), Boss and Black (1982), and others. If considered in its full generality, the prob-
lem is made difficult by the need to treat both the very large scales of the initial cloud and
the very small scales of the resulting stellar core, placing great demands on the accuracy of
numerical solutions (see Tscharnuter 1991). Moreover, the collapse of real clouds must have
many complicating factors which are difficult to incorporate. It is therefore worth developing
simple models which illustrate the basic features of collapse.

As discussed in §2.5, the density distribution in the outer layers of an isothermal sphere
in hydrostatic equilibrium approaches ρ ∝ r−2. This approach to a power-law density distri-
bution suggests that (ignoring the inner regions) one might find a similarity solution for the
collapse. In a similarity solution, non-dimensional functions for properties like the density
and velocity field can be used to describe the motion at any time by some appropriate scal-
ing. The tendency of the numerical calculations to adjust to a (roughly) self-similar structure
led Larson (1969a), Penston (1969), Hunter (1977), and Shu (1977) to develop similarity
solutions for the infall problem. Of course, any similarity solution for protostellar collapse
must fail at early and late times, when the influence of inner and outer boundary conditions
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must be felt; however, the mathematical simplicity of such solutions leads to a basic under-
standing of many essential physical features. We follow Shu’s (1977) elegant development
for the singular isothermal sphere (SIS) to illustrate the basic physics of the problem in a
particularly simple and straightforward way.

Before considering the mathematical details it is useful to outline the qualitative properties
of the collapse solution. If the cloud density initially has the singular form ρ ∝ r−2, then the
mass interior to r is Mr ∝ r . The free-fall time (equation (4.5)) scales as the inverse square
root of the mean density, so one might guess that the mass Mr will fall in to the center
after an elapsed time t (r)≈ tff ∝ < ρ >−1/2 ∝ r . Therefore, the total amount of mass that
has fallen to the center should increase linearly with time, i.e., the mass infall rate should
be constant. The inner regions should collapse first because they have the shortest free-fall
times (highest densities), while the outer parts of the cloud take longer to fall in. Since the
mass that has already fallen in increases linearly with time, and the cloud mass increases
linearly with the radius r , this “inside-out” collapse results in a free-fall zone within the
original cloud whose radial extent expands linearly with time.

Now consider the detailed similarity solution. The usual equation of mass conservation in
spherical symmetry,

∂ρ

∂t
+ 1

r2

∂

∂r
r2ρu = 0 , (4.6)

where u is the radial velocity, can be transformed into an alternative form in terms of Mr ,

∂ Mr

∂t
+ u

∂ Mr

∂r
= 0 ,

∂ Mr

∂r
= 4πr2ρ . (4.7)

The momentum equation for isothermal flow is

∂u

∂t
+ u

∂u

∂r
= −c2

s

ρ

∂ρ

∂r
− G Mr

r2
. (4.8)

The similarity solution assumes that the outer and inner boundary conditions are unimpor-
tant, and so the only dimensional quantities in the problem are G, cs, r, and t . Dimensional
analysis gives the similarity variable x = r/cst . Then one looks for solutions of the form

ρ(r, t) = α(x)

4πGt2
, Mr (r, t) = c3

s t

G
m(x) , u(r, t) = csv(x) , (4.9)

where α, m, and v are non-dimensional functions of the coordinate x , and the solution is
subject to the boundary condition that at t = 0 the mass of the core Mr (0, t) = 0.

The equations of motion can be written in terms of the similarity variable x through
suitable transformations. For the radial coordinate, the transformation is

∂

∂r
= 1

cst

∂

∂x
. (4.10)

The partial time derivative for the similarity solution is to be taken at a constant x , which is
moving with respect to the Eulerian coordinate system r . Thus, the required transformation is

∂

∂tr
= ∂

∂tx
− x

t

∂

∂x
. (4.11)

Using these relations, equations (4.7) can be written as the ordinary differential equations

m − (x − v)
dm

dx
= 0 ,

dm

dx
= x2α , (4.12)
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or

m = x2α(x − v) . (4.13)

Equations (4.7) and (4.8) can be transformed into two coupled first-order differential
equations,

[(x − v)2 − 1] 1

α

dα

dx
= (x − v)

[
α − 2(x − v)

x

]
, (4.14)

[(x − v)2 − 1] dv

dx
= (x − v)

[
α(x − v) − 2

x

]
. (4.15)

An extended description of the properties of these equations is given in Shu (1977). Here
we present a limited discussion, focussing on the collapse problem. One exact analytic
solution of these equations is given by

v = 0, α = 2

x2
, m = 2x . (4.16)

This corresponds to the singular isothermal sphere, which is static but unstable. If the veloc-
ities are initially small, i.e., if v → 0 as x → ∞, the asymptotic behavior of equations
(4.13)–(4.15) is

α ∼ A

x2
, v ∼ − (A − 2)

x
, m ∼ Ax as x → ∞ . (4.17)

Here A is a constant which must be >2 for v to be negative, as required for infall. This
asymptotic solution has the same power-law form for the density as the singular isothermal
sphere, but if A > 2 there is no balance between gravity and pressure forces and so collapse
begins everywhere.

One solution of particular interest is A = 2 + ε, ε � 1, so that the cloud is nearly
in hydrostatic equilibrium for x ≥ 1. A numerical solution for A = 2.0005 is shown in
Figure 4.1, which was obtained by integrating the two equations (4.14) and (4.15) simul-
taneously inward. By taking A > 2, the outer envelope is not precisely in hydrostatic
equilibrium, but the velocities for x > 1 are so small as to be negligible. As ε → 0 the
external velocities become arbitrarily small, but then a singularity near x = 1 must be
considered (see p. 64).

The principal properties of this solution can be outlined as follows. At small distances,
expansion of the equations shows that

m → m◦, α →
( m◦

2x3

)1/2
, v → −

(
2m◦

x

)1/2

as x → 0 . (4.18)

For ε → 0 the core mass is m◦ = 0.975. Since the total mass contained in the region x ≤ 1
is m(1) = 2 (equation (4.16)), about 49% of the mass is in the core, while the rest is still
falling in. From the scaling of equation (4.9), the central mass is

Mr (0, t) = 0.975
c3

s t

G
, (4.19)

and so the limiting mass infall rate is constant,

Ṁ = 0.975
c3

s

G
. (4.20)
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Fig. 4.1. Similarity solution for the collapse of the singular isothermal sphere, adopting the
constant A = 2.0005 (see text). The left-hand panel exhibits the non-dimensional velocity,
while the right-hand panel exhibits the non-dimensional density α. The dashed lines corre-
spond to the case of free-fall (pressureless) collapse at a constant rate onto a core containing
all the mass.

Equations (4.18) show that in the innermost regions, the self-gravity of the envelope is negli-
gible in comparison with the gravitational field of the central mass. Because the gas pressure
is also relatively unimportant in impeding the (supersonic) collapse at small radii, the infall
velocity approaches the free-fall velocity vff ≈ (2G M/r)1/2 (indicated as a dashed line in
the left-hand panel of Figure 4.1). The density of the infalling material approaches

ρi ≈ Ṁ

4πr2vff
= c3

s

4πr2Gvff
, (4.21)

and so ρi ∝ r−3/2 (dashed line in the right-hand panel of Figure 4.1) because the mass infall
rate is constant.

These equations have a critical point at x − v = 1. In the present case, the limiting
solution approaches a critical point x ∼1. Discussions of the significance of critical points
can be found in Shu (1977) and Hunter (1977). In general, the presence of critical points
depends upon the specific initial conditions adopted.

This simple similarity solution can be exploited to understand the time dependence of the
infall. The variable x is transformed to physical radial distance r by r = cst x . Therefore, at
time t , the position x = 1, which corresponds to the boundary between the hydrostatic and
infall regions (Figure 4.1), lies at r = cst (Figure 4.2). The mass initially contained within
this radius r is Mr = 2c3

s t/G; of this amount, m◦c3
s t/G has already fallen into the center,

and the rest is in the infall region. The physical interpretation of this behavior is as follows:
the collapse begins first in the inner regions, because they are densest and therefore have the
shortest free-fall times. As the material in the inner region falls in, the pressure support of
the overlying layers is removed, allowing these to fall in as well. Because of exact spherical
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r = cst

M ∝ r

Fig. 4.2. Schematic diagram of purely spherical, “inside-out” similarity collapse. If the
initial cloud is centrally condensed, the innermost regions collapse first because they are
densest and have the shortest free-fall times. The outermost regions remain nearly unchanged
because they cannot respond on short timescales, and because the spherical collapse of mass
to a central point does not affect the gravitational force on large scales. As collapse proceeds,
a region of radius r = cst becomes evacuated as the material originally in this region falls
onto the central mass.

symmetry, the gravitational field seen by the external material is unaffected by the collapse
of inner regions. Thus, the information that inner layers have fallen in is communicated to
the outer layers only by a rarefaction wave, which moves outward at the sound speed cs. The
amount of mass per unit time that loses its pressure support and begins to fall is constant,
because the rarefaction wave radius is r = cst and the isothermal sphere mass grows linearly
with r (Figure 4.2).

As a specific example, we follow Shu (1977) in envisaging a cloud core of pure molecular
hydrogen at 10 K bounded by an external pressure of 1.1 × 105 cm−3 K, which implies an
initial mass 0.96 M� and r = 1.6×1017 cm. For a sound speed of 0.2 km s−1, the expansion
wave takes 2.5 × 105 yr to reach the outer boundary of the cloud, at which point 49% of the
total mass has fallen in. Beyond this point in time, the similarity solution is clearly not
applicable because of the effects of the boundary. In particular, one expects a compression
wave to form at the outer boundary and steepen into a shock as it propagates into the interior,
so the details of the infall will change from the similarity solution.

4.3 Generalized models of protostellar collapse
While the SIS similarity solution presented by Shu (1977) provides a particularly

clear and elegant way of conceptualizing the basic physics of the gravitational collapse,
the hydrostatic singular isothermal sphere does not represent a realizable state because it is
intrinsically unstable (e.g., Whitworth et al. 1996). Moreover, similarity solutions must fail
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Fig. 4.3. Velocities (left) and densities (right) in the collapse of the critical isothermal sphere
as a function of radius at four early times. The velocity v is measured in units of the isother-
mal sound speed. The density is D = ρ/ρc and ξ = r/(c2

s /4πGρc)
1/2 (§3.3). The collapse

begins at large radii and eventually forms a central core, with an infall velocity approaching
that predicted by the Larson–Penston similarity solution (horizontal line). From Foster and
Chevalier (1993).

at early and late times when the boundary conditions are important. The resulting collapse
can differ from the SIS solution in interesting ways.

The collapse of isothermal Bonnor–Ebert spheres, with flattened inner density distribu-
tions, cannot be represented by similarity solutions. Foster and Chevalier (1993) followed
the gravitational collapse of isothermal spheres numerically and showed some of the qualita-
tive differences that arise from non-self-similar structure. As shown in Figure 4.3, collapse of
the critical Bonnor–Ebert sphere (§3.3) begins on the outside; the contraction is not inside-
out. The initial collapse of material to the center exhibits a velocity structure which more
nearly resembles the Larson–Penston similarity solution. Finally, the mass infall rate as a
function of time is not constant, as shown in Figure 4.4; at the moment of central core for-
mation, the infall rate is very high, and decreases as the collapse proceeds, falling to near
zero in a time ∼(2/3)(Rcrit/cs).

The qualitative differences between this solution and the SIS similarity solution can be
understood using developments in the previous two chapters. The Jeans instability (§2.5) is
stronger on large scales, where pressure support becomes less important; this explains why
the infall starts at large radii. The Larson–Penston (Larson 1969a,b; Penston 1969) similarity
solutions were developed for the collapse of a uniform density sphere; because the critical
Bonnor–Ebert sphere has a nearly constant density in its inner regions, the Larson–Penston
solution is more appropriate for the infall velocity in the early stages after core formation.
The free-fall collapse of the constant density sphere results in all shells reaching the origin at
the same time, formally corresponding to an infinite infall rate over an infinitely short time;
this is why the Bonnor–Ebert sphere, with its flat inner density distribution, has a higher
initial infall rate than the SIS similarity solution (see discussion in Henriksen et al. 1997).

Foster and Chevalier (1993) showed that the evolution of spheres with higher central
concentration (ξmax >∼ 20; see §3.3) is closer to that of the SIS similarity solution, as would
be expected. However, such highly concentrated objects are highly unstable to perturbations,
and observations of real pre-stellar cores suggest that their inner density distributions are
much flatter than the SIS model.
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Fig. 4.4. Left: Mass infall rates ṁ = Dvξ2 as a function of time for the collapse of the
critical isothermal sphere, measured at three radii: ξ = 0.3 (solid line), ξ = 1.0 (dotted
line), and ξ = 3 (dashed line). The non-dimensional time is τ = t (4πGρc)

1/2. The infall
rates are much higher than that predicted by the SIS similarity solution (horizontal line) at
early times; they fall below the SIS solution at late times. From Foster and Chevalier (1993).
Right: Infall rates for the collapse of the isothermal sheet. Once core formation occurs, the
behavior of mass infall rate vs. time is very similar to that of the critical isothermal sphere.
From Hartmann et al. (1994b).

The effects of magnetic fields may also be important. Galli and Shu (1993a,b) found little
difference in mass infall rates for modest magnetic support. The qualitatively different fea-
ture of the Galli and Shu model is the development of what they called a “pseudodisk” in
the equatorial plane. The pseudodisk arises because the magnetic field threading the spheri-
cal outer cloud tends to deflect infalling material away from the radial direction. Assuming
axisymmetry, the deflected material from one hemisphere shocks with material coming in the
opposite direction from the other hemisphere, resulting in a pile-up of material in the equa-
torial plane some distance from the central mass. Since this pseudodisk is not rotationally
supported (see §4.6), it must fall in toward the star. Decoupling of the interstellar magnetic
field from the inner infalling envelope might cause a “pile-up” of magnetic flux, which could
also have important dynamical effects (Li & McKee 1996; see also Shu et al. 2007).

As discussed in Chapter 2, if gravitational fragmentation makes cloud cores, the initial
conditions for cloud collapse will differ from both the singular isothermal sphere and the
Bonnor–Ebert sphere. One situation which might be envisioned is fragmentation from a
non-rotating isothermal sheet initially in hydrostatic equilibrium (Hartmann et al. 1994b),
which might be taken as one of the simplest cases of the non-spherical initial cloud structure
observed in nature, and which may be essential in the fragmentation of gas into multiple
systems (Bonnell et al. 1991; Boss 1993; Nelson & Papaloizou 1993) (although a cylindrical
initial condition would probably be more appropriate).

As shown in the right-hand side of Figure 4.4, a finite isothermal sheet initially in hydro-
static equilibrium, with just slightly larger than one Jeans mass, eventually collapses in a
manner very similar to that of the critical Bonnor–Ebert sphere. The central mass infall
rate in this simulation is never constant, but exhibits a “plateau” phase with an infall rate
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approximately three times that predicted by the Shu (1977) similarity solution for the singu-
lar isothermal sphere. In fact, a comparison with the critical isothermal sphere results shows
a very similar pattern of mass infall rate with time; apparently the details of the geometry
are not that crucial. It can be shown from dimensional arguments that the mass infall rate for
this simulation scales as c3

s , just as in the Shu similarity solution (Hartmann et al. 1996). In
general, model cores with flat inner density distributions exhibit initial peaks in infall rates,
followed by a slower phase of mass accumulation (e.g., Henriksen et al. 1997).

To summarize, collapse models which include additional effects – stable initial equi-
librium conditions, magnetic fields, non-spherical initial structure – exhibit many general
features in common with the Shu (1977) similarity solution for the singular isothermal
sphere; however, there are significant differences in the mass infall rate, which varies sub-
stantially as a function of time. The principal qualitative differences produced by magnetic
forces and non-spherical initial structure are in the geometry of the collapse; magnetic
forces may produce a large-scale collapsing pseudodisk, while initial flattening of the parent
cloud core produces relatively evacuated cavities in the infalling envelope, increasing the
observability of protostars at short wavelengths (Chapter 5).

4.4 Rotating collapse
As discussed in §2.7, if collapse occurs on a dynamical timescale, it is unlikely

that the angular momentum remaining in the cloud core at the start of rapid collapse can be
transferred efficiently to the external medium. The large size of the initial cloud core implies
that even modest initial rotational velocities will cause the infalling material to land first on
a rotationally supported disk rather than a pressure-supported star. In general, the disk may
be sufficiently massive to break up or fragment into stars (Yorke et al. 1993; Bonnell & Bate
1994; Laughlin & Bodenheimer 1994; see review in Boss 1995). Here we concentrate on
the simpler case where the disk mass does not affect the infall pattern. The simplest analysis
of rotating collapse assumes that pressure forces are negligible and so the problem can be
analyzed using ballistic trajectories. The results for the case of the collapse of a spherically
symmetric cloud in uniform (solid-body) rotation were initially worked out by Ulrich (1976),
with subsequent extension by Cassen and Moosman (1981) to disk formation and by Terebey
et al. (1984; hereafter TSC) to the collapsing singular isothermal sphere.

Before developing the mathematical solution it is again worth making an initial estimate
of its overall properties. For simplicity assume a fixed central mass of M . If material with
specific angular momentum h falls in and ends up in a circular orbit while maintaining its
angular momentum, then the radius R of the circular orbit is

R = h2

G M
. (4.22)

In the similarity solution for “inside-out” collapse, all the material which arrives at the center
at a given instant of time started from the same initial cloud radius ro. If the protostellar
cloud core is initially in uniform rotation, with angular velocity �, then the specific angular
momentum at ro varies with the angle θ from the rotation axis as h = �r2

o sin θ . Thus,
material falling in from different directions will have different angular momenta and arrive at
the midplane (the plane perpendicular to the rotation axis) at differing radii. Material near the
rotation axis will fall in close to the central star because it has low angular momentum, while
mass falling in from regions near θ ∼ π/2 will fall in to a maximum “centrifugal radius”
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rc = r4
o

�2

G M
. (4.23)

This material arriving at θ ∼ π/2 from “above” will collide with material arriving at the
same position from “below”; this infall produces a flat structure with rotation, i.e., a disk
(see § 4.6).

Now we proceed to the detailed solution. For simplicity we assume that essentially all
of the mass is contained in the center, that the gas falls in from a very large distance with
essentially zero total energy, so that the motion is approximately parabolic. This free-fall
approximation neglects pressure forces and the mass of the inner envelope, which can be
justified from the inner limits of the similarity solution (4.18).

For two-body parabolic motion around a central gravitating mass, the equation of the
particle orbit in its own plane is

r = h2/G M

1 − cos α
, (4.24)

where α is the direction angle of the particle measured from the origin to apastron, and h
is specific angular momentum. We define θ◦ as the angle between the orbital plane and the
rotation axis of the system (see Figure 4.5).

The transformations to convert from (r, α) in the orbital plane to (r, θ, φ) are

cos θ = cos θ◦ cos α (4.25)

and

tan φ = tan α

sin θ◦
. (4.26)

From the standard solution for the two-body problem,

u ≡ 1

r
= G M

h2
(1 − cos α) , (4.27)

α̇ = hu2 , (4.28)

α

θ

θο

Ω

Fig. 4.5. Geometry of rotating collapse solution (see text).
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ṙ = − u̇

u2
= − du

dα

α̇

u2
= −G M

h
sin α , (4.29)

so that

h = [G Mr (1 − cos α)]1/2 . (4.30)

The radial velocity is

vr = ṙ = −
(

G M

r

)1/2 (
1 + cos θ

cos θ◦

)1/2

. (4.31)

The meridional velocity is given by

vθ = r θ̇ = r
dθ

dα
α̇ = h

r

dθ

dα
, (4.32)

which can be rearranged to the form

vθ =
(

G M

r

)1/2

(cos θ◦ − cos θ)

(
cos θ◦ + cos θ

cos θ◦ sin2 θ

)1/2

. (4.33)

Finally, the azimuthal velocity is

vφ = r sin θφ̇ = r sin θ

(
dφ

dα

)
α̇ = h

r
sin θ

dφ

dα
, (4.34)

which after some manipulation can be written as

vφ =
(

G M

r

)1/2 (
1 − cos θ

cos θ◦

)1/2 sin θ◦
sin θ

. (4.35)

It is straightforward to verify that v2 = v2
r + v2

θ + v2
φ = 2G M/r .

The quantity h is the specific angular momentum measured around the axis perpendicular
to the orbital plane. It is convenient to introduce the specific angular momentum of the
particle relative to the overall cloud rotation axis,

Hl = h sin θ◦ . (4.36)

Then the trajectory of the particle is given by

r = H2
l

sin2 θ◦
1

G M(1 − cos α)
= H2

l

sin2 θ◦
1

G M(1 − cos θ/ cos θ◦)
. (4.37)

The particle lands on the (thin) disk at θ = π/2, at a radial distance

r(π/2) = H2
l

sin2 θ◦ G M
. (4.38)

For the ballistic solution to be valid, one requires that the streamlines of particles with dif-
ferent θ◦ do not intersect; otherwise, shocks would result. It is clear from equation (4.38)
that H2/ sin2 θ◦ must be a monotonically increasing function over 0 ≤ θ◦ ≤ π/2 to avoid
such intersections.

One simple rotation law which satisfies this condition is

H2
l = r4◦�2◦ sin4 θ◦ , (4.39)
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Fig. 4.6. Streamlines for the rotating collapse solution described in the text. Distance scales
for the polar axis z and the cylindrical radius R are given in units of the centrifugal radius
rc. The streamlines shown are in steps of 0.1 in cos θ◦, with the lowest streamline for
cos θ◦ = 0.9. Since equal intervals in cos θ◦ correspond to equal intervals of mass in the
outer cloud, the tendency of the material to pile up at the outer edge of the initial disk
(R ∼ rc) is evident.

which corresponds to uniform rotation of a sphere of radius r◦ at an angular velocity �◦.
Defining rc = r4◦�2◦/G M , the particle trajectories in the meridional plane can be written as

r

rc
= sin2 θ◦

1 − cos θ/ cos θ◦
. (4.40)

Figure 4.6 shows the streamlines of particles in the meridional plane, which are labeled
by θ◦. With the assumption of solid-body rotation, particles falling near the rotational axis
have little angular momentum, and thus fall nearly radially. Particles with larger θ◦ have
larger angular momentum and thus fall to the disk at larger radii. All of the streamlines
intersect the disk plane interior to rc.

The density can be evaluated by assuming that the mass infall rate is steady. If r◦ >> rc,
cos θ≈ cos θ◦ (equation (4.40)) and the flow is radial. Assuming that the cloud at r◦ is nearly
spherical, the mass flow in a flow tube spanned by dθ◦ is

dṀ = 2πr2 sin θ◦ dθ◦ Ṁ

4πr2
= 1

2
sin θ◦ dθ◦ Ṁ . (4.41)

The density at r, θ can be found by following the streamlines corresponding to θ◦ and
θ◦ + dθ ,

ρ = dṀ

2πr2 sin θ dθ |vr | = 1

2πr2 sin θ |vr |
(

dṀ

dθ◦

) (
dθ◦
dθ

)
. (4.42)
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Fig. 4.7. Contours of constant density for the rotating collapse solution. Distance scales
for the polar axis z and the cylindrical radius R are given in units of the centrifugal radius
rc. Each contour represents a factor of 21/2 difference in density, with the outer contours
representing the lowest densities. The flattening of the density distribution near the disk is
evident.

Using equations (4.31) and (4.40), this becomes

ρ = Ṁ

4π(G Mr3)1/2

(
1 + cos θ

cos θ◦

)−1/2
(

cos θ

cos θ◦
+ 2 cos2 θ◦

r/rc

)−1

. (4.43)

In Figure 4.7 we show contours of constant density in a meridional plane for this infall
solution. The density is nearly spherically symmetric at large distances, where the effects
of rotation are small. At distances <∼rc, the density distribution becomes quite flattened,
as material falls non-radially onto the disk. This behavior can be seen directly from
equation (4.43) in its limits. For r � rc, θ → θ◦, and

ρ ∼ Ṁ

4π(2G M)1/2
r−3/2 , (4.44)

which is precisely the density distribution for free-fall at a constant mass infall rate toward
a point mass M . For r � rc, the streamlines are nearly vertical and so cos θ◦≈1; therefore,

ρ ∼ Ṁ

8πrc(G M)1/2 (1 + cos θ)−1/2 r−1/2 . (4.45)

This limit of equation (4.43) illustrates an important effect of rotation on the infall density
distribution; inside rc, the density increases less rapidly with decreasing radius than the
ρ ∝ r−3/2 expected for spherically symmetric collapse. To emphasize the point, we consider
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Fig. 4.8. The spherically averaged density distribution of the rotating collapse solution as
a function of radial distance in units of the centrifugal radius rc. The dashed lines denote
pure power-law distributions of r−1/2 and r−3/2 for comparison. The density distribution
follows the spherical free-fall result outside of rc, but departs at smaller radii as material falls
onto the disk.

the spherical average of the density distribution, i.e., the average density at a given radius r ,
which can be written as (Adams & Shu 1986)

< ρ(r) >=
∫ π/2

0
ρ(r, θ) sin θdθ = Cr−3/2 A

(
r

rc

)
, (4.46)

where

A(u) = (2u)1/2 ln

[
1 + (2u)1/2

(1 − u)1/2 + u1/2

]
, u ≤ 1 ; (4.47)

A(u) = (2u)1/2 ln

[
1 + (2u)1/2

(2u − 1)1/2

]
, u ≥ 1 , (4.48)

with u = r/rc and C = Ṁ/[(4π(2G M)1/2)].
Figure 4.8 shows this angle-averaged density distribution. There is a break at r ∼ rc

between the ρ ∝ r−1/2 and the ρ ∝ r−3/2 regimes, because the angular momentum of the
infalling material causes it to fall onto a disk at θ = π/2, r ≤ rc, and material “disap-
pears” from the infall solution. In effect, the mass infall rate across any sphere of radius
r < rc decreases with decreasing radius because of the deposition of material into the disk.
This behavior has an important effect on the observable emission from infalling protostellar
envelopes.

4.5 Time evolution of rotating collapse
In an important and influential paper, TSC used a perturbative analysis to include

the effects of rotation (§4.4) as a small perturbation to the dynamics of the initial singular
isothermal sphere (§4.2). The TSC solution can be used to follow the evolution of the col-
lapse during the period when the approximation of self-similarity is valid. While the details
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of the mathematics are complicated, the basic evolution can be understood qualitatively as
follows. The protostellar cloud initially approximates a singular isothermal sphere in struc-
ture. The cloud has a small uniform rotation at large scales at angular frequency �◦, so
that departures from spherical symmetry on large scales are small. Collapse can proceed
along the lines of the similarity solution presented in §4.2 on large scales; at small radii,
rotation becomes important, and the results of §4.4 may be used. At any instant of time,
equation (4.43) or its angle-averaged form (4.46) may be used to estimate the density dis-
tribution interior in the collapsing region. The estimate (4.44) for large scales is not exact,
because it has been derived for the case where all of the mass is in the central star, whereas
the mass in the infalling envelope is generally not negligible (cf. §4.2). Nevertheless, since
most of the protostellar emission is concentrated toward the central regions (Chapter 5),
equation (4.43) provides a reasonable approximation to the more detailed TSC result.

In the similarity solution the central mass varies with the elapsed time after the beginning
of collapse as M = m◦c3

s t/G (4.19), where m◦ = 0.975. This mass was contained within a
radius r◦ = (m◦/2) cst in the original singular isothermal sphere configuration. The specific
angular momentum of the material relative to the axis of symmetry at this radius was

H2 = r4◦�2◦ sin4 θ◦ = m4◦c4
s t4�2◦ sin4 θ◦

16
. (4.49)

This is the angular momentum of the material that is arriving at (near) the origin at the
present time t . The material along the streamline θ◦ = π/2 lands at the largest disk radius,
given by

rc(t) = m4◦
16

c4
s t4�2◦
G M

= m3◦
16

cst
3�2◦ . (4.50)

Thus, the centrifugal radius increases rapidly with time, rc ∝ t3. Initially most of the mass
falls close to the center, because the material that falls in first has small angular momen-
tum. As collapse proceeds, and material from larger radii is added to the central core, rc

increases rapidly with time, and material is added to the disk rather than to a central star (see
Figure 4.6).

4.6 Disk formation
In the simple infall model discussed above, where the initial cloud is spherically

symmetric and exhibits axisymmetric rotation, the infall solution has complete symmetry
above and below the equatorial plane θ = π/2. With this assumption, the momentum fluxes
of infalling material on either side of the disk (equatorial) plane perpendicular to the disk
are equal in magnitude and opposite in direction. The result is that the infalling gas must
pass through a shock at the equator, which dissipates the kinetic energy of motion per-
pendicular to the equatorial plane. If the shocked gas cools rapidly, as expected for many
plausible (though not necessarily all) conditions (Neufeld & Hollenbach 1994), the result is
that material accumulates in a thin structure in the equatorial plane, i.e., a disk.

After the energy dissipation in the shock removes most of the velocity component normal
to the disk plane, the shocked gas initially retains its velocity parallel to the disk plane. In
general, this parallel velocity is not consistent with circular motion at the radius of entry
into the disk. The result is that the shocked material must mix with existing material; further
dissipation of energy and angular momentum transport must occur before ending up with a
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disk in circular rotation (Yorke et al. 1993; Cantó et al. 1995). If the initial magnetic field
structure of the cloud produces a “pseudodisk” (§4.3), there will be additional material near
the equatorial plane falling in from larger radii. Thus, the point at which envelope material
enters the disk cannot represent its final orbital radius (Cassen & Moosman 1981).

It is instructive to use the TSC model to explore some qualitative and semi-quantitative
aspects of disk formation. We can evaluate the centrifugal radius as a function of the mass
in the central object by combining equations (4.50) and (4.19), with the result

rc(M) = G3�2◦
c8

s
M3 . (4.51)

From this equation one can infer that the surface density of the disk will initially have a
dependence � ∝ Mr−2 ∝ r−5/3 (which may then be modified quickly depending upon the
rate of angular momentum transfer within the disk; Cassen & Moosman 1981).

Numerically,

rc(M) ∼ 9 AU T −4
10 �2−15

(
M

M�

)3

, (4.52)

where T10 is the gas temperature in units of 10 K (we also assume a mean molecular weight
of 2.3 for molecular hydrogen plus helium) and �−15 is measured in units of 10−15 rad s−1.
The fiducial value of �◦ chosen here is quite small, corresponding to a velocity gradient of
∼0.03 km s−1 pc−1, which is smaller than that typically seen at the outer edge of rotating
cores (e.g., Ward-Thompson et al. 2007). From this result one sees that very low-mass stars
might have very small or even negligible initial disks, but that it would be very difficult for
massive stars not to collapse most of their mass into disks initially, unless the initial core
temperature was extremely high (or the magnetic/turbulent support was extremely high).
Also note that these equations represent the centrifugal radius at the time the expansion wave
hits the outer disk radius; at this point only a little less than half the cloud mass has been
accrete, and so the eventual object will be twice as massive and have an outer centrifugal
radius about eight times as large. In other words, these results provide essentially the initial
half-mass radius of the disk. (The details are not precise for the collapse of all the cloud
because the similarity solution is not really applicable at late times.)

Another useful way of looking at this result is to place it in terms of how fast the cloud
originally rotates relative to the breakup velocity at its outer equatorial radius R,

�2
K = G M

R3
. (4.53)

Here we use the fact that the mass interior to radius r of the SIS solution is (e.g.,
equation (4.16)),

M(r) = 2c2
s

G
r . (4.54)

Substituting these two relations into equation (4.23), we have

rc(M) = 8G M

c2
s

(
�◦
�K

)2

= 16R

(
�◦
�K

)2

. (4.55)

Thus, unless the initial cloud rotation is <∼10−3 of breakup, the initial disk radius will be
much larger than typical stellar radii.
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The point here is simple; because stars are so much smaller than molecular cloud cores, it
is impossible to avoid having most of the cloud mass fall onto a disk unless angular momen-
tum can be transferred faster than the material falls in, or has an extremely small initial
rotation. The former is very difficult to achieve if clouds must be magnetically supercritical
to collapse, because this essentially means that the Alfven speed is smaller than the infall
speed; this in turn means that magnetic waves cannot escape easily from the collapse to
connect to the ambient medium, which is needed for spindown (e.g., Ebert et al. 1960). The
latter is inconsistent with observations of cloud core velocity gradients. Thus, disk formation
is nearly inevitable, at least for most systems. This also implies that stars accrete most of
their mass through disks; thus disk evolution is an essential part of star formation.

Ultimately disk material will be redistributed by the processes of angular momentum
transport and energy loss which drive disk accretion. The rapidity with which initial con-
ditions are altered depends upon the rate of angular momentum transfer (e.g., Cassen &
Moosman 1981), which may be sufficiently fast to eliminate “memory” of the initial state of
the disk on relatively short timescales (Chapter 7).

4.7 Massive protostars
The developments in the previous sections must be modified to consider the forma-

tion of the most massive stars. Luminous, hot protostars can exert strong outward forces on
their environments through the ram pressures of their fast winds, the thermal pressure of any
ionized gas (H II region) produced by their photoionizing fluxes, and the pressure of their
stellar photospheric radiation on the surrounding dust grains (which are closely coupled to
the gas for typical conditions). Radiation pressure appears to be the most important of these
effects, and has been suggested to set the maximum masses of stars (Larson & Starrfield
1971; Kahn 1974).

As discussed by Wolfire and Cassinelli (1986, 1987a,b), the dust in a collapsing envelope
around a luminous protostar will become so hot that it evaporates at some radius; the gas
can then proceed inward to accrete onto the central star (Figure 4.9). Now, dusty protostellar
envelopes are extremely opaque at the ultraviolet wavelengths at which most of the energy
of hot massive stars is emitted; thus the radiation from a massive protostar is first absorbed
within a thin shell at the inner edge of the envelope (Figure 4.9). The absorbed energy is
then reradiated by this inner shell of dust. This dust has lower temperatures than that char-
acteristic of the central star, and thus it reradiates the energy at longer wavelengths, which
can travel larger distances outward through the envelope before being absorbed, because the
dust opacity is lower at longer wavelengths. Even so, the radiant energy of the central proto-
star is usually absorbed and reradiated several times before ultimately escaping. We defer a
more detailed discussion of the transfer of radiation in protostellar envelopes to the follow-
ing chapter; here we focus on conditions near the inner edge of the dusty infalling envelope,
which addresses the essential physics of the problem.

For simplicity assume spherical infall, and further assume that the grains are spherical and
absorb and emit as blackbodies, and that they all have the same sublimation (or evaporation)
temperature, Tsub. Then the radius rs of the inner edge of the dusty envelope is set by the
condition (e.g., Wolfire & Cassinelli 1987)

L∗
4πr2

s
πa2 = 4πa2σ T 4

sub , (4.56)



4.7 Massive protostars 77

Fig. 4.9. Schematic illustration of a protostellar envelope surrounding a hot star. The dust
in the envelope is vaporized inside a certain radius (clear or white region), rendering
the infalling matter essentially transparent to the effects of radiation pressure. Most of the
(ultraviolet) luminosity of the star is absorbed in a thin layer near the inner edge of the
dust envelope (darker region). The dust in this innermost layer reradiates the absorbed
energy at longer wavelengths (dashed arrows), some or all of which may be absorbed in the
outer layers of the infalling envelope (light gray region), and then reemitted at even longer
wavelengths.

where L∗ is the stellar luminosity and a is the grain radius. Rearranging,

rs = 1

4π

(
L∗

σ T 4
sub

)1/2

. (4.57)

For a 60 M� star with luminosity typical of its main sequence value, L ∼ 106 L�, and
assuming a sublimation temperature of ∼1500 K, the sublimation radius is rs ∼ 3×1014 cm,
or about 20 AU; this is much larger than the expected radius of the protostar, <∼0.1 AU.

Next, consider the magnitude of the dust opacity. Figure 4.10 shows the standard opacity
of dust in the diffuse interstellar medium, in units of area per mass, cm2 g−1. We adopt this
opacity law as representative, although there is evidence for departures in dense regions,
particularly in the ultraviolet region (e.g., Mathis 1990). This figure shows that only a very
small mass is required to absorb the (ultraviolet-dominated) radiation from a hot star. There-
fore, we can expect essentially all of the direct protostellar radiation will be absorbed within
a thin shell just exterior to the dust sublimation radius.

The entire momentum flux L/c of the stellar radiation field is thus absorbed in this thin
shell. The amount of mass in the shell is negligible, so gravitational acceleration is not suf-
ficient to overcome the outward radiative force. The shell will expand outward, and infall to
the protostar will be prevented, unless the ram pressure of the infalling material (schemati-
cally exerted on the outside of this shell) exceeds the radiative force. If the infall velocity at
rs is u, and using the equation of mass conservation Ṁ = 4πr2

s ρu, the requirement that the
infall ram pressure overcomes radiation pressure becomes (Wolfire & Cassinelli 1987b)
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Fig. 4.10. Dust opacity for typical interstellar material, given per gram as a function of
wavelength. From Draine and Lee (1984).

L∗
4πr2

s c
< ρu2 ∼ Ṁ

4πr2

(
2G M∗

rs

)1/2

, (4.58)

where we have estimated the infall velocity u as the free-fall velocity, which ignores any
slowing of the external envelope due to the transfer of radiation through it. Rewriting this,
we have

Ṁ >
L∗

c(2G M∗/rs)1/2
. (4.59)

For the 60 M�, 106 L� protostar, the mass infall rate must exceed Ṁ > 3 × 10−4 M� yr−1

if the protostar is to continue to accrete mass. This infall rate is very much larger than
those predicted by the SIS model; for typical starless cloud core temperatures 10–25 K,
c3

s /G ∼ 2 × 10−6–10−5 M� yr−1. Indeed, rapid mass infall is observationally required to
form high-mass stars before they leave the main sequence; indeed, high-mass stars seem to
be formed on timescales similar to that of the low-mass stars surrounding them, typically
1–2 Myr (§2.2).

As discussed in §4.3, much higher infall rates can be achieved during the collapse of non-
SIS models such as the Bonnor–Ebert sphere; but these very high infall rates occur mostly in
the earliest phases, long before most of the cloud mass has collapsed. The initial “Bonnor–
Ebert” cloud mass would have to be much larger than the (final) stellar mass to achieve
the required high infall rates. A much more plausible solution to this problem is to assume
that the mass of the initial protostellar cloud was much larger than a single Jeans mass. With
thermal pressure forces much weaker than gravity, the situation asymptotically resembles the
pressureless free-fall collapse (§4.1), for which the entire cloud collapses to (small scales)
essentially at the same time, rather than flowing in uniformly as in the singular isothermal
sphere collapse. Very rapid collapse from a non-equilibrium cloud core also helps explain
how massive stars can form on roughly the same timescales as low-mass stars – and, for the
most massive stars, form before they leave the main sequence.
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Returning to the issue of force balance, Kahn (1974) and Wolfire and Cassinelli (1987b)
showed that the momentum balance at the inner edge of the envelope is a necessary, but not
sufficient, condition to allow collapsing protostellar envelopes of massive central stars; the
radiative force throughout the infalling envelope must also be taken into account. Neglecting
thermal pressure forces, and assuming spherical symmetry, the equation of motion can be
written as

v
dv

dr
= −G M

r2
+ κF L

4πcr2
, (4.60)

where M is the mass interior to r , L is the luminosity, and

κF =
∫

dνκν Fν∫
dνFν

(4.61)

is the mean opacity per unit mass, weighted over frequency by the radiant flux F (see
Appendix 3), and

∫
dνFν = L/(4πr2). For infall to occur, the first term on the right-hand

side must exceed the second; thus,

�R ≡ κF L

4πcG M
< 1 (4.62)

is the criterion for infall to occur.
The essential aspects of the problem can be understood using the following simplified

analysis. Consider the innermost region of the dusty envelope. As discussed above, a thin
region at the inner edge absorbs all of the direct protostellar radiation, and reradiates it at
a lower temperature. To first order, we can consider this shell as radiating like a blackbody
at or just below the dust sublimation temperature, with the same luminosity as that of the
protostar (in steady-state). We may then examine the force of this radiation field on dust just
outside the inner shell. In principle, we should examine the force balance as a continuous
function of distance throughout the dusty envelope. However, as the radiation is absorbed
and reemitted outward, the characteristic dust temperature becomes lower, and thus more of
the luminosity is emitted at ever-increasing wavelengths (see §5.2). As shown in Figure 4.10,
the dust opacity decreases with increasing wavelengths; we can expect the product κF L to
decrease outward as well. In addition, the self-gravity of the dense envelope becomes more
important at larger radii. Therefore it suffices to examine �R in the inner regions.

Take for example the 60 M�, 106 L� protostar. For this object, �R ∼ 1.3κF ; therefore,
κF <∼ 1 cm2 g−1 for infall to occur. But examination of Figure 4.10 shows that such low
opacities occur only for wavelengths λ > 30 μm. This poses a problem. Dust sublima-
tion temperatures are estimated to be (of order, depending upon the species) ∼1500 K;
by the Wien law, a blackbody with this temperature has a maximum in its spectrum at
λmax ∼ 3000 μm/T ∼ 2 μm! The near-infrared dust opacity for the standard dust extinc-
tion law is more than an order of magnitude too large to allow our 60 M� protostar to
continue accreting from its infalling envelope. Indeed, Wolfire and Cassinelli (1987) found
that, assuming the standard dust opacity of the diffuse interstellar medium, the maximum
protostellar mass was only ∼7 M�.

To explain stars with masses larger than 7 M�, Wolfire and Cassinelli suggested that the
total dust mass must be depleted, and the size distribution of particles must be modified, in
regions which form massive stars. While this is possible, it is more usual to find substantial
modifications of dust extinction in the ultraviolet, while the near-infrared – the essential
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opacity for this analysis – remains relatively unchanged (Mathis 1990). Fortunately another
option is available: departures from sphericity, which can modify the situation profoundly.
The angular momentum of the protostellar cloud will cause it to “fall out” onto a disk which
is much larger than the star, or even the nominal dust sublimation radius. As discussed in
§4.4, most of the mass falls onto the disk near the centrifugal radius; thus rc becomes the
effective inner limit of the envelope instead of rs. If rc is large enough, the dust temperature
can become low enough that the flux-mean opacity decreases such that �R < 1.

In addition, departures from sphericity in the rotating, collapsing envelope also modify
the transfer of radiation in important ways. In any non-spherical envelope there will be a
tendency for the radiation to escape along paths of lesser optical depth. Thus, radiation will
preferentially escape out the rotational axes, where mass column densities and thus optical
depths are low. This means that the more equatorial regions, where most of the mass infall
is concentrated (Figure 4.7), will see weaker radiation fields. Thus there will be “shielded”
regions in the flattened collapsing envelope in which the radiative force is greatly reduced
or even absent; infall can occur relatively unimpeded in these directions. This leads to a
picture schematically shown in Figure 4.11. Radiation escapes preferentially in the lower-
density, “polar” regions, such that the radiative force is even larger than that estimated for
the spherical case; material in these regions can be blown away by radiation pressure quite

Fig. 4.11. Schematic model of accretion and outflow for a massive, luminous protostar. The
combination of initially flattened structure and rotation leads to infall at high rates in a flat-
tened envelope (light gray region) and accretion through a dense circumstellar disk (dark
gray region). The high optical depths of these regions result in scattering and reradiating
much of the stellar luminosity out low-density “polar” regions; this so-called “flashlight
effect” (e.g., Yorke & Sonnhalter 2002) shields most of the infalling material from the effects
of radiation pressure. Surface layers of the infalling envelope are driven outward (light area
with outward arrows) through the combined effects of radiation pressure, wind ram pressure,
and photoionization; if the stellar wind (long arrows) does not have a high ram pressure,
the ionization/photodissociation-induced expansion of material (dashed arrows) may further
confine the wind.
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easily, but this does not constitute the main mass infall. Meanwhile, the “shielded” material
arriving along “equatorial” regions falls in readily. As long as the “ablated” polar material
mass loss rate is significantly smaller than the infall rate in the shielded region, massive
stars can be formed. Of course, this requires the central star to be built up primarily via disk
accretion; but this is likely to be the case for all stellar masses (§4.6).

Yorke and Sonnhalter (2002) made numerical calculations of the collapse of massive cores
including radiation pressure and departures from sphericity due to rotation. They adopted
an approximate radiative transfer method, but incorporated the full frequency dependence,
which is essential given the strong variation of dust opacity with wavelength. Yorke and
Sonnhalter demonstrated that the effects of non-sphericity on the radiative acceleration
described above were important in allowing larger protostars to form. They were able to
form protostars of 30–40 M� despite using the standard interstellar dust opacity, in con-
trast to the results of Wolfire and Cassinelli. Yorke and Sonnhalter described this as the
“flashlight effect”, i.e., the tendency of radiation to be focussed out polar holes in the den-
sity distribution, and pointed out that the effect was especially important for light with the
shortest wavelengths, which in turn dominate the radiation pressure forces.

While the Yorke and Sonnhalter results represent a clear step forward in understanding
the formation of massive protostars, they were unable to make objects much larger than
about 40 M�, even when starting with an initial core of 120 M�; eventually the radiative
acceleration halted collapse. Here one may conjecture that the problem is with the initial
conditions adopted by these authors; specifically, the singular isothermal sphere. It seems
plausible that by starting with a flattened core and allowing it to collapse, the “flashlight
effect” will be stronger, and more material will be shielded from the radiation from central
regions.

This discussion ignores the effects of stellar winds and expanding H II regions. Because
the winds of young massive stars are driven by radiation pressure, and much or most of
the radiation escapes without driving mass loss, the wind ram pressure generally is only a
correction of order unity. The effects of the central star in ionizing infalling gas and thus pro-
ducing an outward pressure are important when there is sufficient radiation to ionize a large
enough region that the local infall velocity is smaller than the 10 km s−1 thermal velocity
(Keto 2003). However, both winds and H II region expansion will also be affected by depar-
tures from sphericity in the same way as radiation pressure; the net effect probably will
be to blow away and/or “ablate” material from the low-density directions. Thus, inclusion
of H II region expansion should not qualitatively change the picture of Figure 4.11, adding
photoionization/photodissociation of atomic and molecular material along the infalling enve-
lope’s surface (and a corresponding outflow). Growing evidence for disks around massive
young stars (§5.9) has provided additional support for this schematic of high-mass star
formation.
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Protostellar collapse: observations
vs. theory

As described in the previous chapter, theory predicts that the protostellar envelope should
collapse at near free-fall velocities to form the stellar core and disk. It is not easy to detect
this collapse directly; on large scales, the infall velocities are small and difficult to iso-
late from the complex supersonic motions in the surrounding cloud, while freeze-out or
other chemical effects remove some of the standard tracers in the inner envelope. In addi-
tion, the presence of high-velocity bipolar outflows cause further confusion. Nevertheless,
an increasing body of evidence generally supports the rapid collapse model of protostar
formation.

Infrared imaging and spectroscopy have provided the most broadly based indications of
protostellar collapse. While dust emission does not directly measure infall motion, the pres-
ence of dust in the near environs of very young stars, as shown either directly in scattered
light or inferred through detection of warm dust emission, demands a dynamical explanation.
As the material is too cold to be thermally supported, it must be either falling in or flying
out (the envelopes are mostly not in flattened disks, though somewhat flattened “toroids” are
observed). The required infall rates are plausible from the collapse theories discussed in the
previous chapter, while wind mass loss rates would have to be implausibly large (because
the same density implies a larger mass flux for a larger velocity) – and, in any event, outflows
have distinctive bipolar geometries, not toroidal expansion.

The theoretical models of protostellar infall discussed so far predict that, for typical
parameters, the dusty collapsing envelopes will be very opaque; thus, the radiation from
the central protostellar core should be mostly absorbed in a dust “cocoon”, which reradiates
the absorbed energy at mid- to far-infrared wavelengths from an extended dust envelope
“photosphere”. For this reason, the study of protostellar sources received dramatic impe-
tus from the launch of the IRAS satellite, which made possible studies of the far-infrared
radiation from many low-luminosity sources. Although infrared spectra were calculated for
many numerical simulations, such as Larson’s (1969b), the subject took a major step forward
with the application of the TSC collapse solution to the calculation of protostellar SEDs by
Adams and Shu (1986) and Adams, Lada and Shu (1987 = ALS). These pioneering inves-
tigations made a compelling case for identifying IRAS-detected Class I sources (§1.4) as
protostars (Beichman et al. 1986; Myers et al. 1987; Butner et al. 1991, 1994; Kenyon et al.
1993). In addition to results from the ISO satellite, we now have observations from the sen-
sitive Spitzer Space Telescope, which have permitted increasingly detailed tests of infall
models.

82
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The similarity solution for thermally supported clouds at a typical molecular cloud
temperature of 10 K (equation (4.20)) predicts a mass infall rate of

Ṁ ∼ c3
s

G
∼ 1.6 × 10−6 M� yr−1. (5.1)

This suggests that a 0.5 M� cloud will take approximately ∼3 × 105 yr to collapse. The
ages of the pre-main-sequence stars in Taurus are mostly ∼1–2 Myr; therefore, the col-
lapse theory predicts that about 10–20% of the pre-main-sequence population in Taurus
should be protostars (i.e., young stars still surrounded by their dusty infalling envelopes).
About 25 far-infrared Class I sources have been found in Taurus out of a total population
of approximately 200 pre-main-sequence objects, consistent with the identification of these
objects as protostars. The study of protostellar sources in dense regions of star formation
has proved to be much more difficult, not only because of large extinctions from distributed,
non-collapsing dust, but also because most clusters contain more massive, luminous stars,
which can dominate the heating of dust in the cluster environment.

The so-called “Class 0 sources”, which are very heavily extincted, may be the “youngest”
protostars (e.g., André et al. 1993). This picture is consistent with collapse from protostellar
clouds with initially flat inner density distribution, as observed in many cores; the collapse
of such structures should have the highest mass infall rates in the earliest phases, leading to
higher extinctions of the central object. One would then expect that the later, longer-lived
phases of protostellar collapse, with lower infall rates (§4.3) correspond to Class I sources.

The luminosity of a protostellar system is

L = L∗ + Lacc (5.2)

where L∗ is the luminosity of the central stellar core produced by gravitational contraction
and deuterium fusion, and Lacc is the luminosity produced by accretion, which includes the
dissipation of kinetic energy as the infalling material lands on the disk, the energy lost as
material accretes through the disk, and finally the energy released as the accreting material
lands on the central stellar core. In Taurus, the Class I sources exhibit the same luminosities
(∼1 L�) as the (slowly accreting) CTTS or even the (non-accreting) WTTS (§5.1); there
is little evidence for a large additional accretion luminosity component. This is surprising
because the implied accretion luminosities,

Lacc ∼ G M∗
Ṁacc

R∗
(5.3)

are Lacc ∼ 8 L� for Ṁacc ∼ Ṁ ∼ 1.6×10−6 M� yr−1, using reasonable estimates for pro-
tostellar masses and radii. The same problem seems to be present in Class 0 sources as well;
although their luminosities are often an order of magnitude higher, so are the predicted mass
infall rates. One possible explanation of this discrepancy between predicted and observed
protostellar luminosities is that the infalling material mostly lands on a disk at vastly larger
radii than R∗ (§4.6). The accretion luminosity then depends upon the accretion rate through
the disk Ṁacc onto the star. If this can be smaller than the infall rate Ṁ , the luminosity
problem can be alleviated. However, this implies that mass piles up in the disk, which can-
not go on indefinitely. The disk must eventually dump most of the accumulated mass onto
the central star; conceivably this could occur during rapid bursts of disk accretion, such as
are observed in the FU Ori objects (Chapter 9).
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Spherical collapse models predict that protostellar photospheres should be basically
invisible until some time near the end of the collapse phase. While many protostars are
heavily extincted at wavelengths <∼2 μm, making it difficult to infer stellar properties from
photospheric lines, departures from sphericity render some Class I objects detectable at near-
infrared wavelengths. Rotation of the infalling envelope, which causes most of the infalling
material to drop out on the disk long before reaching the star, has an important effect in
reducing the extinction to the central protostar. The protostellar bipolar outflows rapidly
blow away polar regions of the dusty envelope, yielding a relatively unobstructed view to the
protostar if viewed along the outflow cavity. Such objects, viewed pole-on, may be difficult
to distinguish from older Class II objects (Chapter 8).

5.1 Protostellar luminosities and accretion
The most thorough studies of luminosity distributions for Class I/0 objects have

been undertaken for Taurus at the time of this writing (further results from Spitzer studies
should be forthcoming). In addition to its proximity, Taurus has the advantage of being
spread on the sky – reducing source confusion – and is devoid of luminous stars which
heat dust to large distances and thus create difficulties in measuring far-infrared radiation
from faint sources. While the distribution shown in Figure 5.1 is likely to be incomplete on
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Fig. 5.1. Luminosity distributions of Class I, II, and III sources in Taurus. The Class I
sources, heavily extincted and in general protostar candidates, exhibit roughly the same
median luminosities as the Class II sources (CTTS or stars with inner dusty disks) and the
Class III (WTTS or stars without inner dusty disks). Adapted from Kenyon and Hartmann
(1995).
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the low-luminosity end, as shown for instance by the recent discovery of a new very faint
protostar IRAM 04191+1522 (Andre et al. 1999), Spitzer surveys do not seem to be turning
up large numbers of new Class I sources in Taurus.

Figure 5.1 demonstrates that the Class I and Class II luminosity distributions are very sim-
ilar. This result indicates, as discussed in the introduction to this chapter, little evidence for
the large accretion luminosities expected if matter is being transferred to central protostars
at the same rates as expected for envelope infall.

One might expect that star-forming regions of higher density might form higher-density
cores, which in turn would collapse faster, resulting in higher accretion rates. However,
the most recent surveys of the Ophiuchus cloud, which is considerably denser and more
opaque than Taurus, do not provide strong evidence for significantly higher luminosities.
The ISOCAM survey of Ophiuchus by Bontemps et al. (2001) suggest that the Class I, Class
II, and Class III objects have similar luminosity functions, steeply rising between about
10 and 2 L�, and roughly flat in d N/d log L between about 2 and 0.03 L�. There are a
few luminous Class I objects in the Bontemps et al. survey (∼ 20−30 L�), but there are
also Class II sources of similar luminosity – more than in Taurus, so it is not obvious that
these high luminosity Class I objects exhibit rapid accretion rather than simply being more
massive protostars.
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Fig. 5.2. Total luminosity (vertical axis) as a function of accretion luminosity estimated from
the 2.1 μm Brγ emission line. Circles are Ophiuchus Class I sources, squares are Taurus
Class I objects, and open and filled symbols are rates inferred before and after reddening
correction, respectively. From Muzerolle et al. (1998c).



86 Protostellar collapse: observations vs. theory

Measuring the accretion rate directly onto the central protostar is difficult given the high
extinction involved. To circumvent this difficulty, Muzerolle et al. (1998b) attempted to use
the infrared Brγ line emission of Class I objects to infer accretion rates, using a correlation
developed for Class II/T Tauri stars. As shown in Figure 5.2, the reddening-corrected line
fluxes (solid symbols) suggest accretion luminosities that are a modest fraction of the total,
again suggesting low accretion rates for many Class I objects. White and Hillenbrand (2004)
attempted to use (faint) optical continuum excess emission to study accretion in Taurus Class
I stars, also finding that accretion rates in these objects do not dominate the total system lumi-
nosities, though there is some evidence that Class I objects have somewhat higher accretion
rates than typical Class II objects (see also Doppmann et al. 2005). Preliminary results from
Spitzer surveys in other regions also suggest that Class I objects are not much more luminous
than the corresponding Class II population, suggesting lower accretion rates onto central
stars than the infall rates onto protostellar disks (M. Enoch et al., personal communication).

5.2 SEDs of spherical infalling envelopes
The identification of Class I sources in Taurus and Ophiuchus as protostars is basi-

cally due to the matching of the SEDs with the dust emission predicted for infalling dusty
envelopes (Adams & Shu 1986; ALS; Butner et al. 1991). Although many hydrodynamic
simulations have been used to predict dust envelope emission (e.g., Yorke et al. 1993; Boss &
Yorke 1995), the advantage of the ALS method lies in its use of simple analytic models of the
collapsing envelope at a snapshot in time. Because the thermal gas pressure (and radiation
pressure) is generally negligible in the envelopes of low-mass protostars, one can decou-
ple the hydrodynamic problem from the radiative transfer problem. The use of an analytic
model allows greater freedom in handling the radiation transfer and thermal equilibrium,
and makes it relatively easy to explore the effects of different envelope parameters on the
emergent spectrum.

We begin with dust emission from a spherical collapsing envelope. In the following we
assume a familiarity with the basic results of radiative transfer. Some essential relations are
summarized in Appendix 3; others can be found in Mihalas (1978).

As discussed in §4.2, the density distribution of a spherical, collapsing, protostellar cloud
can be reasonably approximated by “free-fall” behavior, where the density of the infalling
matter is

ρ ∼ Ṁ

4πr2vff
= Ṁ

4π(2G M)1/2
r−3/2 (5.4)

(equation (4.21)). The radial optical depth integrated inward to radius r from the center,
assuming a large outer radius, is

τλ = κλ Ṁ

2π(2G M)1/2
r−1/2, (5.5)

where κλ is the opacity at wavelength λ.
To make a quantitative estimate of the amount of dust extinction through the envelope,

we again adopt the standard curve for interstellar dust opacity from Draine and Lee (1984),
as illustrated in Figure 4.10. This extinction curve is not unique; for example, it is known
that the ultraviolet dust extinction varies strongly in regions with massive star formation
(e.g., Mathis 1990). Far-infrared studies also indicate larger dust opacities near 200 μm
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(Hildebrand 1983). More recent studies suggest that the opacities in the sub-mm and mm
range in dense protostellar cores might be a factor of 4–5 larger (Ossenkopf & Henning
1994). However, Figure 4.10 provides a starting point for exploration.

Most low-mass (T Tauri) stars have peaks in their photospheric SEDs at wavelengths
<∼1 μm. The optical depth at 1 μm through the infalling envelope to a radius rin is

τ1 ∼ 10

(
Ṁ

2 × 10−6 M� yr−1

) (
M

0.5 M�

)−1/2 ( rin

15 AU

)−1/2
. (5.6)

From equation (A3.7), the light from the central star escaping along the radial direction is
extinguished by a factor of exp(−τ).∗ Thus, as long as the envelope extends into radii of tens
of AU or less, for typical mass infall rates one expects the central star to be extinguished by
a factor of ∼104, or around 10 mag (�mag = 1.086τ ). This simple estimate suggests that
the central star will be essentially invisible at optical wavelengths unless the dust envelope
is somehow removed at radii <∼100 AU.

Because protostellar envelopes are very optically thick at the characteristic wavelengths
of radiation from the inner region, they will absorb essentially all of the light from the central
source (as long as the envelope is nearly spherically symmetric). This means that, to a first
approximation, the details of the central star’s spectrum are not important, and the emergent
spectrum seen at the Earth depends mainly upon the properties of the dust envelope. It is
straightforward to show that the radiative cooling times of the grains are shorter than infall
timescales, and therefore the envelope emission can be computed in the limit of radiative
equilibrium.

The observed protostellar radiation at a given wavelength is a weighted sum of the radi-
ation from several layers in the envelope. However, only a limited range of the envelope
can contribute significantly, since optically thin regions contribute little flux and very few
photons escape from layers at large optical depths. Crudely, one may say that the observed
emission arises from a “characteristic” layer at τλ ∼ 2/3 (see Appendix 3). In this approxi-
mation, the dust envelope will have a “photospheric” radius rλ, defined as the radius where
τλ = 2/3,

rλ =
(

9

4

)
κ2
λ Ṁ2

8πG M
. (5.7)

In the case of most stellar atmospheres, the density distribution varies so rapidly with
radius that the photospheric radius is essentially fixed over a wide range of wavelengths
and opacities. However, the extended density distribution of the infalling envelope produces
different photospheric radii at differing wavelengths of observation. The left-hand panel
in Figure 5.3 shows rλ as a function of wavelength using the opacity in Figure 4.10 and
Ṁ = 2 × 10−6 M� yr−1.

To make an initial guess at the protostellar spectrum, we adopt the approximation that
the dusty envelope emits like a blackbody with a peak wavelength λm . Equivalently, we

∗ The amount of light from the protostar escaping through the envelope is not simply the stellar emission which
is not absorbed by the envelope along the line between the star and the observer. In addition, the envelope dust
scatters protostellar emission emitted in other directions into the line of sight of the observer. In general, one
cannot neglect dust scattering at optical and near-infrared wavelengths, and so equation (5.6) greatly underes-
timates the amount of protostellar emission that can be observed directly, especially since envelopes are not
spherically symmetric (see §5.6; Figure 5.8). However, the extremely large extinctions of protostellar envelopes
do make short-wavelength detections difficult.
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Fig. 5.3. Approximate solution for the dust “photosphere” of a protostar, as described in the
text. The left-hand panel shows the photospheric radius of the spherical collapsing envelope
as a function of wavelength (equation (4.8)). The dashed curve in the right-hand panel shows
the estimated envelope luminosity as a function of its characteristic wavelength λm . The
horizontal line corresponds to a typical protostellar luminosity of 1 L�. The intersection of
the two provides an estimate of the approximate λm .

assume that the dust emission has a characteristic effective temperature T = 0.3/λm (the
Wien relation). Thus,

L = 4πr2
λm

σ T (λm)4, (5.8)

where rλm is the radius at which T (λm) occurs. If we then assume that rλm is the “pho-
tospheric” radius and so occurs at a radial optical depth τλm = 2/3, then for a given dust
opacity (Figure 4.10), a mass infall rate Ṁ , and total central luminosity L , one can solve for
λm , T (λm), and rλm .

The right-hand panel in Figure 5.3 shows the results of equation (5.8) applied to the infall
case for Ṁ = 2 × 10−6 M� yr−1 as the dashed curve running from the upper left to the
lower right. The intersection of this curve with the appropriate source luminosity provides
an approximation to the photospheric radius of the dust envelope and the wavelength of peak
SED emission. For an assumed luminosity of 1 L� (horizontal line), the intersection occurs
at a wavelength ∼30 μm, or a characteristic temperature T (λm) ∼100 K. Thus, the model
predicts that typical protostars should mainly emit in the far-infrared.

An analytic estimate of λm can be made if we approximate the opacity as
κλ = κ◦(λ/λ◦)−β . Substituting,

λm

λ◦
=

(
0.3

λ◦

)1/(1+β) (
4πσ

L

)1/(4+4β)
(

9 Ṁ2κ2◦
32πG M

)1/(2+2β)

. (5.9)
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If we take the far-infrared opacity to be κλ = 0.2 (λ/100 μm)−2, then the peak of the
spectrum occurs at

λm ≈ 30

(
L

L�

)−1/12 (
Ṁ

2 × 10−6 M� yr−1

)1/3 (
M

0.5 M�

)−1/6

μm. (5.10)

Thus, the free-fall collapse picture, coupled with predicted infall rates for simple models of
cloud cores, indicates that protostars will emit most of their energy in the mid- to far-infrared
spectral region. This conclusion is almost independent of the assumed central luminosity,
and is only moderately dependent upon the mass infall rate.

To proceed beyond these simple estimates to more detailed calculation of a protostellar
spectrum requires the application of detailed radiative transfer techniques to compute the
radiative equilibrium temperature structure of the dust envelope and the emergent spectrum.
Detailed radiative equilibrium temperature distributions for spherically symmetric dusty
envelope models are shown in Figure 5.4. Results are presented for two mass infall rates,
Ṁ = 2 × 10−6 M� yr−1, and Ṁ = 10−5 M� yr−1, for central source luminosities of 1
and 10 L�.

The overall features of these temperature distributions can be understood from simple
arguments. Compare, for example, the results in Figure 5.4 for L = 1 L� and Ṁ = 2 ×
10−6 M� yr−1 with the results of Figure 5.3 or the approximate relations (5.10) and (5.7).
The predicted value of log λm is ∼1.5, corresponding to a “photospheric” radius of about
1.5×1014 cm ∼10 AU. Roughly speaking, the detailed temperature distribution in Figure 5.4
changes slope near this radius, marking the transition between inner “optically thick” and
outer “optically thin” behavior.

At small optical depths, the radiative equilibrium equation

∫
κν(Jν − Bν) dν = 0 (5.11)
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totic behaviors predicted for optically thin and optically thick radiative equilibrium (see text).
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(see Appendix 3) simplifies because Jν → constant × r−2. It is straightforward to show
that the appropriate (Planck) mean opacity varies as κP ∝ T β for κλ ∝ λ−β . Therefore,

T ∝ r−2/(4 + β) (optically thin). (5.12)

For β = 2, characteristic of the far-infrared opacity adopted (Figure 4.10), one can use
equation (5.12) to show that T ∝ r−1/3. The temperature distributions in Figure 5.4 show
this property at large distances. (If one adopts β = 1.5 for the long-wavelength opacity, as
suggested by observational and theoretical treatments (e.g., André et al. 1993; Ossenkopf &
Henning 1994), the results are only slightly different, T ∝ r−0.36.)

The temperature distribution changes its character inside the “photospheric” radius, where
the envelope is very optically thick; trapping of radiation causes the temperature gradient to
become steeper than in the optically thin case. In the limit of large optical depth, one can use
the usual diffusion approximation,

L = − 64πσr2T 3

3κRρ

dT

dr
(5.13)

(Appendix 3), where κR is the Rosseland mean opacity. Again, for a power law dependence
of opacity κλ ∝ λ−β , κR ∝ T β . Taking a power law distribution of density ρ = ρ◦(r/r◦)−n ,
equation (5.13) can be integrated with the boundary condition that T → 0 as r → ∞, with
the result that

T ∝ (Lρ◦rn◦ )1/(4−β)r−(1+n)/(4−β). (5.14)

The optically thick portions of the solutions shown in Figure 5.4 pass through temperatures
∼300 K, where the peak of the blackbody radiation is at 10 μm; in this region, β ∼ 1.5, and
so we find T ∝ r−1, in reasonable agreement with the detailed calculations.

Figure 5.5 shows SEDs for spherical infalling envelopes calculated from detailed radiative
transfer solutions for two values of both central source luminosities and mass infall rates. The
simple scaling law described above provides a reasonable first approximation to the results,
although there are obviously important spectral features, such as the silicate features near
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Fig. 5.5. SEDs for the spherical infall models whose temperature distributions are shown in
Figure 5.4. The wavelength λm of the peak emission moves to longer wavelengths for higher
mass infall rates, but is not very sensitive to the central source luminosity, as described in
the text. Courtesy N. Calvet.
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10 and 20 μm, which require detailed calculations. The resulting SEDs are slightly broader
than a single-temperature blackbody distribution, because a range of temperatures is present
in layers that contribute to the emission.

5.3 SEDs for rotating collapse models
The observed SEDs of Taurus Class I sources (Figure 1.5) exhibit far-infrared

emission similar to that predicted by the spherical collapse models (Figure 5.5). However,
the models predict far too little near- to mid-infrared emission to explain the observations,
indicating that the extinction of the central hot regions must be reduced. As equation (5.5)
indicates, most of the optical depth in the infalling envelope accumulates at small radii. For
this reason, Myers et al. (1987) originally suggested that there were inner “holes” in Class
I envelopes to reduce the extinction and increase the amount of short-wavelength light that
escapes.

The inclusion of rotation in the envelope models of ALS produced SEDs in better agree-
ment with the observations. Because rotation causes the infalling material to land on the disk
(§4.4), it also reduces the central envelope extinction. To see this in broad terms, consider the
spherical average of the TSC density distribution (Figure 4.7; §4.4). In this approximation,
the density distribution inside rc has the form ρ ∝ r−1/2 (equation (4.46)). Rotation there-
fore limits the column density or optical depth (∝ ∫

ρdr ) through the envelope; material
drops onto the disk and is therefore removed as an opacity source.

In a radial infall model, the inner radius of the dust envelope is limited by the dust
destruction radius, i.e., where temperatures become too high for dust to survive. Typical
estimates suggest that the dust destruction temperature is ∼1500 K (Larson 1972; Stahler
et al. 1980a,b; Wolfire & Cassinelli 1987). For a central star of a few solar luminosities, the
dust destruction radius is of order 10−1 AU. Now most of the optical depth of a TSC model
is accumulated near rc; in terms of the spherical average, the total optical depth through the
envelope is roughly given by equation (5.6) if rin is replaced by rc and the scaling constant
is doubled. Thus, a TSC infall model with a centrifugal radius of 100 AU has a total column
density roughly 30 times smaller than the corresponding radial collapse model with the same
total mass infall rate.

This reduction of envelope optical depth due to rotation has a profound effect on
the amount of near- and mid-infrared emission emitted by a protostellar envelope (see
Figure 5.6). Adams and Shu (1986) and ALS made the initial applications of the TSC infall
models to Class I sources. Because the density variation from pole to equator in the TSC
model at a constant radius is generally no more than ∼ a factor of two (see Figure 4.7), ALS
estimated the radiative equilibrium temperature using the spherical average of the opacity
distribution in the envelope (cf. Efstathiou & Rowan-Robinson 1991). The resulting calcu-
lations showed that modest amounts of rotation in the initial protostellar cloud, consistent
with the velocity gradients observed in molecular cloud cores (Goodman et al. 1993), could
explain much of the observed mid-infrared emission of these infrared sources.

