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Preface

The first edition of this book, written in 1967, has been out of print for over
five years. Despite numerous requests for a new impression, it was clear to
the authors that the original book had become hopelessly out of date and
that the amount of information concerning the nature of galaxies had grown
so rapidly during the intervening decade that a simple revision would not
be adequate, but instead a completely new work would have to be written.
The matter would have rested there had it not been for Professor Jeremiah
Ostriker of Princeton University, who insisted that a new version of the
book had to be produced, and who helped plan the present work.

Work on the present book began early in 1978 when the senior author was
on sabbatical leave from High Altitude Observatory to the Department of
Astrophysics at Oxford University and the Department of Physics and As-
tronomy at University College, London. It soon became evident that our
plans could not be accommodated within a single volume of reasonable size.
Accordingly, the second edition will be produced in two volumes, the first
volume dealing with the structure and kinematics of galaxies, and the second
volume dealing with the dynamics of galaxies and clusters of galaxies.

As a major extension of the scope of the first edition, we now treat not
only our own Galaxy but external galaxies as well. Throughout the second
edition, we shall attempt to exploit the complementarity of the information
provided by studies of our Galaxy and of external systems. The former stud-
ies provide detailed information about a localized region in the disk of a
typical spiral galaxy, but they allow us to draw only fragmentary conclusions
about the large-scale structure of the Galaxy as a whole. The latter studies
provide much lower-resolution information, but they allow us to see galaxies
in their entirety and to study the enormous variety in their morphology.

Galactic astronomy today must certainly be one of the most exciting and
rapidly developing fields of physical science. A sequence of major technical
developments that extends back two decades or more (and shows no sign of



xii Preface

ending) has vastly expanded the quality and scope of the information avail-
able to us concerning the structure and evolution of galaxies and clusters of
galaxies. Along with this information explosion has grown a considerable
body of theory. Some of these theories have stood the tests of time and fur-
ther observation; others are speculative and often fragmentary, and the field
today is in an almost explosive state of development.

Our awareness that we are not describing a mature and static field of
knowledge has affected our labors in two ways. First, we have tried to dis-
tinguish as clearly as possible between bare observational facts and possible
interpretations, however reasonable the latter may appear to be. We have
learned much about galaxies, but there are quite a number of stubbornly
puzzling observations that indicate the possibility of serious gaps in our
present information or flaws in our present reasoning. Problems of this kind
will be cleared up only if we scrupulously separate certain fact from plausible
speculation and if we constantly bear in mind that the “results’ of observa-
tions are often model-dependent interpretations of the numbers actually fur-
nished by the observing apparatus.

Second, in many places we have tried to give an account of the historical
development of our understanding of the nature of galaxies, which surely is
one of the major intellectual adventures of mankind. We hope that our sketch
of the formation of the seminal ideas, of some of the controversies and false
leads surrounding them, and of moments when great discoveries have illu-
minated the whole landscape in a clearer and brighter light will be not only
of historical interest but also will assist the reader to imagine what relation-
ship our present ideas might have to the underlying truth and to understand
what types of mistakes and misconceptions may cut us off from a consistent
picture of things. We have cited, wherever possible, landmark papers by the
masters in the field. Although we recognize that the literature will be too
large for students to read all of the important studies in a semester or two,
we nonetheless urge them to seek out some of these great papers to re-expe-
rience for themselves the excitement of these major discoveries; in so doing,
they will be preparing themselves well for many profound developments
undoubtedly yet to come.

As one reads these volumes, the feeling will probably grow that, just as
was the case in the study of the structure of our own Galaxy fifty years ago,
before the presence of interstellar absorption was recognized, we are at pre-
sent missing some very fundamental points in the whole picture. We expect
that the enigmas that now confront us will vanish suddenly when our eyes
are opened by major new discoveries, and we expect that a text written on
this subject, say, twenty years from now, will look much different from those
we are writing today. We shall feel sufficiently rewarded if it is our readers
who are instrumental in advancing the subject and writing the next genera-
tion of texts.

Dimitri Mihalas wishes to express his deepest gratitude to Professors D. E.
Blackwell and M. J. Seaton for making possible his sabbatical visit to
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England and for the innumerable kindnesses they showed him while he was
there. Further, he thanks Dr. G. Newkirk of HAO and Drs. J. Firor and
F. P. Bretherton of NCAR for granting him leave to work in an area so far
afield from his usual interests and duties. James Binney owes a debt of
gratitude to the President and Fellows of Magdalen College, Oxford Uni-
versity, for their material and moral support and to Professor R. J. Elliot
for the hospitality of the Department of Theoretical Physics, Oxford Uni-
versity, during the writing of this first volume.

Further, we wish to thank those who helped in the writing of this book.
First, we thank Dr. J. P. Ostriker for help in planning the scope and structure
of the book and for unfailingly good advice about, and criticism of, what
we have written. Second, we thank Drs. I. R. King and P. O. Vandervoort
for reading the book in its entirety and for offering numerous helpful com-
ments and criticisms. Next we thank Drs. G. T. Bath, D. Carter, W. W.
Morgan, R. Sancisi, W. F. van Altena, and S. van den Bergh for reading
various chapters and offering corrections and comments. Any errors that
remain after the conscientious efforts of these colleagues are solely our own
responsibility. In addition, we thank Drs. F. Bertola, A. Bosma, D. Carter,
G. de Vaucouleurs, J. Kormendy, W. W. Morgan, A. H. Rots, S. E. Strom,
and P. C. van der Kruit for generously providing illustrative material, and
the late Mr. J. W. Tapscott of Yerkes Observatory for his skill in preparing
a satisfactory print for Figure 1-6. We particularly thank Dr. F. Hohl for
supplying us with the computer-generated plots used on the opening page
of each chapter. Finally, we thank Paulina Franz for her patience and skill
in producing a superb typescript, and Kathlyn Auer for preparing the index.

Dimitri Mihalas James Binney
Sunspot, New Mexico Princeton, New Jersey
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1
The Galaxy:

An Overview

Our Sun is located in a stellar system called the M ilky Way Galaxy. We
know today that our Galaxy* is similar to countless other galaxies, and we
now recognize that galaxies are the major structural units of the Universe.
Our goals in this book will be to learn what galaxies are and how they
reached their present state. We shall attempt to infer the distribution and
kinematics of the material in galaxies directly from observations, and then
we shall attempt to obtain insight into the dynamics and evolution of
galaxies through the application of known physical laws.

These goals are not straightforward and easily accomplished. The growth
of our conception—even to its present incomplete level—of the nature of
our Galaxy and its place in the Universe must be viewed as one of mankind’s
major intellectual accomplishments. Difficulties arise for several reasons.
First, astronomy is an observational science—we cannot perform experi-
ments, adjust the circumstances in which we find our objects of study, or
change our vantage point. Often we find that, because of our location in the
plane of our Galaxy, the range of our observations is limited, and our ability
to deduce necessary information is seriously impaired. Frequently the ob-
servational data are fragmentary or are of insufficient accuracy; thus the
answers to essential questions are often more vague than we should like
them to be.

Astronomers have gotten considerable insight into the nature of our
Galaxy from observations of distant galaxies, which reveal large-scale fea-
tures that are completely hidden from us in our own Galaxy. In a real sense,
studies of our Galaxy and of others go hand-in-hand, because the detailed

* A note about nomenclature: In this book we shall write Galaxy whenever we mean our
own (Milky Way) Galaxy and galaxy for any galaxy in general. Similarly, we shall use the
adjective galactic to denote objects in our Galaxy and galaxian for objects in galaxies in general.



2 Chapter 1: The Galaxy : An Overview

information we can deduce about the structure of our local neighborhood
in our Galaxy is complemented by the large-scale information provided by
observations of distant galaxies. Yet, it was only fifty years ago that it
became unequivocally clear that our Galaxy is a galaxy, similar to the
spiral nebulae, as they were then called, and that the spiral nebulae are major
systems comparable to our own. Only then did it become possible to exploit
the complementarity provided by these two types of observations.

Galactic astronomy today is one of the most integrative branches of
astronomy, drawing from practically every other area of modern astronomy
and astrophysics. By its nature, it is sometimes difficult to explain, because
often several disparate pieces of evidence bear upon a single point, and
because frequently the reasoning follows long and complicated chains of
arguments. Often we shall find that different sets of observations are en-
meshed in an almost bewildering thicket of interrelations. Sometimes we
reach a dilemma because two lines of reasoning should ideally be developed
in parallel, but to do so is didactically impossible. In our discussion, we
shall attempt to follow a definite logical route and to provide cross-references
among related points; nevertheless, in the end students will profit most if
they will reread this book at least once.

In this chapter, we shall give first a brief historical sketch of some of the
major developments in our conceptual picture of our Galaxy. We shall make
no attempt to be comprehensive, but instead we refer the reader to the
excellent histories contained in the books Man Discovers the Galaxy (B3),
Astronomy of the 20th Century (S9), and The Discovery of Our Galaxy (W1)
for the details of this fascinating story. The point of our discussion will be
to highlight the emergence of key ideas and to show both how recently our
understanding of our Galaxy has developed and how radical changes in our
picture have occurred virtually overnight as the result of new discoveries.
We hope that, if nothing else, this introduction will whet the student’s
appetite for the major discoveries and conceptual changes yet to come. We
hope also that it will show clearly a characteristic of this field—that time
and time again the application of a new observational technique or a more
powerful instrument has led to major advances in our knowledge.

The second section of this chapter will give a sketch of our Galaxy as a
whole, describe its present form, kinematics, and dynamics, and outline a
possible process by which it formed. We shall not attempt to justify the
statements made (that being the task of the remainder of the book), nor
shall we hesitate to introduce terms without detailed definition beyond that
implied by the context. Our goal here is to develop a broad view of how
various parts of our Galaxy are interrelated, in the hope that this will provide
students with a kind of map to orient further study in the following chapters;
one might find it helpful to refer back to this section from time to time in
what follows.
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1-1. THE GROWTH OF OUR CONCEPTION OF OUR GALAXY

As we look out into the nighttime sky, we see an enormous number of stars
with a large range of apparent brightnesses. The brightest stars, those easily
visible to the naked eye, are fairly uniformly distributed over the entire sky.
On a clear, dark night we can see, in addition, the Milky Way, a faint band
of light, cut by a dark rift, stretching around the sky; the faint glow is the
whole impression produced visually by our Galaxy, and the dark band is
caused by obscuring dust, which severely limits our ability to see distant
parts of the system.

Scientific study of the physical nature of our Galaxy dates from 1610,
when Galileo turned his telescope to the Milky Way and discovered that it
could be resolved into “innumerable” faint stars. Henceforth it was realized
that the diffuse light from the Milky Way could no longer be attributed to
some kind of luminous “celestial fluid” but instead originated from vast
numbers of unresolved stars; in short, the Milky Way was discovered to be
a stellar system.

By the middle of the eighteenth century, Thomas Wright and Immanuel
Kant had offered a description of our Galaxy as consisting of a disk of stars
in which the Sun is immersed (see Figure 1-1). On such a picture we would
observe nearby stars scattered fairly uniformly over most of the sky, and, in
those directions that happen to lie in the plane of the disk, we would also
observe the light from a great number of distant stars. Kant further remarked
that our Galaxy might not be unique and that many similar disklike systems,
which he called island universes, might be distributed throughout space at
enormous distances from our own system. He even went so far as to suggest
that the small, faint, nebulous, elliptical patches on the sky, then called
elliptical nebulae, were these island universes seen at various angles to the
line of sight. But these ideas, however appealing, had no hard core of scien-
tific evidence to support them and were little more than philosophical
speculation (albeit correct in this instance).

Further empirical evidence was brought to bear on the problem by
William Herschel’s work at the end of the eighteenth century. Herschel
built telescopes that were giants for their time, and he used them to study
both our own Galaxy and other stellar systems. As one of his major scientific

Figure 1-1. Schematic represen-
tation of our Galaxy as a
disk-shaped stellar system
containing the Sun. Note that,
from the Sun’s position, many
more stars would be observed in
directions 4 and B than in
directions C and D.
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research undertakings, he attempted to determine the shape of our Galaxy
by a technique he called star-gauging. To this end, he counted the number
of stars that he could observe to successive limits of apparent brightness in
about 700 different regions of the sky. Then, by assuming that all stars have
approximately the same absolute brightness and are distributed uniformly
in space, that their apparent brightness falls as the inverse square of their
distances, and that he could observe to the borders of the system, he used
his counts to deduce the relative dimensions of our Galaxy. He concluded
that the Sun lies near the center of a flattened, roughly elliptical system that
extends about five times farther in the plane of the Milky Way than in the
direction perpendicular to that plane.

In addition, Herschel compiled an extensive catalog of nebulae, which
was extended to include southern-hemisphere objects by his son, John
Herschel. Herschel believed that most of his nebulae were in fact stellar
systems similar to our own Galaxy and that, with sufficiently powerful
instruments and refined techniques, they would be resolved into individual
stars. He also realized that some nebulae, such as the Orion nebula and the
planetary nebulae, are not stellar systems but are composed of “a shining
fluid of a nature totally unknown to us.” Thus the distinction between true
nebulae (glowing gaseous clouds) and unresolved stellar systems had been
recognized, but it was not until the spectroscopic work of Huggins and
others in the nineteenth century that the nature of any particular unresolved
object could be decided unambiguously by observation. Even after Herschel’s
work, there was still no known way to determine the distances to nebulae
and thus to decide whether they were extragalactic “island universes,” com-
parable in size to our own Galaxy but located at great distances from it, or
only relatively minor systems contained wholly within our Galaxy.

By the middle of the nineteenth century, yet another interesting observa-
tion emerged. Using a gigantic telescope with a mirror 72 inches in diameter
(not to be surpassed until the completion of the 100-inch Mount Wilson
telescope in 1917), William Parsons, Third Earl of Rosse, discovered that
several of Herschel’s nebulae showed a spiral structure. Furthermore, with
the aid of his more powerful instrument, he was able to discern individual
stars (more probably clusters of giant emission nebulae) in objects that
Herschel was unable to resolve. Parsons’ observations added support to the
view that the nebulae were indeed “island universes” (galaxies) external to
our own, and they led to a new hypothesis: The very shape of the spiral
nebulae suggests that they rotate about an axis perpendicular to the plane
containing the spiral whorl. But verification that spiral galaxies do indeed
rotate had to wait until 1914, when V. Slipher presented direct proof by
means of spectroscopic observation of the Doppler shifts produced by the
rotation of a number of these systems.

At the end of the nineteenth century, the development of astronomical
photography opened fabulous new possibilities for astronomical research.
With its cumulative light-gathering ability, the photographic plate can reach
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light levels far too low to be accessible to visual observation; moreover,
photographs can record thousands to millions of individual stellar images
on a single plate. The time was right for a new, quantitative discussion of
the structure of our Galaxy, and this discussion was initiated in the opening
years of the twentieth century by H. von Seeliger, J. C. Kapteyn, and P. J.
van Rhijn.

Kapteyn conceived a plan to study some 200 Selected Areas distributed
carefully over the sky, and he enlisted international cooperation among
astronomers to obtain the necessary plates, to make star counts, brightness
estimates, and spectroscopic classifications, and to measure proper motions
and radial velocities. From an analysis of the proper-motion data, Kapteyn
and van Rhijn were able to estimate average distances for stars at various
apparent brightness levels, and, from an analysis of the star-count data, they
inferred the distribution of stars in space. In their analysis, it was again
assumed that the apparent brightness of a star falls off as the inverse square
of its distance, that is, that interstellar space is completely transparent. As
we mentioned before and shall return to later, this was a serious mistake,
for in fact there is strong absorption of starlight by interstellar material in
the galactic plane.

The final picture that emerged from Kapteyn’s work (K1), (K2) is com-
monly referred to as the Kapteyn Universe; it depicts our Galaxy as a
flattened spheroidal system of modest size, roughly five times longer in the
galactic plane (that is, the plane of the Milky Way) than in the direction
perpendicular to the plane. The same qualitative picture had been derived
by Herschel, but Kapteyn added a scale to the system and quantitative
estimates of the variation of star density within it. In the final model, the
Sun was located slightly out of the galactic plane at a distance of about
650 parsecs (pc) away from the center of the system (1 pc = 3.26 light-years =
3.1 x 10'* km). The star density decreased uniformly away from the center
of the system (see Figure 1-2), dropping to half its central value at a distance
of about 800 pc in the galactic plane and 150 pc in the direction of the
galactic pole. The corresponding distances for a decrease to 10% of the
central density were about 2800 pc and 550 pc respectively, and, for a
decrease to 1%;, about 8500 pc and 1700 pc.

Certainly one of the most uncomfortable features of the Kapteyn Universe
was its strong heliocentric flavor. Why, after all, should the Sun be so near
the center of our Galaxy (or of the Universe, if the nebulae are not regarded
as separate systems)? Kapteyn fully realized that an alternative explanation
of the data was possible: If there was an absorbing medium in interstellar
space, then the light from distant stars would suffer extra dimming; if this
dimming were incorrectly interpreted as a distance effect, then the stars
would be erroneously placed at too-large distances, leading to an artificial
systematic falloff of the star density in all directions away from the observer.
Kapteyn had, in fact, spent considerable effort over many years searching
carefully for such absorption effects, but he was unable to find any convincing
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Figure 1-2. The Kapteyn Universe. The x axis lies in the galactic plane and is labeled
with distances in kiloparsecs from the center of the system. The z axis points toward
the galactic pole; radial lines denote cones of constant galactic latitude. The position
of the Sun is indicated by the circle. This representation of the system is divided into
ellipsoidal shells with a plane: pole axial ratio of 5:1; curves of constant star density
are labeled with Roman numerals, and the densities on these curves, in units of the
central density, are given in the table at the right edge of the figure. [From (K1),
copyright © 1922, University of Chicago Press. ]

evidence for them. He therefore concluded that interstellar space is essentially
transparent, an opinion shared by virtually all eminent astronomers of the
time. Kapteyn was thus forced to the conclusion that our Galaxy is of the
form shown in Figure 1-2.

Even before Kapteyn’s final model was formally published (his results were
widely known in the astronomical community before their publication), it
was seriously challenged by a radically different picture developed by
H. Shapley in a classic series of papers published between 1915 and 1919
(S2), (S3), (S4), (S5), (S6). At the Mount Wilson Observatory, Shapley had
undertaken a detailed observational study of globular clusters, which are
compact spherical systems containing from 10° to 10° stars. Because of their
great brightness and distinctive appearance, these objects can be identified
and observed at very great distances from the Sun. Furthermore, many of
these systems are found at large distances from the galactic plane, and hence
their light is not dimmed much by the absorbing material in the plane.
Shapley pointed out that, while globular clusters are distributed uniformly
above and below the galactic plane, they are not uniformly distributed in
longitude around the plane; instead they show a marked concentration
toward the direction of the great star clouds in Sagittarius (see Figure 1-3).
Shapley argued that such massive systems must be a major structural
element of our Galaxy and that it should be reasonable to suppose them to
be distributed symmetrically around the galactic center. If that is the case,
then their asymmetric apparent distribution must be interpreted as implying
that the Sun is not located near the center of our Galaxy but is actually quite
far from the center. Using distances estimated from the apparent brightness
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lar clusters in galactic longitude as
observed by Shapley. Note that
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of variable stars (of known intrinsic brightness) observed in the clusters and
from the size and brightness of each cluster as a whole, Shapley estimated
that the Sun must be about 15,000 pc or 15 kiloparsecs (kpc) from the
galactic center (see Figure 1-4). Today, our best estimate of the Sun’s distance
from the galactic center is about 9 kpc.

Shapley’s bold conclusion that the Sun lies far out toward the edge of
our Galaxy has been proved correct by all subsequent investigations. The
revolutionary change it wrought in our picture of our Galaxy has often been
likened to the Copernican shift from a geocentric to a heliocentric picture
of the solar system. Shapley also estimated that the most distant clusters in
his sample were of the order of 70 kpc away, and he concluded that the full
diameter of the outermost reaches of our Galaxy is of the order of 100 kpc,
about a factor of 10 larger than the Kapteyn Universe! Actually, Shapley’s
estimate of the size of our Galaxy was somewhat too large because he
neglected interstellar absorption, as had Kapteyn, and hence he overesti-
mated the distances of some of the clusters. Today we would estimate a
diameter of the order of 50 kpc for the disk of our Galaxy.

In retrospect, Shapley was extraordinarily lucky in his choice of objects,
the majority of which happen to lie far from the galactic plane and hence
suffer little from the effects of interstellar absorption. Shapley himself pointed
out that he could find no clusters within + 1300 pc of the galactic plane. To
explain the absence of clusters in the plane, he argued that they would be
disrupted by strong gravitational forces acting there. We know today that
his failure to observe such clusters is to be explained by the presence of
strong interstellar absorption in the galactic disk, which prevents distant
clusters in the plane from being observed. Similarly, the spiral nebulae
(external galaxies) were found in great numbers near the galactic poles but
not near the galactic plane. This irregular zone within + 10° latitude above
and below the galactic plane is called the zone of avoidance. Had these two
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Figure 1-4. Cross section of our Galaxy through the Sun and
the galactic center, showing projections of the positions of the
globular clusters observed by Shapley. The position of the Sun is
marked by a cross. The center of the system of globular clusters
lies about 13,000 pc from the position of the Sun. Note that no
globular clusters are found within + 1300 pc of the galactic
plane. [From (S2), copyright © 1918, University of Chicago
Press. |

types of observations been interpreted properly, they would have demon-
strated convincingly why the Kapteyn model was wrong. As it was, Shapley’s
conclusion that there was no interstellar absorption simply served to affirm
Kapteyn’s model and left no alternative explanation for Kapteyn’s observa-
tions. These two conflicting models stood in stark contrast to one another,
and astronomers were forced to choose one or the other in the face of dis-
cordant evidence.

Not all astronomers accepted Shapley’s ideas; indeed, it is probably
accurate to say that the majority supported Kapteyn’s star-count model.
One of Shapley’s strongest critics was H. D. Curtis of the Lick Observatory,
a leader in the study of spiral nebulae. Curtis was convinced that the spirals
were systems external to our Galaxy, but he believed our Galaxy to be a
system the size of the Kapteyn Universe. In April 1920, Curtis and Shapley
met at the National Academy of Sciences in what has since been called
astronomy’s great debate. On this occasion, two primary problems were
discussed: (1) the size of our Galaxy and the distance scale within it, and
(2) the distances of the spiral nebulae and, by implication, the question of
whether or not they are extragalactic systems.
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Shapley’s views and reasoning concerning the first issue have already been
described. Curtis attacked Shapley’s picture of our Galaxy on the basis of
rather technical arguments concerning distance determinations. With the
advantage of hindsight, we know today that several of Curtis’ arguments
were faulty, being based in part on the incorrect assumption that the red
stars observed by Shapley were dwarfs of the kind found in the solar neigh-
borhood and hence intrinsically faint, whereas in actuality they were intrin-
sically bright giants. On balance, Shapley’s position on the first question
posed for the debate was basically correct.

Concerning the second question, Curtis advanced the view that the spiral
nebulae are galaxies like our own, lying at distances ranging from 150 kpc
for the Great Nebula in Andromeda (the spiral galaxy M31) to 3000 kpc for
the most distant systems; Shapley held the opinion that the spirals are
relatively near and are not comparable in size to our Galaxy. It is interesting
that Shapley was as conservative (and wrong) on the second question as he
was radical (and correct) on the first. To support his view, Curtis offered
several cogent arguments:

1. The average apparent brightness of novae in the spiral nebulae,
when compared to novae in our own Galaxy, indicates distances of
150 kpc (or more) for these systems.

2. At a distance of 150 kpc, the Andromeda nebula would be
comparable in size to Kapteyn’s estimate of the size of our
Galaxy.

3. The radial velocities of the spiral nebulae are much larger than
those of any objects known to be associated with our Galaxy, hence
the spirals must be separate systems because they would not be
bound dynamically by a system of the size of the Kapteyn Universe.
Moreover, the spirals do not show measurable proper motions
across the line of sight, despite their great radial velocities. They
must therefore be very distant, unless we are to assume that their
velocity vectors all happen to point radially away from the Sun,
which is very unlikely.

4. A spiral, when viewed edge-on, generally shows a band of absorbing
material in its disk projected against its bright nucleus (see )
Figure 1-7). By analogy, our own Galaxy should possess such a
band, which would explain the zone of avoidance.

On his side, Shapley had two strong arguments concerning the second
question of the debate:

1. If the spirals are of the same size as our Galaxy (100 kpc, according
to Shapley), then a system such as the Andromeda nebula would be
at so large a distance from our Galaxy that its novae would be
intrinsically much brighter than those in our Galaxy.
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2. Measurements of proper motions in spiral nebulae by A. van
Maanen indicated that the spirals rotate with an angular motion of
0702 per year. For any plausible rotation velocity, this implies that
the spiral nebulae must be close. For example, if the rotation
velocities are 200 km s~ 1, the nebulae must be within 50 kpc (inside
Shapley’s model of our Galaxy). At the distances required by the
view that the spirals are separate galaxies, the velocities implied by
van Maanen’s proper motions would be ridiculously large.

In retrospect, we know that Curtis’ evidence was more correct than
Shapley’s, although his arguments were not flawless. Thus, in the conflicting
assertions about the novae, Curtis had underestimated their intrinsic bright-
ness, and Shapley had overestimated the size of our Galaxy. In his second
point, Curtis had (ironically) underestimated the distance to the Andromeda
galaxy by about a factor of five. He was right that it is indeed external to
our Galaxy, but at its correct distance its size is comparable to Shapley’s
estimate of our Galaxy’s size and is much larger than the Kapteyn Universe.
Curtis was basically correct in his third argument, and in the fourth he was
remarkably prescient. Yet, there is a logical dilemma in his last argument,
for if there is heavy absorption in the galactic plane, then the reasoning
leading to the Kapteyn Universe can no longer be supported.

The argument that probably had the greatest influence in forming the
opinion of the astronomical community at large was Shapley’s point about
van Maanen’s proper motion measurements. Van Maanen had an excellent
reputation as a meticulous observer and enjoyed the general respect of the
community; hence his results were almost universally accepted as correct.
Unfortunately, they were purely and simply spurious—the rotational proper
motions of spiral galaxies are in fact too small to measure, even by the most
accurate present-day techniques. But definitive proof that van Maanen’s
work was in error did not emerge for another fifteen years after the Curtis—
Shapley debate. Even today we cannot reconstruct unequivocally the causes
of the errors in his results [see (B3) for an interesting analysis of this matter].
The great debate itself settled neither of the questions it addressed, and
opinions remained sharply divided. It did, however, bring the issues into
sharp focus, and it stimulated a great deal of thought.

The question of the nature of the spiral nebulae was settled within five
years by E. Hubble. By 1923, Hubble, working with the recently completed
100-inch telescope at Mount Wilson, had found that the outer portions of
the disks of two nearby spiral galaxies (M31 and M33) could be resolved
into swarms of images indistinguishable from those of stars. If these were
assumed to be stars of an intrinsic brightness comparable to that of the
most luminous stars in our Galaxy, then these systems had to be at enormous
distances and were certainly extragalactic. The evidence was not conclusive,
however, because the images could have been those of star clusters (which
would nevertheless have implied still larger distances) or of dense knots of
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nebulosity. (Some “stars” identified by Hubble were, in fact, later found to
be gigantic H II regions—ionized hydrogen nebulae.) The main point is that
there was at first no definitive way to establish the intrinsic brightnesses of
the objects that Hubble had detected. The situation changed radically in
late 1923 when Hubble discovered Cepheid variables in M31. The intrinsic
brightness of these stars can be estimated accurately from their distinctive
light variations if it is assumed that they are identical to galactic Cepheids.
In this way, Hubble obtained [see (H2), (H3)] a value of about 300 kpc for
the distance to M31 and M33. In a masterly sequence of papers [see, for
example, (H4), (HS), (H6)] that culminated in his book The Realm of the
Nebulae (H8), Hubble established once and for all the true nature of spiral
galaxies.

The question of the nature of our Galaxy was settled almost simultaneously
by considerations of its kinematics and dynamics. In 1926, B. Lindblad
affirmed Shapley’s location for the galactic center and developed a mathe-
matical model for the rotation of our Galaxy about an axis through its
center (L1), (L2), (L3). He proposed that our Galaxy might consist of a
number of subsystems, each of which was symmetric about the rotation axis
of the whole system and rotated about this axis with some characteristic
speed. Each subsystem had a characteristic degree of flattening and internal
velocity dispersion, the most slowly rotating systems being the least flattened
and having the largest internal (nonrotational) velocity dispersions.

In support of a large size for our Galaxy, Lindblad advanced an inde-
pendent and telling argument against the Kapteyn Universe. He pointed out
that the total mass calculated from Kapteyn’s model produced a gravitational
field too weak to retain the globular clusters and RR Lyrae variables as
gravitationally bound members of the system. These objects had been ob-
served to have velocities of about 250 km s™! with respect to the Sun,
which is much larger than the escape velocity of the Kapteyn Universe.
But inasmuch as both RR Lyrae stars and globular clusters are, in fact,
found in large numbers, one concludes that either they are formed at a very
rapid rate to replace those that escape, or they are really permanent members
of our Galaxy and are bound by stronger gravitational forces than those
predicted from the Kapteyn model. Because the globular clusters are them-
selves so massive, it seemed extremely unlikely that they could be formed
quickly enough to replace their loss. Lindblad was therefore led to the latter
alternative, which implies a much larger and more massive Galaxy than that
envisaged by Kapteyn. (It is interesting to note that recent developments in
our understanding of galactic dynamics imply a still larger and much more
massive Galaxy—by perhaps as much as a factor of ten above current
estimates. These theoretical arguments are supported by the existence of at
least one globular cluster that would be escaping from our Galaxy if con-
ventional estimates of its mass are correct.)

Lindblad further proposed that the globular clusters might constitute a
subsystem nearly at rest (that is, not rotating) relative to our Galaxy as a
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Figure 1-5. The Sun moves on a nearly
circular orbit with a velocity of revolution
@ around the galactic center. The velo- .
city of revolution ®,, around the galactic Center
center of a “high-velocity” star, such as
shown in the figure, is much smaller.
Therefore, the high-velocity star moves
on an eccentric orbit around the center,
and when it is at the Sun’s distance from
the center, it has a large negative tangen-
tial velocity V,, with respect to the Sun. Orbit of Sun

Orbit of high-velocity star

whole and that the Sun travels on a circular orbit around the galactic center
with a velocity of the order of 200 to 300 km s~ *. Because a typical value
for the observed dispersion in stellar velocities in the solar neighborhood is
only 30 km s~! (excluding the high-velocity stars), he argued that all the
low-velocity stars had essentially the same energy of motion as the Sun and
that they also traveled on nearly circular orbits around the galactic center.

In 1927 and 1928, J. H. Oort extended Lindblad’s ideas and showed [see
(O1), (02)] that several predictions directly verifiable by observation were
possible. First, Oort pointed out that a number of features in the velocity
distribution of the so-called high-velocity stars, which were so puzzling when
viewed in terms of Kapteyn’s model, could be understood quite naturally
on the basis of Lindblad’s model. Oort noted that stars moving at speeds
less than a certain characteristic value relative to the Sun have a symmetric
velocity distribution, whereas at higher relative speeds the distribution sud-
denly becomes quite asymmetric. The nature of the asymmetry is such that
the high-velocity stars tend to lag behind the Sun in a direction that is
perpendicular to the direction of the galactic center as identified by Shapley
and Lindblad. This is precisely what would be expected if the Sun belongs
to a rapidly rotating system and moves on a circular orbit around the galactic
center while the high-velocity stars belong to a system that rotates much
more slowly around the center. Such stars would lag behind the sun in the
solar neighborhood, and, because they do not have sufficiently large tan-
gential velocities to maintain them on circular orbits against the gravitational
forces exerted on them by our Galaxy, their orbits carry them in toward the
galactic center (see Figure 1-5). Relative to the galactic center, these stars are
not fundamentally high-velocity stars at all; rather, as a group, they are
low rotation-velocity (or low angular-momentum) objects. Nor are they stars
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that are escaping rapidly from the system; rather, many of them are actually
more tightly bound to our Galaxy than the Sun is. As we shall see in later
chapters, some of these stars have almost no rotation-velocity component,
and therefore they move on almost radial orbits with respect to the galactic
center. Some even move on retrograde orbits; that is, they revolve backward
around the center as compared to the direction of revolution of the Sun.

Next, Oort showed how a rough estimate of the total mass of our Galaxy
and its spatial distribution relative to the galactic center could be made. The
very abrupt change in the nature of the velocity distribution at a speed of
about 65 km s~ relative to the Sun and, in particular, the fact that no stars
were observed to have relative speeds larger than this value in the direction
of galactic rotation suggested to Oort that such stars might escape from our
Galaxy. If we take a rotation velocity ©®¢ of about 250 km s~ (see Chap-
ter 6), then Oort’s conjecture implies that the escape velocity ®,, is about
315km s~ From the size of ®., one can obtain an estimate of the total
mass of our Galaxy interior to the Sun. The result turns out to be much
larger than can be explained with the Kapteyn model, but it is compatible
with the larger system conceived by Shapley and Lindblad. As we shall see
in later chapters, Oort’s estimate of the escape velocity was too low, and our
Galaxy is more massive than he estimated. This fact, of course, merely
strengthens his conclusion about the inadequacy of the mass contained in
the Kapteyn Universe.

Finally, Oort developed a complete kinematical theory of the differential
rotation (that is, faster angular rotation near the center and slower near the
edge) of our Galaxy, and its predictions were consistent with observations.
This theory proved unequivocally the basic correctness of the picture that
our Galaxy is a large, rotating system with the Sun located far from its
center.

Thus, by 1927, the Kapteyn Universe had become history, and our Galaxy
had become a peer of the spiral nebulae. The great debate was over. Yet, two
nagging questions remained: (1) What was to be made of van Maanen’s
evidence for rotational proper motions in the spiral galaxies? (2) Why did
the star-count analyses give such an erroneous picture of our Galaxy?

Most astronomers had long been convinced of the distances to the spiral
galaxies by Hubble’s evidence. Consequently, they proceeded to forget or
ignore van Maanen’s earlier work. Van Maanen’s measurements still stood
virtually unchallenged in the literature until 1935, when Hubble published
a paper (H7) containing an independent set of proper-motion measurements
of the spiral galaxies M33, M51, M81, and M101 made by himself, Baade,
and Nicholson. The new measurements were based on many of the plates
used earlier by van Maanen as well as on new plates spanning a much larger
time interval than that embraced by van Maanen’s data. If the motions
claimed by van Maanen had been real, they would have been even more
readily detected in the new material. The results were completely negative;
van Maanen’s measurements had been spurious. Thus was demolished one
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of the primary objections against the position that the spiral nebulae are
extragalactic.