ALS found reasonable agreement of source luminosities with reasonable theoretical
parameters for the assumed accretion rate. In their treatment, the central luminosity comes
from both accretion onto the star and through the disk, and the accretion luminosity is
generally

Lacc ∼ 3

4

G M∗ Ṁ

R∗
. (5.15)
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Fig. 5.6. Effects of rotation on the SEDs of infalling envelopes. The dotted lines repeat the
non-rotating SEDs with L = 1 L� from Figure 5.5 for comparison. The models including
rotation exhibit vastly more mid- and near-infrared emission because of the reduction in
inner envelope optical depth as infalling dusty material falls onto the disk. The silicate feature
at λ ∼ 10 μm can change from the deep absorption seen in spherical models to emission for
plausible infall rates and centrifugal radii rc (§3.4). The SED and the depth of the silicate
feature also depend upon the viewing angle i between the rotation axis and the line of sight
in addition to the mass infall rate and centrifugal radius. Courtesy N. Calvet.

The factor of 3/4 arises from the assumption that some of the accretion energy is not radiated
at the star but goes into ejecting a wind, or spinning up the star, etc. Encouragingly, ALS
found that they could reproduce their Taurus source luminosities for Ṁ = 2×10−6 M� yr−1

with central masses of ∼0.5 M�. However, later investigators (Kenyon et al. 1990, 1994)
found disagreement between predicted and observed Class I luminosities, mainly because
ALS modeled only some of the brightest Class I sources in Taurus and Ophiuchus; their
Taurus sources have luminosities almost an order of magnitude larger than the median value.

This result emphasizes the need to obtain systematic samples of the protostellar popula-
tions. Observations of any star-forming region yield only a snapshot of protostars of differing
masses in various stages of evolution. For these reasons, results for as complete a sample as
possible are required to make further progress. The most systematic analyses of the SEDs of
protostellar sources in a star-forming region have been performed for Taurus Class I sources,
initially by Kenyon et al. (1993), and later updated by Furlan et al. (2008), including Spitzer
IRS spectra. Kenyon et al. adopted the TSC model to compute dusty envelope emission,
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and used the spherical average of the TSC density distribution to calculate the dust equi-
librium temperature, but departed from ALS in taking the correct density distribution into
account when calculating the emergent spectrum. As shown in Figure 5.6, the emergent
spectrum is strongly affected by the envelope rotation; at short wavelengths, the extinction
of the outer layers is much larger in the equatorial direction than along polar regions, even
though the differences in column densities are modest (Figure 4.7). Kenyon et al. (1993)
also included the effects of dust scattering in a systematic way, and, unlike ALS, assumed
that the source luminosity is a free parameter. With these assumptions, the TSC SED mod-
els essentially have four fitting parameters: the source luminosity, the centrifugal radius, the
viewing angle relative to the rotation axis, and a parameter setting the density of the infalling
envelope. This last parameter can be related to the mass infall rate for a given assumed
central mass.

Kenyon et al. modeled the SEDs of 21 Class I sources and found a median infall rate
∼4 × 10−6(M∗/0.5 M�)1/2 M� yr−1; similar values were found by Furlan et al. (2008)
(Figure 5.7). Given the uncertainties in the calculation – departures from spherical sym-
metry, uncertainties in dust properties, possible role of magnetic fields, approximations in
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Fig. 5.7. Theoretical SEDs of rotating infall models (TSC models with outflow cavities)
fitted to observations of Taurus Class I sources, including both IRAS and Spitzer IRS data.
Typical mass infall rates are a few times 10−6 M� with centrifugal radii of order ∼100 AU.
Note the very strong 10 μm silicate absorption in IRAS 04302 + 2247. From Furlan et al.
(2008).
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Fig. 5.8. Near-infrared images of Class I sources in Taurus taken with NICMOS. In several
cases dark extinction lanes can be seen which probably denote the positions of opaque cir-
cumstellar disks, upon which envelope material falls (e.g., Figure 1.9). From Padgett et al.
(1999).

the radiative transfer, etc. – the results are reasonably close to the Ṁ∼2 × 10−6 M� yr−1

predicted by the singular isothermal sphere collapse for the T = 10 K temperatures in
Taurus.

Another source of uncertainty in interpreting SEDs is geometric. The fitting of TSC mod-
els to the Taurus data results in systematically large centrifugal radii and low inclinations;
for the latter, the median inclination derived from the SED modeling is i ∼ 30◦, rather than
the average value i ∼ 60◦ expected for a random distribution of inclinations. The main rea-
son for this discrepancy is that real protostellar envelopes have “holes” or low-extinction
paths through which short-wavelength light preferentially escapes, and indeed are com-
monly observed near highly extincted young stellar objects (e.g., Bastien & Ménard 1988).
Figure 5.8 shows some examples of cavities (presumably evacuated by outflows) seen in
near-infrared scattered light of several Taurus Class I sources.

5.4 A case study: L1551 IRS 5
One of the brightest Class I objects in the sky, and hence one of the best-studied

systems, is L1551 IRS 5 in Taurus. The source itself is extincted by of order 100 magnitudes
of visual extinction (see, e.g., Stocke et al. 1988) but calls attention to itself by its large
scattered light nebula which is filled with a variety of shocked gas elements called Herbig–
Haro objects; the cavity is driven by an outflow of material (Snell et al. 1980), including
highly collimated jets. As shown in Figure 5.9, the region is quite complex, with many
young stars being formed in the same cloud.
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XZ, HL

HH 30

IRS 5

Fig. 5.9. Image of the L1551 region made by combining Hα and [S II] emission, with labels
indicating some of the young objects in the region, including L1551 IRS 5, and HH 30
(note the extended scattered light indicating the presence of envelope material; compare
with Figure 1.7) and HL Tau (rightmost of the XZ/HL pair; Figure 5.16). Courtesy of John
Bally and Bo Reipurth.

The dusty envelope of L1551 IRS 5 extends over many thousands of AU, as would be
expected for a protostellar core, but it is far from spherical; instead it appears to be roughly
toriodal in shape (Figure 5.10). A hint of this flattened structure can also be seen in Figure 5.9
as a dark, extincted region running southeast to northwest. By spatially resolving this struc-
ture one can also investigate its kinematics. Saito et al. (1996) (Figure 5.10) inferred that
this material is falling in a rate of roughly ∼10−5 M� yr−1, with also some evidence of
rotation. This was followed up by a more detailed modeling study by Momose et al. (1998),
who also found similar results for infall and rotation using a flattened cloud collapse model
(Figure 5.11). Such initially non-spherical cloud models are motivated by the requirement
of a seemingly more flattened envelope density distribution than can be explained by the
outflow cavities, and may arise from collapse along magnetic field lines (Galli et al. 2006).

The proximity of L1551 IRS 5 and its relatively high luminosity and dust mass(es) has
made it possible to explore the innermost regions in some detail. Keene and Masson (1990),
Lay et al. (1994), and Ladd et al. (1995) found evidence for a central bright source in
addition to extended emission. This central region is now shown to be (at least) a binary
system (Bieging & Cohen 1985; Looney et al. 1997; Rodriguez et al. 1998), with both
dust emission and strong free–free emission from jets. Rodriguez et al. showed that the
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Fig. 5.10. Map of the L1551 IRS 5 region in H13CO+, showing the flattened, extended
structure of its dense gas envelope. From Saito et al. (1996).

Fig. 5.11. The density distribution of a sheet collapse model shown as a logarithmic gray
scale in a meridional plane. As collapse proceeds, most of the material becomes concentrated
toward the equatorial plane, producing evacuated cavities in the polar directions. The result-
ing envelope asymmetry is very much greater than in a TSC model. A model of this type
has been used to investigate the properties of the L1551 system (Osorio et al. 2003). (See
the right panel of Figure 4.4 for the time evolution of infall for this model.) From Hartmann
et al. (1996).

high surface brightnesses of the dusty disks require high mass accretion rates, which is at
least qualitatively consistent with the relatively high luminosity of the system (∼25 L�)
compared with other Taurus Class I sources.

Lim and Takakuwa (2006) used higher-resolution maps to suggest that there is a third
component in the system (Figure 5.12). The two main components have disks of (detected)
dimension ∼17 AU. Proper motions suggest orbital motion, with a separation of order
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Fig. 5.12. Image at 7 mm of the L1551 IRS 5 system made at high resolution using the VLA
and the PT antenna. Emission from the binary disks is evident; there may be a third source
to the southeast of the brighter (northern) component. Arrows indicate the direction of jets.
From Lim and Takakuwa (2006).

50 AU, a period of roughly 400 yr, and a total system mass of order 0.9 M�. The direc-
tion of the inferred orbital motion is in the same sense as that inferred for the inner region
of the toroid (Takakuwa et al. 2004), consistent with the idea that the angular momentum of
the infalling material has led to binary formation.

Millimeter-wave observations suggest the presence of an elongated structure on radial
scales of 100–400 AU (Keene & Mason 1990; Lay et al. 1994; Looney et al. 1997), which
Looney et al. suggest may correspond to a circumbinary ring or disk. A somewhat larger
structure has also been inferred from mm and sub-mm continuum observations (Ladd
et al. 1995; Hogerheijde et al. 1997), but it is not obvious whether this is also part of the
circumbinary disk, or perhaps just the inner regions of the infalling envelope.

Osorio et al. (2003) developed a model which attempted to reproduce the SED of L1551
IRS 5, using data from ISO and including constraints from the mm and sub-mm imaging.
Figure 5.13 shows that the results of this modeling can reproduce the observed SED, albeit
with a complicated set of components in addition to the envelope. In particular, the two cir-
cumstellar disks (labeled “CS”) contribute at an important level in the mid- to near-infrared
as well as in the mm range, while the estimated circumbinary disk (CB) contributes non-
negligible flux in the far-infrared. The parameters of the Osorio et al. (2003) model are
in reasonable agreement with other findings, except that the inferred mass infall rate of
∼7×10−5 M� yr−1 (M/M�)1/2 is somewhat higher than inferred from other measurements;
the discrepancy may be due to uncertainties in the assumed envelope geometry, or possibly
in the molecular abundances.
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Fig. 5.13. Detailed SED fitting of L1551 IRS 5, including ice features in the mid-infrared,
by Osorio et al. (2003). Model contributions from individual disks are labeled by “CS”
and the circumbinary disk emission by “CB” (see text). Symbols indicate long-wavelength
measurements through differing aperture sizes (see Osorio et al. 2003 for details).

While L1551 IRS 5 cannot be studied directly at optical wavelengths, the spectrum of
the central source can be seen faintly in spectra of the scattered light in the extended nebula.
These spectra indicate central object(s) of effective temperature ∼5000 K, with a remarkably
strong, blueshifted Hα absorption component indicative of powerful wind(s) (Mundt et al.
1985; Stocke et al. 1988). As Mundt et al. and Stocke et al. point out, this type of very
broad Hα absorption profile is not similar to those observed in T Tauri stars, but is typical
of that seen in the FU Orionis systems, which are rapidly accreting protostellar disks. More
tellingly, Carr et al. (1987) showed that L1551 IRS 5 exhibits very strong first-overtone
absorption bands of CO in the 2 μm region, which again is typical of FU Ori systems but
not at all of T Tauri stars. Coupled with the relatively large luminosity of this system, and
the bright disks from mm-wave imaging, it seems clear that this system is in a state of rapid
disk accretion. Whether it has always been in such a state is an open question, given the long
timescales of FU Ori outbursts (Chapter 9).

5.5 The Class 0 sources
The Class 0 sources are distinguished by very “red” SEDs, peaking near λm ∼ 150–

200 μm, with typically undetectable near- to mid-infrared emission (Figure 5.14). According
to equation (5.10), reproducing such SEDs requires mass infall rates >∼ 4 × 10−4 M� yr−1

for typical source luminosities L ∼ 10 L�. For comparison, the accretion rate predicted at
T = 25 K in singular isothermal sphere similarity solution is Ṁ ∼ 6 × 10−6 M� yr−1.
Alternative forms for the long-wavelength opacity with a smaller value of β than (Draine &
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Fig. 5.14. SED of the Class 0 source VLA 1623 (see text). From André et al. (1993).

Lee 1984) as suggested by theoretical calculations of dust opacities including ice mantles
(Ossenkopf & Henning 1994) yield only a modest reduction in the required infall rate.

A plausible explanation is that many of the Class 0 sources represent the non-similar
collapse of the protostellar cloud in its initial phase (Henriksen et al. 1997). As discussed in
§4.3, the earliest stages of the collapse of a Bonnor–Ebert sphere or other cloud with a flat
innermost density distribution will exhibit much higher mass infall rates than predicted by
the singular isothermal sphere similarity solution. The large masses of circumstellar material
in the vicinity of Class 0 sources also suggest youth (André & Montmerle 1994). Class 0
sources tend to exhibit massive outflows seen in molecular gas which probably also indicates
that a large amount of circumstellar material has not yet been blown away by the bipolar
ejection.

The interpretation of Class 0 sources in many cases is complicated by the presence of
substantial amounts of external material. The Class 0 sources in Ophiuchus, for example, are
often found in regions ranging from 50 to 100 magnitudes of visual extinction, and much of
this material is not part of any particular envelope; disentangling envelope from “external”
matter is more complicated in such a case.

It should be emphasized that the departures from spherical symmetry produce SEDs that
are significantly dependent upon inclination (Chapter 4; see also Yorke, Bodenheimer, &
Laughlin 1993). The SEDs of toroidal-collapse models can be especially dependent upon
the viewing angle (Hartmann et al. 1996). These effects probably are not important enough
in most cases to confuse the identification between Class 0 and Class I; nevertheless, one
should be cautious about inferring “evolutionary state” from SEDs, particularly from lim-
ited spectral information dependent upon extinction to the central source, which is highly
dependent upon inclination (and centrifugal radius).

Although the Class 0 sources found so far are generally somewhat more luminous than
the Taurus Class I sources, ∼10 L� (Andre et al. 2000). However, if Class 0 sources have
much higher infall rates than Class I sources, there is still a “luminosity problem”, because
the predicted accretion luminosity should be higher still.



100 Protostellar collapse: observations vs. theory

5.6 Flat spectrum sources
Some T Tauri stars exhibit very much flatter infrared spectra than are easily

explained by disk emission. There is a small class of optically visible T Tauri stars called “flat
spectrum” sources, which have spectral indices s ∼ 0 between ∼3 − 100 μm. The classic
example of this group is HL Tau (Figure 5.15). As discussed in §8.2, while irradiated disks
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Fig. 5.15. SEDs of three representative young objects in Taurus: the Class I or protostellar
source IRAS 04016 + 2610 (Figure 1.5), the “flat-spectrum” source HL Tau, and the Class
II system GG Tau. The SED of HL Tau much more resembles that of the Class I source,
rather than the “disk” excess of the T Tauri star (Chapter 8). The solid line connected by
open circles is a model for the Class I source from Kenyon et al. (1993) which includes
extra short-wavelength flux resulting from scattering out of envelope cavity (see Figure 5.8,
top middle panel). The Class I model is repeated again in middle panel, indicating that an
envelope model can explain HL Tau, as long as additional escape of scattered light occurs at
short wavelengths, consistent with the near-infrared image (see Figure 5.16). The two curves
in GG Tau are schematic representations of star and disk spectra. Modified from Calvet et al.
(1994).
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may exhibit flat SEDs at long wavelengths, it is difficult to achieve this in the near-infrared
(compare the Class II system GG Tau in Figure 5.15).

However, if one simply compares the SED of HL Tau to a Taurus Class I object of
comparable luminosity, IRAS 04016 + 2610, the similarity is immediately evident (Figure
5.15). The comparable properties of these objects extend beyond the infrared SEDs. Both
04016 + 2610 and HL Tau are completely hidden by dusty nebulae at optical wavelengths,
and can only be observed in scattered light in the optical spectral region showing that a
dusty envelope must surround the central source (Figure 5.8, middle upper panel; Figure
5.16). These properties strongly suggest the far-infrared emission of HL Tau arises from an
infalling dusty envelope rather than a disk. Indeed, infall was independently suggested in HL
Tau on the basis of scattered light analyses and high-resolution spectroscopy (Beckwith et al.
1989; Grasdalen et al. 1989), and from interferometry at radio wavelengths (Hayashi et al.
1993). Detailed fitting of the SED (Calvet et al. 1994; Hartmann et al. 1996) showed that the
overall infrared emission plus the scattered light nebula of HL Tau could be matched quite
well with an infall rate of Ṁ∼4 × 10−6 M� yr−1, typical of Taurus protostellar sources.

The spatially resolved mapping of HL Tau in 13CO by Hayashi et al. suggested that an
envelope of radial extent ∼2000 AU was mostly falling in, with a small amount of rotation.
The mass infall rate found for this CO cloud was very similar to that found for typical Taurus
Class I sources from modeling SEDs (§4.3). The interpretation of gas kinematics is made
more complicated by the fact that HL Tau resides at the edge of what appears to be a slowly
expanding bubble, as seen in 13CO (Welch et al. 2000).

At sub-mm and mm wavelengths, HL Tau exhibits very strong compact emission on a
size scale ∼100 AU which is almost certainly due to a disk (Lay et al. 1994; Mundy et al.
1996). The disk may well have a nearly flat-spectrum temperature distribution, due to the
backwarming effect of the infalling envelope; the opaque envelope acts like a blanket, with a
tendency to equalize the disk temperature with the local envelope temperature (e.g., Keene &
Masson 1990; Natta 1993; Butner et al. 1994; D’Alessio et al. 1997). The resulting extra
disk heating produces higher temperatures which accounts for the strong excess emission at
wavelengths >∼100 μm, while the envelope probably dominates the system emission between
∼3–100 μm (D’Alessio et al. 1997).

HST 0.9 μm 1.2 μm

1′

Fig. 5.16. Optical image from HST (left) and near-infrared image from ground-based
adaptive optics (right) of HL Tau. From Stapelfeldt et al. (1995) and Close et al. (1997).
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The example of HL Tau indicates that the flat-spectrum sources generally should be iden-
tified as protostellar-like sources with infalling envelopes, with perhaps less dense envelopes
than those of typical Class I systems and/or more favorable viewing angles, allowing more
short-wavelength light to escape along our line of sight. Disk emission for these systems
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Fig. 5.17. The T Tau binary system. The measurements from ∼1–20 μm are obtained by
speckle interferometry (Ghez et al. 1991). The optical fluxes are dominated by the northern
component; it is not possible to distinguish between sources at wavelengths >20 μm for
reasons of limited resolution. The curves represent models including infalling envelopes. In
both cases, the models have mass infall rates Ṁ = 2 × 10−6(M/2 M�)1/2 M� yr−1 (the
radiative transfer models depend directly only upon the density; the mass of the companion is
not known, but the optical star has a mass ∼2 M�). For T Tau N, the model assumes that we
are viewing the object along a hole in the envelope; the excess emission between 2 and 10 μm
is due to a disk, while the emission at longer wavelengths, including the silicate emission
“bump” at 10 μm, is due to the infalling envelope. The model for the southern component
assumes no envelope hole. Fitting the two components requires different centrifugal radii in
the models which may reflect differing distances of the (orbiting) stars from the edges of
what is presumably a common infalling envelope. Modified from Calvet et al. (1994).
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is likely to be especially strong, both because these young disks may be quite massive and
because of the backwarming effects of the envelopes.

In other cases an apparent flat SED is the result of combining the emission of an optically
visible T Tauri star with that of a heavily extincted, possibly protostellar, close companion.
The classic case of this is T Tauri itself. The main components T Tau N and S are sepa-
rated by about 0.7 arcsec ∼100 AU on the sky. The southern component, detected only in
the infrared (Dyck et al. 1982), is actually binary with a separation of about 0.05 arcsec
or ∼7 AU. T Tau Sa is actually the most luminous source in the system, perhaps an
intermediate-mass star, heavily extincted, while Sb appears to be a typical T Tauri star red-
dened by about 15 magnitudes of visual extinction (Duchêne et al. 2005). The result is that
T Tau N looks like a typical T Tauri star with disk (§8.2), while T Tau S looks more like a
protostellar source (Figure 5.17).

The high extinction seen toward T Tau S is usually interpreted in terms of seeing the object
through an edge-on disk (Hogerheijde et al. 1997b, Koresko 2000, and Beck et al. 2004).
However, as T Tau S appears to lie within a dusty region, not within the large extincted cav-
ity seen in scattered light (Stapelfeldt et al. 1998b), one might consider whether some of this
extinction is due to an infalling envelope. The advantage of an envelope model is that it natu-
rally predicts significant, but not enormous, extinction, while disks can be extremely opaque
seen edge-on. In any event, it is clear that more detailed observation reveals additional
complexity, much of it the product of binary or multiple star formation.

5.7 Spatial distribution of emission
If the thermal dust emission from the envelope can be resolved, one can test the

whether the envelope density distribution is consistent with infall, especially when observed
at long wavelengths where the dust is optically thin. The observed intensity on the sky is
(cf. Appendix 3)

Iν(p) =
∫ τ

0
Sν exp(−τν)dτν, (5.16)

where the impact parameter p is the distance measured perpendicular to the line of sight
from the center. The optical depth at frequency ν along the line of sight at p is

τν =
∫

dz ρκν, (5.17)

where κν is the dust opacity per unit mass at frequency ν and z is the coordinate along the
line of sight at constant p.

One simple limit is when the envelope is optically thin. This applies at long wavelengths
and large radii, where the envelope will be more spherical, and the source function will be
entirely thermal. Then

Iν(p) =
∫ τ

0
Bνdτν = 2

∫ ∞

0
Bνkνρdz, (5.18)

where Bν is the Planck function and the factor of two takes the symmetry of the envelope
into account.

If the frequency of observation is sufficiently low that the Planck function is in the
Rayleigh–Jeans limit hν � kT , and if we take power law distributions T = T◦(r/r◦)−m ,
ρ = ρ◦(r/r◦)−n , then
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Iν(p) = 4ν2kr◦T◦ρ◦κν

c2

(
p

r◦

)1−(m+n) ∫ ∞

1

x1−(m+n)dx

(x2 − 1)1/2
. (5.19)

Thus, the surface brightness depends upon both the density and the temperature gradient.
For the standard case of infall in the optically thin temperature distribution, m = 1/3 and
n = 3/2, Iν(p) ∝ p−5/6.

There are several problems with carrying out this analysis in practice. The intensity distri-
bution is very sharply peaked at small radii (where very little of the mass resides), while the
extended wings of the distribution produced at large radii (where most of the mass resides)
may be difficult to distinguish from background emission. This makes it generally difficult to
follow the surface brightness of the cloud out to several beam sizes; usually, comparisons are
made between the main peak of the intensity distribution and the point spread function (e.g.,
Butner et al. 1991). A pure power-law distribution is scale free, so it does not have a “size”;
inner and outer cutoffs play an important role in determining the apparent source “size”
when convolved with a (roughly Gaussian) observational point spread function (see discus-
sion in Terebey et al. (1993) and Ladd et al. (1991)). Finally, a central unresolved continuum
source (i.e., a disk) with a shallow density law can be difficult to distinguish from a source
without a disk but with a steeper density increase with decreasing radius; detectable disks at
mm and sub-mm wavelengths are found even in very young objects (Keene & Masson 1990;
Lay et al. 1994; Pudritz et al. 1996).

Notwithstanding these difficulties, some careful investigations of the spatial distribution
of long-wavelength dust emission suggest density distributions reasonably consistent with
infall (Butner et al. 1991; Ladd et al. 1991; Chandler & Sargent 1993; Terebey et al. 1993;
Shirley et al. 2002). One of the best-studied objects, B335, yields an estimate of the density
power law of ∼r−1.6 ± 0.2, including the uncertainties introduced by the possible presence of
a central unresolved source (disk) (Harvey et al. 2003).

5.8 Detection of infall from line profiles
Although direct detection of infall motions is the clearest indication of collapse, as

mentioned in the introduction to this chapter, this has been a very difficult measurement to
make. In some cases (such as L 1551 IRS 5; §5.4) kinematic evidence can be found from
spatially resolved observations, but even then there can be difficulties due to the presence
of outflowing molecular gas (cf. Zhou & Evans (1994) and references therein). Another
reason is that there is very little mass at high velocities. One can see this by noting that, in
spherical infall, the mass interior to r is Mr ∝ r3/2; but since the infall velocity vff ∝ r−1/2,
Mr ∝ v−3. In addition, if material does drop out onto a disk of size rc∼100 AU, the amount
of mass at velocities greater than a few km s−1 will be even smaller.

A more complicated analysis than presented above is needed to model the optically thick
line emission from moving envelopes (Kuiper et al. 1978; Anglada et al. 1987). Again con-
sider a spherical envelope in radial free-fall. Simplifying the situation once more, assume
that only material with exactly the appropriate Doppler shift can contribute to the observed
emission at a frequency shift �ν from the line center frequency ν◦. In other words, only
gas with a Doppler shift in the observer’s direction of �Vn = c�ν/ν◦ contributes to the
flux at �ν. This simplifying assumption is part of the so-called “Sobolev approximation”,
which is used to make the treatment of line transfer in moving media much more tractable
(in the radio astronomical literature, this is often called the Large Velocity Gradient or LVG
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Fig. 5.18. Constant velocity surfaces for radial infall in a (meridional) plane. If the observer
is on the right-hand side, the solid curve corresponds to a redshifted surface of constant
projected velocity, while the dashed curve is the corresponding surface for the same velocity
blueshifted. The line of sight to the observer, taken along coordinate z at impact parameter
p from the center, generally intersects the constant velocity surface at two points. If the
source function of the spectral line varies radially, then the differing order of radial distance
at which the line of sight intersects the constant velocity surface on the blueshifted and
redshifted sides produces a line asymmetry (see text).

approximation). The points in space which satisfy this requirement lie on a surface given by
the equation

�Vn = v◦
(r◦

r

)1/2 z

r
, (5.20)

where z is the distance in the observer’s direction measured from the plane perpendicular to
the observer’s direction passing through the center.

Figure 5.18 shows typical surfaces of constant velocity (in the observer’s plane). It is
evident from the figure that a ray passing through the envelope at a given impact parameter
p will intersect the constant velocity surface twice, and so two distinct regions will contribute
to the flux at a given velocity shift. Denote these intersections as r1, r2, where the former
corresponds to the intersection closest to the observer. We make the further assumptions of
the Sobolev approximation that the source functions are slowly varying across the region
near the constant velocity surface. This requirement is most likely to be met in the case
where the relevant path length dl << r , which is most easily satisified if the medium
has large velocity gradients. Then the formal solution of the equation of transfer (equation
(5.16)) at impact parameter p in the direction z toward the observer is

I +(�ν) = S(r1){1 − exp[−τ(r1)]} + S(r2){1 − exp[−τ(r2)]} exp[−τ(r1)]. (5.21)

That is, the specific intensity in the line of sight is given by the emission from the outer layer
plus the emission from the inner layer reduced by the extinction of the overlying part of the
constant velocity surface.

In the case of a static medium, the line width is δv2 = v2
th + v2

t , where vth = (2kT/m)1/2

is the thermal broadening for a species of mass m and vt is the turbulent broadening velocity.
For a static medium, this line broadening helps determine the line optical depth, but in the
Sobolev limit, the line optical depths τ depend instead on the envelope velocity field. To see
this, note that regions of the envelope that have the same line-of-sight velocity within δv of
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v are able to contribute to the absorption at v. The path length over which the medium is in
radiative contact is then

dl ≈ vth

(dv/dr)s
, (5.22)

where (dv/dr)s is the velocity gradient along the line of sight at the resonant position s
where the line-of-sight velocity in the medium is equal to the desired velocity shift. If we
approximate the line profile as square with a width given by δv = vth, and take the line
absorption cross-section per molecule for spectral line m to be αm , then the optical depth at
velocity v through the resonant region becomes

τm ≈ αm Ns

vth
dl = αm Ns

vth

vth

(dv/dr)s
= αm Ns

(dv/dr)s
, (5.23)

where Ns is the number density at the resonant position s. The velocity width of the line δv

thus drops out of the optical depth determination.
Because of the symmetry of the problem, the radii of intersection and optical depths are

the same at ±�ν. However, the ordering of the intersections with the constant velocity sur-
face differs, and this is responsible for producing a profile asymmetry for non-constant line
source functions S. In many situations the source function will decrease with increasing
radius, either because of outwardly decreasing temperatures, or densities, or both. Consider
the limiting case of an outwardly decreasing source function, namely S(r1) = 0. Then the
emission from the material on the side of the envelope nearest the observer, which is red-
shifted and thus contributes to the long-wavelength portion of the line profile, is reduced by
a factor of exp[−τ(r1)] relative to the emission on the correspondingly blueshifted portion
of the line profile. This asymmetry holds as one sums over all impact parameters to obtain
the total observed flux. Therefore the blue wing of the line is brighter than the red wing
(Anglada et al. 1987). The centroid of the emission profile will exhibit a net blueshift. A
similar effect is discussed in Chapter 10, when infall line profiles are revisited in the context
of accretion onto the surfaces of T Tauri stars.

Major problems in detecting this infall asymmetry are defining the central velocity shift
of the object and avoiding the effects of outflows; the latter can produce confusing effects,
especially because they do not have the quasi-spherical symmetry assumed implicitly in the
above discussion (Figure 5.18). The question of the central velocity is especially important,
because even small errors in this parameter can affect the derived asymmetry dramatically.
Initial studies (e.g., Walker et al. 1986) utilized absorption reversals in optically thick lines
to define the central velocity (cf. Figure 5.19). The problem with this method is that it can be
difficult to distinguish absorption in the outer infalling region from foreground absorption
by an independent cloud with an unrelated motion. This is an especially difficult problem
because the velocity shifts are small, and of the order of velocity dispersions of the objects
within the cloud. The favored approach (see discussion by Zhou & Evans (1994)) is to use
the emission from another optically thin spectral line which is too optically thin to show the
effects of outflow and foreground low-density clouds, and therefore is more likely to define
the system velocity for asymmetry analysis.

Several promising candidates for protostellar infall have been found based on line pro-
files, although uncertainties remain (Zhou 1994, and references therein; also Choi et al.
1995, Wang et al. 1995, Myers et al. 1995; Mardones et al. 1997). For example, in the very
case of B335 shown in Figure 5.19, a higher-resolution study by Wilner et al. (2000) also
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Fig. 5.19. Potential infall profiles of embedded objects. Left: Emission line profiles of H2CO
in the Bok Globule B335. The central reversal is presumed to be absorption from the outer,
nearly stationary, regions, while the emission wings are asymmetric in a sense consistent
with infall. The dashed lines are predicted line profiles for a simple model based on the
singular isothermal sphere similarity solution for collapse (§4.2). From Zhou et al. (1993).
Right: Infall signature detected in H2CO lines toward the dense bright cores NGC 1333
IRAS 4A and 4B (see text). From Di Francesco et al. (2001).

found infall asymmetry, but the high-velocity wings predicted by collapse models were not
detected, though this may be explained by freeze-out (see below). In addition, some of the
blueshifted emission is due to outflow, complicating the interpretation of the profile asymme-
try. Spatial resolution is important in understanding the kinematics of protostellar regions;
mm-wave interferometric mapping has provided evidence for spatially resolved collapse
motions in a few objects (e.g., Hayashi et al. 1993; Ohashi et al. 1996).

Some of the problems involved in establishing the system velocity can be avoided in
systems for which infall can be observed seen directly in contrast against the continuum
emission of inner regions; this avoids much of the complicated analysis involved in line
self-absorption. The main limitation of this technique is that it requires a very bright central
continuum source, and so is not generally applicable. However, Di Francesco et al. (2001)
were able to use this method in NGC 1333 IRAS 4A and B, and detected a strong infall
signature (Figure 5.19, right panel).

More generally, one might look for a statistical trend in profile asymmetries. This has been
done for a sample of Class 0 and Class I cores by Mardones et al. (1997) and Gregersen
et al. (2000), showing that, while an individual source may exhibit a non-infall asymme-
try, most Class 0 and even Class I sources show a profile asymmetry consistent with infall
(Figure 5.20).
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Generally, high-velocity wings predicted by infall models are not seen in typical species.
Probably this is due to depletion (freeze-out) of the relevant molecular species at high den-
sities and low temperatures (e.g., Bergin et al. 2002); this effect may drastically reduce the
species for which the high-velocity wings of infall can be detected. One exception is the
Class 0 source L1489 IRS, in which broad redshifted absorption is seen against the contin-
uum in the fundamental rotation–vibration band of CO at 4.7 μm, with velocities of up to
100 km s−1. However, this infall is likely to be highly non-axisymmetric, as it would imply
an extremely large mass infall rate inconsistent with other observations. The likely special
geometry in this object is also consistent with the absence of similar detections of fast infall
in other systems.

Overall, it is clear that the infall model for protostellar cloud collapse and protostar for-
mation is reasonably well supported by a wide variety of observations, including explaining
SEDs, general velocity shifts, and in a few cases direct spatial resolution of infall motions.

5.9 Massive protostars
There is no reason why the overall picture of protostellar collapse in low-mass

systems should not apply to higher-mass stars as well (Equation (4.52)). Indeed, as discussed
in §4.7, non-spherical collapse followed by accretion through the disk may be essential to
the formation of the most massive and luminous stars.

The application of the above paradigm of protostellar formation to high-mass stars has
been slowed by observational difficulties. Because massive stars are much more rare than
low-mass stars, they must be studied in more distant regions, placing extreme demands on
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spatial resolution. In addition, massive stars perturb their environments to large distances
through heating, ionization, H II region expansion, and stellar winds, and the resulting welter
of phenomena tends to confuse the analysis. Finally, massive stars are frequently found in
dense (proto)stellar clusters, presenting problems in understanding which source is actually
responsible for which observed property.

Despite these difficulties, progress has been made in recent years; a good recent review
is that of Zinnecker and Yorke (2007). High-resolution studies by Shepherd et al. (2001)
of the compact H II region G192.16–3.82∗ suggested that the presumed early B star in the
system has a circumstellar disk with a diameter of order 130 AU and a mass of several
times solar. Zhang et al. (1998) found evidence for very large (5000–10000 AU) flattened
rotating structure around a distant, massive young object, IRAS 20126 + 4104. This system
has been extensively studied and shown to have not only evidence for the rotating disk but
also a well-developed bipolar outflow (see Cesaroni et al. 2007 for a detailed discussion).
Another example has been investigated by Patel et al. (2005), who found additional evidence
for a dusty disk of radius ∼330 AU around a 15 M� protostar. Observations of “source
I”, a highly embedded source in the Orion Nebula Cluster provide a suggestive picture of
protostellar collapse in a moderately massive system (Greenhill et al. 2005; Reid et al. 2007).
Maser emission in source I suggests outflows along an “X” pattern, which could be cloud
material entrained along cavity walls (e.g., Figure 4.11; Cunningham et al. 2005). Source
I also exhibits evidence for a disk which is partially ionized, presumably by the ultraviolet
radiation of the central source (Reid et al. 2007). In summary, evidence is mounting that
massive stars form through disk accretion.

Other clues to the formation of massive stars come from the study of so-called “ultra-
compact” (UC) H II regions. These are extremely dense, small (<0.1 pc) ionized regions
surrounding what are likely to be massive young stars, if not massive protostars. In their
survey of UC HII regions, Wood and Churchwell (1989a) showed that the lifetimes of these
regions had to be much greater than the sound crossing time, based on number statistics.
Thus these UC HII regions cannot simply be expanding into a low-density medium; some-
how the ionized material must be confined (or replenished, if it is being evaporated) for
timescales of order 105 yr or more.

Hollenbach et al. (1994) discussed various possibilities for resolving the problem of UC H
II region lifetimes. They dismissed the possibility that the ram pressure of infalling circum-
stellar material confines the H II regions, because maser proper motions indicate outflow, not
infall, and because ram pressure confinement is unstable, leading to either runaway expan-
sion or collapse of the H II region. Van Buren et al. (1990) had argued that if the massive
stars move through dense molecular gas at high speeds, of order 10 km s−1, their ioniz-
ing radiation would create a bow shock ahead of the motion, consistent with the observed
geometry of 20% of the observed regions (Wood & Churchwell 1989a). However, most of
the resolved UC H II regions have geometries that differ from the cometary/parabolic shape
predicted by this model; in addition, it seems very unlikely that most massive stars have such
high velocities with respect to their ambient medium.

Yorke et al. (1983) suggested that some UC H II regions might be “champagne flows”,
where the H II region breaks out of a dense molecular cloud. This model does not

∗ Such regions are often identified by their galactic longitude and latitude in degrees; hence, this object is at
l = 192.16, b = −3.82.
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particularly address the nature or lifetime of the dense material, and may not explain the
limb-brightening seen in some regions (Van Buren et al. 1990). The problems with the
above models led Hollenbach et al. to propose that most UC H II regions are the pho-
toionized and photoevaporated material coming off the circumstellar disks of very young
massive stars.

De Pree et al. (1995) argued that the disk evaporation model of Hollenbach et al. (1994)
would not work for most objects. The disk wind model (in most cases, not all) predicts a
spectrum typical of optically thick free–free emission in an ionized wind, which De Pree
et al. found to be inconsistent with observations of most UC H II regions. Instead, De Pree
et al. revived the idea of pressure confinement by the ambient medium, pointing out that
more recent estimates of massive core properties indicated much higher densities and tem-
peratures than those assumed by Wood and Churchwell (1989a). De Pree et al. invoked cores
with densities of ∼107 cm−3 and temperatures of order 100 K, and showed that at such high
densities the UC H II regions could be confined for timescales of order 105 yr.

A problem with the De Pree et al. model is that the postulated molecular core cannot
be static. It is straightforward to show that even at temperatures of order 100 K, an object
with this density and required diameters >∼0.04 pc are gravitationally unstable, using, for
example, the Bonnor–Ebert limit (equations (3.18), (3.19)). Furthermore, the only way the
core can have such a high temperature is if it is heated by local massive stars, most probably
the central star producing the UC H II region; thus this temperature does not reflect the
initial condition, which must have been one of a much lower temperature, and thus even
more susceptible to collapse. Indeed, it is difficult to believe that the surrounding core is not
in the collapse state if some of it has already collapsed to form a star.

Thus one must return to the gravitational infall picture, with the ram pressure of the
infalling material providing a more important restraint than the static pressure. Keto (2003)
computed infall models in spherical geometry, and showed that in principle flow could con-
tinue through the H II region down to the star, with ram pressure preventing rapid expansion.
However, Keto ignored the problem of radiation pressure in the infalling dusty envelope,
considering only the constraint at the dust sublimation radius; as discussed in §4.7, this is
problematic for stars with masses >∼10 M� if the long-wavelength dust opacity is at all
similar to that of the diffuse interstellar medium.

The necessity for the core to have some angular momentum; the likelihood that collapse is
from an initially flattened core; and the need for a “flashlight” effect to form the most massive
stars all point to considering UC H II formation and evolution in a non-spherical collapsing
envelope. As discussed in Chapter 4, the most general configuration is one in which there
are low-density (polar) regions with high-density (equatorial) regions. In such a model, it
is far more likely that the poles are blown out, with evaporating H II region gas streaming
out of these regions, while infall is still occurring in shielded regions to a disk. Indeed, non-
spherical infall must occur if one is to form an evaporating disk, as in the Hollenbach et al.
model if one is to use a disk. The advantages of the “evaporating toroid” picture (Figure 4.11)
over the disk model are that infall must precede or be contemporaneous with disk formation,
and that the infalling cloud naturally subtends a larger solid angle as seen from the star than a
disk, thus capturing more ionizing photons than the disk. Perhaps most importantly, because
the evaporating toroid can be much larger than the disk, the observed free–free emission at
cm wavelengths is much less likely to be optically thick in the toroid model than in the disk
model, potentially circumventing the problem addressed by De Pree et al.
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Whether this type of model can account for the range of morphologies of UC H II regions
is not clear; further model calculations are required. However, given that the most general
collapse must be toroidal (which may be an essential requirement for forming the most
massive stars), it is difficult to avoid the conclusion that this picture must apply to some UC
H II regions.

Wood and Churchwell (1989b) inferred that O stars spend somewhere between 10 and
20% of their lifetimes in opaque molecular clouds; i.e., they spend between 1 and 2 Myr in
clouds. This is consistent with the short lifetimes of molecular clouds (Chapter 2); it also
implies that the formation timescale of massive stars is also relatively short, so that high
infall rates are needed. This timescale is an upper limit to the formation timescale, because
an O star can have a large-scale dust cocoon. Thus, massive star formation times probably are
no longer than a few times 105 yr (unsurprisingly, comparable to UC HII region lifetimes).



6

Binaries, clusters, and the IMF

Virtually all stars are born with neighbors. Most stellar systems are multiple, and many if
not most stars are born in groups, with a subset in clusters of substantial numbers of stars.
An understanding of multiplicity is therefore an important part of theories of star formation.

The complex structure within molecular clouds, and in particular the asymmetries present
in protostellar cores, may be essential to understanding the process of forming binaries.
Whether the disks formed during protostellar collapse are capable of spawning multiple
stellar companions rather than simply accreting onto the central object is an open question,
perhaps requiring strong departures from axisymmetry in the infalling material. Observa-
tionally, we detect multiple protostellar systems which appear to lie within disks or toroids
in Class I sources, indicating that stellar fragmentation occurs before infall to the disk is
complete.

The early evolution of binary and multiple stellar systems is likely to be complex. The
growth in mass of fragments formed early on will depend upon complicated accretion
processes in disks and infalling envelopes. If more than two fragments are formed, the sys-
tem can become dynamically unstable, resulting in dispersal or ejection of some members.
Whether many or even any stars are initially formed as single objects, or instead were ejected
from multiple systems, is currently unclear.

Probably most young stars are born in clusters or groups. Currently most stars in the solar
neigborhood are born in modest-sized groups of order 10–100 members in regions of order
a pc in size. Only about 10% of local star formation ends up in producing “open clusters”,
systems with of order 1000 members and sizes of a few pc (Adams & Myers 2001), which
remain bound for one to a few hundred Myr, like the Pleiades. The small groups are likely to
be weakly bound or unbound, and in any event are probably dynamically unstable, leaving
only the larger clusters to resist dispersal for tens to hundreds of Myr.

It is not clear how cluster gas is accumulated, nor how it fragments into individual stars.
One possibility is that the long-range effects of gravity can result in focussing material from
larger scales into a small area. In such a picture, non-linear, small-scale “turbulent” structure
needs to be present to fragment into stars while the global protocluster cloud collapses under
its own gravity.

One of the ultimate goals of any global theory of star formation must be to understand the
origin of the stellar initial mass function (IMF). There are many theories of the IMF; sorting
through the various possibilities is difficult. It is plausible, though far from certain, that
different mass ranges of the IMF result from differing processes. The approximate power-
law distribution at high masses suggests some kind of generic process, perhaps a result of a
turbulent cascade of structures, while the “peak” in the number distribution or the turnover in
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the numbers of stars at smaller masses may have something to do with trapping of radiation
in dense structures. Observations of star formation in extreme environments are beginning
to show some indication of variation in the IMF; further studies are needed to yield clues to
the mechanisms responsible for setting stellar masses.

6.1 Observations of binary and multiple systems
Any attempt to understand the binary and multiple populations of stars begins with

the classic survey of field solar-type (G) dwarfs by Duquennoy and Mayor (1991; DM91).
Correcting for various biases in radial velocity and visual binary studies, DM91 estimated
that of all systems (or primary stars), the fraction that are single is roughly one-third, with
at least ∼10% of all systems in triple and quadruple systems. These results may understate
the true multiplicity, as outer members are likely to be tidally disrupted over the typical sev-
eral Gyr ages of nearby G dwarfs; in addition, systems of more than two stars are generally
unstable (e.g., Reipurth & Clarke 2001), being long-lasting only when the orbits are suffi-
ciently hierarchical, for example an outer third member with a much larger orbit than that of
the inner two stars.

Binary stars in the field exhibit a broad distribution of orbital periods, as shown in
Figure 6.1 (left). The peak of this quasi-Gaussian distribution in period corresponds to
an approximate semi-major axis of ∼30 AU. The turn-down in the numbers of binaries at
long periods may partly be a result of tidal disruption, as above. Another interesting fea-
ture is the distribution of eccentricities. As shown in Figure 6.2 (right), there is quite a
wide range of eccentricities in binary orbits, except for the closest systems; for these, tidal
effects are likely to have helped circularize any initial close elliptical orbits (e.g., Meibom
et al. 2006).

Given the likelihood of orbital evolution, it is of importance to try to find the initial distri-
bution of multiple star properties. Although it is more difficult to study more distant, more
heavily extincted systems, substantial progress has been made in characterizing multiplic-
ity in YSOs, using principally near-infrared observations, especially speckle interferometry,
with additional results from lunar occultations and some radial velocity studies. Simon et al.
(1995; see also Ghez et al. 1993 and Leinert et al. 1993) summarized a survey of 47 systems

0
0

5

10

15

20

25

30

2 4 6 8 10 –1 0 1 2 3 4 5 6 7
log P (days) log P (days)

N

0

2

4

6

8

10

E
cc

en
tr

ic
ity

Fig. 6.1. Relative numbers of stars as a function of binary period (left) and orbital eccen-
tricities as a function of period (right) for G dwarf systems in the solar neighborhood. From
Duquennoy and Mayor (1991) (see text).



114 Binaries, clusters, and the IMF

Fig. 6.2. Left: H ST NICMOS image of the Taurus Class I source IRAS 04381 + 2540. This
near-infrared (1.6 μm+2.15 μm) image shows two protostars separated by about 0.8 arcsec,
or around 110 AU. From Hartmann et al. (unpublished). Right: NICMOS near-infrared scat-
tered light image of the Taurus Class I source IRAS 04325 + 2402. The central region
exhibits a ring, which might be a signature of an inner binary system (see Figure 6.4). An
additional low-luminosity, pre-main-sequence system is off to the upper right, at a distance
of about 1150 AU from the main structure; this third system has a dark lane running through
it suggestive of an edge-on disk. Modified in part from Hartmann et al. (1999).

in Taurus revealed 22 binaries and four triple systems; in Ophiuchus, of 35 systems 10 were
binary, two were triple, and one system was quadruple. This work suggested an excess of
order a factor of two in the binary frequency in Taurus relative to the field distribution in
the separation range ∼18–1800 AU (with some correction for incompleteness). This factor
cannot apply at all scales, because then the fraction of primaries in binaries would be greater
than unity. The higher frequency of binaries in Taurus may simply indicate that Taurus-
type regions do not contribute much to the field stellar population; there is some evidence
that denser, more clustered regions have a more typical binary frequency (see discussion in
Mathieu et al. 2000).

Studies of the nearby field stellar population suggest much lower binary fractions for
M and later stars than for G stars (e.g., Bouy et al. 2003; Burgasser et al. 2003; Close
et al. 2003; Gizis et al. 2003; Siegler et al. 2005), closer to 10% of all systems. However,
low-mass systems are much more susceptible to disruption over time, and recent studies of
young star-forming regions suggest companion fractions closer to 20% (Kraus et al. 2005;
see discussion in Konopacky et al. 2006). The initial binary fraction in lower-mass stars is
thus still uncertain.

Observations show that binary formation starts early, before the entire protostellar enve-
lope has collapsed. Figure 6.2 shows two Class I sources in Taurus which are multiple and
which clearly lie within infalling envelopes, as indicated by the scattered light outflow cav-
ities. The structure in IRAS 04381 + 2540 is relatively straightforward, indicating a fairly
wide-opening angle in the cavity with the binary at the base. IRAS 04325 + 2402 is clearly
more complicated, with a ring-like structure around the primary source; the wide member
exhibits a dark lane indicating a disk viewed nearly edge-on. The wide separation between
the primary source and the faint distant object may mean that this is an accidental binary.



6.2 Theories of multiple stellar system formation 115

Other multiple systems include the well-known binary Taurus Class I source L 1551 IRS 5
(§5.4), and the archetypal T Tauri triple system, lying within a large scattered light neb-
ula suggestive of an outflow cavity in an infalling envelope (Stapelfeldt et al. 1995). Thus
early binary or multiple star formation is likely to be a typical outcome of protostellar core
collapse.

6.2 Theories of multiple stellar system formation
One of the early ideas for binary formation was fission of a very rapidly rotating

protostar. However, fission is difficult if not impossible to make work because the angular
momentum of a pair of objects just touching is generally larger than the angular momen-
tum of the most rapidly rotating star (Pringle 1991a), making this evolution difficult without
some additional source of angular momentum. Moreover, fission certainly cannot explain
the majority of systems with orbital semi-major axes of a few to hundreds of AU. At the
extreme other end of the scale of separations, one might consider the “capture” or otherwise
association of initially separate cores. This mechanism may work for the largest binary sep-
arations (e.g., Bonnell et al. 1991), such as for the protostellar system shown in the right
panel of Figure 6.2, where the outlying protostar is about 1000 AU from the main source.
However, it is difficult to make capture models work for much closer binaries (e.g., left panel
of Figure 6.2); the angular momentum of the combined system must be extremely low for
cores separated by a distance of order 0.1 pc to end up with most of the mass in protostars
separated by tens of AU, i.e., orders of magnitude smaller orbits.

The roughly similar sizes of many circumstellar disks and median binary separations sug-
gests that binaries typically form in some way during collapse, as a result in part of the
finite angular momentum of the initial cloud core. As discussed in §§2.5 and 4.1, it is very
difficult to fragment during free-fall collapse; however, once the supersonically infalling
material shocks and becomes incorporated into the disk, fragmentation becomes a more
realistic possibility.

Many numerical simulations of fragmentation during protostellar collapse have been con-
ducted over the last couple of decades (see, e.g., the review by Boss 1995). One major
result of the early simulations was the finding that the distribution of angular momen-
tum was important in inducing fragmentation. Collapse of the singular isothermal sphere
did not appear to lead to fragmentation in general, while so-called “Gaussian” cores (i.e.,
cores with a flattening of the density distribution at small radii) were capable of fragment-
ing. As discussed in Chapter 4, a uniformly rotating singular isothermal sphere has a mass
M(r) ∝ r and a specific angular momentum j ∝ r2; hence, j ∝ M2. This rapid increase
of angular momentum with increasing mass leads to a very centrally concentrated disk, at
least initially, the opposite of what one would like to have a massive exterior fragment. In
contrast, “Gaussian” cores (i.e., cores with centrally flattened density distributions) have pro-
portionately more mass with larger angular momenta. This leads to the formation of a less
centrally concentrated disk (Stemwedel et al. 1990), a much more favorable configuration
for fragmentation into multiple objects.

The problem of protostellar fragmentation into multiple stars has historically been sub-
ject to significant numerical problems. Beyond the issue of having enough resolution in
the calculation (e.g., Truelove et al. 1997), there are difficulties in handling energy balance
sufficiently accurately to tell whether fragmentation actually occurs (S 7.7). One feature
which seems clear from the work of Boss (2002, 2005, and references therein), Bodenheimer
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and Burkert (1993), and others, is that a non-axisymmetric structure of the initial cloud
makes fragmentation much more likely. Some early simulations introduced modest non-
axisymmetric components to make binary formation easier. However, real cores are often
highly asymmetric (e.g., Figures 3.1, 3.7), corresponding to non-linear deformations from
a spherical or axisymmetric initial cloud. If cloud cores are often (roughly) prolate, with
length ratios of 2:1 or even 3:1 (Jones & Basu 2002), it is easy to understand why binary for-
mation is so frequent; if their structure is even more complex, multiple condensations may
produce triple and higher order systems more efficiently. Along these lines, Boss (2002)
confirmed that prolate clouds tend to fragment into binary protostars, while oblate clouds
tend to fragment into more objects, with interactions and possible ejection of some objects.
Thus, non-equilibrium structurings of protostellar cores may be critical to the formation of
multiple star systems.

6.3 Evolution of multiple systems during accretion
If binary or multiple fragmentation occurs early during the collapse, in a compact,

disk-like structure, the continuing infall of material causes the system to evolve. Initially,
Bate and Bonnell (1997) investigated this evolution by assuming initial binaries of low mass,
and followed the effects of infall with a smooth particle hydrodynamics (SPH) code. As
shown in Figure 6.3, material infalling to these systems can be accreted through disks onto
the individual stars in spiral patterns, as a result of torques imposed by the stars on the gas,
similar to the transfer of angular momentum in disk gravitational instabilities (§7.7). The
continuing infall of material lead to mass buildup as material ended up on one or the other
of the binary stars; this suggests that early gravitational fragmentation is more likely to lead
to relatively massive object formation (binaries) rather than very low-mass objects (planets).

For the most plausible case in which the later infalling material has more angular momen-
tum than that of the initial fragments, Bate and Bonnell (1997) found that the binary
separation becomes larger due to accretion (as is necessary for angular-momentum conser-
vation). They also found a tendency for the masses to become more equal with time: if the
fragments initially have a large mass ratio, the lower-mass object moves in the largest orbit,
which is closer to the positions at which the infalling (higher angular-momentum) material
is falling, and so preferentially captures more material; which then tends to make the orbital
motions of the two protostars more equal, which tends to equalize accretion.

A more ambitious simulation was undertaken by Bate et al. (2002, 2003), in which an
attempt was made to follow evolution from a protocluster cloud through to star formation and
dynamical evolution of multiple systems. To do this, Bate et al. assumed a simplified energy
equation, with a fixed pressure–density relation. Starting from a spherical cloud with some
random velocity perturbations, local collapse ensued to smaller systems. Fragmentation into
multiple systems occurred, initially for objects of a few Jupiter masses, as predicted from
the simple fragmentation theory (and as had to occur given the adopted P − ρ relation).
Accretion leading to higher-mass objects then occurred. As shown in Figure 6.4, a wide
variety of systems were formed. Many spiral-armed disks fed mass into local fragments as
in the Bate and Bonnell (1997) simulation.

A distinctive feature of this long simulation was the formation of multiple systems which
were dynamically unstable and led to dispersal or ejection of one or more members. Bate
et al. found that many, though not all, of the lowest-mass stars (brown dwarfs) formed were
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Fig. 6.3. Evolution of an initial binary system with the addition of mass of increasing angular
momentum. Initially, low-angular momentum falls onto the individual systems, building up
circumstellar disks around them; later on, material lands in a circumbinary disk, from which
the individual objects can accrete through spiral arms. From Bate and Bonnell (1997).

ejected relatively early on from their host systems, and so had little opportunity to accrete
additional mass from the continuing collapse of local material. This provided numerical
confirmation of a prediction of Reipurth and Clarke (2001), who argued that fragmenting
multiple stellar systems would be dynamically unstable in general, resulting in ejection of
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Fig. 6.4. Numerical simulation of star formation in a cluster by Bate et al. (2002, 2003). The
complexity of the phenomena is evident; multiple unstable stellar systems lead to ejection of
some members; gas streams due to the combined effects of gravity and angular momentum
are evident (see text).

lower-mass members before they can accrete more mass. While it is plausible that this pro-
cess occurs in some systems, its generality is not clear; surveys of Taurus and Chamaeleon I
(Luhman 2004, 2007; Figure 6.5) suggest that the spatial distributions of brown dwarfs
and lower-mass stars in general are not distinguishable from those of the higher-mass stars.
There may also be numerical issues with the fragmentation in the SPH simulations (Klein
et al. 2004). In any event, it seems clear that patterns of accretion will be more complex in
multiple systems than simple models would suggest.

6.4 Young clusters
Most, but not all, stars in the solar neighborhood are formed in groups or clus-

ters. In a recent review of embedded young clusters, Lada and Lada (2003) concluded that
between 70 and 90% of all stars in giant molecular clouds are formed in clusters, while Allen
et al. (2007) estimated distributed populations approaching 30% from preliminary analyses
of large-scale surveys with the Spitzer Space Telescope. Most “clusters” in the solar neigh-
borhood are relatively small, of order 102 members (Adams & Myers 2001); many stars are
formed in larger clusters (Lada & Lada 2003).

The most well-studied, reasonably massive cluster is associated with the famous Orion
Nebula. The nebula is ionized (mostly) by the O7 star θ1 C Ori of the Trapezium cluster
of O and early B stars. In turn, the Trapezium is near the center of a cluster of about two
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Fig. 6.5. Distribution of pre-main-sequence stars in the Cha I cloud as a function of mass.
At this young age, the stars of spectral type M6.5 and later are likely to be brown dwarfs.
The contours show levels of extinction, indicating the location of molecular gas. No obvious
difference is seen in the spatial distributions of the lowest and highest mass stars. From
Luhman (2007).

thousand lower-mass stars lying within a radius of about 2 pc (Herbig & Terndrup 1986;
Jones & Walker 1988; Hillenbrand 1997). Figure 6.6 shows a plot of the brighter stars in
an infrared-selected sample in the region of the Orion Nebula Cluster (ONC), superimposed
upon the distribution of 13CO emission (which is less optically thick than 12CO and thus
more clearly shows the position of the denser gas). The elongated geometry of the cluster,
extended in the same direction as the overall distribution of dense gas is apparent (compare
with the large-scale distribution shown in Figure 2.2).

The molecular gas “integral-shaped” filament contains about 2000–4000 M� of gas within
a distance of about 2 pc from the center of the ONC (roughly the position of θ1 C Ori), and is
extremely opaque at optical wavelengths (AV ∼ 50–100 in many places). Within this region,
there are approximately 2000 stars down to a mass ∼0.1 M� (right panel of Figure 6.6)
(Hillenbrand 1997), about half of them optically visible; the other half are heavily extincted
(McCaughrean & Stauffer 1994; Ali & DePoy 1995). There may be approximately as much
mass in stars as in gas within a radius of about 2 pc of the center (Hillenbrand & Hartmann
1998). Thus, the ONC should be considered as a cluster still in the process of forming.
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Fig. 6.6. Left: Positions of young stars, selected from the infrared survey of Carpenter et al.
(2001) to maximize membership (including Class III stars), in the region of the ONC. The
13CO velocity-integrated emission from Bally et al. (1987) is shown in grayscale (see also
Figures 2.8 and 2.2). The dense concentration of stars is the ONC, which is elongated north,
in the same direction as the dense filamentary gas. Right: Radial velocities of stars (points)
and molecular gas (grayscale; compare with Figure 2.2) as a function of declination, summed
over right ascension. Substantial velocity structure and gradients are seen, with the stars
mostly following the gas (no correction has been made for binary motion), indicating that
the stars are simply moving with the gas out of which they were born. From Tobin et al.
(2008, in preparation).

O’Dell (2001, and references therein) and collaborators have extensively studied the prop-
erties of the Orion Nebula and have developed a compelling description of the geometry. In
summary, most of the nebular emission arises from the ionized boundary of the dense molec-
ular cloud in the region. An analysis of the surface brightness yields a picture in which θ1 C
Ori is only about 0.25 pc in front of the (irregular but roughly planar) ionized boundary of
the molecular gas. As this distance is not large compared with the general extent of the clus-
ter, it is not surprising that a significant number (roughly half, or perhaps a bit less) of cluster
stars are heavily extincted, presumably lying within the molecular cloud.

Hillenbrand and Hartmann (1998; hereafter HH98) made an initial attempt to under-
stand the structure of the ONC. They showed that the spatial distribution of the optical and
infrared-only (embedded) stars was roughly similar, suggesting no particular bias in under-
standing the stellar distribution due to the large extinction of the molecular filament. HH98
found that even in the inner regions, the cluster is elongated, as is obvious from a larger view
of the region (left panel of Figure 6.6), and could be fitted on scales less than about 3 arcmin
or about 0.4 pc by ellipses with an ellipticity of e ∼ 0.3. In the absence of a better model,
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HH98 then circularly averaged the stellar distribution to find a structure with a central flat-
tened core of size ∼0.16 pc and a r−2 density structure outside (a structure we have seen
before in gaseous form; §3.3). Using a stellar cluster model of this form (a “King” model),
HH98 inferred the volume density from the observed surface density, estimating a central
stellar density of order 2 × 104 stars pc−3. Adopting a typical stellar initial mass function
(§6.6), HH98 inferred a total mass of stars of about 2000 M� within a radius of 2 pc. This is
about half the mass required by a King model in virial equilibrium, given the magnitude of
the observed proper motions (Jones & Walker 1988); the required gravitating mass to bind
the cluster might be in the molecular gas.

However, the ONC is not likely to be in dynamical equilibrium. As shown in the right
panel of Figure 6.6, the stars generally follow the complicated structure of the molecular gas
in the region, with a sharp reversal in velocity gradient near the center of the ONC. Such a
structure would not be seen in a relaxed stellar cluster. Instead, it seems plausible that the
cluster is no older than about one crossing time; otherwise the gas motions would have been
damped. A crossing or dynamical time of about 2 pc/2 km s−1∼1 Myr is consistent with the
typical age of the population (Hillenbrand 1997).

As in the case of some molecular cloud cores (§3.3), circular averaging of the ONC
distribution produces a misleading impression of a relaxed cluster. As in the case of the
“Bonnor–Ebert rectangle”, circular averaging of a filament will produce flat central surface
density, followed by � ∝ r−1 on larger scales (because the mass grows as r while the area
grows as r2); interpreting this result in terms of the volume density of a spherical object
results in a spurious ρ ∝ r−2 on large scales. While the ONC structure is not as simple as
this, and is certainly centrally concentrated, it seems clear that the large scale ρ ∝ r−2 is
mostly a product of inappropriate averaging.

Hillenbrand and Hartmann (1998) also demonstrated that the higher-mass stars are prefer-
entially found near the cluster center relative to the lower-mass stars. The question is whether
this effect is due to preferential formation of high-mass stars in deep cluster potential wells,
as suggested by some theories (§6.6), or whether this is simply the result of two-body relax-
ation (e.g., Kroupa 2000). In the latter case, gravitational interactions between stars tend to
give kinetic energy to the lower-mass objects, resulting in the higher-mass systems sinking
to the center. Whether relaxation can account for mass segregation in the ONC depends upon
details of the gravitational potential and the precise ages of the systems (Bonnell & Davies
1998). For instance, Henney et al. (2002) have argued that the disks around low-mass stars
in the inner ONC are being photoevaporated so rapidly by θ1 C Ori that this most massive
member cannot be much older than about 105 yr, in which case its current position must
be essentially its site of formation. Overall, it seems likely that initial formation rather than
settling of massive stars to the bottom of the gravitational potential well is responsible for
the central concentration of the more massive stars.

6.5 Cluster formation
How do star clusters form, and why are they so ubiquitous? Several numerical

simulations have been undertaken to investigate fragmentation of protocluster gas (e.g.,
Klessen & Burkert 2000; Bate et al. 2003; Bonnell et al. 2003). Far less attention has been
paid to how the protocluster gas cloud is assembled in the first place; yet, without an under-
standing of cluster gas accumulation, it may be difficult to establish the initial conditions
leading to subsequent fragmentation.
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Some models have simply assumed that protocluster gas clouds are in some kind of
approximate virial equilibrium; the large densities and cloud masses are then supported by
“turbulence”, which in the simplest models is taken to be an additional pressure source;
observations are said to support such a picture, in the sense that dense protocluster gas is
highly turbulent. However, these models raise more questions than they answer; for instance,
what is the source of the turbulence? How does any known source of turbulence result in an
isotropic, time-constant pressure? More generally, it would seem that clusters are merely the
concentrated end of a general tendency for stars to group together.

Burkert and Hartmann (2004) suggested that the on-edge structure in molecular clouds
might provide a solution to this problem. As discussed in §2.6, finite sheets tend to collapse
to filaments, with a pileup of material near the ends. In general, Burkert and Hartmann
showed that edge regions of smaller radii of curvature can gravitationally collapse into
“focal points”, strongly concentrating matter. The principle of this simple idea is illustrated
schematically in Figure 6.7. A more complicated case is shown in Figure 2.11, where the
collapse of the rotating elliptical sheet produced a structure with a remarkable morpholog-
ical similarity to that of the Orion A cloud; the dense concentration of matter at the upper
end resulted from the process indicated in Figure 6.7.

In this interpretation, it is no accident that the ONC lies near the end of the Orion A cloud.
Other potential examples of this process may be the dense young clusters NGC 2023, 2024,
2068, and 2071, which form a roughly double structure near the ends of the Orion B cloud
(Figure 2.1). Another possible example is the Chamaeleon I cloud, with two relatively small
concentrations roughly toward the ends of the molecular gas distribution (Figure 6.5). Any
region of small radius of curvature can produce gravitational focusing, so that clusters need
not always or only form at the ends of clouds.

The amount of mass concentrated by a gravitational focal point is not limited to the local
Jeans mass. All that is required is that the cloud form relatively “fast” so that material can be
piled up before the structure can collapse upon itself. Thus, the long-range effects of gravity
can be used in principle to “pull in” large amounts of gas for cluster formation. The rate

Fig. 6.7. Schematic showing how curvature of the edge of a self-gravitating cloud can result
in a gravitationally focused flow, so that large masses can in principle be collected into small
volumes.
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of infall in this picture is not constrained by (thermal) hydrostatic equilibrium, and so the
high infall rates needed to form high-mass stars can be achieved very simply (see following
section). The difficulty of preventing collapse everywhere in a very massive cloud due to the
effects of global gravity (Chapter 2) may be the reason for the ubiquity of star formation
in clusters.

6.6 The Initial Mass Function
Salpeter (1955) estimated that the stars in the galaxy exhibited an initial mass

function (IMF) which declined steeply toward higher-mass stars,

ξ = d N

d log
M ≈ M−1.35 . (6.1)

Empirical estimates of the form of the IMF now appear to be converging toward a high-mass
power-law distribution with a slope similar to that estimated by Salpeter, with a change to
a much flatter slope around 1 M�, and perhaps a maximum in ξ at ∼0.3 M�. At still lower
masses, there may be a decline in ξ down to the end of the brown dwarf range at about
∼0.01 M�. Stars with masses greater than about 100 M� appear to be rare or absent, though
this is more likely due to instability in stars mostly supported by radiation pressure than
some intrinsic limit of accretion (§5.9).

The exact form of the IMF, and whether or not it is universal, has been the subject of
an enormous amount of work, as summarized in two recent conferences on the subject
(Gilmore & Howell 1998; Corbelli et al. 2005). A recent important review of the subject
is that of Bonnell et al. (2007). The methodology of deriving the IMF and the associated
uncertainties has been summarized in the magisterial contribution by Scalo (1986).

The recent review of the IMF by Chabrier (2003) suggests a combined log-normal and
power-law form for the average IMF:

ξ
(
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M

/
M�
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− (

log
(
M

/
M�

) − log(0.079)
)2

2(0.69)2

]
, M ≤ 1.0 M�; (6.2)

ξ

(
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(
M
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))
∼

(
M

M�

)−1.3

, M > 1.0 M�. (6.3)

Below 1 M� the correction for binaries may be especially significant (Kroupa 1993); it may
be convenient to define a system IMF in which the stars are lumped together,

ξ(log M) =∝ exp

[
− (log M − log 0.022)2

2(0.57)2

]
, M < 1 M� . (6.4)

Alternative, segmented power-law fits also have been used to represent the IMF, as discussed
by, for example, Kroupa (2002).

Whether or not the IMF has a universal form has been the subject of much debate (for
opposing views, see Kroupa 2002 and Scalo in Gilmore & Howell 1998). It is clear that
determining the form of the IMF in differing regions is a substantial observational challenge;
the distribution is very broad, so one must probe a large dynamic range in mass, and therefore
selection effects can be very important. For example, initial studies of star-forming regions
had suggested that perhaps star formation was bimodal, with high-mass stars and low-mass
stars forming separately; but as observational techniques improved, it became apparent that
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low-mass stars are present in great numbers within high-mass star-forming regions, and had
simply been missed in earlier studies (e.g., Herbig & Terndrup 1986). The steep form of the
IMF at high masses also presents challenges, simply in having large enough samples to have
statistically significant results for massive stars. Finally, the corrections needed to account
for binary or multiple companions add to the uncertainties.

The best evidence so far for variations in the IMF as a function of environment comes
from studies of two very young clusters: NGC 3603 (e.g., Eisenhauer et al. 1998) and the
Arches cluster (Stolte et al. 2005; Kim et al. 2006). The Arches cluster is only 20–30 pc from
the galactic center (in projection), and is as massive as the smallest galactic globular clusters
∼2 × 104 M�. Studies of both clusters suggest an upper mass power-law index � ∼−0.9
(in units of d log Nd log M , where the Salpeter slope would be −1.35), which may span the
range of 1.3–50 M� (Kim et al. 2006). However, this result on the IMF in the central regions
is not clearly a constraint on the initial IMF, as mass segregation can occur rapidly in such
a dense cluster; this would lead to an overabundance of massive stars in the central regions,
which are easiest to observe against the background. Indeed, Portegies Zwart et al. (2007)
suggest that the IMF slope of the Arches cluster was indeed close to the Salpeter value, but
has evolved as massive stars have settled closer to the cluster center.
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Fig. 6.8. Recent estimate of the IMFs in three nearby star-forming regions. From Luhman
(2004) and Muench et al. (2002).
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Current studies of star-forming regions suggest that in most sites, a standard IMF is
present (e.g., Muench et al. 2002; Luhman et al. 2003b; Figure 6.8). The Taurus star-forming
region provides evidence for a slightly different IMF, with perhaps somewhat fewer brown
dwarfs and most importantly a strong peak just below a solar mass (Briceno et al. 2002;
Luhman 2004). The Taurus results are most easily seen in terms of spectral types, which
are thought to be directly translateable into stellar mass (though the absolute calibration is
uncertain; Chapter 11). Taurus exhibits a strong peak at around K7-M0, whereas most other
young clusters have a peak in the number of objects near M3-M4.

6.7 Theories of the IMF
The studies cited above suggest that the stellar IMF is fairly similar in a variety of

regions. Overall, studies indicating that protostellar cores have a similar mass spectrum to
that of stars (e.g., Motte et al. 1998; Johnstone et al. 2000; Figure 6.9) suggest that whatever
determines the core masses mostly determines the stellar IMF.

A variety of explanations have been offered to explain the overall shape of the IMF,
including the following.

Random processes. Adams and Fatuzzo (1996) suggested that the combination of many
processes involving independent physical variables could ultimately yield a log-normal form
(via the central limit theorem). This point of view is attractive, in that a range of physical con-
ditions could easily be responsible for the broad peak in ξ for low-mass stars. However, it is
not clear that the specific variables suggested by Adams and Fatuzzo are the most important
parameters for star formation, nor that such parameters are necessarily independent of each
other. In particular, magnetic and turbulent pressures are not likely to be static and isotropic,
and it is far from clear that bipolar outflows can really remove much of the mass of a typical
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protostellar core (Chapter 5). Finally, the random parameter model predicts something like a
log-normal distribution, whereas studies of the massive end of the IMF suggest a power-law
distribution (see discussion in Chabrier 2003).

Competitive accretion. Because stars tend to form in groups if not in clusters, it has been
suggested that the initial cores might “compete” for accreting the leftover gas (Bonnell et al.
2001). This mechanism seems especially appropriate for developing the high-mass end of
the IMF, where the gravitational potential of the stars can help focus mass into dense inner
regions, resulting in more massive stars (e.g., Bonnell et al. 2004). The competitive accretion
model therefore results in a mass-segregated cluster.

A strength of this model is that observations of young clusters indicate that the most
massive stars form in roughly the same time as the low-mass stars. This means, for exam-
ple, that a 50 M� star must form with an accretion rate roughly two orders of magnitude
higher than a 0.5 M� star in the same cluster. From equation (4.20), to increase the mass
infall rate by two orders of magnitude from that of a thermally supported, near-equilibrium
core – whether a singular isothermal sphere or a Bonnor–Ebert sphere – would require a
sound speed 102/3 = 4.64 times larger, or a temperature ∼22 times larger, T ∼ 220 K. Such
high temperatures seem to be achieved by the heating of an already formed massive central
protostar, which therefore does not constitute an appropriate initial condition. Some have
suggested turbulent velocity support to take the place of the missing thermal support, but it
is far from clear that the required supersonic turbulence can be maintained sufficiently long
to make equilibrium plausible. Instead, if material is being attracted into a deep gravitational
potential well, perhaps due to the gravitational focusing discussed in the previous section,
the high infall rates needed to make massive stars rapidly can be produced without recourse
to problematic turbulent support. On the other hand, many young stars are formed in either
the distributed population or on modestly sized clusters, even up to moderately massive stars
(∼10 M�), which may be difficult to accomplish with competitive accretion.

“Turbulence”. In principle, turbulent motions in molecular clouds can serve to collect
and compress gas in sites which can eventually collapse gravitationally. Larson (1992) sug-
gested that if stars form in linear cloud structures such as filaments or lines of clumps, and
if the overall structure of clouds is sheet-like, then a slope of ξ ∝ M−1 would result. More
generally, if clouds have a “fractal structure” with a dimensionality of ∼2.3, then the IMF
slope would be comparable to the Salpeter value. A similar argument, with more detailed
calculations, was made by Elmegreen (1997).

Padoan and Nordlund (2002) argued that the high-mass end of the IMF is due to the
power spectrum of turbulence in molecular clouds as inferred from observations. Incorpo-
rating jump conditions for magnetic shocks, they found a mass function with slope ∼1.33,
similar to the Salpeter slope. A turnover at lower masses resulted from the probability dis-
tribution of the gas density, which is approximately lognormal, and by thermal pressure on
small scales. A recent set of detailed numerical simulations by Padoan et al. (2007) support
these conclusions. While the turbulence in these simulations is super-Alfvenic, Padoan et al.
argue that the magnetic field must be taken into account to obtain the correct form of the
high-mass IMF.

The idea that turbulence creates the seeds of star formation is very attractive. Nevertheless,
uncertainties remain due to our poor knowledge of the true nature of the motions in star-
forming clouds. For example, Padoan et al. (2007) use random forcing in Fourier space, but
there is no a priori reason why the phases of this forcing should be random. Also, Padoan
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et al. ran the simulations for several dynamical times so that the turbulent motions can
approach a steady state; but as discussed in Chapter 2, the rapid formation of stars upon
molecular cloud formation makes it highly unlikely that a steady state is achieved. Finally,
Padoan et al. (2007) point out that they could not achieve a statistically relaxed state with
self-gravity, but as argued by Burkert and Hartmann (2004) and Heitsch et al. (2007), it isn’t
obvious that self-gravity can be neglected.

To emphasize the potential importance of global gravity, Figure 6.10 shows a numerical
simulation of colliding flows (a special case of swept-up material; see also Figure 2.13).
Seen end-on, initial smooth perturbations lead to substructure, which, if dense enough,
cools sufficiently rapidly (in this case via thermal instability) to form dense, self-gravitating
lumps which in principle can collapse into stars before the entire region collapses globally,
ultimately to form a filament in this simulation. It may be that the turbulence generated
by the process of cloud formation can be used to provide physically self-consistent initial
conditions without the need of introducing assumptions about the turbulent spectrum, or
requiring some continuous forcing (Heitsch et al. 2005, 2006, 2007; Hennebelle & Audit
2007; Vázquez-Semadeni et al. 2007; §2.7).

“Jeans mass”. It is plausible that a turbulent cascade would set up a relatively robust
power-law mass spectrum, but this does not obviously provide a turnover in the IMF at low
masses. In principle, one might suspect that this has something to do with thermal pres-
sures, which enter into the “Jeans mass” (e.g., also Klessen & Burkert 2000, 2001; Klessen
2001). The question is, which Jeans mass? Since MJ ∝ T 3/2ρ−1/2, even under the relatively
isothermal conditions thought to be typical of local molecular clouds, low-mass objects can
still be produced from concentrations with sufficiently high density. Padoan and Nordlund
(2004) argued that turbulence naturally leads to high-density concentrations which can
make brown dwarfs in the same manner as solar mass stars; for isothermal conditions, this
requires densities (and thus pressures) two orders of magnitude larger than for 1 M� objects.
Although many simulations show a break in the mass spectrum at some sort of “Jeans mass”,
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Fig. 6.10. Face-on view of two atomic colliding flows, seen at three different times as noted
in the panels. Long-wavelength perturbations in the initial interface between the flows result
in turbulent fragmentation; radiative cooling then makes individual protostellar lumps (right
panel). The initial flows are elliptical in cross-section, with densities falling off to prevent the
development of very strong edge effects (§2.6, Figure 2.10), but even so an echo of the edge
forms as the accumulated material collapses under gravity. Modified from Heitsch et al.
(2008).
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the result may be affected by the resolution of the simulation (higher resolution is generally
needed to detect higher-density concentrations).

Larson (2005) recently suggested that the detailed behavior of the temperature as a func-
tion of density in molecular clouds causes a change in the ease of fragmentation. Calcula-
tions and observations suggest that denser regions are cooler, due to increased shielding from
external radiation and enhanced cooling, up to a certain density. Below this critical density,
which Larson suggested that would occur roughly round 106 cm3, a polytropic approxima-
tion would suggest T ∝ ρ(γ−1) with γ ∼ 0.7; this leads to a decreasing Jeans mass with
increasing density as γ ∼ 1.1 due to extra heating (see below); this would lead to a smaller
dependence of the Jeans mass on density, MJ ∼ ρ−0.35, which is suggested to cause less
fragmentation to smaller masses, changing the slope of the IMF. Numerical simulations by
Jappsen et al. (2005) seem to bear out the idea that changing the density–temperature relation
in this way can produce something like the desired turnover in the IMF at lower masses.

The physical processes which would produce such varying polytropic behavior are
unclear. Larson (2005) suggested that the temperature in the relevant density range is con-
trolled by the balance between dust cooling and heating due to the PdV work done by
dynamical compression in near free-fall. But, as discussed in §§2.5, 2.6, and 4.1, free-fall is
not conducive to fragmentation. Using a polytropic relation, as in the simulations of Jappsen
et al. (2005), is not the same thing as including a heating term which only becomes impor-
tant at high velocity. The idea of thermal support producing a low-mass turnover in the IMF
has its attractions, but the details of how this might really occur have yet to be worked out.

Opacity-limited fragmentation in disks. As discussed in §6.3, the simulations of Bate et al.
(2002, 2003) suggest that the opacity limit for fragmentation acts in dense protostellar disks
to form initial cores of a few Jupiter masses. Here the Jeans mass is much lower than in
the cloud-fragmentation case discussed immediately above because of the high densities
involved. The initial very low mass fragments then continue to accrete, so that the final
system mass probably tends to represent the “cloud conditions” Jeans mass(es). Very low-
mass objects are ejected from multiple systems before they have a chance to accrete much
more mass. As discussed in §6.3, observations to date show little evidence for the differing
spatial distributions of low- and higher-mass stars predicted by this picture.

The most plausible explanation of the stellar IMF in the author’s opinion is that it results
from a turbulent spectrum of initial perturbations, which can cool and collapse faster than
(likely) global gravitational collapse. The highest-mass stars may be fed at the expense of
smaller objects through competitive accretion. Thermal pressure support may produce a
turnover in the IMF as it resists the collapse of lower-mass, smaller regions. Fragmenta-
tion into binary and multiple systems may occur in initial collapse to flattened, disk-like
systems; this may lower the characteristic mass at which the IMF turns over. Clearly much
remains to be learned both observationally and theoretically before a robust theory of the
IMF emerges.
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Disk accretion

As described in Chapters 4 and 5, the collapse of protostellar clouds with plausible amounts
of angular momentum generally should result in the formation of disks as well as proto-
stars. Disk formation during the collapse phase is then followed by a longer phase of disk
accretion during which angular momentum is transferred to a small fraction of disk particles
at large radial distances, permitting the accretion of most of the disk mass onto the central
star (with some fraction possibly forming planets). The subsequent evolution of a star-disk
system will be controlled by the rate at which angular momentum is transported in the disk.

Substantial progress has been made in understanding two likely mechanisms for angular
momentum transport: magnetic turbulence and gravitational instability. Unfortunately, it has
proved difficult to apply these mechanisms to the development of a predictive theory of disk
evolution for young systems. The low ionization levels predicted for large regions of YSO
disks make it unclear whether the magnetic field can couple sufficiently well to the gas for
the so-called “magnetorotational instability” (MRI) to efficiently transport angular momen-
tum. While it seems likely that the MRI operates in some regions of YSO disks, it is far
from clear that it is the dominant factor in producing accretion. The effects of gravitational
instability depend sensitively on disk energy balance, and local heating and cooling rates are
difficult to determine.

General predictions about the emission of circumstellar disks can be made without know-
ing the specifics of the angular momentum transfer, as long as accretion is relatively steady,
the disk is optically thick, and energy dissipation is local (true for viscous disks in which the
MRI operates, but not obviously correct for disk accretion driven by gravitational waves).
The essence of this result can be derived from energy conservation and blackbody radiation.
If material accretes at a rate Ṁ through an annulus �R in a Keplerian disk at radius R from
a star of mass M∗, the gravitational potential energy released by accretion must be radiated
away by the disk surface; thus,

G M∗ Ṁ

2R

�R

R
∼ 2 × 2π R �R σ T 4

d , (7.1)

and so the disk surface temperature Td is predicted to vary as

Td ∼
(

G M∗ Ṁ

8πσ R3

)1/4

. (7.2)

While this result reproduces the basic dependence of disk temperature on radial distance,
one must also consider energy fluxes carried by viscous stresses to obtain the exact relation
(§7.2).
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To understand the temperature distributions of typical pre-main-sequence disks it is also
necessary to account for the radiation from the central star intercepted by the disk; the resul-
tant energy input can often exceed the heating resulting from accretion. In the limit of no
accretion energy release, the absorption of light from the star by an optically thick disk
balances the energy loss by disk radiation, so that

L∗
4π R2

< cos γ >∼ σ T 4
d , (7.3)

where < cos γ > is an average angle with respect to the disk normal at which rays from the
star enter the disk. With < cos γ > ∼R∗/R, where R∗ is the stellar radius, the temperature
distribution for the case of disk irradiation is

Td ∼
(

L∗ R∗
4πσ R3

)1/4

. (7.4)

Thus, whenever L∗ > G M∗ Ṁ/R∗, which is often the case for T Tauri stars, disk irradiation
dominates the disk temperature distribution. This is especially true for R � R∗, where
the finite vertical thickness of the disk generally increases cos γ substantially, such that
Td → R−1/2.

Since the disks of pre-main-sequence stars generally have very large radial extensions,
they radiate over a wide range of wavelengths, extending from the near-infrared to mm
wavelengths and beyond. Simple models predict a wide variety of observed properties of T
Tauri disks, but such models likely miss many details which will only become apparent with
future high-resolution imaging.

In this chapter a brief sketch of disk physics is presented with emphasis on issues most
important for pre-main-sequence systems. Fuller treatments of accretion disk physics in a
more general context can be found in several other sources: a basic and particularly clear
elaboration is given by Frank et al. (1992); a useful outline is presented by Pringle (1981);
another good review is given by Papaloizou and Lin (1995). Applications of disk theory to
observations of T Tauri stars are discussed in Chapter 8.

7.1 Energy minimization and angular momentum conservation
To illustrate some basic issues involved in disk accretion, we follow Lynden-Bell

and Pringle (1974) in considering an idealized situation involving only two bodies orbiting
around a central mass. Suppose that the bodies of (small) mass m1 and m2 are in circular
Keplerian orbits about the central mass M . Then the energy and angular momentum of this
system are

E = −G M

2

(
m1

r1
+ m2

r2

)
, (7.5)

and

J = (G M)1/2(m1r1/2
1 + m2r1/2

2 ), (7.6)

where r1 and r2 are the corresponding radial coordinates of the bodies. Now suppose that
the orbits are perturbed by small amounts while conserving the overall angular momentum
J . Then the relation between the perturbations is

m1r−1/2
1 �r1 = −m2r−1/2

2 �r2, (7.7)

and the corresponding change in the system energy, written in terms of the first body, is
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�E = −G Mm1�r1

2r2
1

[(
r1

r2

)3/2

− 1

]
. (7.8)

Suppose we wish to reduce the energy E of the system. If body 1 is at a larger radial dis-
tance from the center than body 2, we can decrease the energy of the system by a positive
displacement �r1, i.e., moving body 1 further away from the center. If body 1 is originally
closer to the center, then the energy can be reduced by a negative displacement �r1, moving
body 1 closer in. Thus, the energy can be reduced while conserving orbital angular momen-
tum by moving the initially closer body in and moving the initially outer body further away.
This is the basic action of the accretion disk; energy is released as material both accretes and
spreads to larger distances. If mass can be transferred between bodies, one can show (e.g.,
Lynden-Bell & Pringle 1974) that the system energy can be minimized by transferring mass
from the outer body to the inner body. With many bodies, the energy is minimized by mov-
ing most of the mass inwards as far as possible; this can be accommodated with conservation
of angular momentum if some (small) mass is moved outward to very large distances.

This process requires some way of connecting different particles in the disk. One
schematic way of picturing this is to imagine rings or annuli in a disk which rub against each
other (Figure 7.1). In all situations considered in this book, the angular velocity of the disk
system decreases outward (in the specific case of the Keplerian disk, � = (G M/r3)1/2).
This means that an inner annulus will rotate faster than its neighboring outer annulus. “Fric-
tion” between the two will try to spin up the outer annulus and spin down the inner annulus,

1

2
1

2

1

2

Fig. 7.1. Schematic treatment of angular momentum transfer in a shearing disk. The angular
velocity is assumed to decrease outwards. If there is “friction” or communication between
two neighboring annuli, the resulting torques will attempt to bring the two annuli into
co-rotation; a net torque will be exerted on the outer annulus in the sense of spinning it up,
i.e., gaining angular momentum. However, the simple hydrodynamic interchange of parcels
of material shown in the left-hand panel does not seem to work, because the inner material
being moved outward has less angular momentum, while the outer material has more angular
momentum; this interchange works in the direction of moving angular momentum inward,
not outward. The middle panel illustrates the potential effects of magnetic fields schemati-
cally, shown as if adjacent disk annuli are tied together by an (elastic) spring tethered at each
end. Starting with an initially radial configuration (dashed line), the differing angular veloci-
ties of the annuli will cause the spring to be stretched. The restoring force of the spring works
in the direction of trying to spin up the outer annulus and spin down the inner annulus, i.e.,
to transfer angular momentum outward. In the case of gravitational instability (right panel),
an excess of material gets sheared out by the differential rotation; the gravitational attraction
on the sheared excess (spiral arm pattern) exerts a restoring force in the same sense as the
magnetic case, again transferring angular momentum outward.
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i.e., angular momentum tends to be removed from the inner annulus and transferred outward.
Because the gravitational potential constrains the orbital motion, this transfer of angular
momentum results in moving material from the inner annulus inwards while outer material
gaining angular momentum will move to larger radii. Energy is lost due to frictional dissi-
pation, and this must cause the net gravitational potential energy of the system to decrease,
i.e., the net motion of disk mass must be inward.

The situation is more complicated in a gaseous disk because material diffuses in both
directions from all radii. One physical picture for the torque g between neighboring annuli
supposes that the gas exhibits (small) turbulent, random motions which cause mixing in
the radial direction. As indicated in Figure 7.1, this means that material between adjacent
annuli will be exchanged. Since the material originating in the two annuli will have different
specific angular momenta, this will cause a transfer of angular momentum between annuli.

The classical treatment of viscous accretion in gaseous disks postulates a kinematic, “tur-
bulent” viscosity which is much larger than molecular viscosity, and can be treated by the
same equations (e.g., Frank et al. 1992). The basic picture is one in which turbulent ele-
ments of the gas moving at a typical random velocity w travel a mean free path λ before
mixing with other material. Unfortunately, pure hydrodynamic mixing, whether by blobs or
a molecular viscosity, does not seem to be effective in transporting angular momentum out-
ward (Ryu & Goodman 1992; Stone & Balbus 1996). To see schematically why this might
be problematic, note that material interior to radius R has low angular momentum, so mixing
it outward tends to move lower angular momentum outward (Figure 7.1, blob 1). Similarly,
material exterior to R has higher angular momentum, so moving it inwards (blob 2) tends
to transport angular momentum inward, the opposite of what is needed for accretion. This
behavior is consistent with simulations which suggest hydrodynamic modes produce weak
angular momentum transport, mainly inward (Stone & Balbus 1996).∗

A (weak) magnetic field in a Keplerian disk is unstable and can produce a turbulent viscos-
ity which can be made consistent with the simple viscous disk model (Balbus & Papaloizou
1999). We return to this in §7.5. For the following we simply assume that an appropriate
viscosity can be determined and consider its effects.

7.2 The thin accretion disk
Consider a thin disk composed of particles moving essentially on circular orbits in

a single plane. We suppose further that any radial motions are small and that radial pressure
forces are negligible, so that the orbital motion of the disk is due entirely to equating the
centripetal acceleration with gravity. Then, adopting cylindrical polar coordinates (R, φ, z),
the circular velocity resulting from a gravitational potential �(R) is

v2
φ

R
= d�

d R
. (7.9)

The equation of mass conservation for an annulus of width �R at R, denoting the surface
density of the disk again by �, is

∂

∂t
(2π R�R�) = vR(R, t) 2π R�(R, t)

− vR(R + �R, t) 2π(R + �R)�(R + �R, t), (7.10)

∗ This discussion differs substantially from the corresponding treatment in the first edition, which used the Frank
et al. (1992) formulation for a viscous disk with kinematic viscosity.
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where vR is the net radial velocity of the material. (In a turbulent viscosity model, the tur-
bulent velocity w may be much larger than vR , but the turbulent motions do not represent a
net mass flux; §7.1.) The first term on the right-hand side of equation (7.10) is the flow of
material into the annulus and the second term is the flow out. Taking the limit for small �R,
one obtains

R
∂�

∂t
+ ∂

∂ R
(R�vR) = 0. (7.11)

Similarly, the equation for conservation of angular momentum can be written as

R
∂

∂t
(�R2�) + ∂

∂ R
(R�vR R2�) = − 1

2π

∂g

∂ R
. (7.12)

The usual fluid mechanics definition of viscosity νv is

g = −2π R�νv R2 d�

d R
, (7.13)

so that
∂

∂t
(�R2�) + 1

R

∂

∂ R
(�R3�vR) = 1

R

∂

∂ R

(
νv�R3 d�

d R

)
. (7.14)

The mass conservation equation can be used to eliminate vR, with the result that

∂�

∂t
= 1

R

∂

∂ R

⎡
⎣(

d�R2

d R

)−1
∂

∂ R

(
−νv�R3 d�

d R

)⎤
⎦ . (7.15)

Since the viscosity can be a function of local physical conditions in the disk, this is a non-
linear diffusion equation for �.

In many cases of interest most of the mass is contained in the central spherical star, so that
the gravitational potential is that of a central point mass, and the angular velocity takes on
its Keplerian value, � = (G M/R3)1/2. Then the diffusion equation (7.15) becomes

∂�

∂t
= 3

R

∂

∂ R

[
R1/2 ∂

∂ R
(νv�R1/2)

]
. (7.16)

It is convenient to have an equation for the mass flux as a function of radius; because

∂�

∂t
= 1

2π R

∂ Ṁ

∂ R
, (7.17)

we have

Ṁ = 6π R1/2 ∂

∂ R
(νv�R1/2). (7.18)

By assuming circular motion and a thin disk we have in effect imposed constraints on the
conservation of energy in this disk system. An annulus of width �R is subject to torques on
its inner and outer surfaces; the net torque is

g(R + �R) − g(R) = ∂g

∂ R
�R. (7.19)

The rate of working by this torque, i.e., the energy added, is

�
∂g

∂ R
�R =

[
∂

∂ R
(g�) − g

d�

d R

]
�R. (7.20)
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The first term on the right-hand side is a rate of “convected” rotational energy; integrated
over the radial extent of the disk, this is just

g�|outer edge − g�|inner edge (7.21)

and therefore is determined by the disk boundary conditions. The second term represents a
local rate of mechanical energy dissipation. In these equations this energy is assumed to be
lost from the system (i.e., radiated away). This energy loss per unit area for each of the two
sides of the disk is

Ė(R) = −gd�/d R

4π R
= (1/2) νv�

(
Rd�

d R

)2

. (7.22)

The radiation of this dissipated accretion energy makes the disk self-luminous.
The evolution of the viscous accretion disk depends upon the behavior of the viscosity

νv, which in turn can depend in complicated and unknown ways on disk properties. It is
instructive to explore some simple solutions of the diffusion equation (7.16) which illustrate
some general properties of accreting disks. To begin, we examine the case in which the
viscosity is constant. One may proceed with generality by considering only one initial (thin)
annulus of material because the assumption of constant viscosity makes the equation linear
in �, and therefore one can construct a general solution by adding up solutions for individual
annuli.

Starting with an initial density distribution representing an annulus of material at radius
R1,

�(R, t = 0) = δ(R − R1)

2π R1
, (7.23)

Lynden-Bell and Pringle (1974) showed that the solution to (7.16) for a constant viscosity
νv is

�(x, td) = x−1/4t−1
d

2π R2
1

exp

[
−(1 + x2)

2td

]
I1/4

(
x

td

)
, (7.24)

where I1/4 is the modified Bessel function of fractional order and the dimensionless distance
and time are x = R/R1 and td = 6νvt/R2

1, respectively. Plots of this solution at various
times are given in Figure 7.2. The net effect of the viscosity is to spread the ring of material,
ultimately concentrating mass at smaller radii, while small amounts of matter are pushed to
large distances to conserve angular momentum.

The evolutionary timescale of this ring is of order R2
1/νv, a result which is expected on

dimensional grounds. This can also be seen as the relevant timescale based on an argument
using the turbulent diffusion picture. Individual elements travel a distance λ before merging
with the background. The turbulent motion of a particle inward or outward then consists of a
random walk process with a mean free path λ at each step. It requires ∼N 2 ∼ (R1/λ)2 ran-
dom walk “steps” for the particle to move a distance ∼R1; each “step” takes a time ts∼λ/w;
thus the time taken, on average, for a particle to diffuse a distance R1 is ∼R2

1/(λw)∼R2
1/νv.

Another illustrative result can be obtained with the assumptions that the viscosity is inde-
pendent of time and is a power-law function of radius. Recall that in the case of free-fall
collapse of an initial power-law density distribution (the singular isothermal sphere; Chapter
3), it was possible to find a similarity solution provided inner and outer boundary conditions
did not become important. It is also possible to find similarity solutions to the disk evolution
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Fig. 7.2. Calculation of the diffusion of a ring of material of unit mass initially at R = R1
for the case νv = constant. As time proceeds, the ring spreads, and distributes more and more
mass to smaller radii; results are shown for multiples of 0.004, 0.016, 0.064, and 0.256 of
the time measured in units of R2

1/(6νv). The turn-down of the surface density at small radii
is due to the inner boundary condition employed (see §7.3). After Lynden-Bell and Pringle
(1974).

case for the above conditions, as shown by Lynden-Bell and Pringle (1974), and we develop
one of these solutions to explore some general properties of viscous accretion disks.

It is useful to recast the equations in terms of the specific angular momentum h = �R2 as
a variable. Expanding equation (7.12) in terms of h, and using the mass continuity equation,

∂g

∂ R
= − Ṁ

∂h

∂ R
, (7.25)

where the (outward) mass flux is Ṁ = 2π R�vR. This equation can be written as

∂g

∂h
= − Ṁ . (7.26)

The continuity equation (7.11) becomes

∂�

∂t
+ 1

2π R

∂ Ṁ

∂ R
= 0. (7.27)

Substituting for � and Ṁ with g and h, we have

− ∂

∂t

(
g

νv R2d�/d R

)
− ∂

∂ R

(
∂g

∂h

)
= 0, (7.28)

or

∂2g

∂h2
= − ∂

∂t

[
g

νv R2(d�/d R)dh/d R

]
. (7.29)

For a central point mass dominating the gravitational potential,

� = (G M/R3)1/2, h = (G M R)1/2. (7.30)
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so that

∂2g

∂h2
= 4h2

3νv(G M)2

∂g

∂t
. (7.31)

This equation simplifies greatly if we assume that the viscosity depends only upon R as a
power law. For simplicity we take the special case νv = ν◦(R/R◦), which may be appropriate
in some circumstances. Then we may write

∂2g

∂h2
= 4R◦

3ν◦G M

∂g

∂t
≡ κ2

g
∂g

∂t
, (7.32)

where κ2
g is a constant. Note that because

� = − g

2π R3νvd�/d R
, (7.33)

finding a solution for g is equivalent to solving for �.
Following Lynden-Bell and Pringle (1974), suppose we look for modes of the form

g ∝ exp(−st). (7.34)

If we set k2 = κ2
g s, the equation for a single mode is simply

∂2gk

∂h2
= −k2 ∂g

∂t
. (7.35)

For simplicity we assume that g vanishes at the origin h = 0, i.e., there is no central torque.
Then the solutions to this equation are of the form

g(t, h) =
∫ ∞

0
dk e−tk2/κ2

g Ak sin(kh). (7.36)

From the Fourier theorem, we have

Ak′ = 2

π

∫ ∞

0

∫ ∞

0
Ak sin(kh)dk sin(k′h)dh =

∫ ∞

0
dh g(0, h) sin(k′h). (7.37)

This equation can be used to find the coefficients Ak with an initial form for the torque.
For reasons that will become apparent, we try the initial solution

g(0, h) = Cghe−a2h2
, (7.38)

where Cg and a are constants. Substituting this into the equation (7.37),

Ak = 2

π

∫ ∞

0
Cghe−a2h2

sin(kh)dh ; (7.39)

integrating by parts, we find

Ak = Cg
k

2a2

1

π1/2a
e−k2/(4a2). (7.40)

Then substituting back into (7.36),

g(t, h) = Cg

2a3π1/2

∫ ∞

0
dk k e−[(t/κ2

g )+(1/4a2)]k2
sin(kh). (7.41)
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This integral is exactly of the same form as the one needed to determine the Ak . After some
manipulation we finally arrive at the result

g(t, h) = Cgh[
(4a2t/κ2

g ) + 1
]3/2

exp

[
− ah2

(4a2t/κ2
g ) + 1

]
. (7.42)

This solution has the same form at all times, i.e., it represents a similarity solution. To see
this more clearly, define

Tg = 4a2

κ2
g

t + 1. (7.43)

Then we can write the solution (7.42) as

g = CghT −3/2e−a2h2/T . (7.44)

If we make the identification

a2 = (G M R1)
−1, (7.45)

where R1 is the appropriate length scale for the initial density distribution, we can solve for
the mass flux and the surface density of the disk in terms of physical variables,

Ṁ = CgT −3/2
g exp

(
− R/R1

Tg

)[
1 − 2R/R1

Tg

]
, (7.46)

and

� = CgT −3/2
g

3πν◦(R/R◦)
exp

(
− R/R1

Tg

)
, (7.47)

where

Tg = 3ν◦t

R◦ R1
+ 1 = t

R2
1/3νv(R1)

+ 1. (7.48)

Solutions for this case are plotted in Figure 7.3. The disk expands to take up the angular
momentum as accretion proceeds. The disk mass decreases with increasing time, because
material is flowing into the origin (onto the central star; we have ignored the change in
central stellar mass in this calculation). The inner disk regions approach a constant mass
accretion rate (as a function of radius); overall, the inner mass accretion rates decrease with
time as the disk empties out.

Equation (7.46) shows that the mass flux changes sign at a radius Rtr = R1Tg/2. At larger
radii, the net flow of matter is outward; at smaller radii, the net flow of mass is inward.
Eventually most of the disk mass is accreted onto the origin; however, one may show by
integrating the equation for � with radius that most of the mass in the disk at any given
instant of time is actually moving outward.

This self-similar solution scales with the scaled non-dimensional time Tg as R ∝ Tg . This
solution thus expands linearly in size with time (for Tg >> 1), like the singular isothermal
sphere similarity solution discussed in §3.2. A qualitative difference in the nature of these
similarity solutions is that in the case of the expansion-wave solution for infall, the initial
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Fig. 7.3. Similarity solution for νv ∝ R. If R is measured in units of R1, then the solutions
shown correspond to Tg = 1, 4, and 16 (see text). The surface density (upper left panel)
exhibits the same shape at all times when scaled as discussed in the text. The mass flux
(upper right) is negative at small radii (accretion) and positive at large radii (expansion).
The viscous dissipation rate is shown in the lower left panel, while the disk mass shown in

the lower-right panel exhibits a T −1/2
g scaling. The dashed lines show the � ∝ R−1 and

D(R) ∝ R−3/4 scaling expected for steady accretion (§7.3).

condition is important, and at late times there is no guarantee that the similarity solution
will hold (unless the initial singular isothermal sphere were truly infinite). In contrast, for
the disk accretion case, the surface density approaches the similarity solution as the disk
expands far beyond its initial (characteristic) radius R1, no matter what the initial surface
density distribution was. This can be seen from a Green’s function analysis, which shows
that the Green’s function for this problem asymptotically approaches the similarity form
given above with increasing time.

This similarity solution obviously is not unique; Lynden-Bell and Pringle (1974) give the
general solutions for all cases where the viscosity has a power-law dependence on radius. In
general one cannot expect the viscosity to scale precisely as any power-law in radius, or be
independent of other disk properties. Nevertheless, this simple similarity solution illustrates
some generic properties of viscous accretion disks, and provides a simple basis upon which
to explore disk evolution, as discussed further in Chapter 12.
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7.3 The steady optically thick disk
Given the uncertainties in understanding angular momentum transport in accretion

disks, it is important to develop results which are not sensitive to νv. The similarity solutions
shown in Figure 7.3 suggest that disks tend to evolve toward a nearly constant accretion rate
(as a function of radius at a given time) in their inner regions. Using the assumption of steady
flow, the emission from the accretion disk can be predicted independently of the viscosity,
provided the disk is optically thick.

For steady accretion the mass conservation equation becomes

Ṁ = −2π R�vR, (7.49)

where we have assumed that the constant mass flux Ṁ is inward, and the conservation of
angular momentum equation can be integrated to yield

�R3�vR = νv�R3 d�

d R
+ C, (7.50)

where C is a constant of integration. Alternatively, this result can be written as

− νv�
d�

d R
= ��(−vR) + C

R3
. (7.51)

Most T Tauri stars are slowly rotating, at rates much less than the Keplerian velocity. It
follows that the angular velocity in the disk must eventually decrease (if the disk extends up
to the stellar surface, which does not appear to be the case in general; Chapter 8). At the point
where the derivative of the angular velocity goes to zero (Figure 7.4), C = −Ṁ�R2/2π ;
therefore C is proportional to the angular momentum flux at the point where the radial
derivative of � changes sign.

In simple disk theory, the point where the shear goes to zero is expected to be close to
the stellar surface, for reasons outlined in §7.8. For the moment we assume this and write
C = −Ṁ(G M R∗)1/2/2π , where R∗ is the stellar radius, so that

Ω

R

Ω*

dΩ/dR = 0

R*

Δ R

Fig. 7.4. Schematic diagram of the angular velocity in the region where the disk reaches
the stellar surface. The star is assumed to be rotating at a rate �∗ that is much less than
the Keplerian velocity near the surface. Therefore, there must be a maximum in the angular
velocity � of the disk. The point where d�/d R = 0 is assumed to be a small distance
�R << R∗ exterior to the stellar surface. The narrow region where the disk material loses
most of its rotational kinetic energy is called the boundary layer (see §7.8).
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νv� = Ṁ

3π

[
1 −

(
R∗
R

)1/2
]

. (7.52)

Far from the inner boundary condition, the steady disk has � ∝ ν−1
v ; this is consistent with

the results for the inner, nearly steady regions of the similarity solution discussed in §7.2.
To obtain the surface temperature distribution of the disk, and therefore its emission prop-

erties, we use the result that the viscosity generates dissipation of energy in the disk at a rate
D(R) per unit area per unit time (cf. equation (7.22)),

D(R) = Ė = 1

2
νv�

(
R

d�

d R

)2

= 3G MṀ

8π R3

[
1 −

(
R∗
R

)1/2
]

. (7.53)

Note that in the limit of constant mass accretion rate, the energy release is independent of
the viscosity νv. Integrating the dissipated energy over radius yields the total energy release
by accretion,

Ld = 1

2

G MṀ

R∗
. (7.54)

This is one-half the total accretion energy available, as can be seen by considering bringing
in a parcel of material which starts out at infinite radius and therefore has zero energy; at the
inner edge of the disk, the gravitational potential energy is twice the kinetic energy of the
inner Keplerian orbit. A comparable amount of energy can be released if the kinetic energy
of the material at the inner edge of the disk is completely dissipated as it comes to rest upon
a slowly rotating star (see §7.8).

A peculiarity of this solution is that the energy released in an annulus at R >> R∗ is
three times the energy produced locally by accretion through the annulus. The extra energy
is provided by a large viscous energy flux transporting energy away from the inner bound-
ary (equation (7.21)). There is a deficit of energy release near R∗ as the viscous energy is
convected outward by the action of the torque g. As discussed by Lynden-Bell and Pringle
(1974), in this model the torques go to zero at the inner boundary and at infinity; thus, the
torques can only redistribute the energy released by accretion in this region. It is worth
emphasizing that the assumed boundary condition on the angular momentum flux may not
be correct in general; for example, interaction with a stellar magnetosphere could produce
different torques (Frank et al. 1992).

If we make the simple assumption that the disk radiates from its surface like a blackbody,
then the surface or effective temperature of the disk is

T 4
d = 3G MṀ

8π R3σ

[
1 −

(
R∗
R

)1/2
]

. (7.55)

The maximum temperature of the disk,

Tmax = 0.488

(
3G MṀ

8π R3∗σ

)1/4

, (7.56)

occurs at Rmax = 49/36 = 1.36R∗. We note that the temperature distribution given by
(7.55) formally goes to zero at the inner edge of the disk. This results from the assumed
boundary condition on the angular momentum, as discussed above. Although a decrease
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to zero temperature is unphysical, modifications require considering the disk structure and
inner boundary condition in detail.

With this result, the luminosity as a function of frequency emitted by the disk can be
calculated from

Lν =
∫ Rout

Rin

π Bν[Td(R)] 2π Rd R, (7.57)

where Lν is the luminosity and Rout and Rin are the inner and outer disk radii. As shown in
Figure 7.5, at high frequencies or small wavelengths, the emission is dominated by the hot
inner edge of the disk, and the spectrum has an exponential fall-off to higher frequencies. If
the disk is optically thick at all wavelengths, and it has a finite outer radius (and thus a lower
limit to the temperatures at which the disk emits), at very long wavelengths the spectrum
varies as Lν ∝ ν2, because the emission from all disk annuli have this spectral form at long
wavelengths regardless of their temperature. In practice, this limit is not very important for
disks around YSOs because the (dust) opacity falls off rapidly with increasing wavelengths,
and so the long-wavelength emission of real disks tends to be optically thin.

At intermediate wavelengths, the spectrum has a characteristic power-law shape produced
by the power-law temperature distribution. This can be seen by writing the temperature in
terms of a fiducial value at some specified radius, Td = T◦(R/R◦)−3/4, and neglecting
the turn-over in the temperature near the inner edge of the disk. The integral can then be
written as

Lν = 16π2h R2◦
3c2

(
kT◦
h

)8/3

ν1/3
∫ xout

xin

x5/3 dx

(ex − 1)
, (7.58)

where x = hν/kTd. When the outer and inner limits are sufficiently large and small, respec-
tively (i.e., the inner and outer disk temperatures are sufficiently different), the integral over
x is nearly constant, so the spectrum varies with frequency as Lν ∝ ν1/3, or λLλ ∝ λ−4/3.

–1.0
0.0

1.0

2.0

3.0

4.0

5.0

–0.5 0.0 0.5 1.0 1.5 2.0
log λ

λ Fλ ∝ λ–4/3

lo
g 

λ 
L

λ

Blackbody

Fig. 7.5. Spectrum of the optically thick steady disk. At short wavelengths, the SED looks
like a blackbody with the temperature of the hottest disk annulus; at long wavelengths, the
asymptotic λLλ ∝ λ−4/3 is observed, resulting in much more emission at long wavelengths
than would result from a single-temperature blackbody (dashed line).
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7.4 The α disk
In the absence of a detailed theory, the viscous stress may be parameterized for

comparison with observations. The usual way of doing this is through the dimensionless
parameter α introduced by Shakura and Sunyaev (1973). We use the modified formalism in
which the viscosity is scaled in terms of a characteristic length and a turbulent velocity. It is
generally assumed that the length scale of the turbulence in a disk will be less than the scale
height H , and the eddy velocity will be less than the sound speed cs. Thus, the kinematic
viscosity can be written as (cf. Pringle 1981)

νv = αcs H, (7.59)

where α ≤ 1. Shakura and Sunyaev also argued that this form might be expected to hold
for magnetic stresses. Defining the Alfvén speed v2

A = B2/4πρ, Shakura and Sunyaev
suggested that α ∼ V 2

A/c2
s should similarly be less than unity, a guess that is consistent with

simulations of the magnetorotational instability (§7.5).
The α parameterization can be used to illustrate some features of disk structure most easily

discussed in the steady disk approximation. Substituting equation (7.59) into the steady disk
angular momentum equation,

αcs H� = Ṁ

3π

[
1 −

(
R∗
R

)1/2
]

, (7.60)

produces an equation for the surface density � provided that some relation is found between
the total energy dissipated and the central temperature, which is most appropriate for this
vertically averaged form. (Note that the surface density � → 0 as R → R∗ using the temper-
ature distribution of equation (7.55); again, the issue of conditions at the innermost edge of
the disk must be settled by more detailed considerations.)

We may proceed a bit further by developing a relation for the scale height. Force balance
in the vertical z direction, perpendicular to the disk plane, is given by a balance between the
vertical component of gravity and the vertical supporting pressure gradient,

d P

dz
= − G Mρ

(R2 + z2)

z

(R2 + z2)1/2
. (7.61)

For simplicity, adopt an ideal gas law P = ρc2
s , take the sound speed cs to be constant in z,

and assume that the disk is thin, i.e., R >> z. Then the density structure is given by

ρ = ρ0 exp

(
− z2

2H2

)
, H = (R3c2

s /G M∗)1/2, (7.62)

where the scale height H can be written in terms of the sound speed and the Keplerian
velocity vφ ,

H

R
= cs

vφ

= cs

�R
. (7.63)

Again assuming isothermality in z, and neglecting the factor in brackets in equation (7.60),
T (R, z) ∝ R−3/4 or cs ∝ R−3/8. Then the scale height of the disk varies as H ∝ cs R/vφ ∝
cs R3/2 ∝ R9/8, and therefore the surface density varies as � ∝ α−1 R−3/4.

It is worth emphasizing from this example that H/R increases with increasing R; that is,
disk isodensity contours tend to curve away from the disk midplane, a feature called disk
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“flaring” (Kenyon & Hartmann 1987). This property is crucial to understanding the SEDs of
disks, as discussed further in §7.9 and Chapter 8.

It is also worth pointing out that for the α parameterization, the radial accretion velocity
in the steady disk,

vR ∼ (3/2)αcs

(
H

R

)
, (7.64)

is highly subsonic, consistent with the assumptions of nearly circular motion. Finally, note
that the mass accretion rate scales as

Ṁ ∝ ν� ∝ αcs H� ∝ αc2
s �� ∝

(
αT �

�

)
. (7.65)

Thus, a higher value of viscosity (larger α) leads to a larger mass accretion rate for a given
surface density; conversely, for a given mass accretion rate, the surface density � ∝ α−1.

In general, the relationship between the central temperature and the surface temperature
(or the dissipated energy) is not so simple and an energy balance equation coupled with a
constitutive equation must be solved to close the equations. It is also not obvious that α is
constant at all radii; indeed, given considerations of the following section, variations in α

seem likely.

7.5 Sources of viscosity: the magnetorotational instability
It is evident that a complete theory of disk accretion requires a knowledge of the

viscosity. However, molecular viscosity is so small that disk evolution due to this mechanism
of angular momentum transport would be far too slow to be of interest. Turbulent convection
in disks has been a popular mechanism for viscosity for some time (Lin & Papaloizou 1980);
unfortunately, as discussed in §7.1, investigations suggest that convection might actually
transport angular momentum inward more effectively than outward (Cabot & Pollack 1992;
Ryu & Goodman 1992; Stone & Balbus 1996). Other gas dynamic waves might be important
in carrying angular momentum, particularly if they are forced by some external factor, such
as the gravitational field of a companion star (e.g., Vishniac & Diamond 1989; Rozyczka &
Spruit 1993). However, the presence of a companion star or massive planet does not seem
to be sufficiently general to account for pre-main-sequence disk accretion in many or most
cases.

The favored mechanism for producing an “α” type viscosity is the “magnetorotational
instability” (MRI) initially discussed by Velikhov (1959) and specifically developed for
accretion disks in a series of papers by Balbus and Hawley (1991) and collaborators (related
discussions were also provided by Chandrasekhar (1960) & Fricke (1969), and a recent
review has been presented by Balbus and Hawley (1998)). The essence of this instability is
indicated in Figure 7.1. Imagine that a magnetic field line initially connects two neighboring
annuli in a radial direction, as shown by the schematic “spring” (position 1). Because these
two annuli have differing angular velocities, the spring (field line) will become stretched
as the shear proceeds (position 2). The magnetic field will try to oppose the shear, but if it
is not initially “strong”, it cannot resist. The magnetic field line will then try to straighten
out, which requires speeding up the outer annulus relative to the inner annulus, i.e., trans-
ferring angular momentum outward. As the inner annulus loses angular momentum, it will
fall in deeper to the potential well, increasing its angular velocity further, while the outer
annulus will tend to move outward and slow down, enhancing the stretching of the magnetic
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z

R

Fig. 7.6. Development of the MRI, as indicated by magnetic fields in the meridional plane
for a disturbance with a finite vertical wavenumber. The field lines stretch radially as they
shear toroidally (see Figure 7.1), and then break up into turbulent regions.

field. This is the essence of the instability. Three-dimensional numerical simulations suggest
that the MRI results in vigorous magnetohydrodynamic turbulence, which can in principle
provide the needed viscosity for accretion disks.

To see how this instability can give rise to turbulent motions, consider a magnetic field
line which is initially vertical, i.e., perpendicular to the disk plane (Figure 7.6). Suppose that
a small sinusoidal perturbation is applied to the field line. Then, for the reasons discussed in
the previous paragraph, the outward “bulges” will tend to be stretched further outward, while
the inward bulges will tend to be stretched further inward. The result is increasingly long (in
the radial direction) loops of magnetic field, allowing the interchange of material moving
inward and outward at different (randomly varying) levels z in the disk. This behavior is
shown dramatically in the numerical simulations of Hawley et al. (1995) and Stone et al.
(1996).

What if there is no magnetic field to begin with? The stretching of the magnetic field
shown in Figure 7.1 amounts to an amplification of the field. The instability can amplify
small (perturbation) fields to larger fields, i.e., it can exhibit dynamo activity (Tout & Pringle
1992; Vishniac & Diamond 1992; Curry et al. 1994; Brandenburg et al. 1996; Hawley et al.
1996; also Rincon et al. 2007), so the instability may arise even if there is a vanishingly
small initial magnetic field. On the other hand, if the magnetic field is too strong, it can
enforce co-rotation of the neighboring annuli and quench the instability. This places a limit
on the magnetic field such that the magnetic pressure must be less than the gas pressure.

To place the MRI in the context of the α disk formalism (e.g., Balbus & Papaloizou
1999), consider the momentum equation for a gas with density ρ, velocity v, pressure P ,
gravitational potential �, and magnetic field B is (see Appendix 1)

∂ρ

∂t
+ ∇ · (ρv) = −∇ P − ρ∇� + 1

4π
(∇ × B) × B, (7.66)

which can be rewritten using vector identities as

∂ρ

∂t
+ ∇ · (ρv) = −∇ P − ρ∇� + − 1

8π
∇B2 + 1

4π
(B · ∇) B. (7.67)
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Here we have ignored the kinematic viscosity. The azimuthal component of this equation
expresses angular-momentum conservation:

∂ρRvφ

∂t
+ ∇ · R

[
ρvφv − Bφ

4π
Bp +

(
P + B2

p

8π

)
êφ

]
= 0, (7.68)

where the subscript p denotes a poloidal vector component. (We will see this equation again
in Chapter 10, while discussing magnetic winds and infall.)

Now decompose the velocity into a steady circular component plus a fluctuating part u,

v = R�êφ + u. (7.69)

Further assume that the mean radial velocities (i.e., accretion or expansion) are small in
comparison with the fluctuating component, so that

|〈u〉|2 � 〈u2〉, (7.70)

where the averaging is done over a region larger than a scale height but not very large in com-
parison with R. We substitute this into equation (7.68), and take an average over azimuthal
angle φ; this averaging eliminates the gas and magnetic pressure term. Then, ignoring uφ in
comparison with R�,

∂

∂t
〈ρR2�〉φ + ∇ · R

[
〈ρR�up〉φ +

〈
ρ

(
uφup − Bφ

Bp

(4πρ)

) 〉
φ

]
. (7.71)

We define the density-weighted mean of 〈X〉ρ as the integral of quantity ρX taken over all
azimuth, over a radial distance �R, and over height z. Finally we define the equivalently
weighted, radial component of the final term of equation (7.71),

WRφ = 1

2π�R�R

∫ ∞

−∞

∫ R+�R/2

R−�R/2

∫ 2π

0

[
uφup − Bφ

Bp

(4πρ)

]
. (7.72)

Then the equation of angular momentum conservation becomes

∂

∂t
〈�R2�〉ρ + 1

R

∂

∂ R
(R3��〈uR〉ρ + R2�WRφ) = 0, (7.73)

which is of the same form as equation (7.14).
We can proceed further by using the mass conservation equation, which essentially is the

same as (7.10):
∂�

∂t
+ 1

R

∂(R�〈uR〉ρ)

∂ R
= 0. (7.74)

Substituting this into equation (7.73) yields

�〈uR〉ρ = 1

R

∂

∂ R

(
d�R2

d R

)−1
∂

∂ R

(
−�R3WRφ

)
. (7.75)

Combining these, we finally arrive at the equation for the evolution of the surface density,

∂�

∂t
= 1

R

∂

∂ R

(
d�R2

d R

)−1
∂

∂ R

(
�R2WRφ

)
. (7.76)
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This equation has the same form as (7.15), with the identification

WRφ = −νv R
d�

d R
. (7.77)

These equations simply exhibit a formal similarity to the α disk theory. For this to work
in practice, it must be the case that the fluctuating components uR and uφ , and BR and
Bφ , are correlated. Moreover, because d�/d R < 0, outward angular momentum transport
requires that WRφ > 0, so that these fluctuations are positively correlated. One must turn to
simulations to show that the MRI exhibits the necessary correlations (Balbus & Papaloizou
1999).

This suggests that suitably averaged disk behavior can be studied with the simple vis-
cous disk theory, at least for some applications. Presciently, Shakura and Sunyaev (1973)
originally developed the α disk theory in terms of a magnetic stress, parameterized by

WRφ = −αSSc2
s . (7.78)

The relation between the α used in the previous section and the Shakura–Sunyaev value is
thus

αcs H R
d�

d R
= αc2

s
d ln �

d ln R
= −αSSc2

s ; (7.79)

thus, for a Keplerian disk, αSS = (3/2)α.
Efforts to characterize the magnitude of the MRI viscosity quantitatively are still uncer-

tain. Three-dimensional numerical results (e.g., Brandenburg et al. 1996; Stone et al. 1996;
Heyvaerts et al. 1996) suggest

α ∼ 0.1 − 0.01, (7.80)

but there is uncertainty about how these values depend upon specific parameters (size of the
simulated region, etc.); there may also be difficulties in running simulations long enough
to construct meaningful averages (Winters et al. 2003). There are indications that the MRI
saturates at a specific fraction of the total magnetic pressure (Sano et al. 2004), but how
one translates this into a limit on α is not yet clear. More recently, there are concerns that
numerical simulations tend to yield values of α ∼ 0.01 while observations tend to indicate
larger values by as much as an order of magnitude (King et al. 2007).

It should be noted that in general, the MRI does not act precisely as an α viscosity, in the
sense that it may not be linear in d�/d R as equation (7.77) indicates (Ogilvie 2003; Pessah
et al. 2006). However, this is unlikely to be an important issue for near-Keplerian disks.

7.6 The ionization problem
A crucial issue in applying the MRI to the disks of YSOs is the requirement that the

magnetic field must couple effectively with the gas. Since the magnetic field acts only upon
charged particles, the efficiency with which the MRI mechanism can work depends upon
whether there are enough ions in the gas; otherwise, collisions between ions and neutrals
may not be frequent enough to transfer momentum effectively from the former to the latter.
In the cold, dusty disks around young stars, the ionization fraction is likely to become quite
low (cf. Umebeyashi & Nakano 1988; Reyes-Ruiz & Stepinski 1995; Gammie 1996b; Sano
et al. 2000), strongly reducing the effectiveness of the MRI, or even eliminating its action
altogether (Blaes & Balbus 1994).
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At temperatures around T >∼ 1000 K, low-ionization-potential atoms such as K and Na
can provide enough electrons for the MRI to operate under typical conditions. However,
most of the mass of YSO disks is likely to reside in much colder regions. To address this
problem, various mechanisms producing non-thermal ionization of disks have been sug-
gested, the two most prominent being galactic cosmic rays (Gammie 1996a) and X-rays
from the central young star (Glassgold et al. 1997; Igea & Glassgold 1999). It has been
argued that the magnetic fields of young stars, especially in their outflows, might scatter
cosmic rays away (as the solar wind does) so effectively as to strongly reduce or eliminate
them as an effective ionizing agent for the disk. However, earlier-type stars (such as HAe/Be
stars) apparently possess accretion disks, yet they appear to be relatively weak X-ray emitters
(see §8.7).

Whether using cosmic rays or X-rays as the ionizing mechanism, it seems likely that
not all regions of YSO disks are completely penetrated by the ionizing fluxes (although
Fromang et al. 2002 argue that this may not be true, especially if small amounts of metal
ions are present). The difficulty in ionizing much of typical protoplanetary disks led Gammie
(1996a) to suggest that YSO disks have “dead zones”, that is, regions of the disk which are
inactive in terms of angular momentum transport (and magnetic/viscous energy dissipation);
the MRI occurs in upper disk layers, as indicated schematically in Figure 7.7.

Fleming and Stone (2003) numerically simulated a stratified disk region, where the MRI
only operated in the outermost (in z), lower density layers. They found that the turbulence
generated by the MRI-active layers could penetrate into the inactive layers, developing a low
level of angular momentum transport. However, it seems very unlikely that this turbulence
can drive much more mass accretion than can be driven in the upper, active layers, because
the mass flux is proportional to α
 (equation (7.65)); thus, the order-of-magnitude smaller
α in the dead zone found by Fleming and Stone would have to penetrate to an order of

ìActive ”

“Dead”

Fig. 7.7. Schematic version of a “layered” accretion disk. The innermost regions can be
sufficiently ionized for the MRI to operate because the disk is warm, with estimated temper-
atures >∼1000 K; the outer regions may also be the site of an “active” MRI due to non-thermal
ionization by cosmic or X-rays. At intermediate radii, the disk is too cold for thermal ion-
ization to be effective, and has too high a surface density for cosmic or X-rays to penetrate;
this region may then be relatively inert, not subject to the MRI (Gammie 1996a; see text).
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magnitude larger surface density than the active layer to have a significant effect on the
mass accretion rate, which seems implausible.

In the simplest version of the layered theory, Gammie (1996a) suggested that the cosmic
rays would magnetically activate a roughly constant (upper) surface density �a . Studies of
X-ray ionization by Igea and Glassgold (1999) suggest only a weak dependence of �a on
radius for this mechanism. If we take both α in the active layer and �a as constants for
simplicity, then equation 7.18 implies

Ṁ = 6π R1/2α�a
∂

∂ R

c2
s R1/2

�
. (7.81)

Then if we further assume c2
s ∝ T ∼ R−1/2 (see §7.9 and Chapter 8) as typical of irradiated

T Tauri disks, Ṁ ∝ R. That is, the layered disk model in its simplest form is unlikely to be
steady; instead, mass will tend to pile up over time in the inner regions, which might lead
eventually to gravitational instabilities (Gammie 1996a; §7.7).

Another possible mechanism of magnetic angular momentum transport is the ejection of
disk winds. Strong winds are associated with rapidly accreting disks, and the most plausible
origin for these outflows is that they are “slung off” the disk surface by magnetic fields
rooted in the disk (Chapter 10). The magnetic fields couple the disk to ejected material which
carries away angular momentum. Models have been constructed in which all of the angular
momentum transport needed for accretion is carried away by such winds; however, in this
case all of the accretion energy is carried away as well (§10.8). Observations show that
at least some disks are self-luminous due to the dissipation of accretion energy (Chapters
8, 9), and other considerations suggest that winds are not the dominant mode of angular
momentum transport of pre-main-sequence accretion disks (Chapter 10).

7.7 Gravitational instability and angular momentum transport
The probability that most of the mass of a typical star initially resides in its disk

suggests that disks might be self-gravitating in early phases of evolution. Gravitational insta-
bilities may also transfer angular momentum, as can again be illustrated from the schematic
drawing in the right-hand panel of Figure 7.1. Suppose that instead of a magnetic field line
there is a radially extended mass concentration, as shown in the right-hand panel. If the grav-
itational instability can keep this mass concentration together despite the shearing effects of
the disk and tidal acceleration, the excess mass can be confined to a trailing spiral arm. There
are excess gravitational forces due to this mass concentration; the inner part of the spiral arm
pulls on the outer part of the spiral arm, trying to accelerate the outer regions. As in the BH
instability, this tendency to accelerate outer regions in the direction of motion causes a net
flow of angular momentum outward, and thus in principle can produce the torque needed for
mass accretion.

Under what conditions can gravitational instability arise? In Chapter 2 we discussed
gravitational instabilities in a non-rotating sheet. Although we require non-axisymmetric
instabilities to transfer angular momentum (cf. Figure 7.1), it turns out that the criterion
for such instabilities is nearly the same as the requirement for axisymmetric instability. The
dispersion relation for symmetric modes in a thin rotating disk is (Binney & Tremaine 1987)

ω2 = κ2 + c2
s k2 − 2πG� | k | . (7.82)
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This relation is similar to the result for the non-rotating sheet discussed in Appendix 2; it
differs in the term involving the epicyclic frequency κ . (When the disk rotation is Keplerian,
κ = �, the local angular velocity.) For negative ω2, perturbations grow exponentially and the
disk is unstable. The limiting condition occurs when ω = 0; the condition for axisymmetric
instability is then given by the “Toomre Q” parameter,

Q ≡ csκ

πG�
<∼ 1. (7.83)

The precise value at which instability sets in depends upon the specific conditions assumed.
For example, in a finite thickness, isothermal disk, the stability criterion is Q < 0.676
(Goldreich & Lynden-Bell 1965). Differing detailed assumptions lead to differing specific
values for the limiting value of Q (see, e.g., Gammie 2001), but they are always of order
unity.

The above analysis applies to axisymmetric gravitational instabilities, whereas non-
axisymmetric modes are required to transport angular momentum. Although disks are
formally stable to all local non-axisymmetric disturbances (Goldreich & Lynden-Bell 1965;
Julian & Toomre 1966), global instabilities may occur (i.e., extended spiral arms) which
may be either linear or non-linear, depending upon the so-called swing amplification
and boundary conditions (see §6.3 in Binney & Tremaine (1987) for further discussion).
Roughly speaking, as Q → 1, non-axisymmetric waves appear which can transfer angular
momentum efficiently (Larson 1984; Shu et al. 1990; Gammie 2001).

The physical basis of the instability can be understood qualitatively from a simple argu-
ment (Toomre 1964). If a small region or fragment in a self-gravitating disk is compressed,
its self-gravity is increased; but it also tends to spin more rapidly, producing a centrifugal
force to oppose gravity. The balance of these two effects leads to the instability criterion, as
described in the following paragraphs.

Consider a region in the disk of size �R which is initially in equilibrium. Suppose the
mass in this region is compressed so that it is now confined within a radius �R − δR. The
force of gravity per unit mass is then changed to

FG = G M

(�R − δR)2
≈ G M

(�R)2

(
1 + 2

δR

�R

)
. (7.84)

Next, one must consider the effects of angular momentum conservation in spinning up this
region or fragment around its own center. The initial specific angular momentum of the
region or fragment is

l ∼ ��R2. (7.85)

After contraction, if angular momentum is conserved, the new angular velocity is

�′ ∼ l

(�R − δR)2
∼ �

(
1 + 2

δR

�R

)
. (7.86)

The centrifugal acceleration of this fragment or region around its center is

v′2

(�R − δR)
∼ �′2(�R − δR) ∼ �2�R

(
1 + 3

δR

�R

)
. (7.87)
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For stability the change in centrifugal acceleration must more than balance the increased
gravity, so with M = π�R2�,

3�2δR > 2πG�
δR

�R
, (7.88)

so that

�R >
2πG�

3�2
. (7.89)

A similar analysis for small-length scales provides a constraint for gas pressure to stabilize
the perturbation against gravity.

�R <
c2

s

πG�
. (7.90)

This is basically just a Jeans analysis (Chapter 2); because pressure stabilizes on small scales,
there is a minimum length scale (a Jeans length) for gravitational instabilities. If the length
scale over which pressure stabilizes the gravitational perturbation is larger than the length
scale on which rotation provides stability, then

2πG�

3�2
< �R <

c2
s

πG�
, (7.91)

or

3�2c2
s

2(πG�)2
> 1. (7.92)

This reproduces the basic result for the Q parameter if the epicyclic frequency κ is
comparable to �.

Another way of understanding the Q limit is to consider tidal forces. A perturbation of
radius �R can grow if its self-gravity is greater than the tidal forces on the perturbation,
i.e., the differential acceleration due to the central gravitating regions. Assuming most of the
mass is in the central star,

G M

R2

�R

R
∼ πG�

�R

R
<

G�M

�R2
= πG�, (7.93)

so that

�R < πG�
G M

R3
= πG��−2. (7.94)

Now, �R must be larger than the disk thickness (i.e., the scale height H ) to satisfy the
Jeans criterion, because by construction the gas pressure can support the disk against its own
self-gravity in the z direction. Using equation (7.63) (assuming that the disk self-gravity does
not markedly change the Keplerian result),

cs

�
= H < �R. (7.95)

Putting these two constraints together,

�cs

πG�
< 1 (7.96)

once again emerges as the criterion for gravitational instability.
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It is useful to develop a rule of thumb which constrains the amount of mass in the disk
needed for gravitational instability. Multiplying the numerator and denominator of (7.83) by
the outer disk radius R2

d, and making the approximation that the disk mass is Md ∼ π R2
d�,

the condition for instability becomes

csκ R2
d < G Md. (7.97)

Making the further approximation that the disk motion is nearly Keplerian, the requirement
for instability is roughly (Pringle 1981)

Md >
H

R
M∗. (7.98)

Thus, gravitational instability occurs only when the disk has an appreciable mass in compar-
ison with the central star (Larson 1984), as might be expected intuitively. The central stellar
mass enters because it is responsible for producing the initial angular velocity of a contract-
ing fragment; for larger central masses, � becomes larger, and therefore the disk mass must
be larger to overcome the centrifugal resistance to contraction. The disk temperature is also
important. For a given ratio of disk mass to central mass, cooler disks have smaller scale
heights H and are thus more susceptible to gravitational instability.

Numerical simulations (see Tomley et al. (1994), Laughlin and Bodenheimer (1994),
and references therein; also discussion in Lin & Pringle (1990)) indicate that gravitational
instabilities can generate turbulence which appears as unsteady, wave-like, spiral density
structures. These waves can transfer angular momentum provided that there is some mech-
anism for “cooling” the disk, i.e., a way of reducing the gas temperature. If the disk is not
cooled effectively, it tends to heat up until Q increases to values slightly above the limit for
stability. (Similar results were found in the case of stellar disks of galaxies, and the need
for cooling for gaseous disks is related to the development of “hot” galactic stellar disks in
the absence of a massive halo; see the discussion in Binney & Tremaine (1987).) Quantita-
tive estimates of the angular momentum transport rates are still difficult to obtain, because
heating and cooling rates are difficult to determine (Tomley et al. 1994).

Gravitational instability can also lead to fragmentation, rather than simply providing a
mechanism for angular momentum transport in disks (e.g., §7.2). Gammie (2001) considered
the problem by analyzing a small, local region (a “shearing box”) in a very thin disk, with
schematic cooling properties. Denoting the timescale for losing (radiating away) thermal
energy as the cooling time tc, Gammie found that for tc <∼ 3�−1, the disk fragmented
(e.g., left panel of Figure 7.8), while for longer cooling times, a steady, “gravoturbulent”
state is reached, with a balance between dissipating turbulence and cooling, and Q ∼ 1;
the resulting waves have the trailing structure which would result in angular momentum
transport outward (right panel of Figure 7.8). The situation is more complex in situations
with more complicated energy equations; Johnson and Gammie (2003) found qualitatively
similar results.

The reason why the relation between the orbital period and the cooling time is critical
can be seen from the following argument. In the disk, the time for a sound wave to travel a
scale height is H/cs = �, and this is of the order of the timescale for the onset of a (small
scale) gravitational perturbation to grow (since gravity must overcome the gas pressure).
Consider a perturbation which locally increases the density. If the cooling time is long in
comparison with this sound crossing time, the increasing temperature along with increasing
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Fig. 7.8. Surface density maps for a shearing box simulation of a thin disk. Left panel:
gravitational fragmentation results for a short cooling time (tc = 2�−1). Right panel:
a quasi-steady pattern of turbulence present for a long cooling time (tc = 10�−1). The
direction of rotation is from bottom to top. From Gammie (2001).

density can help support the disk against the increased gravity. Conversely, if the cooling
time is short, then the thermal energy is rapidly lost and gravitational collapse can ensue (on
the appropriate length scale).

In the case of YSOs, disk heating is likely to be strongly affected, if not dominated, by the
absorption of radiation from the central star (§7.9). In this case the disk temperature is more
likely to be fixed at a value given by the geometry of the disk and the distance from the star,
and the cooling time is not relevant (effectively short). In this limit, for a similar local thin
disk analysis, Johnson and Gammie (2003) found fragmentation occurs for Q <∼ 1.4.

A gravitationally unstable, but non-fragmenting, disk cannot be treated as a viscous disk
in general, because gravity is a long-range force, and thus can transport energy over long
distances without the local dissipation assumed in the standard viscous disk theory (e.g.,
Laughlin et al. 1998). For example, low-order disturbances, such as the single-armed spiral
mode, can be very effective in propagating waves over long distances (Adams et al. 1989;
Shu et al. 1990). Under some circumstances a kind of α-approximation might be adequate,
for example with small amplitude, tightly wound spiral disturbances as the disk hovers near
the Q ∼ 1 limit (Balbus & Papaloizou 1999; Gammie 2001).

A global calculation by Boley et al. (2006; Figure 7.9) suggests that gravitationally unsta-
ble protostellar disks might tend to evolve to a state where a local, effective-α treatment is
reasonable over some range of disk radii, though the details depend upon the thermal prop-
erties of the disk. In general, thermal physics of disks are extremely difficult to follow in
numerical simulations because, for typical parameters, the disks are very optically thick.
This means that the energy loss is constrained by radiation from a geometrically thin disk
“photosphere” which poses resolution problems for numerical simulations.

7.8 Disk boundary layers
A particle which moves from an orbit far from the central star to a circular orbit just

above the stellar surface must lose an amount of energy per unit mass equal to G M∗/2R∗.
Potentially, this particle can lose almost an equal amount of energy in coming to rest on the
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Fig. 7.9. Numerical simulation of the evolution of a gravitationally unstable disk with exter-
nal irradiation. The figure shows the projected surface density seen perpendicular to the disk
plane. The disk develops spiral arms which then transfer angular momentum outward (e.g.,
Figure 7.1); this results in inner disk material moving inward while the outer disk expands.
From Boley et al. (2006).

surface of a slowly rotating T Tauri star. Thus, the release of energy near the stellar surface
is an important part of the total accretion energy, and if a substantial fraction of this energy
is radiated it can have important effects on the spectral energy distribution.

Suppose that the disk rotates at Keplerian velocities up to a small distance from stellar
surface (as justified below). The angular velocity must decline as material passes from the
disk to join the slowly rotating star (Figure 7.4). The region interior to the peak in �(R)

cannot transfer angular momentum outward to the disk, because the gradient in � goes the
wrong way (cf. equation (7.13)). If there are no other angular momentum transport mecha-
nisms, such as a magnetically coupled wind (Chapter 10), the accreting material will transfer
angular momentum to the star, which over a long enough time will spin the star up.

If material at R∗ + �R is initially rotating at the Keplerian angular velocity �K (R∗ +
�R) ≈ �K (R∗), and then slows down to the stellar angular velocity �∗, the change in
kinetic energy per unit mass is (�2

K − �2∗)R2∗. However, not all of this energy is released
as radiation; some of it goes into spinning up the star. The proportion between radiation and
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spin up depends in detail upon what is assumed about the effect of adding material to the
star. For a slowly rotating central star, the boundary layer luminosity is predicted to approach
LBL → G M Ṁ/2R∗.

Now we justify the adoption of a narrow boundary layer, implicit in the assumption that
the disk exhibits Keplerian rotation almost up to the stellar surface. Basically, the boundary
layer is narrow in radial dimension as long as the disk is thin, i.e., H << R. In the radial
direction the equation of motion is

vR
dvR

d R
− v2

φ

R
= − 1

ρ

d P

d R
− G M

R2
. (7.99)

Since the radial velocity is small in most cases, departures from Keplerian motion will only
occur when the gas pressure forces can help balance gravity. If � departs significantly from
Keplerian motion over a region of length RBL, then the radial force balance equation requires

c2
s

RBL
∼ G M

R2
, (7.100)

and, using (7.63),

RBL

R
∼

(
H

R

)2

, (7.101)

so that the dynamical boundary layer is thin, as assumed, as long as the disk is thin.
If the disk material in the vicinity of the boundary layer is optically thick, then even if

the dynamical boundary layer thickness RBL is small, the energy dissipated must diffuse in
the radial direction as well as in the z direction. In an optically thick boundary layer, this
diffusion must occur over a radial scale ∼H , since on much smaller scales the influence of
the surface cannot be felt. A reasonable rule of thumb for the width �R of an optically thick,
emitting boundary layer region is �R ∼ H (Pringle 1989).

In either optically-thin or -thick cases the boundary layer of a disk accreting onto a slowly
rotating star emits a luminosity comparable to that released in the rest of the accretion disk,
but over a very small area. Therefore, the boundary layer must be much hotter than the
maximum temperature in the disk proper, and so will radiate at much shorter wavelengths.
For this reason Lynden-Bell and Pringle (1974) suggested that the hot optical and ultraviolet
excess emission of T Tauri stars is emitted in the disk boundary layer.

However, it appears that the traditional boundary layer picture is not relevant for most
T Tauri stars, because the stellar magnetic fields are generally strong enough to prevent
most disks from reaching the stellar surface. The stellar magnetosphere disrupts the disk and
channels the accreting material along field lines out of the disk and onto the star (Figure 8.1;
§§8.11, 8.12). The stellar magnetic field absorbs the angular momentum of the accreting
material, allowing it to fall inward. It appears likely that the accreting gas falls in supersoni-
cally, at nearly free-fall velocities, and then shocks at the stellar photosphere. In this model
the radiation produced as material comes to rest on the stellar surface arises from this hot
shock at the stellar surface. The size of the emitting region is controlled by magnetic field
strengths and geometries and not by scale–height considerations for the disk. The observa-
tional support for this picture, as well as some of the physics involved, will be discussed
further in Chapters 8 and 10.
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7.9 Disk irradiation
In T Tauri stars the disk accretion luminosity is often less than that of the luminosity

of the central star. In this case, the absorption of light from the central object can be the
dominant mechanism heating the disk, a process called irradiation here.