As we mentioned before, most astronomers working on the problem of
the structure of our Galaxy (including Kapteyn himself) were fully aware
that, if there was significant absorption of starlight in interstellar space, then
the stellar space densities derived from star counts would show a spurious
decline at large distances. There had long been evidence for clouds of ab-
sorbing material in space; for example, the dark rift in the Milky Way is
plainly visible to the naked eye. Numerous other dark patches and lanes
showed clearly on photographs of the Milky Way obtained early in the
twentieth century by E.E. Barnard. These areas on the sky seem to be
totally devoid of stars, even when examined with the largest available
telescopes. It was early recognized that it is exceedingly improbable that
these dark areas could be real gaps in the stellar system, for gaps would
imply the existence of numerous tunnel-shaped openings in our Galaxy, all
of which are aligned along lines of sight passing through the solar system.
By 1920, there was no doubt that large dark clouds of absorbing material
(interstellar dust) exist in our Galaxy. In addition, there was evidence for
the presence of interstellar gas. Spectroscopic observations of bright nebulae
by W. Huggins in the late nineteenth century showed that some of them are
luminous bodies of gas. In 1904, J. Hartmann discovered that the lines of
Ca Il in the spectrum of the double star 6 Ori are stationary; that is, they
have a constant wavelength and do not periodically oscillate as do all other
lines in the spectrum. It was soon realized that the Ca II lines must arise in
diffuse absorbing clouds of gas located along the line of sight to the star.

Nonetheless, at the time of the Curtis—Shapley debate, there was still no
conclusive evidence for the existence of a pervasive general absorbing medium,
extending throughout the entire system, which would be capable of dimming
the light from all stars observed. The strong hint provided by the zone of
avoidance continued to be overlooked. However, its significance was recog-
nized by J. Oort in 1927 (O1). Astronomers had realized for some time that
any likely scattering process from small interstellar dust grains would be
selective (would tend to dim light more at shorter wavelengths than at longer
wavelengths). A reddening of starlight would thus be produced along with
absorption, just as Rayleigh scattering in the Earth’s atmosphere affects
sunlight. Such effects had, in fact, been sought by Kapteyn, but without
success. His lack of success was probably caused by inadequate precision in
photometry and insufficient information about the intrinsic brightnesses and
colors of stars in his sample.

Even though strong evidence for the existence of a general absorption in
the plane of our Galaxy was obtained in 1929 from studies of the distribution
of early-type stars by C. Schalen, the first absolutely irrefutable proof was
published in 1930 by R.J. Trumpler (T1). Trumpler made an exhaustive
study of galactic clusters (star clusters found in the galactic plane), obtaining
spectral types and making brightness and color measurements for cluster
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members. By plotting diagrams of apparent brightness versus spectral type
for cluster stars, and by comparing these with the then-known correlation
of intrinsic brightness versus spectral type for nearby stars (the Hertzsprung-
Russell diagram), he could estimate cluster distances on the assumption that
there was no interstellar absorption. At the same time, he measured the
angular diameters of the clusters. If we assume that all clusters have nearly
the same linear diameters, then their angular diameters should be inversely
proportional to their distances from us.

Trumpler found that there was a systematic discrepancy between the
distances inferred from the clusters’ Hertzsprung-Russell diagrams and their
angular diameters. The angular sizes of the fainter (and therefore presumably
more distant) clusters were too large as compared with their predicted sizes
from the hypothesis of equal linear sizes. Discarding the unlikely hypothesis
that clusters grow progressively larger with increasing distance in all direc-
tions from the Sun, Trumpler argued instead that the angular diameters gave
a true indication of cluster distances. He proposed that the effect he had
discovered was to be explained by a progressive dimming of the light of the
distant clusters (which would make them appear to be yet more distant) by
the absorption of starlight in the interstellar medium in the galactic plane.
He estimated that this absorption produces a dimming of 0.7 stellar magni-
tudes per kiloparsec (that is, a reduction in intensity by about a factor of
two per kiloparsec, over and above the inverse-square falloff) in all directions
in the galactic plane. To clinch the argument, he showed conclusively that
the colors of stars of a given spectral type tended to become progressively
redder with increasing distance, an effect that had been sought earlier by
Kapteyn. We shall see in later chapters that this interstellar reddening
provides the basis for methods of determining the amount of interstellar
absorption that the light from any particular star has suffered. The amount
of general absorption found by Trumpler was sufficient to explain the
(spurious) stellar density falloff in the Kapteyn Universe, and the star-count
data were thus finally reconciled with Shapley’s picture of our Galaxy.

W. Baade opened a whole new aspect of the study of galaxies in 1944
when he resolved the nucleus of the spiral galaxy M31, its two companions
M32 and NGC 205, and the elliptical galaxies NGC 147 and NGC 185 into
stars on red-sensitive plates taken with the 100-inch Mount Wilson telescope
during the wartime blackout of Los Angeles (B1), (B2). Baade realized that
the brightest stars in these spheroidal systems must be red giants and hence
of a totally different character from the luminous blue supergiants found
within spiral arms. He therefore suggested that stars in a galaxy could be
categorized into two distinctive stellar populations. Baade described Popu-
lation I as those objects closely associated with spiral arms. Some examples
are luminous, young hot stars (spectral types O and B), Cepheid variables,
interstellar dust lanes, ionized hydrogen regions (emission nebulae), and
clusters similar to the galactic clusters in our own Galaxy. The arrays
produced by these stars in a Hertzsprung-Russell diagram (or in a plot of



16 Chapter 1: The Galaxy: An Overview

intrinsic brightness versus intrinsic color, called a color-magnitude diagram)
resemble those found by Trumpler for galactic clusters. Baade described
Population II as being composed of those objects found in the spheroidal
components of the galaxies—that is, in the nuclear bulge, in the halo, and in
globular clusters. These stars have a Hertzsprung-Russell diagram quite
different from diagrams of the galactic clusters, but one that is similar to
Shapley’s diagrams for the globular clusters in our Galaxy.

The notion of stellar populations has proved to be very fruitful ina variety
of contexts, and it has led to important advances in our understanding of the
structure and evolution of galaxies. For example, after Baade had delineated
the Population I objects most closely associated with spiral structure, those
objects could be selected as tracers of spiral structure in our Galaxy. In the
early 1950s, Morgan and his associates carried out several studies (M1), (M2)
of young clusters and associations and of the most luminous stars known to
be spiral-arm tracers. They thus were able to map the spiral arms of our
Galaxy in the neighborhood of the Sun.

The concept of stellar populations also provided key insights into the
scheme of stellar evolution. In the two decades following Baade’s discovery,
there was a rapid development of both observational and theoretical meth-
ods for studying stellar structure, evolution, and star formation. On the
observational side, the postwar availability of sensitive photomultipliers rev-
olutionized astronomical photometry, and it became possible to construct
color-magnitude diagrams of hitherto unachievable accuracy for star clusters.
On the theoretical side, both the rapid growth of theoretical insight into the
basic physics of energy generation and energy transport in stars and the
availability of high-speed electronic computers made feasible, for the first
time, the detailed computation of evolution tracks for individual stars ina
color-magnitude diagram. Thus a physical interpretation of observed cluster
color-magnitude diagrams became possible.

The analysis of cluster color-magnitude diagrams showed that they could
be understood in terms of the age and composition of stars in a cluster. It was
found that the Population II stars (for example, globular-cluster stars) are
all old, having ages nearly equal to the estimated age of the Universe itself.
In contrast, Population I objects show a wide range of ages, some galactic
clusters being almost as old as the globular clusters, whereas others are
forming new stars at the present time. The key composition parameter was
found to be the abundance of elements heavier than hydrogen and helium.
These elements are customarily called metals by astronomers, and, despite
the fact that it is a misnomer, we shall employ that term in this book.

Detailed spectroscopic analyses showed that Population I stars have metal
abundances similar to those in the Sun, and Population II stars in the
galactic halo (globular clusters and halo subdwarfs) are metal deficient by
about a factor of one hundred relative to the Sun. Because the halo Popula-
tion II stars are found to be so old, it follows that their chemical composition
must nearly reflect that of the primordial material formed in the initial
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explosive creation event of the Universe (the big bang) implied by Hubble’s
discovery in 1929 of the large-scale expansion of the Universe. [ We shall not
attempt to describe the historical development of the concept of the expanding
Universe here; see (B3) or (S9).] Because the metal abundance of the material
now forming into stars is so much greater than that of very old stars, it was
realized that elements heavier than helium must have been created by
nucleosynthesis in the interiors of stars and then recycled back into the
interstellar medium. Plausible mechanisms for recycling the material are
provided by the observed existence of both quiescent stellar mass-loss (stellar
winds) and supernova explosions. Work to enlarge our knowledge of stellar
evolution and stellar populations and their relation fto the structure and
evolution of our Galaxy as a whole proceeds apace today.

The year 1944 also marked the beginning of a different set of developments
of profound importance to our understanding of our Galaxy and of galaxies
in general. In that year, H. C. van de Hulst predicted the existence of 21-cm
radio emission in a spectral line of neutral hydrogen in the interstellar
medium. It was known from the work of K. G. Jansky in 1932 that our
Galaxy is a source of continuum radio-wave emission. By 1940, G. Reber
showed that the maximum emission came from the galactic center, and in
1944 he reported two other strong sources in Cassiopeia and Cygnus. (The
former was later identified as a supernova remnant, and the latter as an
extragalactic radio source.) The line radiation predicted by van de Hulst
offered two important advantages—it would be observable from our entire
Galaxy, and it would make possible radial-velocity measurements through
Doppler shifts of the wavelength of the line.

In 1951, the 21-cm line was actually observed by H. I. Ewen and E. M.
Purcell at Harvard, by W. N. Christiansen in Sydney, and by C. A. Muller
and J. H. Oort in the Netherlands. Over the next fifteen years, groups in the
Netherlands and Australia made detailed measurements of the rotation speed
of the hydrogen around the galactic center as a function of distance from
the center (key data for dynamical studies) and of the distribution of neutral
atomic hydrogen (H I) in the galactic plane. The continuing development of
radio astronomy has revealed many other important features of our Galaxy,
for example, nonthermal emission from relativistic particles and surprisingly
complex molecules in the interstellar medium.

A major advance occurred with the discovery of the cosmic microwave
background in 1965 by A. A. Penzias and R. W. Wilson (P1), which provided
conclusive evidence favoring a big-bang model of the Universe over rival
theories. This radiation was interpreted by R. Dicke, P. J. Peebles, P. Roll,
and D. Wilkinson (D1) as being the relic of the fireball accompanying the
initial cosmic explosion. Its existence had actually been predicted in the late
1940s by G. Gamow and his collaborators, but it was not observable with
techniques then available, and their prediction had been virtually forgotten.

The study of our Galaxy and external galaxies by radio observations is
made difficult by the relatively low resolution afforded by even the largest
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radio dishes, because of the long wavelengths of radio waves. This difficulty
led to the development of ingenious interferometer techniques to provide
higher resolution; these techniques in turn have been elaborated into aperture
synthesis techniques, which use arrays of moderate-sized radio telescopes
arranged in such a way as to provide high sensitivity and resolution. At
present, extremely interesting information about the distribution and kine-
matics of hydrogen in external galaxies is being gathered by several such
systems; noteworthy examples are the Westerbork array in the Netherlands
and the Cambridge array in England.

The current major development is the recently built Very Large Array, a
part of the U.S. National Radio Astronomy Observatory. This complex,
which occupies hundreds of square kilometers in New Mexico, provides
hitherto unachievable clarity and sensitivity in our view of galaxies at radio
wavelengths, and it will undoubtedly produce results of the most far-reaching
significance to galactic astronomy.

In optical studies of galaxies, great strides have been made through the
development of image tubes and two-dimensional solid-state detectors of
various kinds. These instruments offer much-improved sensitivity and
information-gathering capacity for observations of faint objects, and with
them we can obtain galaxian spectra for radial-velocity measurements and
astrophysical analyses as well as do precision surface photometry for much
fainter objects than we could in the past. A major improvement in our
observational ability will result when the Space Telescope (2.4 m in diameter)
is put into orbit. In addition to permitting observations in the ultraviolet,
this instrument will yield a factor-of-ten increase in resolving power over
ground-based observations, and it will thus offer unprecedentedly sharp
views of galaxies. This improvement in resolving power will allow the dis-
crimination of point sources (for example, stars) at light levels a factor of
one hundred fainter (and hence to a factor-of-ten greater distance) than is
presently possible. This development should revolutionize our knowledge of
the stellar content of star clusters and galaxies and be of great value to studies
of the central regions of galaxies.

The successful operation of the Space Telescope will, however, by no
means supersede the use of large ground-based telescopes for extragalactic
astronomy because, for studies of the faint outer regions of galaxies, it is
more important to have a large light-collecting area than to have high spatial
resolving power. Unfortunately, about half of the light that makes the dark
night sky so depressingly bright (from the point of view of the extragalactic
astronomer) is extraterrestrial in origin and therefore will plague observations
made with the Space Telescope. Nevertheless, all branches of extragalactic
astronomy will certainly receive important impetus from Space Telescope
observations, complemented by ground-based observations using a new
generation of very large aperture multiple mirror telescopes, such as the one
recently commissioned in Arizona.
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Finally, it is worth mentioning that, at the present time, great strides are
also being made in developing an understanding of the way galaxies are
formed and how they evolve, both as individuals and in clusters. A partic-
ularly interesting issue that has emerged from dynamical studies of galaxies
is whether they do or do not contain large amounts of essentially non-
luminous matter, which, according to some lines of evidence, may even
constitute the bulk of the mass in galaxies. This question is still unsettled
[see (03) and (B5)], and, in terms of its importance and intrinsic interest,
it could well form the basis for a contemporary version of the great debate.
When a definitive answer finally emerges, it may herald a new era in our
conception of the nature of our Galaxy and of the distribution of matter in
the Universe.

1-2. A PORTRAIT OF OUR GALAXY

The basic conclusion reached in §1-1 is that our Galaxy is a spiral galaxy.
Thus, from a suitable vantage point in space outside the system, it would
resemble many of the other spiral galaxies we can observe at large distances.
Much of the evidence available today indicates that our Galaxy can be
considered to be approximately of type Sb in the galaxian classification
system developed by Hubble (see §5-1). We would thus suppose that it should
look something like galaxies of that type (for example, M31, NGC 2841,
NGC 3031, NGC 4565, and NGC 7331) as shown in the Hubble Atlas (S1)
and in Figure 5-5; this conjecture is supported by comparing Figures 1-6
and 1-7. In Figure 1-6, we have a full-sky photograph of our Galaxy taken
with the Henyey—Greenstein camera by Code and Houck (C1) in infrared
light, which penetrates the interstellar absorption much better than light of
shorter wavelengths. In Figure 1-7, we have a photograph of the edge-on
Sb galaxy NGC 891. In both cases, we can clearly see the prominent nuclear
bulge surrounded by an extensive, flat, dust-laden disk. The resemblance is
striking when allowance is made for the fact that our Galaxy is being ob-
served from a position within the disk of the system, whereas NGC 891 is
being viewed from a position completely outside the system and in a different
wave band. Of course, the fact that we cannot obtain the same type of overall
picture of our Galaxy as is used to classify other systems makes any attempt
at classification of our Galaxy very uncertain, but on the basis of present
evidence, it seems likely that our Galaxy is a spiral system of type Sb or Sc.

In the broadest terms, our Galaxy comprises two main structural ele-
ments—a spheroidal component and a disk. Each of these contains quite
different and characteristic stellar and nonstellar populations, and they have
different compositions, kinematic and dynamic properties, and evolutionary
histories. The spheroidal component can be thought of as being an approxi-
mately axially symmetric system that, for expository convenience, can be
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Figure 1-6. Full-sky photograph of our Galaxy taken by Code and Houck with the
Henyey-Greenstein camera on infrared film (C1). Note the nuclear bulge, disk, and
dust lanes; compare with the photograph of NGC 891 shown in Figure 1-7. [ Yerkes
Observatory photograph, courtesy Yerkes Observatory.]

divided into several subcomponents, ranging from the nucleus (the innermost
part of our Galaxy, having a size of ~3 pc) to the bulge (of the order of
3 kpc in radius), through an intermediate component, out into an extensive
halo that may extend to radii of 30 kpc or more. Each of these subsystems
has a different degree of flattening as well as physical and chemical properties
that vary in a fairly systematic way with increasing radius. These subsystems
are often assumed to be axially symmetric, although there is now some evi-
dence that this picture may be oversimplified. The disk is an extremely thin
(about 200 pc thick), flat system extending in the galactic plane from the
center to radii of perhaps 25 or 30 kpc. The Sun is located in the disk at a
distance of about 9 kpc from the galactic center. An impression of the spatial
characteristics of the disk—bulge—halo systems can be obtained from Fig-
ure 1-8, which compares a deep photograph of NGC 31135, showing the halo
and globular cluster system, with a less deeply exposed photograph, showing
mainly the bulge and vestiges of a disk. (We should point out that this galaxy
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Figure 1-7. Photograph of the edge-on Sb spiral galaxy NGC 891 taken with the 60-
inch telescope of the Mount Wilson Observatory on November 23 and 24, 1916. Note
the striking resemblance of this object to our Galaxy as shown in Figure 1-6. [Yerkes
Observatory photograph, courtesy Yerkes Observatory. ]

(a) (b)

Figure 1-8. Comparison of (a) shallow and (b) deep photographs of the SO galaxy
NGC 3115 taken with the Kitt Peak National Observatory 4-meter telescope in U
and B light, respectively. The nuclear bulge and vestigal disk are shown in part (a);
part (b) shows the halo component and the system of globular clusters. [ From (S8), by
permission. Copyright © 1977 by the American Astronomical Society.]
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Figure 1-9. A model of the mass distribution in our
Galaxy. The contours show curves of equal density mea-
sured in units of the density near the Sun. The diagram
does not show the steep increase in density near the
galactic center. The dots show the projected positions of
globular clusters. [ From (B4, 454), by permission. Copy-
right © 1965 by the University of Chicago. ]

is a somewhat different type than our own Galaxy, which must therefore
look somewhat different.) A highly schematic view of the galactic disk and
bulge is given in Figure 1-9, which shows a model of our Galaxy derived
from a dynamical study. The contours show lines of equal mass density
(omitting, however, the rapid rise near the center) and the positions of
globular clusters projected onto the plane containing the axis of the system
and the Sun.

The characteristic objects in the spheroidal component are stars and
globular clusters. The spheroidal component contains little if any dust and
gas. Typical stellar representatives are the metal-poor subdwarfs and RR
Lyrae variables; the latter are easy to identify even at large distances because
of their distinctive light variation, and hence they provide an ideal group of
objects to use in determining the space distribution of stars within the
spheroidal systems. From such determinations, we find a very rapid rise in
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density toward the galactic center. This rise implies a strong central con-
centration of mass in our Galaxy, a conclusion which applies, however, only
to stars that we can observe. The situation could be quite different for the
hypothetical dark population discussed later.

Spectroscopic analyses of both globular clusters and individual field stars
indicate a general radial composition gradient within the spheroidal com-
ponent, ranging from quite metal poor in the outermost halo (deficient by a
factor of 10% or more relative to solar) to metal rich in the nuclear region
(that is, solar or slightly above-solar metal content). This gradient suggests
that it is appropriate to subdivide the spheroidal-component stars, which
are the Population II stars as defined by Baade, into a radial sequence of
populations, which we shall designate as bulge-component stars, intermediate
spheroidal-component stars, and halo-component stars. Obviously, other sub-
divisions may be possible as more information becomes available, but the
ones we have chosen are satisfactory to describe the presently available data.

Each of the aforementioned populations fills the entire volume from the
galactic center out to some maximum distance; that is, bulge-component
stars are found away from the center only out to some characteristic outer
radius of the bulge, whereas halo stars are found in that volume and also
out to still greater distances from the center. Thus, within a given volume,
there will be a mixture of populations, which changes progressively from
position to position within the spheroidal component.

In addition to the relatively easily observed spheroidal-component objects
mentioned thus far, there are several different lines of dynamical evidence
that point to the presence of a distribution of objects of unknown nature
throughout the halo (and perhaps beyond?), whose total mass is large enough
to play a significant role in galactic dynamics. Because these objects have
not yet been conclusively identified observationally [see (H1), (S7) for pre-
liminary evidence], we shall refer to them as the dark population, for they
obviously emit very little light (per unit mass) compared with normal stars.
We are not absolutely certain at present that these objects exist, despite the
appealing arguments that can be adduced in support of the hypothesis.
Even if we do admit their existence, we do not know the nature of the objects,
though several possibilities can be suggested. Among them are very faint
red dwarf stars; cool degenerate dwarfs, neutron stars, and black holes (all
terminal remains of an ancient stellar population); or substellar masses
below the limit needed to produce thermonuclear energy release (for example,
Jupiter-sized masses or below). The existence and nature of the dark popula-
tion are problems of tremendous importance and current interest, and they
will be solved only by astute and persistent observational and theoretical
work.

The characteristic constituents of the disk include: interstellar dust and
gas, which give rise to interstellar absorption, reflection nebulae, and emission
nebulae (or H II regions); young metal-rich stars, which have recently formed
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in stellar associations and galactic clusters in the spiral arms and which
have a clumpy distribution; and older metal-rich stars, which have a smooth
distribution throughout the disk. The dust, gas, and young stars, which we
shall call the spiral-arm population, correspond to Baade’s Population I. We
shall call the smoothly distributed stars the disk population. The radial-scale
length over which properties such as star density, metal richness, and so on
change appreciably is much greater for the disk component than for the
spheroidal component. Therefore, the variation of star density and metal
richness from the galactic center to beyond the solar neighborhood is much
greater in the spheroidal component than in the disk component. In fact,
most of the observable disk has a relatively high metallicity, which lies
within a factor of ten of that of the innermost parts of the spheroidal com-
ponent. This suggests that the disk is made entirely of material already
processed in an earlier generation of stars.

In the range from 3 kpc to 15 kpc away from the galactic center, the density
of interstellar gas is roughly proportional to the star density. Within about
3 kpc of the center, there is a sharp drop in gas density, and, in this region,
observations show strongly noncircular motions of the gas relative to the
center. One interpretation of the central drop in the gas density is that the
gas has been swept out of the central region of our Galaxy; similar low-
density regions are observed near the centers of some other spiral galaxies.
In external spiral galaxies, the H I component in the spiral arms is usually
observed to extend to much larger radii than the stellar component; the
same may well be true for our Galaxy.

The cause of the spiral structure of our Galaxy is not, at present, well
understood. One current theory seeks to explain it as a spiral density wave
that propagates self-consistently around the disk in such a way that the
density enhancements and rarefactions associated with the wave pattern
produce just the gravitational forces that are required to sustain the shape
and motion of the wave.

As will be discussed later, the disk is known to be in a state of rapid
rotation. The density-wave theory of spiral structure predicts that the whole
spiral wave pattern rotates coherently more slowly than the material in the
bulk of the disk. Hence, we expect the gas in the disk to overtake the wave
pattern from behind and run through it. As the gas encounters the density
concentration in the wave, it is compressed. This compression could possibly
lead to relatively rapid star formation downstream in the flow, as is appar-
ently indicated by observation in some external galaxies (see §8-5). Although
this picture is appealing, attempts to formulate it mathematically have en-
countered formidable technical obstacles. The problem of the formulation
of a completely satisfactory theory of spiral structure remains one of the
most important challenges in theoretical astrophysics.

Our whole Galaxy is, of course, in a state of motion. The mass distribution
in our Galaxy produces gravitational forces that give rise to accelerations,
and hence motions, of both stars and gas. The forces that act on stars are
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essentially purely gravitational, whereas the gaseous component is subject
to both gravitational and gas-dynamic forces (and possibly also magnetic
forces in certain situations). The stars respond mainly to the smooth gravi-
tational field of the system as a whole, and they are only weakly perturbed
by chance encounters (except in regions of extremely high star density, for
example, the centers of globular clusters). Stellar gravitational encounters
are elastic, and the kinetic energy of the interacting stars is conserved. In
contrast, gas clouds have large mutual collision cross sections, and their
motions are strongly controlled by intercloud collisions; these collisions
are strongly inelastic and dissipative, with the kinetic energy of the clouds
being lost into internal gas excitation and subsequent radiation of photons.

The spheroidal component of our Galaxy has a very slow rate of rotation
around the center. Many spheroidal-component stars have angular momenta
that are much too small for them to move on circular orbits around the
galactic center. Hence they move on highly eccentric, nearly radial orbits
(that is, “in-and-out” or “plunging” orbits). As a consequence, they traverse
large ranges of distance from the galactic center; for example, the halo-
component stars observed in the solar neighborhood typically move from
minimum radii of less than 4 kpc out to maximum radii of the order of
20 kpc or more. Within any given volume of space, the stars all have in-
dividual residual velocities relative to the mean velocity of that volume. For
spheroidal-component stars, these residual velocities are very large. Because
the dispersion of the residual-velocity distribution for spheroidal-component
stars is actually larger than the systemic rotation speed, some of the stars
have tangential velocity components (that is, perpendicular to the radius
vector from the center) that are negative (in the direction opposite to the
rotation) and hence they move on retrograde orbits around the center.
Furthermore, because they can have large residual velocities perpendicular
to the galactic plane, the spheroidal-component stars can move on orbits
that are highly inclined to the plane and take them large distances from it.

In the galactic disk, the situation is quite different. The interstellar gas
cannot move freely in the radial direction because of the large collision
cross sections of the interstellar clouds. The gas is therefore constrained to
move on almost perfectly circular orbits around the galactic center. The
material in the disk has a high angular momentum per unit mass (as is
appropriate to circular motion), and the disk as a whole is in a state of rapid
differential rotation; that is, the inner parts of the disk have a higher angular
rotation rate than the outer parts, as is the case for the planets in the solar
system. The gas has a very small internal velocity dispersion (~ 10 km/s)
compared to the rotation speed (~ 250 km s~ ! in the vicinity of the Sun).
Thus, when spiral-arm stars form from the gas in the disk, they also move
on virtually circular orbits around the galactic center with little if any motion
out of the galactic plane. If we consider only the forces arising from the
smooth galactic potential, then the orbits of individual disk stars can be
well described in terms of a harmonic oscillation perpendicular to the plane



26 Chapter 1: The Galaxy: An Overview

and an epicyclic motion in the plane relative to the local standard of rest, a
hypothetical point that moves on a perfectly circular orbit around the
galactic center.

As time passes, a cluster or association of stars tends to be torn apart by
the shear of the differential rotation of the disk and by the evaporation of
individual stars that have gained enough energy to escape the binding
forces exerted by the other cluster members. The energy necessary for a star
to escape by evaporation can be gained in individual stellar encounters, by
encounters of the cluster with interstellar clouds, or by successive passages
of the cluster through the spiral-wave pattern. Individual cluster stars thus
tend to be dispersed into the disk, and the random velocities within groups
of disk stars, relative to the local standard of rest, tend to increase with age.
As a result of the mechanisms just mentioned, older and older groups of
disk stars diffuse both in the galactic plane, to orbits of increasingly large
eccentricities, and perpendicular to the plane, to larger and larger distances
above and below it. We can, in fact, identify a sequence of disk population
groups, each with a highly characteristic set of physical and kinematic
properties.

How did our Galaxy arrive at its present state? Although we are not yet
in a position to answer this question definitively in every detail, a few basic
features of the processes of formation and evolution of our Galaxy have
begun to emerge fairly clearly from recent research. We shall sketch here
just briefly a possible history of our Galaxy; alternative scenarios for both
our own and other galaxies will be dealt with in greater detail in Chapter 19.
We have already noted that our Galaxy has two major structural parts, the
disk and the spheroidal component. According to present theoretical ideas,
these are formed separately in a two-stage process, in which the physical
nature and dynamical behavior of the material is somewhat different in
each step.

About 10° years ago, the Universe began in the big bang, which initiated
the cosmic expansion we observe today. In an early phase of the expansion,
primeval hydrogen and helium were created with a relative H:He number
abundance of about 10:1. At some point in the expansion of this material
(perhaps very early), inhomogeneities developed, and they produced density
fluctuations in the pregalaxian material. In some regions of above-average
density, gravity was able first to slow to a halt and then to reverse the original
cosmic expansion. We call these collapsing regions protogalaxies.

It is not clear at present whether the gas in the protogalaxy for our Galaxy
then collapsed as one great cloud or was first converted more or less com-
pletely into stars. To explain the presence of heavy elements (with about
1/1000 to 1/100 of the solar abundance) in even the most metal-deficient
stars, it may be necessary to argue that at least some of the primordial gas
condensed into stars at a very early stage in the formation of our Galaxy
and was recycled back into the interstellar medium. In any case, we have
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reason to believe that gas-dynamic processes played a central role in the
early history of the system.

The spheroidal component of our Galaxy may have been formed when
the gas in the protogalaxy underwent a rapid radial collapse, accompanied
by rapid star formation and a simultaneous metal enrichment of the col-
lapsing material. A radial metal-abundance gradient was set up in this
process, as collapsing protogalaxian material became progressively more
metal-enriched while it streamed toward the center through a background
of already formed stars. Later generations of stars that formed from this
material merely reflect the resulting metal-abundance gradient. In such a
picture, both the final central metal richness of the spheroidal component
and the abundance gradient within the spheroidal component depend on
the rate of star formation in the early stages of the collapse. If there is very
efficient star formation in these stages, then the system will have a fairly high
metal abundance throughout, whereas less efficient star formation implies
a steeper abundance gradient and rather low metal abundances at large radii.

The present rate of systemic rotation of the spheroidal component was
fixed by the angular momentum of the infalling protogalaxian material.
Because the distribution of the residual velocities of the halo stars appears
to be roughly of Maxwellian form (which for a gas characterizes the final
equilibrium distribution of particles that interact dynamically), we infer that
this system of stars must have undergone a strong dynamical relaxation.
There are several possible mechanisms that could have produced this relaxed
state. For example, the form of the velocity-distribution function and its
large dispersion could simply be those appropriate to a near dynamical
equilibrium of the gas from which these stars formed, with the potential
from a very massive halo of dark-population objects. Or, the relaxed velocity
distribution could have been produced by rapid large fluctuations of the
gravitational forces within the system during the collapse itself. In this
violent relaxation process, stars move on orbits along which energy is not
conserved, and their orbital properties become randomly mixed in such a
way that their velocity distribution approximates the Maxwellian distribu-
tion. Alternatively, there could have been a hierarchical relaxation, in which
stars in the halo were relaxed during an early phase of formation of a huge
system of globular clusters, which in turn were largely obliterated during
the formation of our Galaxy. In this scheme, the present globular clusters
represent only a small remnant of the original group. It is an observed fact
that there are now many more high-velocity, low-metal stars outside globular
clusters than inside them.

The formation of the disk apparently proceeded rather differently. The
condensation of material into- the disk occurred only after the collapse of
the spheroidal component, with a relatively low rate of star formation.
During the formation of the disk, gas of higher and higher angular momen-
tum settled into the galactic plane at ever-increasing radii from the galactic
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center. This material may have collapsed radially in the plane, conserving
angular momentum in the process. But, as a result of collisions among gas
clouds, energy was dissipated, and the material was forced into circular
orbits around the center. Because the material ended up much closer to the
center than where it originated, it will have, at any position in the disk, a
higher specific angular momentum than spheroidal-component stars at the
same distance from the galactic center. The infall of outlying gas into the
outermost parts of the disk may take place over an appreciable part of
the lifetime of a spiral galaxy, and it may well be occurring even today at the
outer fringes of our Galaxy.

Even the oldest known disk stars have near-solar metal content (that is,
within a factor of, say, three to five of the solar value). The entire disk is
metal rich, with only a modest gradient increasing toward the galactic
center. These facts suggest that much of the material that condensed into
the disk was recycled material that had been shed by previous generations
of stars (perhaps evolved spheroidal-component stars). Indeed, detailed
computations of the chemical evolution of the material in the galactic plane
show (04) that the relative paucity of metal-poor stars in the disk in the
solar neighborhood cannot be understood unless either the initial metal
abundance of disk material was nearly solar or there was a continuous
inflow of material into the disk from outside. Models that start with a disk
of primordial metal-poor material and do not envisage continuous infall of
gas shed from evolving halo stars either produce many too many metal-poor
stars or violate other physically plausible constraints.

Finally, after the disk settled, a spiral pattern was set up, and perhaps a bar
developed at the center of our Galaxy. The spiral structure (the individual
arms of which may be only transient features, even if the overall pattern
persists through many rotations) may be thought of as a device by which
angular momentum is passed from the mass near the center of our Galaxy,
via the gravitational field of the arms, to outlying gas and stars. This angular-
momentum transfer enables the innermost matter to sink deeper into our
Galaxy’s potential well, thus releasing gravitational energy. Some of the
energy released in this way produces an increase in the random velocities of
disk stars, and some produces shock waves in the material of gas clouds.
These shock waves have two important effects—they induce dense regions
to collapse and fragment into new stars, and they cause less dense regions to
radiate strongly at infrared and radio wavelengths.

The existence (and effect) of a bar at the center of our Galaxy is more
controversial. Certainly, many other spiral galaxies do have more or less
prominent central bars, and the observations of disturbed gas motions near
the galactic center are suggestive of such a phenomenon in our own Galaxy
as well. There are also dynamical reasons for believing a bar should form in
that part of our Galaxy that rotates approximately like a solid body. If there
is a bar at the galactic center, it will push much of the central gas out into a
ring near its edge while feeding other gas in toward the nucleus itself. It is an
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observed fact that much of the gas in our Galaxy is concentrated in a ring
of giant molecular clouds about 4 kpc from the galactic center, and the
galactic center itself is the seat of a great deal of very ill-understood activity,
which almost certainly involves substantial quantities of dense gas. However,
at this point, one steps over the limit of actual understanding of galaxies
into the perplexing and fascinating problems that arise when one attempts
to understand the extraordinary phenomena that power quasars and radio
galaxies, and in this book we shall have to stop just short of that mark.
Others must tell that tale at another time; but to do so they will need to
draw heavily on the knowledge presented in the following pages.
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Astronomical
Background

Our basic observations of astronomical objects yield information about
their positions, their motions along and across the line of sight, and the
distribution of the energy emitted in their spectra as a function of frequency
and time. Essentially everything else we wish to know about astronomical
bodies must follow from deductions and inferences made from analyses of
these data, using the laws of physics established in terrestrial laboratories.
It is actually rather remarkable that modern astrophysics has derived as
much information as it has concerning the properties of stars and galaxies,
despite the severe limitation (compared to other sciences) of having at its
disposal only the photons emitted casually by the objects under study.

The determination of positions and transverse motions lies in the domain
of positional astronomy, or astrometry, whereas radial velocities and energy
distributions are obtained by spectroscopic and photometric measurements.
The relevant measurements can be made with conventional optical tele-
scopes, with radio telescopes, or with space-borne instruments that can
reach certain spectral regions inaccessible from the Earth’s surface (for
example, ultraviolet or X ray).