The absorbed energy for an opaque, completely absorbing, flat disk can be calculated
simply assuming that the star radiates uniformly and isotropically from its surface. For a
point on the disk at distance R from the center of the star, we take a coordinate system in
which the xy plane corresponds to the disk, the z axis is perpendicular to this plane, parallel
to the disk rotation axis (see Figure 7.10). Then a direction vector to a point on the star
is characterized by two angles, θ measured from the y axis, and φ, measured between the
projection of the direction vector onto the xz plane and the x axis. In this coordinate system
the direction vector is then given by

ı̂ = − cos θ ŷ + sin θ cos φ x̂ + sin θ sin φ ẑ. (7.102)

The flux of energy from an area of the star through the disk is given by the component per-
pendicular to the disk of the intensity times the solid angle subtended by the stellar unit area,

d Fd = I ı̂ · ẑdω = I◦ sin2 θ sin φ dθ dφ, (7.103)

where we take the stellar intensity I◦ to be constant. The total flux into the disk is given by
the integral of d Fd over the solid angle subtended by the star,

Fd =
∫ π

0
dφ sin φ

∫ θm

0
dθ I◦ sin2 θ = 2I◦

∫ θm

0
dθ sin2 θ. (7.104)

The maximum value of θ occurs when the direction vector is tangent to the stellar surface,
when the radial distance is R∗; thus, sin θm = R∗/R and therefore

x

y

z

R

P

S

φ θ

Fig. 7.10. Geometry for the calculation of the irradiation of a flat disk by the central star.
The point P on the disk under consideration is along the y axis at a distance R from the star’s
center. The calculation is of the flux emitted along a ray from point S on the star to point P;
the angle θ lies between S P and the y axis; and φ is the angle between this projected vector
and the x axis. See text.
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Fd = I◦
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In the limit that R >> R∗, Fd ∝ R−3. Assuming that the disk radiates away the incoming
energy in the form of blackbody emission, so that σ T 4

d = Fd. As this results in a temperature
distribution which asymptotically approaches Td ∝ R−3/4 at large radii, the optically thick,
flat, irradiated disk exhibits the same wavelength dependence in its SED, λFλ ∝ λ−4/3, as
the steady optically thick accretion disk (§7.3).

The total luminosity of one side of an infinite flat disk is

Ld =
∫ ∞

R∗
2π R d R Fd = π2 I◦ R2∗

2
. (7.106)

By assumption, the intensity I◦ = B = σ T 4∗ /π , so Ld = L∗/8 for one side of the disk. The
total emission from both sides of the disk is therefore one-quarter of the stellar luminosity.
It is apparent from the above discussion that if the optically thick, steady disk has a mass
accretion rate producing an accretion luminosity <∼L∗/4, it will be difficult to distinguish
accretion-produced energy from irradiation-induced disk emission.

The irradiation of outer regions of a flat disk is very inefficient because the light from
the central star impinges very obliquely on the disk. As shown in (Figure 7.11), the flux
of stellar radiant energy entering the disk depends upon cos γ , where γ is the angle that
the impinging radiation makes with the normal to the disk surface. If we assume that the
“average” radiation from the star originates at a distance R∗/2 from the disk plane on the
stellar surface, then the radiative flux entering the flat disk at radius R is

Fd ∼ L∗
4π R2

cos γ ∼ L∗
4π R2

R∗
2R

, (7.107)

γ
R*

R
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Fig. 7.11. Geometry of irradiated disks, showing how the “flaring” of the disk affects the
heating (see text).
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reproducing the Fd ∝ R3 behavior derived for the exact solution (7.105). However, as dis-
cussed in §7.4, disk scale heights tend to increase faster than linearly with increasing R; this
can lead to the effective “photosphere” for absorbing stellar radiation to curve away from
the midplane (becoming “flared”), decreasing γ and thus increasing the heating of the disk.
For typical parameters, T Tauri disks are likely to be highly flared at large radial distances
(Kenyon & Hartmann 1987; D’Alessio et al. 1999).

At large R, when the disk absorbing layers are much higher above the midplane than
the stellar radius, the stellar radiation is essentially radial. Thus, a wedge-shaped disk, with
H/R ∼ constant, will asymptotically act like a flat disk; thus the entering flux at large
radii is proportional to cos γ ∝ d H/d R − H/R (Kenyon & Hartmann 1987; Ruden &
Pollack 1991). That is, the curvature of the flaring disk is important in determining the
irradiation flux.

In the limit that the disk has a moderate geometric thickness, one can derive an asymp-
totic expression for the disk temperature distribution (e.g., Cunningham 1976; Chiang and
Goldreich 1997). For simplicity assume that the disk is vertically isothermal at each radius,
and that the height of the surface at which the radiation enters the disk is directly propor-
tional to the local scale height H . The last approximation is particularly good when the disk
“photosphere” lies at a few scale heights above the midplane (Kenyon & Hartmann 1987;
D’Alessio et al. 1999, 2001; §8.2). Then, assuming that all the heating is due to irradiation,
energy balance requires

σ T 4
d ∝ L∗

4π R2

(
d H

d R
− H

R

)
, (7.108)

with
H

R
= cs

vφ

∝ T 1/2
d R1/2. (7.109)

If we assume that T is a power-law function of R, then the term in brackets in equation
(7.108) is proportional to H/R; then

Td ∝ L2/7∗ R−3/7. (7.110)

As discussed previously, optically thick accretion disks tend to have effective temperatures
which vary with radius as T ∝ R−3/4. Radiative trapping can modify the internal disk
temperature from this result, but typical YSO disk models are not very optically thick to the
internal disk radiation at large radii (§8.2). Thus the relative importance of irradiation heating
vs. viscous heating tends to scale roughly as ∼R−3/7+3/4 ∼ R9/28. T Tauri disks often
extend over radial ranges of four orders of magnitude or more; thus, even if viscous heating
dominates at small radii, irradiation almost always dominates in outer disk regions, as long
as the disk is sufficiently opaque to the radiation from the central region. In turn, because
the dominant opacity for this mechanism in YSO disks is that of (small) dust particles,
strong irradiation heating requires the suspension of these particles to significant vertical
heights. If the dust settles to the midplane, a process invoked in many scenarios of the onset
of planetesimal formation, irradiation heating and local disk temperatures decrease (e.g.,
D’Alessio et al. 2006). Observations which constrain dust settling and growth in T Tauri
disks are of interest because of their likely relevance to planet formation; we turn to these
and other observational tests of our understanding of disk structure and evolution in the
following chapter.
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The disks of pre-main-sequence stars

The idea that the early Sun was surrounded by a rotating flattened nebula or disk out of which
the planets formed has had a long history. However, a detailed application of the disk
model to pre-main-sequence stars was not made until the seminal work of Lynden-Bell
and Pringle (1974). These authors suggested that the excess emission of the low-mass,
pre-main-sequence T Tauri stars could be powered by disk accretion; the extended dusty
disk accounts for the excess infrared emission of T Tauri stars, while the hot gas predicted
at the boundary layer between the star and disk produces the observed ultraviolet contin-
uum emission. Lynden-Bell and Pringle further suggested that T Tauri disks could be quite
massive, and might even outshine the central star in their early stages.

In retrospect, researchers in the field were not ready for these insights, partly due to the
observational limitations of the time. Complicating the situation, ultraviolet and X-ray obser-
vations with the IUE and Einstein satellites in the late 1970s showed that young stars exhibit
high-temperature chromospheric and coronal emission at much higher levels than observed
on the Sun (e.g., Gahm et al. 1979; Cram et al. 1980; Walter & Kuhi 1981), undoubtedly as a
result of solar-type magnetic activity. Thus, it was natural to assume that this excess optical
and ultraviolet emission represented the extreme youthful limit of solar magnetic activity
(Herbig 1970; Cram 1979; Calvet et al. 1983).

T Tauri stars clearly exhibit extreme levels of magnetic activity, as deduced from X-ray
emission (and flaring activity) (Feigelson et al. 2007), the presence of large starspots (e.g.,
Herbst & Shevchenko 1999), and direct measurement of very large photospheric magnetic
fields (Johns-Krull et al. 1999a; Valenti & Johns-Krull 2004; Johns-Krull 2007). However, in
some cases the excess optical emission exceeds the stellar photospheric luminosity (Bertout
et al. 1988), which is difficult to understand in the context of magnetic fields converting a
portion of the stellar energy output into mechanical heating. It is now clear that the (strong)
excess emission in T Tauri stars is powered by mass accretion onto the central star. More-
over, the FU Orionis objects are now understood to be systems in which the disk accretion
luminosity can exceed the stellar luminosity by as much as two orders of magnitude (Chapter
9), as Lynden-Bell and Pringle suggested might occur.

The early suggestions that dust must be responsible for the excess infrared emission of
T Tauri stars (Mendoza 1966; Strom et al. 1972; Cohen 1973a,b,c; Cohen & Schwartz
1976; Rydgren et al. 1976; Cohen & Kuhi 1979; Rydgren & Vrba 1981) were confirmed
by far-infrared IRAS observations; radially extended, dusty disks were the only plausible
candidates for explaining the observed infrared emission out to long wavelengths (Rucinski
1985). Disks of dust and molecular gas have now been detected by a multitude of imaging
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observations, at wavelengths ranging from the ultraviolet to the cm wavelength range (§8.1).
There are direct detections of rotation, roughly consistent with Keplerian motion although
departures due to self-gravity would be difficult to detect at present.

Thus, the picture proposed by Lynden-Bell and Pringle appears to be generally correct.
The angular momenta of collapsing protostellar clouds are large enough that stars are formed
with substantial rotating disks around them; accretion powers most of the excess optical
and ultraviolet emission of T Tauri stars; and infrared excesses arise from circumstellar
accretion disks. However, the disk emission of most T Tauri stars is driven by the absorption
of radiation from the central star; only a few of the most rapidly accreting systems have disk
emission dominated by local accretion energy release (e.g., Adams & Shu 1986; Kenyon &
Hartmann 1987; Chapter 9).

Despite a vast increase in the range and sensitivity of observational techniques that now
can be brought to bear in the study of T Tauri disk structure, there are still major uncertainties
in how material is transported within disks. While the MRI is an obvious mechanism for
angular momentum transport, it is far from clear that T Tauri disks are sufficiently ionized
for this mechanism to operate at all radii and vertical heights. Gravitational instabilities are
likely to play an important role in the early evolution of protostellar disks, but whether they
operate at the later T Tauri stage is uncertain.

The hot continuum excess emission observed at optical and ultraviolet wavelengths,
though powered by accretion, probably does not arise from a boundary layer as Lynden-Bell
and Pringle suggested. Instead, accretion onto stellar photospheres seems to be mediated by
stellar magnetic fields (Uchida & Shibata 1984, 1985; Bertout et al. 1988; Camenzind 1990;
Königl 1991; Shu et al. 1994). The stellar magnetic fields responsible for highly enhanced
solar-type activity (coronal X-ray emission, flares, starspots) appear to be strong enough
to hold off the accreting disk above the stellar surface, channeling the infalling material
into localized regions on the star. The observed hot continuum emission then arises from
the accretion energy dissipated when the rapidly moving magnetospheric gas shocks at the
stellar surface (Figure 8.1).

The most direct indication of magnetospheric infall comes from analysis of asymmetries
in line profiles – specifically, redshifted absorption (as in protostellar envelopes; §5.8). This
infall was once thought to be the sign of protostellar collapse (Walker 1972; Wolf et al.
1977), but many of these objects are not heavily extincted, as would be expected for infalling
dusty envelopes (Chapter 5). We now think that both redshifted absorption and most of the
broad emission lines of T Tauri stars are produced in the magnetospheric accretion columns
(Calvet & Hartmann 1992; Hartmann et al. 1994a; Muzerolle et al. 1998a, 2001). Detailed
line profile studies indicate that most of the “classical” T Tauri stars or CTTS gain material
through stellar magnetospheres (Edwards et al. 1994), down to and including young brown
dwarfs (Muzerolle et al. 2003a).

Some young T Tauri stars are not accreting, and seem not to have dusty disks (at least
out to radii of 1–10 AU). These “weak” emission T Tauri stars or WTTS exhibit high levels
of chromospheric and coronal emission, which are also present (as indicated by X-ray and
narrow line emission) in the CTTS. The differences between CTTS and WTTS allow us
to determine which properties are due to disk accretion and which to magnetic activity of
the underlying star. Why some stars of the same age are WTTS and others are CTTS is not
clear, though the presence of a binary companion can play a role by gravitationally disrupting
accretion disks.
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Fig. 8.1. Schematic picture of accretion in T Tauri stars. The pre-main-sequence star is
surrounded by an accreting circumstellar disk which emits at infrared, sub-mm, and mm
wavelengths. The inner disk is disrupted by stellar magnetic fields, which cause accreting
material to be diverted out of the disk and fall rapidly onto the star. This magnetospheric
material emits broad emission lines as it falls along the accretion columns, and produces
a hot continuum when it crashes into the stellar surface at an accretion shock. The loca-
tion of the magnetospheric truncation radius is probably inside the radius at which dust is
sublimated by radiation from the central star and accretion shock.

Although disk masses are clearly a vital constraint on theories of star and planet for-
mation, they unfortunately remain uncertain. Most mass estimates are based on mm- and
sub-mm wavelength observations of dust emission (e.g., Beckwith et al. 1990; Andrews &
Williams 2005; §8.3). The conversion of sub-mm and mm-wave fluxes to masses is subject
to substantial uncertainties in dust opacities, since there is evidence that dust particles in T
Tauri disks may be evolving in their sizes and other properties from their interstellar values.
Current guesses of opacities indicate disk masses that in many cases are at least as large
the minimum disk mass ∼0.01 M� needed to account for the heavy elements in the Solar
System (assuming an initial solar composition).

Much of the above picture appears to be applicable to intermediate-mass young stars
(M ∼ 2 − 4 M�), including the possibility of magnetospheric accretion (Muzerolle et al.
2004). Indeed, a substantial amount of study has been dedicated to the HAe/Be stars, largely
because they are so bright. The frequency of detectable disks among A stars appears to
be considerably lower than that of the lower-mass T Tauri stars of the same age, suggest-
ing more rapid disk evolution among the intermediate-mass stars (Hernández et al. 2006).
The application of disk accretion models to high-mass stars remains problematic, due to
the difficulty of observing more distant, confused systems, and the increased importance of
photoevaporation/photoionization/radiation pressure (§4.7).
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It has been clear since the pioneering studies by Strom et al. (1989) and Skrutskie et al.
(1990) that dusty disks – at least the regions close to the central T Tauri star – tend to dis-
appear (or become optically thin) on timescales of a few to 10 Myr. We now have more
detailed studies, thanks mainly to observations with the Spitzer Space Telescope and ISO,
which indicate more subtle signs of dust growth and settling such as expected for the first
stages of planetesimal formation (Chapter 12). In this regard the recognition of the “tran-
sitional disk” systems (e.g., Calvet et al. 2002; D’Alessio et al. 2005), in which relatively
evacuated inner holes of otherwise substantial dusty disks may be an indication of recent
disk clearing by giant planet formation.

In all, the rapid advancement in studies of pre-main-sequence stars suggests that we are
beginning to realize the hope expressed by Lynden-Bell and Pringle (1974): “If this inter-
pretation of T Tauri stars is correct, their study will provide new and important evidence on
the conditions under which the planets in the solar system were formed.”

8.1 Disk imaging
Extensive direct imaging of disks has now been performed at a variety of wave-

lengths ranging from the optical to the cm range. High-resolution optical imaging possible
with HST has produced remarkable pictures of disks around young stars, some seen as shad-
ows against the bright Orion Nebula (Figure 1.6), others in light from the central T Tauri
star scattered by the outer disk surfaces (Figure 1.7). These images have now been com-
plemented and extended by near-infrared adaptive optics and coronagraphic imaging using
large ground-based telescopes (e.g., Close et al. 1997). In some cases, these images are pro-
viding hints of complex non-axisymmetric structure (Figure 8.2), which may indicate effects
of self-gravity or perturbations by companions (compare with Figure 6.4).

Interferometric observations at mm wavelengths have also resolved many nearby disk sys-
tems, with direct detections of Keplerian rotation (for example, Koerner et al. 1993; Simon

1² = 144 AU

Fig. 8.2. Scattered light images of the Herbig Ae star AB Aur: left, optical image taken in
coronagraphic mode with the STIS instrument on board HST (Grady et al. 1999, 2005), in a
field of 25 arcsec square; right, near-infrared (H band) adaptive optics/coronagraphic image
of AB Aur taken with the Subaru telescope (Fukagawa et al. 2004), spanning 8 arcsec square
(about 110 AU). The disk is very extended and has suggestions of spiral structure (compare
with Figure 7.9).



162 The disks of pre-main-sequence stars

5

–5

0

5

–5

0

5

–5

0

5

–5

0

5

0 –5 5 0 –5 5 0 –5 5 0 –5

MWC 480 DM Tau LkCa 15 GM Aur

Fig. 8.3. Disk images from observations of 12CO 2-1 (1.3 mm) emission around the HAe/Be
star MWC 480 and the T Tauri stars DM Tau, LkCa 15, and GM Aur (see also Figure 8.20).
The image dimensions are given in arcsec (1 arcsec ∼140 AU). The contours denote differing
curves of constant radial velocity, at spacings of 0.3 km s−1 for all but DM Tau, with a
spacing of 0.2 km s−1. From Simon et al. (2000).
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Fig. 8.4. Continuum images at mm wavelengths of the GG Tau multiple system. Torques
from the central binary evacuate material, producing a circumbinary disk or ring. The central
stars have their own disks, as indicated by near-infrared excesses and accretion (e.g., White
et al. 1999). GG Tau is a quadruple system; the positions of the outer pair of stars are shown
at the bottom of the maps. From Guilloteau et al. (1999).

et al. 2000; Figure 8.3). In some cases of relatively large disks, current resolution is sufficient
to use the assumed Keplerian rotation of the disk to estimate the central star’s mass, helping
to constrain stellar evolutionary models (Simon et al. 2000). Radio-wavelength interferome-
try and ground-based adaptive optics observations have also helped clarify the disk structure
in multiple star systems, in some cases clearly resolving the circumbinary disk or ring driven
by the gravitational torques of the central binary (Figure 8.4).

There are now constraints on inner disk structure from long-baseline near-infrared inter-
ferometry of young objects (e.g., Akeson et al. 2000, 2005a,b; Monnier & Millan-Gabet
2002; Eisner et al. 2003, 2004; Malbet et al. 2005; Monnier et al. 2005; Millan-Gabet et al.
2006). The physical structure of this region remains unclear because most current near-
IR interferometers do not include enough telescopes to make well-sampled images. The
interferometric results probe emission from regions at or inside the dust destruction radius
(where we expect the dust to evaporate due to absorption of radiation from the central star;
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e.g., Natta et al. 2001; §8.7; Figure 8.1). Unfortunately, it is very difficult to predict what
gaseous emission should be detected, as determining the temperature of this optically-thin
region presents challenges (see, e.g., Muzerolle et al. 2004). In addition, the physics of the
region where the magnetosphere truncates the disk is very complex (§10.10).

8.2 Disk SEDs
The IRAS satellite made it possible to quantitatively analyze the infrared excess

emission of T Tauri stars in terms of dusty disk properties (Adams et al. 1987; Kenyon &
Hartmann 1987; Calvet et al. 1991, 1992; D’Alessio et al. 1999, 2001; Chiang & Goldreich
1997). The general form of the typical SED, as shown in Figure 8.5, is a modest decline
in emission between about 2 μm and ∼100 μm, with a steep fall-off of emission at longer
wavelengths. This behavior strongly suggests that these disks are typically optically thick
at infrared wavelengths, so that the SED is determined by the temperature distribution as
a function of radius (§7.3), while the steep decrease with increasing wavelength in the
mm-wave emission indicates optically thin emission, reflecting the rapidly decreasing dust
opacity as well as the Rayleigh–Jeans tail of the dust temperature distribution.

As shown in Figure 8.5, the infrared SEDs generally have a much flatter spectral index
than the λLλ ∝ λ−4/3 expected for the steady optically thick accretion disk (§7.3). Flared
irradiated disks (Kenyon & Hartmann 1987; §7.9) are required to explain the SED slopes,
as flared disks have temperature distributions falling off more slowly with increasing radius
(§7.9; equation 7.110). In general local viscous energy release at large radii, far out in the
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Fig. 8.5. Median SED of K7-M2 T Tauri stars in Taurus (circles), with quartile dispersions
(errorbars). The SED of star of similar spectral type without an accretion disk (i.e., a pure
photospheric spectrum) is indicated by the dot-dashed curve. The flattening of the infrared
emission at long wavelengths provides evidence for models of irradiated flared disks. The
dotted curve is the predicted SED for a model with ISM dust, having a maximum size
∼0.3 μm; the solid curve is for a number distribution of dust of radius a proportional to
N (a) ∝ a−3.5 with a maximum size of 1 mm. From D’Alessio et al. (2001).
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Fig. 8.6. Schematic depiction of T Tauri dusty disk structure. Solid curves are disk scale
heights, while increasing density is indicated crudely by darker shaded regions; there may
be a dense layer at the midplane with large dust particles. Arrows indicate processes deter-
mining thermal energy balance and ionization (see text).
Schematic eddies indicate where turbulence (MRI-driven) may be present; whether the MRI
is present in dense central layers (dotted eddies) not ionized by (hard) X-rays is unknown.

gravitational potential well, cannot compete with the heating provided by absorbing radi-
ation from the star and any accretion luminosity arising at small radii. However, for disk
flaring to explain the observations in detail, small dust grains must be suspended to at least a
few scale heights above the disk midplane, which has implications for understanding grain
growth and settling (§12.6).

Figure 8.6 provides a schematic overview of the expected structure of a typical T Tauri
disk and the processes responsible for heating and ionization. The density scale heights
(solid curves) increase upward in z faster than the cylindrical radius R; this is the flared disk
structure. The contours of constant density (gray scale) tend to follow the scale height struc-
ture, especially at small radii and high z, but eventually fall toward the midplane because
of the general outward decrease of surface density. Disk heating is generally dominated by
the dust absorption of light from the central source, which for typical T Tauri stars peaks at
wavelengths of order 1 μm. This stellar radiation (solid arrow) is absorbed at a disk photo-
sphere where the (tangential) optical depth is of order unity at the wavelengths of irradiation.
The irradiation energy is partly scattered outward (thin upward dashed arrow) and inward
(thick downward dashed arrow), and partly absorbed and reradiated at longer wavelengths
outward and inward. The inward diffuse disk radiation is absorbed in lower, somewhat cooler
layers, which reradiate the energy at even longer wavelengths at which the upper disk is
transparent. In the higher-density regions of the disk, collisions with dust heats the gas to
similar temperatures, though in upper layers the gas–grain collision rate can be low enough
that dust and gas temperatures differ, with higher gas temperatures driven by X-ray and other
heating (e.g., Glassgold et al. 2004).

A typical temperature distribution in a numerical disk model is illustrated in Figure 8.7 (a
simplified version is given by Chiang & Goldreich 1997). In the upper layers of the disk, the
dust “sees” the unattenuated stellar radiation field. The dust temperature is given by radiative
equilibrium,
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Fig. 8.7. Temperature structure (left) and surface density (right) of a typical (optically thick)
T Tauri disk model accreting at ∼10−8 M� yr−1 with α = 0.01 (see text). Note that the
surface density at 1 AU is about an order of magnitude less than the standard “minimum
mass solar nebula” model (Chapter 12). Modified from D’Alessio et al. (1999).

∫ ∞

0
dν κν(Jν − Bν) = 0 , (8.1)

where Jν is the dilute radiative intensity from the star (plus any accretion shock), Bν is
the Planck function at the dust temperature, and κ is the absorptive opacity. As the dust is
typically much colder than the star, and the opacity is generally thought to be a decreasing
function of wavelength, the dust in this optically thin region will tend to be hotter than would
result from a gray or blackbody approximation (see Appendix 3). This means that the upper
disk layers of an irradiated disk will be hotter than the deeper layers. As shown in Figure
8.7, the temperature at the layer where the stellar photons are absorbed, T (zabs), is higher
than the effective temperature of the disk emission resulting from the irradiation flux Tirr.
The latter is essentially the same as the disk “photospheric” temperature Tphot that would be
derived by simply treating the irradiation in the blackbody approximation, using the surface
of the local disk photosphere at the typical wavelength of disk reradiation (see D’Alessio
et al. 1999 for details).

The viscous temperature Tvis represents the effective temperature the disk would have if
accretion were the only energy source (equation 7.55). As shown in Figure 8.7 for a typical
T Tauri accretion rate, the viscous heating is relatively unimportant except in the innermost
regions of the disk, where it drives the central disk temperature Tc above the upper layer
temperature. The central temperature rises because the radiation produced by the internal
viscous heating is trapped by the large optical depth (higher temperature radiation “sees”
higher dust opacities, so that this effect is most important at smaller radii). The central tem-
perature tends to exhibit a plateau or maximum at values for which dust sublimates; this
creates a kind of thermostatic effect, as higher temperatures reduce the dust opacity needed
to trap the radiation (D’Alessio et al. 1999).

Thus, disks whose heating is dominated by irradiation should have surface layers that
are warmer than the deeper layers, except possibly in the innermost regions. The vertical
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temperature inversion driven by irradiation can be detected by observing features of larger
opacity, which will be formed at higher z and thus appear in emission (Malbet & Bertout
1991; Calvet et al. 1991). In particular, small silicate grains exhibit a strong increase in
opacity at λ ∼ 10 μm (Figure 4.10), and therefore irradiated disks should exhibit silicate
emission features (Calvet et al. 1992). This prediction has now been abundantly confirmed
by many infrared spectral studies, particularly with the high-sensitivity data available from
ISO and the Spitzer Space Telescope (Figure 8.8).

Irradiated disk models of the type shown in Figure 8.5 can reproduce typical T Tauri
disk SEDs provided that there is (small) dust suspended to 3–4 scale heights above the
disk midplane (Kenyon & Hartmann 1987). As dust is expected to eventually settle to the
midplane, especially from such rarified heights, there may need to be some turbulence to
help suspend small dust for T Tauri disk lifetimes.

There is increasing evidence that the dust in T Tauri disks is neither interstellar in its
size distribution nor uniformly mixed in the z direction. In Figure 8.5, the dotted curve is
a model with complete vertical mixing of dust and gas assuming a typical interstellar dust
opacity (Figure 4.10). As can be seen, while the infrared SED is reasonably well-fit, the
mm-wave fluxes are vastly underpredicted. Observations at long wavelengths increasingly
suggest that there must be dust growth to sizes of ∼mm or more; otherwise, unreasonable
amounts of mass would be required to explain the magnitude and spectral slope of the long-
wavelength emission (Miyake & Nakagawa 1993; D’Alessio et al. 2001; Chiang et al. 2001;
Wilner et al. 2005; Rodmann et al. 2006; see §8.3). On the other hand, a similar power-law
distribution but growth to a maximum of mm-cm sizes results in much better matches to the
long-wavelength emission (solid curve), but the silicate emission feature disappears because
of the domination of the opacity by particles larger than 10 μm, contrary to what is observed
(e.g., Figure 8.8). Disk models with the best fits to detailed SED observations involve a strat-
ified distribution of dust, with the largest dust particles near the midplane and a lower-mass
distribution of small particles near the disk upper and lower surfaces (D’Alessio et al. 2006).
Such models are qualitatively reasonable, in that the large particles should settle the fastest
(§12.6); the suspension of such small particles may be aided by turbulence generated by the
MRI (§7.7).

It also appears that models require somewhat less small dust per gas mass in the upper
layers of the disk than are typical of the interstellar medium. The clearest evidence for this
comes from observations of edge-on disks, which directly show the surfaces which scatter
starlight (Figure 8.9). D’Alessio et al. (2001) showed that well-mixed models of ISM dust
yielded dark dust lanes that were too thick (i.e., the bright scattering surfaces were too far
apart); models with some reduction in the amount of small dust, as would be expected as
part of the settling process, provide a better comparison to observations (Figure 8.9; also
D’Alessio et al. 2006).

Another indication of dust settling comes from the overall spectral slopes of disk SEDs.
It is evident that if dust settled close to the midplane, the disk SED would have a spectral
slope approaching that of the geometrically flat disk, s ∼ −4/3 (see §§7.4, 7.9). While most
objects have much smaller slopes, it is evident from Figure 8.8 that there are a range of prop-
erties among T Tauri disks, with some systems exhibiting relatively steep SEDs, presumably
implying additional settling of dust.
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Fig. 8.8. SEDs of T Tauri stars in the Taurus molecular cloud. The vertical axes denote
observed fluxes in erg cm−2 s−1. The dotted curve denotes the SED for a typical WTTS,
with no accretion disk. Circles are photometry from optical studies, the IRAC and MIPS
instruments on Spitzer, and IRAS at long wavelengths, with spectra from the Spitzer IRS
spectrograph (solid curve). The long-wavelength emission is much flatter than would be
expected from disks heated purely by accretion. In addition, the 10 μm silicate feature is
usually seen in emission, as predicted by models where irradiation from the central source
dominates the disk heating. (DR Tau is an example of a star where the accretion luminosity
dominates the stellar luminosity, making the nature of the central star uncertain.) Modified
from Furlan et al. (2006).
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8.3 Long-wavelength emission and disk masses
At very long wavelengths, the excess emission of T Tauri disks declines steeply

(Figure 8.5). An optically thick disk with a sharp outer edge will have a spectrum with
the Rayleigh–Jeans form λFλ ∝ λ−3 (§7.4). However, the observed spectral slopes are
much steeper than this, due to the disk becoming optically thin; the spectrum approaches
λFλ → λ−3+β , where β is the slope of the decreasing dust opacity as a function of wave-
length. Because the optically thin emission is proportional to the dust opacity, it is possible
to estimate the total dust mass (Beckwith et al. 1990). Here we discuss the basic ideas behind
these estimates and their limitations.

Suppose for simplicity that the disk is geometrically thin and isothermal in the vertical
direction (perpendicular to the disk plane), and that the emission is purely blackbody at
the local temperature (which is a function only of cylindrical radius R). Then the apparent
luminosity is

ν L̂ν = 4πd2νFν = 4πμ

∫ Rd

Ri

νBν

[
1 − exp

(
−τν

μ

)]
2π Rd R , (8.2)

where Fν is the flux observed at Earth (corrected for extinction), Bν is the Planck function,
μ = cos i , and i is the inclination angle of the disk to the line of sight, and τν is the vertical
optical depth at cylindrical radius R at frequency ν. The outer and inner radii of the disk
are Rd and Ri, respectively. If the optical depth τν >> 1, then the emission depends solely
on the Planck function and thus on the temperature distribution as a function of radius, and
is independent of the disk mass, as discussed in the previous chapter. In contrast, when
τν << 1, the emission depends upon the disk surface density distribution,

ν L̂ν = 4π

∫ Rd

Ri

νBνkν�(R) 2π Rd R , (8.3)

where we have written the optical depth in terms of the opacity kν per unit mass,

τν = kν� . (8.4)

If the observed emission occurs at wavelengths where the disk is optically thin, and if the
disk temperature as a function of radius is known, measurements of the long-wavelength flux
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allow one to estimate the disk mass Md ∝ �R2, with the constant of proportionality depend-
ing upon the dependence of the surface density on radius. To illustrate this more explicitly,
we make the usual simplifying assumptions that the surface density and temperature can be
represented by power laws:

T = T◦
(

R

R◦

)−q

, (8.5)

� = �◦
(

R

R◦

)−p

. (8.6)

To simplify the analysis further we take the long-wavelength limit where hν << kT , so that
Bν = 2ν2kT/c2, and assume that the inner radius Ri << Rd. With these assumptions the
apparent luminosity becomes (e.g., Beckwith et al. 1990)

ν L̂ν = 16π2k

c2
ν3kν�◦T◦ R2◦

(Rd/R◦)2−p−q

2 − p − q
. (8.7)

The disk mass is

Md =
∫ Rd

Ri

2π�Rd R = 2π�◦ R2◦

(
Rd
R◦

)2−p

(2 − p)
, (8.8)

and therefore

ν L̂ν = 8πkν3kν

c2
Md T◦

(
Rd

R◦

)−q 2 − p

2 − p − q
= 8πkν3kν

c2
Md T (Rd)

2 − p

2 − p − q
. (8.9)

If the dust opacity kν and the outer disk temperature T (Rd) (or an equivalent scaling tem-
perature T◦) are known, and if p and q can be determined in some fashion, then disk dust
masses can be determined from observed long-wavelength fluxes.

The initial attempts to estimate disk masses in this way were those of Beckwith et al.
(1990, hereafter BSCG) and Osterloh and Beckwith (1995) from continuum observations
at 1.3 mm. The disk temperature distribution can be inferred from the spectral index in the
wavelength regions where the disk is optically thick using equation (7.57), simplifying to
the case where the disk is vertically isothermal. Then we have

ν L̂ν = 16π2h R2◦
qc2

(
kT◦
h

)2/q

ν4−2/q
∫ xout

xin

x1/q−1 dx

(ex − 1)
. (8.10)

In the limit q = 3/4 for the steady accretion disk or the geometrically thin and flat irradiated
disk, ν L̂ν ∝ ν4/3, while for a highly flared disk with q ∼ 1/2, ν L̂ν ∼ constant.

BSCG and Osterloh and Beckwith derived estimated values of q using fits to SEDs,
assuming vertical isothermality. Although, as discussed in the previous section, the infrared
spectrum is not generally representable by a single power law, these investigators con-
centrated on fitting the longest-wavelength optically thick emission to fix the outer disk
temperature; this is a reasonable approach since most of the disk mass may reside at large
radii, and it minimizes parameters.

BSCG and Osterloh and Beckwith assumed p = 3/2 for most objects, attributing this to
the general result for α disks; but as described in Chapter 7, for steady, constant-α disks,
� ∝ R−1 for typical values q ∼ 0.5 (D’Alessio et al. 1999). A more recent study using
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(slightly) spatially resolved sub-mm emission suggests a value closer to p ≈ 0.5, although
this is subject to large uncertainties, including the assumption that the dust properties do not
vary with radius (Andrews & Williams 2007).

The biggest problem with the analysis of mm–submm emission arises from the uncer-
tainty in the dust opacity. BSCG introduced the frequently used estimate

kν = 0.1
( ν

1012
H z

)β

g cm−2 , (8.11)

with β = 1. This parameterization matches the form estimated by Hildebrand (1983) at
wavelengths λ <∼ 250 μm, and is roughly a geometric mean of suggested values at 1 mm
(see also Beckwith & Sargent (1991); André et al. (1993); Mannings & Emerson (1994)).
Figure 8.10 shows a recent analysis of mm-wave emission from disk systems in Taurus.
The observed spectral indices (left panel) clearly indicate less steep slopes than would be
expected from small dust. Disk SED fitting as described above is needed to make an estimate
of the correction needed for the optically thick inner disk regions; the resulting SEDs indicate
that the dust opacity spectral index has a median value β ∼ 1, in agreement with equation
(8.11). The wide range of estimated values probably indicates some combination of real
variations with inadequacies of the simple model analysis.

Using these methods and opacity, BSCG and Osterloh and Beckwith (1995; with some
adjustment, see Hartmann et al. 1998) found typical disk masses (assuming a gas to dust
mass ratio of 100) of order 0.01 M�. This is roughly the “minimum mass solar nebula”
(MMSN), i.e., the mass needed to account for the present solar system reconstituted to solar
composition. These results strongly indicated that many T Tauri disk masses are sufficient to
produce giant planet systems. A more recent study by Andrews and Williams (2005) based
on sub-mm observations yields a similar result (Figure 8.11). Suggestively, the Andrews
and Williams analysis suggests somewhat larger disk masses for Class I objects than Class
II systems, as might be expected if the former are in an earlier stage of evolution, with
material still being added to the disks from infalling envelopes.
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Unfortunately, the dust opacities needed to estimate disk masses from long-wavelength
emission are not well constrained, even by the value of β. This is demonstrated in
Figure 8.12, where the properties of power-law distributions of grains of typical expected
composition are shown. The middle panel shows that distributions with growth up to sizes
∼100 μm exhibit large values of β, clearly inconsistent with observations, and that growth
up to a maximum radius amax∼1 mm results in the median estimated β ∼ 1. However,
grain distributions with infinitely large amax also result in β ∼ 1 if the power-law exponent
pg ∼ 3.5, typical of the ISM. Values of pg = 2.5 yield much lower values of β for sizes
above a cm, but these cannot be ruled out in all cases given the wide range of observational
estimates (Figure 8.10).

The upper panel of Figure 8.12 shows that, for the assumed dust properties, the maximum
mm-wave dust opacity is roughly the “standard” value of the mm-wave opacity (dashed
line). This suggests that the opacity given by equation (8.11) generally overestimates the
true opacity and thus its use in analyzing sub-mm and mm-wave emission systematically
underestimates disk masses. Grain growth to mm sizes seems to be indicated; but the dust
could grow to much larger sizes and still produce appropriate values of β, provided that the
dust grains have an appropriate size distribution. Very small and very large dust grains or
rocks contribute little to the mm-wave opacity; thus, the mm-wave value of β will depend
upon the distribution of dust sizes through ∼100 μm to ∼ cm. (Note that the approximation
of a single power-law distribution of sizes of solids is for purposes of illustration, rather than
necessarily a likely outcome of dust processing in disks.)

The precise values of dust opacity depend upon composition as well, which also con-
tributes some uncertainty (e.g., Henning & Stognienko 1996), and real (small) grains are not
likely to be spherical, but complexly shaped or “fractal” instead. Nevertheless, the essen-
tial point remains: unless a significant fraction of the mass is in ∼mm-sized grains, use of
the standard opacity will underestimate the mass present. Moreover, there is much more
room in parameter space to underestimate than overestimate the opacity; in principle, one
could put large amounts of mass into basketballs or planetesimals which would essentially
be undetectable.
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Finally, one must consider the likely physical situation. Long-wavelength observations
are currently most sensitive to emission in the outer disk, partly because most of the mass is
likely to reside at large radii (unless there are massive dead zones; §7.6) and partly because
the inner regions are probably optically thick. If grain growth has proceeded to mm sizes
at radii >∼100 AU, it is likely that it has proceeded to even larger sizes at smaller radii,
where higher densities lead to faster evolution (§12.5). In general, one would expect growth
to differing maximum sizes at differing radii at the same epoch, in which case the mm-
wave emission is preferentially sampling regions of the disk with the appropriate maximum
dust size. The situation is made even more complex by the probable need to consider dust
production by collisions as well as growth by coagulation. At present, it seems safest to
regard the present measurements of disk masses as order-of-magnitude values which are
probably somewhat underestimated.
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8.4 Disk/magnetosphere accretion
As discussed in the previous section, the disks of most T Tauri stars are heated

mainly by radiation from the central regions; energy release by accretion (§7.3) is not gener-
ally large enough to use the disk SED to estimate accretion rates, or even determine whether
the disk is accreting. The clearest signatures of accretion generally come from ultraviolet
continuum and line emission arising from gas at temperatures T >∼ 8000 K.

Figure 8.13 shows Hα (left panel) and optical continuum (right panel) emission as a
function of near infrared excesses for a sample of Taurus stars. The WTTS, with photo-
spheric K –L colors, exhibit chromospheric Hα emission; CTTS, with excesses at 3.5 μm
(L) indicating the presence of warm dust in the inner disk, generally exhibit much larger
Hα equivalent widths. Similarly, solar-type magnetic activity in these stars does not pro-
duce continuum excesses; objects with significant continuum emission, or “veiling”, have
K –L excesses. This correlation demonstrates that disks are connected with optical excess
emission; mass accretion is the plausible energy source.

The optical SEDs of some typical T Tauri stars are shown in more detail in Figure 8.14
(compare with Figure 8.8). Gaseous emission is evident from the strong emission in the
hydrogen Balmer series and other lines, along with a continuum that is at least partly bound-
free hydrogen emission, as indicated by the Balmer jump at ∼0.365 μm.

Figure 8.15 shows high-resolution Hα profiles for a typical set of T Tauri stars. The WTTS
DI Tau exhibits a typical chromospheric profile, relatively narrow and with a central rever-
sal. The profiles of the other stars show that not only does the equivalent width increase with
the presence of a disk, but the line velocity width also increases. The profiles of CTTS show
complex behavior: in some cases there is blueshifted absorption, direct evidence for mass
loss; while in other cases there are asymmetries in the sense of more blue than red emission
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emission is identified when the near-infrared K –L index is greater than typical photospheric
values K − L <∼ 0.3. (The central wavelengths of K and L are ∼2.25 μm and ∼3.4 μm,
respectively.) In the left panel, the equivalent widths of Hα emission only exceed W ∼ 10 Å
when there is evidence of an inner disk in the near-infrared; smaller levels of Hα emission
are chromospheric in origin. In the right-hand panel, excess continuum emission is shown in
terms of r , the ratio of hot continuum to stellar photospheric continuum emission at 5700 Å.
The correlation of excess Hα and featureless continuum emission with infrared disk emis-
sion strongly implicates disk accretion as the mechanism heating the gas. Equivalent width
data from Herbig and Bell (1988); reddening-corrected (K − L)o colors and r -values from
Hartigan et al. (1995.)
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Fig. 8.14. Optical spectra of selected Taurus pre-main-sequence stars, showing the emis-
sion lines and hot continuum emission. The excess hot emission is especially apparent in
the Balmer continuum shortward of 3650 Å; however, many objects exhibit strong emission
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Fig. 8.15. Hα line profiles for T Tauri stars. Observed fluxes are normalized to the stellar
continuum, and are plotted as a function of the velocity shift from line center (in the star’s
rest frame). Most objects show broad emission over ranges ∼ ±200 km s−1 from line
center. Many stars (CI, DF, DG, DK Tau) show blueshifted absorption probably character-
izing mass ejection (Chapter 8), but others (BP, DN Tau) show no evidence for blueshifted
wind absorption, and one object (DK Tau) shows evidence for faint redshifted absorption
at ∼ +200 km s−1. DI Tau is a WTTS and therefore does not show the broad Hα profile
produced in the infalling magnetospheric gas observed in accreting CTTS (see Chapter 10).
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more consistent with infall (§10.10). Confusingly, one can occasionally see both blue- and
redshifted absorption (DK Tau in Figure 8.15). We now understand this as due to physically
separate flows; there is rapidly infalling material within magnetic flux tubes, in regions close
to the star, with lower-density outflow outside of the magnetosphere. Lower opacity lines are
more likely to show infall, such as the high Balmer series (Edwards et al. 1994); this indi-
cates that the outer flow is optically thin in these lines. In contrast, higher-opacity lines like
Hα can become optically thick at lower densities and thus can indicate the outer wind flow.

Boundary layer models (e.g., Lynden-Bell & Pringle 1974) cannot produce the necessary
high-velocity infall. On the other hand, stellar magnetic fields may disrupt the disks at several
stellar radii away from the stellar surface (Uchida & Shibata 1985; Königl 1991; Camenzind
1990). The accreting material is channeled along the magnetic fields lines as it falls onto
the star (Figure 8.1). The accretion flow reaches nearly free-fall velocities; it shocks when
it crashes into the stellar surface, producing the hot continuum radiation, while the (broad)
emission lines are produced in the rapidly infalling gas within magnetic flux tubes (§10.10).
This model explains the magnitude of the velocity widths of many lines (after taking some
other line broadening mechanisms into account, e.g., Stark broadening in Hα), consistent
with those expected from gravitational free-fall (Bonnell et al. 1998; §10.10).

T Tauri stars exhibit very strong magnetic activity, based on observations of strong X-ray
activity and the detection of dark starspots covering large fractions of the stellar surface.
Measurements of the Zeeman broadening of photospheric absorption lines indicate mag-
netic field strengths that in principle are sufficiently large to channel the accretion flow
(Johns-Krull et al. 1999a; Valenti & Johns-Krull 2004; Johns-Krull 2007). Especially signifi-
cant is the detection of circular polarization in certain emission lines which indicate accretion
in strong, ordered magnetic fields (Johns-Krull et al. 1999a). Accretion in small, spatially
distinct magnetic flux tubes is consistent with the small areas inferred for the hot continua
(see section 8.5), and with the photometric modulation of hot spots due to stellar rotation,
which require substantial non-axisymmetry in the hot continuum emission (e.g., Bertout
et al. 1988). In addition, there is evidence for non-equatorial accretion spots (Strassmeier
et al. 2005), which is not straightforwardly explained by the boundary layer model. Thus,
there is every reason to invoke disruption of inner T Tauri disks by stellar magnetospheres.

The magnetospheric model was initially invoked to explain the slow rotation of T Tauri
stars; interaction of the stellar magnetic field with a disk at radii where the Keplerian rotation
period is of order a week in principle can slow the stellar rotation to a comparable period
as it transfers angular momentum to the disk (Königl 1991; Shu et al. 1994). Using the
photometric periods caused by hot spots (and dark starspots, in the case of non-accreting
stars), surveys indicated that stars without close circumstellar disks rotate more slowly than
the stars with inner circumstellar disks (Bouvier et al. 1993; Edwards et al. 1993), consistent
with the idea of magnetosphere-disk transfer of angular momentum. The tendency of stars
with disks to be somewhat slower rotators has subsequently been reinforced by studies of
young clusters (Herbst et al. 2002; Lamm et al. 2005; Rebull et al. 2006), though with more
scatter than previously inferred. However, the detailed mechanics of how this spindown can
occur is complex; it is not a simple matter to spin down a star while it is accreting higher-
angular momentum material (see §10.10). Moreover, the general lack of circular polarization
in stellar photospheric lines suggests that large-scale, ordered fields are much smaller than
those indicated by Zeeman broadening (e.g., Daou et al. 2006); in turn, this may indicate
higher-order fields than dipolar, which would make the magnetic field much weaker at large
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distances, raising questions as to whether the net stellar field is really strong enough to hold
off the disk accretion out to many stellar radii.

In summary, the observed broad line profiles, strong stellar magnetic fields, and non-
axisymmetric (and non-equatorial) hot spots confirm the general picture of magnetospheric
accretion, although details of the geometry and the size of the magnetospheres remain
uncertain (§10.10).

8.5 Accretion rates
Assuming that the hot continuum emission of CTTS is produced by the accreting

gas as it shocks at the stellar surface, the steady-state luminosity is

Lhot ≈ G M Ṁ

R∗

(
1 − R∗

Rm

)
, (8.12)

while the disk luminosity is∗

Ld ≈ G M Ṁ

2Rm
+ Ldiss + L irrad . (8.13)

Here Rm is the magnetospheric radius, where the stellar magnetic field truncates the disk,
Ldiss is the energy dissipated by the stellar magnetic fields passing through the disk if the
angular velocity of the magnetic field lines differs from the angular velocity of disk material,
and L irrad is the luminosity due to heating by the central star’s radiation. The magnitude
of Ldiss is uncertain. At one extreme, if the star is not rotating, and disk material is spun
down to match the star before beginning to fall in along the magnetospheric field lines,
then Ldiss = G M Ṁ/2Rm, i.e., the equivalent result for the boundary layer (§7.8) but with
the magnetospheric radius now playing the role of the inner disk radius. If the inner disk
radius is not too far from co-rotating with the stellar magnetic fields, the amount of energy
dissipated in the disk is likely to be modest (Kenyon et al. 1996). For typical T Tauri stars,
the co-rotation radius is probably at Ri ≈ 3–5 R∗, in which case most of the energy of
accretion is radiated in hot continuum emission, not in the disk. (To achieve the necessary
infall velocities from gravitational acceleration requires infall from at least 2R∗; see §10.10.)

Measurements of the hot continuum luminosity therefore can provide estimates of mass
accretion rates from equation (8.12) which cannot be derived from disk emission for typi-
cal T Tauri stars. Unfortunately, the actual determination of Lhot is complicated by several
factors, including disentangling the stellar photospheric emission from the excess emission.
The hot continuum makes the stellar absorption lines appear weaker, or in the terminol-
ogy, “veiled”. One can estimate the veiling from a knowledge of the true photospheric line
depths for the appropriate stellar spectral type (e.g., Hartigan et al. 1991), and thus derive the
excess emission in wavelength regions where the stellar photosphere dominates. Geometric
factors can also introduce errors, given the complex arrangement of accretion, and variability
can also be an issue. The biggest problems are estimating source extinction, which affects
ultraviolet fluxes strongly, and the broad character of the continuum emission, which ide-
ally requires simultaneous measurements of the excess over wavelengths ranging from the

∗ The exact amount of energy dissipated in disk and accretion shock depends upon the amount of energy which
goes into spinning up (or down) the star, the fraction which goes into a wind, and the potential dissipation of
energy as the magnetic field interacts with the disk. The boundary conditions at the inner edge of the disk are
uncertain and affect the total disk luminosity (cf. §7.8).
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ultraviolet to perhaps even 1 μm. These difficulties have limited detailed studies to a few
objects, with extrapolation to unobserved wavelength regions using models; in turn these
detailed analyses are used to develop calibrations of much more easily obtained data, such
as U-band or similar photometric bands vs. accretion luminosity (e.g., Gullbring et al. 1998).

Figure 8.16 shows an example of a detailed model calculation of an accretion shock com-
pared with observations (Calvet & Gullbring 1998; see also Gullbring et al. 2000). The
emission is composed of several components. Shock velocities are of order the free-fall
values, ∼200–300 km s−1. The post-shock region produces X-rays and extreme ultraviolet
radiation as the gas cools from ∼106 K. Most of this high-frequency radiation is absorbed
and re-emitted at longer wavelengths; some is emitted downward toward the stellar photo-
sphere, heating it to high temperatures, producing a strong continuum, while the outward
radiation heats the less optically thick pre-shock gas, producing among other things the
Balmer continuum jump in emission (Figure 8.16).

Detailed models such as in Figure 8.16 suggest that simple photometric measurements
of ultraviolet excesses can provide reasonable estimates of accretion rates. Uncertainties
still remain; for instance the extinction at ultraviolet wavelengths may depart from standard
reddening laws; more “gray” extinction might reduce reddening corrections and therefore
reduce accretion rate estimates. On the other hand, veiling at near-infrared wavelengths may
be substantially in excess of that predicted by simple uniform shock models (Folha & Emer-
son 1999; Edwards et al. 2006); this might indicate a distribution of shock areas and conse-
quent differing flux levels, implying that current results may underestimate accretion rates.
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Figure 8.17 shows two sets of mass accretion rates derived from blue-optical excesses
of stars in nearby clouds. For typical stellar parameters M∗ = 0.5 M�, R∗ = 2 R�, the
predicted disk accretion luminosity for a median mass accretion rate of 10−8 M� yr−1 is
Ld(acc) = G M∗ Ṁ/2R∗ ∼ 0.08 L�. This low value is consistent with the modest infrared
excesses generally found in CTTS (Figure 6.3), and indicates that even the inner disk emis-
sion in most CTTS is powered by irradiation. The situation is different when the accretion
luminosity greatly exceeds that of the central star, as occurs with the most-rapidly accreting
T Tauri stars, or the FU Ori objects (Chapter 9). In such cases irradiation from the central
star can be ignored, and accretion rates can be inferred from disk luminosities directly, as
originally envisaged by Lynden-Bell and Pringle (1974).

Intrinsic time variability of CTTS accretion, which may be responsible for some of the
scatter shown in Figure 12.4 is not very well characterized at present (Herbst et al. 1994;
Gahm 1994, and references therein). Timescales of potential accretion events range from
less than one hour to years with amplitudes at the visual band (λ ∼ 0.55 μm) V < 0.05,
for the fast events, to several magnitudes in V for longer-term variations (Vrba et al. 1993;
Gullbring 1994; Gahm et al. 1995; Gullbring et al. 1996). The variable brightness of the
hot continuum may have an analogue in the accreting intermediate polars, which are close
binary systems also accreting through magnetospheres (cf. Frank et al. 1992).

Herbig (1977b, 1989) has called attention to relatively long-term, substantial variations in
the optical emission of CTTS. Typically these “EXor” outbursts involve increases in opti-
cal brightness of a few magnitudes and may last for fractions of a year to decades. For
example, DR Tau became brighter by about two magnitudes in the B photometric band
(λ ∼ 0.45 μm) in the 1970s and has remained relatively bright since. Because DR Tau is
currently a very-strong-emission CTTS (Figures 8.8, 8.14), it is likely that this brightening
is due to an increase in the accretion rate, which made the hot continuum emission much
brighter. However, at present very little is known about the statistics of such outbursts.
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8.6 What drives accretion?
As discussed in §4.6, it is likely that most of the mass of a star initially lands

on a disk; it therefore seems likely that gravitational instabilities can dominate the angular
momentum transport needed to accrete most of the stellar mass. However, current estimates
(e.g., Figure 8.11) suggest disk masses at least an order of magnitude smaller than the values
needed for gravitational instability (equation (7.98)). Although it was argued in §8.3 that cur-
rent disk mass estimates are probably too low, it isn’t clear that the disks are really massive
enough for gravitational instability to dominate the angular momentum transport, especially
close to the star. From equation (7.83), setting Q ∼ 1 implies πG� ∼ cs�; as both the
sound speed cs and especially the angular frequency increase rapidly with decreasing radius,
extremely large surface densities are required to make the innermost disk gravitationally
unstable.

The other likely mechanism of angular momentum transport is the MRI. However, as
discussed in §7.6, the ionization levels in T Tauri disks are likely to be too low to support
MRI turbulence in many regions of the disk. Even if one assumes that the MRI can operate
because of sufficient dust depletion in upper layers of surface density �a , there are still
difficulties. Assuming that the disk is heated primarily by viscous dissipation, and using a
layered accretion disk theory, Gammie (1996a) derived an inner disk accretion rate Ṁ for a
standard dust opacity law,

Ṁ = 1.8 × 10−8
( α

10−2

)2
(

�a

100 g cm−2

)3

M� yr−1 , (8.14)

While this model can provide accretion rates in rough agreement with observations, the
predicted accretion rates are quite sensitive to the active layer surface density �a . More
problematically, this result exhibits no explicit dependence upon the stellar mass, whereas
the observational estimates shown in Figure 8.18 indicate a significant correlation, roughly
Ṁ ∝ M2∗ , albeit with considerable scatter at a given mass.

It is important to note that there are observational selection effects present in Figure 8.18.
As pointed out by Clarke and Pringle (2006), continuum excesses much lower than the
stellar luminosity are difficult to detect, contributing to the lack of detections in the lower
right corner of the figure. In addition, accretion luminosities much larger than that of the
stellar luminosity would also make it difficult to and discern the stellar photosphere, and
thus the stellar mass, helping to explain the upper envelope of points. However, while these
effects are certainly present, they cannot explain the main trend. Hα line profiles are sensitive
to mass accretion at rates well below those detectable in continuum emission; indeed, most
of the brown dwarf (M∗ < 0.08 M�) accretion rates have been derived from either Hα or
Brackett γ emission (Muzerolle et al. 2003b; Natta et al. 2004). Even at low accretion rates
for higher-mass stars, one could detect broad Hα absorption – and this is not seen to the
author’s knowledge. On the other end of the problem, if accretion luminosities of many T
Tauri stars were so high as to completely veil the optical spectrum, one would detect many
“continuum” stars; instead, they constitute a small fraction of the population in, for example,
Taurus. Thus observational selection effects can somewhat bias any mean trend of Ṁ vs. M∗,
but cannot explain it away. (Another concern is that the accretion rates for the lowest mass
stars tend to come from emission line calibrations, rather than continuum excesses as in
the higher-mass stars; the investigation of Herczeg and Hillenbrand (2008) suggests that
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Fig. 8.18. Mass accretion rates for young stars as a function of stellar mass. Data taken
from Gullbring et al. (1998), White and Ghez (2001), White and Basri (2003), Muzerolle
et al. 2003b, Calvet et al. (2004), Natta et al. (2004), and Muzerolle et al. (2005). The mass
accretion rates for intermediate-mass stars are observed in objects which have not contracted
close to the main sequence, i.e., in their F–G star partially convective envelope phase rather
than in their eventual A star main-sequence spectral type (see Calvet et al. 2004). The solid
line corresponds to an accretion rate which would result in amassing 0.1 of the stellar mass
in 1 Myr (see text). From Hartmann et al. (2006).

Hα measurements underestimate mass accretion rates, but not enough to strongly affect the
overall trend of accretion rate vs. mass.)

The T Tauri/Class II/CTTS stage presumably represents the final stages of stellar accre-
tion. It is therefore reasonable to assume that the initial disk masses of these systems are just
below that needed for gravitational instability. This means that the disk mass should scale
proportionately with the stellar mass (e.g., equation (7.98)). If T Tauri disks are mostly or
completely MRI-active, due to small surface densities and/or sufficient numbers of metal
ions not absorbed into grains (Fromang et al. 2002), then accretion rates should scale as

Ṁ ∼ Md

t
, (8.15)

with constants relating to the assumed viscous properties. For example, using the similarity
solution of §7.2, evaluating the constant Cg by determining the disk mass at a given time
from equation (7.47), assuming that evolution has occured over many viscous times (e.g.,
Tg � 1 in equation (7.48)), and evaluating the result at the inner disk radius, with R → 0,
one finds Ṁ(t) = Md/(2t). Thus, if the initial disk mass scales with the star, one finds
a linear dependence of Ṁ on M∗. One can achieve an even stronger dependence of the
accretion rate on disk mass if viscous evolution is faster in lower-mass objects, for instance
if lower-mass stars start out with systematically smaller radii disks (Dullemond et al. 2006;
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also Hartmann et al. 2006). Tilling et al. (2008) argue that the data do not really provide
a constraint on viscous evolution, given a range of initial T Tauri disk masses generally
proportional to the stellar mass, and allowing for observational selection effects.

One potential problem with this kind of model is that it predicts a tight relationship
between the current disk mass and the current mass accretion rate. The fully viscous disk
model yields low mass accretion rates when disk masses are low; but mm-wave disk emis-
sion has been detected from several young brown dwarf disks (Klein et al. 2003; Scholz et al.
2006) which, despite the uncertainties in dust opacities (§8.3), suggest relatively substantial
disks. More generally, this solution requires either MRI activation throughout much of the
disks, which seems unlikely, or some other unknown mechanism of angular momentum
transport.

It is possible to introduce some dependence of the mass accretion rate on the stellar mass
in the Gammie (1996a) layered accretion model by including irradiation from the central
star. The accretion rate in the inner disk (and therefore the rate onto the central star) is given
by the accretion rate of the layered model at the critical radius Rc where the temperature
rises to a level sufficient for thermal ionization to activate the MRI. If we take this to be
the (frontally illuminated; Figure 8.1) disk edge at the dust destruction radius (which would
both provide enough thermal ionization and remove the electron-absorbing dust), for a fixed
dust destruction temperature, Rc ∝ L1/2∗ , then for the viscosity ν = αcs/�,

Ṁ ∝ ν� ∝ αc2
s �

−1�a ∝ α�a L3/4∗ M−1/2∗ . (8.16)

For pre-main-sequence stars up to masses of 2 M� or so, the stellar luminosity tends to scale
very roughly as L∗ ∝ M2∗ . Therefore in the limit of pure irradiation heating, we would
expect

Ṁ ∝ α�a M∗ . (8.17)

Thus, the inclusion of irradiation heating results in a layered model in which the accretion
rate is no longer independent of stellar mass, with what may be sufficiently sensitive to mass
(Tilling et al. 2008).

Another possibility is that stellar X-ray emission, which potentially provides MRI acti-
vation, also depends upon stellar mass. However, among low-mass stars the ratio of X-ray
to stellar luminosity is almost constant, down to brown dwarfs, as indicated by studies of
the Orion Nebula Cluster (Flaccomio et al. 2003; Preibisch et al. 2005). Since the fluxes of
both photospheric and X-ray radiation should scale in the same way for the same geometry,
it does not seem that there should be an effect. Furthermore, the calculations of Glassgold
et al. (1997) and Igea and Glassgold (1999) suggest that MRI ionization levels are main-
tained until the X-rays are very strongly attenuated; this makes the activated total column
density depend very slowly on the X-ray luminosity in any case.

The solid line in Figure 8.18 denotes the accretion rate at which 0.1 of the stellar mass
would be accreted in 106 yr. The absence of stars above this boundary is consistent with the
notion that T Tauri disk mass reservoirs need not be so large as to be strongly gravitationally
unstable. On the other hand, this does not rule out the possibility of accretion by weak
gravitational instability in a disk hovering near Q ∼ 1, with a gradual dwindling of angular
momentum transport. Perhaps the MRI and the gravitational instability combine to produce
complicated patterns of accretion which depend upon stellar mass.



8.7 The WTTS 183

8.7 The WTTS
T Tauri stars were originally recognized as young objects found in regions of star

formation with strong emission lines, as seen in objective-prism spectra (e.g., Haro et al.
1953; Herbig 1954, 1957; Herbig & Kuhi 1963). Stars with weaker, chromospheric Hα

emission (e.g., DI Tau, Figure 8.15) were difficult to detect on such low-resolution spectra.
X-ray surveys turned out to be much less biased toward accretion activity, resulting in a large
expansion of the pre-main-sequence population (see discussion in Montmerle et al. 1993).
While care must be taken in surveying large areas to avoid including foreground relatively
young, magnetically active stars (Briceño et al. 1997), increasingly sensitive X-ray surveys
have been crucial in rounding out our understanding of pre-main-sequence evolution (e.g.,
Feigelson et al. 2005; Güdel et al. 2007, and references therein).

High X-ray emission selects both the strong-excess CTTS and a population of weak Hα

emission, which have therefore been called the “weak-emission” T Tauri stars or WTTS. As
shown in the left panel of Figure 8.13, WTTS do not show near-infrared excess emission
characteristic of disks (see also Wolk & Walter (1996)). Similarly, as shown in the right
panel of Figure 8.13, WTTS do not show optical hot continuum emission (veiling) expected
for substantial disk accretion. The hot gaseous emission of the WTTS therefore arises from
a form of solar-type magnetic chromospheric and coronal activity rather than from disk
accretion.

The original definition of a WTTS was that of a young star with Wλ(Hα) < 10 Å (cf.
Herbig & Bell 1988) has been modified to account for the variation of chromospheric Hα

fluxes as a function of the effective temperature of the star; this is a natural result of the
complicated dependence of chromospheric Hα on the stellar photospheric radiation field
(Cram & Mullan 1985). Using large Hα velocity widths as signatures of magnetospheric
accretion, White and Basri (2003) devised a more robust way to separate WTTS from CTTS,
as shown in Figure 8.19.

The strong chromospheric and coronal emission of WTTS is in the same range as observed
in other stars of relative youth, such as the young main-sequence stars in the Pleiades
or α Persei clusters, which have ages ∼50–100 Myr (Randich et al. 1996; Stauffer et al.
1994). WTTS may have even stronger coronal X-ray emission than CTTS (Neuhauser et al.
1995). However, these emission levels are small fractions of the stellar luminosity, and
are easily distinguished from the much larger energy release of disk accretion at ages of
∼1 Myr.

Populations of WTTS are found with the same ages as CTTS (Kenyon & Hartmann 1995);
thus, although CTTS eventually stop accreting from their disks, and turn into WTTS, age is
not the only factor in whether a young star exhibits an accretion disk. Binary companions
can render disks dynamically unstable on scales comparable to the binary orbit; this would
explain the tendency for binaries to exhibit weaker disk emission and thus exhibit WTTS
properties (Jensen et al. 1994, 1996; Osterloh & Beckwith 1995; McCabe et al. 2006). With
the distribution of binary companion stars among solar-type stars peaking at periods of ∼6×
104 days, or semi-major axes ∼30 AU (Duquennoy & Mayor 1991), one might expect that
companions are responsible for limiting disk sizes and thus resulting in faster disk evolution.
However, binarity does not seem to be the only reason why young WTTS exist, as many
binaries exhibit strong dust emission from both circumstellar and circumbinary disks (e.g.,
Guilloteau et al. 1999). Indeed, the CTTS DQ Tau (Figures 8.8, 8.14) manages to accrete
and have strong infrared excess emission, even though it is a nearly equal-mass short-period



184 The disks of pre-main-sequence stars

10%–Width (Hα) (km s–1)

E
qu

iv
al

en
t w

id
th

 (
H

α)
 Å

10

100

200

2000 400 600

K0–K53 Å

10 Å

20 Å

40 Å

K7–M2.5

M3–M5.5

M6–M7.5

Fig. 8.19. Equivalent widths vs. velocity widths at 10% of peak for Hα lines in T Tauri stars.
The velocity widths of optically-veiled, accreting T Tauri stars (CTTS, filled symbols) are
systematically larger than the corresponding velocity widths for WTTS. The results suggest
that Hα equivalent widths can be used to distinguish CTTS from WTTS reasonably accu-
rately, but that differing limits need to be taken for stars of differing spectral type (see text).
From White and Basri (2003).

(15.8 day) binary (Mathieu et al. 1997); apparently its eccentric orbit allows material to
accrete from the outer disk phased with the orbital period (Basri et al. 1997).

8.8 The Herbig Ae/Be stars
The picture of disk structure, accretion, and evolution developed in the preceding

sections also appears to be applicable to intermediate-mass young stars (M ∼ 2 − 4 M�).
Hillenbrand et al. (1992) pointed out the ubiquity of infrared excesses in these so-called
“Herbig Ae/Be systems” and explicitly modeled the emission as dusty disks with high mass
accretion rates. Interferometry at mm wavelengths resolved the dust disks of some systems,
and traced the disk rotation (e.g., Mannings & Sargent 1997). The interpretation of HAe/Be
stars as accreting disk systems has been secured by a variety of measurements (see Millan-
Gabet et al. 2007).

The 3 μ peak seen in the SEDs emission of many HAe/Be stars (see, for instance, Figure
1.11) initially seemed peculiar, but was naturally explained by Natta et al. (2001) and Dulle-
mond et al. (2001) as arising from the inner edge of the disk, frontally illuminated, where
the disk dust becomes so hot as to evaporate (Figure 8.1). (The same effect is now thought
to occur in T Tauri disks; Muzerolle et al. 2003b). This disk “wall” produces a large contri-
bution to the near-infrared excess, and can be fit crudely by blackbody emission at roughly
1300–1400 K, comparable to what is expected for dust sublimation (Dullemond et al. 2001).
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One important difference of the HAe/Be stars compared with T Tauri stars is that the
high luminosities of the former imply that the dust destruction radius occurs at much larger
radii, of order 0.3–1 AU, as directly verified by near-infrared interferometry (e.g., Millan-
Gabet et al. 1999, 2001; Monnier & Millan-Gabet 2002; Eisner et al. 2003, 2004). The
interferometric results are better fit by a “wall” that curves away from the star rather than
being a flat plane, as a result of pressure-dependence of dust evaporation and/or grain settling
(Isella & Natta 2005; Tannirkulam et al. 2007).

In principle disk gas can accrete through the dust destruction wall, especially as the ion-
ization state of such material should be sufficient to sustain the MRI. There is also some
evidence for high-velocity infall in a few HAe/Be systems, suggesting that magnetospheric
accretion can occur in intermediate-mass pre-main-sequence stars as well as T Tauri stars
(Muzerolle et al. 2004). The accreting disk material must radiate as it moves inward to the
star; this emission may have been detected with near-infrared interferometry (Eisner et al.
2007; Tannirkulam et al. 2008). The difficulties of calculating the energy balance and thus
thermal structure of this accreting gas in the presence of strong ultraviolet radiation which
can dissociate gas make theoretical predictions of emission spectra problematic. Muzerolle
et al. (2004) suggested that this accreting dust-free gas is geometrically thin if not optically
thin, so that the dust destruction “wall” is effectively illuminated by the central star rather
than being shadowed by the inner disk.

Another issue is whether HAe/Be stars exhibit enough X-ray emission to drive the MRI
effectively in the outer disk. Using deep Chandra observations of the very young Orion Neb-
ula Cluster, Stelzer et al. (2005) showed that of four of 11 mid B- to late-A were not detected,
with X-ray luminosity upper limits much lower than that of the late-type stars in the region;
this suggests that the X-rays in the detected objects may be dominated by emission from
an unresolved late-type companion star. Telleschi et al. (2007) studied the high-resolution
X-ray spectrum from AB Aur and concluded that this canonical Herbig Ae/Be star does
indeed produce its own X-rays, because its spectrum indicates much lower characteristic
temperatures than typical of T Tauri stars (see also Swartz et al. 2005). However, the AB Aur
spectrum shows a rapid falloff above 1 KeV, whereas photons of energy >∼3 KeV are most
important for deeply ionizing the disk (Igea & Glassgold 1999); the lack of high-energy
photons may reduce MRI activity significantly.

If Herbig Ae/Be stars have reduced MRI activity because of weak or soft X-ray emis-
sion, their disk accretion might be driven mainly by gravitational instability. In this case,
angular momentum transfer would decay rapidly once the Toomre Q parameter becomes
significantly larger than unity, leaving behind a relatively massive disk which only slowly
accretes due to the reduced MRI. Speculatively, massive, dense disks might coagulate faster
into large bodies, resulting in more rapid disk evolution consistent with the much lower disk
frequencies among A stars than among later type stars (e.g., Hernández et al. 2005, 2007).

The application of disk accretion models to even higher-mass stars is much more prob-
lematic, due to the difficulty of observing more distant, confused systems, and the increased
importance of photoevaporation/photoionization/radiation pressure (§4.7).

8.9 The transitional disks
It has been clear since the pioneering studies by Strom et al. (1989) and Skrutskie

et al. (1990) that dusty disks – at least the regions close to the central T Tauri star – tend
to disappear (or become optically thin) on timescales of a few to 10 Myr. Recent studies
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Fig. 8.20. The transitional disks CoKu Tau 4 (left) and GM Aur (right). CoKu Tau 4 is
a WTTS, and thus shows no evidence of gas accretion; it exhibits no detectable infrared
excess from dust out to ∼10 μm; but the large, rapid rise in emission at longer wavelengths
indicates the presence of a typical T Tauri disk, as indicated by the comparison to the median
Taurus SED (Figure 8.5). Models indicate that this disk is highly evacuated of gas and dust
interior to about 10 AU. In contrast, GM Aur is a CTTS, with significant gas accretion and
reduced dust masses within a hole of inner radius ∼24 AU. From D’Alessio et al. (2005) and
Calvet et al. (2005).

(Haisch et al. 2001; Carpenter et al. 2006; Hernández et al. 2007) confirm this general
picture, but why some disks “disappear” faster than others is unclear (§12.1).

Generally speaking, when the near-infrared excess disappears, so do the indicators of gas
accretion (e.g., Figure 8.13). However, there are a few exceptions to this rule. In particular,
thanks largely to the spectral resolution and enhanced sensitivity brought to bear in the
5–35 μm wavelength region by the IRS spectrograph on the Spitzer Space Telescope, we
now recognize a subset of objects called “transitional disk” systems (e.g., Calvet et al. 2002;
Calvet et al. 2005; D’Alessio et al. 2005). The transitional disks have little or no near-
infrared excess but very large mid-infrared excesses, comparable to typical T Tauri levels
(Figure 8.20). Although some transitional disks do not accrete at detectable levels (CoKu
Tau 4), others may have substantial accretion rates. For instance, GM Aur has an estimated
accretion rate of ≈10−8 M� yr−1 (Gullbring et al. 1998), suggesting that the accreting gas
is less opaque than usual, perhaps due to depletion of small grains. Rice et al. (2006a) have
suggested that gas pressure gradients at the outer edge of a gap in a disk might hold back
some dust, resulting in gas accretion with a lower dust density (see §12.6).

The presence of a relatively massive outer disk with substantial amounts of gas is indicated
by the strong mid-infrared excesses seen in these systems. Models for these objects indicate
that the abrupt rise of flux with increasing wavelength is due to emission from a relatively
well-defined inner disk edge or “wall”; this is a version of the dust walls found in Herbig
Ae/Be stars (see previous section), but at much lower temperatures, so they are not the
result of dust evaporation. The inferred heights of these walls are large, z/R ∼ 0.2, in order
to produce sufficient infrared excess emission, implying dust suspension to several scale
heights above the midplane (D’Alessio et al. 2005; Calvet et al. 2005; Espaillat et al. 2007).
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Typical inner wall radii are approximately a few to a few tens of AU; this may be in part
an observational selection effect corresponding to the dust temperatures which radiate in the
IRS wavelength range.

The presence of a substantial outer disk with weak inner dust emission suggests that the
transitional disks represent an early stage of disk clearing. Their low frequency (a few per-
cent of the CTTS) indicates that transitional disks represent a rapidly evolving phase of disk
evolution, lasting of order 105 yr. While some systems are known to have inner disk clearing
due to a binary companion, many others exhibit no evidence of being a multiple system.
Thus, many of the transitional disks may be objects in process of coagulating dust into plan-
etesimals or even planets in an “inside–out” process expected theoretically, as evolutionary
timescales are thought to increase with increasing radius. These objects will clearly be sys-
tems of great interest for future attempts to find giant planets either in formation or during
their early evolution.



9

The FU Orionis objects

The remarkable eruptive FU Orionis objects found in star-forming regions are important
to our understanding of protostellar accretion disk physics. The best-studied FUors provide
the clearest examples of the SED of an optically-thick accretion disk, with observations
spanning a decade in wavelength or more. The very high accretion rates of these accretion
disk systems imply that the MRI can easily operate through thermal ionization, at least out
to radial distances of nearly an AU. In addition, the high temperatures mean that gaseous
spectral lines are present which can be used to infer rotation, turbulence, disk surface mass
ejection (Chapter 10), and even chromospheric activity. Clues to the magnitude of angular
momentum transport can be derived from the timescales of variability of these systems.
Finally, the eruptive behavior and high accretion rates for short periods of time provide an
unexpected insight into how mass is added to stars during early stellar evolution.

Acceptance of the accretion disk model proposed by Paczynski (1976), Lin and
Papaloizou (1985), and Hartmann and Kenyon (1985) was slowed by the optical appearance
of FUors, with spectra similar to that of a G supergiant (except rapidly rotating, an other-
wise unknown set of objects). An early model for FUors attempted to explain the substantial
near-infrared excesses (Cohen & Woolf 1971; Rieke et al. 1972; Simon et al. 1972; Gras-
dalen 1973; Simon 1975) by invoking such rapid rotation that the equatorial regions were
much more extended, and thus cooler, than the polar regions (Mould et al. 1978). This model
fails because observations at increasingly long wavelengths require an implausibly flattened
stellar structure; moreover, the cool infrared-emitting regions rotate more slowly than the
optical photospheres, opposite to what would be predicted for a rotationally extended star,
but consistent with Keplerian rotation in a disk (Hartmann & Kenyon 1987a,b). The disk
model also can account for the outbursts by analogy with those seen in accreting binary
systems, at least in principle.

FU Ori objects must be rapidly accreting systems. Using equation (7.56) to obtain a
sufficiently high maximum disk temperature to explain the optical spectrum,

Tmax ∼ 6500 M1/4
0.5 Ṁ1/4

−5 R−3/4
2 K , (9.1)

where M0.5 and R2 are the central star mass and radius in typical units for T Tauri
stars of 0.5 M� and 2 R�, respectively, and Ṁ−5 is the mass accretion rate in units of
10−5 M� yr−1. Thus, the optical emission from FU Ori disks requires a much higher accre-
tion rate than that typical of T Tauri stars. Observations suggest that the inner disk radii of FU
Ori objects are a factor ∼2–3 larger than the value adopted above, requiring mass accretion
rates closer to ∼10−4 M� yr−1 to explain the observed spectra and accretion luminosities.

188
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FU Ori objects are rare because outbursts at the peak accretion rates ∼10−4 M� yr−1

cannot last long. On the other hand, the frequency of FU Ori outbursts appears to exceed the
expected frequency of star formation in the solar neighborhood by a factor of at least several;
thus, at least some stars must have repetitive outbursts, though it is not known whether
most low-mass stars undergo FU Ori outbursts. The outbursts are thought to be (relatively)
short-lived phenomena, lasting ∼102 yr; however, this is quite uncertain, since no known
FU Ori has actually yet returned to its pre-outburst state, and there are differences between
objects (§9.1).

The total current mass accretion rate for the known FU Ori objects in the solar neighbor-
hood is estimated to be approximately a few to 10% of the rate at which interstellar matter
is being converted into stars. This suggests that FU Ori events are responsible for accret-
ing a modest fraction of the total mass of low-mass stars. However, it is quite likely that
the present census of FU Ori objects is incomplete, due to difficulties in detecting heav-
ily extincted sources; this view is supported by recent infrared surveys which, although not
detecting outbursts, find the spectral signatures of rapid disk accretion. Large-scale infrared
surveys are needed to understand the true place of FU Ori objects in early stellar evolution.

It is not clear why disk accretion rates are so variable, although our recognition of the
MRI as a major factor in angular momentum transport has led to promising hypotheses. FU
Ori outbursts appear to be a phenomenon of the earliest stages of stellar evolution, consistent
with the original suggestion by Lynden-Bell and Pringle (1974) that protostellar disks may
outshine their central stars at very early ages. The large extinctions and far-infrared emis-
sion of many FU Ori objects suggest that they are still experiencing infall from protostellar
envelopes. Mass infall to the disk may pile up material until the disk can adjust itself in a
violent manner to rid itself of excess material by accreting onto the central star.

The material in this chapter draws on the review by Hartmann and Kenyon (1996)
and other references listed therein, including reviews by Herbig (1966, 1977b, 1989) and
Reipurth (1990), with recent photometry kindly provided by Mansur Ibrahimov.

9.1 Basic observational properties
FU Ori objects were originally identified by their large outbursts in optical light

(Herbig 1966, 1977b; Kolotilov & Petrov 1983, 1985). Figure 9.1 illustrates optical light
curves of the three best-studied objects, which all exhibit large increases in optical brightness
of ∼4 mag or more and remain luminous for decades. Though similar in many respects,
differences in the light curves show that these objects are not indentical. The two best-
studied objects, FU Ori and V1057 Cyg, exhibited very short rise times to maximum light
(∼1 yr), while the rise of V1515 Cyg to maximum has taken more than a decade. The decay
timescales can differ dramatically; FU Ori shows a slow decline with an e-folding time
∼50−100 yr; V1057 Cyg initially faded about 10 times faster than FU Ori, but has slowed
its rate of decay in recent years; and V1515 Cyg has not yet shown evidence of becoming
fainter.

The FU Ori objects are clearly pre-main-sequence systems. They are all spatially and kine-
matically associated with star-forming regions, and all have reflection nebulae (cf. Goodrich
1987; Figure 9.2). Many objects now assigned to the class by spectroscopic criteria (see
p. 190) are heavily extincted, and all have large infrared emission excesses (Weintraub et al.
1991). Furthermore, when the optical spectrum can be detected, all FU Ori objects exhibit
the strong Li I 0.6707 μm absorption characteristic of young stars (Chapter 11).
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Fig. 9.1. Historical optical photometry of outbursts in three FU Ori objects. Modern pho-
tometry is in the B band, to correspond as nearly as possible with archival photographic
photometry. Courtesy of Mansur Ibrahimov.

FUors exhibit moderately distinctive optical spectra. Optical spectral types are late F to
G (effective temperatures ∼7000–6000 K), and line ratios indicate surface gravities much
lower than those typical of T Tauri stars (Figure 9.3). Broad blueshifted absorption is
observed in the Balmer and Na I resonance lines, indicating that these objects have power-
ful winds (Chapter 10); emission components in Hα and other wind lines are weak or
absent, except for Ca II and Mg II emission which indicates chromospheric activity (e.g.,
Kenyon et al. 1989); thus the FU Ori objects do not exhibit the signatures of magnetospheric
accretion seen in T Tauri stars (§§8.4, 10.10).

FU Ori objects have even more distinctive near-infrared spectra. In contradiction with the
optical spectral types, FU Oris show strong CO absorption at 2.2 μm and water vapor bands
in the near-infrared (∼1–2 μm) region, characteristic of M giant–supergiant atmospheres
(effective temperatures <∼3000 K; see Figure 9.4). Because near-infrared spectra for heavily
extincted sources are much easier to obtain than optical spectra, the majority of objects now
thought to be FUors are systems which exhibit strong CO and water vapor absorption. In
some cases, such as L1551 IRS 5 and V733 Cep (Mundt et al. 1985; Stocke et al. 1988; Carr
et al. 1987; Reipurth et al. 2007), it is possible to obtain optical spectra (sometimes purely in
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Fig. 9.2. FU Ori (upper left) and V1057 Cyg (upper right); V1515 Cyg (lower left) and Z
CMa (lower right) in optical images. Courtesy C. Briceño.
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Fig. 9.3. Optical spectra of FU Ori and BBW 76, illustrating typical G supergiant spectral
features. These two objects have nearly identical spectra. From Reipurth et al. (2002).



192 The FU Orionis objects

1.0
0

5.0 × 10–16

1.0 × 10–15

1.5 × 10–15

2.0 × 10–15

2.5 × 10–15

3.0 × 10–15

1.5 2.0

Water ice

Water vapor

Water vaporWater
vapor

2.5
Wavelength (μm)

F
lu

x 
(W

/m
2 /

s/
μm

)

3.0 3.5 4.0

Fig. 9.4. Near-infrared spectrum of the highly embedded young FUor V733 Cep, showing
the strong water vapor and CO first vibrational overtone absorption. The spectrum also shows
a dip at λ ∼ 3 μm which is due to ice absorption in foreground material. From Reipurth et al.
(2007).

scattered light along the outflow cavity) which help support the FUor identification. Mem-
bers of the spectroscopic FUor class (with occasional outburst information) now include Z
CMa (Hartmann et al. 1989) (which has an embedded companion that dominates the total
luminosity; Koresko et al. 1991, Haas et al. 1993); RNO 1B/C (Staude & Neckel 1991;
Kenyon et al. 1993); Haro 5a IRS, HH 354 IRS, and HH 381 IRS (Reipurth & Aspin 1997);
PP13S (Sandell & Aspin 1998); and possibly V346 Nor (Graham & Frogel 1985). (Some
young objects exhibit the CO bands in emission rather than absorption; it is possible that
these could be produced in rapidly accreting, FUor-like disks with strong irradiation, either
from a hot accretion shock, or possibly from the photospheric emission of an early-type
central star; Calvet et al. 1991).

A pre-outburst spectrum is available for one FU Ori object (V1057 Cyg), showing the
Balmer, Ca II, Fe I, and Fe II emission lines characteristic of an accreting T Tauri star (Herbig
1977b; Figure 8.14). During the outburst of V1057 Cyg, most of the emission lines disap-
peared. Immediately after the outburst, the initial spectral type was early A (Teff∼9000 K);
the spectrum became later (cooler) as V1057 Cyg faded from maximum light. These spec-
tral changes demonstrate that the outburst was not caused by the removal or dispersal of
obscuring dust.

9.2 The accretion disk model
The principal tests of the disk interpretation for FUors employ the standard steady,

optically thick accretion disk temperature distribution (equation (7.55)),

T 4
d = 3G M∗ Ṁ

8πσ R3

[
1 −

(
Ri

R

)1/2
]

(9.2)
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where Ri is the inner disk radius. As discussed in §7.3, the term in square brackets depends
upon the choice of inner boundary condition; this particular form may well not be appro-
priate for FU Ori objects (§9.7), but we ignore this complication for the present. At first it
might be thought surprising that outbursting objects can be treated as steady disks. However,
detailed investigations of the best-studied objects have been conducted during epochs con-
siderably after outburst, when the objects were much less variable, and therefore the changes
in the mass accretion rates have been slower.

SEDs derived from photometry and IRS spectra of four FU Ori objects are compared with
steady, optically thick, blackbody disk model SEDs in Figure 9.5. The disk models, much
broader in their SEDs than that of a single-temperature blackbody or stellar photosphere,
agree reasonably well with the observations at wavelengths λ <∼ 10 μm; the observed emis-
sion cannot be explained by a single-temperature blackbody or normal star. In these four
objects, the SEDs rise above that of the steady accretion disk model longward of about
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Fig. 9.5. Dereddened SEDs derived from optical near-infrared photometry (dots) and Spitzer
IRS spectra (curves) of four FU Ori objects, compared with steady, optically thick, accre-
tion disk models (dashed lines) and single-temperature blackbodies (dotted lines). The disk
models employ stellar colors at short wavelengths and the blackbody approximation at long
wavelengths. Modified from Green et al. (2006).
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10 μm. This long-wavelength emission, along with the silicate emission peaks, is strongly
reminiscent of the SEDs of dusty irradiated T Tauri disks (Figure 8.8). More detailed anal-
ysis indicates that the excesses of FU Ori and BBW 76 at wavelengths >∼10 μm can be
explained with a T Tauri-like flared disk model, but irradiated by the disk rather than a
central star and/or accretion shock (Kenyon & Hartmann 1991; Turner et al. 1997). The
larger excesses of V1057 Cyg and V1515 Cyg probably require extended, possibly infalling,
envelopes (Kenyon & Hartmann 1991; Zhu et al. 2008; §9.5).

The apparent temperature of the emitting gas in a steady accretion disk varies with
the wavelength of observation. At longer wavelengths, outer, cool regions dominate the
emission; this is why the disk has a shallower spectral slope at long wavelengths than a
single-temperature blackbody. This property enables disk models to explain the variation of
spectral type with wavelength observed in FU Ori objects. The difference in temperature of
the emitting gas can be recognized from the change in the spectral features.

To demonstrate this more clearly, consider the emission from differing disk annuli. The
emergent spectrum of each annulus of a thin disk is approximately that of an indepen-
dent stellar atmosphere, with local effective temperature Td(R) and vertical surface gravity
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Fig. 9.6. Emission of individual disk annuli for a typical steady disk model for FUors. The
intensity at each annulus is weighted by its (cylindrical) radius R to provide an indication
of the amount of contribution of each region to the final spectrum (Figure 7.6). Each curve
is labeled by the radius of the annulus in units of the inner disk radius, and the effective
temperature (in K) of the annulus. The hot inner disk annuli dominate the optical spectrum
but do not contribute molecular absorption features in the near infrared. Conversely, disk
regions at R ∼ 5–10 Ri contribute strong molecular absorption in the 1–2 μm region. The
lowest-temperature annulus shows no molecular absorption because continuous dust opacity
is assumed to dominate. Calculation courtesy N. Calvet.
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g(R).∗ The spectra are much more sensitive to the temperature than to the precise gravity,
so it is adequate to make a rough estimate g(R) ∼ (G M/R2)(H/R) with H ∼ 0.1R.

Figure 9.6 shows the results of a typical calculation for a steady disk temperature distri-
bution, which approximately reproduces the observed SED of FU Ori. One observes that the
hot inner disk regions dominate the optical spectrum, as expected, but do not contribute any
molecular features in the near-infrared. In contrast, disk annuli at R >∼ 6 Ri contribute strong
water vapor features in the 1–2 μm region, and substantial CO first-overtone absorption at
2.2 μm.

By adding up the intensities of the disk annuli, and weighting them by the appropriate area
2π Rd R (cf. equation (7.57)), the spectrum of the disk model can be synthesized. A recent
model resulting from this type of computation can account for the optical G-type spectra
of FU Ori objects at the same time that it reproduces the near-infrared water vapor and
first-overtone CO absorption features (Figure 9.7). (Note that in this calculation, a steady
disk model can match the overall SED of FU Ori quite well. The difference between this
result and the comparison shown in Figure 9.5 is that a lower extinction – AV ∼ 1.5 instead

–0.5

–9

–8.5

–8

–7.5

0 0.5
log λ (mm)

Rinner disk = 0.58 AU

Total flux

Rflared disk = 70 AU

lo
g 

λ 
F

λ

1 1.5

Fig. 9.7. Optical and infrared spectrophotometry of FU Ori (dark curves), compared with a
detailed radiative transfer model (gray curves). The addition of a flared dusty disk irradiated
from the inner disk regions can explain the long-wavelength fluxes, including the silicate
emission features (dashed curve). Modified from Zhu et al. (2007, 2008).

∗ This assumes that all of the energy flowing through the atmosphere is generated at larger optical depths in the
disk interior. As discussed in §9.4, this approximation is reasonable for FU Ori disks, which should be extremely
dense and optically thick; the viscous energy generation should occur mostly at the high-density internal disk
layers, not in the low-density outer disk atmosphere. Irradiation by the central star (§7.9), which acts to make
the disk more vertically isothermal or even results in a temperature inversion, can be neglected in the inner disk
because the inner disk cannot irradiate itself, and the central star is much less luminous than the disk in outburst.
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of 2.2 – was used in Figure 9.7. This illustrates one of the difficulties in analyzing any
departures from a steady disk model; without a “standard” spectrum, extinction corrections
become uncertain.)

Taken together, Figures 9.3, 9.4, 9.5, and 9.7 illustrate an important point: the presence
of absorption features in the optical and near- to mid-infrared spectra show that FU Ori and
similar systems are self-luminous; that is, the energy balance is driven by flux originating at
large optical depth, which results in a normal photospheric cooling with increasing height.
At λ ∼ 10 μm and 20 μm, the silicate emission features familiar from T Tauri stars (Figure
8.8) now appear, indicating that the outer disks and/or envelopes are mostly heated from the
outside.

9.3 Disk kinematics
Kinematic studies generally provide the clearest tests for the presence of disks. One

such test involves line profiles, which are qualitatively different in a disk than in stars. The
absorption line shapes of rotating stars are typically parabolic, because there is a large con-
tribution to the total flux from regions near disk center, where projected rotational velocities
are small. In contrast, slower-rotating regions in a Keplerian disk lie at larger radii, which are
cooler and contribute less to the profile (at least for typical disk temperature distributions).
The result is a profile in which the absorption is stronger at some velocity than at line center,
i.e., a double-peaked profile.

The line profile produced by a rotating, flat, narrow annulus as a function of velocity shift
from line center �v is of the form

φ(�v) =
[

1 −
(

�v

vmax

)2
]−1/2

, −vmax < �v < vmax, (9.3)

where vmax = vK (R) sin i is the maximum projected rotational velocity of the annulus
with Keplerian rotational velocity vK observed at an inclination angle i . The observed line
profile at a given wavelength is the sum of profiles over all annuli, each with a different
rotational velocity, and weighted according to the area and flux of each annulus. Only a finite
range of radii in the disk contribute significant continuum emission at a given wavelength;
for example, as shown in Figure 9.6, annuli with R >∼ 6Ri do not contribute significant
emission at optical wavelengths, while only regions of the disk with 3Ri >∼ R >∼ 10Ri

contribute to the wavelength region near the 2.2 μm CO absorption bands. Thus, the effect
of differential rotation is to smooth the profile given by equation (9.3) but not eliminate its
essential “double-peaked” shape.

Figure 9.8 shows optical spectra of FU Ori objects which demonstrate this line dou-
bling. These spectra also exhibit large rotational velocity broadening, ranging from about
45 km s−1 for V1057 Cyg to ∼110 km s−1 in Z CMa. Rapid rotation is also observed in
the high-resolution near-infrared spectra of the first-overtone CO absorption in FU Ori and
V1057 Cyg (Figure 9.9), as can be seen from both the widths of individual resolved fea-
tures and the shape of the bandhead. This large rotational velocity broadening is by itself a
demonstration that these objects are not normal stars; though the main sequence progenitors
of supergiants may have been rapidly rotating, their expansion during evolution off the main
sequence makes them slow rotators as M stars.

The measurement of rotational velocities over a wide range of optical and near-infrared
wavelengths may be exploited to provide another test of the disk hypothesis. The disk regions
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Ori objects. The CO lines are strongly rotationally broadened compared with the bands in
the M giant HR 867; the amount of the broadening is consistent with the FU Ori disk model
(dashed line; see text). From Hartmann and Kenyon (1996).

responsible for the optical spectrum are hotter and lie at smaller radii than the regions pro-
ducing the near-infrared spectrum (Figure 9.10). Since the inner disk regions must rotate
more rapidly than the outer disk regions, it follows that if the FU Ori objects are disks, the
differential rotation should manifest itself as a decreasing rotational velocity with increasing
wavelength of observation.
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Cross-correlation analysis takes advantage of data from many lines to construct an aver-
age line profile when the object is rotating much more rapidly than the template spectrum.
Figure 9.10 compares optical and infrared cross-correlation peaks for FU Ori and V1057
Cyg, demonstrating that in both objects the broadening observed at 0.6 μm is roughly 1.5
times that observed at 2.2 μm. The observations clearly demonstrate large differential rota-
tion inconsistent with stellar rotation but in the same sense as would be expected for the
disk.

To provide a quantitative test of Keplerian rotation, synthetic disk spectra can be computed
for the appropriate wavelength regions and then cross-correlated with the same template
spectra used to produce the cross-correlations of the real FU Ori objects. The disk model
line profiles can be synthesized by convolving the spectrum of each annulus with the appro-
priate rotational velocity broadening function (9.3), and summing the emission from the
individual annuli. Figure 9.10 compares the cross-correlation results of synthetic disk mod-
els for FU Ori and V1057 Cyg, scaled to match the observed optical line widths (Kenyon
et al. 1988). The overall agreement is good, although the predicted differential rotation is
perhaps ∼25% larger than observed. One should keep in mind that there are several limi-
tations of the calculation. In particular, the temperature at which the dust opacity begins to
dominate the continuous spectrum (e.g., Figure 9.6) affects how much the outer disk regions
contribute to the CO absorption features and thus introduces uncertainty in how much these
more slowly rotating regions affect the overall line profile widths. Some theoretical models
also suggest that the disks of FU Ori objects are so hot that they do not exhibit precisely
Keplerian rotation, and are partially supported by radial gas pressure gradients (cf. §9.7).
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Note that the double-peaked shapes of the cross-correlation peaks for both model and
observations are in fairly good agreement with observations of FU Ori at both optical and
infrared wavelengths. (The instrumental resolution is not large enough to show clearly the
infrared line doubling in the cross-correlation peak of V1057 Cyg in Figure 7.9.)

While the simple steady disk models with pure Keplerian rotation explain the main prop-
erties of FU Ori line profiles, the observed lines are often less double-peaked than the models
predict. For the strongest lines, mass loss may be important in obscuring the line doubling
(§10.3). In the case of weaker lines, Petrov and Herbig (1992) and Herbig et al. (2003) have
pointed out that line doubling is often not seen, especially in spectra of V1057 Cyg. One pos-
sible explanation is that another source of line broadening is present. The temperatures of FU
Ori disks, at least in their inner regions, are high enough that the MRI should be active due
to thermal ionization; the turbulence generated by MRI activity can generate waves, creating
sonic or even supersonic motions in upper disk layers (Figure 9.11). This is a particularly
plausible idea for FUors, as the high accretion rates tend to imply that the photospheres are
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Fig. 9.11. Time-dependent simulation of MRI-driven turbulence in a vertically stratified
disk. The vertical axis denotes the z component, while the horizontal axis is elapsed time
in orbital periods. This space–time plot shows the time evolution of magnetic (upper panel)
and kinetic (lower panel) energies. The central regions are turbulent while the upper layers
exhibit subsequent waves of magnetic and kinetic energy fluxes. The velocity dispersion
becomes nearly sonic at ±3 scale heights above the midplane; magnetic waves propagating
through the outer disk layers shock, potentially providing significant heating. From Miller
and Stone (2000).
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several scale heights above the midplane; thus, small-amplitude waves generated in central
regions are likely to steepen and shock as they propagate away from the central regions,
along the steep vertical density gradient.

The simulation of a vertically stratified disk by Miller and Stone (2000; Figure 9.11)
showed waves generated by the MRI in the disk interior can propagate outward and shock;
this could produce both “turbulent” line broadening and shock heating at a few scale heights
above the midplane. Hartmann et al. (2004) found that they needed turbulent velocities
approaching twice sonic values in order to explain the CO first-overtone line profiles of FU
Ori in detail; and FU Ori also exhibits chromospheric Mg II resonance line emission (Kenyon
et al. 1989), qualitatively consistent with shock damping of supersonic waves generated from
below.

Turbulent line broadening will be most important for objects with small v sin i values.
The projected optical rotational velocities of Z CMa are so large that mildly supersonic
turbulence is unimportant relative to the rotational broadening of the line profiles (Figure
9.8) (though turbulence does affect the overall predicted line equivalent widths). Further
study of FU Ori spectra might yield insights into MRI-generated turbulence.

9.4 Disk properties
The theory of steady disk emission can be used to estimate physical properties

of the FU Ori objects. The observed flux at the Earth is related to the disk accretion
luminosity by

F = Lacc cos i

2πd2
, (9.4)

where d is the distance to the Earth and i is the inclination of the disk to the line of sight. In
practice the dominant uncertainties are the inclination, about which we have only guesses,
and the extinction corrections, since the colors of FU Ori objects may well not be those
of “normal” stars. Since most of the radiation of FU Ori variables is emitted at optical
wavelengths (Figure 9.5), and visual extinctions are typically AV ∼ 2–3 mag for the lightly
reddened objects, uncertainties of a factor of two in the luminosity are to be expected.

The standard disk–boundary layer theory does not apply to FU Ori objects, since they
exhibit no evidence of boundary layer emission (§9.7). Nevertheless, let us adopt the stan-
dard disk equations for simplicity. Then the accretion luminosity constrains the product of
the mass and the accretion rate divided by the inner disk radius,

Lacc = G M∗ Ṁ

2Ri
. (9.5)

Consider a “typical” FU Ori object with Lacc = 250 L�. Fitting of extinction-corrected
SEDs and optical line spectra by steady disk models suggest that the maximum temperature
of the disk is Tmax ∼ 7000 K, where

Tmax = 0.488

(
3G M Ṁ

8πσ R3
i

)1/4

, (9.6)

(equation (7.56)). Combining the luminosity with the maximum temperature results in an
estimate of the inner disk radius, Ri ∼ 4.5 R�, and constrains the product M Ṁ ∼ 0.75 ×
10−4 M�2 yr−1. While these inner disk radii are somewhat larger than typical radii of T Tauri
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stars ∼2−3 R�, the agreement is reasonably satisfactory considering the uncertainty in what
is happening to the energy released at the interface between star and disk, if any. (It is
possible that the disk advects or carries large amounts of accretion energy into the central
star (§9.7), causing the star to expand (§11.4)).

The rotational velocities can be used to estimate the central mass. Steady disk models
indicate that the effective emitting radius at 0.6 μm for Tmax = 7000 K is about 2.5 times
the inner radius. Using this result, the apparent optical rotational velocity is

v sin i (0.6 μm) ∼
(

G M

2.5Ri

)1/2

sin i ∼ 92 M1/2
0.5 sin i km s−1 , (9.7)

where M0.5 is the central mass in units of one-half solar mass, and we have adopted a typical
inner radius Ri = 4.5 R� (Kenyon et al. 1988; §7.6).

The observed optical rotational velocities of the four best-studied FU Ori objects are: Z
CMa, v sin i ∼ 110 km s−1; FU Ori, v sin i ∼ 65 km s−1; V1057 Cyg, v sin i ∼ 40 km s−1;
and V1515 Cyg, v sin i ∼ 20 km s−1 (e.g., Figures 9.8, 9.9, 9.10). It is evident that the
rotational velocities of Z CMa and FU Ori are consistent with low-mass central stars. In
the case of FU Ori, near-infrared interferometry suggests an inclination angle for the disk
to the line of sight of i ∼ 55◦ (Malbet et al. 2005); adopting this value results in a central
stellar mass of ≈0.3 M� and a mass accretion rate ∼2×10−4 M� yr−1 (Kenyon et al. 1998;
Zhu et al. 2007).

The slow rotation of V1057 Cyg and V1515 Cyg requires extremely small central masses
unless these objects are observed at a very small inclination. Goodrich (1987) suggested
that the circular reflection arcs seen around V1057 Cyg and V1515 Cyg (Figure 9.2) are
ovoidal cavities seen nearly along their axis. If these cavities are produced by outflow cavi-
ties perpendicular to the disk, parallel to the rotation axis, then these accretion disks may be
observed at low inclinations, and the projected rotational velocities can be consistent with
masses typical of T Tauri stars.

Assuming that the typical central masses of FU Ori objects are about 0.5 M�, maxi-
mum disk accretion rates must be ∼10−4 M� yr−1. One can then derive a minimum disk
mass (prior to outburst) from the length of time of the rapid accretion event. In FU Ori and
V1515 Cyg, the estimated outburst lengths ∼100 yr indicate that the accreted disk mass is
∼10−2 M� in one outburst, comparable to the minimum mass solar nebula. For V1057 Cyg
the accreted mass during its present outburst will probably be closer to 10−3 M�. These val-
ues are comparable to the disk masses estimated for T Tauri stars from mm-wave emission
(§8.3), but these are merely lower limits to the disk masses, since this is only the material
that is accreted over a very short period of time in a single outburst.

It is instructive to consider what the internal disk structure might be like. As mentioned
previously, the temperatures in the outbursting region of the disk are high enough that ther-
mal ionization should be high enough for the MRI to operate (§7.5). Using the steady α disk
result (7.60),

ν� = αcs H� = Ṁ

3π
, (9.8)

and the steady disk temperature distribution (7.55),

T 4
d = 3G M Ṁ

8πσ R3
. (9.9)
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Here we have set the factor [1 − (Ri/R)1/2] ∼ 1; this approximation makes little difference
except at the innermost disk radii, and in any event the inner boundary condition is not well
understood (§9.7). We also employ the supplemental equation (7.63),

H = cs

(
R

vφ

)
= cs

�
, (9.10)

where � = (G M/R3)1/2. Finally, we require a relation between the surface effective tem-
perature Td and the central temperature T at each radius R. Vertically averaging (in z) the
opacity, and employing the diffusion approximation,

T 4 � T 4
d

(
3

4

)
τR =

(
3

4

)
T 4

d kR� , (9.11)

where the optical depth τR through the disk is determined by the Rosseland mean opacity kR

(see Frank et al. (1992) for details).
With these approximations one can solve for the (vertically averaged) disk structure.

Bell and Lin (1994) provide convenient analytic approximations of the opacity for various
regimes; in particular, for disk (midplane) temperatures >∼104 K,

kR � 1.5 × 1020ρ T −5/2 cm2 g−1 . (9.12)

Using the vertical average ρ = �/H , one can solve for the disk structure for a fixed value
of α. After some tedious algebra, the temperature distribution can be written as

T � 1.3 × 105 α
−2/9
−2 μ

5/18
0.6 Ṁ1/3

−4 M5/18
0.5 R−5/6

10 K , (9.13)

where Ṁ−4 is the mass accretion rate in units of 10−4 M� yr−1, α−2 is the alpha viscosity
parameter in units of 10−2, M0.5 is once again the mass in units of one-half solar mass, and
R10 is the cylindrical radius in units of 10 R�. Finally, we have set the mean molecular
weight μ = 0.6, roughly characteristic of ionized atomic gas.

These results suggest that the innermost disk must be extremely hot in its interior during
outburst, far hotter than the surface temperature ∼7000 K, as a result of the large optical
depths which effectively trap the heat generated by accretion. The internal disk temperature
is so large that in the innermost regions the thickness of the disk may not be negligible. For
the fiducial parameters at R = 10 R�, H/R ∼ 0.4; therefore, the thin disk approximations
may begin to break down in the inner disk regions. We return to this point when discussing
the “missing” boundary layer radiation in §9.7.

The surface density under these assumptions is

� � 5.7 × 104 α
−7/9
−2 μ

13/18
0.6 Ṁ2/3

−4 M2/9
0.5 R−2/3

10 g cm−2 . (9.14)

This particular disk solution is applicable for temperatures >∼104 K. At lower temperatures,
the opacity changes character dramatically in a way which may help produce outbursts
(§7.5). With the fiducial parameters, T ∼ 104 K occurs at R10 ∼ 20 ∼ 0.87 AU. The
“hot” (T >∼ 104 K) disk mass interior to this radius Rout is

Md(hot)∼3.4 × 10−3 Ṁ2/3
−4 α

−7/9
−2 M2/9

0.5

(
Rout

0.87 AU

)4/3

M� . (9.15)

This result suggests that if α >∼ 10−2, the disk may store roughly enough mass to fuel one
FU Ori outburst within a radius of about 1 AU.
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In Chapter 7, we showed that viscous disks evolve on the timescale

tν � R2

νv
. (9.16)

With the fiducial parameters, at Rout the viscous timescale is approximately tν ∼ 70 α
−7/9
−2

yr, suggesting that the “hot” region of the disk within about 1 AU can in principle account
for both the amount of mass accreted and the observed decay timescales of FU Ori accretion
events.

A detailed analysis of the IRS spectrum indicates that the accreting region of FU Ori
extends to a radius ∼0.5 AU (Zhu et al. 2007; Figure 9.7). To explain the decay timescale
∼100 yr at this radius requires a relatively short viscous timescale, and thus a relatively
large value of α ≈ 0.1. This value is somewhat larger than that often seen in numerical
simulations, but is more consistent with large values inferred from observations of accreting
disks around compact objects (King et al. 2007).

These results demonstrate that the inner disks of FU Ori objects must be massive. In
FU Ori itself, roughly 0.01 M� must be accreted during a single outburst, with substantial
amounts of mass left behind. For reference, the so-called “minimum mass solar nebula”
(Chapter 12) contains about 0.002 M� within 1 AU. This suggests that a dead zone model
(§7.6) might be appropriate for FUors.

While the long rise time of V1515 Cyg can in principle be explained by a viscous
timescale from a large radius, the short rise times of FU Ori and V1057 Cyg cannot be
explained in this manner. As discussed in §9.6, thermal instabilities offer a possibility for
explaining rapid rises to maximum light.

9.5 Time variability and circumstellar envelopes
Although there is little spectral information available on the rise to maximum light

in FU Ori objects, V1057 Cyg has faded substantially since the early 1970s, and its color
evolution provides an important clue to physical conditions. After the outburst, the opti-
cal and near-infrared spectrum became redder as V1057 Cyg faded, consistent with optical
spectra which indicate that V1057 Cyg evolved from an A spectral type near maximum
(Teff ∼ 8000 K (Herbig 1977b)) to a mid-G spectral type (Teff ∼ 6500 K) at the current
epoch. A series of steady accretion disk models with fixed inner radii but decreasing mass
accretion rates matches the color evolution with decreasing accretion luminosity fairly well
from the optical to wavelengths ∼5 μm, reproducing the observed decrease in amplitude of
decay at increasing wavelengths (Kenyon & Hartmann 1991; Figure 9.12).

One observation that steady disk models cannot explain is the observed variation in rota-
tion velocity of V1057 Cyg. Herbig (1989) found that the optical rotational velocity appeared
to decrease from about 70 km s−1 near peak light to about 45 km s−1 in the late 1980s. This
is not explicable in terms of steady disk theory; more luminous steady disks have higher
temperatures at larger radii, and therefore the optical spectrum should be produced at larger,
more slowly rotating regions during outburst. However, time-dependent models for outburst
can show the opposite effect, simply because the temperature distribution can deviate sub-
stantially from that of a steady disk (Bell et al. 1995). While the time-dependent models
are suggestive, they are difficult to test in detail using the evolution of the SED, because
the disk spectrum is not very much different from that of a single-temperature blackbody
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Fig. 9.12. Spectral evolution of V1057 Cyg during decay from maximum light. The central
disk becomes redder and can be fitted by a disk model with lower temperatures (solid line)
as it fades from maximum. The emission at wavelengths λ >∼ 10 μm decays rapidly, in
proportion to the decay of overall system luminosity, consistent with its originating in a
circumstellar dust envelope whose emission is powered by absorbing light from the central
disk. The dashed line denotes a dusty infalling envelope model, as described in the text.
From Kenyon and Hartmann (1991).

over the limited wavelength range observed. Differences in the temperature structure due to
time-dependent accretion therefore produce only second-order effects.

As shown in Figure 9.12, the amplitude of variation during the decay in light of V1057
Cyg decreases with increasing wavelength, from the optical through the near-infrared. This
can easily be understood in the context of the disk model. The optical wavelengths lie on
the blue edge or “Wien side” of the emission from the innermost disk regions, and therefore
are the most sensitive to temperature variations. The timescales of variation should also
lengthen at longer wavelengths, because the outer regions producing this emission have
longer viscous timescales. However, the decay in the fluxes at λ = 10 μm and 20 μm is
much faster than observed in the near-infrared, but is consistent with the overall change in
the system luminosity. Thus, the excess emission at λ >∼ 10 μm is the result of irradiation
of the outer regions by the inner disk, consistent with the appearance of silicate emission
(Figure 9.5).

The amount of flux emitted in long wavelength radiation is too large to be accounted
for by a reasonably flared disk absorbing radiated accretion luminosity and reradiating this
energy at longer wavelengths; a circumstellar envelope, presumably a protostellar infalling
envelope, with a central outflow cavity provides a better explanation (Kenyon & Hartmann
1991; Green et al. 2006; Zhu et al. 2008). This model is consistent with interpretations of
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the morphology of the scattered light nebulae of V1057 and V1515 Cyg (Goodrich 1987).
Moreover, near-infrared interferometry shows that V1057 and V1515 Cyg exhibit much
larger sizes than would be expected from a pure thermally emitting disk model (Millan-
Gabet et al. 2006); scattering off cavity walls on scales of order 5–10 AU would explain
these observations. The FUor L1551 IRS 5 is one of the standard objects modeled with
infalling protostellar envelopes (Adams et al. 1987; Butner et al. 1991; §5.4). Thus, many
FU Ori objects may have infalling material landing on their outer disks.

9.6 Outburst mechanisms
Mechanisms for explaining the accretion outbursts of FUors fall into three broad

classes: an external perturber; accretion of “lumps” or planets; and some kind of inner
bottleneck in disk accretion. We consider each of these types of models in turn.

One of the early suggestions to drive accretion was a companion star on an eccentric
orbit, whose close passage perturbs the disk, enhancing accretion (Toomre 1985, personal
communication; Bonnell & Bastien 1992). One attraction of this mechannism is that most
stars are members of multiple systems, and FU Ori itself has a wide companion (Wang
et al. 2004; Reipurth & Aspin 2004). On the other hand, the companion to FU Ori is far
too distant to have caused the outburst in the mid-1930s; moreover, passage probably would
have to be at distances of order 10 AU or less, and no evidence of significant radial velocity
variation has been seen (Herbig 1977b; Hartmann & Kenyon 1987a; Petrov & Herbig 1992).
In addition, successive periastron passages will tend to disrupt the disk, and it is not clear
that this mechanism can provide enough outbursts (Bonnell & Bastien 1992 suggest at most
three to four recurrences).

If FU Ori disks are highly structured, concentrations of material might fall into the central
star and cause outbursts. Vorobyov and Basu (2005, 2006) calculated the evolution of self-
gravitating disks in a two-dimensional scheme to follow the evolution for long timescales.
They found that young, massive disks would form dense protostellar/protoplanetary mass
concentrations that would sporadically accrete into central regions, producing “bursts” of
the required magnitude. A concern with this type of calculation is how the disk cooling is
evaluated; as discussed in §7.7, whether the disk forms fragments or whether it can readjust
relatively smoothly to transport angular momentum is extremely sensitive to the thermal
physics, which are difficult to treat correctly.

The second type of mechanism is motivated by the association of FU Ori objects with
circumstellar envelopes, high extinction, and their general youth. In this picture, infall from
a protostellar envelope has either recently ceased or is still occurring. Unless the disk can
accrete at the same rate as material is added to the disk by infall, mass will pile up in the disk
until something happens to make disk accretion more efficient. There is no general reason
why the spiraling-in of material in a disk should match the free-fall of a protostellar envelope.
In particular, if a dead zone is present, piling up of material is essentially guaranteed (§7.6),
until some kind of outburst of accretion – perhaps an FU Ori event – occurs.

In any case, the rapid rise times of FU Ori and V1057 Cyg almost certainly require the
action of thermal instability, which was originally developed to explain disk outbursts in
accreting binary stars. The basic idea behind the thermal instability mechanism has been
discussed in detail in many sources (see, e.g., Pringle 1981 and Frank et al. 1992); here
we provide only an outline. At a radial distance R in the disk, the viscous energy genera-
tion, Fvis, must be balanced by the radiative losses of the disk, Frad, in thermal equilibrium.
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Integrating the energy equations over the vertical structure of the disk at a fixed radial dis-
tance R, and adopting the usual α viscosity treatment, equations (7.22) and (7.59) can be
combined to yield

Fvis = 9

4
α��c2

s , (9.17)

while

Frad = 2σ T 4
d . (9.18)

We also require the relation (9.11) between the internal disk temperature T and the surface
temperature,

T 4 ≈ τRT 4
d , (9.19)

Combining equations (9.17)–(9.19),

Frad

Fvis
∝ T 3kR(T, P)−1�−2α−1 (9.20)

(Kawazoe & Mineshige 1993; D’Alessio 1996).
Now consider a disk annulus initially in thermal equilibrium which is perturbed to a

slightly higher internal temperature T . The thermal timescale is much shorter than the vis-
cous timescale, tth ∼ (H/R)2tν (e.g., Pringle 1981), so it suffices to take � ≈ constant.
Then equation (9.20) indicates that the radiative cooling will exceed the viscous heating as
long as the opacity does not increase more rapidly with temperature than T 3, and will there-
fore drive the disk back toward the thermal equilibrium. Conversely, if the opacity increases
with increasing temperature faster than T 3, heat is efficiently trapped within the disk, and the
surface cooling cannot keep pace with the increasing viscous heating. This leads to a ther-
mal runaway, with the disk temperature increasing rapidly until the character of the opacity
changes. Calculations generally indicate that the gas opacity should increase very steeply
with increasing temperature for temperatures ∼ 3000–10000 K largely because of hydrogen
ionization, with the precise range depending somewhat on density. This steep dependence
on temperature makes it possible to have thermal instabilities in this temperature range.

To explore the implications of this opacity dependence further, we consider the so-called
“S curves” resulting from these assumptions (e.g., Frank et al. 1992). The thermal equi-
librium equations for a steady-state accretion disk can be recast in terms of the surface (or
effective) disk temperature (or mass accretion rates); cf. equation (7.55) and the surface den-
sity. Then the loci of thermal equilibrium in the Td vs. � plane for a specific disk annulus
form an “S”-shaped curve, with a “kink” where the opacity causes thermal instability.

Figure 9.13 shows a schematic S curve typical of the results of detailed calculations. The
region above and to the left of the curve corresponds to faster cooling than heating; the region
below and to the right of the curve faster heating than cooling. In the limit cycle theory of
outbursts, a disk annulus begins in a low accretion rate state at low �, lying on the lower
branch of an S curve. A perturbation which increases the central temperature tends to drive
the disk annulus vertically upward into a region where cooling exceeds heating, so the disk
is stable. However, as material piles up in the disk, moving the equilibrium point upwards
along the curve, eventually the disk annulus reaches an inflection point (A) in the S curve, at
which point a positive temperature perturbation pushes the annulus vertically upward in the
log Td vs. log � plane, where the disk annulus is thermally unstable. The annulus must jump
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Fig. 9.13. Schematic “S curve” for disk thermal instability, as discussed in the text.

up to the upper branch of the S curve at (B), where the surface (or effective) disk temperature
and mass accretion rate are much higher. Eventually, the enhanced accretion onto the central
star causes disk material to drain away, dropping � to the point (C) beyond which the only
stable solution is on the low-accretion rate branch (D).

Thermal instability models have attractions for FU Ori outbursts because: (1) the short
rise times observed can be achieved (thermal timescales for the outburst); (2) the predicted
inner disk mass fluxes in outburst are 10−4 M� yr−1 and the peak surface disk temperature
of the disk at this point is just below 104 K, in good agreement with observations; and (3)
the process can repeat, resulting in multiple events as required by outburst statistics, if there
is a mass source which replenishes the disk material accreted during outburst.

A key requirement of the thermal instability model is that of a moderately high accretion
rate in the outer disk. At the low temperature end of the unstable regime, the gas opacity
is quite low, resulting in an internal disk temperature that is not very much larger than the
surface temperature. Thus, we can use the effective temperature at which the disk emits as
a useful guide to the regions which can become thermally unstable. Bell and Lin (1994)
showed that the critical effective temperature at the transition between the stable and the
unstable portions of the S curve is roughly ∼2000 K. If we impose a fixed mass accretion
rate Ṁod from the outer disk, we can then use this temperature constraint along with equation
(7.55) to derive an approximate outer limit radius for the region of thermal instability (Bell
and Lin 1994)

Rmax ≈ 20

(
Ṁod

3 × 10−6 M� yr−1

)1/3 (
M∗
M�

)1/3 (
Teff

2000 K

)−4/3

R� . (9.21)
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Disk regions at radii larger than Rmax will never become thermally unstable because they
cannot become hot enough to enter the required opacity regime. Thus, if there is to be a
large amount of mass dumped onto the central star during an outburst, the outer limiting
radius of the unstable region must be large; in turn, this tends to require a large outer disk
(background) accretion rate.

Lin and Papaloizou (1985) first applied thermal instability models to FU Ori objects and
generated optical outburst amplitudes similar to those observed. The eruptions were short-
lived, however, and did not produce large infrared outbursts. The reason for this can be
seen from equation (9.21). Lin and Papaloizou assumed background mass accretion rates of
Ṁod ∼ 10−7 M� yr−1, similar to the mass accretion rates of T Tauri stars, but then only the
innermost disk regions became thermally unstable, so that very little mass was involved in
the eruption; therefore the outburst decayed very quickly. Clarke et al. (1990) managed to
achieve longer-lasting outbursts with the same low background accretion rate by introducing
a very large (50×) perturbation in the surface density. This had the effect of producing a
much higher mass flux into the unstable regions, and so triggered an outburst which lasted
for ∼ 30 yr, qualitatively resembling the decay of V1057 Cyg.

If FU Ori disks are acquiring mass from remnant infalling envelopes at typical protostellar
rates ∼10−6–10−5 M� yr−1 (Chapter 5), this mass source would tend to drive the mass
accretion rates of the outer disk closer to values needed to make the thermal instability
operate more easily. Kawazoe and Mineshige (1993) first argued that FU Ori outbursts are
produced by thermally unstable disks with high mass input rates, and noted the possible
correspondence with infall rates. Bell and Lin (1994) and Bell et al. (1995) calculated similar
models in more detail and showed that many properties of the observed light curves can
be reproduced with appropriate model parameters. Bell and Lin (1994) found that models
simply fed at the appropriate accretion rate from the outer disk tended to become unstable at
inner disk radii first; the instability propagates slowly outward to Rmax (see also discussion
in Smak (1984)). Under these circumstances, Bell et al. (1995) were able to reproduce the
slow rise of V1515 Cyg but not the rapid rise times of FU Ori and V1057 Cyg, which require
external perturbations.

Unfortunately, many aspects of the thermal instability mechanism depend upon α, which
determines the timescales for evolution. Because pure thermal instability is difficult to
achieve at large radii, to get enough mass within the region to account for the total mass
accreted during outburst, as well as have long viscous decay timescales, Bell and Lin (1994)
and Bell et al. (1995) required very low α ∼ 10−3 − 10−4. The pure thermal instability
model does not seem appropriate now with Spitzer IRS data, as models of FU Ori indicate
that the high-accretion rate region seen in the absorption spectrum (Figure 9.7) extends out
to 0.5–1 AU, much larger than the ∼0.1 AU hot region predicted by the model of Bell and
Lin (1994).

An interesting modification of the instability picture was introduced by Armitage et al.
(2001), who invoked the dead zone picture of Gammie (1996a; §7.7) with the new under-
standing of the MRI to make a composite outburst model. In the picture of Armitage et al.,
accretion in the massive outer disk is driven by gravitational instability into the inner disk
where the MRI is not sufficiently active to prevent material from piling up. However, even-
tually the surface density becomes so large, and therefore the optical depths become so large
that the (presumed) heating by gravitational instability raises the disk temperature, which
eventually activates the MRI by thermal ionization. Thus, the dead zone suddenly becomes
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active, and a large concentration of material rushes down onto the central star, creating an
outburst.

In the Armitage et al. model, outbursts lasted a long time (∼104 yr) and had relatively low
peak accretion rates ∼10−5 M� yr−1). However, as they pointed out, if a thermal instability
could be activated, timescales could be reduced and outburst magnitudes could be increased.
Some preliminary calculations by Zhu et al. (2008, in preparation) support this idea. As
shown in Figure 9.14, in the low state (upper panels) material piles up at a distance of
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Fig. 9.14. Numerical calculation of a simple dead zone model for FU Ori outbursts. Surface
densities (left) and corresponding central temperature structures (right) are shown at selected
times during the inert phase (top panels), activation of the MRI (at a temperature ∼1500 K,
middle panels), and during thermal instability which leads to the outburst in the inner disk
(bottom panels). The diagonal dotted line in the upper left panel indicates the approximate
surface density above which thermal instability is expected to occur at a high viscosity, while
the horizontal dotted lines in the right-hand panels show the temperature at which the MRI is
assumed to become activated by thermal ionization. In the upper pair of panels, material piles
up in the dead zone due to gravitational torques, with temperatures eventually approaching
the MRI activation limit. In the middle panels, the MRI has been activated between a few
AU and ∼0.5 AU (right middle panel), causing a rapid flow of mass into the inner disk (left
middle panel). The bottom panels show the result of thermal instability, producing very high
accretion rates. Note the extremely high central temperatures produced in the innermost disk
during outburst. From Zhu et al. (2008, in preparation).
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order 1–2 AU, and gradually approaches the temperature needed for thermal activation of
the MRI (here taken to be ∼1500 K). Once the MRI is activated, material rapidly moves in,
driving the surface densities up, so that the disk starts to evolve (roughly) along the bottom
path of the S-curve (Figure 9.13). Eventually the surface density increases beyond the limit
for thermal instability, resulting in a huge jump in central temperatures, approaching 105 K in
the inner regions (bottom panels in Figure 9.14). Calculations indicate peak accretion rates
of >∼10−4 M� yr−1 and decay timescales of order centuries can be achieved for α ∼ 0.1,
in better agreement with recent observational estimates from compact systems (King et al.
2007).

An attractive aspect of this model, at least in general terms, is that the size of the outburst
region ∼1 AU seems to be in much better agreement with observations of FU Ori (Zhu
et al. 2007; Figure 9.7, §9.4). Another promising feature of this mechanism is that it can
easily produce repetitive outbursts, as long as material is still being added to the disk by
the infalling envelope. The “luminosity problem” of Class I objects (Chapter 5), consistent
with direct estimates of current mass accretion rates onto protostars, seems to require that
disk accretion rates are often lower than infall rates, as predicted by this model. Instability
analysis is complicated, however; further work is needed to test this picture.

One interesting possible consequence of the dead zone picture is that even after infall
to the disk ceases, material can still pile up in the dead zone (Chapter 12); thus, smaller
and shorter outbursts of accretion might still be generated during the T Tauri phase. Herbig
(1977b) drew attention to small optical outbursts observed in pre-main-sequence stars which
might constitute a separate class of “EXor” variables, and it is tempting to speculate that the
EXor outbursts are produced by instabilities related to piling up material in dead zones.

An idea which combines the two general classes of models is the suggestion by Clarke
and Syer (1996) that protoplanets or protostellar companions orbiting in the disk might help
to dam up material in the disk, producing conditions suitable for thermal instability (see also
Lodato & Clarke 2004). Whether this mechanism requires giant planet formation to occur
too rapidly, or whether the thermally unstable region can be large enough to accommodate
observations, is an open question.

9.7 The boundary layer problem
The standard boundary layer model (§7.8) predicts large ultraviolet fluxes that are

not observed in FU Ori objects (Kenyon et al. 1989). The ultraviolet fluxes and spectra of
FU Ori and Z CMa show no evidence for appreciable excess emission above that predicted
by the disk model. The absence of strong emission lines also points to a lack of boundary
layer emission, which, if hotter than 3×104 K, and radiating half of the accretion luminosity,
should produce enough extreme-ultraviolet photons to ionize a substantial fraction of an FU
Ori object’s wind; this is inconsistent with observations (Chapter 10).

As discussed in Chapter 8, the standard boundary layer model probably does not apply to
T Tauri stars either, because the inner disks are disrupted by stellar magnetic fields. At the
high accretion rates of FU Ori objects, one might expect that the dynamic pressure of the
disk is sufficient to crush the stellar magnetic fields back up against the outer stellar layers
(Shu et al. 1994); however, there should be boundary layer emission unless the star is rapidly
rotating, unlike typical T Tauri stars.

The most likely explanation for the absence of boundary layer radiation is that FU Ori
disks become quite hot internally at small radii, which causes departures from standard thin
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disk physics. Returning to the “hot α disk” solution of §7.3, we may combine equations
(9.10) and (9.13) to solve for the disk scale height,

H

R
= cs

vφ

� 0.43 α
−1/9
−2 μ

−13/36
0.6 Ṁ1/6

−4 M−13/36
0.5 R1/12

10 . (9.22)

Clarke et al. (1990) were the first to suggest that FU Ori disks may be so vertically thick
that any radiation generated in the boundary layer is absorbed and diffused in the disk over a
distance comparable to H ∼ R. In this way the heat generated in any boundary layer will be
spread over a large area – comparable to the region where most of the viscous disk radiation
is generally produced – and therefore no hot emission component will be evident.

More generally, Popham et al. (1993, 1996) and Popham (1995) have argued that there
may not be a well-defined boundary layer in FU Ori outbursting disks. Keplerian rotation is
an adequate approximation for the thin disk only when the gas pressure term in the radial
force balance equation (7.99),

v2
φ

R
≈ 1

ρ

d P

d R
+ G M

R2
, (9.23)

can be ignored. This is true only when

c2
s <<

G M

R
, (9.24)

which implies (H/R)2 << 1. Since this is probably not true in inner FU Ori disks during
outburst, gas pressure forces may become so large that the disk rotates at velocities substan-
tially below the Keplerian velocity because of the pressure support term in equation (9.23).
In such a situation the disk rotates more slowly than the local Keplerian angular velocity,
and velocity gradients are not steep because of the gas pressure support. The result is that
the dissipation of rotational energy is both reduced and less spatially concentrated than the
conventional boundary layer.

This model makes the additional interesting prediction that the differential rotation of the
disk with radius would be slower than Keplerian. As discussed in §9.3, the observations
suggest slightly less differential rotation than Keplerian. While the observations provide
some weak support for this picture (Popham et al. 1996), the uncertainties in modeling the
near-infrared spectra preclude a definite test at this point. Another interesting consequence
of this picture is that, even in the absence of magnetospheric interactions or stellar wind
spindown, stars may be formed with equatorial rotational velocities less than Keplerian or
break-up velocities (Popham 1995).

9.8 Outburst statistics and evolutionary significance
Since FU Ori objects are so rare, their evolutionary significance is somewhat hard

to evaluate. Estimates of the star formation rate in the solar neighborhood (Miller & Scalo
1979) suggest that about 2 × 10−2 stars are born per year within 1 kpc of the Sun, where
most of the known FU Ori objects are located. If the number of FU Ori outbursts in the same
volume is ∼5 over the last 60 years, and if every (low-mass) star experiences outbursts, then
there must be ∼4 outbursts per star. This is clearly a lower limit to the outburst frequency,
since many of the more recent FU Oris have been discovered as heavily extincted infrared
sources.
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If each star experiences a minimum of 4 outbursts, and each outburst accounts for the
accretion of ∼10−2 M�, then the total mass accreted is ∼4 × 10−2 M� yr−1, or about 10%
of the mass of a typical T Tauri star. Another way of approaching this problem is to note that
there are currently ∼15 rapidly accreting FU Ori objects within about 1 kpc distance. Not
all of these are at maximum light, or as luminous as FU Ori; still, probably 10−3 M� yr−1

or more is being accreted in FU Ori objects within 1 kpc, compared with a total mass rate
of formation of low-mass stars M ≤ 1 M� of about 6.6 × 10−3 M� yr−1 (Miller & Scalo
1979). This again suggests that ∼10% of the mass of low-mass stars is accreted (on average)
in FU Ori eruptions. This still leaves the question of when most of a typical star’s mass
is accreted. One would expect that outbursts or simply rapid disk accretion during Class 0
phases or the most heavily embedded Class I phases account for most of the stellar mass;
but demonstrating this convincingly has proved difficult.
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Disk winds, jets, and magnetospheric
accretion

The powerful outflows from pre-main-sequence stars are now understood as a general
byproduct of disk accretion. The relation between mass accretion rates and mass loss rates
now spans several orders of magnitude by connecting the T Tauri stars with the FU Ori
objects. The bipolar nature of these outflows, which begin in the earliest stages of star for-
mation, clearly points to a disk origin. With mass ejection rates of order 10% of the disk
accretion rates, outflows represent perhaps as much as half of the energy released by disk
accretion.

Neither thermal nor radiation pressures are able to drive the observed rates of mass loss.
The inescapable conclusion is that these jets and winds are produced by magnetic accelera-
tion; models show that magnetic fields rotating with the disk naturally produce the necessary
collimation along the rotation axis. The precise manner in which this acceleration and colli-
mation takes place is uncertain because the magnetic field structure in the inner disk is not
known.

Magnetic fields also play an important role in accretion onto pre-main-sequence stars.
The magnetic fields of T Tauri stars are apparently strong enough to hold off disks from the
stellar surface; the accreting gas deviates from the disk plane as it falls in along the stellar
magnetic field lines, eventually shocking at the stellar surface and producing the observed
hot continuum radiation (Figure 8.1). Some of the clearest evidence for magnetospheric
accretion comes from the broad, asymmetric emission lines of classical T Tauri stars, which
mostly originate in the infalling magnetospheric gas; the infall pattern explains both the
velocity widths and the asymmetries of most line profiles. The torques produced by the
interaction of the stellar magnetic field with the circumstellar disk can modify the rotation
of the central star. This magnetic disk interaction can in principle explain the slow rotation
of CTTS relative to WTTS of similar ages. However, how this actually occurs, and whether
winds are important as well in stellar spindown, is unclear at present.

This chapter provides an introduction to the complex physical processes involved in disk
wind acceleration and magnetospheric accretion.

10.1 Outflows and jets
Many young stars eject powerful, highly collimated, bipolar winds or jets in their

early evolution. An enormous literature exists on the ways in which outflows propagate
through and interact with the circumstellar medium. The Protostars and Planets V conference
volume contains no less than five review articles on the subject (Arce et al. 2007; Bally et al.
2007; Pudritz et al. 2007; Ray et al. 2007; Shang et al. 2007) and the reader is advised to
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consult these articles for details. Here we present only a brief outline of outflows, as the
main focus for this book is how accretion and ejection are related at the source.

One of the earliest indications of outflow activity came from the recognition that the
Herbig–Haro objects (Herbig 1951, 1952; Haro 1952, 1953) were produced by high-velocity
material shocking with the ambient interstellar medium (Schwartz 1975). The discovery of
highly collimated emission jets (Dopita et al. 1982; Mundt & Fried 1983) added to the pic-
ture, as many jets have “knots” of emission similar or identical to those of HH objects.
Optical emission lines indicate that the jet gas is being heated to temperatures of sev-
eral thousand degrees or more, probably mostly by shocks (Schwartz 1975). The detailed
motions within jets which can produce shock waves and individual emission knots are com-
plex (Raga 1995; Masson & Chernin 1993); it is likely that time-variability of the ejection is
at least partly responsible for some of the jet shocks and knots (Reipurth 1989; Raga 1995).
The Herbig–Haro objects may be emission knots in jet material, or emission in the wind as
it shocks with the interstellar medium, or emission from interstellar gas in the shock wave
(often a bow-shock) which propagates ahead of the jet (cf. Hartigan et al. 1987).

Highly collimated optical jets from young stellar objects are often detected in forbidden
emission lines, principally [O I] 0.6300, 0.6363 μm and [S II] 0.6717, 0.6731 μm. These
jets may extend for distances of 103–104 AU or more from their source (e.g., Figure 1.4),
and a few have been traced to distances of ∼1 pc from the source (Bally & Devine 1994).
Both spectroscopic observations of radial velocities and proper motions of “knots” or bright
emission spots in the jets show that the optical emission lines are produced by material
flowing outward at ∼100–300 km s−1. While optical observations often trace only one side
of the jet or outflow (the near, blueshifted side), observations of near-infrared emission in
molecular hydrogen and radio-wavelength observations, which are unaffected by extinction,
demonstrate that outflows are bipolar (e.g., Bachiller 1996).

Another piece of evidence for rapid mass loss from young objects has come from observa-
tions of high-velocity molecular gas in star-forming regions (e.g., Snell et al. 1980). These
molecular “outflows” are ambient material that has been swept up by the higher-velocity
winds and jets. Most of the kinetic energy is quickly dissipated and radiated away as the
high-velocity material shocks with the ambient molecular medium. The time-integrated
input momentum inferred from the molecular gas motions indicates that outflows from
young stars carry away much more momentum than is contained in the radiation field of
the central source (Lada 1985), pointing to the need for another acceleration mechanism.

It is important to understand whether the observed jets essentially represent the entire
mass ejection, or whether they are simply the dense axis of a more widely diverging wind
present in addition to the jet (Shu et al. 1995). Reversing the argument presented in the first
edition of this book, it now seems clear that jets do not constitute the entirety of mass ejec-
tion. Outflows, though relatively collimated, are much wider in opening angle than jets. Most
outflow cavities are much wider than the jets aligned along their axis. A clear example of
this is L1551 IRS 5, the first pre-main-sequence object with a demonstrated bipolar outflow
(Snell et al. 1980). As shown in Figure 10.1, the CO outflow is only moderately collimated,
as also indicated by the optical cavity (Figure 5.9), while the jets (right panel of Figure 10.1)
are much more highly collimated.

Efforts have been made to explain the wider cavities by invoking wiggling or precessing
jets, but this does not seem to be a general explanation, given the very long, highly collimated
trains of HH objects seen in some cases (Bally & Devine 1994). Another suggestion is
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Fig. 10.1. Left: The L1551 outflow as seen in 12CO. The southwest lobe (solid contours)
represents blueshifted emission from −6 to 6 km s−1, and the northeast lobe is redshifted
emission from 7 to 21 km s−1. The blueshifted emission fits nicely within the optical cavity
as seen in Figure 5.9. (This figure also shows that the region is complex, with additional
sources of outflow tending to confuse the picture.) Right: On small scales as seen with HST,
the binary FU Ori systems exhibit a pair of highly collimated jets, much narrower than
the optical cavity/CO outflow. From Moriarty-Schieven et al. 2006 (left) and Fridlund and
Liseau (1998) (right).

that multiple jets in the same region contribute to the width of the cavity. This occurs in
L1551 IRS 5 (Figure 10.1), but this is unlikely to be a general mechanism, nor can it explain
relatively simple cavity geometries. Still another suggestion is that ambient mass off-axis
from the jet can be “entrained”. There must be some lateral transfer of momentum from
the jet as it passes through the molecular medium, which could explain especially narrow
outflows, but this seems unlikely to explain many cavities with very large opening angles.

In particular, the T Tauri system provides significant evidence of wind interaction with
its large-opening angle cavity (Stapelfeldt et al. 1998b). Saucedo et al. (2003) mapped out
the ultraviolet molecular hydrogen emission along the rims of the cavity (see also Walter
et al. 2003). This emission is produced by fluorescence with the strong Lyman α emission
of the central source (or perhaps of a local shock), provided that the H2 is at temperatures
>1000 K to populate the required lower level. The distances at which this emission is seen,
>100 AU, are far too large for radiation to account for the necessary heating; the most likely
explanation for the molecular hydrogen excitation is that a wide-angle wind produces an
oblique shock as it shapes the cavity, resulting in a warm layer of H2 which can fluoresce.

Perhaps the most direct evidence for wider-angle outflow arises from what appears to have
been an ejection event in the XZ Tau binary system. As shown in Figure 10.2, HST images
show an expanding bubble in the same direction as a previously detected jet; there are knots
of emission which may represent the (narrow) jet within the bubble.

Thus, the observational evidence indicates that jets are accompanied by at least a
moderately expanding, wider-angle outflow, a picture which has advantages in terms of
understanding the stability of these structures (§10.9). The jets are undoubtedly denser than
any surrounding wind, almost certainly exhibit the highest ram pressures ρv2, and thus will
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Fig. 10.2. Images of XZ Tau in R-band (0.675 μm) with point-spread function subtraction
of the central binary; the 1998 data shows a short exposure inserted into the center. The
indication is that of a broad bubble of shocked gas expanding at about 150 km s−1 (projected
velocity) in the same direction as a previously known jet. The knots bisecting the bubble may
be in the collimated jet. From Krist et al. (1999).

propagate through the ambient medium most successfully. The jets probably also contain
most of the kinetic energy of the outflow as well. Whether jets represent most of the momen-
tum of the flow is another question. The “pencil-beam” large-scale jets seem too collimated
to produce much global interaction with the surrounding molecular cloud; a wider-angle,
less dramatic outflow could be more important in dispersing molecular gas (Chapter 2).

10.2 P Cygni profiles
Observations with increasing spatial resolution make clear that jets arise near to the

central regions of the star-disk system (Ray et al. 2007, and references therein). Clues to the
nature of the mass ejection on scales too small to resolve can be developed from an analysis
of line profiles.

The observational study of wind acceleration relies on the interpretation of velocity shifts
and asymmetries in absorption and emission lines. Figure 10.3 illustrates some basic ways
in which velocity fields and outflow geometry produce the so-called “P Cygni” profiles.
The particular situation illustrated is that of spherically symmetric outflow from a star. The
expanding high-velocity outflow produces a broad line profile. Region (1) tends to con-
tribute excess emission toward the observer, either because photons are created in the line,
or because stellar photons are scattered into the line of sight. This region produces both
blueshifted and redshifted emission. Region (2) would contribute emission at the highest
redshifts, but is occulted by the stellar disk. In the case of an optically thick line illustrated
in the bottom left-hand panel of Figure 10.3, material in region (3) absorbs light from the
star, producing a blueshifted absorption feature. The net result is an asymmetric line profile,
with redshifted emission and blueshifted absorption – the canonical P Cygni profile observed
in many hot stars.

Variations on this situation can be imagined which change the profile shape. For example,
suppose that the star is surrounded by an opaque disk (right-hand panel of Figure 10.3).
Then the region of occultation (2) becomes much larger. One can see that the effect of a disk
at most inclination angles will be to eliminate the emission preferentially that arises from
redshifted material; in the limit where the opaque inner disk edge joins the star, and the disk
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Fig. 10.3. Schematic diagram of geometry responsible for producing P Cygni wind line
profiles (see text).

lies in the plane of the sky as seen by the observer, all of the redshifted emission will be
occulted, and all that will be left is blueshifted absorption. If the spectral line is optically
thin, then the absorption of star light will be negligible. Depending upon the physics of line
excitation, region (3) may produce blueshifted emission rather than absorption; again, the
disk will hide the redshifted material.

The FU Ori objects and the T Tauri stars both show evidence for this disk occultation. In
the case of FU Ori systems, the blueshifted spectral features are seen mainly in absorption
in permitted atomic transitions, while in the T Tauri stars the occultation is most apparent in
blueshifted emission from forbidden (optically thin) lines.