In principle, the acquisition of the data is fairly straightforward, but in
practice the measurements require careful techniques, using delicate and
complex equipment, often followed by an elaborate set of reductions to
eliminate extraneous effects. It is beyond the scope of this book to discuss
either the equipment or the reduction procedures involved, especially as
there are a number of excellent books dealing with positional astronomy
[for example, (M1), (S6, Chapters 1-6), (S3), and (V1)] and astronomical
spectroscopy and photometry [for example, (G2), (H2) and (S6, Chapters 9,
11, 13)]. In this chapter, we shall attempt only to describe the kinds of
astrometric, photometric, and spectroscopic data that we shall call upon in
our work. The interpretation of these data, and their application to the
development of an understanding of galaxies, will occupy much of the re-
mainder of this book.
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2-1. POSITIONS AND COORDINATE SYSTEMS

Positional astronomy is the oldest branch of astronomy. Catalogs of the
locations of astronomical objects on the sky have come down to us from
antiquity. It is probably fair to say that astrometry was the central problem
of observational astronomy through the late nineteenth and early twentieth
century. Since that time, astrophysical observations have attracted more
interest and generated more excitement than astrometry, to the extent that
students often have the (mistaken) impression that positional astronomy is
somewhat old fashioned and perhaps even unimportant. Such an opinion
is grievously wrong, not only because the data obtained by astrometric
measurements lie at the foundation of much of astrophysics, but also because
in recent years the subject has undergone a renaissance, for two reasons.
First, new observational techniques offer hitherto unattainable accuracy,
and second, technological advances (such as computers) can be applied to
the acquisition of observations, to the control of automatic measuring en-
gines, and to the reduction of data. Even more important, the issues that
positional astronomy deals with are anything but trivial. Among them is
the task of establishing, in practical terms, an inertial reference frame. This
matter is one of profound importance to a wide range of problems, including
the navigation of space vehicles, the dynamics of the solar system, the large-
scale dynamics of matter in the Universe, and theoretical questions about
the physical nature of gravity and inertia (see Chapter 11). In short, astro-
metry is now a lively subject in which exciting results of great importance
are likely to emerge in the near future.

The Equatorial System

Any mention of the position of an object implies that a coordinate system
has been chosen and established observationally. The fundamental coordi-
nate system for observations made from the surface of the Earth is the
equatorial system. The Earth rotates eastward on its axis once a day, and,
as a consequence, the sky appears to rotate westward about the Earth. The
extension of the Earth’s axis to the celestial sphere (an imaginary sphere of
infinite radius centered on the earth) defines the north and south celestial
poles (NCP and SCP), and the extension of the Earth’s equatorial plane
determines the celestial equator (see Figure 2-1). The equator is a great circle,
that is, a circle on the celestial sphere defined by the intersection of a plane
passing through the sphere’s center with its surface.

For each observer on the Earth’s surface, the direction of gravity fixes the
direction of the local vertical; the point at which the extended vertical line
intersects the celestial sphere is the zenith. The zenith distance z of a star is
its angular distance from the zenith. The horizon is the great circle whose
pole is the zenith (and thus lies 90° from the zenith). The angular distance
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Celestial equator

Meridian

SCP

Figure 2-1. The celestial sphere, showing the celestial poles,
celestial equator, meridian, zenith point, and horizon. The
hour angle of a star is the angle ¢, its zenith distance is the arc
z, and its altitude is the arc A.

of an object above the horizon is its altitude. The great circle passing through
the celestial poles and the zenith is the meridian. The hour angle t of an
object is the angle between the meridian and its hour circle, which is the
great circle through the poles and the object. Hour angle is defined to
increase westward.

Angles on the celestial sphere can always be expressed in units of degrees,
minutes, and seconds of arc. Because its operational definition involves a
time measurement, the hour angle is often expressed in terms of hours,
minutes, and seconds of time. The conversions from time to angular measure
are 24" = 360°, 1* = 15°, 1™ = 15, and 1° = 15".

As the Earth revolves annually in its orbit around the Sun, the Sun appears
to revolve in the opposite sense around the Earth on the celestial sphere on
a path called the ecliptic. The ecliptic is the great circle defined by the inter-
section of the Earth’s orbital plane with the celestial sphere. The Earth’s
rotation axis is inclined away from the normal to its orbit by an angle of
about 23° 27'; hence the ecliptic is also inclined to the celestial equator by
this angle, which is called the obliquity of the ecliptic. The ecliptic and the
celestial equator intersect at two points (separated by 180°) called the vernal
and autumnal equinoxes. The Sun passes through the vernal equinox on
approximately March 21, moving from south to north of the celestial equator.
About six months later, it passes through the autumnal equinox traveling
from north to south. The time interval between successive returns of the Sun
to the vernal equinox is called the tropical year (see Figure 2-2).
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the ecliptic. SCP

The longitudelike coordinate of the equatorial system is called the right
ascension o; the zero point of « is taken to be the vernal equinox. Thus the
angular distance measured eastward along the celestial equator from the
vernal equinox to the point of intersection of the equator and the hour
circle of a star is the star’s right ascension (see Figure 2-3). As was true for
the hour angle, right ascension can be expressed either in angular units or
in time units. The latitudelike coordinate, called the declination 6, is the
angular distance measured from the equator along a star’s hour circle to

NCP

Celestial
equator

Figure 2-3. The position of a star in the
equatorial system is specified by its right
ascension « and its declination é. SCP
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the star, and it is positive northward and negative southward. For example,
the NCP is at 6 = +90°; the SCP is at 6 = —90°; the declination of the
celestial equator is 0°.

The altitude of the NCP above the horizon equals the observer’s latitude
on the surface of the Earth. The latitude can be determined by measuring
the zenith distance of upper and lower meridian passage of a circumpolar
star. The declinations of other stars then follow from knowledge of the
observer’s latitude and the zenith distance of each star at meridian passage.

Time measurement is based ultimately on the observed position of the
Sun. The obliquity of the ecliptic is derived by observing the maximum and
minimum declination of the Sun at meridian passage throughout a year.
Knowledge of the obliquity and of the Sun’s observed declination at a given
meridian passage yields the right ascension of the Sun (or, equivalently, the
hour angle of the vernal equinox) from standard relations of spherical
trigonometry. Apparent solar time is then given by the hour angle of the
actual Sun plus 12 hours, so that noon occurs when the Sun crosses the
meridian above the horizon.

Apparent solar time is nonuniform because (1) the Earth moves around
the Sun on a noncircular (elliptical) orbit with nonuniform velocity (which
implies that the apparent motion of the Sun along the ecliptic is nonuniform),
and (2) the ecliptic is inclined to the equator (which implies that the Sun’s
projected rate along the equator would be nonuniform even if it moved
uniformly along the ecliptic). Therefore, a fictitious mean Sun is defined such
that it moves at a uniform rate along the celestial equator; the motion of
the mean Sun defines mean solar time, which is our practical clock time.

The time interval between successive meridian passages of the mean Sun
is a mean solar day. Because the Sun appears to move eastward on the sky
as a result of the Earth’s orbital motion (and completes a revolution around
the equator in a year), the mean solar day is approximately 3™56° (that is,
24h/365.25 days) longer than the sidereal day, which is defined as the time
interval between two successive meridian passages of the vernal equinox.
The difference between apparent solar time and mean solar time, which can
be computed from knowledge of the elements of the Earth’s orbit and the
obliquity of the ecliptic, is called the equation of time.

Given the Sun’s right ascension at apparent noon and the equation of
time, we know both the mean solar time and the hour angle of the vernal
equinox at that instant of mean solar time. Then, given an accurately uniform
clock (running either at the mean solar or the sidereal rate), we can easily
infer the hour angle of the vernal equinox, hence the right ascension of the
meridian, at subsequent times. Therefore, by noting the time of meridian
passage of a star, we determine its right ascension. In short, the right as-
censions of stars follow, in effect, by comparison of the times of meridian
passage of the Sun and stars via a clock, which serves as an interpolation
device to connect daytime observations of the Sun to nighttime observations
of the stars.
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Thus far, we have described the equatorial system as though it were fixed
in space. In fact, it is not; rather, it moves relative to a true inertial frame
owing to the effects of precession and nutation, which cause the direction of
the Earth’s rotation axis—the celestial pole—to move on a complicated
path on the celestial sphere, and hence cause the whole coordinate system
based on that pole to change in an involved way as a function of time.

The dominant precession effect arises because the Earth is not perfectly
spherical but is approximately an oblate spheroid (that is, it has an equatorial
bulge). This allows the Sun and Moon to exert gravitational torques on the
Earth, which cause the Earth’s rotation axis to drift on a cone around the
normal to its orbital plane (the pole of the ecliptic). The pole of the celestial
equator therefore describes a small circle of radius 23°27" around the pole
of the ecliptic in a period of about 25,725 years. Accordingly, the vernal
equinox moves slowly westward along the ecliptic, which implies a slow
change in the right ascension and declination of every object in the sky.
This secular (that is, cumulative) motion is called the luni-solar precession.

In addition, the Earth’s orbit is perturbed by gravitational interactions
with other planets, and this fact leads to changes in the shape of the orbit
and in the orientation of its plane (the plane of the ecliptic) in space. These
planetary precession effects are much smaller than luni-solar precession. The
sum of the luni-solar and planetary precessions is called the general preces-
sion, which amounts to an angular motion of the equinox of 50”.25 per
years.

In addition to the slow secular effect of precession, the celestial pole
undergoes a relatively short time-scale periodic oscillation around its mean
position, called nutation. The Moon’s orbit is inclined by about 5° to the
plane of the ecliptic; the forces exerted by the Sun on the Moon cause the
pole of the Moon’s orbit to drift along a small circle of radius 5° around
the pole of the ecliptic. This leads to a westward regression of the line of
nodes of the Moon’s orbit in a period of about 18.6 years, and the resulting
periodic change in direction of the forces exerted by the Moon on the Earth
produces nutation. The combination of precession and nutation causes the
pole to follow a wavy path around a circle on the celestial sphere.

Because the position of the celestial pole changes with time, the numerical
values of the position coordinates « and 6 of a given object constantly change
(even though the object may be fixed “absolutely” in space). Therefore, when
we state an object’s position in the equatorial system, we must also specify
the epoch of that position. The epoch tells, in effect, the position of the pole
relative to which the position is measured.

Positional astronomers thus face the following challenge: not only must
they determine (with high precision) the positions of objects within a coor-
dinate system capable of observational realization, but they must determine
the motion of the system itself! In principle, this can be done directly from
fundamental right ascensions and declinations determined along the lines
sketched out in this section. In practice, there is yet another complication.
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The stars themselves actually move as a result of random motions and their
revolution around the center of our Galaxy, and these movements lead to
measurable changes in stellar positions called proper motions. As we shall
see in §2-2 and in Chapters 6, 7, and 8, proper motions provide vital infor-
mation about the kinematics of our Galaxy.

In the present context, to untangle the combined systematic effects of
precession, solar motion, and differential galactic rotation (see Chapters 6
and 8) from the individual motions of the stars themselves, we must resort
to a hypothesis: we assume that stellar proper motions are truly random
and that, if we use a large enough sample of stars, the proper motions will
average to zero, so that any residual changes in observed position can then
be attributed to the systematic effects just listed. In this way it is possible to
derive the precession constants empirically, as was done more than eighty
years ago by S. Newcomb, whose values (with subsequent corrections) for
these constants have been used in practically all later work. The great
danger that lurks here must be stated explicitly. The proper motion of a
star is derived by determining the change in its position between two widely
separated epochs in time, but these positions must first be reduced to a single
coordinate system (that is, to a common position of the celestial pole) by
correcting for the effects of precession. Therefore, any error that exists (for
whatever reason) in the precession constants used to make this reduction
will necessarily produce a false change in position. Hence this error will
make a spurious contribution to the derived proper motion and thus ulti-
mately will lead to distortions of our picture of the kinematic state of our
Galaxy.

Thanks to recent improvements in estimates of planetary masses, the
planetary precession, which can be calculated by celestial mechanics, is now
known to a high precision. But luni-solar precession cannot be calculated
accurately because of inadequacies of our knowledge of the internal mass
distribution of the Earth. Therefore, it must be determined empirically. It
is now known that the adopted value for luni-solar precession is slightly in
error and that a corrected value should be used in future work. Unfortunately,
a definitive value of the correction to be made has not yet been determined.
It is quite possible, therefore, that stellar proper motions on the fundamental
meridian-circle system do contain systematic errors, perhaps of significant
size. What is urgently needed now is a precise method for determining
precession, independent of any hypothesis about stellar motions. We shall
return to this point again, for recent developments in radio astrometry offer
promise of providing such a method.

As already outlined, the classical techniques for measuring fundamental
positions employ a variety of instruments, including meridian circles, transits,
and astrolabes, along with accurate clocks. These techniques are typically
used to measure the time and zenith distance of the meridian passage of a
star. The instruments used must be carefully calibrated to eliminate errors
of alignment, collimation, flexure, graduation of circles, and so on. Advances
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in technology have greatly improved the accuracy and ease with which
unwanted instrumental effects can be eliminated. Furthermore, corrections
must be made for effects such as atmospheric refraction, which systematically
increases an object’s observed altitude, and aberration (both annual and
diurnal), which results from the Earth’s revolution and rotation and the
finite velocity of light and which displaces the apparent position of a star
from its true position. In addition, the images of stars are never perfect points;
they are either blurred or fluctuate randomly in position because of atmo-
spheric seeing effects that are produced by variations in atmospheric prop-
erties along the path of the ray from star to observer. All together, the
difficulties just described lead to standard errors in fundamental positions
of +0”15 in the best catalogs. This is an internal precision; absolute external
(systematic) errors can be, and in some cases are known to be, significantly
larger.

Relative positions can be measured on photographic plates with respect
to stars whose positions have already been determined fundamentally. His-
torically, most astrometric plates were taken with long-focus refractors. But
recently, high-quality results have been obtained using Schmidt telescopes
and specially designed astrometric reflectors. These instruments have the
advantages of wide field and greater light-gathering power. In reducing
photographic measurements, one must make allowance for the projection
of the celestial sphere onto the plane of the plate and for a number of in-
strumental effects (for example, optical aberrations, alignments, and so on),
which may depend on the color and brightness of a star, in order to solve
for the scale and orientation of the plate with respect to reference stars
whose positions are considered known. One problem encountered in mea-
suring plates is the growth of images caused by scattering in the photographic
emulsion; the images of bright stars are sometimes so large as to preclude
accurate measurement. Moreover, guiding errors and seeing effects can
produce systematic differences between the photocenters of faint and bright
stars on the plate. A typical standard error for a relative position measured
on a single plate is +0702, and, by combining several plates from a number
of nights, positions in the best cases have been determined to +07005.

In the past, most fundamental position measurements with meridian
circles have been limited to relatively bright stars, typically with apparent
magnitudes (see §2-5) m < 7.5. Recently, these observations have been
pushed to m ~ 9.0, and, by use of photoelectric detection techniques, as-
tronomers hope to reach much fainter stars in the near future. This work
is important both because of the intrinsic interest in positions and motions
of faint stars and because it will help to tie into the fundamental system
both the new photographic measures of faint stars made with large reflectors
and surveys using faint galaxies as a reference frame (see §2-2). At present,
it is difficult to bridge the gap between the bright stars used in meridian-
circle work and the faint objects used in photographic work without making
systematic errors.
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Two stimulating new developments in positional astronomy are the pos-
sibilities offered by measurements from space vehicles and the emergence
of radio astrometry. In space, the problems of atmospheric refraction and
seeing vanish, the accessible spectrum is extended into the ultraviolet and
infrared, and there is no net gravity force to produce instrumental flexure.
It has been estimated (G1, 277) that observations from a small, general-
purpose satellite (for example, TD-1) could yield positions accurate to
10701, and observations from a large instrument, such as the Space Tele-
scope, or from special-purpose astrometric satellites could yield positions
accurate to +07002 (G1, 283), (M6, 361).

The prospects for radio astrometry are equally exciting (C1). In the radio
spectral region, atmospheric refraction again practically vanishes. The inter-
ferometric technique employed yields fundamental declinations and right
ascensions (with an arbitrary zero-point) directly. A crucial advantage of
this approach is that large angular separations can be measured as accurately
as small ones, and hence high internal consistency is easily attained over
the whole sky. In contrast, it is extremely difficult to achieve such consistency
by optical methods (except from space data). Radio methods are now as
precise as optical methods, and they are likely to improve. Most of the radio
sources observed are external galaxies so distant that their proper motions
can safely be assumed to be zero. Thus radio astrometry offers the possibility
of a definitive determination of precession, untainted by any kinematic
hypothesis. Because most of the objects observed in radio work are not stars,
special steps must be taken to connect the radio data back into the funda-
mental stellar system. Some of the observed sources are compact. If these
can be identified with compact optical counterparts, a reliable connection
can be made with the optical system. Also, a few of the sources actually are
stars. When very precise optical positions are determined for these stars,
the two systems can again be connected reliably. Even though some practical
problems remain, and even though much observational work must yet be
done, it is likely that definitive precession constants and extremely accurate
positions will soon emerge from combined radio and optical astrometric
work.

The Galactic System

Although the equatorial system constitutes the fundamental observable
system, it is clearly geocentric, and, as such, provides an inappropriate
viewpoint for problems of galactic structure and dynamics. It is useful,
therefore, to set up a galactic system of coordinates that has a direct physical
connection with the structure of our Galaxy. The galactic equator is chosen
to be the great circle that most closely approximates the plane of the Milky
Way. This plane is inclined at an angle of 62°36’ to the celestial equator.
The north pole of the galactic system is located at 0,05, = 12249™ and
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Figure 2-4. The galactic equator is the great circle
whose plane most closely approximates the plane of
the Milky Way. It is inclined at an angle of about
62°5 to the celestial equator.

81050 = +27°24'. The galactic latitude b is the angular distance along a
great circle perpendicular to the galactic equator; for example, the north
galactic pole is at b = +90°, and the south galactic poleisatbh = —90° (see
Figure 2-4).

Actually, there are two systems of galactic coordinates. The old system
(£, b') measures galactic longitude /' from one of the points where the galactic
equator intersects the celestial equator. This choice is arbitrary and without
physical significance. The new system (", b'") uses a slightly different pole
(as given above) and measures galactic longitude /" with respect to a point
almost in the direction to the galactic center. (The compact radio and infrared
source believed to mark the position of the galactic nucleus actually lies
about 5" away from this point.) Thus, in the new system, the direction to the
galactic center is /" = 0°, bt = 0°, with o450 = 17°4274 and ;950 =
—28°55", whereas, in the old system, the galactic center was located at
/' = 327°41", b = —1°24'. We shall use the new system throughout this
book and dispense henceforth with the superseript IL. Conversions of co-
ordinates between the equatorial and galactic systems (and between the two
galactic systems) are easily effected with standard formulae of spherical
trigonometry [see, for example, (S3, Chapter 1)].

2-2. PROPER MOTIONS

Because of their intrinsic motions in space, the stars change position with
respect to one another on the sky. The component of a star’s motion across
the line of sight, relative to the Sun, produces an angular rate of change in
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position called the proper motion. This angular rate of change is directly
proportional to the star’s linear velocity perpendicular to the line of sight
and inversely proportional to its distance (convenient units will be specified
in §3-1). Therefore, if we can measure a star’s proper motion and estimate its
distance, we thereby determine its transverse velocity—one component of
its space velocity relative to the Sun (the other component is the radial
velocity; see §2-4). The space motions of stars can be analyzed (see Chapters
6, 7, and 8) to give information about the distribution of stellar velocities
about the center of our Galaxy. Hence proper motions are an essential com-
ponent in the development of our knowledge of the kinematics, and thus,
ultimately, the dynamics, of our Galaxy. It is for this reason that so much
concern is focused on their accuracy, and so much attention lavished on
their determination.

Proper motion is a vector quantity and has both a magnitude g, typically
measured in seconds of arc per year, and a direction, which may be specified
by its position angle 0 (the angle between the direction to the NCP and the
direction of motion, measured positive from north to east). In the equatorial
system, the motion is usually resolved into two components: ys = u cos 6,
which is perpendicular to the celestial equator, and y, cos = u sin 6, which
is parallel to the celestial equator. Here, u, is the annual rate of change in
right ascension (often expressed in seconds of time instead of seconds of arc),
and the factor cos 0 comes from the convergence of hour circles to the
celestial poles.

Proper motions are usually tiny; the largest known is that of Barnard’s
star, which has a motion of 10”3 per year. Typical measured motions are
only a few hundredths of a second of arc per year. In view of the errors in
position measurements quoted in §2-1, it is clear that many years must
elapse before these small motions accumulate to a measurable effect. Thus,
to determine fundamental proper motions, one compares meridian-circle
positions obtained at epochs separated by twenty to fifty years. The observed
differences in position consist of (1) changes produced by precession, nuta-
tion, solar motion, and differential galactic rotation; (2) the accumulated
proper motion; and (3) errors of measurement. If the precession constants
were known precisely, then proper motions (plus errors) would follow im-
mediately. Ignoring the possible systematic errors discussed in §2-1, the
standard errors (accidental errors only) in the highest-quality catalogs such
as FK4 (see Table 2-6) are stated to be 07002 per year.

By measuring positions of stars on photographic plates taken at widely
separated times (twenty years or more), we can obtain relative proper motions
with respect to a predetermined set of reference objects on the plate. If the
reference objects are stars, then the relative motions must be reduced to abso-
lute motions by applying a correction for the average proper motions of the
reference stars themselves. In the event that these are stars with known fun-
damental proper motions, a direct reduction to the meridian-circle system is
possible. The accuracies achieved in this way are typically only 407005 to
107010 per year, principally because there will generally be only a few stars
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on the plate with reliable fundamental positions and motions. Furthermore,
both the accidental and systematic errors in the reference-star motions are
necessarily propagated into the final absolute motions derived from the
relative motions. In some cases, one measures motions of bright, nearby stars
relative to very faint (and presumably distant) comparison stars in the field.
In such cases, often only a statistical correction (which depends on the galac-
tic coordinates of the field and the magnitude of the reference stars) is applied
to reduce the relative motions to absolute motions. Obviously this procedure
is less precise, but it is often very useful for survey work, and it must be used
whenever the fundamental motions of the reference stars are unknown.
Photographic proper-motion programs have received enormous impetus in
recent years from the development of automatic measuring engines and
digital computers, which make elaborate reduction procedures feasible. It is
now possible to conduct programs that would have been unmanageable a
few years ago. :

An entirely different approach to measuring absolute proper motions has
been taken in programs under way at Lick Observatory and Pulkovo
Observatory (V2). These surveys are based on plates separated by long time
intervals, and they use faint external galaxies as the reference system. Because
galaxies lie at vast distances, we know that their possible proper motions are
orders of magnitude below our measurement threshold and thus can be taken
to be zero. Hence, for practical purposes, these galaxies define an inertial
reference frame. The proper motions derived in these programs are therefore
truly absolute, and they are free of those systematic errors present in the fun-
damental (meridian-circle) system. At present, preliminary results from these
programs are beginning to become available. The values of uz; from both
observatories agree with one another and with the fundamental (FK4) system.
In contrast, the values of u, cos & found in the two programs disagree with
one another by a systematic difference of 0701 per year, and neither agrees
with the fundamental system. The source of the discrepancy is not yet known,
but some astronomers favor the Lick results because the Pulkovo measure-
ments employ far fewer reference galaxies and may therefore be less secure.
It is reasonable to expect that this temporary problem will soon be resolved
and that we will then have a set of reliable absolute proper motions measured
in a truly inertial frame.

Space observations also hold promise for proper-motion measurements.
Because position determinations from space observatories can be very pre-
cise, accurate proper motion measurements can be made in shorter time
intervals than those needed for ground-based observations. For example, it
is estimated (G1, 277) that data from a small general-purpose satellite such
as TD-1 can yield proper motions accurate to +07005 per year in two years
of observing. From special-purpose astrometric satellites, one should be able
to obtain proper motions accurate to +07002 in three years (M6, 361). With
the Space Telescope, it should be possible (G1, 283) to obtain proper motions
good to +07001 in three years (not fifty), and if the lifetime of the instrument
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is twenty years, then accuracies of +07002 are possible based on only one
early and one late observation. The latter figures would permit measurements
of internal motions in a number of star clusters, and these measurements
would significantly improve our understanding of cluster dynamics (see
Chapters 14 and 18).

Although accurate measurement of proper motions is exacting and some-
times tedious work, it cannot be emphasized too strongly that it is of central
importance to the development of a picture of the structure, kinematics, and
dynamics of our Galaxy

2-3. PARALLAX

As the Earth revolves around the Sun, the vantage point from which we
view the stars continually changes. Thus their apparent directions also change
slightly. Consider Figure 2-5, and suppose the Earth is at E 1; the direction
to a star S is then along the line E,S. Six months later, when the Earth is at
E,, diametrically opposite the Sun, the star will appear in the direction E,S.
During the course of the year, the apparent position of a star traces out an
elliptical path called the parallactic ellipse. The lines E 1S and E,S contain
an angle at S that is defined to be twice the parallax 7 of the star. If  is the
radius of the Earth’s orbit, and d is the distance from the Sun to the star,
then, because d > r,  is a small angle, and

2 = tan7 ~ nwrad (2-1)
If we convert to seconds of arc,
" = 206,265 rad (2-2)

Star

Earth’s orbit

E,

Figure 2-5. The parallax = of a star is the angle
subtended by the star at 1 a.u.
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and set r equal to one astronomical unit (a.u.), then we have

206,265

i

T

a.u. (2-3)

We now define another unit of distance, the parsec (pc), as the distance at
which a star would have a parallax of 1”. Then 1 pc = 206,265 a.u. =
3086 x 10'3 km = 3.26 light-years, and the distance in parsecs to a star
with observed parallax n” is

I
d=— 2-4
o pe (2-4)

For galactic-structure work, it is convenient to use the kiloparsec (kpc) =
10® pc as a distance unit, and, for the discussion of distances between galaxies
and in the Universe at large, the megaparsec (Mpc) = 10 pc. As is obvious
from equation (2-4), the greater the distance to the star, the smaller is its
parallax. This fact makes it possible to measure the trigonometric parallaxes
of the nearer stars against the background of very distant stars.

Because the stars are far away, their parallaxes are small. For several
hundred years, numerous attempts to measure them to “prove” the helio-
centric theory of the solar system were frustrated because the available
observational techniques were not accurate enough to detect parallax shifts,
even though they are there. It might be good to keep this historical example
in mind when considering contemporary attempts, often still unsuccessful,
to decide important questions about the structure of our Galaxy and the
Universe by means of difficult observations. It was not until 1838 that F.W.
Bessel finally determined the parallax of the star 61 Cygni as 0”.29. With
present-day equipment, parallaxes are routinely measured out to distances
of the order of 50 pc (and sometimes beyond, but with great uncertainty).

In principle the method for determining parallax is simple. A photograph
of star S is taken when the Earth is at E;, and another is taken when it is
at E,. The position of star S is measured on each photograph with respect
to faint background stars (which are presumably very distant), and the
difference in these positions is then twice the relative parallax. Naturally,
the procedure is more complicated in practice. Many photographs are
required, great care must be taken in making the measurements, and an
elaborate set of reductions must be made [see (ML), (S3), (V1) for details].
The reference stars do not actually lie at infinite distances, and they must
therefore have finite (if small) parallaxes themselves. They will thus move on
parallactic ellipses similar to that of star S (but, ideally, of much smaller
amplitude), and a correction must be applied to reduce the measured relative
parallax to an absolute parallax, which refers to a frame truly fixed in space.
The reduction to absolute parallax is usually made by applying a statistical
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correction, which depends on the brightness of the reference stars and the
galactic coordinates of the field. Alternatively, absolute parallaxes could, in
principle, be measured with respect to objects known in advance to have
negligibly small parallaxes, for example, compact external galaxies or stars
that are known on astrophysical grounds (from their spectra) to be intrinsi-
cally bright but apparently faint because they lie at enormous distances.

Because of the large effort required to determine parallaxes, observers will
often attempt to select stars that have a high probability of yielding a mea-
surable result, unless there is some overriding astrophysical reason for
including a particular star in their program. A common way of doing this
is to choose stars that have large proper motions because, for a given limit
on their space velocities, the nearest stars will generally show the largest
proper motions. Although this is a reasonable (if not infallible) strategy, it
introduces a selection effect that leads to a statistical bias in the group of
stars known to be nearby, and the sample of such stars is thus not complete.
We shall return to this point in Chapter 4 in our discussion of the stellar
composition of our Galaxy in the solar neighborhood.

All trigonometric parallaxes determined before about 1963 are collected
in the Yale Parallax Catalog (see Table 2-6); more recent results are scattered
through the literature. The largest known parallax is 0”75 for o Centauri,
which places it at a distance of 1.3 pc. The second largest is 0"/55 for Barnard’s
star—the largest proper-motion star—which is at a distance of 1.8 pc. The
typical error in a parallax determination has long been about +0701, but
modern work with improved techniques now achieves errors of about
+07005. In a few cases, the use of a very large number of plates and the most
modern methods allows the errors to be reduced to +07002. Given the
typical errors for modern parallax work, we see that the distance of a star
at 20 pc (r” = 0705) is uncertain by about 10%, which implies a 209 un-
certainty in the determination of its intrinsic brightness (see §2-6). The
fractional errors at larger distances quickly become unacceptably large,
hence detailed astrophysical studies based on trigonometric parallaxes are
generally confined to stars within 20 to 25 pc. Stars within these distance
limits have been collected into special catalogs (see Table 2-6).

There are about 1900 stars known to be within 25 pc, and about 1300
within 20 pc, of which only perhaps 900 really have distances known to an
accuracy of 109;. There are 52 individual stars with parallaxes > 0720 (that
is, d < 5 pc). Many of these are members of visual binaries (see §3-1), and
the number of distinct systems of one or more stars within 5 pcis 39, so that
the visible multiplicity ratio is 1.3. If one accounts for the fact that some of
these stars are known to be spectroscopic binaries (see §3-1) and that some
are suspected to have invisible companions, the total number of stars within
the 39 systems rises to 61, and the multiplicity ratio is 1.5. Estimates of the
completeness of the parallax data suggest that we have identified only about
35%; of the stars actually within a sphere of a 20-pc radius and that the degree
of incompleteness is worst for intrinsically faint stars.
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The nearby stars provide a sample of a typical population of stars in the
disk of our Galaxy. A striking feature of this sample is that most of the stars
in it are intrinsically fainter than the Sun, which shows that stars of low
luminosity are quite common. Of the stars within 5 pc of the Sun, only one
(Sirius) is intrinsically brighter, and only one other (x Cen) is as bright. A
sample selected according to apparent brightness (such as found in the Yale
Bright Star Catalog) is radically different in character; it contains a prepon-
derance of intrinsically bright stars which, though actually rare, can easily
be seen to large distances. We shall return to this point in Chapter 4.

To determine the intrinsic brightness of a star, we must know its distance
(see §2-6). Thus the limitation that trigonometric parallaxes are reliable only
for distances <25 pc is a severe one, for there are many types of stars of
great astrophysical importance that are simply too rare to be found within
this volume. To calibrate the intrinsic brightness of such stars, we must
develop alternative methods for estimating their distances. Some of these
methods are geometric in nature and hence are in some sense as fundamental
as trigonometric measures (though in most cases they invoke additional
hypotheses). But, for many stellar types, the calibrations can be made only
by comparing stars of unknown intrinsic brightnesses with stars whose
brightnesses have already been calibrated geometrically and with which
they are known to be physically associated (for example, those in binaries
and clusters). We shall return to these points in Chapter 3; for the present,
we wish only to stress that trigonometric parallaxes for nearby stars play
a key role in fixing the intrinsic brightness of practically every other kind
of astrophysical object and thus ultimately in setting the distance scale for
the entire Universe.

As was true for positions and proper motions, parallax measurements
from space observatories may yield a considerable improvement in accuracy.
With observations from astrometric satellites, it may be possible to achieve
errors of +07003 (M6, 361), and from the Space Telescope, errors of only
407001 (G1, 283). If this could be done, then we could survey reliably to
at least five times the present distance limit, that is, through a volume 125
times as large. Among other things, it would then be possible to obtain
reliable distances for stars in the Hyades cluster (the importance of which is
discussed in §3-1) and for subdwarfs (see §3-5).

2-4. RADIAL VELOCITIES

When a source of radiation moves toward or away from an observer, the
observed wavelengths of photons will be different from their emitted wave-
lengths. To the lowest order in v/c, the wavelength difference Al is given
by the Doppler formula

Ad = ”?R 2o (2-5)
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where c is the velocity of light, 1, is the wavelength of the radiation in the
rest frame of the source, and vy is its radial velocity (that is, its velocity
along the line of sight to the observer). In astronomical work, the sign of vg
is taken to be positive if the source moves away from the observer and
negative if it approaches. Thus A/ for a receding source is positive, and the
observed spectrum is redshifted relative to its rest wavelength; for an
approaching source, A/ is negative and the observed spectrum is blueshifted.

When we examine the spectrum of a star, we can identify the observed
spectrum lines with those produced by various chemical elements in definite
states of excitation and ionization; from terrestrial experiments, we know
the rest wavelengths of these lines. Now suppose that we photograph the
spectrum of a star and that, on the same plate, we also photograph the
spectrum of a laboratory source at rest (typically an arc or a discharge tube).
The laboratory spectrum provides a reference scale of wavelengths directly
on the plate, so by measuring the positions of the stellar lines with respect to
those in the comparison spectrum, we can determine their wavelength shift
and hence the radial velocity of the star with respect to the spectro graph. After
correcting for any components of the Earth’s orbital velocity (30 km s 1)
and rotation velocity (0.5 km s~ ) along the line of sight, we obtain the helio-
centric radial velocity of the star (see S6, Chapter 7 for additional discussion).

Stellar radial velocities are needed if we wish to know the space velocity
of stars with respect to the Sun. They are thus essential to our understanding
of the kinematics of our Galaxy. Some stars are observed to have variable
radial velocities. These may be caused by the orbital motion of a star around
a companion (see §3-2) or by pulsation of the star (see §3-7). In either case,
the radial velocity data can be analyzed to yield astrophysically important
information.

Radial velocity measurements are usually made on high-dispersion spec-
trograms in order to obtain high accuracy. For example, suppose we wish
to determine vy to within +1 km s™! (the error quoted for a high-quality
velocity in the Mount Wilson Catalog of Radial Velocities; see Table 2-6);
then, at 14500 A, we must measure A4 to +0.015 A, or to within + 3 microns
on a plate with a dispersion of 5 A/mm! A complication that enters here is
that some stellar lines are actually blends of several features, and slight
adjustments, depending on spectral type, must be made in the rest wave-
lengths adopted for the stellar lines. In general terms, the best accuracy is
obtained for stars of near-solar temperature and cooler, which usually have
spectral lines that are sharp and easy to measure. For stars that are hotter
than the Sun, the lines are often broad and diffuse, owing to the effects of
pressure broadening and stellar rotation; the uncertainties of measurement
are then correspondingly larger. Recently, a photoelectric method for mea-
suring radial velocities has been developed (G3), (G4), (G5). This approach
gives very high accuracy (40.2 km s™?) for bright stars and good accuracy
(£1 km s~ 1) for stars that were hitherto much too faint for standard photo-
graphic techniques, such as individual members of globular clusters.
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2-5. STELLAR SPECTRA

The richest source of information about stars are their spectra. The recovery
and exploitation of this information has long been one of the central problems
of astrophysics. The two main approaches to this problem are based on
different philosophies, use complementary methods, and aim at meeting
different needs. We shall categorize them as spectrum analysis and spectral
classification. In this section, we shall deal mainly with the latter, but it is
worthwhile to consider both in broad terms for the sake of orientation.