Figure 10.4 illustrates hydrogen Hβ and Na I resonance line profiles in four FU Ori
objects. Broad blueshifted absorption is observed, indicating mass ejection at several hun-
dred km s−1. There is no evidence for redshifted emission or absorption, indicating that
unless the Earth is in some privileged place of observation, occultation of the redshifted
outflow must be occurring. This is consistent with the FU Ori objects being optically thick
accretion disks.

In contrast, the Hα profiles of typical T Tauri stars illustrated in Figure 10.5 (see also
Figure 8.15) exhibit qualitatively different profiles. While there is often evidence of a wind
from blueshifted absorption, emission wings typically extend out to even larger blueshifted
velocities, unlike the situation outlined in Figure 10.3. We now understand the origin of these
so-called “type III” P Cygni profiles in T Tauri stars; they are a combination of blueshifted
emission arising from the infall region, coupled with substantial Stark line broadening
which produces broad wings for very optically thick lines (Muzerolle et al. 1998a, 2001).
Other spectral lines show redshifted absorption characteristic of magnetospheric infall (§8.4,
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10.12). This initially confusing situation – of detecting both infall and outflow simulta-
neously – is now thought to be the result of mass ejection exterior to the magnetosphere
(§10.12); whether outflow or infall dominates the particular line profile depends upon the
excitation and optical properties of the particular transition.
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Fig. 10.5. Comparison between Hα profiles (solid curves) with [O I] λ 6300 Å profiles
(dashed curves) for some representative T Tauri stars. (Z CMa is a complex close binary
consisting of an FU Ori object (Chapter 9) with a highly extincted luminous source that is
probably a Herbig Be star.) Blueshifted absorption in Hα is often detected, and in many
cases corresponds with blueshifted [O I] emission; this suggests that the wind/outflow is
responsible for both the forbidden line emission as well as the permitted-line absorption.
From Edwards et al. (1987).

10.3 FU Ori disk winds
Observations demonstrate that the wind of FU Ori itself arises from the surface

of the accretion disk. This is possible because wind velocity shifts can be detected in many
weak absorption lines formed in the outer disk atmosphere. Because there are many available
lines, with widely varying strengths, it is possible to follow the wind as it accelerates away
from the disk photosphere.

Figure 10.6 shows a segment of the optical spectrum of FU Ori at high spectral resolution.
For comparison the spectrum of another FU Ori object (V1515 Cyg), artificially broadened
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Fig. 10.6. A comparison between the observed spectrum of FU Ori near 6200 Å and a
disk model spectrum (dotted line) synthesized by rotationally broadening the V1515 Cyg
spectrum (see text). From Hartmann and Calvet (1995).

to match the rotational velocity of FU Ori, is included. Although the absorption features
match up reasonably well, the strong lines and blends near 6162, 6170, and 6191 Å are
blueshifted in FU Ori relative to the V1515 Cyg spectrum. Apparently, the wind of FU Ori
is so strong that the upper photosphere is actually moving outward at detectable rates. Even
with this expansion, the blend near 6162 Å is double-peaked; this implies that the material
is rotating like the disk (cf. §7.2) as it expands outward.

Consider what might be observed from the differentially expanding atmosphere of an FU
Ori accretion disk. Weak absorption lines, formed near the disk photosphere, will exhibit the
“doubled” line profiles produced by disk rotation (§9.3; Figure 9.8), as shown in the upper-
most profile (dotted line) in the upper panel of Figure 10.7. Stronger lines will be formed
further up in the disk atmosphere, farther from the disk midplane. The atmosphere is cooler
in these outer layers, and therefore the absorption profiles of these lines will be deeper, as in
a normal stellar atmosphere. Since the gas density is lower at higher levels in the atmosphere,
conservation of mass for a (roughly) steady wind implies a larger expansion velocity. The
net result is that stronger lines are both deeper and more blueshifted. If the velocity shift due
to expansion is small compared with the rotational velocity, the combination of both motions
will result in a profile that is dominated by rotation. If the lines are strong enough that the
level of line formation in the disk atmosphere is very high, and the velocity of expansion
dominates the line profile, the result will be a P Cygni profile with little or no evidence of
rotation (e.g., Figure 10.3). Therefore, absorption lines formed in a disk wind should show
increasing blueshifts with increasing line strength.

To explore this predicted behavior in more detail, Calvet et al. (1993) modeled the FU
Ori disk atmosphere as a series of disk annuli, each with its own independent atmosphere;
this is justifiable in the plane-parallel limit. The temperature structure of the atmosphere for
each annulus was calculated for vertical radiative equilibrium with the appropriate surface
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Fig. 10.7. Upper panel: Predicted disk wind profiles for a series of lines with different
strengths, taken from Calvet et al. (1993). Filled and open circles mark the positions of the
absorption dips for the blue and redshifted components, respectively. Lower panel: Velocity
shifts of absorption components in FU Ori, from Hartmann and Calvet (1995). See text.

flux at each radius. To make the results more realistic, the effects of ionization balance
were included. Profiles were calculated for a series of typical Fe I lines of varying oscillator
strengths assuming local thermodynamic equilibrium or LTE (Mihalas 1978), and adopting
a linear acceleration of the expanding disk atmosphere combined with Keplerian rotation
(see Calvet et al. 1993 for details).

The results of these calculations are shown by the sequence of line profiles in the
upper panel of Figure 10.7. This sequence quantitatively demonstrates the profile evolution
described above. Atomic spectral lines of progressively greater strength compose a sequence
of line profiles, with increasing line depth accompanied by an increasing blueshift of the
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absorption. An interesting feature of the calculation in the upper panel of Figure 10.7 is that
the absorption component on the red side of the line becomes increasingly blueshifted, as
would be expected intuitively, but the blue absorption component does not appear to shift
much in velocity. This is because the blue component is not an actual feature in the wind
velocity profile, but instead is due to the convolution of the rotational broadening profile
with the wind expansion profile (Calvet et al. 1993).

One simple way of characterizing this evolution of line profiles with increasing line
strength is to consider the positions of the two absorption components in the line profiles,
marked in the upper panel of Figure 10.7 by the open circles for the redshifted compo-
nent and filled circles for the blueshifted component. As the line strength increases, the line
becomes deeper and so the two absorption components appear at lower residual intensities;
the line becomes more blueshifted, and the two absorption features move together. Eventu-
ally, for lines strong enough to be formed at a sufficiently high atmospheric level where the
expansion velocity dominates the rotation, the two absorption components merge into one
blueshifted feature.

This qualitative behavior of line profiles has been observed in FU Ori. The most detailed
results were presented by Petrov and Herbig (1992), who measured the profiles of a large
number of relatively unblended lines. Petrov and Herbig showed that as the depth of the line
increased, the red absorption feature moved to more negative velocities, the blue absorp-
tion component remained at almost fixed radial velocity, and the centroid of the line profile
became blueshifted, in qualitative agreement with the disk wind model prediction. The lower
panel in Figure 10.7 shows confirming measurements of the absorption dip positions (Hart-
mann & Calvet 1995). The correspondence between the model predictions and the observed
dip positions is quite good. The “tomographic” view of the wind obtained by isolating lines
of different strengths clearly demonstrates the evolution of the flow from pure Keplerian
rotation to outflow, and represents the only situation at present where the wind can definitely
be shown to arise from the accretion disk. (This effect is not observed in other FU Ori objects
such as V1515 Cyg, probably because they have lower mass loss rates; Hartmann & Calvet
1995.)

10.4 T Tauri winds
As discussed in §10.2 (Figure 10.5), the line profiles of Hα and other strong lines

demonstrate the existence of mass loss in CTTS, along with the presence of blueshifted
forbidden-line emission. In addition to the correlation of mass loss with mass accretion, we
know that strong mass loss is only detected when inner disks are present, further cementing
the relation between disk accretion and outflows.

Some T Tauri stars exhibit spatially resolved jets (e.g., Figure 1.7), which can be observed
in optical emission lines such as Hα, and particularly in forbidden [O I] 6300, 6363 Å and [S
II] 6717, 6731 Å emission lines. Optical observations of T Tauri stars have been made with
increasing spatial resolution using HST (Ray et al. 2007, and references therein), showing
that jets can be traced back to the limits of the spatial resolution, typically of order 10–30 AU
(Kepner et al. 1993; Burrows et al. 1996; Ray et al. 1996).

An important peculiarity of the forbidden-line profiles is the presence of high-velocity and
low-velocity components. As shown in Figure 10.8, stars with large near-infrared excesses
(generally rapid accretors) often show two peaks: a high-velocity component with blueshifts
of hundreds of km s−1, and a low-velocity component, with a blueshift of only ∼5 km s−1
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Fig. 10.8. Average [O I] line profiles for CTTS as a function of the magnitude of their near-
infrared excess. Stars with large near-IR excess emission, tending to be the most rapidly
accreting objects, often exhibit two peaks in [O I] at high and low velocities (upper panel);
the high-velocity component is generally associated with a spatially resolved jet. As the
magnitude of infrared excess decreases, the high-velocity emission decreases substantially,
while the low-velocity component remains. Modified from Hartigan et al. (1995).

(Hartigan et al. 1995). As the infrared excess decreases (which is usually correlated with
a decreasing accretion rate), the high-velocity “jet-like” component decreases in strength,
while the low-velocity component tends to remain. Another indication of the discrete nature
of these components is that density diagnostics indicate that the low-velocity component
exhibits larger electron densities than the high-velocity component (Hartigan et al. 1995).
The implications of the low-velocity outflow are unclear; they may indicate a wind originat-
ing at some significant radial distance in the disk, while the high-velocity jet comes from
inner disk regions (Hartigan et al. 1995; Kwan & Tademaru 1995).

10.5 Mass loss rates
Mass loss rates have been estimated using the profiles of optically thick permitted

spectral lines, with special emphasis on analyzing the blueshifted absorption produced by
expansion. Usually it suffices to adopt the Sobolev approximation (§5.8) to calculate the
optical depth in terms of physical quantities. In this approximation it is assumed that the
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velocity gradients in the expanding atmosphere are large, and therefore only a narrow vol-
ume in the wind is responsible for the line absorption and emission at a given velocity shift
(see, e.g., Rybicki & Hummer 1978).

In the simplest possible case, that of an absorption line with negligible local emission, the
profile is just proportional to Ic exp(−τν), where Ic is the background continuum and τν is
the line optical depth at frequency ν. (The background radiation field may be geometrically
complex as a result of star, accretion shock, and even disk emission.) Consider a spectral line
with a Gaussian line profile of intrinsic velocity width vth due to thermal Doppler motions
and any other local velocity broadening. Then the line absorption profile per absorber in the
relevant energy level is (Mihalas 1978)

αν = πe2

mc

f

π1/2�νD
exp

[
−

(
�ν

�νD

)2
]

, (10.1)

where �νD = νovth/c and f is the oscillator strength. Assuming that the absorbing number
density N1 remains constant over the narrow region of interest, located along a line of sight
coordinate z at position zo, the Sobolev optical depth is

τv �
∫

dz αv N1 = πe2

mc
f

c

νo

N1(zo)

|dv/dz|zo

. (10.2)

The position zo is defined as the point at which the velocity along the line of sight is such
that the line is shifted to the frequency of interest, i.e., ν = νo(1 + v/c). The intrinsic line
width vth drops out in this approximation, because only atmospheric regions with velocity
shifts ∼ ±vth/2 of the central velocity contribute to the optical depth integral along a given
line of sight; therefore any increase in thermal velocity width, which reduces the opacity per
unit distance, correspondingly increases the distance over which the line can effectively con-
tribute to the absorption, and thus the optical depth at v is unaffected. (This approximation
breaks down if the line is so optically thick that damping wings become important.)

An estimate of the wind absorbing optical depth τv from analysis of the line profile then
yields an estimate of the wind mass loss rate,

Ṁw ∼ (2) × da v μmH NH(v) , (10.3)

where the hydrogen number density is

NH(v) ∝ τv |dv/dz|
(

NH

N1

)
. (10.4)

The factor of (2) is intended to account for the bipolar nature of the flow (other treatments
often assume spherical wind expansion, so that 2da = 4π R2). The wind velocity as a
function of radius can be prescribed by differing laws or theories; typically, it is assumed
that the wind accelerates to its terminal velocity over a few stellar radii in distance.

This method has proved to be difficult to apply either because the lines are too optically
thick, or arise from a non-dominant stage of ionization. Combining results for lines with
differing excitation can circumvent these problems to some extent. One of the best combina-
tions to use is one or more Balmer lines with the Na I resonance lines; the Balmer lines are
more sensitive to temperature than the Na I lines, while the latter more sensitive to electron
density. Unfortunately, the number of T Tauri stars with detectable blueshifted Na I (wind)
absorption is small. Natta and Giovanardi (1990) derived mass loss rates for a few T Tauri
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stars with strong Na I resonance line absorption, finding a range of ∼10−8–10−7 M� yr−1 in
reasonable agreement with the strongest mass ejection rates inferred from forbidden emis-
sion lines (see p. 226). This method is easier to apply to the FU Ori objects, which have
much stronger Na I lines because of the higher mass loss rates (Figure 10.4). In this manner
Croswell et al. (1987) estimated the mass loss rate of FU Ori to be ∼10−5 M� yr−1, i.e., an
order of magnitude smaller than the disk accretion rate; others were also estimated by Calvet
(1998). Overall, the results show that FU Ori objects have much higher mass ejection rates
than T Tauri stars.

The high-velocity blueshifted forbidden-line emission of many T Tauri stars can be ana-
lyzed to estimate mass ejection rates (e.g., Hartigan et al. 1995). The forbidden lines are
optically thin and so the total luminosity is proportional to the number of emitting atoms in
the observed volume,

L12 =
∫

dV N2(A) A21 E , (10.5)

where the subscripts 1 and 2 refer to the lower and upper atomic levels of the spectral line
being observed in volume V , N2(A) is the number density of atoms of species A in the upper
level 2, A21 is the Einstein spontaneous emission probability for the transition, and

E = hν21 (10.6)

is the energy of the observed spectral line. If observations are limited to a region of radial
extent Rw, and the expansion velocity vw is estimated from the radial velocity shifts, the
(one-sided) mass loss rate is

Ṁw ∼ M(A)
vw

Rw
∼ vw

Rw

∫
dV N2(A)

(
NA

N2

)(
NH

NA

)
μmH , (10.7)

where M(A) is the mass of species A in the volume under observation, NA/NH is the
abundance of atom A relative to hydrogen, and μ is the mean molecular weight. The mass
loss rate can then be determined from observations of the forbidden-line luminosity, if an
estimate of the fractional abundance N2/NA can be made.

It is often possible to assume that the only processes involved in producing the line emis-
sion are collisional excitations between the lower level 1 and the upper level 2, along with
spontaneous radiative decay. This is especially true if level 1 is the ground state in which
most of the ions reside at any instant. Under these assumptions the equation of statistical
equilibrium can be written as

N1 NeC12 = N2(A21 + NeC21) , (10.8)

where C12 and C21 are the collision rates and Ne is the density of electrons responsible for
inducing the collisional transitions (Spitzer 1978). Because the distribution function of the
colliding electrons can generally be taken to be Maxwellian, the collision rates are related
by the principle of detailed balance (Mihalas 1978),

C12 =
(

N2

N1

)∗
C21 =

(
g2

g1

)
exp

(−E

kT

)
C21 , (10.9)
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where the starred quantities refer to the LTE ratios, and the gi are the statistical weights of
the atomic levels. With this result one can write

L12 =
∫

dV
N1 Ne C21

(
g2
g1

)
exp

(−E
kT

)
1 + Ne

C21
A21

E . (10.10)

The collision rate is a function of temperature; usually it is written

C21 = 8.63 × 10−6 �21

g2 T 1/2
cm3 s−1 , (10.11)

where �21 is usually a slowly varying function of temperature.
To determine mass loss rates we require the number of ions in state 1 relative to the total

atomic abundance, N1/NA, the gas temperature, and the electron density. Since level 1 is
often the ground state of ion A for strong forbidden lines, it is sometimes possible to assume
that most of the atoms of species A are in the ground state, i.e., N1 ∼ NA, if this is the
dominant stage of ionization for A. For example, [O I] and [S II] are likely to be dominant
stages of ionization provided the gas temperature is not >>104 K. This conclusion must be
modified for the time-dependent ionization structure of shocks, in which the ionization states
are not unique functions of the local density and temperature but depend upon initial shock
conditions as well (cf. Hartigan et al. 1994). The observed emission in these forbidden lines
is likely to be dominated by only those regions where the conditions can produce N1 ∼ NA.
This in turn tends to restrict the temperature range relevant to the emission accordingly,
although there is no guarantee that all of the wind is characterized by these temperatures.

The line emission (equation (10.10)) generally depends upon the electron density. In some
cases it is possible to make an independent estimate of the electron density by comparing the
emission from different lines. For many T Tauri stars, the ratio of the [S II] 6717, 6731 Å
forbidden lines indicates emission in the high-density limit NeC21 >> A21, in which case
the dependence on electron density is eliminated,

L12 ∼
∫

dV N1 A21

(
g2

g1

)
exp

(−E

kT

)
E . (10.12)

Figure 10.9 shows T Tauri mass loss rates estimated from the [O I] 6300 Å and 6363 Å emis-
sion lines, using equations (10.7) and (10.10), and including constraints on electron densities
from the [S II] lines (Hartigan et al. 1995). To derive these mass loss rates, Hartigan et al.
adopted an emitting temperature of ∼8000 K for the collision rates, based on results from
shock models for jets which suggest that this is the characteristic (post-shock) temperature
where most of the emission is radiated. Since E/k ∼ 2.2 × 104 K for the [O I] lines, the
derived mass loss rates are not highly sensitive to the temperature unless it is very much
lower than 8000 K.

Shock models actually exhibit a range of temperatures in the cooling gas, and this can
be taken into account in detailed calculations (Hollenbach 1985; Hartigan et al. 1994). The
Hartigan et al. (1995) results do not take this into account, mainly because without more
information (spatial resolution, etc.) it is difficult to know just how the forbidden-line emit-
ting region is heated, how many shocks there are, etc. These uncertainties plus the likely
time-variability of both mass ejection and accretion could account for most of the scatter in
Figure 10.9.
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Fig. 10.9. Mass accretion rates vs. mass loss rates. Errors are probably factors of three or
more in each coordinate. The solid line is Ṁ(wind) = Ṁ(accretion); the dashed lines are
wind mass loss rates of 10% and 1% of the mass accretion rate. Overall, the observations
indicate that mass ejection is about 10% of the mass accretion rates, consistent with energetic
requirements of driving the mass loss by accretion energy (see text). Taken from Calvet
(1998).

The mass loss rates for the three bright FU Ori objects shown in Figure 10.9 are derived
from estimates using absorption lines, principally Hα and Na I in combination (Figure 10.4;
Calvet 1998). Additional confirmation of the mass loss rate of FU Ori itself comes from
modeling the velocity shifts in strong photospheric lines (Figure 10.6; Hartmann & Cal-
vet 1995). The optically bright FU Ori objects do not show forbidden-line jet emission,
although the heavily extincted binary L1551 IRS 5 does show spatially resolved jet emis-
sion (Figure 10.1). Spatially resolved emission may not be detected if insufficient time has
elapsed since the outburst; at typical distances of 500–1000 pc, the jet must be >∼103 AU long
to be resolved from ground-based observations, and it would take about 50 years for the jet
to expand this far at 300 km s−1. The reasons why the inner wind does not emit strongly in
forbidden lines are less clear, but it may be that the densities are so high in the wind that
the forbidden lines are effectively collisionally de-excited (10.8), and the radiative cooling
required by any shock heating is accomplished through other (permitted) transitions.

In the case of L1551 IRS 5, Stocke et al. (1988) estimated a mass loss rate of
<∼10−7 M� yr−1, while Cohen et al. (1982) estimated Ṁw <∼ 3.5 × 10−7 M� yr−1 from
an analysis of the radio continuum emission from the ionized jet. Osorio et al. (2003) esti-
mated the disk accretion rate for each member of the binary as ∼2 × 10−6 M� yr−1. The
ratio of mass loss to mass accretion rate is consistent with a typical value of 0.1, given the
substantial uncertainties in these values. Radio continuum observations of some other FU
Ori objects (Rodriguez et al. 1990; Rodriguez & Hartmann 1992) suggest ionized mass loss
rates ∼10−7 M� yr−1, but these are only lower limits since it is highly likely that FU Ori
winds are mostly neutral.
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Thus, although there are substantial uncertainties in individual mass loss rates, they appear
to be about ∼10−1 of disk mass accretion rates for both T Tauri stars and FU Ori objects. The
significance of this can be seen by estimating the amount of energy involved in producing
these outflows. The ratio of wind to accretion luminosity is

Lw

Lacc
∼ 0.5 Ṁwv2

w

0.5 ṀaG M∗/Ri
∼ Ṁwv2

w

Ṁav
2
K

, (10.13)

where Ṁa,w are the accretion and wind mass rates, respectively. The inner edges of FU
Ori and T Tauri disks (the latter truncated by the magnetosphere; §10.10) are at ∼5 R�;
assuming a central mass of 0.5 M� for both sets of objects for simplicity, the corre-
sponding Keplerian velocity is vK ∼ 140 km s−1. Wind/jet velocities vw are often seen to
extend to vw = 300 km s−1 or more (Figures 10.4, 10.5). Adopting these values and using
Ṁw = 0.1 Ṁa results in Lw/Lacc ∼ 0.5. This estimate does not take into account the energy
needed to overcome the gravitational potential well. Thus, pre-main-sequence accretion
disks are extremely efficient in ejecting material, and a significant fraction of accretion
energy is injected into outflows.

10.6 Magnetocentrifugal acceleration and collimation
What causes the outflows and jets observed from T Tauri stars and FU Ori objects?

In stars like the Sun, the outer coronal atmosphere is sufficiently hot that winds may be
thermally driven (probably augmented by magnetic pressure), while in hot stars radiation
pressure drives massive winds. Neither of these mechanisms is applicable to the winds of T
Tauri stars or FU Ori objects. Thermal pressure is not important when the gas sound speed is
very much less than typical escape velocities; the temperatures of FU Ori and T Tauri winds
are fairly well constrained to be <∼104 K, and the associated sound speeds cs<∼10 km s−1 are
very much smaller than typical escape velocities ∼100 km s−1. Similarly, radiation pressure
is unimportant; radiative driving of winds tends to be most effective for objects with high
luminosity to mass ratios like O stars. Moreover, the momentum fluxes of molecular outflows
are generally much larger than the photon momentum flux L/c. Although multiple scattering
can produce larger momentum fluxes in principle, in practice this is very difficult to arrange
(Lada 1985). Finally, neither thermal acceleration or radiation pressure naturally produce
highly collimated flows.

The favored mechanism for producing pre-main-sequence outflows is magnetocentrifu-
gal acceleration from the circumstellar disk. Magnetic fields can effectively fling material
outward at high rates if they are rotating locally at speeds near the Keplerian velocity (Hart-
mann & MacGregor 1982). The magnetic fields also collimate the outflow along the rotation
axis, an effect initially found by Suess and Nerney (1975) in solar wind models. It seems
surprising at first that a mechanism which relies on radially outward motion for the initial
acceleration ends up focussing the ejection in the direction perpendicular to the rotation axis,
but the collimation results from the toroidal field that is eventually built up in the rotating
flow, as illustrated schematically in Figure 10.10. Material is launched initially from the
rotating disk along a magnetic field line pointing away from the rotation axis, but at suf-
ficiently large cylindrical radius the field is no longer strong enough to enforce corotation.
In this weak magnetic field region, the angular velocity of the gas decreases as it tries to
expand away from the rotation axis by conservation of angular momentum. This decreasing
angular velocity causes the magnetic field to wind up azimuthally. The azimuthal field exerts
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Ω

Fig. 10.10. Schematic drawing of a magnetic field line for a magnetocentrifugally driven
disk wind, illustrating the azimuthal winding-up of the magnetic field which can lead to
collimation around the rotation axis (see text).

a curvature force pointing toward the rotation axis, and this collimates the flow. Although
the details of this situation depend upon the detailed magnetic geometry chosen, this gen-
eral model appears to provide the most likely explanation for collimated pre-main-sequence
outflows.

10.7 Magnetohydrodynamic flows
To illustrate some of the basic issues involved in magnetocentrifugal wind accel-

eration, we briefly outline some basic magnetohydrodynamic (MHD) results. We assume
axisymmetric steady flow and infinite conductivity for simplicity, although it may be impor-
tant to eliminate the latter constraint for the cold material involved in protostellar outflows
(Königl 1989). The treatment below follows Mestel’s development (1961, 1968). Important
discussions have been given by Blandford and Payne (1982), Pudritz and Norman (1983),
Lovelace et al. (1987), Königl (1989), Pelletier and Pudritz (1992), Lovelace et al. (1993),
Safier (1993), and Shu et al. (1994). Early reviews of the subject have been presented by
Königl and Ruden (1993) and Spruit (1996); among the most recent reviews are those of
Shang et al. (2007) and Pudritz et al. (2007).

We take cylindrical coordinates R, φ, z, where the total distance from the coordinate cen-
ter is r = (R2 + z2)1/2. Splitting the magnetic field and velocity into poloidal and toroidal
components, we may write

B = Bp + Bφ , (10.14)

v = vp + R�φ̂ , (10.15)

where � is the angular velocity at R. In the infinite conductivity MHD limit, the electric
field in the frame moving with the fluid must vanish, and so the induction equation yields
(e.g., Priest 1984)

∇ ×
(v

c
× B

)
= 0 . (10.16)

Using this result and Stokes’ theorem,∫
∇ × (vp × Bp) · dA =

∮
dS · (vp × Bp) = 0 , (10.17)
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where the integral on the left-hand side is taken over the surface area bounded by the closed
curve S. In particular, the line integral on the right-hand side may be taken to be a circle
centered on the ẑ axis; if the flow is axisymmetric, vp × Bp must be constant on any such
circle. Therefore vp × Bp = 0, and the poloidal velocity can be written as

vp = κBp , (10.18)

where κ is a scalar quantity. The poloidal velocity is parallel to the poloidal magnetic field
as a consequence of the assumed infinite conductivity.

Using the Maxwell equation ∇ · B = 0, the toroidal component of equation (10.16) can
be written after some manipulation as

(B · ∇)

(
� − κ

Bφ

R

)
= 0 . (10.19)

This equation can be interpreted as the change in the second bracketed quantity along a
magnetic field line. Therefore, following any individual field line, we have

� − κ
Bφ

R
= �◦ , (10.20)

where �◦ is a constant along the given field line; this is the angular velocity of the pattern
of the magnetic field in steady flow.

The continuity equation is

∇ · (ρv) = 0 = ∇ · (ρκB) = (B · ∇)ρκ . (10.21)

Again, this defines a constant along a field line,

ρκ = ρvp

Bp
≡ η . (10.22)

The continuity equation in this form simply states that the mass flux density per unit poloidal
magnetic flux density is a constant along a given field line. Equivalently, one may say that
the poloidal mass flow is bounded by poloidal magnetic field lines, because the magnetic
flux is “frozen in” to the flow.

The momentum equation can be written using the first Maxwell equation as

ρ(v · ∇)v = −ρ∇φ − ∇ P + (∇ × B) × B
4π

. (10.23)

In (rotating) cylindrical coordinates, the toroidal component of the equation of motion is

ρ(v · ∇)R2� = R

[
(∇ × B) × B

4π

]
φ

. (10.24)

After some additional manipulation, this equation can be written as

(B · ∇)

(
ρκ R2� − R

Bφ

4π

)
= 0 . (10.25)

Thus we have yet another quantity conserved along magnetic field lines. Since ρκ ≡ η is a
constant along a streamline, this constraint can also be written as

R2� − R
Bφ

4π
η = l , (10.26)

where l is another constant along the streamline.
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The first term on the left-hand side of equation (10.26) is the angular momentum per unit
mass carried by the gas. The second term is the angular momentum carried by the magnetic
field per unit mass. It is non-zero only if Bφ �= 0, i.e., the magnetic field must curve in the
direction of rotation to exert a torque. We identify l as the total specific angular momentum
carried by the flow (Mestel 1968). Then the angular momentum flux along a streamline is

ρvpl = ρvp R2� − RBp
Bφ

4π
. (10.27)

These results may be combined to find an equation for the angular velocity of the gas (Mestel
1968),

� = �◦ − 4πη2l/ρR2

1 − 4πη2/ρ
. (10.28)

One critical parameter controlling the azimuthal motion is

4πη2

ρ
= 4πρv2

p

B2
p

, (10.29)

which represents the ratio of the poloidal ram pressure of the flow to the pressure of the
poloidal magnetic field. When the magnetic field is strong, it forces the gas to rotate with the
same angular velocity, � → �◦; if the magnetic pressure is much lower than the poloidal
gas ram pressure, then � → l/R2, i.e., the gas conserves its angular momentum along the
field line.

It is evident that the magnetic field must be strong in the region where the outflow is
accelerated to produce strong mass loss. In general the wind density decreases as the gas
moves outward, and therefore the flow must pass through a point where equation (10.28)
becomes singular; this requires

4πη2

ρ
= 4πρv2

p

B2
p

= 1 . (10.30)

In general, singular points appear in steady flow problems where the flow speed matches the
speed of a backward-propagating wave. In this particular case, the singular point is called
the Alfvén critical point, because the poloidal velocity matches the Alfvén velocity,

V 2
a,p = B2

p

4πρ
, (10.31)

which is the velocity of purely transverse waves along the magnetic field. There are two
other pure MHD wave modes – the so-called “fast” and “slow” magnetosonic waves (e.g.,
Jackson 1962) – and in general the flow must pass through critical points associated with
these modes as well (e.g., Weber & Davis 1967).

For smooth flow the numerator of equation (10.28) must also vanish at the Alfvén point,
and therefore

l = R2
A�◦ . (10.32)

The total angular momentum carried by the flow along a streamline is therefore equal to the
value that the gas would have if it rotated at the same angular velocity as the base of the flow
out to a cylindrical radius RA. Although the actual flow does not precisely co-rotate out to
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the Alfvén radius (or, considering all the field lines in space, the Alfvén surface), and the
magnetic field carries some of the angular momentum of the flow (equation (10.26)), this
picture provides a convenient way of roughly categorizing the outflow into two reasonably
distinct regions. Interior to the Alfvén surface, the flow is dominated by the magnetic field,
and forced nearly into solid-body rotation; exterior to the Alfvén surface, the poloidal mag-
netic field becomes less important (although the same is not true of the azimuthal field), and
the magnetic field lines become much more wound up (equation (10.28)).

Before leaving the topic of angular momentum conservation it is instructive to consider
the qualitative behavior of field lines as a function of angle from rotation axis. Conservation
of angular momentum of the flow past the Alfvén point causes the azimuthal velocity of the
gas to decrease with increasing (cylindrical) distance from the axis; this in turn causes the
field to wrap up toroidally in steady state (to keep the pattern angular velocity �◦ constant).
A field line nearer the axis will wind up less than one tilted closer to the equatorial plane.
Thus, the toroidal field will be stronger in more equatorial field lines than axial field lines.
This creates a magnetic pressure gradient toward the rotation axis which, when combined
with the hoop stresses of the curved field lines, causes the flow to collimate. The Grad–
Shafranov equation describes the resulting forces (e.g., Shu et al. 1995, Pelletier & Pudritz
1992); as the precise collimation which results depends in a complex way upon various
assumptions of field boundary conditions, we restrict the discussion to the above qualitative
description.

The momentum equation may also be used to derive an energy constant of the motion
in the absence of dissipation. Taking the dot product of the momentum equation with the
velocity, and assuming isothermal flow for simplicity,

ρv ·
[
∇ v2

2
+ c2

s ln ρ − ∇ G M∗
(R2 + z2)1/2

+ c2
s ∇ ln ρ

]
= v · (∇ × B) × B

4π
, (10.33)

where cs is the sound speed. After some manipulation, this can be written as

ρv · ∇
[

v2

2
+ c2

s ln ρ − G M∗
(R2 + z2)1/2

− R2�◦�
]

= 0 . (10.34)

The term in square brackets,

E = v2

2
+ c2

s ln ρ − G M∗
(R2 + z2)1/2

− R2�◦�, (10.35)

is an energy constant along the direction of motion, i.e., along a flow line, and is usually
called the Bernoulli constant.

The final term in the energy constant is due to the effects of the magnetic field. To illustrate
this more clearly, it can also be written as

∇ · (ρv(R2�◦�)) = ∇ · (ρκBp R2�◦�) = ∇ ·
(

�◦ RBφBp

4π

)

= ∇ ·
(

1

4π
(v × B) × B

)
= −∇ ·

( c

4π
E × B

)
. (10.36)

Thus, this energy term corresponds to an electromagnetic Poynting flux, and is responsible
for accelerating the outflow in the absence of thermal gas pressure.
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10.8 MHD disk winds
To illustrate the essential effects involved in launching a magnetocentrifugal wind,

we first assume that the magnetic field in the innermost wind regions is sufficiently strong
to enforce co-rotation in the region under consideration (cf. equation (10.28)). Then the
Bernoulli constant (10.35) can be approximated as

E = v2
p

2
+ c2

s ln ρ − R2�2◦
2

− G M∗
(R2 + z2)1/2

= v2
p

2
+ c2

s ln ρ − �, (10.37)

where � is an effective potential term including the effects of rotation and magnetic fields.
The behavior of the flow depends upon the form of �, which in turn depends upon the
geometry of the flow.

To start with a particularly simple case, suppose that the outflow starts from a ring rotating
at �◦ and is confined to the equatorial plane. Suppose further that the flow is confined to a
flux tube whose cross-sectional area A varies as R2. Then using the continuity equation for
the mass flow rate

ṁw = ρ Avp = constant , (10.38)

and differentiating the Bernoulli constant (10.37) with respect to R, one can substitute for
the ln ρ term using (10.38), resulting in

(v2
p − c2

s )
dvp

d R
= vp

R

(
2c2

s + R2�2◦ − G M∗
R

)
. (10.39)

(Note that for this flow, vp = vr = vR, i.e., the poloidal motion is purely radial.) If �◦ = 0
this equation is the familiar steady flow equation for the spherical thermally driven wind
(Parker 1963); in this case equation (10.39) is singular at the sonic point vp = v = cs; the
radius at which the sonic point occurs is then Rs = G M/2c2

s . The rotational term accounts
for the effect of the magnetic field; it has the same sign as the thermal pressure term, and
therefore helps accelerate the outflow. This singular point is actually where the flow speed
matches the magnetospheric slow mode velocity, but by assuming co-rotation we have effec-
tively assumed very large magnetic field strength and therefore large Alfvén velocity; in
this limit the magnetospheric slow mode velocity approaches the sound speed (for radial
propagation, see also Blandford & Payne (1982).)

Once the density at the sonic (slow mode) point is found by combining the location of
the sonic point from equation (10.39) with the Bernoulli constant, the sonic (or slow mode)
point determines the mass flow rate,

ṁw = ρs Ascs . (10.40)

To illustrate this in more detail, consider first the simple thermally driven case, assuming
rotational (and magnetic) effects are negligible. Then the sonic point is the so-called Parker
point,

RP = G M∗
2c2

s
, (10.41)

and the density at the sonic point can be evaluated in terms of the density ρ◦ at the starting
radius R◦,

ln
ρs

ρ◦
= −1

2
− G M∗

R◦c2
s

(
1 − R◦

RP

)
. (10.42)
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If RP >> R◦, it follows that G M/R◦c2
s >> 1. This means that the density at the sonic point

must be very much less than the density at the reference level R◦, and thus the mass loss rate
ṁw ∝ ρ◦ exp(−(1/2) − G M/R◦c2

s ) will be very low.
Returning to the case with magnetocentrifugal acceleration, the sonic point is given by

the cubic equation

R3
s �2◦ + 2c2

s Rs − G M∗ = 0 , (10.43)

and the density at the sonic point becomes

ln
ρs

ρ◦
= −1

2
+ −�(R◦) + �(Rs)

c2
s

. (10.44)

The effect of the rotating magnetic field is to move the sonic point closer to the initial radius
and therefore generally increase the mass loss rate. T Tauri and FU Ori winds are generally
quite cold, and so the effect of thermal pressure is rather small, i.e., the Parker radius Rp is
large (and large in comparison with the sonic point (slow mode) radius). If the rotation at R◦
is written as a fraction f of the local Keplerian velocity,

�◦ = f

(
G M∗

R3◦

)1/2

, (10.45)

and assuming that the Parker sonic point is at a much larger radius than the magnetosonic
point, equation (10.43) yields approximately

R3
s ≈ R3◦

f 2
. (10.46)

Thus as f → 1, the sonic point moves inward to the initial or reference radius R◦. In the
limit that the ring is rotating at the local Keplerian velocity, the sonic point lies right at the
ring surface, where the density is large, and therefore large mass fluxes result. Outflow from
a disk obviously does not lie precisely in the equatorial plane; however, the above discussion
outlines the basic physics of magnetocentrifugal flows.

Consider now the opposite case in which the magnetic field lines are completely vertical,
i.e., perpendicular to the disk plane. We suppose that the footpoint in the disk is rotating at
the local Keplerian velocity. Now the Bernoulli constant is

E = v2
p

2
+ c2

s ln ρ − G M∗
2R◦

− G M∗
(R2◦ + z2)1/2

. (10.47)

It is evident that the effective potential term does not vary except on distance scales ∼R◦,
and thus the sonic point of a cold flow will be far above the disk, and the mass loss rate
will be vanishingly small. The vertical field configuration does not take advantage of the
magnetocentrifugal acceleration which takes place when the field line is tilted with respect
to the rotation axis.

From these two limits one can see that there must be some critical angle of the magnetic
field line to the rotation axis which allows the sonic point to lie close to the disk surface and
thus produce a high mass loss rate. The easiest way to determine this condition is to take the
strong-field limit and assume that the sound speed is extremely small, so that thermal effects
can be completely neglected. Then the Bernoulli equation simplifies to

E = 1

2
v2

p + �, (10.48)
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where the “effective” potential is

� = −G M∗
R◦

[
1

2

R2

R2◦
+ R◦

(R2 + z2)1/2

]
. (10.49)

Consider now a small displacement along the field line, with a coordinate given by s, and

ds2 = d R2 + dz2 . (10.50)

At the base of the flow, the disk material is rotating at the local Keplerian velocity. This is an
equilibrium state, because d�/ds = 0 at z = 0. However, if d2�/ds2 < 0, this equilibrium
is unstable; any small perturbation along the field line will result in an increased (outward)
poloidal velocity from equation (10.48). If θ is the angle between the field line and the disk
plane, the critical stability criterion

∂2�

∂s2
= 0 (R = R◦ , z = 0) (10.51)

requires tan2 θc = 3, or θc = 60◦ (Blandford & Payne 1982). Disk magnetic field lines which
are tipped away from the rotation axis by an angle greater than 30◦ result in an unstable
equilibrium, and rapid outflow will commence at the disk. For smaller tilt angles from the
rotation axis, launching of an outflow requires thermal pressure to initiate the motion, and
so the mass loss rates will be correspondingly smaller. If the flow is very cold, values of
θ ≥ 60◦ will result in essentially no mass ejection.

A complete analysis of the flow requires consideration of wind behavior at large dis-
tances, where the approximation of co-rotation is not valid. The outflow may or may not
pass through a fast-mode critical point (Blandford & Payne 1982; Spruit 1996), depending
upon how “magnetic” the solution is at large distances, i.e., how much of the energy flow is
accounted for by the kinetic energy of the gas vs. how much is contained in the Poynting flux
at large distances (equation (10.36)). We will not consider this problem further; although this
is of interest for understanding the collimation of jets, it is not essential for understanding
the effects of the wind ejection on the disk.

The disk wind carries away both angular momentum and energy from the disk, and there-
fore may affect disk accretion. To explore this most simply, consider the case where thermal
pressure can be neglected. Using (10.34) along a flux tube with area d A,

ρvpd A

[
v2

2
− G M∗

(R2 + z2)1/2
− R2�◦�

]
= constant , (10.52)

where vp is the poloidal velocity. This can be written using (10.26) as

ρvpd A

[
v2

2
− G M∗

(R2 + z2)1/2
− �◦

(
l + RBφ

4πη

)]
. (10.53)

Because both �◦ and l are constants of the motion,

ρvpd A

[
v2

2
− G M∗

(R2 + z2)1/2
+ �◦lB

]
= constant = ėw , (10.54)
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where we identify ėw as the energy flux along the flux tube, and

lB = − RBφ

4πη
(10.55)

is the (non-constant) angular momentum carried by the magnetic field.
The outflow angular momentum and energy are carried both by the gas and by the

magnetic field. However, it is the magnetic field coupling the outflow and disk which is
responsible for extracting the energy and angular momentum from the disk needed to drive
the outflow. Just above the disk surface, the outflowing gas contains essentially the same
angular momentum that it had in the disk, and so its removal does not change the angu-
lar momentum per unit mass of the remaining disk material. The magnetic field produces a
torque on the disk as it carries away angular momentum; the angular momentum flux carried
away by the wind can be evaluated at the base of the flow as

d jw
dt

= ρ◦vpod AolBo . (10.56)

Suppose now that a magnetic flow tube spans an annular area corresponding to a radial range
on the disk of d R at R◦. In steady state, the flow cannot extract more angular momentum
than corresponds to the accretion rate through the disk. Away from the inner disk edge, the
angular momentum lost as material accretes through dR at R◦ is

d jacc

dt
= Ṁ

d

d R
�K R2d R = 1

2
Ṁ�◦ R2◦

d R

R◦
. (10.57)

If the angular momentum carried away by the wind flux tube spanning dR is exactly equal
to the angular momentum transport needed for accretion, the energy carried away by the
wind is

ėw = �◦lBoṁw = 1

2

G M∗Ṁ

R◦
d R

R◦
. (10.58)

Therefore, a wind which removes all of the angular momentum needed for disk accretion
carries off all of the local accretion energy as well. Whether this is all of the total accretion
energy depends upon whether there is a central torque which does work on the outer disk
annuli (§7.3). In the absence of a central torque, making the wind carry away all of the
angular momentum results in a non-luminous disk.

An analysis of the solution at large distances is needed to derive the collimation of the flow
and the precise asymptotic flow speed. However, a crude estimate of the terminal velocity
can be made using the Bernoulli equation (10.35) and the assumptions that most of the
angular momentum of the flow is initially carried by the magnetic field, and that the angular
momentum asymptotically carried by the magnetic field is negligible; then

v2∞
2

∼ −G M∗
2R◦

+ �◦lBo ∼ −G M∗
2R◦

+ �2◦ R2
A . (10.59)

Thus the terminal velocity of the flow is typically of the order of the azimuthal velocity at
the Alfvén point.
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10.9 Applications of MHD disk wind theory
Following the initial self-similar disk wind models investigated for active galac-

tic nuclei by Blandford and Payne (1982), magnetocentrifugal disk wind models for
pre-main-sequence objects were constructed by Pudritz and Norman (1983, 1986), Lovelace
et al. (1987), Königl (1989), Pelletier and Pudritz (1992), Wardle and Königl (1993), Safier
(1993), Li (1995), Ferreira and Pelletier (1995), Paatz and Camenzind (1996), Bogovalov
and Tsinganos (1999), and Ferreira and Casse (2004), among others. Subsequently, numer-
ical time-dependent simulations have been undertaken (Ouyed & Pudritz 1997a,b, 1999;
Krasnopolsky et al. 1999, 2003; Ouyed et al. 2003; Kudoh et al. 2003; Anderson et al. 2005).
These models assume that the wind arises from a significant range of radii in the disk, and are
therefore termed “disk winds”. An extreme limit of the disk wind, where only the innermost
edge of the disk contributes to the mass loss, has been developed by Shu and collaborators
(Shu et al. 1994; Najita & Shu 1994), and is called the “X-wind” (Figure 10.11; §10.10).

A variety of magnetocentrifugal wind models can account for the cold, collimated winds
of YSOs (see discussion in the reviews of Shang et al. 2007 and Pudritz et al. 2007). As
discussed at the end of §10.5, the outflows of T Tauri stars and FU Ori objects represent a
significant energy loss compared with that released by accretion. With the appropriate open
magnetic field geometry, the wind can tap into a large fraction of the energy released by disk
accretion (equation (10.59)). The winds cannot, in general, account for all of the angular
momentum transport, because the disk radiation losses due to accretion energy release are
observed in FU Ori objects and in the most rapidly accreting T Tauri stars. It is more plau-
sible to think of accretion energy release driving mass loss, rather than mass loss driving
accretion, which would be the case if all the angular momentum were being extracted in the
outflow.

Recent spatially resolved kinematics of jets using HST have provided new tests of the pre-
dictions of wind models. An example of this is high spatial resolution (∼0.1 arcsec, ∼14 AU
at the distance of Taurus) imaging of the DG Tau jet. As shown in Figure 10.12, there is
some evidence that the higher-velocity outflow is more confined toward the jet axis, with the
outer jet exhibiting slower motions. This type of behavior is a natural consequence of a disk
wind model (Figure 10.11), where outer jet field lines connect with the disk at larger radii,
where the Keplerian rotation is smaller. The X-wind model (Figure 10.11) also may produce

Fig. 10.11. Schematic accretion disk–wind–stellar magnetosphere structure. Magnetic fields
which penetrate the disk inside the co-rotation radius (where the angular velocity of the
rotating disk matches the angular velocity of the star) allow material to accrete (gray curve);
fields penetrating the disk outside of co-rotation help provide a spindown torque (solid dark
curve). In the X-wind model, the wind arises from the disk just at co-rotation (arrows), while
disk wind models involve mass loss from a wider range of disk radii (dashed arrows).
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Fig. 10.12. Spectral imaging of the jet of DG Tau in [O I], derived from offset long-slit
images (with the slit parallel to the jet axis) using the STIS spectrograph on HST. The four
images correspond to adding flux in the velocity bins, from low to high velocity, +73 to
−57 km s−1, −58 to −188 km s−1, −189 to −319 km s−1, and −320 to −450 km s−1.
The jet is narrower in the higher velocity bins, suggesting a decrease of outflow velocity
with decreasing cylindrical distance, as would be expected generally for a disk wind. From
Bacciotti et al. (2000).

similar results, depending upon how much mass is “loaded” onto field lines; larger densities
lead to slower velocities (e.g., Shu et al. 1995).

Careful analysis of the jet of DG Tau and a few other objects suggests that rotation may
have been detected (Bacciotti et al. 2002; Ray et al. 2007, and references therein), which of
course is a fundamental prediction of the magnetocentrifugal acceleration model. To explore
the implications of the detection of rotation quantitatively, we follow the analysis of Ander-
son et al. (2003). There are two constants of the motion along a streamline. One is the
specific angular momentum l (equation (10.26)), which can be reformulated using equation
(10.22) and setting R� = vφ ,

l = R

(
v2
φ − Bp

Bφ

4π
ρvp

)
. (10.60)

The other constant of the motion is the specific energy E (equation (10.35)), which can be
written using a result in equation (10.36)) as

E = v2

2
− � +

(
�◦ RBφBp

4πρvp

)
, (10.61)

where � is the gravitational potential and the thermal energy term has been ignored,
assuming cold flow. Then a new quantity

J ≡ E − �◦l = v2
p + v2

φ

2
+ � − �◦ Rvφ (10.62)

can be constructed which is also conserved along a field line.
Next, evaluate equation (10.62) at two locations. First, at the disk launching surface, one

can assume that the wind has negligible poloidal velocity vp and is co-rotating with the disk
at the local Keplerian velocity
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vK,o =
(

G M∗
R◦

)1/2

= �◦ R◦vφ,◦ . (10.63)

Thus, J = −3v2
K,o/2. Next, evaluate J at large distances, where the gravitational potential

is negligible; then

J = (v2
p,∞ + v2

φ,∞)

2 − R∞ vφ,∞ �◦
. (10.64)

Using the relation vK,o = (G M∗�◦)1/3, equating the values of J results in

�◦ R∞vφ,∞ − 3

2
(G M∗)2/3�2/3◦ − v2

p,∞ + v2
φ,∞

2
≈ 0 . (10.65)

While this equation is a cubic in �
1/3◦ and can be solved by standard techniques, here we

make the approximation that the wind kinetic energy at large distances is considerably larger
than the gravitational binding energy at the launch point. Also, typically vφ,∞ � vp,∞,
resulting in a final result

�◦ ≈ v2
p,∞/2

vφ,∞ R∞
. (10.66)

Therefore, if the jet poloidal and toroidal velocities can be measured at distances of order
102 AU (thus far out of the gravitational potential well of the star), and the width of the jet
R∞ can be measured, the angular velocity at the launch point can be determined. In turn, the
initial launch radius can be found from �◦ = (G M∗/R3◦)1/2 with an estimate of the stellar
mass.

The physical basis of equation (10.66) can be understood as follows. Neglecting the work
done against gravity, the final energy of the gas v2

p,∞/2 is provided by the work done by the
rotating field on the gas; this is �◦l. We can approximate the specific angular momentum
(see equation (10.32)) by l ≈ vφ,A RA ≈ vφ,∞ R∞, where the final estimate arises from
assuming that the gas roughly conserves its angular momentum beyond the Alfvén radius
RA. Rearranging terms then yields equation (10.66).

Using a slightly modified version of the relation (10.66) derived from a variety of numer-
ical simulations, Anderson et al. (2003) estimated that the low velocity component of the
DG Tau jet arises from a region on the disk from ∼0.3−4 AU, consistent with the original
estimate of Bacciotti et al. (2002). A more detailed observation using ultraviolet emission
lines by Coffey et al. (2007) suggested that the high velocity component in DG Tau arises
from radii ∼0.2−0.5 AU, while the low velocity jet arises from radii <2 AU. All of these
estimates are roughly consistent with the suggestion of Hartigan et al. (1995) that the low
velocity component of T Tauri stars in general could arise from regions >∼1 AU, based on
interpreting the velocity width in terms of arising near the disk in Keplerian rotation.

One concern about these estimates is that the launch radii are considerably larger than
inner disk radii <∼10 R� ∼ 0.05 AU; winds from such large radii cannot tap into the inner
regions, which have the largest release of gravitational potential energy (§10.5); this makes
it difficult to understand the large fraction of accretion energy carried off by jets. The
analysis assumes the presence of no flow asymmetries which could masquerade as rotation,
an assumption which may be questionable given the probable presence of complex internal
shocks needed to heat the radiating jet gas.
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It now seems likely that disk winds/X winds with wider opening angles than jets can
account for molecular outflows. Matzner and McKee (1999) argued on general grounds that
both X-winds and disk winds will exhibit a ram pressure force as a function of cylindrical
radius R roughly proportional to Pw = ρwv2

w ∝ R−2. Matzner and McKee showed that
this kind of wind pressure would sweep up ambient material in a shell with a mass–velocity
relation consistent with observations of molecular outflows. Note that with such a flow, the
integrated outflow momentum

∫
dr 2πr Pw ∝ ln r can contain a significant contribution

from large off-axis distances, while the kinetic energy flux (1/2)ρwv3
w will be dominated by

near-axis regions for flows with typically higher central velocities. The wider-angle outflow
helps to reduce or eliminate the kink or sausage instabilities to which narrow jets are subject
(Spruit 1996; Anderson et al. 2006) by surrounding the jet with material and magnetic fields.

A more general question is whether the required magnetic field strengths are plausible,
especially given that the MRI is suppressed when the field is strong (§7.5). The required
field strengths can be estimated from the Alfvén point (surface), where both rotational (and
poloidal) velocities must be an appreciable fraction of the observed wind terminal velocity.
Thus, from the relation (10.30),

B2
A ∼ 4πρAv2

A , (10.67)

we estimate

BA ∼ ( Ṁv∞)1/2 R−1
A ∼ 200 ( Ṁ−5 v300)

1/2
(

R

10
AU

)−1

G , (10.68)

where the mass loss rate Ṁ−5 is measured in units of 10−5 M� yr−1 and the wind velocity
v is measured in units of 300 km s−1.

For MHD disk winds to explain FU Ori outflows, the magnetic fields in the wind accel-
eration region must be of order 102 gauss. Detailed models suggest that equipartition fields
in the midplane of FU Ori’s inner disk might be more like Beq ∼ 104 G; thus, it appears
reasonable that field weak enough for the MRI are still strong enough to drive the observed
outflows. The situation is less clear for T Tauri stars if the magnetically coupled winds arise
from only an active layer rather than the entire disk.

It seems likely, given the presence of MRI turbulence, that the disk field geometry is com-
plex, with both closed and open magnetic field lines at the disk surface, such as present
in the Sun, and like the picture of disk fields originally sketched by Blandford and Payne
(1982). This complex geometry may help produce the time-variability of mass loss or ejec-
tion velocities implied by widely spaced shocks in extended jets (see Bally et al. 2007, and
references therein).

10.10 Models of magnetospheric accretion
Magnetospheric models were originally developed to investigate disk accretion

onto magnetized neutron stars (Ghosh & Lamb 1979) and have also been applied to the
highly magnetized white dwarf AM Her systems (see Frank et al. 1992 for a discussion).
As discussed in §8.4, application of the magnetospheric model was originally motivated by
a desire to explain the slow rotation of accreting low-mass stars, CTTS, vs. the somewhat
faster-rotating WTTS, by coupling the star to the disk. Early results showing that CTTS
rotate faster than WTTS (Edwards et al. 1993b; Bouvier et al. 1993) have been reinforced
by later studies (Herbst et al. 2002; Lamm et al. 2004, 2005; Dahm & Simon 2005; Rebull
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et al. 2006), although there seems to be considerable overlap in rotation periods between
WTTS and CTTS.

The way in which the stellar magnetic field interacts with the accretion disk is very com-
plicated and not well understood. Various treatments of the problem have been given by
Cameron and Campbell (1993), Ghosh (1995), Ostriker and Shu (1995), Lovelace et al.
(1995), Armitage and Clarke (1996), Goodson and Winglee (1999), Matt et al. (2002), Matt
and Pudritz (2004), and Zweibel et al. (2006).

The basic idea behind the magnetospheric truncation of the disk can be seen most easily
in the context of spherical (free-fall) accretion. Suppose that the magnetic pressure balances
the ram pressure of accretion,

B2 = 4πρv2 = Ṁ
vin

r2
, (10.69)

where vin is the infall velocity. In such a situation, the (sufficiently ionized) accreting gas
cannot fall in freely; its motion must be restricted or even halted by the magnetic force. If the
infall velocity vin is set equal to its maximum value, the free-fall velocity from infinity, and
the stellar magnetic field is a dipole, so that B ∝ r−3, then the radius at which the magnetic
field is strong enough to hold off the infall is roughly

rT

R∗
= B4/7

o R5/7∗
Ṁ2/7(2G M)1/7

= 7.2B4/7
3 Ṁ−2/7

−8 M−1/7
1/2 R5/7

2 , (10.70)

where B3 is the surface magnetic field in kG, Ṁ−7 is the mass accretion rate in
10−7 M� yr−1, M1/2 is the central mass in units of 0.5 M�, and R2 is the stellar radius
in 2 R�. The argument is modified for disk accretion. The true truncation radius rT is in
general smaller than given above, because disk ram pressures (dominated by the azimuthal
motion) generally are larger than free-fall ram pressures for the same mass accretion rate; the
circular velocity is comparable to the free-fall velocity, whereas the disk radial velocities are
very small and so the disk densities are large. Nevertheless, equation (10.70) illustrates the
basic parameter dependence of the problem; the numerical factor can be modified suitably
for the disk accretion case (e.g., Wang 1996).

Measurements of photospheric magnetic fields from line broadening indicate surface
magnetic fields of order 2–3 kG (Johns-Krull et al. 1999b; Valenti & Johns-Krull 2004;
Johns-Krull 2007). Measurements of emission lines like He I λ5876 and Ca II λ8498 yield
estimates at the level of several kG (Johns-Krull et al. 1999a; Valenti & Johns-Krull 2004;
Symington et al. 2005; Yang et al. 2007). Dipole fields of this strength would be able to
disrupt T Tauri disks at rather larger radii (equation 10.70). However, measurements of net
circular polarization yield much smaller estimates of global average fields, providing either
upper limits or values of order 100 G (e.g., Daou et al. 2006; Yang et al. 2007). The polariza-
tion results imply that the line broadening is due to kG fields, but with comparable amounts
of north and south poles on a given hemisphere; in turn this indicates that much of the field is
in higher order moments than dipolar. The observation of polarization in emission lines does
not contradict this inference, as these lines probably arise near the accretion shocks (Beris-
tain et al. 2001) which cover small areas (typically of order a percent; Calvet & Gullbring
1998; Gullbring et al. 2000; Valenti & Johns-Krull 2004). As the lowest-order field – the
dipolar field – is the component that survives to the largest distances, the polarization results
suggest that the field strengths used in equation (10.70) should be much smaller than a kG.
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The discussion of MHD flows in the previous section showed that magnetic fields can
transport angular momentum efficiently. A basic parameter of the disk accretion problem is
the co-rotation radius, where the Keplerian angular velocity of the disk equals the rotational
angular velocity of the star (Figure 10.11). Consider the Bernoulli constant for strong radial
magnetic fields (10.37). Taking the radial derivative of this energy constant near the disk
truncation radius yields

vp
dvp

d R
= −G M∗

R2
T

+ RT�2◦ = −G M∗
R2

T

(1 − f 2) , (10.71)

where

f = �◦
�T

=
(

RT

Rco

)3/2

, (10.72)

and Rco is the co-rotation disk radius at which the Keplerian angular velocity matches that
of the star. It can be seen that if f > 1, i.e., RT > Rco, the sign of the acceleration is positive
and the gas will move outward, while for f < 1 material moves inward. Thus, magnetic field
lines connecting to the disk outside of co-rotation will tend to transfer angular momentum
from the star to the disk, while field lines connecting to the disk inside of co-rotation will
transfer angular momentum from disk material to the star, allowing the matter to accrete.

Observed emission line profile asymmetries in CTTS provide strong evidence for high-
velocity accretion flows, which are not consistent with slow radial infall in disks (§8.4).
Temperatures of order 8000 K are needed to explain the Balmer line emission, and so we
can assume ideal MHD (i.e., the gas is coupled strongly to the field lines). Moreover, the
magnetic field must be strong enough to disrupt the dense disk, so it is reasonable to assume
the limit where the magnetic field is sufficiently strong to enforce co-rotation of the gas
in the magnetosphere and neglect gas pressure forces. Then the Bernoulli constant can be
simply evaluated to find the velocity at radial distance r along a field line which meets the
disk near RT,

v2
P � 2G M∗

r

(
1 − r

RT

)
+ �2◦(R2 − R2

T) ; (10.73)

if RT is near the co-rotation radius Rco, then

v2
P � 2G M∗

r

(
1 − r

RT

)
+ G M∗

RT

(
R2

R2
T

− 1

)
. (10.74)

Most accreting CTTS are slowly rotating, i.e., Rco � R∗, and so for a first approximation
one can ignore the azimuthal velocity, in which case the poloidal velocity is simply that of
free-fall (including rotation for slow rotators makes little qualitative difference; Muzerolle
et al. 2001). If the poloidal structure of the magnetic field is known, then the velocity vectors
can also be determined, as well as the density along streamlines from the mass conservation
equation.

Using this simple free-fall model, and assuming a non-rotating dipolar magnetosphere,
Hartmann et al. (1994a) and Muzerolle et al. (1998a, 2001) found that it was possible to
produce line profiles that look remarkably like observations. The principal uncertainty in
the models is the temperature structure; the above calculations assume a simple smooth
temperature distribution that is nearly constant over the magnetosphere, but drops near the
disk. The infall asymmetry in the Balmer emission lines in both the model and observations
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Fig. 10.13. Hα, Hβ, Hγ , and Na I line profiles of the accreting T Tauri stars BP Tau (solid
curves) compared with line profiles calculated for a simple magnetospheric infall model.
The results show that in the absence of strong wind absorption, the line profiles and asym-
metries can be well reproduced by magnetospheric infall. This calculation also demonstrates
that differing species can yield strong or weak indications of redshifted absorption using
the same velocity field, depending upon excitation conditions and whether the infalling
material is aligned in front of the accretion shock along the line of sight. From Muzerolle
et al. (2001).

of BP Tau is modest (Figure 10.13), while the redshifted absorption is much more prominent
in Na I, showing the importance of detailed radiative transfer and statistical equilibrium
calculations.

To explain the observed redshifted absorption, and the velocity widths of the underly-
ing emission, it is necessary to invoke infall from R >∼ 1.5R∗; this is a conservative lower
limit which ignores projection effects that make the line-of-sight velocities smaller than the
absolute motions. It is very difficult to imagine that any standard boundary layer can form
between the disk and star given such large magnetospheric radii, no matter what detailed
geometrical form the stellar magnetic fields exhibit. Equation (10.70) indicates that dipolar
field strengths of order 100 G would be able to hold off the disk to about 1.9R∗ for fidu-
cial parameters; thus, limits on global fields from polarization do not yet pose a significant
problem for understanding T Tauri line profiles.

In this picture, most of the permitted-line emission of T Tauri stars comes from dense
infalling material in the stellar magnetosphere, while the wind arises from outside the mag-
netosphere (Figure 8.11). Since the emission comes from the magnetosphere, the wind need
not be very optically thick in the Balmer lines. In this way Hα, the Balmer line with the
largest opacity, can exhibit detectable absorption while the higher Balmer series lines, with
much smaller optical depths, can remain relatively transparent, explaining the absence of
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blueshifted absorption in the latter (Edwards et al. 1994). These results are consistent with
the forbidden-line analyses (§10.5) which suggest that T Tauri stars generally have winds
with mass loss rates ∼10−9 M� yr−1, lower than typical accretion rates ∼10−8 M� yr−1

(§8.5), which (along with small volume filling factors) produce the high densities of the
infalling magnetospheric gas.

Another possible indication of magnetospheric accretion is the presence of narrow com-
ponents in addition to broad components in the emission lines (Hamann & Persson 1992;
Batalha et al. 1996; Figure 10.14). Muzerolle et al. (1998b) suggested that this emission
may in part be chromospheric, but might also naturally arise from the post-shock accreting
gas – one would expect at least some line emission from this region. Detailed models are yet
to be calculated to compare with observation.

While the paradigm of interaction between the stellar magnetosphere and disk is secure,
the detailed field geometry is far from clear (e.g., von Rekowski et al. 2004). Given the
rotational modulation seen in light curves, the stellar field cannot be axisymmetric; but
simple non-aligned dipole structures tend to produce highly-collimated funnel flows which
would predict much stronger rotational modulation of line profiles than is seen (e.g., Long
et al. 2007). More broadly, both time-variations and non-axisymmetry almost certainly mean
that the coupling region between star and disk cannot always be exactly at co-rotation –
and some models demand coupling over a wide region in the disk – in which case mag-
netic field lines must tend to become twisted. Such twists rapidly lead to a “ballooning
out” of closed field lines, with eventual opening up of field lines and possible ejection of
mass, with reconnection following (van Ballegooijen 1994; Aly & Kuijpers 1990). The
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Fig. 10.15. Schematic model of individual stellar magnetic flux tubes connecting with the
disk. Field lines (gray) connecting interior to co-rotation (dashed circle) allow accretion onto
the star, producing small hot spots. Other field lines (light solid curves) connect to the disk
exterior to co-rotation and can spin down the star. Most field lines probably eventually twist
up and bulge outward (dark curve), possibly ejecting material (Goodson & Winglee 1999).

real structures of T Tauri magnetospheres may need to be considered as a series of indi-
vidual loops, some of which connect interior to co-rotation, slowing down disk gas from
Keplerian rotation and thus permitting accretion; other field lines attach to the disk outside
of co-rotation, transferring angular momentum back to the disk; and almost all field lines
eventually twist up and balloon outward (Figure 10.15). One advantage of a picture of many
small accreting flux tubes is that it becomes easier to explain the very small covering factors
of hot continuum regions, <∼1% (Calvet & Gullbring 1998; Gullbring et al. 2000).

The most uncertain aspect of the magnetospheric picture is the transfer of angular momen-
tum. As matter is being accreted, so is angular momentum; thus, to explain the (generally)
slower rotation of the CTTS, there must be some angular momentum transfer outward, either
back to the disk or to a magnetically coupled wind. Ghosh and Lamb (1979) accomplished
this by postulating a region of finite width through which the disk interacts with the mag-
netic field, ranging from inside to outside of co-rotation, assuming that the magnetic fields
pass through the disk in a steady fashion, being dragged to some extent. That the necessary
turbulence or other diffusion of field must occur has never been demonstrated. Shu et al.
(1994) tried to avoid the wrapping-up problem by postulating that the interaction of the
stellar magnetic field with the disk occurs only at a very small region right at co-rotation;
however, as indicated above this seems unlikely given time-dependent accretion, magnetic
fields, and non-aligned, complex field structure.

The current understanding of angular momentum transfer and stellar spindown is unset-
tled, with some simulations suggesting that steady magnetospheric braking can occur (Long
et al. 2007), or that braking occurs in bursts when field lines open up (Goodson & Winglee
1999; Matt et al. 2002), or that disk braking is insufficient to spin down T Tauri stars because
of the tendency of the field lines to open up (Matt & Pudritz 2004). In addition, the low esti-
mates of global dipolar fields suggest truncation radii well inside of co-rotation, making
disk spindown less plausible, though still possible (Johns-Krull 2007). Spindown generally
requires magnetic fields tied to the star, leading to suggestions that stellar mass loss is in fact
the angular momentum loss mechanism. The problem is that stellar-generated winds do not
seem to be effective in producing spindown on timescales less than ∼100 Myr; otherwise,
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one could not explain the rapidly rotating members of the Pleiades and α Per clusters as
the result of contraction to the main sequence (e.g., Stauffer et al. 1989). This has lead to
suggestions of stellar winds in T Tauri stars that are accretion-powered by some unknown
mechanism (Matt & Pudritz 2005; Edwards et al. 2006). There is evidence for modest spin-
down from the Class I protostellar phase to the T Tauri phase (Covey et al. 2005); but it
seems clear that most of the angular momentum loss or control of stellar rotation must occur
during the protostellar phase, in which physical conditions may be much different than those
of the T Tauri phase, perhaps resulting in differing field geometries and spindown effects.



11

Disk accretion and early stellar
evolution

The general outlines of pre-main-sequence evolution have been understood for a long time,
though many important details remain uncertain. Young low-mass stars initially cannot sus-
tain nuclear fusion in their cores; they must therefore contract gravitationally, generating
potential energy which ultimately supplies their radiative losses. This contraction occurs on
the Kelvin–Helmholtz timescale,

tKH ∼ G M2∗
(R∗L∗)

, (11.1)

where L∗ is the stellar luminosity and G M2∗/R∗ is roughly the internal (kinetic plus gravi-
tational potential) energy of a star of mass M∗ and radius R∗. Stellar luminosities generally
are proportional to a high power of stellar mass (as, e.g., on the hydrogen-burning main
sequence); thus, low-mass, low-luminosity stars tend to have extended pre-main-sequence
lifetimes, because their Kelvin times are longer than the timescales for the collapse of
their parent clouds. In contrast, high-luminosity massive stars exhibit little if any pre-main-
sequence evolution because their Kelvin–Helmholtz timescales are as short or shorter than
the duration of infall from their natal clouds.

The gravitational contraction of low-mass stars can be slowed or even halted for a mod-
est period of time by deuterium fusion. This slowing of evolution during deuterium burning
makes it more likely that low-mass protostars will be observed in this phase, whose loca-
tion in the HR diagram has been called the stellar “birthline” (Stahler 1983, 1988). While
the birthline region appears to be relevant for low-mass pre-main-sequence stars, it is diffi-
cult to define a birthline for higher-mass protostars because deuterium fusion cannot be an
important energy source for high-luminosity protostars.

One of the principal uses of pre-main-sequence evolutionary theory is to estimate the
ages of young stars, providing the most reliable “clocks” we have for determining the
timescales of star formation and disk evolution. Systematic errors remain in absolute ages,
mostly due to uncertainties in stellar masses for low-mass stars and birthline positions for
higher-mass stars. Direct estimates of masses from disk rotation and binary companions are
now beginning to make significant improvements in T Tauri age estimates, with important
consequences for understanding disk evolution.

11.1 Pre-main-sequence stellar evolutionary tracks
If a low-mass star is much larger than it would be on the hydrogen-burning main

sequence, its central temperature will not be sufficiently high to fuse hydrogen in its interior.
Under these circumstances, the only energy available to supply the stellar luminosity is the

247



248 Disk accretion and early stellar evolution

internal thermal energy (excepting D fusion, treated in §11.3). As energy is lost to space, the
internal energy must decrease, and so the star must contract; this contraction continues until
the central temperature rises sufficiently that hydrogen fusion begins.

Hayashi et al. (1962) and Hayashi (1966) established the modern foundation of pre-main-
sequence evolution by showing that low-mass stars above the main sequence are likely to be
nearly completely convective (see Shu (1991) for an overview). The interiors of convective
stars are found to be nearly adiabatic over most of their mass, because the convection is so
efficient at energy transport (Schwarzschild 1958). The stellar interior in this case can be
described by a polytropic equation,

Pρ−γ = K = constant = Pρ−(1+1/n) . (11.2)

A convective star composed of a perfect gas has γ = 5/3 and a polytropic index, n =
1/(γ − 1) = 3/2 (Chandrasekhar 1967).