When we examine the light from a star with a spectrograph, we observe
a bright continuum of radiation, upon which are superimposed absorption
lines (and, occasionally, emission lines). The distribution of energy in the
continuum, and both the profiles (fractional depth into the continuum as a
function of wavelength) and strengths (integrated absorption) of the lines
are determined by the physical conditions in the stellar atmosphere—
temperatures, densities, velocity fields, magnetic fields, element abundances,
and so on. Hence, by a suitable theoretical analysis of these features, we can
derive a detailed physical picture of the structure and composition of the
outer layers of stars.

The basic data required for a spectrum analysis are quantitative descrip-
tions of line strengths and profiles and descriptions of the frequency variation
of the continuum. These data are obtained from spectrophotometric measure-
ments. The continuum information can be obtained from color indices (see
§2-6) or from absolute energy distributions (see §2-7); the line data are
obtained from high-dispersion spectra. The basic philosophy of the procedure
is to describe the spectrum with a small number of numerical indices and
then, by a theoretical calculation using established physical laws, to deter-
mine the physical conditions in the stellar atmosphere that are required to
match these numerical values. The procedure is complicated, and we shall
not discuss it here [see (M2)], although we shall use the results of such work
in following chapters, particularly Chapter 3. In practice, these analyses are
very time consuming and are restricted to relatively bright stars for which
suitable spectra can be obtained.

In spectral classification, one attempts, from a study of the morphology
of the spectrum, to group together stars with very similar physical charac-
teristics. In principle, one may use the whole spectrum; in practice, present-
day classification is based on only the part of the spectrum transmitted
through the Earth’s atmosphere. One first chooses one or more sets of labels
(dimensions) with which to categorize the spectrum. The standard system
now in use (the MK system) employs two sets of labels; that is, it is two
dimensional. For each choice of labels, one declares the name of a standard
star (or stars) whose spectrum defines what is meant by that particular
classification. Successive choices of labels to which standards are assigned
establish classification “boxes,” and the variation of the nature of the spec-
trum from box to box is fixed by the properties of the standards in those
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boxes. Each classification box corresponds to a unique spectral type of the
system. When the whole system is defined, one classifies a star by finding
the standard whose spectrum it most closely matches (or interpolates be-
tween standards, if necessary). In this way, each star is put into one of the
boxes of the system. We shall see later that similar systems are used for
classifying star clusters, galaxies, and clusters of galaxies.

If an astute choice of dimensions has been made, and if the classification
process itself is done with care using well-defined criteria, then (1) a group
of stars having the same type will, in fact, be nearly identical to one another
in those physical properties that produce variations of the classification
criteria (but not necessarily in all properties), and (2) the groups with different
types will be distinguishable from one another in a significant way. After the
system has been defined and the classification carried out, one then calibrates
the system in terms of physical parameters, such as stellar temperatures,
luminosities, compositions, and so on. Quantitative estimates of these
parameters are derived for each spectral type by performing a detailed
spectrum analysis on a typical member of that type. At that point, one can
say that, if some star has a certain spectral type, then the temperature,
luminosity, or other property appropriate to that type can be assigned to it
without further analysis. The spectral type thus gives a concise description
of both the spectrum and the physical properties of a star.

In practice, classification is normally done by visual inspection of
moderate-dispersion spectrograms, and therefore it can be carried out for
large numbers of stars. It is also possible to classify huge numbers of stars
with less accuracy on low-dispersion (objective-prism) plates, by the empirical
development of criteria that can be seen at low dispersion but yet uniquely
characterize a particular classification box (or boxes).

Pioneering work in spectral classification was done in the 1860s by
A. Secchi, who divided stars into four broad spectral classes. Parallel efforts
were made about the same time by W. Huggins and H. C. Vogel. The first
great steps toward our present system were made at Harvard College
Observatory in 1890. Under the direction of E. C. Pickering, Williamina P.
Fleming published a catalog of 10,000 stars grouped into a system of spectral
classes denoted by the letters A, B, C, and so on. In 1888, Antonia C. Maury,
without benefit of astrophysical data (which was almost nonexistent at that
time), rearranged these spectral classes into the order that has been used
ever since, solely by studying the progression of line patterns observed in
the spectra. Subsequently, Annie J. Cannon introduced decimal subdivisions
of the spectral classes, and, during the interval from 1911 to 1924 (with
extensions in 1949), she compiled results for hundreds of thousands of stars
in the classical Henry Draper Catalog (HD)—see Table 2-6. From the ob-
served variation of ratios of line strengths of successive ionization stages of
the chemical elements, and from photometric data, this spectral sequence
O, B, A, F, G, K, M was later recognized to be primarily a temperature
sequence, listed here in order of decreasing temperature. At the cool end of
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the sequence, additional classes R, N, and S were added to describe stars in
the K-M temperature range that have markedly different compositions.
Finally, with the advent of M. Saha’s ionization theory in 1920 (S1), (S2),
quantitative analysis became possible, and in 1925 a comprehensive theo-
retical interpretation of the Harvard spectral sequence appeared in Cecilia
Payne’s book Stellar Atmospheres (P1).

With the work of E. Hertzsprung and H. N. Russell in the years from
1905 to 1913, it became evident that stars of a given spectral class could
have vastly different luminosities (see §3-5), and this fact implied that they
could have markedly different radii and atmospheric densities. The most
common, fainter stars are called dwarfs (or main-sequence stars); brighter,
larger stars are called giants; and the brightest, largest stars are called
supergiants. The effects of differing envelope sizes are reflected directly in
changes in the spectrum, and therefore a second parameter is required to
describe the spectrum completely. A start in this direction was made in the
1890s by Antonia Maury at Harvard, who added the symbols a, b, or c to
some spectral types; we now know that her c class corresponds to supergiants
and the others correspond to dwarfs. Much later, a fully two-dimensional
system—the MK system—was developed by W.W. Morgan and P.C.
Keenan (M5), who added a Iluminosity class as the second classification
parameter. In physical terms, this parameter reflects stellar envelope size
and atmospheric density and hence correlates with stellar surface-gravity.
From the point of view of galactic structure, the luminosity class is closely
correlated with stellar luminosity. The MK system, with subsequent revisions
and extensions [(J1), (S6, Chapter 8), (A1), (M3), (M4)], has become the
standard classification system in use today.

The basic precepts of the MK system are:

1. It is empirical; only directly observable features of the spectrum are
used to determine a star’s classification.

2. It is based on homogeneous material. It uses well-widened spectra
with dispersion of around 60—130 A/mm, which gives high enough
resolution to provide sensitive criteria but low enough dispersion to
allow one to reach faint stars, and hence ones at large distances in
our Galaxy.

3. It is defined by standards. Thus the classification system is
autonomous, in the sense that it remains unchanged even when the
interpretation of the classes in terms of physical conditions in the
stars changes, as models of stellar structure are refined.
Furthermore, observers using different spectrographs and
dispersions can classify on the same system simply by reobserving
the standard stars with their own particular equipment.

The spectral classes of the MK system are essentially those of the Harvard
sequence, and some of the principal spectral features characterizing each of
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Table 2-1. Principal Characteristics of Spectral Classes

Spectral class

Spectral features

O

2 A Q 1 > W

He II lines visible; lines from highly ionized species, for example,
CIII, N III, O III, SiIV; H lines relatively weak; strong uv
continuum

He I lines strong, attain maximum at B2; He II lines absent; H lines
stronger; lower ions for example, C II, O II, Si IIT

H lines attain maximum strength at AO and decrease toward later
types; Mg II, Si II strong; Ca II weak and increasing in strength

H weaker, Ca II stronger; lines of neutral atoms and first ions of
metals appear prominently

Solar-type spectra; Ca II lines extremely strong; neutral metals
prominent, ions weaker; G band (CH) strong; H lines weakening

Neutral metallic lines dominate; H quite weak; molecular bands
(CH, CN) developing; continuum weak in blue

Strong molecular bands, particularly TiO; some neutral lines, for
example, Ca I, quite strong; red continua

Carbon stars; strong bands of carbon compounds C,, CN, CO; TiO
absent; temperatures in range of classes K and M

Heavy-element stars; bands of ZrO, YO, LaO; neutral atoms strong
as in classes K and M ; overlaps these classes in temperature range

these classes are listed in Table 2-1. The luminosity classes, and the stars to
which they pertain, are listed in Table 2-2. The characteristics mentioned in
these lists are only illustrative; the system is defined by standard stars. The
complete spectral type is specified by both the spectral class and the lumi-
nosity class of a star as determined by comparison with the standards. In
Chapter 3, we shall give detailed tables of the stellar physical properties
(for example, temperatures and luminosities) that have been associated with
MK spectral types through astrophysical calibrations.

Spectral classes are subdivided into decimal subclasses, running from 0 at
the hot end through 9 at the cool end: for example, B0, B1, B2, ..., B9;

Table 2-2. MK Luminosity-Class
Designations

Ta-0 Most extreme supergiants

Ta Luminous supergiants

Iab Moderate supergiants

Ib Less-luminous supergiants
II Bright giants

III Normal giants
v Subgiants
\% Dwarfs
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Table 2-3. Distribution of Stellar
Types in HD Catalog (V < 8.5)

Spectral class Percent

ZRQT> WO
=

AO, A1, A2,...,A9; FO, F1,F2, ..., F9, and so on. The luminosity classes
are usually not subdivided except for supergiants. Examples of spectral
types are: Sun (G2V), ¢ Ori (BOIa), « Lyr (AOV), o Tau (KS5III). Stars hotter
than the Sun (classes O, B, A, F) are commonly called early types, and solar-
type and cooler stars (classes G, K, M) are called late types. (These designa-
tions are archaic remnants of an obsolete scheme of stellar evolution and are
devoid of physical significance, but they are universally used by astronomers.)
Although it is explicitly two-dimensional, the MK system implies the exis-
tence of and the need for formal consideration of a third (or more) dimension
in localized regions of the system in order to describe, say, the weak-lined
stars (for example, the subdwarf HD 140283 or the variable star RR Lyrae)
or peculiar stars (see the following discussion).

Perhaps 90% or more of all stars can be classified with standard MK
spectral types. The relative numbers of stars in different spectral classes in
the HD Catalog are listed in Table 2-3, and a similar distribution for MK
types is given in Table 2-4. Both of these tables refer to apparently bright
stars, and they do not reflect true space densities, which are discussed in
Chapter 4.

Additional spectral classes are used for certain unusual stars: Class C
(which replaces Harvard classes R and N) for carbon stars; S for heavy-

Table 2-4. Distribution of MK Types of Apparently

Bright Stars (%)
Luminosity
Spectral class v v 111 II I
class
0O,B 10 3 6 2 3
AF 14 3 5 1 4
G,K,M 1 4 25 6 4

>
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metal stars; and WC and WN (or sometimes WR) for Wolf-Rayet stars,
which are early-type stars that show strong, broad emission lines. Additional
letters may be appended to spectral types to denote special characteristics;
for example, p(peculiar), e(emission lines), f(He IT and N III emission in O
stars), and n(broad lines). Some stars have special notations. Some examples
are the peculiar A stars (Ap), which show strong lines of certain elements
(Si, Mn, Cr, Sr, Eu) and have strong magnetic fields, and the metallic-line
A stars (Am), which show abnormally strong metal lines and weak Ca IL
The prefix w or D is often used to denote white dwarfs (wA, wG, DA, and
so on), and the prefix sd denotes subdwarfs, extreme metal-poor stars (for
example, sdG). In some work, particularly at low dispersion, it is not possible
to derive accurate MK luminosity classes, although it is possible nevertheless
to distinguish among dwarfs, giants, and supergiants; this is of interest
because we can then assign intrinsic brightnesses to the stars. In such cases,
the prefixes d, g, and ¢ are often used to denote these three groups (for
example, dK, gK, cA).

The standard stars that define the MK system are given in (MS5), (J1),
(A1), (M3), and (M4). A fairly large number of stars have been classified on
this system, and extensive lists can be found in the literature (see Table 2-6).
Recently, a repeat of the HD Catalog has been started at the University of
Michigan Observatory, using extremely high-quality objective prism plates.
This survey will yield almost a full two-dimensional classification, very
nearly on the MK system, for most stars in the HD catalo g. When completed,
it will have enormous value for studies of galactic structure.

2-6. MAGNITUDES AND COLORS

In addition to measuring the positions and motions of stars, we can also
measure their light output. Every astronomical body emits radiation over
much of the electromagnetic spectrum. Ideally, we should like to measure
the complete spectral distribution of this radiation and to determine the
energy received by an observer in terms of the flux per unit frequency interval
fyin ergsem™2s™ " hz™! or the flux per unit wavelength interval f; in
ergscm™2s~* A~ over the entire spectrum. The measurement of such
absolute energy distributions (see §2-7) is difficult, for two reasons. First, a
determination of the absolute response of the observing equipment must be
made. Second, electromagnetic radiation can penetrate to the earth’s surface
only in certain limited ranges of the spectrum. Three major windows of
atmospheric transmission exist: (1) the optical window, roughly in the range
3200 < 4 < 7500 A; (2) the infrared window, from about 0.75u to 20y, in
which atmospheric absorption bands alternate with transmission bands;
(3) the radio window, which transmits roughly from a few millimeters to 50 m.
(We shall defer further discussion of radio measurements until Chapter 8.)
Access to the X-ray and ultraviolet (uv) regions is gained from satellites, and
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access to the submillimeter region is gained from high-altitude aircraft and
balloons.

For many purposes, we do not need to find the complete energy distribu-
tion of a star but merely the total energy received by a detector in some
definite range of wavelengths, that is, the integrated radiation flux f, mea-
sured in units of ergs cm~2 s~ !, contained in a wavelength band A4 set by
the instrumental response. In particular, we can use detectors such as
photographic plates and photoelectric cells to measure the apparent bright-
nesses of stars in various bands in the optical region of the spectrum; this
procedure is called astronomical photometry.

Apparent Magnitudes

The apparent brightnesses of stars are expressed in terms of their apparent
magnitudes. The ancient Greek astronomers divided stars into six magnitude
groups judged to be separated by equal steps in brightness. The brightest
stars were of the first magnitude, and the faintest that could be seen by the
naked eye were of the sixth magnitude. From subsequent physiological
studies, it was learned that equal steps of brightness sensed by the eye
correspond fairly well to equal ratios of radiant energy; that is, the response
of the eye to stimulus by light is essentially logarithmic. Thus, if m; and m,
denote the magnitudes assigned to stars with energy fluxes f1 and f,, then

my — my = —klogw(f) (2-6)
2

where the minus sign is chosen so as to assign smaller numerical values to
brighter stars.

Photometric studies in the nineteenth century showed that sixth-
magnitude stars are about a hundred times fainter than first-magnitude
stars. Hence, following the suggestion of N. Pogson, the magnitude system
was defined such that a difference of 5 mag corresponds exactly to a factor
of one hundred in the ratio of radiation fluxes. Thus, for (f/f3) = 100,
m, — m; = 5. Hence, in equation (2-6), k = 2.5, and, in general,

my; — m, = —25 10g10<£> (2'7)
fa
or
fl —0.4(m1 — -
21 _ 10— 0-4lm m2) (2_8)
f2

Notice thatif (fi/f,) = 1 + Af, where Af « 1,then Am = m, — mj is given
by Am =~ 1.086 Af; that is, the magnitude difference (when small) between
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two objects is about equal to the fractional difference in their relative bright-
ness. It follows from equation (2-7) that a magnitude difference of 1 mag
corresponds to a flux ratio of (100)'* &~ 2.512, and 2.5 mag corresponds to
a flux ratio of 10.

The precise definition of the observed energy flux f has thus far been left
rather vague; we take it to be

f= [0 fTRE b = [T (STRF, 2-9)

where f denotes the stellar flux incident outside the Earth’s atmosphere;
T, is the transmission of the atmosphere; R, is the efficiency of the telescope-
spectrograph-receiver system, that is, R, = (instrumental response/incident
energy);; and F, is the transmission of a filter, which can be put into the
system to isolate a particular range of wavelengths. The effects of atmospheric
transmission can be eliminated, as described in the following paragraph.
The instrumental efficiency is a composite of the reflectivity of telescope
mirrors (or transmission of lenses), the efficiency of the spectrograph, and
the sensitivity of the photon receiver itself. While mirror reflectivities can be
measured fairly easily, the other two factors just mentioned are extremely
difficult to determine accurately a priori. In practice, therefore, the system
must be calibrated by measuring its response to a source whose absolute
energy output is known with precision (see §2-7). Finally, the filter trans-
missions are readily determined and can, in fact, be chosen at will to measure
the energy contained in definite wavelength intervals. Most photometric
systems employ several different filters, and the filter band used must always
be stated when giving an apparent magnitude.

The transmission of the atmosphere is proportional to exp(—a), where a
is the column density of air, or air mass, along the line of sight. For a plane-
parallel atmosphere, a oc sec z, where z is the zenith distance of the object
being observed. Thus atmospheric extinction produces a dimming of starlight
according to the relation

m(z) = m(z = 0) + ksecz (2-10)

where m(z) is the observed stellar magnitude at zenith distance z. We can
correct for atmospheric extinction (at wavelengths where the atmosphere is
not totally opaque) by observing the magnitude of a star at several values
of z. A fit to these data then yields the constant k in equation (2-10) and
allows us to correct not only to unit air mass at z = 0 but also to extrapolate
to zero air mass (that is, “sec z = 0”) and thus obtain the magnitude outside
the Earth’s atmosphere [see (H2, Chapter 8) for details].

Until the 1950s, most astronomical photometry was done photographi-
cally with two systems: the blue-violet-sensitive international photographic
system giving magnitudes My,, and the photovisual system, m.,,, whose wave-
length sensitivity simulates that of the eye. Unfortunately, the photographic
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plate has a nonlinear response to different levels of light intensity, and the
relation between incident intensity and photographic darkening must be
determined empirically by calibrating each plate. Furthermore, the dynamic
response range of a plate is only about a factor of twenty in intensity; to
cover larger ranges, a set of several plates must be used. Given such properties
of the detector, it becomes very difficult to do absolute photometry and to
extend a magnitude scale over a wide range of intensity without making
large systematic errors. Many of the results in the older photographic
photometric catalogs (see Table 2-6) are, unfortunately, seriously affected by
such errors. On the other hand, if some stars on the plate have accurately
known brightnesses, then it is usually possible to make differential measure-
ments to +0.1 mag, which is adequate for many purposes. In the best cases,
such differential measurements may be accurate to +0.03 mag.

Astronomical photometry was revolutionized with the advent of photo-
electric photometers. These instruments are strictly linear; they have (with
suitable auxiliary electronics) an enormous dynamic range; and they are
capable of factor-of-ten better precision than photographic plates, yielding
magnitudes accurate to 4-0.01 mag and magnitude differences often accurate
to +0.002 mag. At this level of accuracy, color-magnitude diagrams of star
clusters become sensitive diagnostic tools for the study of stellar evolution
(see §3-0).

The standard photometric system today is the ultraviolet-blue-visual (UBV)
system of H. L. Johnson and W. W. Morgan (J1), (S6, Chapter 11), which
employs a photometer with a 1P21 photomultiplier tube on a telescope with
two aluminum-coated mirrors and three filters, whose characteristics are
listed in Table 2-5. Magnitudes in this system are denoted by the capital
letters designating the filter; thus ¥ magnitudes are now the standard visual
magnitudes. The system is defined by standard stars whose magnitudes and
colors are listed in the references cited. Magnitudes and colors observed with
other telescopes and photometers (similar to, but never exactly the same as
the original equipment) using UBV filters can always be transformed pre-
cisely back to the original UBV system via the standards. Examples of V'
magnitudes are: Sun, V = —26.74; Sirius (apparently brightest star), V' =
—1.45; Vega, V = +0.04; faintest stars measured, V' ~ 23. The total range
from the Sun to the faintest measurable stars is about 50 mag or a ratio of
102° in apparent brightness! A recent photoelectric photometric catalog
(see Table 2-6) lists magnitudes for about 20,000 stars, and many other lists
can be found in the literature.

The methods of photoelectric and photographic photometry are essentially
complementary, and, taken together, they make an effective team. The photo-
electric method is well suited for precision measurements of individual
objects; it can therefore provide, for example, accurate light curves for
variable stars (see §3-7). Because the measurements can be made on only
one star at a time, this approach is unsuitable if we need magnitudes for
thousands of stars in a field. In contrast, we can obtain images of enormous
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Table 2-5. Filter Characteristics of Astronomical Photometry Systems

System Filter Ao Ady)n
UBYV (Johnson-Morgan) U 3650 A 700 A
B 4400 A 1000 A
v 5500 A 900 A
Six-color (Stebbins-Whitford-Kron) U 3550 A 500 A
14 4200 A 800 A
B 4900 A 800 A
G 5700 A 800 A
R 7200 A 1800 A
I 10,300 A 1800 A
Infrared (Johnson) R 7000 A 2200 A
I 8800 A 2400 A
J 1.25u 0.38u
K 224 0.48u
L 34u 0.70u
M 5.0u 1.2u
N 10.4u 57u
uvbyp (Stromgren-Crawford) u 3500 A 340 A
v 4100 A 200 A
b 4700 A 160 A
y 5500 A 240 A
B 4860 A 304,150 A

numbers of stars simultaneously on a single photographic plate, but accurate
photometry can be done only differentially, relative to known standards.
Therefore, we combine the methods by measuring the magnitudes of a
moderate number of stars in a field photoelectrically to high precision and
then using these stars as absolute reference standards in subsequent photo-
graphic measurements of magnitudes for large numbers of stars on plates of
the same field. In this way, we exploit both the high intrinsic precision of
photoelectric photometry and the enormous information capacity of photo-
graphs to determine relatively accurate magnitudes (with typical errors of a
few hundredths of a magnitude) for large numbers of stars, say, within a
cluster.

Absolute Magnitudes
The energy flux we receive at the Earth from a star depends on both its

intrinsic brightness and its distance. If F is the flux received when the star
is at distance D, the flux f that would be received if it were at some other
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distance d is given by the inverse square law

D 2
f= <—d—> F (2-11)

Obviously, the farther away a star is, the fainter it will appear, and to obtain
information about the relative intrinsic brightnesses of stars, we must account
for differences in their distances from us. We therefore define the absolute
magnitude M to be the apparent magnitude a star would have if it were
located at some standard distance D. From equations (2-7) and (2-11), we
see that

m— M= =25 log<%> = log<%> (2-12)

The standard distance D is always taken to be 10 pc, so if d is measured in
parsecs, then

m— M = 5logd — 5 (2-13)

The quantity (m — M) is called the distance modulus of a star. If we know
m and d, we can immediately correct for the nonstandard distance of the
star and reduce the apparent magnitude m to the absolute magnitude M
via equation (2-13). Conversely, if we know m and M, we can infer d.

Absolute magnitudes are normally derived from visual apparent magni-
tudes and are denoted M. It should be noted that the absolute magnitude
is not a direct measure of the total energy output (luminosity) of a star, but
only of the energy in the V' band. To measure total energy output, we use
so-called bolometric magnitudes, M, which will be discussed in §3-4.

One of the important practical problems of galactic astronomy is the
determination of M, for each MK spectral type. As we shall see in §3-1, a
variety of techniques must be employed to effect this calibration, and the
results of these procedures will be summarized in §3-5. Once the relation
M, = f(spectral type) is known, an observation of a star’s apparent magni-
tude and its spectral type yields an estimate of its distance. This method of
estimating distance is referred to as the spectroscopic parallax method.

Note in passing that the distance from the Earth to the Sun is 1 au. =
(1/206,265) pc. Thus we know immediately that the distance modulus of the
Sun is —31.57 mag and therefore that the absolute magnitude of the Sun is
M, (®) = +4.83. We shall see in Chapter 3 that the Sun is a star of rather
average intrinsic brightness—the most luminous stars are about 10° times
brighter, and the least luminous are about 10* times fainter.

Finally, we must caution that, up to this point, we have tacitly assumed
that the light from stars suffers no absorption on its journey to the earth;
this is not the case in reality. In fact, there is material between the stars, the
interstellar medium, which absorbs stellar radiation, thus causing the stars to
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appear dimmer than they would from distance effects alone and hence
increasing their apparent magnitudes. This absorption is usually expressed
in magnitude units. If there are 4 magnitudes of intersteller absorption,
then equation (2-13) must be rewritten as

m=M+ 5S5logd -5+ A (2-14)

In practice, we must always correct apparent magnitudes for the (often large)
effects of interstellar absorption, or else they will yield spuriously large
estimates of stellar distances.

Color Indices

Suppose we have a photometric system with several filter bands at different
wavelengths. Then, by taking the difference in magnitudes measured in two
different bands, we can form a color index, or color. That is, if A and B
denote two different filters, we write

[ sua)f3dz

. 15
| 8BS

(C.1) 5 = my — mg = const. —2.5 log

where S, denotes the combined telescope-receiver-filter sensitivity. A color
index is usually written using the letters that denote the different filters
involved, that is, (4 — B) for the hypothetical example just given or (B — V)
and (U — B) for the standard UBV system. As is clear from equation (2-15),
a color index essentially measures the ratio of stellar flux between two
characteristic wavelengths (the effective wavelengths of the filters). In general,
an arbitrary normalization factor and hence an arbitrary zero-point constant
are present. By convention, color-index zero-points are chosen so that an
average AQ star has the same magnitude at all wavelengths; thus, for ex-
ample, (B — V) = (U — B) = 0 for A0 stars.

The detailed shape of a stellar energy distribution is determined by a few
basic physical parameters such as the temperature, surface gravity, and
chemical composition of the star. By an astute choice of filters, we can
isolate and measure features in the energy distribution that are sensitive to
the values of these variables. Then, by a calibration procedure, we can derive
correlations between the chosen color indices and the physical parameters
so that, in the end, we can use observed colors as diagnostic tools to infer
physical properties of stellar atmospheres. For example, it is known both
from observation and from theory that the wavelength of maximum emission
in stellar energy distributions decreases from the infrared for M stars, to the
visible for solar-type stars, into the blue for A stars, and out into the ultra-
violet for OB stars. That is, the coolest stars look red, solar stars look yellow,
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and early-type stars look blue. A color index that measures the flux ratio
between a short and a long wavelength [for example, (B — V) in the UBV
system] thus provides a measure of the stellar color (hence the name) and
therefore yields information about the atmospheric temperature. As another
example, it is known that, in stellar spectra, we can find some spectral bands
that contain large numbers of absorption lines whose strengths reflect the
abundances of heavier elements (and hence the atmospheric composition)
and other bands that are relatively line free. Suitably chosen color indices
using such bands can thus give information about the absorption-line
strengths (line-blanketing) in the continuum of a star and hence give informa-
tion about its composition. As a final example, it is observed that there is a
sharp drop in continuum intensity in early-type stars at wavelengths shorter
than about 13700 A. This drop arises from the sudden onset of continuum
absorption from the n = 2 level of hydrogen, and it is called the Balmer
jump. Suitably chosen filters can give an index [(U — B)in the UBYV system ]
that in effect measures the size of the Balmer jump, which, it turns out, is a
sensitive function of stellar temperature for O—A stars and of surface gravity
for A—F stars.

A large number of photometric systems have been devised. In choosing
filters for a system, one must balance the desire to reach faint stars against
the desire to achieve crisp spectral resolution (by excluding, with narrow
passbands, most of the photons received from a given star). Practical com-
promises between these two opposing considerations have led to the devel-
opment of systems that are wide-band with filter bandwidths A4 2 300 A,
intermediate-band with 100 A < AA < 300 A, or narrow-band with AL <
100 A.

The properties of four widely used photometric systems are summarized
in Table 2-5. The first three are wide-band systems, and the last is an
intermediate-band system. For each filter, the table lists the wavelength 4,
of peak transmission and A4, ,, the (full) half-intensity width.

The UBV system is generally regarded as standard. It is closely coupled
to the MK system of spectral types and is well suited for observing even the
faintest stars. Two color indices, (B — V) and (U — B), are defined in this
system: (U — B) gives essentially a measure of the amount of ultraviolet
radiation emitted by a star, and (B — V') measures essentially its temperature,
being negative for very blue (hot) stars and positive for red (cool) stars. For
example, (B — V)is 0.00 for Vega, +0.65 for the Sun, and + 1.81 for Antares.
In Chapter 3, we shall give extensive tabulations of stellar properties cor-
related with particular values of (U — B) and (B — V). The Stebbins—
Whitford—Kron six-color system (S4), (S5) gives more spectral information
than the UBYV system and extends into the infrared. It is valuable for studies
of cool stars and of line-blanketing. The Johnson infrared system is an ex-
pansion of the UBV system into the far infrared, and it is probably the
standard infrared system at present. It is well suited for studies of cool stars.
A large number of color indices can be formed using the ten bands, U, B,
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V,...,L, M, N. The Strémgren system (S6, Chapter 9), (S7) has four inter-
mediate-band filters, uvby, and a narrow-band pair, §, measuring the Hp-line
and adjacent continuum. The usual color indices employed in this system
are(b — y),u—Db),c;,=@wu—v)— (v —>b),and my = (v — b) — (b — y).
Both (b — y)and (u — b) serve as temperature indicators; ¢, is a temperature
indicator for O—A stars and a luminosity indicator for A-F stars; f is a
luminosity indicator for O—A stars and a temperature indicator for A-G
stars; m; is a line-blanketing (composition) indicator for F—G stars and a
line-blanketing or peculiarity indicator for A stars.

Finally, it must be remembered that the effects of interstellar absorption
on colors have been ignored in this discussion. Because the interstellar
medium scatters light more efficiently at short wavelengths than at long
wavelengths, transmitted starlight is not only dimmed by interstellar ab-
sorption but is also reddened. 1t is therefore necessary to correct observed
colors for interstellar reddening in order to derive intrinsic colors. As we
shall see in §3-8, it is fortunate that interstellar reddening exists, for it is
possible to devise combinations of color indices that allow us to determine
the amount of reddening present and hence to correct for both reddening
and absorption.

2-7. ABSOLUTE ENERGY DISTRIBUTIONS

Color indices provide a good deal of useful information about stellar energy
distributions; but, as was mentioned earlier, we should ideally like to know
the detailed variation of the energy flux per unit wavelength (or frequency)
interval throughout the entire spectrum. Having these data, we can apply
the theory of stellar atmospheres and analyze them to infer physical charac-
teristics of stars [see (M2, §7-4)]. Furthermore, we can use absolute energy
distributions to obtain bolometric magnitudes and stellar temperatures
(see §3-4).

The basic problem in this work is the measurement of the absolute effi-
ciency of the telescope-spectrograph-receiver system, that is, the determina-
tion of the amount of energy that must be put into the system in order to
produce a unit instrumental response. The only practical way to derive this
efficiency is to use the instrument to observe a source whose absolute energy
distribution is known in advance, for then we know the amount of incident
energy that produces the measured responses. There are only two types of
sources for which we can specify the rate of energy emission from unchal-
lengeable theory: (1) a blackbody source at a known temperature, the energy
distribution of which is given by the Planck function B,(T), and (2) a syn-
chrotron-radiation source, from which the emission by relativistic electrons
can be calculated as a function of their energy. The procedure is to observe
such an absolute reference source with a given telescope-spectrometer system
and then, with the same system, to observe a standard star (usually Vega).
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Observations of the absolute reference source calibrate the instrumental
efficiency at each wavelength and thus provide the factor required to convert
the observed responses to the stellar radiation into an absolute energy emis-
sion from the star (after correction, of course, for atmospheric extinction).

Thanks to the advent of space observations and to persistent effort by
several astronomers in developing the necessary apparatus and techniques,
great progress has been made in the last decade in measuring absolute
energy distributions. Accurate measurements of the absolute energy distri-
bution of Vega on the range 3300 A < 1 < 10,800 A (H1) and of « Vir,
n UMa, and o Leo on the range 1370 A < 1 < 2920 A (B1) are now avail-
able; the latter data were obtained from rocket-borne spectrometers. The
ultraviolet data are given directly in ergs cm ™% s~! per unit wavelength in-
terval. The Vega distribution is usually given in terms of a relative absolute
energy distribution, written in monochromatic magnitudes,

N /)
m, @ _ 25 log[m:l (2-16)

plus the absolute flux at (1/1) = 1.8~ ! (that is, 15556 A), for which the
present best estimate is f; = 3.39 x 10 %ergsecm™2s 1AL, or f, =
350 x 1072%ergsecm~2s ' hz™!, or N, = 948 photonscm " 2s~ 1 A~ L
Here f, = fj|dA/dv| = (A*/c)f;, and N, = f,/(hv). This format is chosen
because relative monochromatic magnitudes are easier to determine, and
probably more accurately known, than the absolute normalization flux.
They are therefore likely to remain unchanged even if the absolute flux
requires future adjustment.

Once the absolute energy distribution of even a single star is known pre-
cisely, it can henceforth be used as a reference standard directly on the sky.
Observations of the absolute energy distributions of other stars are then
relatively simple—one merely measures program stars and the reference
star with the same equipment, corrects for differences in atmospheric ex-
tinction, and then uses the known absolute distribution of the standard to
obtain absolute distributions for the program stars. Catalogs of spectro-
photometric data for hundreds of stars of various spectral types are now
available (see Table 2-6). These data are indispensable for performing astro-
physical analyses both of individual stars and of the integrated energy
distributions from stellar systems (clusters and galaxies), which are com-
posites of contributions from many different spectral types.

2-8. ASTRONOMICAL CATALOGS AND ATLASES

A list of astronomical catalogs is given in Table 2-6. These catalogs contain
information about positions, motions, spectra, magnitudes, and colors of
stars and similar data for galaxies and clusters of galaxies. In the table, a
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distinction is made between precision catalogs, which give high-accuracy
results for a limited number of objects, and survey catalogs, which contain
results of moderate precision for a large number of objects. Table 2-7 contains
a short list of atlases showing pictorially or graphically the structure of our
Galaxy and of other galaxies. Table 2-8 lists some of the more important
photographic sky surveys showing stars and nebulae in our Galaxy and
galaxies and clusters of galaxies outside our own.

Taken together, these catalogs and atlases form a rich mine of information,
which our theories on the nature of galaxies seek to order and explain. They
also provide the standards against which we must measure the usefulness of
our speculations concerning the structure of the Universe. In a sense, they
form the backbone of galactic astronomy, and it is almost impossible to
overestimate the great service that has been rendered to astronomy by those
who have so painstakingly assembled these data. Any effort expended to
examine and become familiar with these materials will be rewarded with
deepened insight into the nature of galaxies. Further, here are found the raw

Table 2-8. Sky Surveys
Approximate
limiting

Survey Telescope Region magnitude

Franklin-Adams Survey, 10" Astrograph —-90° < 6 <90° 15
1911

Barnard Atlas of Bruce 10” Astrograph Milky Way -
Milky Way, 1927

Ross-Calvert Atlas of Ross 5" Astrograph Milky Way
Milky Way, 1936

Palomar-National Palomar 48” Schmidt —33° < ¢ < 90° 21
Geographic Society
Sky Survey, 1960

Atlas of Ho Emission in ~ Mt. Stromlo 8" Milky Way -
Southern Milky Way, Schmidt
1960

Lick Observatory Ross 5" Astrograph —37° <6 <90° 16
Sky Atlas, 1967

The Large Magellenic ADH 32" Schmidt Large Magellenic 17.5
Cloud, 1967 Cloud

ESO Atlas of Southern ~ Boyden 10” Milky Way 16
Milky Way, 1969 Astrograph

Vehrenberg Atlas 12-cm Astrograph —90° < 6 < 90° 14
Stellarium, 1970

Canterbury Sky Atlas, Ross 5" Astrograph —90° <6 < —22° 16
1972

ESO-SRC U.K. 48" Schmidt —90° <0< —22° 23

Southern Sky Survey,
1978 (in progress)
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materials needed to mount an attack on a great variety of original research
problems. For example, the information contained in the Palomar Sky Survey
and the ESO-SRC Southern Sky Survey has barely been tapped, and much
important work that can be based on this information remains to be done.
A large number of significant and penetrating questions that can be posed
concerning the physical structure and behavior of galaxies can be answered
using already existing data.

Only a few of the most representative catalogs and atlases are included
in our lists, and there are many others worthy of attention. Many useful
references can be found in the Astronomische Jahresbericht or in Astronomy
and Astrophysics Abstracts. In fact, as a result of improved data-acquisition
and data-reduction techniques, there has been in recent years a virtual ex-
plosion of papers containing large sets of important observational results.
It has become increasingly difficult for astronomers to keep abreast of this
information outside of a fairly narrow range of specialization. One approach
to dealing with this problem has been the establishment of data centers—
such as the Strasbourg Stellar Data Center—to collect, digest, and evaluate
critically various kinds of astronomical data and to provide them to astron-
omers upon request. Perhaps catalogs and atlases in their present form are
becoming obsolete and will be replaced in the future by information stored
in computer memories.
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3

Physical Properties
of Stars and the
Interstellar Medium

Stars and interstellar matter are the two primary constituents of our Galaxy,
and a thorough knowledge of their physical properties is essential for the
development of a picture of galactic structure, dynamics, and evolution. In
the first four sections of this chapter, we shall describe the methods used to
deduce the basic physical properties of stars. We shall emphasize funda-
mental methods that give the results as directly as possible; these provide
calibrations that are essentially free from the assumptions that enter into
most secondary methods, which can sometimes be used to infer a particular
property of a star if its other properties are presumed to be normal. We next
summarize (in §3-5 and §3-6) some of the systematic interrelations among
stellar properties (masses, radii, and luminosities) and then interpret these
(in §3-7 through §3-10) in terms of the theory of stellar structure and evolu-
tion. The resulting information can be used, in turn, to discuss the chemical
and dynamical evolution of our Galaxy as a whole. Finally, in the last
section, we discuss the effects of absorption and reddening on starlight by
interstellar material.

3-1. STELLAR DISTANCES

The primary reason we wish to know the distance to a star is that we can
then determine its absolute magnitude from equation (2-13), ignoring, for
the present, interstellar absorption. If we can do this for a sufficient number
of stars, then we can calibrate stellar luminosities as a function of MK
spectral type. Once this has been done, we can turn the procedure around
and use the apparent magnitudes of stars (corrected for interstellar absorp-
tion) along with their now-known absolute magnitudes to find their distances,
and hence analyze the distribution of stars in space to build a picture of
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some of the major structural features of our Galaxy. An interesting broad
discussion of these topics can be found in (H12).

There are only two direct (that is, wholly geometric) methods by which
stellar distances can be determined. We shall now consider these in turn.

Direct Parallaxes

The trigonometric parallax method, which is, in the final analysis, the most
fundamental method, was described in Chapter 2. We noted that, at present,
we can obtain reliable distances (errors less than 109) only for stars closer
than about 20 pc from the Sun. Unfortunately, many spectral types do not
have a single representative within the 20-pc sphere centered on the Sun,
and this sample is restricted almost exclusively to faint, late-type stars.

Moving Clusters

The second geometric method by which we can determine stellar distances
is the moving-cluster method. We sometimes observe a well-defined group
of stars whose individual proper motions appear to converge on a point (or,
more realistically, within a small region) on the sky, as illustrated schemat-
ically in Figure 3-1. Such a group is called a moving cluster. The interpretation
of this phenomenon is that the members of the cluster share a common
motion in space and that the apparent convergence point lies in the direction
of this motion; that is, we are observing the direction of the point at infinity
at which the parallel paths of motion appear to intersect. Thus the angular
distance 4 between a given cluster star and the convergence point is also the
angle between the space-velocity vector of that star and the line of sight
from the Sun to it. If the hypothesis of parallel motions is strictly true—that
is, if the random motions of stars relative to the cluster motion are negligible
and the cluster does not expand, contract, or rotate as a whole—and if the

Convergent point

Figure 3-1. Schematic diagram of a moving cluster.
When the proper motions of the cluster stars are extended,
they appear to intersect at a point of convergence on

the sky.
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Vr

Star

Figure 3-2. The space motion of a star in a moving cluster
is assumed to be parallel to the line of sight from the Sun to
the apparent convergent point of the cluster. Then the angle
A is both the angle between the positions of the star and of
the convergent point on the sky, and the angle between the
star’s space-velocity vector and the Sun—star line of sight.

Sun

proper motions can be measured accurately and are free from systematic
errors, then the distances to cluster members can be determined from their
observed proper motions and radial velocities.

Suppose vis the space velocity of a star relative to the Sun. Its radial velocity
is vxg = v cos 4, and its tangential velocity across the line of sight is vy =
vsin A (see Figure 3-2). Thus

UT = UR tan l (3'1)
which gives vy in terms of directly observable quantities. A star’s tangential

velocity gives rise to its proper motion p. If u is expressed in seconds of arc
per year, v in kilometers per second, and the star’s distance d in parsecs, then

vrkms™! y (206,265 per rad) x (3.16 x 107 s year %)
d pc (206,265 a.u. pc™ 1) x (1.497 x 108 km a.u.”?)

p ("per year) =

_Ur -
4744 (-2
Thus, eliminating v; via equation (3-1), we find the star’s distance
vg tan A
d(pc) = — (3=3)

474"
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or, equivalently, its parallax

_AT4y
~ vgptan A

1

(3-4)

Using equation (3-3), we can obtain the distance (or parallax) of each cluster
member from its observed proper motion, radial velocity, and angular dis-
tance from the convergent point.

In practice, the procedure is somewhat more complicated than that just
outlined. Details are described in (H1) and the references cited therein. The
method works best when the angular size of the cluster is sufficiently large
that the proper motions of the individual cluster stars are oriented in sub-
stantially different directions and thus define a convergent (or divergent)
point accurately. Furthermore, the cluster must be close enough that the
proper motions are large enough to be measured accurately, the angle A must
be such that the space motion makes a significant contribution to both vg
and vy, and finally, cluster members must be reliably identifiable so that
foreground and background field stars can be excluded.

The moving-cluster method has been applied to a number of clusters,
among them (1) the Hyades, which contains about 200 stars at an average
distance d ~ 46 pc (H1), (H2),(V1);(2) the Ursa Major group, which contains
about 60 stars at an average distance of about 24 pc (E1), (E2); and (3) the
Scorpio-Centaurus group, which contains about 100 stars at an average dis-
tance of about 170 pc (B6). Distance data for the stars in these clusters are of
enormous importance because they include types of stars whose distances,
and hence whose absolute magnitudes, cannot be measured by the trigono-
metric parallax method. These particular clusters define the position of much
of the main sequence in the Hertzsprung—Russell diagram (see §3-5) and are
thus fundamental to the calibration of the main-sequence fitting procedure.

In fact, it is not an exaggeration to say that the distance to the Hyades
sets the scale for essentially all galactic and extragalactic distance measure-
ments. It was, therefore, disconcerting when P. W. Hodge and G. Wallerstein
(H19) pointed out that the Hyades distance modulus of 3.1 mag found from
the moving-cluster method was in disagreement with the average result from
a variety of other determinations [see the summary in (V1)]. This raised the
question of whether the method is actually valid for the Hyades. The problem
was resolved when new proper motions, measured with respect to external
galaxies, became available. All methods now agree quite closely, giving a
distance modulus of 3.30 + 0.05 mag (H2), (V1).

Other Methods

In addition to the two basically geometric methods just described, there are
several less direct approaches to stellar distance determination. Among the
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most important of these are:

1. The secular and statistical parallax methods (see §6-6). The secular
parallax method is, in effect, an application of the moving-cluster
method to stars of a single type (a restriction made so that we can
assume all the stars have the same absolute magnitude) in a volume
big enough to contain a large sample. The method invokes kine-
matic hypotheses about the random motions of the stars, and it
presumes that the solar motion relative to the group can be found.

2. Dynamical parallaxes and parallaxes from spectroscopic-visual
binaries (see §3-2). The former method invokes a dynamical law and
requires that the masses of the stars in a binary be normal for their
spectral type. The latter method is more fundamental, but it applies
only to a very special group of stars.

3. The spectroscopic parallax method (see §3-5). Here one estimates
distances using the absolute magnitudes associated with each spec-
tral type by means of calibrations made in binaries and clusters.
The basic assumption made in this method is that all stars of a
given MK type do in fact have the same absolute magnitude, as is
expected on both theoretical and empirical grounds. In practice,
this method is the most important tool for distance estimation in
galactic-structure research.

3-2. STELLAR MASSES

The mass of a star is its most basic physical attribute. For a given chemical
composition, the star’s mass essentially determines its structure and evolu-
tion. All fundamental determinations of stellar masses are based on an
application of Kepler’s third law to the orbits of binary stars. This law states
that

G(M, + M,)P? = 4n2d (3-5)

where .#, and ./, are the masses of two bodies in mutual revolution on a
relative orbit with semimajor axis a and period P, and G is the Newtonian
gravitation constant (see Chapter 13).

Kepler’s third law applies both to planets revolving around the Sun and
to stars revolving around one another. Indeed, we can use the Earth’s motion
around the Sun to make a convenient choice of units for binary stars. Be-
cause .4 o, the mass of the Sun, is much larger than .# g, the mass of the
Earth, we can write # o + # ¢ ~ M o to a high degree of approximation.
Therefore,

GM P = 4nad, (3-6)
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where Pg is the period of revolution of the Earth around the Sun (a year),
and ag is the mean distance from the Earth to the Sun (an astronomical
unit). Taking the ratio of equation (3-5) to (3-6), the numerical constants
cancel, and we can write

(My + M)P?

ca (3-7)
= 37
M P} ay

so that, if we express masses in solar masses, periods in years, and distances
in astronomical units, we have simply

(M, + M)P?* = a® (3-8)
Further, by recalling equation (2-3), we see that we can also write

C o) = Ly 206,265
206,265 PY = 506,265 7

a(au) =

or
17

a(au) = (3-9)

"

where a” is the observed semimajor axis in seconds of arc, and n” is the
parallax of the star, also in seconds of arc.

As we mentioned in Chapter 2, binary and multiple stars are quite com-
mon. At least 50% of the “stars” within 5 pc are actually double or multiple,
so that at least 60% of the individual stars are members of such systems.
Binary stars are classified into several broad groups. The categories we shall
deal with are (1) visual binaries, in which the individual components can be
seen directly, (2) spectroscopic binaries, which reveal their orbital motion
by shifts in the wavelengths of their spectral lines, and (3) eclipsing binaries,
which show evidence of orbital motion by periodic variations in their
apparent brightnesses. We can obtain different kinds of astrophysical infor-
mation from each of these groups (which are not mutually exclusive) as is
discussed here and in §3-3. An excellent general discussion of binary and
multiple stars can be found in (B3).

The Mass of the Sun

To convert stellar masses expressed in solar units to physical units, we
obviously must know the mass of the Sun in grams. We first determine the
ratio of the mass of the Sun to the mass of the Earth by applying equations
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(3-5) and (3-6) to the orbit of the Moon around the Earth. Thus

G(Mg + M)PZ = 4n%a? (3-10)
so that
2 3
('ﬂ® + ‘ﬂZG)P@ — Eg(_ (3_11)
M P dg
or
,/[ 2 3
O Pe o) (4 + A (3-12)
Mg Pg ag M g

All the terms on the right-hand side are known from observation, including
the ratio (#¢/.# &), which is obtained by measuring the parallax in the
observed position of a nearby planet produced by the Earth’s motion around
the center of mass of the Earth-Moon system during the course of a month
[see (A1, Chapter 8)]. Using the result (/4 /.#o) = 1/81.3 and inserting
the appropriate values for (P¢/Pe) and (ae/ac) into equation (3-12), we find
(Mo]Me) = 332,945, The mass of the Earth can be measured directly
[see (A1, Chapter 5)] and is found to be 5.98 x 10?7 g; hence we derive
Mo =199 x 1033 g,

Visual Binaries

When stars are examined telescopically, relatively close pairs are frequently
found. Some of these stars are mere optical doubles, that is, two stars that
happen to lie, by coincidence, along nearly the same line of sight. Herschel
searched for optical doubles in the hope of measuring the parallax of the
nearer star relative to the farther one, and, in 1781, he recognized that most
of the systems he had found were actually physical binaries that interact
dynamically and therefore exhibit a relative orbital motion. Careful mea-
surements of the separation and position angle of the two stars make it
possible to determine the apparent relative orbit (the projection of the true
relative orbit onto the plane of the sky) of one star around the other. The
true orbit is an ellipse, and one can show that the projected orbit is also
an ellipse.

Because the two components of a visual binary must be resolved, we tend
to select systems that are widely separated in linear distance. This separation
implies that they will have long periods, and in fact many known visual
binaries have completed only a fraction of an orbital revolution in the entire
time they have been observed (sometimes a century or more). The theoretical
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resolving power (in seconds of arc) of a diffraction-limited telescope of
diameter D (in meters) is given by

_ 0”13(4/5000)
N D

0 (3-13)

where A is the wavelength of the observed light in Angstroms. In principle,
-the 5-meter Hale reflector can resolve a pair separated by 0703; in practice,
blurring by atmospheric seeing caused by turbulence in the Earth’s atmo-
sphere prevents measurement of binary-star separations smaller than about
0"15. By use of interferometric techniques (see §3-3), smaller separations can
be measured in favorable cases.

Considerable gains will be realized when observations can be made above
the Earth’s atmosphere with the Space Telescope, because seeing effects will
then be eliminated and observations can be made in the ultraviolet (A =
1000 A). An order-of-magnitude improvement in the limit of resolution
should then be obtained. With this improvement, we shall be able to resolve
binary systems of much shorter periods. Indeed, it will be possible to resolve
some stars that are presently considered spectroscopic binaries. The com-
bination of the visual orbit with spectroscopic data leads to an enormous
increase in the amount of information that we can deduce about those
systems.

From a geometric analysis of the apparent orbit [for details see (H17,
Chapter 22), (M4, Chapter 12), or (S19, Chapter 14)], one can obtain the
elements that describe the shape and orientation of the true relative orbit of
a visual binary, in particular, the semimajor axis a”, in seconds of arc. Now,
if we know the distance to the system and hence 7", then we can convert the
observed value of @’ to linear measure via equation (3-9), and, knowing P,
we can find the sum of the masses (.#; + .#,) in solar units from Kepler’s
third law, equation (3-8). In practice, the lack of reliable parallaxes, which
enter as the third power in the expression for (.#, + .4 ,), poses a very
severe difficulty for the determination of accurate stellar masses.

To find the individual masses .#, and . ,, we need to know not only the
relative orbit of the two stars but also the absolute orbit of each of the com-
ponents around their common center of mass. The center of mass of a binary
system moves along a nearly rectilinear trajectory. The ratio of the two
masses is easily determined as the inverse of the ratio of the amplitudes of
the individual motions relative to the straight-line path of the center of mass.

Reliable masses are available for only about fifty visual binaries because
of the difficulties of obtaining accurate distances and accurate apparent
orbits. (Easily resolved systems usually have long periods, and hence only
a fraction of their orbit has been observed, whereas systems with short
periods often are at the limit of resolution.) Lists of well-determined visual-
binary masses and a discussion of the practical difficulties are given in
(S24, Chapter 15) and (E4).
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We have just noted that masses found from visual binaries depend sensi-
tively on the parallax of the system. This fact suggests that it can be advan-
tageous to turn the procedure around and use it to estimate the parallax
instead of the stellar masses. Thus, if a reasonably good guess can be made
for ., and 4 ,, say, by assuming that the star’s masses are normal for their
spectral types, then we can determine a dynamical parallax

’r
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Because only the cube root of the total mass enters in this formula, even a
crude estimate of .#, and .4, will yield 7" with good precision. Once we
have an estimate of 7", we can estimate the absolute magnitude of each star
and hence its luminosity class. We can then obtain a more refined estimate
of M, and 4, from the mass-luminosity relation (see §3-5), if the stars are
main-sequence stars, or from the correlation of stellar mass with MK spectral
type. With improved values for the masses, a better value for 7’ can be
derived from equation (3-14). If necessary, the procedure may be iterated
and yields rapid convergence.

Distances obtained from the dynamical parallax method are not funda-
mental as they are based on the assumption that the stars in the binary are
normal. Nevertheless, they are often very useful estimates and occasionally
provide an important check on other methods. For example, the dynamical
parallaxes of binaries in the Hyades were discordant with the older moving-
cluster distance modulus but in agreement with other methods. Hence they
lent support to the suggestion that the moving-cluster modulus was in error.

Spectroscopic Binaries

When we examine the spectra of a large number of stars, we occasionally
find one in which (1) the lines split into two components, each of which shows
a periodic back-and-forth wavelength shift, or (2) the spectrum is a blend
from two distinct spectral types and both sets of lines show periodic wave-
length shifts, or (3) the spectrum is single but shows a periodic wavelength
shift relative to an absolute standard, such as a comparison spectrum or an
interstellar line. These stars are actually binary stars whose components are
too close to be resolved visually. As the stars revolve around their common
center of mass, their motions along the line of sight produce periodic Doppler
shifts in their observed spectra. Relative to the center of mass, one star
approaches the Earth while the other recedes from it, leading to case (1) if
both stars have almost the same spectral type and absolute magnitude, or
case (2) if they have different types but are of comparable brightness. Such
stars are called double-line spectroscopic binaries. A single-line spectroscopic
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binary [case (3)] occurs when one component is so much brighter than the
other (typically, Am 2 2.5 mag) that it swamps the spectrum of the secondary
and renders it invisible. For a given Am, it is generally easier to detect both
spectra if the two components are of very different spectral types (for ex-
ample, B and M).

Generally, spectroscopic binaries have short periods and small separations
because these imply large mutual velocities, and hence they tend to favor
the discovery of the system. The periods may be as short as 01, in which
case the stars may be in contact with one another, or they can be as long as
7500¢, in which case the stars may be so widely separated as to be resolved
as visual binaries. Separations typically are from about 3 x 107* a.u. to
about 10 a.u.

From an analysis of the radial velocity of one or both of the components
as a function of time, one can determine the elements of the binary orbit
[see (H17, Chapter 23), (M4, Chapter 12), or (S19, Chapter 14) for detailed
methods]. The orbital plane is inclined to the plane of the sky by some
angle i, which in general is unknown and cannot be determined from the
spectroscopic data alone, because the observed radial velocity vy yields only
the projection of the orbital velocity v along the line of sight; that is, vg =
v sin i. As we shall see, this fact limits the information we can obtain about
the system unless i can be determined some other way.

Individual masses can be determined only for the favorable case of a
double-line binary, so we shall henceforth restrict our attention to this case
exclusively. Suppose for simplicity that the orbits of both stars are circular.
Then, from the observed radial velocities, we can immediately determine
the projected radii (in absolute units, that is, kilometers or astronomical
units) of the two orbits:

i) P
aysini = SnP (3-152)
21
and
i) P
ay sin g = L2 S0P (3-15b)
2n
and hence the mass ratio
My _ a9y _ apsini (3-16)

M, a; agsini

Because we do not know the semimajor axis, a = a; + a,, but only its pro-
jection asini = (a sini) + (a, sin i), we cannot determine (/A + ./ 3)
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from Kepler’s third law but only

o
(My + Msin? i = (a%’l (3-17)

Thus, from the analysis of the spectroscopic orbit, we can find ., sin® i
and .#, sin® i separately, but we obtain .#, and ./, only if we can determine
the inclination by some other means.

Because we know that sin® i must always be less than or equal to unity,
from spectroscopic data alone we can determine only a lower bound on the
masses of the binary components. A statistical correction for inclination
effects can be made by using the result that (sin® i) = 0.59 for orbital planes
oriented randomly with respect to the plane of the sky. This procedure is
open to question, however, as selection effects obviously favor the discovery
of systems with large values of sin i because these have larger velocities for
a given orbital velocity.

The masses of both stars in a binary can be obtained unambiguously in
the event that the system is either an eclipsing spectroscopic binary or a visual
spectroscopic binary. In the former case, if the stars are reasonably well
separated, the occurrence of eclipses implies that the orbital plane lies nearly
in the line of sight, and hence we know that i ~ 90° and sini ~ 1. In contact
binaries, eclipses can still occur for inclinations significantly smaller than 90°,
but even for these systems an analysis of high-quality photometric data
enables one to determine i and hence the masses .4 and ./ ,.

The second case in which both the visual orbit of the binary and the radial
velocity of each star can be measured is extremely favorable. Examples of
such systems are o Aur and o Cen. Unfortunately, these systems are rare
because, if the stars are widely enough separated to be a visual binary, then
their physical separation is generally so large that the period is very long,
and their radial velocities unobservably small. From the analysis of the visual
orbit, we can determine i and hence the masses .#, and .#, of the individual
stars from the spectroscopic orbit. Furthermore, from the visual data we
know a”, the angular size of the orbit, and from the spectroscopic data we
find the linear size a (a.u.) [see equations (3-15a and b)]. Hence we can deter-
mine the parallax n” directly from equation (3-9). Distances obtained by

“this method are as fundamental as those found by trigonometric measure-
ments or from moving clusters. As we mentioned earlier, an exciting advance
will occur when observations can be made with the Space Telescope, because
then we will be able to resolve as visual binaries many short-period systems
that are now observable only as spectroscopic binaries. In this way, we will
obtain accurate masses and distances for a large number of very interesting
systems.

In practice, the analysis of spectroscopic binaries is often fraught with
difficulty. This is particularly true in contact systems and interacting systems
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in which mass is being exchanged between the two stars. Up to the present
time, there are only about two dozen reliably determined sets of masses,
mostly for stars on or near the main sequence. Summaries of the data and
critical evaluations of their accuracy are given in (L3), (P8), and (G9, 13).

3-3. STELLAR RADII

The radius of a star is a parameter of great importance because (1) for a
given mass, it sets the stellar surface gravity and mean density (which have
important implications in terms of stellar structure and evolution—see §3-7),
and (2) for a given luminosity, it determines the effective temperature of the
stellar atmosphere (see §3-4) and hence the appearance of the star’s spectrum.
To measure radii, we can either (1) measure a star’s angular diameter (di-
rectly, interferometrically, or by means of lunar occultations), which, when
combined with the star’s distance, gives its physical size in kilometers or (2)
use observations of the light curves and orbital velocities in an eclipsing
spectroscopic binary to obtain the component stars’ radii in physical units,
independent of knowledge of the system’s distance.

Direct Angular Measurement

If we can resolve the disk of a star, we can measure its angular diameter
directly. At present, this can be done for precisely one star: the Sun. The
Sun has an angular diameter of 1919”3 = 0.009305 rad, which implies that
R, = 0.004652 a.u. = 6.96 x 10° km.

The angular diameters of all other stars are much smaller than the limit
set by seeing effects in the Earth’s atmosphere, and hence they cannot be
observed directly. For example, a main-sequence star like the Sun seen at a
distance of 2 pc would have an angular diameter of only 07005. Some stars,
the red giants (see §3-5), have radii of the order of a few hundred solar radii,
but typically they lie at distances of 10 to 20 pc. Hence they still have angular
diameters less than 0705. Therefore, for the measurement of stellar angular
diameters, we must at present use other techniques, described next. However,
when the Space Telescope becomes operational, it should be possible to
resolve stellar disks of the order of 0702 in diameter, and this will yield direct
angular-diameter measurements for a large sample of stars.

Interferometric Measurement

Angular diameters smaller than the limit for direct measurement can be
determined by interferometric techniques. These techniques can also be used



3-3. Stellar Radii 87

to measure binary-star separations that are too small to be resolved visually.
Three different approaches have been developed thus far.

Phase Interferometry Around 1920, A. A. Michelson and F. G. Pease
measured the angular diameters of several nearby stars by observing the
interference patterns produced in an interferometer formed by mounting a
25-foot track bearing two small mirrors (equivalent to the slits of a Young’s
double-slit experiment) on the 100-inch Mount Wilson telescope. The visi-
bility of the fringes set up when this system is directed at a star of angular
diameter 6” declines as the distance D between the entrance mirrors is in-
creased. The visibility effectively vanishes when D is given by equation (3-13).
In this way, Michelson and Pease obtained the angular diameters of about
ten red giants. These angular diameters, when combined with distances, gave
stellar radii in physical units. Subsequent attempts by Pease to use a 50-foot
interferometer failed because of mechanical flexure of the instrument and
the limitations, set by atmospheric seeing, on the distance by which two
detectors can be separated and still retain adequate phase coherence. For
ground-based observations, 0701 is probably the practical limit for this
method, but if observations could be made from space, much smaller limits
could be reached.

Intensity Interferometry 1In the mid 1950s, a new interferometric technique
was developed by R. H. Brown and R. Q. Twiss. This technique exploits the
fact that the fluctuations in the intensities of the signals received from a star
by two instruments separated by distance D are correlated in a way that
depends on D and the angular diameter of the star. A clear discussion of this
method (and also of phase interferometry and the lunar-occultation method)
is given in (B10). In intensity interferometry, phase coherence is no longer
required, and it becomes possible to use separate telescopes and large base-
lines. An interferometer consisting of two 6.5-meter mosaic “light-buckets”
separated by baselines from 10 to about 190 meters operated for several
years at Narrabri, Australia, and produced angular-diameter measurements
for about thirty stars (B11), (B12).

Angular diameters as smallas 5 x 10~ *seconds of arc have been measured
with this technique. However, this method is restricted to early-type stars,
which (with present equipment) must be brighter than V ~ 2.5. The list of
such stars observable from the southern hemisphere has already been ex-
hausted, and new results will emerge only from northern-hemisphere obser-
vations or from the use of a larger instrument that will reach fainter stars.
The present data include a wide variety of O5-F5 stars of luminosity
classes I-V.

Speckle Interferometry In 1970, A. Labeyrie (L1) pointed out that the
image of a star at the focus of a large telescope consists of a broad, time-
fluctuating speckle pattern. This pattern comprises innumerable stellar
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images, each the size of the Airy disk (that is, the diffraction-limited image),
which spread out and move about randomly as a result of seeing-induced
phase fluctuations in the wave front received by the telescope. By a suitable
Fourier analysis of the speckle pattern, it is possible to recover an estimate
of the angular size of each elementary image down to the theoretical limit
of resolution of the telescope. This method has been applied using the Hale
200-inch telescope [see (G2)] and yields reliable angular diameters down to
about 0702. In most respects, it is an effective substitute for the Michelson
technique. A review of this method and its accomplishments is given in (L2).

Lunar Occultations

As the Moon (or a planet) moves on the sky, it occasionally passes in front
of a star and occults it. Typically, the light from a star is extinguished within
a few milliseconds. To the extent that we can idealize a star as a point source
and the Moon’s disk as a semi-infinite plane, we expect to observe fringes
in a Fresnel diffraction pattern, which is produced as the moon passes in
front of the star. These fringes cause a fluctuation in intensity that can be
recorded with a fast-response photoelectric photometer. Because a star is
not actually a point source but has a finite (if small) angular diameter, the
observed diffraction pattern will differ slightly from a perfect point-source
pattern, and, by a careful analysis of the data, one can use the differences to
make an estimate of the star’s angular diameter [see (B10), (N1), and (N2)
for a detailed description of the method].

This method can be used to measure angular diameters down to about
07002 as well as separations of binary stars that are too close for visual
resolution (two diffraction patterns are observed). Numerous results are re-
ported in (D6), (M2), (R2), (W4), and related papers. The method is obviously
restricted to stars near the plane of the ecliptic, and it is limited in part by
imperfect knowledge of the irregularities of the Moon’s limb.

Eclipsing Binaries

It sometimes happens that the orbital plane of a binary system is observed
nearly edge-on, so that, as the stars revolve around their common center of
mass, they pass in front of and behind one another (see Figure 3-3) and hence
produce eclipses. There will then be periodic variations in the light received
from the system; a plot of its apparent magnitude as a function of time is
called its light curve. The first eclipsing binary to be discovered was Algol
(B Per), which was noticed to be variable in 1670 and explained physically
by J. Goodricke in 1782. Most known eclipsing systems have short periods
(90% less than 109), but a few have very long periods (for examples ¢ Aur,
P ~ 27 years). The probability of discovering a long-period eclipsing system
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Figure 3-3. 1If the orbital plane of a binary star happens to be
nearly edge-on as seen from the Earth, then eclipses will occur
as one of the components passes in front of, or behind, the
other. The eclipse geometry is shown in part (a), and a schematic
light curve for the case that the smaller star has the greater sur-
face brightness is shown in part (b).

is small, both because the orbital plane of a widely separated system must
be inclined almost exactly 90° to the plane of the sky and because the eclipses
occupy only a tiny fraction of the orbital period.

The primary eclipse occurs when the star having the higher surface bright-
ness (hence higher effective temperature—see §3-4) is eclipsed, and the
secondary eclipse occurs when the component having the lower surface
brightness is eclipsed. These phenomena are illustrated in Figure 3-3 for the
case where the smaller star is an early-type (hot) dwarf and the larger star
a late-type (cool) giant.

The simplest case to analyze occurs if the orbits are circular, the orbital
plane is inclined at 90° to the plane of the sky, and the eclipses are total
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(primary eclipse in Figure 3-3) and annular (secondary eclipse in Figure 3-3).
Let d, be the diameter of the larger star, and d, the diameter of the smaller.
These diameters in units of the orbital radius a can be determined from the
duration of the eclipses. For example, if y,. .., f, denote times of first
contact, . . ., fourth contact during the secondary eclipse, then

di (3 —ty) + (84 — 1)
2na 2P (3-18a)

and

d, (t, — t1) + (ta — t3)
“2 _ -18b
27a 2P (B-38b)

where for convenience we have assumed that d; « a and d, « a. Similar
formulae can be written for the primary eclipse, and they provide a check
on the results.

Furthermore, it is clear that, if , and /, are the apparent brightness of
the larger and smaller stars, respectively, and h, is the residual brightness
of the system at primary eclipse in units of the total brightness outside of
eclipse, then for the case illustrated in Figure 3-3,

2

o 3"19
{1+ 4, P 158
and
2
=1- 3-19b
/1 + [2 1 hp ( )

Again, a check on the results can be obtained from the secondary eclipse
because then we know that

/(1 — k) + ¢4,

=h 3-20a
{1+ 4, ¥ ( )
and
k¢,
{1+ 1, s ( )

where h, is the residual brightness at secondary eclipse and k® = doid)*
k2 should be found to be consistent with the results of equations (3-18).
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If, in addition to measuring the light curve, we can also measure the radial
velocities of the two stars (that is, the star is an eclipsing spectroscopic
binary), then we can determine the orbital radius in physical units (kilometers)
as a = (Ve P/27m), where v,,, is the observed maximum relative radial
velocity of the two components. We can then reexpress the stellar radii in
kilometers. In this favorable case, we determine both masses (from Kepler’s
third law) and radii (from the eclipses) for the stars.

More generally, a detailed analysis of the light curve yields complete
orbital elements for the system, including parameters that specify the shape
and orientation of the orbit (in particular the inclination i) and that describe
the radii and surface-brightness distributions of the two component stars
[see (H17, Chapter 24), (M4, Chapter 12), or (S19, Chapter 14) for methods].
In practice, the analysis is difficult because the relationships between the
stellar and orbital parameters and the properties of the observed light curve
are complex. The quality of the results depends sensitively on the accuracy
of the data. Moreover, numerous physical complications can occur. For
example, the eclipses may be only partial, the orbits may be elliptical, the
stars may be deformed (oblate or even ellipsoidal), the light curves may
contain reflection effects (light from one star illuminating the other), or mass
exchange may occur in the system. Most of these complications occur in
close binaries, which are therefore often extremely troublesome to analyze
[see (K4) for details]. In view of the complexity of the problem, it is perhaps
not surprising that accurate results are available for only a small number
of systems [see (G9, 13), (L3), (P8), (S24, Chapter 15)].

Astrophysical Estimates

For many astrophysically interesting stellar types, none of the direct methods
just described can be applied, and yet even an approximate estimate of the
radii of these stars (for example, white dwarfs) can be of enormous importance
for an understanding of stellar structure and evolution. In such cases we can
estimate radii by means of Stefan’s law [see equation (3-25)] if we know a
star’s luminosity (from its apparent magnitude and distance) and its effective
temperature (from spectroscopic evidence). Such estimates, although not
fundamental measurements, can nevertheless be quite accurate and useful.

3-4. ANALYSIS OF STELLAR SPECTRA

From a theoretical analysis of the line and continuum spectrum of a star,
we can deduce the physical structure and chemical composition of its
atmosphere and predict the frequency variation of its emitted radiation. We
shall discuss here only a few important concepts and results, and we refer
the reader to (Ad), (G6), or (M13) for details of methods.
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Blackbody Radiation

The specific intensity emitted at frequency v by a perfect radiator (or black-
body) at absolute temperature T is given by Planck’s law

2hv3/c?
B(T) = P

ergscm ™~ 2s ! hz™!ster™! (3-21)
where h is Planck’s constant, k is Boltzmann’s constant, and c is the velocity
of light. The energy emitted outward in all directions by a unit area of a
blackbody in unit time and into unit frequency interval is the monochromatic

Sflux

2n 1
Fom = § BTndo = BT [ a9 [ i
= nB,(T)ergscm ?s ' hz™! (3-22)

where dw = d¢ du is an element of solid angle, and u = cos 0, where 0 is
the angle between the normal to the surface and an emerging ray [see
(M13, §1-3)]. In equation (3-22), we used the fact that radiation emerging
from a perfect radiator (for example, a small hole in the wall of an oven in
thermal equilibrium) is isotropic. The total energy, summed over all fre-
quencies, emitted per unit time per unit area by a blackbody is given by the
integrated flux

Fep) =T fow B(T)dv = oT*ergscm ™ >s™! (3-23)

where o is the Stefan—Boltzmann constant. Equation (3-23) is Stefan’s law.

Monochromatic fluxes emitted by blackbodies at temperatures charac-
teristic of stellar atmospheres are shown in Figure 3-4. As is evident in the
plot, as the temperature rises, the wavelength of maximum intensity decreases,
and the amount of radiation at short wavelengths rises very rapidly. Clearly,
a hot radiator will have a bluer color than a cool radiator. If the intensity
is measured per unit wavelength interval, the wavelength at which the
emission is maximum is 4,,, = (2.898 x 107)/T, where / is in Angstroms
and T is in degrees Kelvin.