The equation of hydrostatic equilibrium (3.13) can be integrated using a polytropic
approximation to construct simple models of stellar structure. The qualitative results can
be developed from simple arguments. It is clear that polytropes of a given index will have
similar internal structures, and thus scaling laws can be developed from general principles.
For the n = 3/2 polytrope in particular, P = K T 5/2. From dimensional analysis we can
find that the central pressure must scale as Pc ∝ G M2∗ R−4∗ and the central temperature
(proportional to c2

s ) must scale as Tc ∝ G M∗/R∗; thus,

K ∝ M−1/2∗ R−3/2∗ . (11.3)

To find the radius of a star of a given mass requires the specification of the constant K , which
cannot be found from analyzing only convective energy transport (Schwarzschild 1958). The
radiative atmosphere provides the outer boundary condition necessary to specify K ; it must
be joined to the essentially adiabatic interior. To see this in its simplest form, consider the
equation of hydrostatic equilibrium,

1

ρ

d P

dr
= −G M∗

R2∗
= −g , (11.4)

where we have implicitly assumed that the atmosphere is thin and so the gravitational
acceleration g is constant. We then evaluate this equation at the stellar photosphere, which
we approximate as a layer of Rosseland mean optical depth τR = ∫

kRρdz∼2/3 (see
Appendix 3), and having the effective temperature Teff of the star (such that the luminos-
ity is L∗ = 4π R2∗σ T 4

eff). Ignoring the temperature and density variation of the Rosseland
mean opacity kR enables us to integrate the equation of hydrostatic equilibrium to find the
pressure at the photosphere,

Peff ∼ 2

3

g

kR(Peff, Teff)
. (11.5)

For illustrative purposes, take kR ∝ ρT a ; then Peff ∝ R∗T −a
eff . Equating this pressure to the

pressure of the internal adiabatic (polytropic) solution results in

Teff ∝ R2.5/(2.5+a)∗ M0.5/(2.5+a)∗ (11.6)

and

L∗ ∝ R(15+2a)/(2.5+a)∗ M2/(2.5+a)∗ . (11.7)
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For stars with effective temperatures < 5000 K or so, the opacity is a very steep function of
temperature (i.e., a ∼ 10); this is the same parameter regime where disk thermal instabilities
can develop due to this steep dependence on T (§9.6). Thus, equations (11.6) and (11.7)
indicate that as the star contracts to compensate for the energy lost through radiation into
space, the stellar luminosity decreases much faster than the effective temperature decrease.
This means that fully convective pre-main-sequence stars descend nearly vertically in the
HR diagram (Figure 1.3).

Detailed solutions for these so-called “Hayashi tracks” are unfortunately complicated by
the need to take into account molecular opacities with millions of spectral lines. In addition,
the Rosseland mean is strictly only appropriate at large optical depth, where the diffusion
approximation holds (Appendix 3); it is not really appropriate to use in outer, more optically
thin layers. Finally, the treatment of the energy transport by convection is problematic; the
efficiency of convection cannot change abruptly from full to zero transport at a convective–
radiative interface, but instead must vary smoothly from the adiabatic limit to the outer,
radiative condition. While opacities can in principle be dealt with by increasingly sophis-
ticated numerical transfer calculations, the convective transition is usually done through a
“mixing length” treatment (e.g., Mazzitelli 1989) which is heuristic rather than predictive in
nature.

As shown in Figure 1.3, the vertical convective tracks are displaced to cooler tempera-
tures as the stellar mass decreases. Thus, the basic uncertainties in the theory translate into
uncertainties in the mass of a star with a given luminosity and effective temperature. Empir-
ical calibrations of theoretical evolutionary tracks can be made if the stellar mass can be
estimated independently (§11.5).

We next look at the properties of the convective polytrope in more detail. Returning to the
equation of hydrostatic equilibrium (3.13), we have

1

ρ

d P

dr
= −G Mr

r2
= −d�

dr
, (11.8)

where Mr is the mass interior to radius r and � is the gravitational potential. With the
polytropic assumption (11.2), one can integrate equation (11.8) with radius to obtain the
ratio of pressure to density at radius r ,

(n + 1)
P

ρ
= �(R∗) − �(r) . (11.9)

The total gravitational potential energy of the star is

W = −G
∫ R∗

0

Mr d Mr

r
= 1

2

∫ R∗

0
�d Mr , (11.10)

where the final right-hand result can be found by integrating by parts twice (Chandrasekhar
1967). Substituting, one finds

W = 1

2

∫ R∗

0
d Mr

[
−(n + 1)

P

ρ
+ �(R∗)

]
= −n + 1

2

∫ R∗

0
PdV − 1

2

G M2∗
R∗

, (11.11)

where V is the volume and d Mr = 4πr2ρdr .
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From the virial theorem for an unmagnetized, non-rotating equilibrium configura-
tion (3.5), ∫

dV 3P =
∫

dVρr∇� =
∫

d Mr G Mr

r
= −W . (11.12)

Combining these equations yields

W = − 3

(5 − n)

G M2∗
R∗

= −6

7

G M2∗
R∗

(11.13)

for n = 3/2.
The internal thermal energy of the star is

U =
∫ R∗

0
cV T d Mr = 1

γ − 1

∫ R∗

0

P

ρ
d Mr = 1

γ − 1

∫ R∗

0
P dV , (11.14)

where cV is the specific heat at constant volume (Chandrasekhar 1967). Then, for a
perfect gas,

U = − W

3(γ − 1)
= −W

2
, (11.15)

which is the result required by the virial theorem,

2U + W = 0 . (11.16)

Finally, we have the total energy of the polytropic star:

E = U + W = 3

7

G M2∗
R∗

− 6

7

G M2∗
R∗

= −3

7

G M2∗
R∗

. (11.17)

If the (pre-main-sequence) star does not have an internal fusion energy source, the energy
radiated into space (the photospheric luminosity L∗) must cause a corresponding change in
the energy of the star:

L∗ = − d

dt
E = − d

dt

3

7

G M2∗
R∗

. (11.18)

The negative sign enters because a decrease in the total stellar energy results in a positive
luminosity. At fixed stellar mass M∗, the radiation loss L∗ will cause the star to contract,
releasing gravitational potential energy to replace the energy lost from the stellar surface.
By the virial equilibrium equation (11.16), half of this gravitational energy is converted into
thermal energy which is needed to replace the surface energy losses to maintain hydrostatic
support.

As discussed above, we can approximate Hayashi track evolution by setting the effective
temperature to be roughly constant,

Teff =
(

L∗
4πσ R2∗

)1/4

≈ constant. (11.19)

For times t long after some (arbitrary) starting time, when the radius was much larger than
the current radius at time t , combining the constant effective temperature approximation
with (11.18) results in

L∗ = L◦
(

3t

τkh

)−2/3

, (11.20)
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where

τkh = 3

7

G M2∗
R◦L◦

(11.21)

is the Kelvin–Helmholtz timescale and

t∞ = τkh

3
(11.22)

is the age for contraction from infinite radius; L◦ is the luminosity when the star has a
reference radius R◦. Thus, as the star ages, it contracts and becomes fainter. The rate of
decrease in the stellar luminosity (and in the stellar radius) slows with increasing age.

The simple estimate (11.20) does a reasonably good job of explaining the rate of contrac-
tion shown in Figure 1.3. As an example, for parameters M∗ = 0.8 M�, R∗ = 2 R�, and
L∗ = 1 L�, the Kelvin–Helmholtz time is τkh = 4.3 × 106 yr, so that the Hayashi track age
should be about t ∼ 1.4 × 106 yr, in reasonable agreement with the tracks.

This simple scaling of contraction rates predicts that stars differing by a factor of ten in
age should have luminosities differing by � log L ∼ 2/3, approximately what is found in
detailed calculations. The principal departure from the power-law decay of the luminosity
with time occurs for low-mass stars between the ages of ∼105 and ∼3 × 105 yr, and is
mostly due to deuterium fusion energy release when the central stellar temperature reaches
∼106 K (§11.3). This nuclear energy release slows the stellar contraction, because the star
is no longer supplying the energy lost in surface radiation from its internal store of thermal
energy; this causes the isochrones to approach each other in Figure 1.2. Deuterium fusion
represents a modest energy supply and therefore cannot halt the overall contraction for long.
Once the deuterium is completely fused, gravitational contraction resumes unhindered until
the star reaches the hydrogen-fusion main sequence.

For stars with masses >∼0.8 M�, contraction at nearly constant effective temperature even-
tually stops when the star develops a radiative core. We can understand this qualitatively
using the diffusion equation (Appendix 3) and the equation of hydrostatic equilibrium. The
radiative gradient is

∇R = d ln T

d ln P
= 3kR P

64Gπσ T 4

L

M
, (11.23)

where quantities are evaluated at a local point r . Convection stops when ∇R < 0.4
(Schwarzschild 1958). A crude estimate is given by ∇R ≈ kR P/g; if we then adopt a
Kramer’s law opacity kR ∝ PT −2.5, then ∇R ≈ T 1/2/g. Since the internal temperatures in a
similar polytropic structure for a constant stellar mass will scale as T ∝ R−1∗ and g ∝ R−2,
the radiative gradient becomes smaller as the star contracts, so that central convection will
eventually stop (unless hydrogen fusion on the main sequence occurs first, or degeneracy
pressure comes into play, halting contraction).

A star that is no longer fully convective then proceeds to the main sequence along
nearly horizontal paths in the HR diagram (Henyey et al. 1955; Figure 1.3). This change
occurs because radiative stars of uniform gaseous composition exhibit a well-defined rela-
tion between mass and luminosity (Schwarzschild 1958). In a radiative star the transport
of energy can be described by the diffusion equation (Appendix 3) through the interior.
Therefore, using a rough scaling argument,

1

kRρ

dT 4

dr
∼ 1

< kRρ >

T 4

R∗
∝ L∗

R2∗
. (11.24)



252 Disk accretion and early stellar evolution

If we set the mean interior temperature T ∝ M∗/R∗ (Chapter 2; also see equation (11.37)),
and take the mean density < ρ >∝ M∗/R3∗, then we arrive at a crude mass–luminosity
relationship

M3∗ < kR >−1∝ L∗ . (11.25)

For very high-mass stars, where electron scattering dominates, the mean opacity is nearly
constant, and L∗ ∝ M3∗ ; these stars contract to the main sequence at nearly constant lumi-
nosity. For intermediate-mass stars, using a Kramers’ opacity leads to L∗ ∝ M5.5∗ R−0.5∗ ;
thus, as the star contracts, its luminosity tends to increase (Figure 1.3).

11.2 Protostellar properties
It is reasonably clear that protostars cannot be formed with extremely large radii.

A hydrostatic core can only be formed when the star is (very) optically thick, so that it
cannot cool on a dynamical timescale and thus rapidly lose pressure support. Because the
gas opacity falls so rapidly with decreasing temperature, as discussed in the previous section,
pre-main-sequence stars cannot have very low effective temperatures – this is the famous
“Hayashi forbidden zone” on the upper right-hand side of the HR diagram. With a minimum
effective temperature, a protostar of large radius must have a large luminosity; therefore,
the Kelvin–Helmholtz contraction timescale becomes very short. The protostar will contract
extremely rapidly until its Kelvin timescale is comparable to if not longer than the infall
timescale; thus, the duration of infall helps set the initial protostellar radius.

The first numerical calculations of low-mass protostars formed by collapsing envelopes, in
particular those of Larson (1969a,b), indicated that envelopes which collapse on timescales
of 106 yr form protostars at positions roughly near the 106 yr isochrones of Hayashi tracks.
Although these results have been superseded by much more detailed calculations, it is
remarkable how close Larson’s results for initial stellar radii are to those of later, more
sophisticated calculations (e.g., Stahler et al. (1980a,b); see Shu (1991) for an historical
overview, and Boss (1995) for a more recent review).

We follow the argument of Stahler et al. (1980a) to illustrate the basic issues. Assume that
a hydrostatic core forms early on; the protostellar energy release at time t is then the integral
over time of the mass accretion energy release,∫ t

0
dt 4π R2

pσ T 4
p ∼

∫ t

0

G Mp Ṁ

Rp
, (11.26)

where the subscript p refers to the protostellar mass, radius, and effective temperature. The
approximation on the left-hand side assumes relatively free radiation into space, which is
plausible (see p. 253). For a constant accretion rate Ṁ , integration with time yields

< Rp > ∼
(

G M2
p

8πσ < Tp >4 t

)1/3

, (11.27)

where the angular brackets are time-averaged values. Now, compare this with a Hayashi
track calculation for the convective polytrope of the same mass (e.g., equation (11.18)),

4π R2
Hσ T 4

H = d

dt

3

7

G M2∗
R∗

, (11.28)
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where TH is the effective temperature for the correct outer boundary condition. Integrating
this equation with TH = constant yields

RH ∼
(

G M2
p

28πσ T 4
Ht

)1/3

, (11.29)

integrating from an infinite radius at t = 0. Dividing the two results for the same mass star
yields

< Rp >

RH
∼

(
7

2

T 4
H

< Tp >4

)1/3

. (11.30)

For the protostellar radius < Rp > to be much larger than the Hayashi track condition, the
accretion temperature would have to be � TH. However, because the gas opacity decreases
so rapidly with decreasing temperature for low-mass stars – the reason for the vertical tracks
in the HR diagram – < Tp > must generally be greater than or equal to TH, and thus we
do not expect the protostellar radius to be more than a factor of two or so larger than the
equivalent Hayashi track radius at a comparable “age” t . (Even for extremely low-mass
convective stars, it is difficult for the stellar effective temperature to be much lower than
∼2800 K, corresponding to the Hayashi “forbidden region” in the HR diagram; see Figure
1.4). This result also confirms the initial guess that the corresponding tKH cannot be much
shorter than the accretion timescale ∼M/Ṁ .

The above derivation in spherical collapse requires the assumption that the infalling enve-
lope does not trap too much of the accretion luminosity, and that dissociation and partial
ionization energies are not large. In the case of spherical accretion, Stahler et al. (1980a,b)
pointed out that the low gas opacities of infalling material make this a reasonable approx-
imation; the backwarming from the envelope arises from the more distant dust-destruction
radius, which limits the radiative trapping. The neglect of trapping becomes even more
robust in the case of rotating collapse; after the initial core is formed, the angular momentum
of the infalling material will deposit mass onto the disk, leaving the central protostar with
less obscuring material. Any outflows will also help clear out the inner envelope.

11.3 The “birthline”
The analysis of §11.1 is changed if the protostar is hot enough in its core

(T ∼ 106 K) for deuterium fusion to occur. In this case, contraction can be halted as D energy
release replenishes the energy lost by radiation. Stahler (1983, 1988) argued that, for a rea-
sonable range of initial conditions and accretion rates, protostars should evolve in such a
way that their radii are a strongly constrained function of their mass. The general idea is as
follows: The rate of deuterium fusion is a very sensitive function of the central temperature
of the protostar, which scales as T ∝ Mp/Rp. If the central temperature falls slightly, the
star will contract until the temperature rises high enough for fusion; conversely, if the cen-
tral temperature increases slightly, the resulting rapid increase in luminosity will cause the
star to expand and cool in the central regions. This thermostatic effect – keeping the cen-
tral temperature nearly constant – results in a relatively fixed ratio of mass to radius. Thus,
Stahler argued that once spherical accretion ends, the required ratio of Mp/Rp would result
in protostars appearing along a well-defined locus in the HR diagram he called the “stellar
birthline”, which is roughly consistent with the positions of the youngest optically visible
stars.
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This argument for the existence of a birthline is subject to two important limitations.
First, deuterium fusion does not prevent the formation of stars above the birthline in the HR
diagram; other arguments must be used to fix initial conditions, such as discussed in the
previous section. Second, deuterium represents a fairly minor source of energy in general
pre-main-sequence evolution. Assuming an interstellar medium abundance ratio of D/H =
2.5 × 10−5, the energy release from deuterium fusion can last

E ∼ 1.5 × 106 yr

(
L∗
L�

)−1 (
M

M�

)
. (11.31)

Referring to Figure 1.3, one sees that a young 0.3 M� star of luminosity ∼0.3 L� might
have its contraction slowed by an appreciable amount for ∼1 Myr, but a 1 M� star with a
luminosity of ∼5 L� will have its contraction slowed for only ∼0.3 Myr, comparable to the
infall timescale. Thus, we expect D fusion to be most important for low-mass protostars,
and unimportant for higher-mass stars. Moreover, even for low-mass protostars, the rate of
deuterium addition matters; if the accretion rate is too low, the addition of fresh deuterium
cannot compensate for the loss due to fusion.

To illustrate the main physics of the birthline calculations without the complications nec-
essary to address spherical accretion (Stahler 1988), we assume accretion occurs through a
disk or magnetospheric hot spots which cover only a small fraction of the stellar surface. In
this case, most of the stellar photosphere can radiate freely to space, unaffected by accretion.
Under these conditions, we expect typical low-mass pre-main-sequence stars or stellar cores
to be completely convective, and therefore adopt the n = 3/2 polytropic approximation.
We further neglect the rotational energy of the star for simplicity; this should not be a bad
approximation for most T Tauri stars, which are slowly rotating. The treatment here follows
that of Hartmann et al. (1997; see also Palla & Stahler 1992).

Suppose a small mass of gas �m is added to the star, with gravitational potential energy

�W = −G M∗�m

R
(11.32)

and internal energy

�U = ε
G M∗�m

R
, (11.33)

where ε is introduced to parameterize the thermal energy content of the accreted material
(e.g., Prialnik & Livio 1985). The star then readjusts to a polytropic configuration with mass
M∗ + �m and radius R∗ + �R. We assume that this mass is added over a time �t , and
that the surface luminosity of the star during this time is L∗. Then conservation of energy
requires (cf. equation (11.18))

L∗�t − 3

7

G(M∗ + �m)2

(R∗ + �R)
= −3

7

G M2∗
R∗

− G M∗�m

R∗
(1 − ε) + LD�t , (11.34)

where LD is the deuterium fusion luminosity (see also Palla & Stahler 1992). Expanding
this equation to first order, writing Ṁ = �m/�t , and letting �t → 0, we have

L∗ = −3

7

G M2∗
R∗

[(
1

3
− 7ε

3

)
Ṁ

M∗
+ Ṙ∗

R∗

]
+ LD . (11.35)

In the limit that Ṁ = 0 and LD = 0, the standard gravitational contraction result (11.18)
is recovered.
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The first two terms on the right-hand side of equation (11.35) account for change in the
energy of the star due to the accreted matter. To isolate the basic effects, assume that the
surface photospheric luminosity and the deuterium fusion luminosity are small (equivalently,
assume that a finite mass and energy are added on a short enough timescale that surface
energy losses and deuterium fusion energy release are negligible). First, suppose ε <<

1/7, so that the material is accreted “cold”. Then the accretion of matter will cause the star
to contract (Ṙ∗ < 0). The physical reason for this is that the cold accreted material does
not support itself; the star must readjust to generate additional thermal energy (pressure)
to support this material. In the case of a (convective) n = 3/2 polytrope, the star must
contract. Conversely, if ε > 1/7, then the accretion of warm material will tend to make the
star expand (e.g., Prialnik & Livio 1985). For sufficiently large accretion rates and ε, the
accreting star may become radiative, in which case the star may expand rapidly and this
treatment is invalid, as discussed below (see also §9.7).

We can relate ε to other physical quantities by noting that, for a perfect gas,

Tacc �m = �U

cV
= (γ − 1)μ mH

k
�U = 2

3

μmH

k
�U , (11.36)

where Tacc is the temperature of the accreting gas, k is Boltzmann’s constant, mH is the
mass of the hydrogen atom, �U is the change in internal energy due to the accreted gas, and
cV is the ratio of specific heats at constant volume. An average internal temperature can be
calculated for the n = 3/2 polytrope,

M〈T 〉 ≡
∫

T d M =
∫

u

cV
d M = 2

7

μ mH

k

G M2

R
, (11.37)

where u is the specific internal energy. Substituting for �U from (11.33) and solving for ε

using (11.36) and (11.37),

ε = 3

7

Tacc

〈T 〉 . (11.38)

The critical value εc = 1/7 then corresponds to Tacc = (1/3)〈T 〉, i.e., the temperature of the
accreting material is a considerable fraction of the average internal temperature of the star.

As emphasized by Stahler (1988), the fusion of deuterium can play a crucial role in setting
the evolutionary tracks of low-mass protostars. Deuterium energy generation is proportional
to ρT 14.8; integrating over the interior of an n = 3/2 polytrope,

LD = 1.92 × 1017 f

[
D

H

] (
M∗
M�

)13.8 (
R∗
R�

)−14.8

L� (11.39)

(Stahler 1988). Here f is the fractional concentration of deuterium relative to its initial
number abundance, which is taken to be [D/H ] = 2.5 × 10−5. This equation assumes that
the convection in the star instantaneously and thoroughly mixes all the deuterium, so that f
is spatially constant at any time within the star. The strong dependence on stellar mass and
radius arises from the steep dependence of the deuterium fusion on the central temperature,
which is ∝ M∗/R∗.

Because of the importance of LD, evolutionary calculations must consider the variation
of f ,

d f M∗
dt

= Ṁ − LD

βD
, (11.40)
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where βD is the total energy available from deuterium fusion per gram of material (Stahler
1988). Rearranging this, we may write

d f

dt
= Ṁ

M∗

(
1 − f − LD

LDSS

)
, (11.41)

where L DSS = βD Ṁ is the steady luminosity release that would be produced if the deu-
terium in the accreted material were instantaneously fused; numerically, for the assumed
deuterium abundance,

LDSS = 1.5

(
Ṁ

10−6 M� yr−1

)
L� . (11.42)

The resulting evolution of the protostellar core can be calculated if the photospheric radiative
losses are known. In this case, the surface photospheric radiative losses are the same as for an
isolated pre-main-sequence star because accretion effects are limited to only a small area of
the photosphere. The detailed form of L∗(M∗, R∗) can be taken in principle from the results
of stellar structure calculations. For illustrative purposes one may adopt the following fit to
the “CMA” stellar evolutionary tracks of D’Antona and Mazzitelli (1994):

L∗ = 1

(
M∗

0.5 M�

)0.9 (
R∗

2 R�

)2.34

L� (11.43)

(Hartmann et al. 1997). This fit is only approximate and appropriate for the regime
0.3 M� ≤ M∗ ≤ 1 M�.

Figure 11.1 shows evolutionary tracks calculated for two different mass accretion rates,
rates which might correspond to infall estimates (Chapters 4, 5). The curves have been cal-
culated by simultaneously solving (11.35), (11.39), (11.41), and (11.43), starting with a
low-mass core of small radius, and assuming that accretion is “cold” (ε = 0). These disk
accretion curves depart only modestly from the spherical accretion results of Stahler (1988;
solid dots in Figures 11.1, 11.2). In part, the differences between the two treatments derive
from Stahler’s use of more detailed stellar interior calculations and a careful treatment of
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Fig. 11.1. Birthline evolutionary tracks for two different mass accretion rates. The dots
correspond to the results of Stahler (1988) and the curves are calculated from the simple
evolutionary model for cold disk accretion (§9.5). From Hartmann et al. (1997).
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Fig. 11.2. Variation of central protostellar temperature and deuterium concentration f cor-
responding to the evolutionary tracks shown in Figure 11.1 (the “surface cooling” case).
Dots show the original results of Stahler (1988); curves use the simple method described in
the text. From Hartmann et al. (1997).

the accreting material. However, it appears that the main reason for the differences between
disk and spherical accretion is the difference in outer boundary conditions. Stahler assumed
much smaller stellar photospheric radiative energy losses L∗ (see discussion in Hartmann
et al. 1997). To illustrate this, the dashed lines in Figure 11.1 show the effect of setting
L∗ = 0 in the simple model calculations. The resulting R∗(M∗) relations track the original
calculations of Stahler more closely.

There is an initial M∗ ∝ R∗ dependence, which extends to higher masses at higher accre-
tion rates; this is the region where the concentration of deuterium remains high, and so the
central stellar temperature must remain fixed (Figure 11.2). At higher masses the Rp(Mp)

relation flattens out when the available deuterium is mostly fused into heavier elements
(Figure 11.2), allowing the star to heat up beyond the point of deuterium fusion.

To clarify the effect of the photospheric radiative energy loss, which is assumed not to
be blocked or trapped by the accreting material, it is useful to compare L∗ to the steady-
state luminosity that would occur if deuterium were fused as it is accreted into the protostar,
LDSS. If L∗ < LDSS, the demands on deuterium fusion are low, and the concentration f
remains high. However, for L∗ > LDSS the energy losses require fusing deuterium at a rate
faster than is supplied through accretion, and f must drop. This behavior is shown explicitly
in Figure 11.3. The evolutionary tracks turn over slightly before L∗ = LDSS because some
energy must be invested in heating the star to help support the weight of the cold accreting
material. The corresponding deuterium concentrations are shown in Figure 11.2. As the
stellar luminosity becomes increasingly large, the deuterium becomes depleted, allowing
the star to have a higher central temperature and thus contract below the deuterium main
sequence.
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Fig. 11.3. HR diagram tracks for the “surface cooling” calculations of Figure 9.2. The evo-
lutionary tracks initially follow the R∗ ∝ M∗ relation when the deuterium fusion luminosity
is high; however, once the (proto)star approaches the steady-state luminosity L DSS the
evolutionary tracks become more horizontal, because the energy represented by the fresh
deuterium being accreted is now balanced by the photospheric radiative losses (see text).
From Hartmann et al. (1997).

The above discussion deals with the case where the protostar is completely convective.
However, as shown in §11.1, at higher masses and luminosities one may expect the star to
become radiative. To show the resulting qualitative differences from convective protostar
accretion in a heuristic way, consider the differences between the n = 1.5 convective poly-
trope and an n = 3 polytrope, which can be taken as a rough approximation to the structure
of a radiative star; for the latter,

E3 = −3

4

G M2

R
. (11.44)

Consider the addition of a cold shell of small mass δM , and thus energy Es = −G MδM/R◦,
to a star of initial mass and radius M◦, R◦. The star must readjust to the additional weight by
thermalizing part of the additional energy. Suppose this happens fast enough that the energy
loss by radiation can be neglected. Then

−3

4

G M2◦
R◦

− G M◦δM

R◦
= −3

4

G M2◦
R◦

(1 + δM/M◦)2

(1 + δR/R◦)

� − 3

4

G M2◦
R◦

(
(1 + 2δM

M◦
− δR

R◦

)
. (11.45)

Equating terms, we find

G M◦δM

2R◦
� 3

4

G M2◦
R◦

δR

R◦
; (11.46)
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since δR > 0, the star expands rather than contracts. Thus one may expect the birthline
evolution of higher-mass stars to result in expansion and increased luminosity as mass is
added – and this is seen in the detailed results of Palla and Stahler (1992).

However, birthlines for stars with masses >∼1 M� must be regarded as highly uncertain.
Even at low masses, birthline positions depend upon the accretion rate; moreover, birthline
positions also differ for differing assumed initial masses and radii (Stahler 1988; Hartmann
et al. 1997). These difficulties are even greater for higher-mass stars, because as discussed
previously deuterium fusion cannot represent a significant energy source at higher lumi-
nosities. This means that birthlines for intermediate-mass stars and high-mass stars are very
sensitive to the assumed initial conditions.

In their theoretical calculations of intermediate-mass birthlines, Palla and Stahler (1992)
assumed that the initial protostellar cores are essentially the same for all stars; the result
is birthlines which lie well above observed positions of young stars in the HR diagram.
There is no theoretical justification for the assumption of initially equal core or starting
masses; indeed, one might expect that the initial core mass to scale with the final mass of the
star. Moreover, as Palla and Stahler (1992) show, even with similar initial core properties, a
plausible range of accretion rates produces distinctly differing birthline properties. Finally,
given observational uncertainties and likely variations in initial conditions for different stars
of similar mass, it seems plausible that one should aim for lower birthline positions for
intermediate-mass stars in the HR diagram. As discussed further in §11.5, lower birthlines
would produce ages for intermediate-mass stars in better agreement with those of lower- and
higher-mass stars.

11.4 Birthlines: comparison with observations
Figure 11.4 shows a comparison of the cold disk accretion birthlines (left panel)

with the HR diagram positions of Taurus stars (e.g., Figure 1.3). The birthline tracks in the
low-mass region pass near the upper envelope of the stellar positions. It is not necessary
for the birthline to pass above all HR diagram positions of young stars, given observational
errors and uncertainties (such as unresolved binaries) and the possibility that stars may form
(slightly) above the birthline.

Ideally, one would like to test the birthline calculations with observations of protostars.
The right panel of Figure 11.4 shows data for Class I sources, with effective temperatures
estimated from the analysis of near-infrared spectra by Doppmann et al. (2005) and lumi-
nosities from Kenyon and Hartmann (1991). This figure indicates that the main problem
with testing the birthline hypothesis for Class I objects comes from the large uncertainties
in the luminosity. Doppmann et al. used observed near-infrared fluxes with a guess at red-
dening and a correction to increase the apparent fluxes by a factor of ∼2 to account for the
fact that these objects are generally observed in scattered light. It seems preferable to use
the apparent bolometric (infrared) luminosity, which is less likely to be affected by inclina-
tion, though there is always some uncertainty due to the non-spherical nature of protostellar
envelopes (Chapter 5). Another uncertainty derives from the presence of accretion luminos-
ity. The open circles in the right panel of Figure 11.4 represent DG Tau – a very rapidly
accreting, heavily veiled T Tauri star – and L1551 IRS 5, a binary FUor (§5.4, Chapter 9). It
is thus no surprise that these objects lie well above the birthline.
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Fig. 11.4. Left: stellar evolutionary tracks for low-temperature (ε = 0) disk accretion, com-
pared with observed HR diagram positions of T Tauri stars in the Taurus–Auriga star-forming
region, modified slightly from the results of Figure 11.1, by interpolating in the D’Antona
and Mazzitelli (1994) CMA tracks to improve the calibration of L∗(M∗, R∗) (see text).
The heavy solid lines correspond to birthline accretion rates of Ṁ = 2 × 10−6 M� yr−1

(lower) and Ṁ = 10−5 M� yr−1 (upper). The light solid lines show the CMA pre-main-
sequence evolutionary tracks of D’Antona and Mazzitelli for masses of 0.1, 0.3, 0.5, 1, 1.5,
and 2.5 M�. The dashed lines show isochrones for 1 × 105 yr, 1 × 106 yr, and 1 × 107 yr.
The HR diagram positions of T Tauri stars in the Taurus–Auriga molecular cloud, segregated
between weak-emission (WTTS) and strong-emission (CTTS) stars, are taken from Kenyon
and Hartmann (1995). These birthline tracks roughly pass through the upper envelope of the
apparent HR diagram positions of the T Tauri stars, and correspond roughly to t ∼ 3×105 yr
Hayashi track calculations. Right: properties of Taurus Class I objects compared to the birth-
lines in the left-hand panel, with effective temperatures taken from Doppmann et al. (2005)
and (bolometric) luminosities from Kenyon and Hartmann (1995).

The comparisons between observation and theory shown in Figure 11.4 indicate that the
properties for low-mass Class I objects are roughly consistent with expected birthline posi-
tions, and that most low-mass T Tauri stars appear to have contracted slightly below the
birthline(s), as expected. (The accretion rates of T Tauri stars are unlikely to be large enough
to have a significant effect on normal Hayashi track contraction; Hartmann et al. 1997).

As discussed in §5.1, accretion rates inferred from luminosities of Class I objects (and
even many Class 0 objects) are considerably lower than the rates used in these calculations –
rates which are needed to form the star on a reasonable timescale. This suggests that the
bulk of the protostellar mass is amassed during short bursts of very rapid accretion. Pri-
alnik and Livio (1985) showed that rapid accretion of material with finite thermal energy
content onto a fully convective, main sequence, low-mass star can cause the star to become
partially radiative and expand substantially. This can occur even when ε < 1/7, for which
our assumption of a convective polytropic star would result in contraction (in the absence
of deuterium fusion). If the timescale for changing the thermal energy of the star is short
in comparison with the thermal equilibrium timescale, thermal equilibrium cannot be estab-
lished, which is necessary for the star to remain convective. The constraint that the thermal
time of the star be shorter than the thermal energy addition timescale,
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tth = E

L∗
< tU = E

(
εGMṀ
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)−1

(11.47)

corresponds to

ε G M
Ṁ

R
< L∗ . (11.48)

This condition states that convection could be suppressed if ε is greater than the ratio of
intrinsic stellar luminosity to the accretion luminosity. Rapid accretion during the FU Ori
phase might expand the star, explaining the somewhat larger inner radii inferred for these
disks (Chapter 9).

It is not known at present whether episodic accretion modifies birthline calculations sub-
stantially from steady-state results. If the bursts of accretion are relatively short compared
with evolutionary timescales, and if large amounts of thermal energy are not advected into
the stellar interior, it may be possible to consider these birthline results as applying to a suit-
able time-average of protostellar accretion. Even if significant amounts of thermal energy
are advected into the star during an FU Ori outburst, if the outburst is short enough, this
extra energy may not be integrated fully into the star but radiated away during long peri-
ods between outbursts, so that the steady cold accretion birthline calculations might still be
relevant with suitable time averaging.

11.5 Age estimates
Typically, stellar ages are estimated by placing stars in the HR diagram and then

comparing it with theoretical isochrones. In addition to observational errors discussed in the
following section, theoretical evolutionary tracks are somewhat uncertain, and often do not
consider birthline effects, but instead start the calculations at very large stellar radii. Here
we adopt a schematic approach to illustrate some of the difficulties involved in estimating
ages.

The elapsed time tb that a low-mass, fully convective, pre-main-sequence star has been
contracting since the end of major accretion is (e.g., equation 11.22)

tb = τKH

3
− τKH

3
(birth) = G M2∗

7R∗L∗
− G M2∗

7R◦L◦
(birth) , (11.49)

where the terms labeled “birth” denote quantities at the star’s birth position. This equation
explicitly shows which stellar properties need to be determined to produce an age estimate,
and also emphasizes the potential importance of the birthline correction (the second term on
the right-hand side).

If a low-mass star is old enough that the birthine correction is unimportant, then tb ∝
M2∗ T 2

effL
−3/2∗ . The main uncertainty then usually comes from the error in determining the

stellar mass. The sensitivity of the atmospheric opacity to temperature which makes con-
traction occur at nearly constant temperature (§11.1) also results in low-mass stars having a
small spread in effective temperature over a substantial range in mass. Differing theoretical
treatments of the outer boundary conditions typically result in differences in estimated ages
for a given stellar luminosity and effective temperature of roughly a factor of two for stars
of masses ∼0.8 − 0.3 M�.

Substantial improvements in this area are coming from direct mass estimates from binary
motion and disk kinematics. As an example of how to use equation (11.49), masses estimated
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from disk kinematics of a few Taurus CTTS from Simon et al. (2000) indicate in a median
age (without birthline correction) ∼2 Myr (e.g., Table 2.1), in reasonable agreement with
several theoretical evolutionary tracks.

For stars more massive than ∼1 M�, and especially those on radiative tracks (e.g., Figure
1.3), a similar result to equation (11.49) can be obtained, with M2∗/(R∗L∗) still the impor-
tant quantity. For these stars the mass uncertainty is relatively unimportant, given the strong
dependence of their luminosities on mass (§11.1), as well as removing the need to treat
convective effects and better-understood opacities. However, now the birthline correction
becomes much more important, due to the unimportance of deuterium fusion and the impor-
tance of the initial thermal energy content during protostellar formation. Indeed, at masses of
∼4 M� and more, stars are formed essentially on the main sequence, so that there is essen-
tially no pre-main-sequence evolution. Thus, the young higher-mass stars will be assigned
erroneously large ages by using evolutionary tracks which assume initially large radii. In
clusters where we expect star formation to be roughly coeval, the birthline problem shows
up as a systematic variation of cluster age with stellar mass.

The classic example of the mass-dependence of ages derived without birthline corrections
is the Orion Nebula Cluster. As shown in Figure 11.5, the intermediate-mass stars appear to
be substantially older by many Myr than either the low-mass stars or the high-mass stars.
Taken at face value, this would imply that the cluster existed for several Myr forming only
∼2 − 4 M� stars without forming any low-mass (or high-mass) stars. Other very young
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than envisioning cluster formation over many Myr, starting only with intermediate-mass
stars, it seems more likely that large birthline corrections must be applied to the ages of the
intermediate-mass stars. Modified from Hillenbrand (1997).
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clusters show similar behavior. As we never observe such a strange mass function in young
clusters, it must be that there is a mass-dependent error in the isochrones. The most plausible
explanation of this discrepancy is that the birthline correction is large for the intermediate-
mass stars; that is, they start out much closer to the main sequence than the low-mass stars.
As the massive stars clearly start out essentially on the main sequence, while the low-mass
stars start out well above the main sequence, the intermediate-mass stars simply represent
the transition between these two states.

In detail, the mass-dependence of the isochrones becomes apparent even at masses of
order 1 M�. As shown in the left panel of Figure 11.6, the slightly hotter Taurus stars – of
masses >∼1 M� – seem much older than the lower-mass objects using the birthline of Palla
and Stahler (1999). The right panel of Figure 11.6 shows the HR diagram corresponding to
these age determinations, with the relative positions of the Palla and Stahler (1999) birthline
along with the somewhat lower birthlines calculated for cold accretion. It is evident that the
lower birthlines will produce a smaller age differential as a function of stellar mass.

Alternatively, one might argue that the ages of the low-mass stars have been underes-
timated. Hillenbrand and White (2004) found that most evolutionary calculations were in
good agreement with observations for M∗ >∼ 1.2 M�, but systematically underpredicted
the dynamical masses by 10–30% for the lower-mass stars. From equation (11.49), this
implies that many tracks systematically underestimate low-mass ages by factors of ∼20
to ∼ 70%× (see discussion in Mathieu et al. 2007), not enough to explain the large ages of
many of the hotter stars in Figure 11.6. This comparison reinforces the conclusion that the
ages of 1 − 13 M� pre-main-sequence stars must be considered particularly uncertain due
to their poorly constrained birthline positions.
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(see Figure 11.4); the upper dotted curve is the birthline from Palla and Stahler. The general
trend of the higher-temperature stars to fall along older isochrones is apparent. Modified
from Hartmann (2003).
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11.6 Star formation histories
The distribution of ages among stellar populations in molecular clouds and young

clusters can provide insight into the processes of star and cluster formation. In addition
to the uncertainties discussed in the previous section – mass estimates for low-mass stars,
birthline corrections for intermediate-mass stars – other observational difficulties come into
play which have made attempts to detail star formation histories problematic.

One major problem is simply distance. We have very few accurate parallaxes (except for
some recent VLBA results; Torres et al. 2007), even for the nearest star-forming regions; the
various methods – fitting main sequences, using extinction maps to tell where clouds start –
have their limitations. Assigning a single distance to the nearest clouds can be problematic.
For example, consider a 20 pc depth for a cloud at 140 pc – quite reasonable for extended
regions such as Taurus. This corresponds to a factor of 1.44 in luminosity; and because
t ∝ L−3/2 on Hayashi tracks, this results in a change of 1.73 in age. This is a logarithmic
age error, relative to the average age determination; a 0.73 Myr age error for a true 1-Myr-old
population is a 7.3 Myr age error for a 10-Myr-old population.

Another problem which mostly results from the lack of individual distances is contamina-
tion by non-members. While it is easy to assign membership to accreting CTTS, WTTS are
more difficult to separate from foreground stars. Even strong solar-type magnetic activity
(i.e., X-ray emission) is problematic, as the X-ray luminosities of young stars do not decay
substantially until they are older than about 100 Myr (see discussion in Briceño et al. 1997).

A useful diagnostic is the Li I 6707 Å line, which can be strong in late-type pre-main-
sequence stars. Li is fused in stellar interiors at central temperatures of 3 × 106 K or more.
Fully convective stars will mix surface and central layers, resulting in Li depletion at varying
pre-main-sequence ages depending upon the stellar mass. For stars of masses between about
0.3 and 0.8 M�, depletion timescales are estimated to be of order 10–20 Myr (see discussion
in White & Hillenbrand 2005). Thus, the presence of strong Li absorption in such stars is
a clear indication of pre-main-sequence membership. However, this diagnostic is much less
useful for lower- and higher-mass stars. The contraction time for lower-mass stars is so long
that Li is not destroyed until ages of 30–100 Myr or more, making membership problematic.
More massive stars develop radiative cores, making mixing inefficient and thus slowing Li
depletion; empirically, the detection of strong Li absorption in stars hotter than early K-type
only indicates ages less than or comparable to that of the Pleaides (∼ 100 Myr; Briceño et al.
1997).

Another major difficulty is the presence of unresolved binaries. An excellent example of
the effect of binaries is the young cluster NGC 2362 (Figure 11.7), which shows a very
sharp lower distribution of stars and a clear secondary sequence displaced by �V = 0.75
magnitudes, which would be the spread for equal-mass binaries (i.e., a factor of two in
luminosity). Again, this is a logarithmic error, a factor to be applied to the average age of
the region. It is important to recognize the binary sequence. For example, Moitinho et al.
(2001) found an age for NGC 2362 of ∼ 5+1

−2 Myr, and Jeffries et al. (2007) found an age of
9 ± 2 Myr for the young cluster NGC 2169; however, ignoring unresolved binaries would
have resulted in age spreads of a factor of 23/2 = 2.8 in age.

Finally, it is apparent that errors in extinction corrections can add to uncertainties in ages
and thus increase age spreads in star-forming regions. When placing stars in the HR dia-
gram using spectral types and photometry, extinction corrections affect the luminosity but
obviously not the spectral type. When studying overall age spreads in a region, rather than
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Fig. 11.7. Color-magnitude diagram of the ∼5 Myr-old cluster NGC 2362. The lower solid
curve indicates the inferred cluster isochrone, with the upper solid curve displaced upward by
0.75 magnitudes to account for equal-brightness binaries. There is no evidence for significant
age spread in this cluster. From Moitinho et al. (2001).

individual ages, it is often better to consider a color–magnitude diagram such as V vs. V –I
(e.g., Figure 11.7), because reddening vectors tend to be along isochrones (at least for the
late-type stars), minimizing the effects of extinction errors.

With the above discussion in mind, return now to the apparent age distribution in Taurus
shown in the left-hand panel of Figure 11.6. There is a large peak in the youngest age bin with
a fall-off toward older ages. Some asymmetry in the distribution is expected simply because,
as discussed above, most observational errors are logarithmic; when plotting in linear age
bins, this results in a skewing of the distribution, and tends to result in a pileup of stars in the
lowest age bin (compare with the right-hand panel of Figure 11.6, where the luminosities
and isochrones are plotted logarithmically; see Hartmann 2001). Next, part of the “older”
tail of stars are the higher-mass systems, which as discussed in the previous section probably
have spuriously large apparent ages due to inadequate birthline corrections. Finally, detailed
spectroscopic study of several of the older stars shows that they have depleted their Li, and
therefore are likely older, foreground systems (Figure 11.6; Hartmann 2003).

This leaves only a few reasonably well-studied CTTS in Taurus which seem to be much
older than the rest of the population. One of these systems is HL Tau, which is faint because
it is extincted by a circumstellar envelope, and is seen not directly but in scattered light
(Figure 5.16). Because the scattered light is less reddened than the direct light of the central
source, simple reddening corrections will underestimate the true extinction to the object.
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Fig. 11.9. Color–magnitude diagrams for two clusters in the Cep OB2 association, located
at essentially the same distance. The younger cluster, Tr 37 (left), has an estimated age
of ∼4 Myr, but clearly contains even younger stars in some molecular material along the
edge of its expanding H II region. The older cluster, NGC 7160 (right), exhibits no star
formation, and has a well-defined cluster isochrone consistent with an age ∼10 Myr. The
spread of apparent ages in NGC 7160 appear to be due mostly to unresolved binaries. This is
made clearer by comparison with the more populous cluster NGC 2362 (right), which shows
an extremely well-defined cluster isochrone. The lower solid curve indicates the expected
cluster sequence, with the upper solid curve displaced upward by 0.75 magnitudes to account
for equal-brightness binaries. From Sicilia-Aguilar et al. (2005).

Another possible explanation for faint CTTS is that they are edge-on disk systems. The
scattered light off the disk upper surfaces (e.g., Figure 8.9) will be relatively unreddened,
and give a misleadingly low estimate of the extinction to the central source. The classi-
cal example of this is the A star Walker 90 (V590 Mon), which appears to be below the
main sequence at the distance of its cluster, NGC 2264. Its SED (Figure 11.8) gives the
impression that the mid-infrared luminosity substantially exceeds the “stellar” luminosity.
This cannot be, whether the powering radiation comes from the star or from the accretion
shock; the inference is that the object is seen only in scattered light at optical wavelengths,
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underestimating its true luminosity. Occultation by a disk is a likely explanation. HN Tau, an
underluminous CTTS in Taurus, has similar properties in its SED (Figure 11.8). It is perhaps
surprising that there are fewer examples of edge-on disk systems, as disks with thicknesses
H(phot)/R >∼ 0.1 should account for >∼10% of the population, assuming random inclina-
tions to the line of sight. The likely explanation is that such objects tend to drop out of
observational samples because they are very faint, especially at optical and near-infrared
wavelengths.

This is not to say that star-forming regions never exhibit significant age spreads. For
example, the young cluster Tr 37 in the Cep OB2 association (§2.3; Figure 2.4) shows a
significant age spread in comparison with the older cluster at the same distance, NGC 7160
(Figure 11.9). (Note the hint of a binary sequence in NGC 7160.) This age spread of 3–4 Myr
is understandable; even though the central O7 star of Tr37 has removed all gas from the
central cluster regions, protostars are still being formed in the molecular gas surrounding
the expanding H II region (Sicilia-Aguilar et al. 2006). This example emphasizes that age
spreads in a particular volume of space are in general an upper limit – sometimes an extreme
upper limit – to the timescales of the local conversion of molecular gas into stars. Given the
observational uncertainties, it is rather remarkable that the main age spreads estimated in
nearby molecular clouds are so short; that star formation is highly dynamic is undeniable.
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Disk evolution and planet formation

The discovery of many extrasolar planetary systems over the last decade, most with proper-
ties considerably different from those of the solar system, has revolutionized thinking about
the processes of planet formation. An entire book could be devoted to the vast literature that
has arisen on this complex topic. The aim of the present chapter is limited to outlining a
few relevant astrophysical constraints on disk evolution and to sketch some of their potential
implications for planet formation.

Our current lack of understanding of angular momentum transport in protoplanetary disks
is a major obstacle to understanding how planets form. The presence or absence of a dead
zone (§7.6) can strongly affect dust coagulation/planetesimal growth rates by piling up mate-
rial over time; the activation or lack of same of the MRI will affect disk turbulence, which in
turn affects the rates at which dust settles and grows in the disk. Astrophysical clues to these
processes are meager at present, though there is evidence that settling and growth of small
dust particles is at least somewhat limited by turbulence.

Dust disks within a few to 20 AU of the central star tend to “clear” (i.e., become unde-
tectable in infrared excesses) on timescales of a few Myr. Individual systems exhibit a wide
range of clearing timescales; some low-mass stars of ages ∼1 Myr have no detectable disks,
while of order 5% of stars of ages ∼10 Myr exhibit substantial disk emission. The transi-
tional disks (§8.8) provide evidence that some dust clearing can occur without complete gas
removal, as many of these objects are still accreting gas even though they have strongly
reduced infrared excesses. However, most T Tauri stars without detectable infrared excesses
show no detectable gas accretion, suggesting that gas and dust clearing are generally related.

While dust can “disappear” without changing location simply by growing to large sizes,
the disappearance of gas requires either accretion into the star, accretion into (giant) planets,
or dispersal. Originally, gas was thought to be cleared from disks by the impact of strong T
Tauri winds; but we now know that these flows are accretion-driven disk winds, which tend
to be ejected away from the disk plane rather than along it. Stellar winds are undoubtedly
present, but are much weaker than accretion-driven outflow and thus unlikely to clear disks
rapidly enough.

The most popular explanation of gas removal at present is photoevaporation by the
extreme ultraviolet radiation of the central star. In this model, Lyman continuum photons
from the central star ionize disk gas, heating it to temperatures of order 104 K; at radii where
the escape velocity is a significant fraction of the sound speed ∼10 km s−1, an ionized wind
will be set up which can drain the disk of gas, typically at radii beyond a few AU. Unfortu-
nately, there are large uncertainties in the magnitude of stellar EUV fluxes, which translate

268



12.1 Clearing of optically thick disks 269

into substantial uncertainties in gas evaporation timescales. Disks may also be evaporated by
the radiation from neighboring massive stars (§12.4, Figure 1.5), but this is likely to affect
only the modest fraction of recently formed T Tauri stars sufficiently near to a massive star
with a strong ionizing radiation field (e.g., an O star).

It seems likely that at least some of the disk clearing observed is due to accretion into giant
planets which sweep up both dust and gas. The wide range of timescales for clearing suggest
that giant planet formation typically occurs more rapidly than previously thought (2–5 Myr
rather than 5–10 Myr). The significant range in disk evolutionary timescales suggests that
initial conditions play an important role in setting planet formation timescales. A parameter
likely to be important is the initial system angular momentum; modest differences in angular
momenta can translate into significant differences in initial disk sizes and thus in dynamical
timescales.

Dust, planetesimals, and planets migrate within the nebula. Many estimates suggest that
radial migration could easily be far too rapid, leaving behind few if any planets with the
bulk of the solids ending up in the central star. Addressing this problem on the frontier of
planet formation theory requires advances in our understanding of disk structure, the detailed
manner in which bodies interact with the disk, and rates and mechanisms of planetesimal
accretion.

12.1 Clearing of optically thick disks
Figure 12.1 shows the estimated fractions of young stars in various groups with

large near-to-mid-infrared excesses as a function of age. The results of the many studies
incorporated into this figure demonstrate that the infrared emission characteristic of optically
thick disks disappears on timescales of 1–10 Myr. The groups or clusters represented in
Figure 12.1 span a substantial range of environments, but there is no clear evidence yet that
disk frequencies depend significantly on local conditions.

One must consider the range of disk radii probed by these observations to understand the
detailed implications for disk evolution. In some cases, particularly the youngest systems in
Figure 12.1, disk frequencies have been estimated from observations only out to wavelengths
λ ∼ 3.6 μm, and thus trace only inner disk emission. Now that the Spitzer Space Telescope
has routinely detected small excesses above photospheric levels at longer wavelengths, λ ∼
8–10 μm, it is possible to evaluate disk clearing over a much larger radial range.

Figure 12.2 shows results from Spitzer for a typical young system, the ∼3-Myr-old σ Ori
cluster. The dense grouping of points along the lower part of the plot shows photospheric
detections, with the width of the distribution corresponding to observational error; this illus-
trates the ability of the IRAC camera to detect small excesses, even down to the brown dwarf
regime. Most of the stars with disks exhibit excesses consistent with optically thick, flared
disks. A few systems have lower excesses (middle region, between bottom and middle hori-
zontal dotted lines). In some cases this can be explained by optically thick but geometrically
flat (i.e., non-flared) disks; others have weak emission in the 3.6–8.0 μm IRAC region but
strong emission at longer wavelengths (boxed symbols), which suggests that they are tran-
sitional disk systems (§8.8). In all, the relatively small numbers of objects in the region of
intermediate excesses suggests that the timescale for transitioning between optically thick
disks and optically thin, undetectable disks is short, perhaps an order of magnitude shorter
than the system ages (i.e., a few times 105 yr at most).

Detailed studies of nearby regions using the IRS spectrometer on board Spitzer have
pushed these results to even longer wavelengths. Long exposures with IRS can detect stellar
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Fig. 12.1. Fraction of stars with near-infrared disk emission as a function of the age of the
stellar group. Open circles represent the disk frequency for stars in the T Tauri mass range,
derived using JHKL observations: NGC2024, Trapezium, NGC2264 and NGC2362 from
Haisch et al. (2001), Chamaleon I from Gómez and Kenyon (2001), and Orion OB1a and
OB1b sub-associations from Hernández et al. (2005). Solid symbols represent the disk fre-
quency calculated for stars in the TTS mass range using IRAC data: Taurus from Hartmann
et al. (2005), NGC7129 from Gutermuth et al. (2004), IC348 from Lada et al. (2006), Tr
37 and NGC7160 from Sicilia-Aguilar et al. (2006), Upper Scorpius from Carpenter et al.
(2006), η Chameleontis from Megeath et al. (2005), and the σ Orionis cluster. Modified
from Hernández et al. (2007).

photospheres of nearby systems out to wavelengths ∼30 μm. In general, relatively few Class
III objects seem to exhibit strong excesses at 20–30 μm (e.g., Furlan et al. 2006, Hernández
et al. 2007). For example, Padgett et al. (2006) found that only 2 out of 83 WTTS in Taurus
exhibited excesses only at 24 μm but not at shorter wavelengths. Thus, although the disk fre-
quencies of Figure 12.1 are direct measures only in the near infrared (3.6 μm) at worst, and
the IRAC range (∼8 μm) at best, the results provide reasonable estimates of the frequency
of objects with or without significant infrared excesses out to ∼30 μm.

The blackbody temperature of a spherical dust grain of radius a, absorbing geometrically
with a cross-section πa2 and emitting uniformly over its surface area 4πa2, is

Tbb = 88

(
R

10 AU

)−1/2 (
L

L�

)−1/4

K , (12.1)

According to the Wien law, blackbody emission should peak at λ ∼ 30 μm for this fiducial
temperature ∼90 K. Thus, given Spitzer sensitivity for nearby objects, current disk statistics
relying on IRS and MIPS 24 μm data are adequate estimates of the frequency of significant
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amounts of small dust within about 10 AU of the central stars. Colder dust can still be
detected ∼20 μm from emission on the Wien side of the blackbody spectrum if the excesses
are sufficiently large. As an example of this, the transitional disk system GM Aur, with
strong excesses due to dust exterior to 24 AU, is easily detected by IRS (Figure 8.20).

Less is known about the presence of gas in the inner 10–20 AU. Najita et al. (2003) sur-
veyed the CO v′′ − v′ 1–0 emission from a range of T Tauri stars, which probably arises
in gaseous disk regions within <∼1 AU. As shown in Figure 12.3, the small sample available
so far indicates that major reductions in the gaseous component accompany major reduc-
tions in near-infrared excess. A more widely available indicator is gaseous accretion rates
onto the central stars; as discussed in §8.3, objects without near-infrared excesses generally
exhibit little or no indication of accretion (with the transitional disks constituting many if
not all of the exceptions; §8.8). As small dust is thought to inhibit MRI activity (§7.5), one
would expect that dust-cleared gaseous disks would be especially prone to turbulent angu-
lar momentum transport, and thus should be actively accreting. Thus, small dust clearing
and gas clearing in the inner disk are correlated, with the transitional disks providing a few
exceptions in the sense of less small dust for a given gas accretion rate.
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Timescales for outer disk gas and/or dust clearing are much less well known. The WTTS
in nearby, young regions such as Taurus tend to exhibit very little sub-mm to mm-wave emis-
sion (e.g., Figure 8.11). Whether this is an indication of nearly simultaneous disk evolution
over a huge range of radii or simply a reflection of initial conditions (such as an initially
small, and thus rapidly evolving, disk) is not clear.

12.2 Viscous disk evolution
The observational evidence shows that some mechanism(s) clear dust and gas from

protoplanetary disks over timescales of 1–10 Myr, with a median timescale of roughly 3 Myr.
Aside from planet formation, perturbations due to binary companions, photoevaporation,
coagulation, and general dust evolution may also play important roles in clearing disks. We
begin by considering viscous accretion.

T Tauri disks accrete; and this fact alone requires disks to evolve. To outline the basic
issues, we return to the simple model of self-similar viscous disk evolution discussed in
§7.2 under the assumption that the temperature structure of the disk is determined mostly by
irradiation from the central star, and that the disk is nearly isothermal vertically. As discussed
in Chapter 8, these approximations are probably not too bad for the outer disk, which tends
to control the evolution. We further make the extremely simplifying assumption that the
outer disk is reasonably “flared” (§§7.9, 8.2), so that the disk temperature varies as
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T (R) ∼ 10

(
100 AU

R

)1/2

K , (12.2)

where the normalization is very roughly what would be expected for a typical 1 L� T Tauri
star. Finally, we assume that the viscosity can be represented with a constant α formalism
(§7.4). With these assumptions, νv ∝ R, and the similarity solutions of §7.2 hold. (The effect
of the decrease in luminosity of the central star during evolution (§11.1) on the disk tem-
perature is neglected here.) In particular, for an “initial” disk radius R1 (see §7.2, equations
(7.46)–(7.48)), the similarity solution yields

� ∼ 1.4 × 103 e−R/(R1td)

(R/R1) t3/2
d

(
Md(0)

0.1 M�

) (
R1

10 AU

)−2

g cm−2 , (12.3)

and

Ṁ ∼ 6 × 10−7 e−R/(R1td)

t3/2
d

(
1 − 2R

R1 td

) (
Md(0)

0.1 M�

)

×
(

R1

10 AU

)−1 ( α

10−2

) (
M∗

0.5 M�

)−1/2 (
T100

10 K

)
M� yr−1 , (12.4)

where Md(0) is the initial disk mass, M∗ is the stellar mass, and the time td is related to the
true elapsed time by

td = 1 + t

ts
; (12.5)

the scaling time is

ts ∼ 8 × 104
(

R1

10 AU

) ( α

10−2

)−1
(

M∗
0.5 M�

)1/2 (
T100

10 K

)−1

yr , (12.6)

where T100 is the temperature at 100 AU.
In this model, the expansion of the transition radius Rt (§5.2), which can be considered as

a characteristic disk size scale, is

Rt ∼ 5 td

(
R1

10 AU

)
AU . (12.7)

The overall behavior of this solution can be understood in a heuristic way as follows.
The angular momentum of the disk is essentially constant, except for the small amount
accreted onto the star (which is formally ignored in the similarity solution). Thus the angu-
lar momentum of the disk, Jd ∝ Md R1/2

t for a Keplerian disk, is constant. Because the
characteristic disk radius expands as Rt ∝ t at long times, the disk mass must therefore vary
as Md ∝ R−1/2

t ∝ t−1/2 and the mass accretion rate must vary as Ṁ = d Md/dt ∝ t−3/2.
Figure 12.4 compares this similarity solution using the fiducial parameters (solid curve)

to the estimated disk mass accretion rates for late K-early M stars in several different nearby
star-forming regions as a function of age. While the trend of decreasing mass accretion rate
with increasing age is roughly reproduced, there is a large scatter at any given age. This
scatter plus concerns about systematic effects do not permit a very definitive test of this
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Fig. 12.4. Mass accretion rates determined from blue-ultraviolet excess emission as a func-
tion of the estimated stellar age, for typical T Tauri stars in a variety of regions. The solid
curve is a model of the form given in equation (12.4). Courtesy N. Calvet.

model (Hartmann et al. 1998). This solution also predicts disk masses of about 0.03 M�
at t = 1 Myr, a few times larger than the recent disk mass estimates from sub-mm wave
measurements for the standard dust opacity (8.11), though more consistent with estimates
based on gas accretion rates (see §8.6). This solution also predicts that Rt ∼ 60 AU at
t ∼ 106 yr; the “outer” disk radius measured in various ways, such as mm emission, might
be a factor of two or so larger than this. Larger disks are certainly observed (e.g., Figure
8.3), but this might be the result of an initially large R1. Note that the results are not very
sensitive to the assumed starting radius R1 when t � ts.

While this similarity solution is almost certainly inapplicable to real disks in any detail,
it is useful to demonstrate some of the basic disk physics and how things may scale with
varying parameters. For example, the fiducial viscosity parameter α = 10−2 is reasonably
consistent with numerical simulations of the MRI, although some empirical studies suggest
values as much as an order of magnitude larger (§7.5). Using an α = 0.1 would result in ten
times as large an accretion rate early on, and roughly 10 times faster disk clearing, as the disk
expands to sizes of order 103 AU in only ∼1 Myr. In principle, one could constrain values of
α in the outer disk by measuring outer disk radii; in practice, this is difficult observationally
because the surface brightness of disks falls off so rapidly with increasing distance.

With this solution, disk masses vary slowly with time, Md ∝ t−1/2. Sub-mm mass esti-
mates exhibit two orders of magnitude scatter at a given age in Taurus (Andrews & Williams
2005), which means either a wide range in initial disk masses, or a wide range in dust evolu-
tion at a given age, or both. The essential point for the present discussion is that pure viscous
evolution takes a long time to empty out disk mass. It does not yield the “two timescale”
behavior (e.g., Clarke et al. 2001) – slow decay of accretion with rapid clearing – implied
by disk frequencies (§8.1).
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12.3 Binaries
The presence of a binary companion star can have very strong effects on disk struc-

ture and evolution. A secondary star will gravitationally perturb the disk of the primary,
tending to excite a spiral wave in the disk; this gives rise to a torque between the secondary
and the disk, in a manner analogous to the gravitationally unstable disk (Figure 7.1). The
faster-moving disk will tend to transfer angular momentum to the secondary, resulting in
the disk moving inward. Over time, this torque results in a truncation of the primary disk,
such that it (roughly) stays within the Roche lobe of the primary star – the region in which
a test particle is gravitationally bound to the primary (Papaloizou & Pringle 1977). The sec-
ondary may maintain its own disk within its own Roche lobe. For circular orbits, an analytic
approximation to the Roche lobe radius is given by Eggleton (1983) as

Ri

a
≈ 0.49 q2/3

i

0.6 q2/3
i + ln

(
1 + q1/3

i

) , (12.8)

where a is the semi-major axis of the binary orbit and

q1 = m1

m2
= 1 − q

q
and q2 = m2

m1
= q

1 − q
. (12.9)

Binaries with eccentric orbits – the majority – will tend to clear out even larger regions of
disks (e.g., Pichardo et al. 2005).

If the stars have much more angular momentum than their disks, the disks will essentially
be confined by the binary orbit and accrete more rapidly than they would otherwise. Figure
12.5 shows a set of calculations for the simple viscous disk model of the previous section
modified to prevent the disk from expanding beyond a certain radius. As shown in the figure,
disk evolution proceeds roughly like the similarity solution until the disk reaches the outer
boundary; at that point the disk can no longer expand and simply drains out onto the central
mass, resulting in an exponentially decreasing disk mass. The timescales shown in Figure
12.5 show that for α = 0.01 and truncation radii of 15–30 AU, disk clearing due to accretion
can become very effective at ages of order 2–3 Myr. Putting this in perspective, for a mass
ratio q = 0.5, the binary semi-major axis would be roughly a factor of three larger than these
truncation radii (equation (12.8)). Thus, given a typical binary semi-major axis of 30 AU
(Duquennoy & Mayor 1991; Figure 6.1), many binary systems should have very short disk
lifetimes (unless α � 10−2).
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Fig. 12.5. Effect of preventing disk expansion on the evolution of disk mass and accretion
rate of the simple viscous disk model. The dotted curves show the similarity solution of
equations (12.3) and (12.4), while the dashed and solid curves denote the behavior of the
disk for forced disk truncation at radii of 30 and 15 AU, respectively (see text).
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Circumbinary disks can be present at distances sufficiently larger than the binary orbit,
again constrained by Roche lobe limits. Such disks can be prevented from accreting due
to tidal torques, and will eventually spread out as angular momentum is added from the
inner binary (Pringle 1991b). The poster child for circumbinary disk systems is GG Tau
(Roddier et al. 1996; Guilloteau et al. 1999; Krist et al. 2005; Figure 8.4). The inner region is
relatively cleared out to ∼150 AU, with perhaps some inner dust (Krist et al. 2005). McCabe
et al. (2002) estimate a semi-major axis for the binary orbit of 35+22

−8 AU, with a modest
eccentricity of e ∼ 0.3 ± 0.2; thus, the ring appears to reside well outside the binary orbit as
expected.

Somewhat surprisingly, both GG Tau Aa and Ab appear to be accreting from their cir-
cumstellar disks (White et al. 1999). The orbital elements suggest that the inner disks are
expected to be truncated at sizes of order 10–20 AU; one might expect such disks to empty
out on timescales of ∼1 Myr (Figure 12.5). Age estimates are often difficult, but in the case
of GG Tau we can use the dynamical total mass estimated by Simon et al. (2000) of 1.28 M�
from the dynamics of the circumstellar ring. If we assign a mass of 0.7 M� to Aa, use the
luminosity of 0.84 L� estimated by White et al. (1999), and adopt T = 4000 K for the K7
spectral type of Aa, then the estimated stellar radius is 1.9 R�. We may then use equation
(11.49) to find a maximum contraction age (without birthline correction) of about 1.3 Myr.
This result suggests that GG Tau A may not be accreting for much longer. Alternatively,
this calculation suggests that the effective or average α in the cirumstellar disks of GG Tau
Aa and Ab cannot be much larger than 0.01; otherwise the disks would have emptied out
by now.

Although it has been clear for some time that, statistically speaking, disks are less fre-
quently present in binary systems (see, e.g., Mathieu et al. 2000), but as in the case of GG
Tau, indvidual binary or multiple systems can still retain disks. Inner disks can last for some
time before being drained by accretion onto the central star, outer circumbinary disks can
last considerably longer, and accretion may or may not occur depending upon the age of
the system, the binary separation, or even the eccentricity of the binary orbit. Understanding
the behavior of disks in binary systems requires close attention to the specifics of individual
systems.

12.4 Disk evaporation
T Tauri stars emit copious amounts of high-energy radiation, partly due to stellar

magnetic activity and also partly due to accretion, if present. In particular, Lyman continuum
photons from the central regions can ionize hydrogen, generally heating it to temperatures
typical of H II regions, ∼10 000 K. At radii where the resulting sound speed cs is comparable
to the gravitational potential well,

Rg ∼ G M∗
c2

s
, (12.10)

the gas can flow outward and escape from the system, producing a thermally driven wind.
Mass loss will probably start somewhat inside of Rg; if we adopt the simple steady thermally
driven wind model, we find the sonic point occurs at (equation (10.39) without rotation)

Rs ∼ G M∗
2c2

s
∼ 3.6

M∗
M�

AU , (12.11)
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where we have set the mean molecular weight to 0.67, appropriate for a gas of cosmic abun-
dance with ionized hydrogen and neutral helium. Thus, ionizing photons have the potential
for removing disk gas at radii of a few to 10 AU from the central star.

To see the essential physics of the problem with a minimum of geometrical complication,
assume that a volume of 4π R3 must be ionized, where R is a characteristic radius of escape.
This estimate is justified because the gas must maintain its ionization over the disk to a
distance comparable to its escape radius to flow out of the gravitational potential well. The
balance between photoionization and recombination leads to the typical Strömgren sphere
result (e.g., Spitzer 1978),

� = 4π R3nenpαB , (12.12)

where � is the flux of ionizing photons from the central source, ne and np are the electron
and proton densities, respectively, and αB is the Case B recombination rate for hydrogen
(assuming that all recombinations directly to the ground state result in the emission of ion-
izing photons which are then locally absorbed – the so-called “on-the-spot approximation”.)
Setting the electron and proton densities to be equal to each other and to the hydrogen
density, ne = np = nH, we may write the photoevaporative mass loss rate as

Ṁ ∼ 4πnpμmpcs R2 , (12.13)

where the expansion velocity is estimated to be the sound speed. Rearranging, we have

Ṁ ∼ (4π)1/2�αB
−1/2μmHcs R1/2 . (12.14)

The ionized gas will have a temperature of ∼104 K. Then the sound speed is
cssim10 km s−1, the recombination rate is αB = 2.6 × 1013 cm−6 s−1, and μ = 1.4 to
add the (neutral) helium mass to the proton mass. The final result for the mass loss rate
is then

Ṁ ∼ 10−9�
1/2
41 R1/2

10 M� yr−1 , (12.15)

where �41 is the Lyman continuum flux in units of 1041 s−1 and R10 is a characteristic scale
of the flow in units of 10 AU. This estimate illustrates the potential of photoevaporation to
remove disk gas over evolutionarily interesting timescales.

Much more sophisticated treatments of the outflow have been considered by Hollenbach
et al. (1994), Clarke et al. (2001), Font et al. (2004), and Alexander et al. (2006a,b). There
are generally two limits of wind behavior. The first is when the wind is optically thick to
the Lyman continuum photons; thus the wind absorbs the central source photons before they
reach the disk. The wind then reradiates some of these photons by direct recombination to
the ground state, producing a “diffuse” radiation field which irradiates the disk. In this case
the density of the wind near the disk is found to be nw ∝ R−5/2, where R is the cylindrical
radius (Hollenbach et al. 1994). The mass loss rate then is concentrated toward small radii,

d Ṁ

d R
∝ 2π R nwcs ∝ R−1/2 . (12.16)

The other limit occurs when the wind is not optically thick to the ionizing radiation, and the
disk receives “direct” ionizing illumination from the central star. In this case nw ∝ R−3/2

and the mass loss is weighted toward larger radii,

d Ṁ

d R
∝ 2π R nwcs ∝ R1/2 . (12.17)
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In general one expects the inner disk regions to match the “direct case” more nearly (because
of limited attenuation) and the “diffuse case” at large radii.

Detailed numerical solutions of the coupled hydrodynamics and ionization balance prob-
lem were presented by Alexander et al. (2006a) for the case in which the inner disk
has drained and the direct flux dominates. The resulting mass loss rates for a 1 M�
central star and an ionizing flux �41 = 1 were Ṁ ∼ 10−9 M� yr−1, comparable to the
rough estimate above (equation (12.15)). For comparison, Clarke et al. (2001) estimated
Ṁ ∼ 4 × 10−10 M� yr−1 for the optically thick case.

Combining photoevaporative winds with simple viscous accretion models such as those of
§12.2 results in a two-stage evolution (Clarke et al. 2001; Matsuyama et al. 2003; Alexander
et al. 2006b). Viscous evolution dominates in early stages, depleting the disk as it accretes
onto the central star. The disk accretion rates decrease with time (equation (12.4)); when they
fall below the photoevaporation rate, the outer disk can no longer supply mass to the inner
disk. The inner disk then drains out rapidly on its relatively short viscous timescale, leading
to the development of an inner disk hole. In the second stage, the evaporation of the outer
disk proceeds more rapidly because of the absence of an inner disk wind, and eventually
photoionization disperses the disk. The most detailed calculations of this combined evolution
are those of Alexander et al. (2006b), who find typical inner disk clearing on timescale of a
few Myr and full disk dispersion on timescales of order 10 Myr, assuming �41 = 10.