Now, if a star of radius R, and hence surface area 47R?, emitted energy
exactly like a blackbody of temperature T, then its luminosity, that is, its
total radiative energy output, would be

Lgy = 4nR?*6T* (3-24)
But, of course, real stars are not blackbodies, and the actual emergent-

energy distribution of most spectral types is not Planckian but generally
deviates rather strongly from a blackbody curve. We can nevertheless define
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Figure 3-4. Flux emitted by a perfect radiator (blackbody) at
temperature T in ergs cm ™~ 2 s~ ! hz™!. Note that, as the tempera-
ture rises, the point of maximum emission shifts to higher frequen-
cies (shorter wavelengths), and the total energy emitted increases
rapidly.

a temperature T, called the effective temperature, such that, for a star of
luminosity L and radius R, a generalization of equation (3-24) does apply;
that is, we choose T so that

L = 4nR?¢ T4, (3-25)

The effective temperature not only specifies the integrated flux emitted per
unit area by the star, namely

F = oT4 (3-26)

but it also is a genuinely representative temperature of the material in the
stellar atmosphere. Insofar as this is true, it follows from Planck’s law that
we can expect stars with low effective temperatures to emit most of their
energy in the infrared and to appear red to the eye (or a photometer) and
stars with high effective temperatures to emit most of their energy in the
ultraviolet and to appear blue. How we actually determine T, for real
stars is discussed next.

Stellar Atmospheres Theory

From a theoretical point of view, the structure of a stellar atmosphere, and
therefore the spectral energy distribution emitted by a star, is determined
essentially by three parameters: (1) the effective temperature, which specifies
the amount of energy passing outward through each square centimeter of
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the material; (2) the surface gravity g = G.#/R*, which fixes the pressure
stratification in the atmosphere; and (3) the chemical composition of the
material, which determines the frequency variation of the opacity of the
stellar material. We shall see in §3-7 that the structure of a star as a whole
is basically determined by its mass, chemical composition, and age. In
particular, these parameters essentially fix a star’s radius and luminosity and
hence its effective temperature and surface gravity. Thus the atmospheric
structure and the emergent spectrum of a star are uniquely determined by
its mass, chemical composition, and age at each instant in its evolutionary
history. Reciprocally, an analysis of a star’s spectrum by detailed theoretical
modeling yields its effective temperature, gravity, and chemical composition
and hence some information about the structure of the star. However, it is
important to note that, while a star’s interior structure fixes its atmospheric
structure uniquely, the converse is not true. In fact, if we have determined
T, and g for a star spectroscopically, we really know only its luminosity
per unit mass

L T
—; = (4nGo) ;f

(3-27)

Only if we can deduce L, .#, or R by some independent means can we
determine all three of the basic parameters individually.

To make a theoretical model of a stellar atmosphere, we choose a chemical
composition, an effective temperature, and a surface gravity. We then demand
that pressure forces balance and that energy be conserved. These constraints
specify the temperature and density structure of the atmosphere. Once the
structure of the atmosphere is known, the equation of transfer can be solved
to calculate the emergent radiation field. The distribution of radiation as a
function of wavelength is fixed by continuum and line opacities, and an
accurate simulation of a stellar energy distribution must account for the
line-blanketing effects of thousands to millions of absorption lines in the
spectrum. Recently, it has become possible to treat these effects realistically
and to compute reliable theoretical emergent-energy distributions and photo-
metric indices.

Effective Temperatures and Surface Gravities

From the point of view of galactic astronomy, the primary goal of stellar
spectrum analysis is to provide estimates of the effective temperatures and
surface gravities of stars of each MK type. We consider effective temperatures
first.

Effective Temperatures There are two different empirical methods by which
T.: can be found. First, it is clear from equation (3-25) that we can find T
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if we know L and R for a star. If we know the distance to a star, we can find
its absolute visual magnitude M, from its apparent magnitude V. If, in
addition, we can estimate the star’s bolometric correction (see below) from
its spectral type, then we can find (L/Ly) from equation (3-31). Finally, if
we know R, either because we can measure the star’s angular diameter (and
by hypothesis we already know its distance) or because it is a spectroscopic
eclipsing binary, then we find Te. Notice that T. oc LY*R™2, so that
even modest accuracies for L and R suffice to yield a reasonably accurate
effective temperature.

If we can measure the angular diameter 6 and the complete absolute
energy distribution of a star, we can apply a more powerful empirical method
that does not require the distance to be known. If f; is the absolute mono-
chromatic flux in ergscm™2s~! A~1 received outside the Earth’s atmo-
sphere, then &, the absolute monochromatic flux at the surface of the star,
is given by [see equation (2-11)]

R 2
fi= (5) Fi= %929} (3-28)

where R and D are the star’s radius and distance, respectively (neither of
which need be known individually). Assuming that f, is known for all
wavelengths, we then can find the integrated flux # = [§ %, dJ, and hence
T via equation (3-26). Again, T, is well determined even if f; and 6 are
only modestly accurate.

Our assumption that f; is known completely implies that we have an
accurate absolute calibration of the receiver and that we can eliminate the
effects of absorption by both the Earth’s atmosphere and the interstellar
medium. For the visible-wavelength range, we can use ground-based data
corrected empirically for atmospheric extinction; in the infrared, we can
measure the radiation received through transmitting windows and interpo-
late between them. But, at other wavelengths, the Earth’s atmosphere is
opaque. Hence, to measure in the far infrared, we must observe from balloons
or high-altitude aircraft. In the ultraviolet, we must observe from space
vehicles. Most stars for which 6 can be measured reliably are fairly close
and therefore suffer only a small absorption by the interstellar medium for
A > 912 A. These effects can be eliminated empirically (see §3-11). The
interstellar medium is completely opaque for 4 < 912 A (the threshold for
absorption by atomic hydrogen in its ground state). Thus, for very hot stars,
the contribution of the very short-wavelength part of the spectrum to the
total flux must be estimated from theoretical models.

The classic application of this method is to the Sun, which has an easily
measured angular diameter and a fairly well-known absolute energy distri-
bution. Using the available data, one finds T.;(®) = 5770 K. Furthermore,
because R is known directly, we immediately find Lo = 3.826 x 1033 ergs s ~*
from equation (3-25). Until recently, the only other stars to which this
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approach could be applied were late-type giants having known angular
diameters, using absolutely calibrated broadband photometry (J2). These
results are of great importance because theoretical models for the atmo-
spheres of such stars are too primitive to give reliable effective temperatures.
Thanks to the development of the Narrabri intensity interferometer and
the Orbiting Astronomical Observatory (OAO-2), it became possible to
apply the method to early-type stars as well. A reliable empirical effective-
temperature scale for dwarfs on the whole range O—G, and for a few giants
and supergiants of various types, is now available [see (C13) for a compre-
hensive discussion of this work]. Numerical results are given in Table 3-5.

While the empirical approaches just described yield a reliable effective-
temperature scale for much of the main sequence, there are many types of
stars of great astrophysical importance to which they cannot yet be applied.
For these stars, we must turn to theory. The basic method is to compute a
grid of theoretical models for several effective temperatures and surface
gravities (with an appropriate chemical composition) and then to compare
predicted spectral features with those observed. Temperature-sensitive
parameters can be obtained from, say, ratios of line strengths for two suc-
cessive ionization stages of an element or from such features as continuum
slopes and discontinuities. In general, one uses several criteria simulta-
neously, and, in favorable cases, the best-fit solution yields reasonably
precise values for both T, and log g. It should be stressed, however, that,
unlike the empirical temperatures based on observed total fluxes, these
temperatures are only model parameters and are not necessarily properly
related to L and R via equation (3-25).

For most stars we do not have enough spectrophotometric information
to permit a detailed analysis of the kind just described, and we are forced
to work with the limited information contained in magnitudes and colors.
In principle, one could hope to use the empirical results to derive a relation
T = f(B — V), but in practice the reliable determinations are too sparse.
We must therefore eke out the calibration by computing theoretical color
indices from model atmospheres. For any color index (¢ — b) we can write
from equation (2-15)

[ f:Sutadz

(a — b) = kab — 25 10g10 w
0 AR A

(3-29)

where f; is the absolute flux at wavelength 4, S; denotes the receiver response
in the appropriate band, and k,, is an arbitrary constant that must be eval-
uated. The constant k,, is found by applying equation (3-29) to stars having
measured colors (¢ — b) and known absolute flux distributions f;. Once kg
has been determined, equation (3-29) can be applied to the fluxes predicted
by models to find a color index for each model for which T is known.
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Surface Gravities Fundamental surface gravities can be determined for all
stars of known .# and R, for example, the Sun and eclipsing spectroscopic
binaries. For other stars, we must estimate log g theoretically, using model
atmospheres. Typically, we analyze pressure-sensitive lines (of, say, hydrogen)
or ionization equilibria, which are sensitive to both pressure and tempera-
ture. A difficulty with this approach is that, if there are important dynamical
effects operating in the atmosphere (such as pulsation or a stellar wind),
then the value of g derived spectroscopically may not actually equal the
surface gravity implied by .# and R.

Bolometric Corrections

The absolute magnitude of a star in any definite photometric band, say M,
obviously provides a measure of only a fraction of the total radiant energy
output of the star. To make allowance for the energy emitted at wavelengths
outside of the photometric band observed and thereby obtain the luminosity
of a star, we define the bolometric magnitude as the magnitude that would
be measured with an ideal bolometer that absorbs radiation at all wave-
lengths with perfect efficiency. We then define the bolometric correction (B.C.)
to be such that

Mbol = MV + B.C. (3"30)

The luminosity of a star in solar units can now be expressed as

10g<L£@> = 0-4[Mbol(®) - Mbol(*)]
= 04[M(Q) — My(x) + BC(®) — BC(x)] (3-31)

To find bolometric corrections, one must know the distribution of a star’s
emitted flux over the entire spectrum. Until recently, this could be done
reliably using empirical data only for a few spectral classes (in particular,
for the Sun, which emits almost all its energy at wavelengths observable
from the ground). However, by using the ultraviolet and infrared data now
available, one can determine empirical bolometric corrections for a wide
range of spectral types.

Considering the definitions of M, and My, equation (3-30) can be re-
written as

J5 £y da

B.C. = 251og =
[ fuar

+ C, (3-32)
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where S,(V) is photometer response for the ¥ band (M7), or alternatively
as

BC.= —25 10g< fo‘” MA) =P+ G (3-33)

Each of these expressions has certain advantages [see the discussion in (C13)].
The constant C, in equation (3-32) contains an arbitrary zero-point. This is
usually fixed by setting the value of the bolometric correction of the Sun.
The conventional value derived in early work (K7), (P7) on the bolometric-
correction scale is B.C.(®) = —0.07 mag [which implies that My, (©) =
+4.76]. When this value is used, one finds C; = 4095 + 0.01 mag
(C13). To find the constant C, in equation (3-33), calculated’ values of
2.5 log[jg’ £:S,(V)dA] are correlated with observed values of V' for stars
with known f. This calculation yields (C13)

¥ =35 10g|: fo°° fASl(V)di} — 1247 (3-34)

Combining equations (3-32) and (3-34), we have

BC. = —I:V +25 log< fo‘” MA) " 11.52} (3-35)

When empirical fluxes are unavailable, theoretical model-atmosphere
fluxes may be used in equation (3-32). Again, unless line-blanketing is treated
adequately, the results will contain serious errors. One will tend to over-
estimate the bolometric correction (that is, find too negative a value) from
model fluxes. Numerical values of the bolometric corrections for various
spectral types are listed in Table 3-5.

Chemical Compositions

The chemical composition of stellar material is determined from quantitative
analyses of stellar spectra. In favorable cases, the analysis can be based on a
physical model of the atmosphere and a detailed spectrum synthesis of both
line profiles and line strengths (equivalent widths). By matching the calculated
spectrum to the observational data, one can estimate the star’s effective
temperature and gravity and the abundance of various elements relative to
hydrogen (normally the dominant constituent). In most cases, high-quality
line profiles are unavailable, and the analysis must be based on equivalent
widths alone using a curve of growth, which gives the strength of a line as a
function of the number of absorbing atoms in the material.
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Many stars of interest to galactic-structure research are so faint that the
data needed for even a curve-of-growth analysis are unobtainable, and one
must estimate the abundances of all the elements heavier than helium (the
“metals”) from photometric indices that measure the fraction of the energy
absorbed by spectrum lines in specially chosen bands. A number of systems
can be used (see §3-6). These are calibrated by observing stars for which
abundances have been determined spectroscopically.

Hundreds of spectroscopic analyses of stellar spectra have been performed,
and they have yielded a number of extremely important conclusions:

1. Most disk stars and nebulae in the solar neighborhood are com-
posed of a single, standard mixture of elements. In these objects,
the abundances (by number) of various elements relative to hydro-
gen are as follows: helium, 0.10; carbon, 3 x 10~%; nitrogen, 10™4;
oxygen, 6 x 10™%; neon, 10™*; magnesium, 3 x 10~ 5; silicon,

3 x 1073; and iron, 4 x 1073, The variations in these numbers
from one disk star to another are relatively minor, with the metals
fluctuating (usually together) relative to the solar abundances by
perhaps a factor of two up, and by a factor of from three to five
down. In the theory of stellar structure, it is customary to use the
parameters (X, Y, Z), which give the fractional abundances by
weight of hydrogen, helium, and everything else, respectively. For
the solar mixture, X = 0.70, Y = 0.28, and Z = 0.02.

2. In contrast, the locally observed stars in the spheroidal component
are found to have total metal abundances that range from a factor
of 10 to a factor of 10® below solar; however, the relative distri-
bution of individual elements within this group [measured as
n(element)/n(Fe)] is roughly the same as in solar material. With few
exceptions, the spheroidal-component stars are too cool to excite
lines of He I in their observable spectrum, hence the helium abun-
dance of these stars cannot be determined spectroscopically.
Helium lines can, in fact, be seen in the spectra of some horizontal-
branch stars (see §3-6) that are hot enough to show them, but these
stars are in an advanced evolutionary state and seem to have
peculiar atmospheric compositions. We shall see in §3-7 and §3-10
that it now appears from several lines of evidence that, for
spheroidal-component stars, Y &~ 0.25 4+ 0.03; that is, their helium
content is nearly the same as that of disk stars.

3. The chemical abundances in both disk and spheroidal-component
stars show moderate variations with spatial position in our Galaxy,
strong correlations with stellar kinematics, and a probable corre-
lation with age. Valuable inferences about galactic evolution can
be drawn from these results, as will be discussed in later chapters.

4. From evolutionary analyses, we find that the spheroidal-component
stars are all very old and that disk stars range from very young to
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moderately old. We thus conclude that the element abundances in
the halo stars are close to those of primeval cosmic material, where-
as the disk stars have been enriched in the heavier elements. We
therefore infer that hydrogen and helium were produced in the
cosmic big bang in essentially their present-day ratio. The heavier
elements are the products of nucleosynthesis in early generations

of stars, the material from which is recycled into the interstellar
medium by supernova and noncatastrophic mass-loss processes
and thence into subsequent generations of stars. We shall return

to these points in §3-9 and §3-10.

5. A small number of stars show atmospheric abundance anomalies,
which are usually related to structural properties of the atmosphere
or associated with a particular evolutionary state. Examples are
(a) helium-rich stars showing very strong He lines; (b) helium-
deficient stars (among them, the horizontal-branch stars); (c) pe-
culiar A stars (Ap), which have enhanced abundances of certain
metals and rare earths in atmospheres containing intense magnetic
fields; (d) metallic-line A stars (Am) whose metal lines are too
strong compared to their hydrogen lines, while their Ca II lines
are too weak ; () carbon stars, carbon-rich red giants; (f) S stars,
showing anomalously high abundances of Zr, Y, La, and such
unstable elements as technetium; and (g) Wolf-Rayet stars, divided
into types WC and WN, which show strong lines of carbon and
nitrogen, respectively.

Some of these stars, such as those in categories (e) and (f), are in
very advanced evolutionary phases and have atmospheric abun-
dances that evidently have been altered by mixing with internal
material that has undergone thermonuclear processing. In other
cases, the anomalous abundances are the result of the operation
of specific physical mechanisms in the atmosphere alone (for ex-
ample, gravitational settling by diffusion) and are not character-
istic of the composition of the star as a whole. In still other cases,
anomalous atmospheric abundances may be artifacts of the models
used to interpret stellar spectra. More sophisticated models (which
include, for example, the effects of magnetic fields and stellar rota-
tion) might well be able to account for the observed line strengths
in terms of normal abundances.

3-5. SYSTEMATICS OF STELLAR PROPERTIES:
SPIRAL-ARM AND DISK STARS

Thus far in this chapter, we have discussed stars as essentially isolated
individuals and have described how their physical properties can be deter-
mined. We now inquire into the nature and extent of correlations among
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these properties. We shall find that very important and distinctive system-
atic relationships do exist, both for spiral-arm and disk-component stars in
the solar neighborhood (discussed in this section) and for the spheroidal-
component stars observed both in the solar neighborhood as halo stars and
at large distances as members of globular clusters or the galactic bulge
(discussed in §3-6).

The Hertzsprung-Russell Diagram

Unquestionably the most important correlation among stellar properties
discovered to date is the Hertzsprung-Russell diagram (H-R diagram), which
was developed independently by the Danish astronomer E. Hertzsprung in
1911 and the American astronomer H. N. Russell in 1913. As we shall see in
this and the following five sections, the H-R diagram has been of profound
importance to the development of our understanding of stellar evolution. It
provides both one of the most stringent tests of evolution theories and one of
the most incisive tools for exploring the evolutionary history of our Galaxy
as a whole. We remind the reader that all discussion of interstellar reddening
and absorption effects is deferred to §3-11.

Types of H-R Diagrams The H-R diagram displays the relationship be-
tween stellar spectral types and luminosities in a two-dimensional plot, such
as that shown in Figure 3-5. Each point in that plot represents a nearby field
star of known distance. In its original form, the H-R diagram was a plot of
absolute visual magnitude versus spectral class, but other variants are now
more commonly used. Of these, the most useful observational form is the
color-magnitude (CM) diagram, which is a plot of a magnitude (either absolute,
for stars of known distances, or apparent, for stars known to be all at the
same distance—for example, within a cluster) versus a color index. The
choice most commonly used is V¥ magnitude versus (B — V). An advantage of
CM diagrams over the original H-R diagram is that the spectral classification
procedure groups stars into discrete categories and thereby introduces a
clumpiness into the diagram (easily seen in Figure 3-5) which obliterates fine
details. In contrast, CM diagrams yield smooth distributions that allow us
to exploit fully the inherent high precision of photoelectric photometry and
thus discriminate fine features easily. Furthermore, accurate colors can often
be measured for stars that are much too faint for spectral classification.
Insofar as stars of a given MK spectral type have a unique color, these two
observational diagrams are equivalent.

The most convenient form of the H-R diagram for evolutionary analyses
is a plot of log (L/Lg) versus T, ; this is usually called the theoretical H-R
diagram. Insofar as all stars of a given MK spectral type have the same
luminosity and effective temperature, the theoretical H-R diagram is equiv-
alent to either form of observational H-R diagram just described. But, of
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Figure 3-5. The Hertzsprung-Russell diagram, in its classical form, for nearby stars of
known distance. The great majority of stars in a unit volume of space fall along the main
sequence. Also shown are the positions of the giant, supergiant, and white-dwarf sequences.
[From Otto Struve, Stellar Evolution. Copyright 1950 © 1978 by Princeton University
Press, Fig. 2, p. 32. Reprinted by permission of Princeton University Press.]

course, to make a correspondence between the theoretical H-R diagram and
a CM diagram, we must know the relations T,y = f(MK spectral type) and
B.C. = g(MK spectral type) with good accuracy. This mapping problem be-
tween the two sets of diagrams has long been, and remains today, one of the
most troublesome practical obstacles encountered in theoretical evolutionary
analyses of observed H-R diagrams.

Basic Morphology As is instantly obvious from even a casual inspection of
Figure 3-5, stars are not scattered at random in the H-R diagram. Instead,
they fall into several distinctive groups along well-defined sequences. The vast
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majority of all stars are found to lie along the main sequence, which stretches
from luminous, hot, blue, O stars to faint, cool, red, M stars; these stars are
called dwarfs (MK luminosity class V). The Sun is a main-sequence star. The
next most prominent sequence is the giant branch, which stretches from
spectral type GO, at a luminosity about thirty times brighter than main-
sequence stars of the same type, toward cooler and brighter stars. These stars
are the red giants; they correspond to MK luminosity class III. Sprinkled
across the top of the diagram are a few extremely bright stars at most (but
not all) spectral types; these are the supergiants (MK luminosity class I).
Similarly, about 10 mag below the main sequence, we find a few faint, hot
stars known as white dwarfs. The region between the main sequence and the
giant branch that is almost devoid of stars is known as the Hertzsprung gap.

H-R Diagrams of Clusters and Associations In the galactic plane, we ob-
serve numerous physical aggregations of 10? to 103 stars called galactic (or
open) clusters and associations. A typical galactic cluster is a rather irregular,
loosely concentrated group of stars in a volume having a radius of the order
of 10 pc. Galactic clusters have a wide range of star densities, from about 0.25
star pc~2 for the Hyades to about 10° stars pc ™2 at the centers of the richest
clusters. These figures are to be compared to the density of stars in the field
in the solar neighborhood, which is of the order of 0.1 star pc~3. The richest
clusters can be detected at large distances (the limit being set by interstellar
absorption), whereas the poorer clusters can be discriminated from random
fluctuations in the field only if they are nearby. About 10® galactic clusters
are known. The total masses of galactic clusters lie in the range of 100 to
3000.# o, and their integrated brightness can be as high as M, ~ —10,
though a more typical value is M, ~ —5. Galactic clusters contain a wide
variety of stellar types and span a wide range of ages, a point that we shall
discuss later.

An association is an extremely loose and irregular group of stars. It has a
low space density (perhaps 100 stars in a volume of 100-pc radius) and is
identifiable mainly because it is a noticeable (if weak) concentration of rela-
tively rare stars of a distinctive type. For instance, O associations are aggre-
gations rich in O stars (for example, I Ori) and T associations are rich in
T Tauri variables (for example, Per T2). About 100 associations are known.
The space densities within associations are so low that they cannot be dy-
namically bound, and they are actually dissolving into the field on a relatively
short time scale (a few million years); they often show definite expansional
motions. The stars in associations are very young: O stars have lifetimes of
only about a million years, and T Tauri stars are still in a stage of contraction
onto the main sequence. Evidently, associations are mere transient members
of the spiral-arm population, and they are continually forming, disintegrating
and dispersing into the field.

In broad terms, the morphology of a typical galactic-cluster CM diagram
is similar to that of common field stars, showing the same general sequences.
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But, because cluster stars are all essentially at the same distance from the Sun,
and hence have the same distance modulus and suffer similar amounts of
interstellar absorption and reddening, it is possible to establish observa-
tionally the features in their CM diagrams clearly and crisply. Virtually all
galactic-cluster CM diagrams have a well-defined main sequence, which
extends to some specific upper limit of brightness. As we shall see later, this
truncation of the upper end of the main sequence is a result of stellar evolu-
tion—the period of time that a star can spend on the main sequence, its
main-sequence lifetime, decreases markedly from the faint late-types to the
luminous early-types. Hence, in a cluster of a given age, all stars brighter than
some critical limit will have evolved off the main sequence. Thus, while the
very youngest clusters (for example, NGC 2362 in Figure 3-6) can contain
O stars, progressively older clusters will contain no stars earlier than type B,
A, F, and so on. The CM diagrams of young clusters typically have a main
sequence extending to type O or B, a sprinkling of supergiants across a wide
Hertzsprung gap, and a concentration of M supergiants. The CM diagrams
of intermediate-age clusters, such as M11 or M41, show a main sequence
terminating at late B stars or A stars, a well-developed red-giant branch
separated from the main sequence by a narrower Hertzsprung gap, and no
supergiants. The oldest clusters, such as M67 and NGC 188, show a main
sequence only up to F stars and then a continuous subgiant branch (no
Hertzsprung gap) extending into a moderately luminous giant branch. White
dwarfs are commonly found in clusters that are close enough for them to be
detected (for example, the Hyades). In a very few clusters, a Cepheid variable
is found in the Hertzsprung gap (see §3-8 for the significance of this fact).

The Spectral Type Versus Absolute-Magnitude Relation

Starting from the fact that stars fall on definite sequences in the H-R diagram,
one can derive a great deal of information about stellar properties by com-
paring cluster CM diagrams. In particular, if we hypothesize that the main
sequence has a unique locus in the CM diagram, then the observed main
sequences (corrected for interstellar reddening) of various clusters should
differ only because the clusters have different distance moduli. We can there-
fore fit the main sequences of cluster CM diagrams together by shifting them
up or down in apparent magnitude at fixed color. Then, by fitting all clusters
to a cluster of known distance (in practice, the Hyades), we can associate an
absolute magnitude with every star in each diagram and hence calibrate the
absolute magnitudes of a wide variety of MK spectral types.

In fitting together the main sequences of different clusters, one must make
use of the results of stellar-evolution theory (§3-7), which show that, as stars
age, they move away from the main sequence up and to the right in the H-R
diagram (that is, they become more luminous and redder). Thus, to obtain
the unevolved or zero-age main sequence (ZAMS), one fits the lower envelope
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of the observed main sequences. To avoid all evolutionary effects, the fitting
should be performed for stars at least 3 mag below the point where the main
sequence terminates in a given cluster. In practice, to construct the complete
ZAMS, one has to patch together pieces of the main sequences of several
individual clusters. Details of how this was actually done are given by
Sandage (S1), Johnson and Iriarte (J4), and Blaauw (B7, Chapter 20). The
result of this work is shown in Figure 3-6.

In the procedure just described, it has been tacitly assumed that all stars
have the same chemical composition and that complicating effects, such as
rotation and magnetic fields, are unimportant. The composition is especially
important both because it fixes the intrinsic brightness of the main sequence
at a given color and because stars with different abundances will suffer dif-
fering amounts of line-blanketing in their measured colors. Both of these
effects must be taken into account. This can be done by using the results of
theoretical computations that give the position of the main sequence for
different compositions, and theoretical and semiempirical blanketing cor-
rections for the colors. For galactic clusters, the spread in metal abundances
relative to the Sun is small, and the resulting differential line-blanketing
effects from cluster to cluster are minor (although not negligible).

A more serious problem is that of finding a genuinely unevolved portion
of the main sequence in any given cluster. In some cases, the observations
may not extend to stars that are faint enough to assure that we have reached
the unevolved main sequence. In the youngest clusters, the luminous stars
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Table 3-1. The Zero-Age Main Sequence

(ZAMS)

(B = V) M, (B—=V)o My
—0.30 —3.50 030 2.80
025 —-2.30 0.40 335
—0.20 —~1.30 0.50 4.05
~0:05 —0.50 0.60 4.60
—0.10 0.30 0.70 5.20
—005 0.90 0.80 5.70

0.00 1.30 0.90 6.10
0.05 1.55 1.00 6.60
0.10 1.80 1.10 7.00
0.20 225 1.20 7.45

1.30 7.90

SOURCE: Adapted from (S24, 216)

may already have begun to evolve away from the main sequence while less-
massive stars are still contracting onto it. In this event, the cluster may not
have a truly unevolved part to its main sequence. Despite these difficulties,
various independent determinations of the ZAMS are in good agreement with
one another, and the empirical ZAMS given in Table 3-1 seems well estab-
lished. Because the ultimate reference standard in the cluster-fitting procedure
is the Hyades, the numbers in the table have been made 0.2 mag brighter
than those given in the sources cited to allow for the increase in the accepted
value of the Hyades distance modulus from 3.1 mag to 3.3 mag.

Once cluster CM diagrams have been matched together, one can read
absolute magnitudes for stars of various spectral types. Combining these
data with those obtained from other methods, one can finally assemble a
calibration of M, for almost all MK spectral types. A typical compilation of
results is shown in Table 3-2. It should be mentioned that the absolute magni-
tudes tabulated for each type are averages for stars of that type. Thus the
main sequence given in the table includes an admixture of somewhat evolved
stars, and it will therefore necessarily be brighter than the ZAMS for stars
earlier than type G. For example, the ZAMS for O stars lies almost a magni-
tude below the main sequence given in Table 3-2. The final calibration given
in Table 3-2 is rather eclectic, and the results for different types are not all of
equal reliability [see (B7, Chapter 20) for an assessment of accuracies|. The
main techniques used for the calibration of various stellar types can be
summarized as follows:

1. supergiants: CM diagram fitting;

2. O-A stars: CM diagram fitting, secular and statistical parallaxes
(see §6-6);

3. F-M dwarfs: trigonometric parallaxes, moving-cluster method;
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Table 3-2. Mean Absolute Visual Magnitude, M, Versus MK Spectral
Type.

Luminosity class
Spectral

class

A% Iv 111 I Ib Ia Ta0
05 -56
09 —48 —-53 —5.7 —6.0 —6.1 —6.2
BO —43 —48 —50 —-54 —58 —6.2 —8.1
BS -1.0 —1.8 -23 —44 —-57 -70 —83
A0 0.7 0.2 —-04 -3.0 -52 =71 -84
AS 1.9 1.4 0.3 -2 —4.8 =77 -85
FO 2.5 1.9 0.8 —24 —4.7 -85 —8.7
F5 33 2.1 1.2 -23 —4.6 —-82 —8.8
GO 44 2.8 0.9 -21 —4.6 —-8.0 -9.0
GS 52 3.0 0.5 -21 —4.6 —-8.0
KO 59 3.1 0.6 -22 —45 —8.0
K5 7.3 —-02 -23 —45 —-8.0
MO 8.8 —04 -23 —4.6 =75
M2 10.0 —-0.6 —-24 —4.8 -7.0
M5 12.8 —-0.38

SOURCE: Adapted from (A3, 200), (S24, 401)

4. F-M giants: moving-cluster method, CM diagram fitting, secular
and statistical parallaxes.

Special calibration techniques may also be helpful in specific cases. For
example, absolute magnitudes can be estimated for several supergiants that
are components of noninteracting binaries containing another star of known
absolute magnitude (for example, a dwarf), using the fact that the difference
in apparent magnitudes of the two components equals the difference in their
absolute magnitudes. Implicit in this method is the assumption that both
stars in the system are normal and unaffected by the presence of the
companion.

Finally, absolute magnitudes for white dwarfs have been determined from
trigonometric parallaxes and their membership in clusters and binaries. The
characteristic ranges of absolute magnitude for the various white-dwarf
spectral classes are: DB, M, ~ +10to +11; DA, M, ~ +11to +12; DF,
My, ~ +13 to +14; DG, M, ~ +14 to +15; and DM, M, = +15.

Because of the wide variety of methods used to put together the calibration
given in Table 3-2, the effect of the recent change in the Hyades distance
modulus cannot be judged without reworking the original data; hence the
numbers in the table are the same as in the original sources cited. This ab-
solute-magnitude calibration is of tremendous importance to galactic-
structure research, for it allows us to assign a distance to any star of known
type and apparent magnitude and thus provides the foundation for the
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analysis of the space distribution of stars in the solar neighborhood (see §4-2
and §4-3).

The Spectral Type Versus Color, the Color—Color, and

Spectral Type Versus Effective-Temperature Relations

The MK spectral type of a star is a concise description of the morphology

of its line-spectrum. Inasmuch as both the line and continuous spectrum
emitted are determined by the physical structure of a star’s atmosphere, we

Table 3-3. The Spectral Type Versus Color Relation

Main sequence (luminosity class V)

Spectral class (B—-1V) (U — B) Spectral class (B-17V) (U — B)

o5 —-0.32 —1.15 B9 —0.06 —0.19
06 —032 —1.14 AOQ 0.00 0.00
o7 —-032 —1.14 A5 0.15 0.09
(O] —-0.31 =113 FO 0.29 0.04
(0 —0.31 —1.12 F5 0.42 —0.01
BO —0.30 —1.08 GO 0.58 0.05
B1 —0.26 —0.93 G5 0.69 0.20
B2 —0.24 —0.86 KO 0.85 0.47
B3 —-0.20 —0.71 K5 1.16 1.09
B5 —0.16 —0.56 MO 1.42 1.25
B7 —0.12 —042 M5 1.61 1.22
B8 —-0.09 —0.30

Giants (luminosity class III)

Spectral class (B-=17Y) (U — B) Spectral class (B-7Y) (U — B)

05 —0.32 =il 15 B9 —0.06 -0.19
06 =032 —1.14 A0 0.00 0.00
o7 —-032 —1.14 AS 0.15 0.10
08 —0.31 —1.13 FO 0.27 0.10
09 —-0.31 —-1.12 F5 0.45 0.07
BO —0.30 —-1.09 GO 0.65 0.30
Bl —0.26 —0.95 G5 0.84 0.52
B2 —0.24 —0.88 KO 1.03 0.87
B3 —0.20 —-0.72 K5 1.45 1.65
B5 —0.16 —0.56 MO 1.57 1.8

B7 —0.12 —042 M5 1.80 2

B8 —0.09 —0.30
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Table 3-3. (continued)

Supergiants (luminosity class I)

Spectral class B—17) (U — By (U — B), (U — B)

05 —0.32 —1.16

06 —0.32 —1.15

o7 —031 —1.14

o8 —0.29 —1.13

(0 —0.28 —1.12

BO —0.24 —1.05 —1.07
B1 —0.19 —0.96 —1.00
B2 —-0.17 —-091 —0.96
B3 —0.13 —0.82 —0.87
B5 —0.09 —-0.72 —0.78
B7 —0.05 —0.62 —0.68
B8 —0.02 —0.53 —0.60
B9 0.00 —0.48 —0.56
A0 0.01 —0.35

A5 0.07 s

FO 0.21 0.22

F5 0.40 0.30

GO 0.70 0.60

G5 1.07 0.83

Ko 1.37 1.35

K5 1.65 1.7

MO 19 1.7

M5 2.1 1.8

SOURCEs: Adapted from (A3, 206), (G3, 79), (S24, 214)

can expect that its continuous energy distribution, and hence colors, will be
closely correlated with its MK spectral type. This is indeed found to be the
case, and, after allowance for interstellar reddening, one can associate dis-
tinctive colors with most types as shown in Table 3-3 for (B — V) and
(U — B). [In the table, the data for supergiants represent all subclasses
(Ia, Iab, Ib) lumped together unless otherwise indicated. ]

The UBV color indices clearly show that early-type stars are rich in
ultraviolet radiation and that late-type stars are distinctly red. Note that, for
the hottest stars, both (B — V) and (U — B) approach limiting values. This
is a result of the fact that, at high temperatures (T = 40,000 K), the Planck
function in the visible reduces to the Rayleigh-Jeans form B,(Ty) =
(2kTgv*/hc?), where Ty is a characteristic radiation temperature of the radia-
tion field. It follows from equation (2-15) that, in this limit, the color indices
will be essentially independent of Ty. The bulk of the radiation emitted by
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Table 3-4. Infrared Colors of Main-Sequence Stars
Color index
Spectral
class
v-R (V-0 ¥V-J ¥-K ¥-L (V-N)
A0 0.00 0.00 0.00 0.00 0.00 0.00
FO 0.30 0.47 0.55 0.74 0.8 0.8
GO 0.52 093 1.02 1.35 15 1.4
KO 0.74 1.4 15 2.0 255
MO 1.1 22 23 35 43
M5 2.8

SOURCE: (A3, 208), by permission

late-type stars emanates in the infrared as is shown clearly in Table 3-4.
Similarly, colors constructed from far-ultraviolet magnitudes (observed from
space) and V show that the peak energy emission by early-type stars moves
to progressively shorter wavelengths as the temperature of the stellar atmo-

sphere rises.

The data in Table 3-3 can be used to construct color-color (or two-color)
diagrams, such as those shown in Figure 3-7. As can be seen, it is possible to
distinguish stars of different spectral and luminosity classes from one an-
other, assuming that adequate allowance can be made for interstellar red-
dening. Similar diagrams using other photometric indices can sometimes be
used to carry out a two-dimensional photometric “spectral classification”

-10F
-0.5 I
0.0 v
) C
S 0sE
~ B I
Lof
L5
Figure 3-7. Two-color diagram C
for main-sequence stars (luminosity 901 1 [ [
class V) and supergiants (luminosity -40 0 04 08 12 16
class I). (B-V)
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Table 3-5. The Effective-Temperature and Bolometric-Correction

Scales
Luminosity class
A% 111 1
Spectral
class

T st B.C. Toge B.C. Tese B.C.
05 47,000 —40
o7 38,000 —35
09 34,000 —32 30,000 -29
BO 30,500 —3.00 25,500 —2.6
B2 23,000 —2.30
B3 18,500 —1.85
B5 15,000 —1.40 13,500 —-09
B7 13,000 —0.90
B8 12,000 —0.70
A0 9,500 —0.20
A5 8,300 —0.10
FO 7,300 —0.08 6,400 —-0.2
F5 6,600 —0.01
GO 5,900 —0.05 5,400 —0.1 5,400 -03
G5 5,600 —0.10 4,800 —-03 4,700 —0.6
KO 5,100 —-0.2 4,400 —-05 4,000 —-10
K5 4,200 —-0.6 3,600 —1.1 3,400 —1.6
MO 3,700 —-12 3,300 —15 2,800 -25
M5 3,000 -25 2,700: -3:
M8 2,500 —4:

SOURCES: Adapted from (A3, 206), (C13), (J2)

within limited regions of the H-R diagram. This is valuable because we can
then classify very faint stars.

As was discussed in §3-4, the spectrum of a star is essentially determined
by its effective temperature and surface gravity. Furthermore, because a
stellar spectrum can be characterized by giving its MK spectral type, it
follows that, to each MK spectral type, there should correspond definite
values of T, B.C., and the surface gravity g. In §3-4, we described various
methods for determining T ; Table 3-5 assembles representative results of
this work. The most reliable values given are for main-sequence B—K stars.
The accuracy of the estimates deteriorates for O and M stars and for giants
and supergiants. Table 3-5 shows that MK spectral classes correlate closely
with T.g. The MK luminosity classes are primarily sensitive to the surface
gravity g. The relationships L oc R*T%; and g oc .#/R? imply L oc (/g)
at fixed spectral type (fixed T,e). Figure (3-8) shows how the luminosity of
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Figure 3-8. Absolute visual
magnitude as a function of MK
spectral type. Individual curves 05 B5 A5 F5 G5 K5 M5
are labeled with luminosity classes. Spectral class

a star depends on its MK spectral type. High-luminosity stars tend to have
large masses and low gravities.

The Mass-Luminosity and Mass-Radius Relations

Naively, one would expect massive stars to be very luminous and stars with
small masses to be faint. Broadly speaking, it is true that faint stars have
small masses, but it turns out that luminous stars are not necessarily massive.
As we shall see, the luminosity of a star tends to increase as it evolves, and
this increase is very pronounced for low-mass stars. Thus, toward the end
of its life, even quite a low-mass star can become a luminous giant. If one
confines one’s attention to main-sequence stars, however (and, in any given
cluster, most stars will at any one time be on the main sequence), one finds
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Table 3-6. Physical Properties of Main-Sequence Stars

Spectral
log(A /M &) class log(L/Lg) M, My log(R/R)
—-1.0 M6 -29 12.1 155 —-09
—-0.8 M5 —25 10.9 139 —-0.7
—0.6 M4 —-20 9.7 12.2 -05
—-04 M2 —1.5 8.4 10.2 —0.3
-0.2 K5 —-0.8 6.6 7.5 —-0.14
0.0 G2 0.0 4.7 4.8 0.00
0.2 FO 0.8 2.7 2.7 0.10
0.4 A2 1.6 0.7 | 0.32
0.6 B8 2.3 —1.1 -02 0.49
0.8 B5 3.0 -29 —1.1 0.58
1.0 B3 37 —4.6 —-22 0.72
1.2 BO 44 —6.3 —34 0.86
14 08 49 —7.6 —4.6 1.00
1.6 05 54 -89 —-56 1.15
1.8 04 6.0 —10.2 —6.3 1.3

SOURCE : Adapted from (A3, 209), by permission

both empirically and theoretically that a mass-luminosity relation holds;
L oc 432, approximately. For main-sequence stars, there is also a mass-
radius relation; R =~ Ro(M /M 5)°". These results, which are summarized
in Table 3-6, can be explained satisfactorily by the theory of stellar structure.

A very important consequence of the main-sequence mass-luminosity
relation and the tendency of the luminosity of a star to increase as it evolves
is that luminous stars must have lifetimes much shorter than the Sun’s. The
amount of fuel available for thermonuclear burning is approximately pro-
portional to a star’s mass, and the rate at which it is consumed is proportional
to its luminosity. Hence the lifetime t of a star is proportional to .#/L, where
L is the mean luminosity of a star averaged over its lifetime. Because stars
leave the main sequence only when they are running short of fuel and then
rapidly squander their slender remaining reserves, a star’s mean luminosity
L does not differ significantly from its main-sequence luminosity Lys. There-
fore, from the main-sequence mass-luminosity relation, we can estimate for
the lifetime, T oc /Ly oc # ~%2. 1t is thus clear that massive stars have
short lifetimes. In fact, the theory of stellar structure predicts [see equa-
tion (3-44)] that an O star cannot live longer than about a million years.

It was essentially this quite simple calculation that led L. Spitzer to con-
clude (S20) in 1948 that star formation must be a continuous, ongoing
process. The mere existence of very luminous stars indicates that not all
star formation can have occurred in the distant past. To determine how the



114

Table 3-7. Correlation of Stellar Radius and Luminosity
with MK Spectral Type

log(R/R) log(L/Lo)
Spectral
class
v 111 1 v 111 1
05 1.25 5.7
BO 0.87 1.2 1.3 43 54
B5 0.58 1.0 15 29 4.8
A0 0.40 0.8 1.6 19 43
A5 0.24 1.7 1.3 4.0
FO 0.13 1.8 0.8 39
F5 0.08 0.6 19 04 3.8
GO 0.02 0.8 2.0 0.1 1.5 3.8
G5 —.03 1.0 2.1 —0.1 1.7 3.8
KO —.07 1.2 23 —-04 19 39
K5 —.13 14 26 —-0.8 2.3 4.2
MO —.20 2.7 —12 2.6 4.5
M5 -5 —-2.1 3.0

SOURCE: Adapted from (A3, 209), by permission

rate of star formation changes in time is an important task of the theory of
galactic evolution. Conversely, any such theory will be constrained in sig-
nificant ways by the numbers of stars with various masses observed to exist
at present, essentially because there is a characteristic lifetime for each mass,
which implies that a study of stars of decreasing mass gives a glimpse of our
Galaxy at increasing mean stellar age and hence at increasing look-back
times.

Each MK spectral type is associated with characteristic values of L and
R. Table 3-7 gives typical values for these quantities, expressed in solar units.
The great range of R values quoted in Table 3-7 for M stars follows from the
huge range of luminosities displayed by these stars, which all have similar
effective temperatures. Actually, the range in the radii of stars is even greater
than this table would suggest. Some of these stars are 1000 solar radii in
diameter, whereas a typical white dwarf has a radius of about 107 %Rg,
comparable to that of the Earth. The mean densities of stars vary over a
correspondingly gigantic range, from less than 107° of the solar mean
density for the typical red giant to nearly 10° of solar for a white dwarf.
The latter are, in fact, so dense that they are sustained against gravitational
collapse by the zero-point energies of their electrons, just as an atom is
sustained against electrostatic collapse by the residual motion of its electrons.
One says that the material of white dwarfs is degenerate. During the life of
a star, its radius, and hence its mean density, will change considerably. Its
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mass may also change as a result of mass loss or mass exchange, but this
change is probably a less important phenomenon than the change in radius.
In any case, we do not know how to model mass loss theoretically.

3-6. SYSTEMATICS OF STELLAR PROPERTIES:
SPHEROIDAL-COMPONENT STARS

In addition to the metal-rich stars in the disk and spiral arms, our Galaxy
contains a second major group of stars in its spheroidal component. These
stars are represented in the solar neighborhood by the metal-poor subdwarfs
and at larger distances by the stars in globular clusters and the galactic bulge.
The physical properties of spheroidal-component stars are quite different
from those of disk stars, and this fact is clearly manifested in their H-R and
CM diagrams. As was mentioned in Chapter 1, these stars are all old and
have a very different history from the disk stars. In all probability, they were
formed before the disk itself existed.

The Subdwarfs

Among the F, G, and K stars observed in the neighborhood of the Sun are
a few that fall distinctly below the main sequence in a CM diagram. Because
they appear somewhat underluminous (in M) for their (B — V) color, these
stars are called subdwarfs. Compared to common field stars, the subdwarfs
also have an ultraviolet excess; that is, they have brighter (U — B) colors
than normal stars having the same (B — V).

When the subdwarfs are examined spectroscopically, it is found that their
spectral lines are abnormally weak, and quantitative spectroscopic analyses
show them to be extremely metal poor relative to the Sun, with abundances
down by a factor of 10”2 or more. As soon as it was known that the sub-
dwarfs are weak lined, it was recognized that this implied that they should
appear to be too blue relative to stars having normal line strengths but
otherwise identical properties (L and Teg). In turn, it was realized that they
might appear to be subdwarfs in a CM diagram, not because they are really
underluminous but rather because they are anomalously blue and therefore
displaced to the left of the normal main sequence.

Thus, to compare stars with markedly different compositions, we must be
able to account for the effects of different metal abundances on photometric
indices and to determine the position of a star of arbitrary metal abundance
relative to some fiducial sequence (the Hyades is invariably used as the
standard) in both CM diagrams and the theoretical H-R diagram. Further-
more, we must develop methods that allow photometric indices to be used
directly to infer information about the metal content of stars. To accomplish
these goals, we must evaluate the photometric effects of line-blanketing in
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stars with differing metal abundances. In the following discussion, we shall
focus mainly on blanketing corrections in the UBV system because this
system reaches the faintest stars and has been widely used, for example, in
studies of globular clusters. Similar considerations apply to other systems
as well.

Line-Blanketing The mere presence of dark spectral lines in any photo-
metric band obviously reduces the energy emitted in that band. This direct
effect of line-blocking is described by the blocking coefficient

J‘A+A1F1di

A—AA

g =1— [ (3-36)

2-az F2d2

where F, denotes the observed flux at wavelength A, F§ is the continuum
flux near 4, and A is a prechosen wavelength interval (typically 25 A to
50 A). Blocking coefficients have been measured by direct planimetry of
tracings of high-dispersion spectra for a variety of stars (M14), (W7); some
typical results are shown in Figure 3-9. The basic points to be noticed in the
figure are that (1) the blocking coefficient increases rapidly from the visual
toward the blue and ultraviolet (indeed, so strongly that, in the ultraviolet,
it is difficult to find unblocked windows within which to set the continuum
level) and (2) the later the spectral type of a star, the larger is the amount of
line-blocking. Notice particularly in Figure 3-9b how much weaker the
blocking is in the subdwarf HD 19445 than it is in the Sun. Trustworthy
blocking coefficients for very late-type stars are almost impossible to deter-
mine empirically, because the lines simply swamp the continuum and there
is no way to set the continuum-flux level reliably in much of the visible
spectrum.

From the variation of ¢, with wavelength, it is clear that, if we start with
a star having zero metal abundance and therefore no spectrum lines (other
than hydrogen lines) and gradually increase the metal abundance up to the
Hyades value, the star should become fainter in (B — V) and fainter yet in
(U — B). But these line-blocking effects produce only part of the total
blanketing effect. An additional effect of increasing the metal abundance
while holding a star’s effective temperature constant is backwarming of the
atmosphere. If we demand that the same total energy flux (which is fixed by
thermonuclear processes in the star’s interior) must ultimately escape from
the star (that is, that T, remains constant), then the energy blocked in the
lines must be redistributed in wavelength and escape from continuum win-
dows between the lines. This redistribution raises the continuum level above
the value it would have had in the absence of lines, and it simulates the effect
of a higher effective temperature of the star. The net photometric changes
produced by adding lines are determined by a competition between these
two effects, blocking tending to increase each observed magnitude and
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Figure 3-9. Observed line-blocking coefficients for (a) an early-type dwarf (o Lyr),
the Sun, and a late-type giant (= Boo); and (b) the Sun and an extreme subdwarf,
HD 19445. Ordinate: ¢, as defined in equation (3-36); abscissa: wavelength in
Angstroms. [Adapted from (M14) and (W7) by permission. The latter is © 1962 by
the University of Chicago.]

backwarming tending to decrease it. In practice, blocking dominates over
backwarming in the U band, exceeds it slightly in the B band, and is less
important in the V band; in the end, adding lines increases (U — B) and
(B — V) and decreases V.

The final result in the two-color diagram is that the star moves along a
blanketing vector, such as that shown in Figure 3-10. We see in the figure
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that a metal-poor star that has an ultraviolet excess 6(U — B) relative to
Hyades stars having the same (B — V) will differ from Hyades stars of the
same effective temperature by amounts A(B — V)and A(U — B)in(B — V)
and (U — B),respectively. If we can determine the slope of blanketing vectors
as a function of (B — V)yyaqes, then we can clearly determine the blanketing
corrections A(B — V) and A(U — B) for any star of known 6(U — B) and
(B — V). If, in addition, we can calculate AV, we are then in a position to
correct the observed colors and brightnesses of stars for differential blan-
keting effects and thus map cluster CM diagrams onto one another, reduced

I I T 1 1
Blanketing
vector
Subdwarf
-02 =
3(U~-B)
T
S /_\ A(U-B)
+0.2 - -
A(B-V)
Hyades sequence
| | | 1 |
0.4 0.6 0.8

(B-V)

Figure 3-10. Blanketing vector in two-color diagram
for a metal-deficient subdwarf. The subdwarf has an
ultraviolet excess (U -— B) compared to a Hyades
star (which has near-solar metal abundance) of the
same (B — V). A Hyades star of the same effective
temperature has colors that differ by amounts A(B — V)
and A(U — B) from those of the subdwarf. The

effect of adding metal lines to the subdwarf’s atmo-
sphere while holding T constant is to move the ob-
served colors along the blanketing vector as defined
in (S3) and (W7). '

to a common abundance.
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Empirical blanketing vectors have been derived by Wildey et al. (W7).
Blocking effects were calculated directly as

jf F,S,d)
Ambk — 25 log Tz (3'37)
f FAl — &)S,d

A

where S, is the photometer response on the interval (1,, 4,). To compute the
backwarming effect, the integrated blocking coefficient

_ foooelFldl

p=2 """ (3-38)
fo F,dA

is used to evaluate Ty, the (larger) effective temperature of an atmosphere
that has the same continuum level as does the backwarmed line-blanketed
atmosphere, whose actual effective temperature is T,, from the relation

(1 — n)oT* = T4 = fo"" F,d) (3-39)
The magnitude change produced by the backwarming effect is then

[ FyTy)8,00

A, = 25 log| <" """
[ FuT)s,d2

(3-40)

To actually evaluate this expression, one must use fluxes from model atmo-
spheres at the appropriate effective temperatures.

Applying equations (3-37) and (3-40), one can compute the net changes in
AU, AB, and AV produced by the combined effects of blocking and back-
warming. These results can then be used to construct tables (W7) or graphs
(B7,365) giving A(B — V) = f[6(U — B), (B — V)gs, and similar relations
for A(CU — B)and AV. By custom, 6(U — B) is taken as increasingly positive
for more metal-deficient stars; to map such stars onto the Hyades sequence,
one will have A(U — B) > 0, A(B — V) > 0, and AV < 0. For example,
the Hyades are slightly metal rich compared to the Sun, and one finds
A(U — B)g = 0.07, A(B — V) = 0.055, A(U — B)g ~ 0.13, and AV, =~
—0.026.

Thanks to recent advances in model-atmosphere calculations, blanketing
vectors can now also be determined theoretically [see (B5), (G8), (N3),
(P6, 271), and (P6, 319)]. An example of such work is shown in Figure 3-11.
Similar calculations can also be made for other photometric systems, such
as the Stromgren uvby system. It is worth noting that theoretical model
atmosphere analyses of subdwarf spectra are actually easier than for ordinary
stars because the subdwarfs’ line spectrum is so weak, and accurate effective
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Figure 3-11. Theoretical (U — B) and (B — V') colors for model
atmospheres having log g = 4 and effective temperatures between
5500 K and 10,000 K. Solid dots: normal solar metal abundance. Plus
signs: 0.1 times solar metal-abundance. x’s: 0.01 times solar metal
abundance. Dashed lines show the resulting theoretical blanketing
vectors. [From (P6, 271).]

temperatures can be obtained for these stars by fitting their observed absolute
energy distributions to theoretical fluxes, as was first done by Melbourne
(M11). Certain photometric indices, for example, (G—17) in the six-color
system, are almost unaffected by blanketing effects in F-K stars because the
blocking and backwarming effects almost exactly cancel (C12), (D2). For
nearly solar-type stars, such indices can thus be used to make fairly reliable
estimates of T for stars of all metallicities.

Photometric Metal-Content Indicators By combining photometric data for
subdwarfs with spectroscopically determined metal abundances, one can
calibrate a photometric index, say, the ultraviolet excess 6(U — B), in terms
of a star’s metal abundance. This index can then be used to estimate metal
abundances in other stars, a procedure that is highly advantageous because
(1) many stars of interest that are too faint for high-dispersion spectroscopy
(the practical limit is m =~ 12) can be measured with UBV photometry
(practical limit m =~ 20), and (2) several days of laborious measurement and
analysis are required to produce a spectroscopic abundance estimate even
when spectra are available, whereas a photometric determination requires
only a small fraction of this effort.
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Figure 3-12. Correlation of the ultraviolet excess

0(U — B), measured with respect to the Hyades sequence,
with logarithmic metal abundance [Fe/H] relative to the
Sun.

Metal abundances are usually expressed in terms of the stellar iron-to-
hydrogen ratio compared to that of the Sun via the parameter

[Fe/H] = log[n(Fe)/n(H)], — log[n(Fe)/n(H)]o (3-41)

The correlation of §(U — B) with [Fe/H] has been established by several
investigations [see (B9), (E3), (H10), (P1), (P9), (W1),(W2)], and a representa-
tive curve is shown in Figure 3-12; it should be recalled that (U — B) is
measured with respect to the Hyades, which has [Fe/H|yya4.s & +0.025.
For modest values of (U — B), the relation

[Fe/H] - [Fe/H]Hyades ~ _55(U - B) (3'42)
can be used for (U — B) both greater than or less than zero (the latter
applying to metal-rich stars).

Similarly, in the Stroémgren system (see §2-6), if Am, is the difference
between the m; index of a star and that of a Hyades star of the same (b — y),
then one finds (GS8), (N3)

[Fe/H] — [Fe/H]uyuaes & — 14Amy, [02 < (b — y) <03] (3-43a)
and

[Fe/H] — [Fe/Hluyaes & —125Am;,  [03 < (b — y) < 04] (3-43b)

Calibrations also exist for other photometric systems [ see, for example, (P6)].
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Globular Clusters

Physical Characteristics Globular clusters are very rich, roughly spherically
symmetric star clusters found at positions ranging from near the galactic
center to remote regions in the halo. These systems typically contain hun-
dreds of thousands of stars within a volume having a typical radius of about
20 to 50 pe. They have high star densities at their centers (10% to >10* stars/
pc?) and are dynamically very stable and long lived. In fact, as we shall see
in Chapter 5, in many ways they may be regarded as a type of extremely low-
mass elliptical galaxy. In particular, their radial surface-brightness profiles
are so similar to those of many elliptical galaxies that the same family of
dynamical models has been widely used to describe both types of system.
[We shall discuss these models, the King models (K1), in some detail in
Chapters 5 and 14.] The radial star-density profiles of globular clusters show
differing degrees of central concentration, which led H. Shapley and H. B.
Sawyer (S17) to classify clusters into concentration classes, designated with
Roman numerals I, . . ., XII. In this classification, class I clusters show the
highest degree of concentration, and class XII clusters the lowest. The
categories were defined such that clusters are found with nearly equal fre-
quency in all twelve classes. Quantitative measurements of surface brightness
and star density in globular clusters are compiled in (I8), (K2), and (P4).

The observed departures of globular clusters from circular symmetry are
normally quite small, most systems having axial ratios in the range 0.9:1 to
1:1, although a few clusters show appreciable elongation (down to 0.6:1) in
their outer regions.

Globular clusters are very luminous systems. This fact partly accounts
for their usefulness in galactic-structure research, because it implies that they
can be seen at large distances (S16). As we shall see in Chapter 5, globular
clusters are also important because observations of these relatively nearby
systems can help us understand our necessarily less-detailed observations of
elliptical galaxies. The total apparent magnitude of a cluster follows from
surface-brightness measurements (extrapolated to infinity, if necessary, by
the use of a theoretical model; see Chapter 5 for details). If we can estimate
the interstellar absorption and the cluster distance modulus (see §4-4), then,
from the integrated apparent magnitude, we can derive an integrated absolute
magnitude (My),. Typically, one finds —5 > (M), & — 10.The distribution
of globular-cluster absolute magnitudes shows a peak at (My), & —38.5,
with a half-width of about +1 mag [see (B7, 424) and (O3)]. The mass-to-
luminosity ratio (in solar units) of globular-cluster stars is known to be of
order unity (I7). Hence we find that a typical cluster mass is of the order
of2 x 1054 .

Integrated (B — V) and (U — B) colors for globular clusters can be mea-
sured by the same techniques used to measure integrated magnitudes. After
correction for reddening, intrinsic (B — V), colors are typically found to
lie on the range 04 < (B — V), < 0.8, with a well-defined peak near
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(B — V)o = 0.57. These colors show immediately that, unlike the case for
galactic clusters, the observed light from globular clusters is dominated by
contributions from stars somewhat cooler than the Sun. The interpretation
of the integrated colors is somewhat ambiguous. For example, a bluer color
might indicate the presence of some relatively hot stars, or it might be
produced by a deficiency of metals in the cluster stars.

The integrated spectral types of globular clusters cover a wide range from
about F2 to G5 (M8), (M17), (K3), (K6). Characteristically, halo clusters have
early-type spectra and show strong similarities to subdwarf spectra, which
indicates a large metal deficiency in the cluster stars. Clusters with later-type
spectra are typically found near the galactic center, and their spectra are
compatible with nearly normal metal abundances. These conclusions are
supported by examinations of the line strengths in the spectra of individual
luminous giants in the clusters (B4), (D3). Thus cluster spectra provide key
information about the chemical compositions of the clusters themselves and
about the distribution of chemical elements within our Galaxy (a point to
which we shall return in §4-4).

As Morgan has stressed, the interpretation of composite spectra is difficult
even under favorable circumstances, and it can often be quite ambiguous
[see (M18) for an illuminating discussion]. To focus clearly on metallic-line
intensity, Morgan developed a classification scheme having eight metallic-
line groups, denoted by Roman numerals I, . .., VIII (the Morgan class of
the cluster). Class I clusters are extremely weak lined and very metal poor,
and class VIII clusters are the strongest lined and have essentially normal
(solar) metal content.

Metal abundances for globular cluster stars can be estimated quantita-
tively by several methods. Abundances in the atmospheres of individual
cluster giants (the brightest cluster stars) can be obtained from curve-
of-growth analyses of their spectra or from photometric indices, such as
0(U — B), or indices in the DDO system (H7), (H8), (H16) and other specially
devised systems (C2), when the latter have been calibrated using field stars
of similar spectral type whose abundances have been determined spectro-
scopically. In clusters that are close enough for UBV photometry to reach
the main sequence, the observed 6(U — B) of cluster main-sequence stars
can be used to infer a metal abundance via the calibration of [Fe/H] versus
0(U — B) for field subdwarfs. Finally, a cluster metallicity can be inferred
from the AS parameter (see §3-8) of RR Lyrae stars in the cluster (B13). In
those cases where several different methods can be applied, the agreement
among the results is usually good, which encourages confidence in their re-
liability. Metal abundances in globular clusters cover the entire range from
—22 < [Fe/H] < 0.0, that is, from being extremely metal deficient to
having essentially solar abundances. Some representative results are given
in Table 3-8 (note that the values for NGC 5139, NGC 6356, and NGC 6553
are based only on secondary indicators and are quite rough). From the data
in the table, it is easy to see that [Fe/H] correlates closely with a cluster’s
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Morgan class and integrated spectral type, and moderately well with
(B = V)o.

Once fairly reliable metal abundances are known for several clusters, they
can be used to calibrate secondary abundance indicators, such as the form
and character of particular features in the CM diagram (see next subsection)
or some suitably chosen integrated photometric index. Integrated indices
are advantageous for statistical studies because they apply to the cluster as
a whole, which is a hundred times brighter than the brightest individual
stars. Whereas the indices (B — V') or (U — B) themselves are difficult to
use in this connection because they are affected by interstellar reddening, the
parameter Q [defined in equation (3-70)] is essentially reddening free and
correlates closely with both a cluster’s spectral type and its Morgan class
(V2). Hence it provides an effective photometric metallicity indicator.

Very useful collections of data—including distances, positions, luminosi-
ties, spectrophotometric properties, and CM diagram characteristics—are
given in (A2) and (P5) for more than 100 globular clusters.

Color-Magnitude Diagrams Since the pioneering work of Shapley (S15) in
1917, it has been known that the globular clusters have a very distinctive
stellar content and that their CM diagrams contrast sharply with those of
galactic clusters (except very old galactic clusters, such as M67 and NGC 188,
whose CM diagrams show some similarities to those of the globular clusters).
An observed CM diagram for M92 is shown in Figure 3-13, with principal
sequences and other important features indicated schematically. This CM
diagram, which is typical, shows the following characteristic features.

1. The upper end of the main sequence terminates at a late spectral
type, and normally luminous blue stars (except a few “blue strag-
glers”; see below) are absent. As we shall see in §3-7, this immedi-
ately implies that all globular clusters are old.

2. A subgiant branch joins continuously onto the main sequence at
the turnoff point; there is no Hertzsprung gap.

3. A red-giant branch (or first, or ascending, giant branch) extends up-
ward and to the right. The brightest stars in globular clusters are
always red giants with absolute magnitudes about M,, * —2 to —3
(much fainter than the extremely luminous blue stars and super-
giants found in young galactic clusters).

4. A horizontal branch (HB) near M,, = +0.5, which may contain a
few hot blue stars (as is the case for M92), extends redward until it
rises in the asymptotic giant branch lying above the first giant
branch.

5. Within the horizontal branch there is an instability strip containing
RR Lyrae variables.

6. A few blue stragglers are occasionally found lying along an exten-
sion of the main sequence above its turnoff point.
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Figure 3-13. Observed color-magnitude diagram for the
metal-poor globular cluster M92, with principal sequences
and other important features indicated schematically.
[Adapted from (C4, Chapter 2).]

Not every cluster CM diagram shows all of these features, and, as we shall
see, there is considerable variation in the detailed morphology from cluster
to cluster.

In the two-color diagram, globular-cluster stars (whether giants, HB stars,
or main-sequence stars) show a clear ultraviolet excess; detailed data for
four clusters are given by Sandage (S2). From an analysis of the two-color
diagram, one can deduce both the amount of line-blanketing and interstellar
reddening. As expected, the average ultraviolet excess (6(U — B)) corre-
lates well with metal abundance: for example, <6(U — B)>mo> = 0.24 and
o(U — B)pmz = 0.17.

In principle, the most fundamental method for determining globular-
cluster distance moduli, and hence the absolute magnitude calibration of
cluster stars, is based on main-sequence fitting. Because globular clusters lie
at large distances, their main-sequence stars are found only at extremely
faint apparent magnitudes (see Figure 3-13). The observational problems of
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obtaining reliable magnitudes and colors for these stars are severe, and they
can be overcome only for nearby clusters by concentrated effort using the
largest telescopes—a situation that should improve when observations can
be made with the Space Telescope. The fitting procedure is complicated by
the wide spread in globular-cluster metal abundances, and careful allowance
must be made for the effects of line-blanketing on the measured color and
of the metal abundance on the absolute magnitudes of main-sequence stars
(see §3-7).

A procedure that avoids the direct use of blanketing corrections and is
independent of the position of the Hyades main sequence (and hence of the
Hyades distance modulus) was developed by Sandage (S2). This approach
has been applied to the metal-poor and intermediate clusters M3, M13, M15,
and M92 (S2) and the metal-rich clusters 47 Tuc and NGC 6838 (H6), (H9).
Results for M92, M3, and 47 Tuc and the old, metal-rich galactic clusters
M67 and NGC 188 are shown in Figure 3-14. These studies provide the
most fundamental estimates of cluster-star absolute magnitudes available at
the present time. In particular, they provide important (though conflicting;
see §3-8) information about the absolute magnitudes of the RR Lyrae stars.
Notice in Figure 3-14 the clear effect of metal abundance on the observed
positions of cluster main sequences. The main sequences of M67 and NGC
188 have been fitted to the main sequence for nearby field disk stars with
reliable trigonometric parallaxes, and they agree with one another because
both clusters have essentially normal metal abundances. As a cluster’s metal
content decreases, its observed main sequence lies farther to the blue and
farther below the disk-star sequence, as is illustrated nicely by the progres-
sion from 47 Tuc through M3 to M92.

Unfortunately, the main-sequence fitting procedure just described is vul-
nerable to significant observational errors. Sandage (S2) showed that ab-
solute magnitudes of globular-cluster stars as obtained from main-sequence
fitting are uncertain by at least +0.5 mag. These uncertainties necessarily
introduce very significant uncertainties into the evolutionary analyses of
globular-cluster CM diagrams.

Globular-cluster CM diagrams vary considerably from cluster to cluster
[see the extensive data in (A2), (P5), and the catalogs listed in Table 2-6].
Their morphology depends systematically on metal abundance and at least
one other variable. Sandage and Wallerstein (S8) first demonstrated that
the quantity AV[(B — V) = 1.4], which is the height of the giant branch at
(B — V) = 1.4 over the horizontal branch, correlates very closely with de-
creasing metal abundance. This behavior is consistent with the results of
stellar evolution theory. For example, AV for such metal-poor clusters as
M92 is about 3 mag, whereas for such intermediate clusters as M3 and M5,
AV is about 2.6 mag, and, for such metal-rich clusters as 47 Tuc MT71,
NGC 6352, and NGC 6553, it is 2 mag or less [see Figure 3-14, Table 3-8,
and (S8), (A11), (H4), (H5)]. These results imply that AV can be used as a
convenient (but secondary) metallicity indicator and that older methods of
distance determination, based on an assumed unique luminosity for stars



127

M3
— eeoeee 47 Tuc —
coooo M67
+6 aaaaa NGC188
1 | | |
-02 0.0 0.2 1.2 1.4 1.6

Figure 3-14. Observed color-magnitude diagrams for the globular
clusters M92, M3, and 47 Tuc, and the old galactic clusters M67
and NGC 188. Absolute magnitudes have been set using the
main-sequence fitting procedure of Sandage (S2). [Data from (H6),
(S2), and (S4).]

on the tip of the giant branch of a cluster, are invalid unless they are calibrated
for the effects of differences in cluster metal abundances. An alternative to
AV is the slope parameter S, which is defined (H3) to be the slope of the line
joining the intersection of the extension of the horizontal branch with the
subgiant branch and a point on the giant branch 2.5 mag above the HB.
This parameter is reddening-independent and independent of the color of
the giant branch.

Initially, it appeared (S8) that horizontal-branch morphology also corre-
lated closely with cluster metal abundance in the sense that metal-poor
clusters (for example, M92) have most of their HB stars on the blue side of
the RR Lyrae instability strip, intermediate clusters (for example, M3) have
nearly equal numbers on both sides, and metal-rich clusters (for example,
47 Tuc) have most or all HB stars on the red side of the gap. These charac-
teristics are denoted “B,” “E,” and “R” respectively in Table 3-8. Metal-rich
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clusters with short, stubby, red-only horizontal branches often do not contain
any RR Lyrae stars at all.

It was soon recognized, however, that there are clear violations of these
results and that HB morphology does not correlate uniquely with metallicity.
Hence at least one other parameter determines the distribution of stars in
globular-cluster CM diagrams (B1), (S9), (S14), (V2), (V3). The physical pa-
rameters that actually produce the observed variations in HB morphology
are as yet unidentified. Some authors have suggested that the “second
parameter” is the cluster helium abundance, and a two-dimensional (Y,Z)
classification scheme for clusters was even proposed (H3), but this hypothesis
no longer seems tenable. Another possibility is that different clusters have
significantly different ages (S14). Recent work [for example, (H15), (H16)]
has also shown that there are large variations in the CNO abundances of the
cluster red giants, not only from cluster to cluster, but even from star to star
within a cluster! These abundances affect both the position of the giant
branch and the position of stars on the HB. Thus the situation may actually
be very complex, and the pronounced variations that we observe in the
morphology of cluster CM diagrams may be the result of differences in
several chemical-composition parameters and in the detailed structural and
evolutionary histories of individual cluster stars (see §3-10).

3-7. STELLAR STRUCTURE AND EVOLUTION

In this section, we shall outline some of the major results obtained from the
theory of stellar structure and evolution. We shall apply these results in §3-9
and §3-10 to interpret the evolutionary status of stars in clusters and thereby
to develop some preliminary ideas about the evolution of our Galaxy as a
whole. As it is our intent only to use the results as interpretive tools, we
shall merely state them without detailed justification. There are several good
monographs (A5, Chapter 11), (C5), (C9), (C15), (T1) and review articles (I3),
(I4) where principles, methods, and detailed results are given.

Implications of the H-R Diagram and the Mass-Luminosity Relation
for Stellar Structure and Evolution

The mere existence of such well-defined correlations among stellar properties
as the mass-luminosity relation, and the fact that stars are found to lie along
definite sequences in the H-R diagram, imply that the laws governing stellar
structure must lead to highly systematic results. Furthermore, the fact that
we can find stars of a given mass with strikingly different physical struc-
tures—for example, on the main sequence and among the supergiants or,
again, on the main sequence and among the white dwarfs—suggests that
any specific star must pass through a series of rather different structural
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configurations as it ages or evolves. Finally, it is clear that we find concen-
trations in the H-R diagram simply because those are phases in which stars
spend a relatively large fraction of their lifetime and hence in which they
have a high statistical probability of being found. In particular, it is clear
that the main sequence is a major phase of stellar evolution.