The effects of gas evaporation on small dust and therefore disk clearing are somewhat
uncertain. The photoevaporative wind itself is unlikely to remove any but the very smallest
dust, due to its low density (Takeuchi et al. 2005). Dust settling, migration, growth, and col-
lisional replenishment and/or destruction further complicate the situation (§12.6). However,
once the inner disk drains away, removing gas from the inner disk, dust removal by radiation
pressure and/or Poynting–Robertson drag (§12.10) can be rapid. In addition, a decreasing
gas density with decreasing radius will result in stopping the migration of the dust (Rice
et al. 2003). Thus, the removal of inner disk gas is likely to be correlated with the removal
of inner small dust.

The photoevaporative model clearly can produce inner disk holes, as seen in the transi-
tional disks (§8.8), but there are some difficulties in applying this mechanism to all systems.
The model predicts inner disk clearing when the photoevaporative mass loss rate is larger
than the disk accretion rate – otherwise, the outer disk replenishes the inner disk faster than
evaporative loss. However, Najita et al. (2007) pointed out that several transitional disk sys-
tems are estimated to have accretion rates well above the 10−9 M� yr−1 estimate of the
evaporative rate. In addition many of the transitional disk systems seem to have relatively
massive disks, whereas the simple viscous evolution model would predict lower mass disks
when accretion rates are low.

Another problem is to estimate the true ionizing fluxes. Models of the accretion shock
(Calvet & Gullbring 1998; Gullbring et al. 2000; Figure 8.16) generally indicate little emis-
sion in the Lyman continuum; thus, the EUV radiation most probably results from enhanced
solar-type magnetic activity. There are no direct measurements of the Lyman continuum flux
for any solar-type star at present other than the Sun; this is because even a trace amount of
interstellar neutral hydrogen suffices to completely absorb emission just shortward of 912 Å,
the Lyman limit. Alexander et al. (2005) attempted to use emission-measure analyses of the
ultraviolet lines of T Tauri stars to estimate Lyman continuum fluxes, with estimates rang-
ing from 1041–1044 photons s−1, which would strongly photoevaporate disks. However, it is
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extremely difficult to estimate the photoionizing flux from this kind of analysis. Lyman con-
tinuum emission due to stellar chromospheric activity generally is estimated to originate in
relatively low-temperature gas, T ∼ 10 000 K, where emission measure analyses are uncer-
tain. (The Lyman continuum arises at such temperatures because hydrogen becomes ionized
above 10 000 K.) A flux of 1044 photons s−1 is implausible because it represents emission
of nearly 1 L� in the Lyman continuum, more than the X-ray or (most) accretion luminosi-
ties. A flux comparable to the typical X-ray luminosity Lx ∼ 1030 erg s−1 would imply a
photon flux closer to 1041 photons s−1, which would allow disks to survive for several Myr,
as observed. Moreover, if accretion is actively proceeding, the magnetospheric accretion
columns and/or the inner disk wind could easily be optically thick in the Lyman continuum,
preventing ionizing photons from reaching the outer disk.

Ribas et al. (2005) used data from the Far Ultraviolet Spectroscopic Explorer and the
International Ultraviolet Explorer, among other missions, to estimate short-wavelength
emission fluxes from nearby solar-type stars. For the youngest star in their sample, EK Dra
(age ∼100 Myr), they used the flux evolution in other wavelengths to scale to the Sun in
the 360–920 Å band to arrive at an equivalent photon flux of about 4 × 1039photons s−1. If
this flux can be taken to be typical of low-mass T Tauri stars, the result suggests evapora-
tion of disks due to stellar magnetic activity occurs on timescales of order 10 Myr or more.
Whether photoevaporation plays a major role in the strong disk evolution from 1–10 Myr
remains unclear, if not unlikely.

Disks close to a hot luminous star can be photoevaporated rapidly due not only to EUV
(Lyman continuum) radiation but also by far-UV (∼1000 Å) radiation, which can heat the
gas to temperatures ∼1000 K as electrons are driven off grains. The FUV radiation thus can
drive a wind off the outer disk, and may be more important in many systems if most of the
disk mass resides at large distances. We have clear examples of this disk photoevaporation in
the Orion Nebula, with direct HST observations of “proplyds” (§1.6; Figure 1.6). However,
it is important to note that the disk systems must be relatively close to the ionizing star for
photoevaporation of this type to be effective. For example, Störzer and Hollenbach (1999)
estimate that disk systems must come within ∼0.3 pc of the ionizing star θ1 C Ori in the
Orion Nebula for evaporation to become important. As the half-mass radius of the Orion
Nebula Cluster is ≈0.8 pc (Hillenbrand & Hartmann 1998), it is quite likely that the majority
of stars in the Orion Nebula will not have their disks externally photoevaporated.

12.5 Dust evolution
Dust grains in the disk generally are thought to evolve to larger sizes, with a

decreasing population of small grains with increasing age. During this overall growth, dust
is expected to settle vertically and drift radially. This evolution of dust in size and position in
the disk can reduce and ultimately eliminate infrared excess emission. For present purposes
we simply sketch some basic ideas; useful reviews are given by Weidenschilling and Cuzzi
(1993), Cuzzi and Weidenschilling (2006), and Dominik et al. (2007).

Consider first vertical settling in a non-turbulent disk. While the gas scale height is main-
tained by frequent collisions, dense dust grains feel much less support and so they tend to
settle toward the midplane. The equation of motion in the vertical (z) direction is

dvz

dt
= −G M∗z

R3
+ Fd

mg
= −�2z + Fd

mg
, (12.18)
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where Fd is the drag force acting on the particle, mg is its mass, � is the Keplerian angu-
lar frequency, and the other symbols have their usual meaning. For concreteness we take
the Epstein drag formula, valid in the limit when the gas mean free path is larger than the
spherical particle radius a and vz is less than the sound speed cs; then (Weidenschilling
1977)

Fd = −4π

3
a2ρcsvz . (12.19)

Generally particles will rapidly approach terminal velocity such that

vz = −�2z
m

4/3πa2ρcs
= −�2z

(
aρg

ρcs

)
= −�2zte , (12.20)

where te is the “stopping time” of the particle. Thus, the characteristic settling time of a
particle is

tsett = (�2te)
−1 . (12.21)

This settling timescale is extremely rapid. To illustrate, a typical minimum-mass solar
nebula at 1 AU might have a gas density of order ∼10−13 g cm−3 at 4 scale heights above the
midplane; then 1 μm-sized grains will have stopping times of a few hours and settling times
of a few hundred years. Moreover, as grains collide at least some will stick, increasing the
mass-to-surface area ratio, which makes settling happen even faster. Short settling timescales
were a reason why there was initially some resistance to the concept of flared dusty disks.

Although it is clear that T Tauri disks are “flared”, only a relatively small amount of dust
need be suspended to make a flared “surface” which can more effectively intercept light
from the central regions, and reradiate the energy downward into the disk. As shown in
Figure 4.10, for an ISM-like distribution with small dust the opacity is of order 102 cm2 g−1,
so that a vertical optical depth of unity requires a surface density of only 0.02 g cm−2. Using
Figure 8.7 (which probably represents a relatively low-mass disk), it appears that even at
100 AU only a few percent of the mass of the dust need be suspended in the form of small
grains (which are required to explain silicate emission features; §8.2, Figure 8.5), and much
less at smaller radii.

The simple estimate in equation (12.19) underestimates the true drag force for realistic
small particles, which are not spherical. Instead, growth initially proceeds by sticking parti-
cles together into long chains and “fractal-like” structures, which have surface areas growing
roughly as their masses (e.g., Weidenschilling & Cuzzi 1993; Wurm & Blum 1998). How-
ever, it does not appear that enhanced drag for fractal grains can account for the extended
periods of dust suspension, as particles keep growing on rapid timescales and eventually
compactify (Dominik et al. 2007).

Another important question is the role of turbulence. Vertical turbulent motions can help
delay or slow settling; and it seems essential that T Tauri disks have at least some turbulent
regions, if the MRI is to drive the observed accretion. Unfortunately, the levels of turbulence
and their spatial distribution within disks are highly uncertain (§7.6). Moreover, turbulence
can actually enhance the depletion of small dust particles if they can be mixed by turbu-
lence down to lower layers where they are then accreted onto larger objects (Dullemond &
Dominik 2005).

Dullemond and Dominik (2005) and Tanaka et al. (2005) considered the long-term evolu-
tion of dust particles in disks. In both treatments, the disk interior to about 10 AU becomes
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optically thin on timescales of 0.1 to 1 Myr, as dust particles settle and coalesce into larger
bodies. The evolution of the mm fluxes is slower because of longer timescales of accumu-
lation in the outer disk, with substantial reductions in mm-wave emission on timescales of
10 Myr. One might expect that turbulence would lengthen settling and growth timescales,
but Dullemond and Dominik find faster growth due to turbulent mixing. The rapid clearing
of the inner dust disk in these two sets of models is inconsistent with observations, leading
Dullemond and Dominik to argue that ongoing dust destruction is required to repopulate the
small particle distribution.

As dust grains settle they are increasingly likely to collide with, and accrete, other parti-
cles; this growth eventually makes them settle to the disk midplane in a dense layer. Further
growth is enhanced by radial drift, which promotes further accretion. This radial drift is
caused by the difference in the azimuthal velocities of gas and dust. The equation of motion
for the (slowly accreting) gas in the midplane is

v2
vφ

R
= 1

ρ

d P

d R
− G M∗

R2
. (12.22)

In general the gas pressure gradient is outward, which results in the gas rotating at a velocity
slightly below Keplerian. A dense body will feel a reduced or negligible radial pressure
force and then will orbit at a velocity close to Keplerian. This means that the body will feel a
headwind, which results in a drag force transferring angular momentum to the gas from the
body; as a result the body moves inward. From equation (12.22) one can estimate the gas
rotation rate as

v2
vφ

∼ v2
K − c2

s , (12.23)

and therefore the departure from Keplerian rotation is of order

δv ∼ vK

2

(
c2

s

v2
K

)
. (12.24)

Typically, δv ∼ 1 − 3 × 10−3vK; even this modest velocity difference can have important
effects.

Small particles basically move with the gas and thus have slow drift velocities; large
bodies feel negligible drag force and thus do not migrate due to this process (though they
can migrate due to gravitational torques; §12.7). On intermediate size scales, the “smaller”
and “larger” regimes have differing behavior. For the smaller range, the particles basically
rotate with the gas, and thus are in sub-Keplerian motion; they then tend to fall toward the
central star until they achieve a terminal velocity. The radial equation of motion then reads

vR
dvR

R
+ G M∗

R2
= 1

ρ

d P

d R
= −vR

te
. (12.25)

Setting d P/d R ∼ ρc2
s /R, the terminal radial velocity is

vR ∼ c2
s te
R

∼ 2�teδv . (12.26)

When the bodies are large enough that they decouple strongly from the rotation of the gas,
they feel a headwind and thus lose angular momentum and migrate inward. This results in a
radial inward velocity of
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vR ∼ 2δv

�te
. (12.27)

The maximum radial drift velocity of vR = δv occurs when �te = 1 (Weidenschilling
1977). For typical disk models, this maximum velocity is achieved for bodies on the size of
cm to m, depending upon radial position. With δv >∼ 10−3, such bodies can migrate into the
central star on timescales of a thousand orbits or less. Even cm-sized particles at distances
of 100 AU may drift inward on timescales of order 1 Myr (Takeuchi & Lin 2005).

What happens to these bodies is uncertain. For example, the difference in velocities
between objects within an order of magnitude of meter size can result in their complete shat-
tering or disruption, as gravity is unimportant on these scales as are electrostatic forces – the
so-called “rubble piles” appear to be easy to disrupt, though a high porosity might improve
matters by allowing “crushing” to occur (see, e.g., discussion in Cuzzi & Weidenschilling
2006, Benz & Jutzi 2007). Turbulent eddies or whirlpools might help collect these objects
at low velocities so that they can accrete (e.g., Rice et al. 2006b), or alternatively disperse
them more widely.

What can observations tell us, in view of the vast complexity of the processes affecting
dust? As discussed in §8.3, sub-mm and mm wavelength observations strongly imply growth
of grains well beyond typical sizes in the diffuse interstellar medium. The most recent spa-
tially resolved observations at long wavelengths indicate grain growth to at least cm sizes
at radii >∼100 AU (Natta et al. 2004; Wilner et al. 2005; Rodmann et al. 2006), based on
the observed low spectral indices (§8.2). As discussed above, this is consistent with models
showing rapid growth (e.g., Dominik & Dullemond 2005; Tanaka et al. 2005). On the other
hand, if radial drift operates, it should remove grains of these sizes fairly rapidly, leading
Takeuchi and Lin (2005) to argue that replenishment of mm to cm-sized dust due to colli-
sions of larger bodies must be occurring – analogous to inferences of small dust production
in debris disks (§12.10).

Similarly, the rapid inner disk clearing of small dust predicted by models like those of
Tanaka et al. (2005) and Dominik and Dullemond (2005) is inconsistent with the SEDs
of many objects. Furlan et al. (2005, 2006) found that better fits to the observed Spitzer
IRS spectra resulted from models with a significant amount of dust settling, with levels of
depletion of 10−2 to 10−3 from interstellar medium values of small dust, but this is far more
small dust than in the aforementioned models. (Note that Sano et al. (2000) estimated that
depletions of order 10−4 are needed for the MRI to operate robustly in upper disk layers;
§7.5). Again, another possible solution to this problem is to invoke continued production of
small dust by collisions between larger bodies.

There is some modest evidence for decreasing disk flaring with increasing age, as would
be expected from settling/growth models (Hernández et al. 2007), but the trend is relatively
weak, in part because there is a wide range of behavior at a given age. A sample of Spitzer
IRS SEDs from the Taurus star-forming region (Figure 12.6) shows a variety of SED slopes
and silicate emission strengths in this relatively young population. There is a slight trend for
the silicate emission strength to be weaker relative to the continuum in disks with steeper
slopes – less flaring – and presumably more settling; this would suggest a correlation of
increased settling with increased grain growth (which weakens the silicate features).

Smooth 10 μm features are consistent with amorphous silicates such as are typical of
the diffuse interstellar medium; the squarish or structured silicate features seen in some
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Fig. 12.6. Infrared spectral energy distributions of a sample of Taurus young stars, observed
with the IRS instrument on the Spitzer Space Telescope. Each object shown is representative
of 10–20 systems in Taurus. The strength of the 10 μm and 20 μm silicate emission features
is widely variable, as shown. Objects with SEDs similar to that of CY Tau, with almost no
silicate emission, tend to have steeper SEDs, suggesting that the least flared disks (presum-
ably the most settled disks) also have the weakest silicate feature (suggesting grain growth
to sizes beyond a few μm (see text). Data from Furlan et al. (2006); plot courtesy E. Furlan.

objects in Figure 12.6 are the result of the presence of crystals. The mystery is that to pro-
duce crystalline structure in initially amorphous particles requires heating to T ∼ 1000 K,
while the regions in which the silicate features are produced have temperatures T <∼ 300 K.
The observation of crystalline silicate features in cold regions has lead to various proposed
mechanisms to move substantial amounts of material from 0.1 AU, where such temperatures
might be achieved naturally, to nearly 1 AU; however, this is easier said than done. Wat-
son et al. (2008) found that there is a statistical correlation with the fraction of crystalline
silicates in disk upper layers with the amount of disk flaring, i.e., the spectral slope of the
disk continuum becomes steeper as the crystalline fraction increases. One wonders whether
the production of such heating might not be due to in situ production by collisions among
larger bodies. Interferometric observations suggest that crystallinity is more pronounced in
the inner disk regions of Herbig Ae/Be stars than at outer disk radii (van Boekel et al. 2006),
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which could be consistent either with limited outward transport or with production by local
collisions, which would be more frequent in inner regions.

Meteorites provide abundant evidence of a variety of heating events in the early solar
nebula (see, e.g., Lauretta & McSween 2006). The mechanisms responsible for this heating,
especially for the mm-sized, roundish chondrules, are controversial. Much work remains
to be done before the detailed solar system results can be folded in with astrophysical
constraints to provide a more comprehensive picture of solids in protoplanetary disks.

12.6 Core accretion and planet formation
The other obvious mechanism for clearing disk material is the formation of massive

planets, which can act in a manner similar to binaries, but with the potential of sweeping out
material over a wide range of disk radii if many objects form at differing distances. While
small (terrestrial) planets will eventually clear regions of small dust, they do not capture
substantial amounts of gas. Given the evidence for gas clearing accompanying dust clearing
(§8.1), giant planets need to be invoked in many cases. Giant planet formation generally
requires the accretion of substantial amounts of gas; in addition, large planets can dam up
the gas attempting to accrete from the outer disk, allowing the inner disk gas to drain away
via accretion.

Two general mechanisms have been suggested as the main means of giant planet forma-
tion: core accretion and gaseous gravitational instability. In the core accretion model, solid
bodies accumulate via collisions until the resulting core is sufficiently large that its grav-
ity can pull in surrounding gas (see Lissauer & Stevenson 2007 for a recent review). The
gaseous gravitational instability is simply a case of fragmentation (§7.7). A kind of hybrid
model posits that the gravitational fragmentation occurs in a dense dust layer, forming cores
rapidly that then accrete gas from the nebula.

Beyond the evidence for a core in Saturn, the large fractions of ice and rock in Uranus
and Neptune, and the possible core of Jupiter, the core accretion model has the advantage
that something like this must occur to make the terrestrial planets. One might expect that, if
grain growth to cm sizes occurs in less than 10 Myr at radii of 100 AU, growth to much larger
bodies must have occurred at radii of order 1 AU in even shorter timescales, as suggested by
the calculations discussed in the previous section.

There is some concern that core accretion might proceed too slowly to explain the
observed disk clearing on timescales as short as 1–2 Myr in significant numbers of stars.
There are two potential bottlenecks in the process. One is the formation of km-sized plan-
etesimals from cm-sized objects. Such bodies are thought to be held together lightly – too
large for effective sticking and too small for gravity to become important – and, as bod-
ies of differing sizes have differing velocities due to gas drag (previous section), collisions
between these objects might shatter them rather than build them up. In addition, the rapid
migration of such bodies (see section 12.5) requires fast agglomeration, even for km-sized
objects (Ward 1997; §12.9).

Various schemes of dust concentration might help avoid shattering by reducing relative
motions and increasing densities, perhaps through vortices or eddies (e.g., Klahr & Boden-
heimer 2006) or in other turbulent structures (Cuzzi et al. 2001). Alternatively, the probable
development of a dense dust layer at the disk midplane led Goldreich and Ward (1973)
to suggest that planetesimals might form by gravitational instability; however, there are
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difficulties with this model. Weidenschilling (1980, 1984; also Cuzzi et al. 1993) pointed
out that the formation of such a dense dust layer would necessarily generate turbulence
which would work against gravitational collapse. In a typical nebular model, the disk sur-
face density is well below that required by the Toomre criterion, and so an unstable dust
layer must have a density dominated by particles. However, such a (large) dust or parti-
cle layer will try to rotate at Keplerian velocity, faster than the partially pressure-supported
gas above/below it, as discussed above. Thus, a shear develops which tends to inflate the
dust layer and prevents gravitational instabilities from growing. (Whether this also applies
to a very high surface density region, such as might develop in dead zone models, is an
open question.) An implication of these results is that strong enhancements of large dust
particles can cause some turbulence even in dead zones. Radial drift might also help in the
concentration of solids (Youdin & Shu 2002).

Once km-sized planetesimals are made, collisions among them can lead to the building of
terrestrial planets and giant planet cores. The remaining bottleneck is that of accumulating
gas. Assuming a sufficiently large core can be assembled rapidly, the time required to reach
the epoch of runaway accretion depends upon the opacity of the growing planetary envelope.
The energy released by accretion of planetesimals and gravitational contraction of the enve-
lope must be radiated by the outer envelope; the higher the opacity, the larger the envelope.
A larger envelope in turn reduces the rate at which the planet can accumulate gas, because
there is less “room” to accrete within the planet’s gravitational domain (roughly, its “Hill
sphere”, within which the planet’s gravity overcomes the tidal forces of the central star).
Hubickyj et al. (2005) showed that, with sufficiently massive cores, giant planets can form
within 1 Myr for an opacity ∼2% of interstellar values. These authors attribute the reduction
in opacity (dominated by dust) to rainout of solid materials in the planetary envelope; as
grain growth almost certainly preceeds core formation, reduced dust opacity is an extremely
plausible assumption.

12.7 Gaseous gravitational instability and planet formation
Boss (2003) has championed the idea of formation of giant planets through gaseous

gravitational instability. The chief attractions of this idea are: first, that we expect disks to be
relatively massive initially; and second, this mechanism avoids all the uncertainties involved
with core accretion – grain growth, settling, turbulence, and migration.

There are difficulties with this idea, however, starting with theoretical constraints using
a vertically averaged approach (e.g., Rafikov 2005). We can write the cooling timescale as
the energy content of the disk �c2

s /(γ − 1) divided by its (two) surface cooling rate, 2σ T 4
eff.

Using the simple relation between the effective temperature Teff and central temperature Tc

for an optically thick gray radiative disk (Hubeny 1990)

T 4
c = 3

8
τT 4

eff , (12.28)

the cooling time can be written as

tc ∼ �c2
s

γ − 1

4τR

3σ T 4
c

(12.29)
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where τR = �kR/2 is the vertical Rosseland mean optical depth. For gravitational
instability, we require Q ∼ 1 ∼ cs�/(πG�); rearranging,

tc� ∼ 1

(πG)2

c4
s

γ − 1

2kR

3σ T 4
c

(
G M

R3

)3/2

. (12.30)

If we adopt the Rosseland mean opacity of Bell and Lin (1994) for temperatures lower than
about 170 K, kR ≈ 2 × 10−4T 2, then numerically we have

tc� ∼ 4 × 104(M/ M�)3/2 R−9/4
10 . (12.31)

Recall that numerical experiments suggest tc� ∼ 3 for gravitational fragmentation (Gammie
2001; Johnson & Gammie 2003; Rice et al. 2003; §7.7). This is qualitatively reasonable;
unless a perturbation can condense on a timescale shorter than an orbital period, it will tend
to shear out. These results suggest that if such gravitational fragmentation occurs at all, it
would be at large radii, R ∼ 100 AU; but then disks tend to become optically thin, changing
the analysis.

These considerations apply to linear perturbations. It is easy to imagine producing highly
non-linear perturbations in a disk due to the collapse of a very strongly non-axisymmetric
protostellar cloud core (§6.2). However, the disk would be strongly perturbed at early times,
suggesting that if fragmentation were to occur, it would tend to be during the protostellar
phase – especially as the disk is more likely to be relatively massive in comparison with
the central star during this phase. Fragmentation before most of the disk mass has fallen
in poses problems. The danger is that either the fragments continue to accrete mass from
the continuing infall and become companion stars, not planets (e.g., Bate & Bonnell 1997),
or that the continuing infall leads to massive disk accretion, forcing the fragments into the
central star during Type II migration (see next section).

Even if fragmentation could occur after infall ceases, one would still expect it to be more
important early on, when the disk is more massive. It is not obvious how initial gravitational
instability would explain the observed clearing of disks over millions of years.

12.8 Migration
The discovery of hot Jupiters (i.e., massive planets very close to the central star)

made it painfully obvious that planets can migrate substantial distances inward. (Hot Jupiters
are very difficult to form in situ because disks probably can’t contain enough mass at such
radii, condensation of ices and even dust is more difficult, etc.) Making planets move large
distances does not seem to be a problem; if anything, many investigations suggest that it is
all too easy to have most or all planets and planetesimals accreted into their central stars,
leaving little or nothing behind.

Beyond the radial drift of small bodies discussed in §12.6, planetesimals and planets may
migrate through gravitational interactions with disks by one of three basic mechanisms.
Using the typical astronomical convention of adopting uninformative names, these mecha-
nisms are called Type I, II, and III migration, and operate as follows (see also discussion in
Papaloizou et al. 2007).

Type I. A body of sufficient mass to have a small but non-negligible gravitational effect on
the disk will excite spiral density waves, which have the form shown in the right-hand panel
of Figure 7.1 (with the body in the center of the perturbation labeled “2”). The resulting
torques thus are analogous to the case of gravitational instability; the trailing arm takes up
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angular momentum from the body, while the leading inner arm adds angular momentum. In
general, the torques from the outer arm exceed those of the inner arm; as a result, the body
migrates inward. The migration timescales for objects of masses ∼10 M⊕ are very short,
suggesting difficulties in having the core-accretion model work for Jupiter-like objects (e.g.,
Ward 1997; D’Angelo et al. 2003). Possible solutions to this problem include keeping cores
significantly below ∼10 M⊕, having rapid gas accretion to form the giant planet before
migration into the central star, and/or reducing the Type I migration rate by interactions with
the turbulently structured disk, resulting in more of a random-walk migration (Nelson &
Papaloizou 2004).

Type II. The exertion of torques on the spiral arm by a body implies opposing torques
applied to the disk. The body imparts angular momentum to the outer disk and takes up
angular momentum from the inner disk. Large planets – typically on the order of Saturn
mass – can open a gap when the gravitational torques exceed the gap-closing viscous and
pressure effects (e.g., Lin & Papaloizou 1986a). The planet then migrates inward, carried
along with the disk accretion (Lin & Papaloizou 1986b). Nominally, the migration time is
expected to be the viscous timescale, although a low-mass disk may not be able to affect a
more massive planet significantly (e.g., Edgar 2007 and references therein).

Type III migration involves torques involving material flowing through the co-orbital
region. Because the disk structure and flows are so complicated in this region, many uncer-
tainties remain. Migration apparently can be either inward or outward, and very rapid, and
may only be important in massive disks.

Attempts have been made to incorporate migration into models of planet formation. Ida
and Lin (2004) ignored Type I migration because it was too rapid and concentrated on Type
II migration for gas giants. Assuming completely viscous disks, Ida and Lin adopted a value
of α ∼ 10−4 for their simulations, to be consistent with an estimated photoevaporation time
of order 10 Myr. This value is much lower than typical numerical simulations yield, ∼10−2,
which is also the value used for the simple viscous evolution model of §2.2. Low values of
α ∼ 10−4 presumably are required to make the viscous timescale at 10 AU (equation (12.6))
long enough for planets to form; viscosities two orders of magnitude higher could easily end
up with the accretion of all the giant planets into the central star, with perhaps infrequent
exceptions where conditions are just right (say, with timely outer disk photoevaporation)
to halt the Type II motion. Such low viscosities seemingly imply that the MRI is highly
inefficient, as would be the case if dead zones are present.

12.9 Disk gaps and holes
Theory indicates that even massive planets open disk gaps about them that are no

more than about a factor of two or three wide in radius. The transitional disks (§8.8), on the
other hand, exhibit behavior much more like inner disk holes, with substantial clearing at
radii ranging over more than an order of magnitude. One possibility is that Type II migration
is not occurring, or is slowed down sufficiently such that the material inside the gap has a
much shorter viscous time than material outside the gap, resulting in the rapid accretion and
evacuation of the inner disk. Another possibility is that multiple bodies are present and their
gaps are overlapping. High-resolution imaging is needed to explore these possibilities.

It is difficult to detect disk gaps from SEDs. A gap of a factor of two in radius would
correspond to a gap in the temperature distribution of the disk of a factor of only ∼21/2 or
less. To put this in perspective, the FWHM of a blackbody SED is roughly factor of three
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Fig. 12.7. SEDs of UX Tau A (left) and LkCa 15 (right), along with models. UX Tau A
appears to have optically thick emission from a region close to the star, with a disk gap
of about 56 AU. LkCa 15 has a small amount of optically thin dust within a gap of outer
radius of about 46 AU, consistent with mm-wave interferometry (Piétu et al. 2006). The solid
curves are total model fluxes to compare with observations; moving sequentially to longer
wavelengths, the dotted curves show the stellar photosphere, long dot-long dash curves inner
disk dust emission, dot-dash curves emission from the disk “wall” facing the star, and light
dot-dashed curves outer disk emisison. Modified from Espaillat et al. (2007).

in wavelength; this implies that emission from optically thick disk annuli with temperature
differences less than a factor of three will overlap in the spectrum.

Detailed analysis of a few stars with Spitzer IRS spectra has identified a few potential gap
systems. UX Tau A appears to be a good candidate, with a very large dropout in infrared
flux in the 10 μm region, but what appears to be an optically-thick inner disk wall (Espaillat
et al. 2007; Figure 12.7). LkCa 15 shows a more subtle mid-infrared dip (Figure 12.7), but
the inference of a large gap is supported by mm-wave interferometry (Piétu et al. 2006). The
presence of a few systems with very large gaps suggest that many more systems with small
gaps exist; interferometry with ALMA should be able to test this conjecture.

12.10 Debris disks
After the optically thick phase, many older stars exhibit optically thin, low-mass (in

small grains), and gas-poor disks. The prototype of these systems is β Pic (Smith & Terrile
1984), imaged as an edge-on disk. By now many other optically thin dust disks have resolved
images (§1.6; Figure 1.10). Because of their relatively small amounts of dust emission (e.g.,
Figure 1.11, most of the optically thin dust disks originally were found around relatively
luminous nearby objects – main sequence stars of types A–F – given the limited sensitivity
of the IRAS satellite (Backman & Paresce 1993); however, it is clear that older low-mass stars
can also have optically thin disks (e.g., Greaves et al. 1998). These optically thin systems
are called “debris disks”, because it appears that this dust must be replenished continually
to avoid removal by radiation pressure or infall due to Poynting–Robertson drag, both in the
absence of significant amounts of gas (see, e.g. Backman & Paresce 1993).

A detailed treatment of both radiation pressure and the Poynting–Robertson effect is given
by Burns et al. (1979); here we sketch the main ideas. Radiation pressure on a spherical dust
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grain of radius a exceeds the gravitational attraction of star of luminosity L∗ and mass
M∗ when

πa2

4/3πa3ρg

L∗
4πcG M∗

∼ 0.2

(
a

μm

)−1 (
ρg

3 g cm−3

)−1 (
L∗
L�

) (
M∗
M�

)−1

> 1 , (12.32)

where we have assumed a geometrical cross-section for the interaction with radiation. Thus,
even for T Tauri stars, small grains with a <∼ 0.1 μm can be blown away rapidly, and for A
stars, with typical ratios of L∗/M∗ of 10 or more in solar units, only grains of sizes >1 μm
will resist radiative expulsion.

To estimate the Poynting–Robertson timescale, consider for simplicity the above dust
grain to be in circular orbit at r . In its rest frame the grain sees a component of radia-
tion pressure opposing its motion due to aberration, proportional to vφ/c, where vφ is its
azimuthal velocity. This component of the radiation pressure force produces a torque on the
particle, reducing its angular momentum and causing it to fall in. In this simplified example,
assuming slow drift so that the particle is always on radial orbits, we have

drvφ

dt
≈ L∗

4πr2c

3πa2

4πa3ρg

vφ

c
, (12.33)

where ρg is the density of the particle. Using rvφ = (G M∗r)1/2,

dr1/2

dt
≈ L∗

4πr3/2c2

3

4aρ
g

. (12.34)

Integrating, we find the timescale for the particle to move from r to r → 0,

tPR ≈ 4πaρg

3

πc2r2

L∗
≈ 2.2 × 103

(
a

μm

)
ρgr2

AU
L�
L∗

yr . (12.35)

Therefore, for dust with sizes <1 mm, Poynting–Robertson timescales at 1 AU are short –
and out to considerably larger radii for the higher-luminosity intermediate-mass stars.
Because of the short timescales for the removal of dust, debris disks are taken to be signa-
tures of solid bodies of significant size (planetesimals, asteroids, comets) which continually
collide and release small dust.

Statistically significant surveys of debris disks have been made possible with the advent
of the Spitzer Space Telescope (e.g., Chen et al. 2005; Rieke et al. 2005; Gorlova et al. 2006;
Meyer et al. 2006; Siegler et al. 2007; Trilling et al. 2008; Currie et al. 2007). These studies
suggest that debris disk frequencies around solar-type (F–G) stars are 10–30% at ages less
than 1 Gyr, and can be of order 15% for several Gyr. There is some evidence for a peak
in dust production at ages of around 10 Myr (Hernández et al. 2006; Currie et al. 2007),
with a decay in production thereafter, as predicted by the models of Kenyon and Bromley
(2005). As most of the detected excesses are much larger than that estimated for the zodiacal
dust in our solar system, also continually produced by the collision of solid bodies, the true
frequency of debris disk systems is likely to be much larger than quoted above.

Taken in conjunction with optically thick disk frequencies of order 50% or more at ages of
a few Myr, the commonality of debris disk systems suggests that the frequency of planetary
systems is much larger than represented by the current radial velocity detections. Indeed,
there are suggestions that some of the brightest excess systems are the result of transient
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dust production by collisions between large bodies (Rieke et al. 2005), though this is not
certain (Wyatt et al. 2007).

Direct imaging of many debris disks shows various kinds of structures – warps, non-
axisymmetric emission – which can plausibly be attributed to the perturbing gravity of giant
planets (e.g., Heap et al. 2000; Holland et al. 2003). In addition, most of these systems yield
evidence of inner evacuation of at least some dust species (for example, the ring system HR
4796; Koerner et al. 1998, Jayawardhana et al. 1998; Figure 1.10). This again suggests the
presence of large bodies in the inner regions which can sweep disks clear.

12.11 Speculations
As discussed in §8.3, grain growth to up to at least cm sizes appears to happen over

relatively short timescales at radii <∼100 AU. Unless growth is halted at meter-sized objects,
it is difficult to believe that growth to much larger bodies has not occurred at 1 AU. Indeed,
without substantial large bodies already present at 1 Myr, it is difficult to understand how
disks could clear in 3 Myr. Thus, the author’s speculation is that many T Tauri disks, even
though optically thick from 0.1 to hundreds of AU, already have substantial planetesimals
in the inner disk which are hidden from view by clouds of small dust (Figure 12.8). A
substantial number of bodies spread over a significant range of radii would also help explain
the inner disk holes of transition objects. Collisions among these bodies might also generate
enough heated material to produce in situ crystalline (i.e., annealed) dust.

The question then becomes: Why are exoplanet frequencies so low? Current results from
radial velocity surveys suggest that of order 10% of solar-type stars have massive plan-
ets within 5 AU, much less than the ∼60% of stars which have substantial gas and dust
disks at ages of 1 Myr (Figure 12.1). For the reasons sketched earlier in this chapter nei-
ther accretion nor photoevaporation are likely explanations. Reconciling the radial velocity
results with disk frequencies may require that most systems form relatively small Uranus- or
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Fig. 12.8. Two speculative pictures of typical T Tauri disks, with actively accreting, turbu-
lent upper layers, a dead zone in inner, midplane regions. On the left, even a fully active disk
probably has planetesimal formation in some regions even at ages of 1–2 Myr, hidden by the
small dust in upper layers. On the right, even small gaps opened by giant planets would be
difficult to detect purely by SED analysis; improvements in mm-wave interferometric imag-
ing with ALMA will undoubtedly show much more evidence for disk gaps, perhaps most
likely in the most evolved, settled disks.
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Neptune-mass planets; or that Jupiter-mass planets are typically formed at very large radii;
or that most planets are accreted into their host stars.

Figure 12.1, by demonstrating a range of clearing timescales, suggests that initial condi-
tions are important. Initial angular momentum is a likely candidate for explaining this range;
larger disks presumably should evolve more slowly. The current data provide a hint that
clearing from ∼60% of disks to ∼10% of disks occurs over 3–5 Myr, with the last 5–10%
of disks taking much longer – 10 Myr – to clear. If this apparent trend holds up with more
data, it might provide a further clue to disk evolution.

Our limited understanding of disk structure and dynamics is a major obstacle to under-
standing planet formation. The layered disk model, with a low-viscosity region or dead zone,
may be important in avoiding excessively rapid Type II migration. A dead zone could result
in faster particle growth, both due to higher surface densities and lower turbulence, making
enormous differences in estimated timescales for planetesimal formation, and might have
profound effects on migration (e.g., Matsumura et al. 2007). Finally, the large uncertainties
in disk mass measurements directly demonstrate that much remains to be learned about the
physical conditions leading to planet formation.



Appendix 1 Basic hydrodynamic and
MHD equations

Here we list some basic MHD and gas-dynamic equations for reference. Derivations and
further discussion may be found, for example, in Priest (1984) and Shu (1992).

We assume a non-relativistic, one-component fluid of density ρ and velocity v. The
equation of continuity or mass conservation,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (A1.1)

is sometimes written as
Dρ

Dt
+ ρ∇ · v = 0 , (A1.2)

where the total time derivative
D

Dt
= ∂

∂t
+ v · ∇ (A1.3)

is sometimes called the convective time derivative, or the derivative following a fluid
element; ∂/∂t is the time derivative at a fixed location in space.

The momentum equation is

ρ
Dv
Dt

= −∇ P − ρ∇� + F , (A1.4)

where P is the gas pressure, � is the gravitational potential, and F includes other forces on
the volume. The gravitational potential is determined by Poisson’s equation

∇2� = 4πGρ . (A1.5)

If magnetic fields are present then the momentum equation becomes (using Gaussian cgs
units)

ρ
Dv
Dt

= −∇ P − ρ∇� + 1

c
J × B , (A1.6)

where J is the current density and B is the magnetic field strength, and the net charge is
assumed to be zero. If the fluid velocity is much smaller than the speed of light c, then it is
possible to neglect the “displacement current” term, ∂E/∂t , in Maxwell’s equation

∇ × B − 1

c

∂E
∂t

= 4π

c
J . (A1.7)

Then
1

c
J × B = 1

4π
(∇ × B) × B , (A1.8)
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and with a vector identity one may then write the momentum equation as

ρ
dv
dt

= −∇ P − ρ∇φ − 1

8π
∇B2 + 1

4π
(B · ∇) B . (A1.9)

Ohm’s law gives the current density J in terms of the electric and magnetic fields,

J = σ
(

E + v
c

× B
)

, (A1.10)

where σ is the conductivity of the fluid. In the simple ideal MHD limit that we consider in
this book, the conductivity is assumed to be effectively infinite, so that

E + v
c

× B = 0 . (A1.11)

Using this result, we can derive the “flux-freezing” result...
The first law of thermodynamics can be written as

du = −Pd

(
1

ρ

)
+ T ds , (A1.12)

where u is the internal energy of the fluid, T is the temperature, and s is the entropy. For
an ideal polytropic gas, u = cV T , where cV is the specific heat at constant volume. The
generalized energy equation is

ρ
D

Dt

(
u + v2

2

)
= −�r − ∇ · q + He + v ·

(
1

c
J × B − ∇ P + F

)
, (A1.13)

where �r are the radiative energy losses, q is the conductive flux, and He represents the sum
of all other heating sources, including viscous dissipation (see, e.g., Priest (1984)).



Appendix 2 Jeans masses
and fragmentation

The Jeans mass is a concept frequently used to discuss gravitational instabilities, although
the background state assumed is not usually realizable (cf. Binney & Tremaine 1987),
i.e., the assumption of constant background density does not generally represent a solution
consistent with hydrostatic equilibrium.

Assume that the velocity and density can be represented by a mean state plus a small
fluctuation, so that v = v◦ + δv, ρ = ρ◦ + δρ. Then linearizing the equations of mass
conservation and momentum for the case of no magnetic pressure (Appendix 1),

∂

∂t
δv = − 1

ρ◦
∇c2

s δρ − ∇�, (A2.1)

∂

∂t
δρ + δv · ∇ρ◦ = −ρ◦∇ · δv , (A2.2)

where it is assumed that v◦ = 0, and that the equilibrium state is

c2
s

ρ◦
∇ρ◦ = −∇�◦ . (A2.3)

Using the Poisson equation relating the gravitational potential to the density,

∇2� = 4πGρ . (A2.4)

Making the further simplification (obviously inconsistent with the above) that the back-
ground density ρ◦ is constant, one can combine the equations to arrive at

∂2δρ

∂t2
= ρ◦

(
c2

s

ρ◦
∇2δρ + 4πGδρ

)
. (A2.5)

Taking a plane wave of the form

δρ = δρ◦ei(ωt−kx) , (A2.6)

the resulting dispersion equation is

ω2 = c2
s (k2 − k2

J ) , k2
J = 4πG

ρ◦
c2

s
. (A2.7)

When k < kJ, ω is imaginary; thus, there are exponentially decaying and exponentially
increasing solutions; the latter correspond to gravitational instability, i.e., the density grows
without limit.
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It is usual to define the Jeans mass by

MJ =
(

2π

kJ

)3

ρ◦ =
(

πc2
s

G

)3/2

ρ−1/2◦ . (A2.8)

For a given temperature and density, masses greater than the Jeans mass will be unstable
to gravitational collapse, based on this analysis. However, this solution has been called the
‘Jeans swindle’ (e.g., Spitzer 1978; Binney & Tremaine 1987) because the background state
does not correspond to any physical equilibrium. In certain cases the Jeans mass is a useful
guide to the likely scales of gravitational instability (Chapter 2).

One situation for which the assumption of a constant uniform background density as an
equilibrium state is correct is the special case of a uniform, infinite, and infinitely thin sheet
of matter (or a thin sheet where gradients in the perpendicular (z) direction can be neglected).
Then the conservation equations can be integrated vertically (in z), and the surface density
� takes the place of the volume density:

∂

∂t
� + ∇ · (�δv) = 0 , (A2.9)

�
∂

∂t
δv = −∇P − �∇�, (A2.10)

where the pressure has been vertically integrated. Linearizing as before, and starting from
rest,

∂

∂t
δ� + �◦∇ · δv = 0 , (A2.11)

�◦
∂

∂t
δv = −c2

s ∇δ� − �◦∇� . (A2.12)

We assume here implicitly that the gradient in the background state pressure balances the
gradient of the background potential. These gradients must be in the z direction by symme-
try. We can use this fact with Gauss’ law to derive the potential, by integrating the surface
field −∇� over a pillbox of area 2d A encompassing the sheet at z = 0; then

2 (−∇�) d A = −4πG� d A , (A2.13)

so that

∇� = 2πG� . (A2.14)

Therefore,

lim
ε→∞

∫ +ε

−ε

dz ∇2� = lim
ε→∞

[∇� |+ε −∇� |−ε

] = 4πG� . (A2.15)

From basic definitions, this implies

∇2� = 4πG�δ(z) , (A2.16)

where δ is the Dirac delta function.
As before, we analyze behavior for a plane wave perturbation in the x direction,

δ� = δ�a ei(kx−ωt) , (A2.17)
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where δ�a is a (constant) amplitude. This equation can only apply in the plane z = 0; for
z �= 0,

∇2δ� = 0 . (A2.18)

There is only one continuous function which satisfies both these constraints, and also goes
to zero at large z,

δ� = δ�a ei(kx−ωt)−|kz| . (A2.19)

Returning to the Gauss’ law evaluation,

lim
ε→∞

[
∂

∂z
δ� |+ε − ∂

∂z
δ� |−ε

]
= −2 | k | δ�a = 4πGδ� , (A2.20)

so that

�a = −2πGδ�

| k | . (A2.21)

Substitution of this result into the linearized equations leads to the dispersion relation

ω2 = c2
s k2 − 2πG�◦ | k | . (A2.22)

Again, when ω2 < 0, exponential growth occurs, so the sheet is gravitationally unstable for

| kJ |< 2πG
�◦
c2

s
. (A2.23)

Thus, just as in the basic Jeans mass calculation, wavelengths greater than λJ > 2π/kJ are
unstable. However, the sheet dispersion relation differs in an important way from the basic
Jeans mass result. Defining a growth rate � = −iω, and taking only real positive k,

�2 = 2πG�◦k − c2
s k2 , (A2.24)

so that � → 0 as k → 0. The growth rate has a maximum at kmax = kJ/2, unlike the basic
Jeans mass calculation, where the growth rate is largest for k → 0.

A stability analysis for infinite filaments yields results similar to those for sheets, in
the sense that the critical wavelengths (Jeans lengths) are of the order of the characteristic
dimension of the medium. Here we consider the isothermal case, following Larson (1985).
Assume a cylinder infinitely extended in the z direction. The filament has a density structure
as a function of cylindrical radius R of (Ostriker 1964)

ρ = ρ0

(
1 + R2

(4H2)

)−2

, (A2.25)

where the scale height H is given by

H = c2
s

(2G�0)
, (A2.26)

and �0 is the surface density taken perpendicular to the filament through its center. The
critical wavenumber is then (Stodolkiewicz 1963)

kc H = 0.798 . (A2.27)
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The critical mass is

Mc = 7.88
c4

s

G2�◦
, (A2.28)

which has obvious analogies to the case of the sheet. The dispersion relation has not been
worked out in detail for this case, but Larson (1985) estimates that the maximum rate occurs
for kmax ∼ 0.5kc, similar to the case of the sheet. The maximum linear growth rate is
estimated to correspond to an e-folding timescale of roughly

τe ∼ 3.6
H

cs
. (A2.29)

An interesting property of the infinite isothermal filament is that it has a critical (maximum)
line density (mass per unit length in the z direction), which is a function only of temperature
(Ostriker 1964):

mc = 2c2
s

G
. (A2.30)

This is equivalent to assuming that the external pressure at the outer boundary is negligible,
so that integrals of the density distribution extend effectively to infinity in R. Assuming a
mean molecular weight of 2.36mH, this line density corresponds to

mc = 16.3 T10 M� pc−1 , (A2.31)

where T10 is the gas temperature in units of 10 K. Line densities above this critical value
result in collapse in the R direction. The Jeans length in the z dimension for the cylinder of
critical line density is then

λc = 3.94
c2

s

(G�0)
. (A2.32)

As discussed in Chapter 2, the above discussion can be used as a guide to preferred scales
of fragmentation, but the assumed initial static conditions are unrealistic, as finite sheets and
filaments tend to collapse faster than linear growth rates; non-linear perturbations must be
present in the sheets and filaments for them to collapse faster than global modes and thus
fragment.



Appendix 3 Basic radiative transfer

Here we briefly review some basic equations of radiative transfer. A detailed discussion of
radiation transport is beyond the scope of this work; the most thorough treatment can be
found in Mihalas (1978).

The specific intensity Iν(θ, φ) is defined to be the amount of energy in a unit frequency
interval around ν passing through a unit area into unit solid angle in the direction (θ, φ) per
unit time. Dealing with this quantity has the advantage that it is invariant except for sources
and sinks of radiation. The total flux of energy Fν through an area d A is then

Fν =
∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ Iν , (A3.1)

where θ is the polar angle measured from the normal to the surface and φ is the azimuthal
angle. The total luminosity Lν from an object is then the integral of Fν over the entire surface
of the object, and the total radiative energy loss L is

∫ ∞
0 Lνdν.

A special case of interest is that of a flat uniform surface which radiates as a blackbody.
That is, the intensity emitted into space from this surface at all angles is the Planck function
Bν . Then the flux emitted by the surface, using the assumption of axisymmetry, is

Fν =
∫ 2π

0
dφ

∫ π/2

0
dθ sin θ cos θ Bν = 2π

∫ 1

0
dμμBν = π Bν , (A3.2)

where μ = cos θ and the total flux per unit area integrated over all frequencies is∫ ∞
0 dνπ Bν = σ T 4.

The time-independent radiative equation for the change of the intensity over a path s is

d Iν
ds

= −kν Iν + jν , (A3.3)

where kν is the opacity per unit volume, and jν is the emissivity. The term kν Iν represents the
absorption of radiation by the medium, while the emissivity represents sources of additional
radiation.

In plane-parallel geometry, with vertical height z, and with θ measured from the vertical,
the transfer equation can be written as

μ
d Iν
dτν

= Iν − Sν , (A3.4)

where

dτν = −kνdz , Sν = jν
kν

. (A3.5)
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The formal solution of the plane-parallel transfer equation for the intensity emerging from
the surface of the medium (where τν = 0) is

Iν(0) =
∫ τν

0
Sν(t

′)e−t ′/μ dt ′

μ
+ Iν(τν)e

−τν/μ . (A3.6)

The total intensity along the ray is the sum of the underlying intensity Iν(τν), attenuated by
the total absorption through the medium of optical depth τν , and the contribution from the
emission of the medium, represented by the source function Sν .

The formal solution is generally not very useful because the source function is not known
a priori; usually Sν depends upon the optical depth and other properties of the medium, as
well as on the radiation fields present. In the general case, the transfer solution is obtained
iteratively.

One special case of particular interest is that of extinction (by dust, for example) in an
absorbing slab of material far from the source. In this case Sν = 0 and only one angle of
inclination needs to be taken into account, so that the observed flux

Fν(obs) = Iν d� exp[−τν(total) = Fν(true) exp[−τν(total)] , (A3.7)

where d� is the solid angle subtended by the source at the observer and τν(total) is the
total optical depth along the path to the source. Usually extinction at a given wavelength
or frequency is expressed in magnitudes. The magnitude scale is related to fluxes F by
m1 − m2 = −2.5 log(F1/F2); then the extinction Aν in magnitudes (the reduction
in brightness due to the absorbing screen) is related to the extinction optical depth by
Aν = 1.086τν(total).

For all cases considered in detail here we may take azimuthal symmetry. Thus, the integral
over solid angle becomes ∮

d�

4π
=

(
1

2

) ∫ 1

−1
dμ . (A3.8)

We define the moments

Jν =
(

1

2

) ∫ 1

−1
dμ Iν ; Hν =

(
1

2

) ∫ 1

−1
dμμ Iν ; Kν =

(
1

2

) ∫ 1

−1
dμμ2 Iν . (A3.9)

The quantity Jν is the mean intensity and 4π Hν is the total flux of energy per unit area,
while 4π Kν/c is the radiation pressure (Mihalas 1978). (Note that all of these quantities are
per unit interval frequency at frequency ν.)

For simplicity assume that Sν is isotropic. Then the first two moments of the transfer
equation yield

d Hν

dτν

= Jν − Sν ; d Kν

dτν

= Hν . (A3.10)

Recasting the first equation as

d Hν

dz
= −kν(Jν − Sν) , (A3.11)

and if there is no net energy production in the atmosphere, as is often the case,

d

dz

∫ ∞

0
Hνdν = 0 , (A3.12)
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and so ∫ ∞

0
kν(Jν − Sν)dν = 0 , (A3.13)

which is the condition of radiative equilibrium. For example, the models of dusty infalling
envelopes discussed in §4.2 generate little energy except at the center; therefore the enforce-
ment of radiative equilibrium provides the solution for the envelope source function and
hence the emergent spectrum.

To see the general nature of the solutions, we make the approximation that the opacity as
a function of frequency kν = k is constant. Then the two moments of the transfer equation
can be integrated over frequency,

d H

dτ
= 0 ,

d K

dτ
= H , (A3.14)

which can be easily integrated to yield

K = Hτ + constant , J = S . (A3.15)

To complete the solution, one requires a closure relation between J and K and a boundary
condition. One simple approximation is to assume that, in this plane-parallel region, the
radiation is restricted to streaming only in two opposing directions,

I = I+ δ

(
μ − 1√

3

)
+ I− δ

(
μ + 1√

3

)
, (A3.16)

where δ is the Dirac delta function. With this choice of mean angle, J = 3K , which is
also the result for the nearly isotropic radiation fields expected at a large optical depth (cf.
Mihalas 1978). Assuming that the incoming radiation field I− = 0 at the outer boundary
τ = 0 of the atmosphere, it is straightforward to show that J (τ = 0) = √

3H . The solution
of the transfer equation for this case becomes

J = S = 3H

(
τ + 1√

3

)
. (A3.17)

If one further assumes that the source function is equal to the Planck function B =∫ ∞
0 Bν dν = σ T 4/π , and defines the effective temperature by 4π H = σ T 4

eff, the
temperature structure of the atmosphere is given by the standard gray atmosphere equation

T 4 =
(

3

4

)
T 4

eff

(
τ + 1√

3

)
. (A3.18)

Thus, the atmosphere can be taken to be approximately radiating as a blackbody, with
effective temperature Teff, with the radiation arising from a surface where τ ∼ 0.76. (The
equation for the gray plane-parallel atmosphere can be solved to arbitrary accuracy, but the
exact solution is not of great interest because the opacity is never constant with frequency.)

For dusty protostellar envelopes, one is generally interested in situations in which the
atmosphere cannot be approximated as plane-parallel. We therefore also consider the transfer
equation in spherical coordinates,

μ
∂ Iν
∂r

+ (1 − μ2)

r

∂ Iν
∂μ

= −kν(Iν − Sν) . (A3.19)
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Taking moments as before,

∂ Hν

∂r
+ 2Hν

r
= −kν(Jν − Sν) , (A3.20)

∂Kν

∂r
+ (3Kν − Jν)

r
= −kν Hν , (A3.21)

where the total energy emitted in dν at ν is Lν = 16π2r2 Hν .
We consider first the case in which the envelope is optically thin, which is relevant to

dusty envelopes surrounding YSOs at low frequencies. In this case clearly Hν ∝ r−2. If we
further assume that all of the radiation is provided by a central “core” with uniform intensity
Ic, then

Jν = 1

2

∫ 1

μmin

dμIc = Ic

2

⎡
⎣1 −

(
1 − R2

c

r2

)1/2
⎤
⎦ , (A3.22)

where μmin corresponds to the angle tangent to the stellar surface and Rc is the radius of the
core. It is simple to show that in the limit r >> Rc,

Jν → Ic
R2

c

4r2
→ Hν → Kν . (A3.23)

At the other extreme, suppose that the optical depth is very large. In this circumstance one
expects the radiation field to be nearly isotropic and to approach LTE. This implies Jν � 3Kν

and Sν � Bν � Jν . Equation (A3.21) becomes

1

kν

d Bν

dr
= 1

kν

d Bν

dT

dT

dr
= −3Hν . (A3.24)

Defining the Rosseland mean opacity

1

kR
=

∫ ∞

0

(1/kν) (d Bν/dT ) dν∫ ∞
0 (d Bν/dT ) dν

, (A3.25)

and integrating over frequency, one arrives at the well-known diffusion equation from the
theory of stellar structure (cf. Schwarschild 1958)

L = −64πσr2T 3

3kR

dT

dr
. (A3.26)

Finally, we consider an approximate solution for the gray (constant) opacity case where
sphericity is important. In this case the radiation field tends to be peaked in the radial
direction. For illustrative purposes we take K = J . Then

d J

dr
+ 2J

r
= −k H = − kL

16π2r2
. (A3.27)

Suppose that the opacity per unit volume has a power-law dependence, k = k◦(r/r◦)−n

(n > 1). Then
d J

dr
+ 2J

r
= k◦L

16π2r2◦

(r◦
r

)2+n
. (A3.28)

This has the solution

J = J1

(r◦
r

)1+n + J2

(r◦
r

)2
, (A3.29)
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where J1 and J2 are constants; the second term is the solution to the homogeneous equation.
Solving in terms of the radial optical depth

τr =
∫ ∞

r
kdr = k◦r◦

n − 1

(
r

r◦

)1−n

, (A3.30)

and using the boundary condition that as τ → 0, J → H , the result is

J = L

16π2r2
(τr + 1) , (A3.31)

which has obvious similarities to the plane-parallel case.



List of symbols

a Area element (Chapter 10)
a semi-major axis (Chapter 12)
A Atomic species (Chapter 10)
Ai j Einstein spontaneous emission probability
B magnetic field
Bp poloidal magnetic field (Chapter 10)
Bν Planck function
Bφ toroidal magnetic field (Chapter 10)
c speed of light
cs isothermal sound speed
cV ratio of specific heats at constant volume
Ci j collisional transition rate between (atomic) levels
d j/dt angular momentum flux per unit magnetic flux tube (Chapter 10)
ėw wind energy flux per unit magnetic flux tube (Chapter 10)
E energy
f oscillator strength
F radiant energy flux per unit area
g disk annulus torque
gi statistical weight of atomic level i
G gravitational constant
h Planck constant
h specific angular momentum (Chapter 7)
H disk scale height
Iν specific intensity
J angular momentum
J current density (Chapter 10)
k Boltzmann constant, wavenumber
l angular momentum constant on magnetic field line (Chapter 10)
lB angular momentum on field line carried by magnetic field (Chapter 10)
L luminosity
Lacc accretion luminosity
Lb bolometric luminosity
Ld disk luminosity
LD deuterium fusion luminosity
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LDSS steady-state deuterium fusion luminosity
L∗ stellar luminosity
mH mass of hydrogen atom
M∗ stellar mass
Md disk mass
MJ Jeans mass
Mr mass interior to radius r
Mcl mass of cloud
Ṁ mass infall or accretion rate
Ṁw wind mass loss rate
n number density
n power-law index of infall density distribution (Chapter 4)
n polytropic index (Chapter 11)
NH2 number density of hydrogen molecules
p impact parameter (Chapter 5)
p power-law dependence of surface density on radius (Chapter 8)
P gas pressure
q power-law dependence of temperature on radius (Chapter 8)
q mass ratio of binary (Chapter 12)
Q Toomre parameter for gravitational instability
r radial distance
rc centrifugal radius (Chapter 4)
rλ photospheric radius at wavelength λ (Chapter 5)
R cylindrical radius distance
Rcl radius of cloud
Rco disk co-rotation radius
Rm magnetospheric (disk truncation) radius
Rs sonic point radius (Chapter 10)
RT disk truncation radius
R∗ stellar radius
Sν source function
t time
tc cooling time
te characteristic stopping time of dust grain (Chapter 12)
tkh Kelvin–Helmholtz timescale
T temperature (K)
< T > mean internal stellar temperature
Td disk surface or effective temperature
Teff (stellar) effective temperature
tff free-fall time
Tg non-dimensional time for disk similarity solution
Tmax disk peak temperature
τ optical depth
u velocity, r/rc (Chapter 4)
U internal thermal energy of star
UBVRIJHKL Standard optical near-infrared, broad-band photometric magnitudes
v velocity



List of symbols 305

vp poloidal velocity (Chapter 10)
vth thermal velocity width
vφ azimuthal velocity
vφ toroidal velocity (Chapter 10)
vK Keplerian velocity
vR radial velocity (cylindrical coordinates; Chapter 12)
V volume, velocity
w turbulent velocity
wD drift velocity
W gravitational potential energy of star
x non-dimensional radial distance (Chapter 4)
α orbital angle (Chapter 4), viscosity parameter
α overdensity (Chapter 3), non-dimensional density (Chapter 4)
αB Case B hydrogen recombination coefficient
αm line absorption cross-section (Chapter 5)
αν line absorption cross-section at frequency ν

β exponent of dust opacity vs. frequency
γ angle between incoming ray and disk normal
δ(x) Dirac delta function
ε thermal energy content of accreted material (Chapter 11)
η parameter for flattened collapse models (Chapter 4)
η ratio between mass and magnetic flux (Chapter 10)
θ polar angle in cylindrical coordinates
θ◦ streamline polar angle of rotating collapse solution at infinity (Chapter 3)
κ epicyclic frequency (Chapter 7)
κ Scalar relation between v and B (Chapter 10)
κg wavenumber for disk torque decomposition (Chapter 7)
κJ critical wavenumber for Jeans instability
κR Rosseland mean opacity
κλ opacity per unit mass at wavelength λ

κν opacity per unit mass at frequency ν

λ wavelength, mean free path (Chapter 7)
λJ Jeans length
μ mean molecular weight in hydrogen masses
ν frequency
νv viscosity
ρ gas mass density
σ cross-section for collisions (Chapter 3)
σ Stefan–Boltzmann constant
� surface density
τ optical depth
φ potential; gravitational, effective
� flux of ionizing photons
�B magnetic flux
ξ initial mass function
ω angular frequency
� angular velocity
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Feigelson, E., Townsley, L., Güdel, M., & Stassun, K. 2007, Protostars and Planets V, p. 313
Ferreira, J., & Casse, F. 2004, Ap.J.Lett., 601, L139
Ferreira, J., & Pelletier, G. 1995, A&Ap., 295, 807
Fiedler, R. A., & Mouschovias, T. Ch. 1993, Ap.J., 415, 680
Fischer, W., Edwards, S., Hillenbrand, L., & Kwan, J. 2005, Protostars and Planets V, 8075
Flaccomio, E., Damiani, F., Micela, G., Sciortino, S., Harnden, F. R., Jr., Murray, S. S., & Wolk, S. J. 2003,

Ap.J., 582, 398
Flaccomio, E., Micela, G., Sciortino, S., Favata, F., Corbally, C., & Tomaney, A. 1999, A&Ap., 345, 521
Fleming, T., & Stone, J. M. 2003, Ap.J., 585, 908
Folha, D. F. M., & Emerson, J. P. 1999, A&Ap., 352, 517
Folha, D., Emerson, J., & Calvet, N. 1997, Poster Proceedings of IAU Symposium 182, eds. F. Malbet &

A. Castets (Grenoble: Observatoire de Grenoble)
Font, A. S., McCarthy, I. G., Johnstone, D., & Ballantyne, D. R. 2004, Ap.J., 607, 890
Foster, P. N., & Chevalier, R. A. 1993, Ap.J., 416, 303
Franciosini, E., Pallavicini, R., & Sanz-Forcada, J. 2006, A&Ap., 446, 501
Franco, J., Tenorio-Tagle, G., Bodenheimer, P., Rozyczka, M., & Mirabel, I. F. 1988, Ap.J., 333, 826
Frank, J., King, A., & Raine, D. 1992, Accretion Power in Astrophysics, 2nd edition (Cambridge University

Press)
Fricke K. 1969, A&Ap., 1, 388
Fridlund, C. V. M., & Liseau, R. 1998, Ap.J.Lett., 499, L75
Fromang, S., Terquem, C., & Balbus, S. A. 2002, M.N.R.A.S., 329, 18
Fukagawa, M., et al. 2004, Ap.J.Lett., 605, L53
Fukui, Y., Iwata, T., Mizuno, A., Bally, J., & Lane, A. P. 1993, in Protostars and Planets III, eds. E. H. Levy

& J. I. Lunine (Tucson: University of Arizona Press), p. 603
Fuller, G. A. 1994, in Clouds, Cores, and Low-Mass Stars, eds. D. P. Clemens & R. Barvainis,

Astronomical Society of the Pacific Conference Series, 65, p. 3
Fuller, G. A., & Myers, P. C. 1992, Ap.J., 384, 523
Fuller, G. A., & Myers, P. C. 1993, Ap.J., 418, 273
Furesz, G., Hartmann, L., Megeath, S. T., Szentgyorgyi, A. H., & Hamden, E. T. 2008, Ap.J., 676, 1109
Furlan, E., et al. 2005, Ap.J.Lett., 628, L65
Furlan, E., et al. 2006, Ap.J.Supp., 165, 568
Furlan, E., McClure, M., Calvet, N., Hartmann, L., D’Alessio, P., Forrest, W. J., Watson, D. M., Uchida,

K. I., Sargent, B., Green, J. D., & Herter, T. L. 2008, Ap.J.Suppl., 176, 184
Gahm, G. F. 1981, Ap.J., 242, L163
Gahm G. F. 1994, in Flares and Flashes, eds. J. Greiner, H. W. Duerbeck, & R. E. Gershberg, IAU Coll.

No. 151 (Berlin: Springer), p. 203
Gahm, G. F., Fredga, K., Liseau, R., & Dravins, D. 1979, A&Ap., 73, L4
Gahm, G. F., Lodén K., Gullbring E., Hartstein D. 1995, A&Ap.301, 89
Galli, D., & Shu, F. H. 1993a,b, Ap.J., 417, 220, 243
Galli, D., Lizano, S., Shu, F. H., & Allen, A. 2006, Ap.J., 647, 374
Gammie, C. F. 1996a, Ap.J., 457, 355
Gammie, C. F. 1996b, Ap.J., 462, 725
Gammie, C. F. 2001, Ap.J., 553, 174
Gammie, C. F., & Ostriker, E. C. 1996, Ap.J., 466, 814
Genzel, R., & Stutzski, J. 1989, Ann. Rev. Astr. Ap., 27, 41
Ghez, A. M., Neugebauer, G., Gorham, P. W., Haniff, C. A., Kulkarni, S. R., Matthews, K., Koresko, C., &

Beckwith, S. 1991, A.J., 102, 2066
Ghez, A. M., Neugebauer, G., & Matthews, K. 1993, A.J., 106, 2005
Ghosh, P. 1995, M.N.R.A.S., 272, 763
Ghosh, P., & Lamb, F. K. 1979, Ap.J., 234, 296
Giampapa, M. S., Basri, G. S., Johns, C. M., & Imhoff, C. 1993, Ap.J.Supp., 89, 321
Giampapa, M. S., Calvet, N., Imhoff, C. L., & Kuhi, L. V. 1981, Ap.J., 251, 113



Bibliography 313

Gibb, E. L., et al. 2000, Ap.J., 536, 347
Gilmore, G., & Howell, D. eds. 1998, The Stellar Initial Mass Function (38th Herstmonceux Conference),

ASP Conference Proceedings, 142
Gizis, J. E., Reid, I. N., Knapp, G. R., Liebert, J., Kirkpatrick, J. D., Koerner, D. W., & Burgasser, A. J. 2003,

A.J., 125, 3302
Glassgold, A. E., Najita, J., & Igea, J. 1997, Ap.J., 480, 344
Glassgold, A. E., Najita, J., & Igea, J. 2004, Ap.J., 615, 972
Goldreich, P., & Lynden-Bell, D. 1965, M.N.R.A.S., 130, 125
Goldsmith, P. F. 1988, in Molecular Clouds in the Milky Way, eds. R. L Dickman, R. L. Snell, &

J. S. Young, Lecture Notes in Physics (Berlin: Springer), 315, p. 1
Goldreich, P., & Ward, W. R. 1973, Ap.J., 183, 1051
Gomez, M., Hartmann, L., Kenyon, S. J., & Hewett, R. 1993, A.J., 105, 1927
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singular isothermal sphere 77, 78, 82, 83, 89, 96, 110, 114,

131, 142, 150
Sobolev approximation 14–105, 223–224
solar system 20, 161, 268, 284, 289
sonic point 233–234 , 276
sound speed 22, 24, 33, 43, 60, 126, 142, 228, 232–234,

268, 276–277, 280

Spitzer Space Telescope 1, 5, 9–10, 17, 35, 82,
84–86, 92–93, 118, 193, 208, 269, 270,
282–283, 288–289

IRAC 25, 167, 269–271
IRS 93, 167, 187, 193, 203, 208, 269, 282
MIPS 35, 167, 270

spectral energy distribution (SED) 9–11, 16–17, 82, 86,
93–94, 99, 101, 103, 141, 190, 195, 267, 282, 288

stability, cloud 46–49, 54, 61
steady disk 156–159, 172, 182–185, 188–192
stellar ages 252, 254
supernovae 36, 39, 40–45
streamlines 70–72 , 74, 230–231, 238, 242
surface density 2, 37–39, 75, 121, 135, 137, 142–143,

145–148, 202, 206, 208–210, 280, 285, 295–296

thermal instability 35, 55, 143, 192, 194, 195, 197, 198,
199, 240

thermal timescale 195–196
T Tau 102–103
T Tauri stars

strong-emission T Tauri star (CTTS) 7, 10, 14, 15, 83,
84, 159, 222, 227, 240, 242, 245, 260, 266

weak-emission T Tauri star (WTTS) 7, 10, 11, 14, 16,
18, 19, 84, 159, 183, 213, 240, 241, 260, 266

Taurus molecular cloud complex 2–5, 7–11, 13, 15, 16, 23,
25–26, 34, 36, 46, 53, 83–85

terrestrial planets 20, 284, 285
time-variability 177–179, 188, 203–205, 214, 226, 240
Toomre criterion (Q) 149–152, 185, 285
Tr 37 27, 270
transitional disks 11, 185–187, 269, 271, 278, 279
Trapezium cluster 12, 118, 124, 270
truncation radius 160, 241, 242, 245, 275
turbulence 3, 21–26, 34, 40–43, 122, 126–7, 142, 144, 147,

151–152, 188, 199, 240, 245, 268, 280–281, 285, 291
TWA (association) 274
TW Hya 25

ultra compact HII regions (UC HII) 109–11
ultraviolet continuum 14–15, 158
Upper Sco 270
UX Tau 288
UY Aur 219, 244
UZ Tau 219

V346 Nor 192
V1057 Cyg 189–205, 208, 218
V1515 Cyg 189–194, 201–203, 205, 208, 218–222
variability, see time variability
veiling, 173, 177, 178, 183, also see hot continuum

emission
virial equilibrium 39, 47, 49, 121–122, 250
virial theorem 46–47, 250
viscosity 132–146, 202, 206, 209, 274–274
viscous disk 129, 132, 152, 182, 203, 211, 273, 275, 287
viscous heating 157, 206
viscous timescale 203, 278, 287
VLA 97, 99
VLA 1623 99

Walker 90 (V590 Mon) 266
winds

disk 110, 148, 221–240
stellar 22, 25, 26, 28, 30, 80, 81, 109, 211, 246, 268
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winds (cont.)
T Tauri 222–223, 228
FU Ori 234

X-ray emission 6, 147, 158, 159, 182–183, 185 264
X-wind 237, 240
XZ Tau 216

young stellar objects (YSOs) 8, 10, 13–14, 16, 30, 43, 53,
94, 129, 147, 157, 214

Z CMa 196–197, 200–201, 210, 218
Zeeman broadening 176
zero-age main sequence (ZAMS) 6–8
zodiacal dust 11, 289