The goal of the theory of stellar evolution is to explain these empirical
facts. A basic theoretical picture of stellar evolution can be developed by
assuming that stars are spherically symmetric and by writing a set of four
nonlinear partial differential equations that describe the structure of a star
as a function of radius from the star’s center and as a function of time. One
can then show (as was done by Russell, Vogt, Eddington, and others) that
the structure of a nonevolving star is determined by its mass and its chemical
composition. More generally, a star’s structure is determined by its mass,
its composition as a function of radius, and its age.

One of the key factors affecting the course of stellar evolution is the nature
of the energy-production mechanism. Early in this century, it was believed
that the energy radiated by a star was produced by the conversion of gravi-
tational energy into thermal energy by a (relatively) slow contraction of a
star. But, when it was discovered that, on the basis of geophysical evidence,
the age of the earth is about 5 x 10° years and that therefore the Sun must
be at least this old, it was realized that the time interval over which a gravi-
tational energy-release mechanism could sustain the Sun’s luminosity is two
orders of magnitude too short to match the geophysical scale. The problem
was solved when it was recognized that the required energies could be pro-
vided by thermonuclear fusion of light elements into heavier elements at the
centers of stars. In particular, the main sequence can be identified with the
episode of conversion of hydrogen (cosmically the most abundant element)
into helium.

When the equations of stellar structure are solved, zero-age, chemically
homogeneous stars of different masses are found to be arranged along the
main sequence as observed; by changing the assumed chemical composition
of the material, families of theoretical main sequences can be generated.
While a star is on the main sequence, its luminosity is supported by the slow
conversion of hydrogen into helium. As the hydrogen is progressively de-
pleted, the star undergoes structural evolution. When an appreciable fraction
of the original hydrogen in a star’s core has been consumed, the star moves
away from the main sequence in the first phase of a series of structural
changes, which are driven by the changes in its chemical composition that
are produced by successive episodes of thermonuclear burning. The struc-
tural changes in stars as they evolve are manifested in the H-R diagram.
Hence, by analysis of H-R diagrams, we should be able to infer significant
information about stellar evolution. But, if we examine the H-R diagram
for a random sample—say, all stars within a given distance down to some
limit of apparent brightness (see Figure 3-5)—it will include stars of all ages
that are, in general, at markedly different stages in their evolution, all mixed



3-7.  Stellar Structure and Evolution 131

together in hopeless confusion. The key advantages of cluster H-R diagrams
for the development of an understanding of stellar evolution was recognized
by Trumpler (T3), (T4), who, as early as 1925, stressed that the stars in a
cluster were most likely all formed from the same interstellar material at about
the same time. Hence clusters provide “snapshots” of the relative evolutionary
behavior in the H-R diagrams of stars of different masses but equal age. We
shall exploit this fact to good advantage in §3-9.

Evolution of Disk-Component Stars

Let us first consider the evolution of the common, metal-rich stars in the
galactic disk, which range from objects forming now in extremely young
clusters and associations in the spiral arms to very old stars, such as those
in the old disk-cluster NGC 188.

Star Formation and Pre-Main-Sequence Evolution Although our Galaxy it-
self is of the order of 10!° years old, in some clusters and associations we
find stars (for example, O stars) that cannot be much more than 10° years old.
As mentioned before, this fact leads us to conclude that star formation con-
tinues to the present time. Clusters of young stars are invariably associated
with dense nebulae and interstellar dust clouds in the galactic plane, and,
as observations of external galaxies show, they are also associated with
spiral arms, which are the sites of prominent nebulae and dust lanes. We
therefore conclude that stars are formed by condensation from interstellar
material.

The condensation process leading to star formation is activated by gravi-
tational forces, by means of which a local density enhancement in the
material tends to attract yet more material and hence grow in size, and it is
resisted by disturbing forces, such as the shear produced by the differential
rotation of material in the disk around the galactic center, thermal pressure
in the gas, magnetic forces, internal turbulence in the clouds, and centrifugal
forces produced by rotation of the collapsing material. In general terms,
gravitational forces will dominate and overcome each resisting force if the
density of the material rises above some critical level.

For the self-gravitation of the gas to exceed tidal-shear forces, the density
must exceed a critical value that depends on the kinematic constants de-
scribing galactic rotation (the Oort constants; see §8-2). In the solar neigh-
borhood, the critical density is about 2 to 3 atoms/cm?® (G4), which is larger
than the observed gas density, but only by a small factor. The wavelength of
the most unstable collapse-mode is of the order of 1 kpc; the amount of gas
in a region of this size is of the order of a million solar masses. This mass is
comparable to the observed masses of large interstellar clouds. The required
initial density enhancement over ambient values could be produced by a
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very modest compression of the gas, perhaps as it passes through a spiral
density wave (see §9-1).

As a cloud complex contracts, it fragments into smaller pieces. The basic
instability next encountered is governed by the Jeans criterion (see Chapter
15), which shows that gravity forces will overpower internal pressure if the
cloud’s mass exceeds a critical value that depends on its temperature and
density. For typical conditions in the interstellar medium, the critical mass
is of the order of a few thousand solar masses, roughly comparable to the
total mass of stars and interstellar material in young clusters and associations.
As the material in such a unit contracts further and its density rises, smaller
and smaller masses become unstable, reaching the range of reasonable stellar
masses at densities comparable to those actually observed in the interstellar
molecular clouds and the dark globules seen in some nebulae (see §9-3). These
are, in fact, sites of star formation.

Once the material has fragmented to individual star-sized masses, proto-
stars—initially having very large radii and low temperatures—evolve into
stars. A crucial element of the theory was discovered by C. Hayashi, who
showed that, for a star of a given mass and chemical composition, at each
luminosity there exists a maximum radius (and hence minimum effective
temperature) at which the star becomes wholly convective. The nearly ver-
tical locus of this curve in the H-R diagram defines the Hayashi limit for a
star of that mass (see Figure 3-15). To the right of this curve is a region in
which a star (unless it is of very low luminosity and nearly wholly degenerate)
must evolve dynamically on a very short time-scale; that is, it must collapse.
The lower the stellar mass, the farther to the right the Hayashi track lies in
the H-R diagram.

Suppose that we start with a nonluminous protostar essentially in free fall.
As the protostar collapses, gravitational energy is released and must be
radiated away. However, because the material is initially quite transparent,
radiative energy loss is efficient, the luminosity rises rapidly, and the tem-
perature remains quite low (10 K to 20 K). Eventually the material becomes
opaque in a dense core; this opacity traps the radiation and allows the core
to heat. As the core heats, pressure builds and arrests the collapse. The core
continues to heat until its temperature rises to about 2000 K, at which point
molecular hydrogen dissociates into atomic hydrogen. This dissociation
provides an energy sink and triggers another free-fall collapse of the core,
which continues to heat until the hydrogen not only dissociates but ionizes.
At the onset of ionization, pressure balance can again be achieved, and core
collapse halts. During these phases, both the luminosity and the temperature
of the star continue to rise until, as shown schematically in Figure 3-15, the
star finally penetrates to the left of its Hayashi-limit locus and emerges in
the upper right-hand part of the H-R diagram.

Once a star has moved to the left of its Hayashi limit, it can achieve a
state of hydrostatic equilibrium, and it then evolves on a much slower time-
scale—essentially the Kelvin-Helmholtz time-scale—somewhat prolonged by
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Figure 3-15. Schematic evolution track for pre-main-
sequence stellar evolution. On the Hayashi track
(labeled C) the star is convective throughout. On the
portion of the track labeled R, the core is radiative
(and, if the star is massive enough, the envelope can be

radiative as well). Nuclear energy generation occurs
when the star alights on the main sequence.

nuclear burning of such light isotopes as deuterium and lithium. From the
point of maximum luminosity where it first penetrates out of the forbidden
region, a star evolves downward in the H-R diagram along its Hayashi track.
Initially, the star is convective throughout, but, in due course, it develops a
radiative core, which grows in size. Eventually, the evolution track turns
sharply to the left, as shown in Figure 3-16. Subsequent evolution occurs
with the star contracting at nearly constant luminosity and ever-increasing
effective temperature. Ultimately, the temperature in the core rises to the
point where thermonuclear fusion of hydrogen into helium becomes possible,
and the star settles onto the main sequence. As can be seen in Figure 3-16,
the pre-main-sequence evolution of a star proceeds very rapidly.

From the point of view of the large-scale structure and evolution of our
Galaxy, we are interested in overall rates of star formation per unit volume
per unit time. This rate is usually described by the total birthrate function
B(¢) (see also §4-2). The birthrate function is only poorly known because the
physical situation is so complex. We do know that star formation occurs in
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Figure 3-16. Calculated pre-main-sequence evolution tracks for
stars with 0.5 /4 o < .# < 100 . . Dashed horizontal lines
indicate the point where the star ceases to be convective through-
out. Stellar ages in years are shown at two or three points along
the track. The tracks terminate when the stars reach the ZAMS.
[From (E11). Reproduced by permission of the National Research
Council of Canada from the Canadian Journal of Physics, 45, 1967,
pp. 3429-3460.]
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regions where the interstellar gas is compressed beyond its critical gravi-
tational-collapse threshold. We also see star formation occurring in the spiral
arms of some galaxies, which may indicate that it is a result of compression
in a spiral density wave (which may contain shocks). Indeed, once some stars
have formed in a region, they produce expanding H II regions that compress
the surrounding gas and thus may trigger yet more star formation (that is,
star formation is “contagious”). A commonly used approximation is the
assumption that the total birthrate of stars is proportional to some power
of the gas density; that is, f(t) = k(t)p*. We expect that « > 1, so that star
formation will be most rapid in regions of higher gas densities. Analyses of
the distribution of stars in the solar neighborhood yield an empirical value
of o = 2 (S10), (B2, 165). Further broad discussion of problems of star
formation and its significance for galactic evolution can be found in (R1).

The Main Sequence and Early Post-Main-Sequence Evolution When ther-
monuclear conversion of hydrogen into helium at the center of a star begins,
the star enters its main-sequence hydrogen-burning phase, the longest stage
of its existence (until it ends as one or another kind of degenerate object).
The locus of points in the theoretical H-R diagram, where hydrogen burning
first occurs (see Figure 3-16), defines the zero age main sequence (ZAMS).
Initially, all main-sequence stars are chemically homogeneous, with com-
position parameters (X, Y, Z) as defined in §3-4. All have internal structures
that are fixed by the mass of the star. Stars are gaseous throughout because
high internal temperatures (107 K) guarantee that the matter is essentially
completely ionized and behaves like a perfect gas, despite enormous central
pressures. Theory shows that, with increasing mass, the central temperature
T, rises, whereas the central pressure p, and density p, decrease. These trends
imply that high-mass and low-mass stars have substantially different physical
structures, and it is convenient to divide the main sequence into upper main-
sequence (M 2 1.5/ 3) and lower main-sequence (M < 1.5.4 o) domains.

A typical upper main-sequence star has a high-enough central temperature
to permit the carbon-nitrogen cycle (CN cycle) to be the dominant source
of energy production. The energy-generation rate of this mechanism rises
so rapidly with increasing temperature that energy production is strongly
concentrated in the innermost core. The energy flux rises so swiftly outward
from the center of the star that it cannot be transported efficiently enough
by radiation. Consequently, the star has a convective core, surrounded by a
radiative envelope outside the region of energy generation. The size of the
convective core (measured either as a fraction of the stellar radius or of the
stellar mass that it contains) increases with increasing mass. For reference,
a star with 4 = 10.#y has R ~ 45Ry, L = 7000Lg, T ~ 25,000 K
(B1V), T.~3 x 10K, p, ~ 3 x 10! dynescm™2, p, ~ 7gcm™3, and
(Feonv/R) = 0.2 01 [ M (Feony)/-# ] = 0.3, where the last two parameters define
the outer edge of the convective core.

A typical lower main-sequence star derives its energy predominantly from
the proton-proton cycle (p-p cycle). The temperature sensitivity of this cycle
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is much smaller than that of the CN cycle, and energy production is much
less strongly centrally concentrated in the star; the core is thus radiative.
The stellar mass at the transition point where the CN and p-p cycles contri-
bute about equally to the total energy production is about 2.4 . Some
convection in the core persists even when the CN cycle provides less than
half the energy generation, and a fully radiative core is not achieved until
M drops below about 1.1 or 1.2.#. The effective temperatures of lower
main-sequence stars are so low that hydrogen is neutral near the surface,
and, as it ionizes in deeper layers, it produces a convection zone in the
envelope outside the radiative core. For reference, a star with .4 = /¢
has Ty ~ 5900K, T.~ 1.5 x 107K, p. ~ 2 x 10*7 dynescm™2, p, &
100 g cm ™3, (Feonv/R) = 0.76, and [ M (rcony)/-#] =~ 0.99, where the last two
parameters define the inner edge of the convective envelope.

For stars of progressively lower mass, the convection zone penetrates
deeper and deeper, and, at about 0.4.# o, the whole star is convective; that
is, it is at its Hayashi limit. The theory of energy transport by superadiabatic
convection is at present primitive, and, in astrophysical work, the problem
is usually treated by the mixing-length theory. This theory is fundamentally
only a phenomenological one containing an adjustable parameter: the ratio
of the mixing length (the distance over which a typical convective eddy moves)
to the pressure scale height. Changes in the assumed mixing length produce
important changes in the computed radius of a model, but they scarcely
affect its luminosity. Thus models of stars with convective envelopes have
significant uncertainties in their effective temperatures (at least of the order
of Alog T ~ 0.03), but they give fairly reliable luminosities. These facts
must be borne in mind in fitting observed H-R diagrams to theoretical
models. The problem just mentioned becomes most severe for giants and
supergiants.

Because central temperatures drop and the central densities rise for lower-
mass stars, the material in the core becomes partially degenerate at a suffi-
ciently low mass. In the limit of complete nonrelativistic degeneracy, the
pressure depends only on the density and not on the temperature: p = Kp>/>.
This fact has the consequence of setting a lower limit .#., on the mass of a
star in which thermonuclear energy release can occur. Stars with /4 < A, =
0.08.# o can reach the main sequence in hydrostatic equilibrium without
the central temperature having risen to the point at which nuclear reactions
can occur. These stars thus never tap their nuclear energy source, but simply
cool without radiating significant amounts of energy and spend essentially
their entire existence as degenerate black dwarfs. The planet Jupiter
(M| Mo ~ 107 3) is an example of such an object. Other bodies of this type
would be extremely hard to detect observationally, and, for all we know,
our Galaxy could contain large numbers of them without our being able to
discover them by the usual approach of detecting the energy they emit. On
the other hand, it is possible, at least in principle, to sense the effects produced
by the gravitational fields of such bodies.
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Computations of chemically homogeneous models for a wide range of
masses yield both a theoretical mass-luminosity relationship and a theoretical
ZAMS. The agreement between these theoretical relations and the corre-
sponding empirical ones is quite satisfactory. The theoretical mass-luminosity
law shows that L oc .43 for M = TMo, L oc M*7° for M ~ My, and
L oc #*° for the fully convective stars on the lower main sequence
(A ~ 04M).

The position of the ZAMS in the H-R diagram depends on the chemical
composition of the models. This situation can be expressed most conveniently
in terms of the luminosity difference between two points on neighboring
ZAMSs at the same value of T, [and hence practically the same (B — V)
and B.C.—which also implies AMy, = AMy]. One finds that, for T, =
constant, Alog L ~ AX + 5AZ for L = Lg. The masses of stars on dif-
ferent ZAMSs at a given T differ from one another.

The main-sequence lifetime, 7., of a star is fixed by the length of time that
its luminosity can be supported by thermonuclear conversion of hydrogen
to helium. The fusion of four protons into one helium nucleus releases an
energy of 26.7 MeV. Thus conversion of Am grams of hydrogen releases E =
0.007 Amc? ergs. If a fraction « of the total mass of a star can be converted,
then 7, = (0.007c.#c?/L). Detailed computations show that, when about
one-tenth of the stellar mass has been converted, the star evolves rapidly
away from the main sequence. Hence, to an order of magnitude, we find

101/ M )

T R ears 3-44
TLo) ° (3-44)

More precise results are given in Table 3-9.

The conversion of hydrogen to helium in the core of a star results in a
continuous depletion of hydrogen at the star’s center. Eventually, the
hydrogen is exhausted, and an inert (that is, unproductive of energy) helium
core forms. The details of how this occurs depend strongly on the mass of
a star, but the main result, true for all stars, is that the region of energy
generation shifts to a hydrogen-burning shell surrounding a growing helium
core. The fundamental significance of this situation is that the star now must
be considered chemically inhomogeneous. It was realized by E. Opik (04)
in 1938 that such models could explain why the red giants have structures
that are so different from those of main-sequence stars [see also (H20), (G1)].
Subsequent calculations by Oke, Sandage, and Schwarzschild (02), (S5)
confirmed that, after a long period of slow evolution on the main sequence,
stars become inhomogeneous and evolve very rapidly throughthe Hertz-
sprung gap (which explains the paucity of stars there) onto the giant branch.
A satisfactory basic understanding of the observed morphology of H-R
diagrams was thereby achieved. Let us now consider briefly some of the
main results obtained from modern stellar-evolution calculations.
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Evolution of High-Mass Stars As an example of the evolutionary history
of a moderately high-mass star, we shall summarize results from computa-
tions by I Iben (I1), (I2), (I3), (I4) for a star of 5.4/ o with a composition
(X, Y, Z) = (0.71, 027, 0.02). The star’s evolution track in the H-R diagram
is shown in Figure 3-17, and the time intervals between the numbered points
on the track are listed in Table 3-9. At point number 1, the star begins its
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Figure 3-17. Post-main-sequence evolution tracks for stars with
025 Mo < M < 15 M . Ages at the labeled points are given in
Table 3-9. For /4 < 225 M, the tracks are terminated at the point
of core helium ignition. For .# > 3.4 the tracks are terminated
shortly before helium-core exhaustion. [Reproduced with permission
from the Annual Review of Astronomy and Astrophysics, Volume 5.

Copyright © 1967 by Annual Reviews, Inc.]
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life on the main sequence, burning hydrogen in a convective core that contains
about 20%; of the stellar mass. Within this core, the material is well mixed,
and thus depletion of hydrogen occurs throughout the entire convective core.
Between points 1 and 2, hydrogen burning continues, and the star evolves
upward and to the right in the H-R diagram; its luminosity rises by about
607;. During this time, the convective core contracts, shrinking until at
point 2 it contains only about 8% of the star’s mass. The contracting core
leaves behind regions in which some helium enrichment has occurred but
which are now outside the region of mixing, thus creating a zone with a
chemical-composition gradient.

The processes of core contraction (both in physical size and mass fraction)
and heating gradually accelerate until finally, at point number 2, where the
core hydrogen content has dropped to 0.05, the whole star contracts and
moves rapidly to the left in the H-R diagram to point 3, where hydrogen is
exhausted in the core. An appreciable part of the luminosity between points
2 and 3 is provided by conversion of gravitational potential energy into
heat in the envelope. When core exhaustion occurs, energy production
shifts to a thick hydrogen-burning shell that was established just outside
the convective core shortly before core exhaustion. Once energy generation
in the core ceases, it becomes isothermal. The hydrogen-burning shell moves
outward in mass fraction, adding more mass to the helium core. The star
resumes its evolution upward and to the right until it arrives at point 4,
where the isothermal core reaches the Schonberg-Chandrasekhar limit (S11),
where it contains roughly 109 of the star’s mass. At this limiting core mass
(which applies to all stars with nondegenerate cores), pressure balance in the
core can no longer be maintained, and the care undergoes a very rapid
contraction.

Beyond this point, while the core is contracting rapidly, the shell achieves
higher temperatures and densities, and the rate of nuclear energy generation
rises almost explosively. At the same time, the shell becomes narrower,
leading to a drop in the total rate of energy production, and the envelope
expands, and in doing so consumes energy in order to drive the expansion.
As a result, the stellar luminosity drops by almost a factor of two. The star
thus evolves very rapidly to the right and somewhat downward in the H-R
diagram. At about point number 5, the envelope becomes convective, and
the convection zone extends rapidly downward, until, at its maximum
extension, it contains more than 50%; of the mass of the star. As the envelope
convection zone deepens, it sweeps past zones in which nuclear burning has
occurred, and it produces a depletion of some elements (for example, Li) in
the envelope and an enrichment of others (for example, He?). As the stellar
envelope continues to cool, it reaches a critical temperature where further
cooling leads to a decrease in the opacity of the envelope material, and
energy from the interior escapes more efficiently, thus producing a rise in
luminosity. At the same time, increasing hydrogen-burning shell tempera-
tures offset shell narrowing, and the total rate of energy production rises.
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The star then evolves very rapidly upward along the red-giant branch, nearly
parallel to its Hayashi track.

Evolution up the giant branch terminates at point number 6, where the
core temperature becomes high enough to ignite the triple-alpha process, in
which three nuclei of He* are fused to form one C'? nucleus. The star now
has a convective helium-burning core surrounded by an inert helium shell
contained within a hydrogen-burning shell inside the inert hydrogen-rich
envelope. The energy released in the core causes an expansion of the inner
regions of the star, which leads to a drop in the temperature of the hydrogen-
burning shell and thus to a temporary drop in the luminosity. Evolution
continues at a moderate pace, and the star contracts slightly until it reaches
point number 7, where the convection zone in the envelope rapidly retreats
and vanishes. There is then a major structural readjustment of the envelope
in a period of rapid contraction. This contraction breaks the era of core
helium burning into two major episodes that are separated by a phase of
rapid transit in the H-R diagram. Between points 8 and 9, evolution again
proceeds at a modest pace, and the ratio of the luminosity produced in the
helium-burning core to that in the hydrogen-burning shell rises from about
5% to 40%.

As the helium-burning core begins to become more important, the star
again evolves to the right (between points 9 and 10) in a rapid phase of core
contraction and modest envelope expansion reminiscent of initial post-
main-sequence hydrogen burning, when the structure of the star also was
dominated by a strong core energy source. The precise location of point 9
in the H-R diagram depends sensitively on the details of the previous evolu-
tionary history of the star and on the input physics (opacities, reaction rates),
and thus is rather uncertain at present (I4).

As the helium in the helium-burning convective core approaches exhaus-
tion, the star undergoes an overall contraction (moves to the left of point
number 10) reminiscent of the contraction that precedes hydrogen exhaus-
tion near the main sequence (points 2 to 3). The helium in the core is soon
exhausted, and a helium-burning shell develops around a contracting iso-
thermal carbon core. The star continues to evolve to the left in the H-R
diagram. During this period, the matter between the helium-burning shell
and the surface expands, and the temperature in the hydrogen-burning shell
drops. At a certain point, hydrogen burning ceases. The star then has only
a helium-burning shell source; it reverses the direction of its evolution track
and moves rapidly to the right until it again develops a convective envelope,
and then rises up a second red-giant branch, a more luminous prolongation
of the track between points 5 and 6. The convection zone in the envelope
again sweeps downward and mixes nuclear-processed material into the
surface layers, enriching their helium content substantially. The base of
this zone reaches down almost to the helium-burning shell.

As the star rises along its new giant branch, the hydrogen shell reignites,
and the material in the carbon core becomes relativistically degenerate. Our
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knowledge of the subsequent evolution of the star is at present uncertain,
both because the structure of the star becomes inherently complex and
because the detailed evolution depends on the rate of energy loss from the
core by neutrino-emission via various mechanisms for which we have only
(conflicting) theoretical estimates [see (I4) for a review ].

Evolutionary tracks for several models of different masses are shown in
Figure 3-17, and the time intervals between the labeled points on the curves
are listed in Table 3-9. For /4 < 2.25./4, the tracks end when helium
burning in the core ignites, which terminates evolution up the first giant
branch. For 3.4, < # < 9., the tracks are carried to the onset of over-
all stellar contraction prior to helium-core exhaustion. For 15.# o, the tracks
run only to the beginning of the red-giant phase.

From the fact that the evolution tracks of massive stars run nearly hori-
zontally until a star reaches its red-giant branch we can see immediately how
two very different kinds of stars (for example, a blue main-sequence star and
ared supergiant) can be found to lie on essentially the same mass-luminosity
relation. In contrast, stars on the nearly vertical giant branch cannot be
expected to obey the same law. Furthermore, scrutiny of the evolution times
in Table 3-9 quickly reveals why the Hertzsprung gap exists. The fact that
the main sequence runs diagonally across the H-R diagram while the Hayashi
tracks run vertically explains why the gap is wide at high luminosities and
becomes narrower at lower luminosities. Finally, we see that stars spend
their most advanced evolutionary phases as red giants and supergiants. It
is during this time that substantial mixing of material processed by nuclear
burning into the observable envelope can occur. This mixing probably ex-
plains the observed existence of very unusual chemical compositions in many
late-type giants and supergiants (for example, C or S stars), even though
our understanding of the details of the mixing process is extremely poor.

The late evolutionary stages of the 5.4, star whose life history has just
been sketched become complicated because of the onset of degeneracy in the
carbon core left by helium burning. The situation is simpler for stars with
masses .4/ z 10.4 o, because carbon ignition occurs before the core becomes
degenerate, and it is possible to follow the evolution of such stars rather
clearly until their final catastrophic demise as supernovae. Massive stars
pass smoothly through successive episodes of core burning of fuels having
progressively higher atomic numbers. During each episode, a new fuel is
ignited and produces a convective core. The fuel is ultimately exhausted in
the core, which then becomes inert, and the central source is replaced by a
shell source. After each core-exhaustion event, the core contracts, and both
the central temperature and pressure rise until, finally, the temperature be-
comes high enough to produce ignition of the next burning process. In this
way, elements of successively higher atomic weights are built up by the
process of nucleosynthesis, in which H — He, He - C, C - O, O — Neg,
Ne — Si, and so on, and the star develops an “onion-shell” distribution of
layers of elements ranging from a hydrogen—helium envelope to a core con-
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taining the heaviest element yet created. In this structure, there can be several
distinct nuclear shell sources.

The process of nucleosynthesis terminates with the creation of the iron-
peak elements, which have the highest binding energies of all nuclei and
hence cannot be transmuted to other elements with a net release of energy.
At this point, the progression of exoergic (energy-releasing) thermonuclear
reactions has run to completion. When this occurs, the core can continue
to contract, reaching ever-higher temperatures and densities but with no
further hope of delaying the contraction by means of nuclear energy release.
This process cannot continue indefinitely, however, because the core ma-
terial eventually passes through a phase transition (at temperatures near
5 x 10° K) in which the iron nuclei can photodisintegrate into o particles
and free neutrons. This reaction is endoergic; that is, thermal energy is con-
sumed in driving the disintegration process. It thus causes a drop in the
core temperature and pressure, and therefore the core can no longer support
the overlying layers but collapses violently in an implosion. At the same
time, neutrons are released copiously and become available to transmute
elements in the outer layers.

During this collapse, the Fermi energy level of the (degenerate) free elec-
trons rises in step with the shrinkage of the volume within which the free
electrons are confined. This rise of the Fermi level drives a further endo-
thermic reaction in which the electrons are absorbed by protons to form
neutrons. Eventually, the pressure generated by the by-now degenerate neu-
trons is able, in some cases, to halt the collapse. In this event, a neutron star
about 20 km in diameter is formed, which may manifest itself via its spinning
magnetic field as a pulsar. However, if the core mass is greater than about
2.4  (the precise figure is still uncertain), relativistic effects enable gravity
to overwhelm even the degeneracy pressure of the neutrons. At this point,
the collapse becomes a catastrophic instability of spacetime in which the
matter is caught up like a helpless picnicker who has inadvertently started
a forest fire. The end point of this catastrophe is the formation of what we
call a black hole. It is not yet known what happens to the star’s envelope
when the core collapses; one possibility is that a large part of it is ejected at
great velocity as a supernova, but the physics of this process remains obscure.

Early Evolution of Low-Mass Stars As an example of the evolution of a
low-mass star, let us consider the early evolutionary behavior of a star of
1 solar mass. An evolution track computed by Iben (I1), (I2), (I3) for a 1.# o
model is shown in Figure 3-17. The star starts on the main sequence, burning
hydrogen in a radiative core by means of the proton-proton cycle. Because
there is no mixing in the hydrogen-burning region, unlike the case for a
massive star, there is no buildup of an extended core region within which
there is a uniform hydrogen depletion. Rather, there is a smooth, monotonic
decrease in hydrogen abundance from its envelope value at the outer edge
of the energy-generation zone down to a minimum value at the star’s center.
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As hydrogen burning progresses, the central hydrogen content diminishes
continuously, and the zone in which some depletion has occurred grows
steadily in fractional mass. The time interval to the point of hydrogen ex-
haustion at the center is long, about 7 x 10° years for the Sun. As the Sun
is about 4.5 x 10° years old, it has not yet reached the point of central
hydrogen exhaustion, and current models indicate that its central hydrogen
content has been reduced by about one-third, to X ~ 0.48.

Hydrogen exhaustion eventually occurs, but only in a very small central
region, which soon becomes isothermal, forming a small core whose mass
M. is much less than the Schonberg-Chandrasekhar limit .#gc. This core
starts contracting slowly well before .#. approaches .#qc. Finally, the core
material becomes degenerate, and contraction in that region halts. The
transition from hydrogen burning in the core to hydrogen burning in a thick
shell thus occurs slowly and smoothly, and the star does not experience a
rapid overall contraction leading to a jog to the left in the H-R diagram,
such as is found at higher masses. The initial evolution of low-mass stars
through most of the thick-shell phase is more nearly parallel to the main
sequence than it is for high-mass stars, so they tend to linger near the main
sequence while their luminosity rises by AM,, ~ 1.5 mag. Owing to the
contribution of degeneracy to the core pressure, low-mass stars can actually
build larger isothermal cores than can massive stars (0.13.4 for a 1.4
star versus 0.1.4 ¢ for a 10.# 4 star) before shell narrowing occurs.

Eventually, the hydrogen-burning shell becomes narrow, the core mass
exceeds .#gc, and the star then evolves to the right in the H-R diagram.
Although this phase is relatively rapid compared to the star’s mainsequence
lifetime (see Table 3-9), it is much slower than the corresponding episode
for massive stars, and so there is a relatively high probability of actually
finding stars in these evolutionary stages. As a result, the Hertzsprung gap
vanishes in H-R diagrams in which the turnoff point is near 1.4, and it is
replaced by a well-populated subgiant branch. The star continues to evolve
to the right at nearly constant luminosity until the evolution track ap-
proaches the Hayashi limit. The star—which has an isothermal helium core,
hydrogen-burning shell, and a deep convective envelope—then evolves up
the red-giant branch on a track that runs nearly parallel to its Hayashi track.

Evolution up the red-giant branch is terminated when helium ignition
occurs in the core. Unlike the situation for massive stars, the isothermal
core is degenerate and contains a mass that far exceeds the Schénberg-
Chandrasekhar limit. As was first pointed out by L. Mestel (M12), the igni-
tion of helium in such a degenerate core is explosive, leading to a helium
flash. As the helium begins to burn, it releases a large amount of energy.
However, because the electrons in the material are degenerate, the gas
pressure is independent of the temperature. Therefore, in contrast to the
case of a perfect gas, a release of energy, which raises the temperature of the
nuclei, does not significantly raise the gas pressure. Hence this release cannot
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produce an expansion and cooling of the gas, which would slow the rate of
energy release and thus permit an equilibrium to be attained. Rather, an
increase in temperature swiftly increases the rate of energy release, which in
turn raises the temperature still further. Hence there is a runaway that termi-
nates only when either the core helium is exhausted or when the temperature
of the gas rises sufficiently to remove the electron degeneracy, at which point
the gas pressure can increase with increasing temperature, thus allowing
the core to expand and cool.

Detailed model computations show that the mass of the hydrogen-
exhausted core at the onset of the helium flash is almost independent of Z
and relatively independent of the mass of the star outside the core. For
X ~ 0.6 to 0.7, the core mass is about 0.4.# . This is the critical mass at
which thermonuclear ignition in a pure helium core is forced.

At the peak of the brief helium flash, the rate of energy release in the core
corresponds to about 10*!Ly! This enormous luminosity (comparable to
the luminosity of our entire Galaxy) forces the temperature gradient in the
material to rise above the adiabatic gradient, and the core becomes convec-
tive. Virtually none of the energy generated in the core during the helium
flash penetrates beyond the outer convection zone because it is trapped by
the opaque overlying layers, and the surface luminosity of the star is practi-
cally unchanged. During the helium flash, the inner convection zone reaches
almost out to the hydrogen-burning shell, and there is even a possibility
that it may penetrate all the way out to the convective envelope. In this case,
the whole star would be convective, mixing would take place, and the star
would start life over again on a helium-rich main sequence. However, current
results suggest that this mixing does not take place, but rather that the
energy released in the helium flash goes to lift degeneracy in the core, and
evolution again proceeds on a nuclear-burning time scale in a star that has
a helium-burning core and a hydrogen-burning shell and now resides on
the horizontal branch. We suspend the discussion of the evolution of low-
mass stars at this point and resume it later in our discussion of the horizontal-
branch evolution of globular-cluster stars.

Finally, we note that the initial evolution of very low-mass stars, such as
M dwarfs, moves them almost vertically in the H-R diagram along tracks
that are essentially parallel to their Hayashi tracks. The rate of evolution is
so slow, however, that, even during the entire lifetime of our Galaxy, such
stars have barely moved from their initial positions on the zero-age main
sequence.

Final Stages of Evolution To close our discussion of the evolution of disk-
component stars, we summarize briefly a few important points about the
final stages of stellar evolution. Detailed reviews (including numerous refer-
ences) on white dwarfs are given in (W3) and (O5), on neutron stars in (C1)
and (R3), and on black holes in (M16, Chapter 33).
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Consider first the final state of a star like the Sun. As evolution progresses,
a stage will be reached where all nuclear fuels that can be burned at the
prevailing core temperatures are exhausted, and the material is strongly de-
generate and hence able to support the overlying envelope, no matter how
cold the core becomes. The star is then unable to contract further, and the
central temperature will never rise above the ignition point of any reaction
that could burn the remaining material in the core. Eventually, all energy-
producing shells in the overlying layers burn themselves out, and essentially
the entire star then becomes degenerate. Such a star will be extremely dense
and will shine with a low luminosity that is fed by cooling of the material;
that is, the star will be a white dwarf, such as the ones observed in the H-R
diagrams of clusters and field stars.

The structural properties of white dwarfs are fixed by the characteristics
of the equation of state for degenerate material. The key factor in the problem
is whether or not the degeneracy is relativistic. In the former case, the pres-
sure varies as p*3, and, in the latter case, as p/3. It is not difficult to show
from what amounts to a dimensional analysis that, if the material is non-
relativistically degenerate, the gravitational and pressure forces acting on a
star will vary with different powers of the stellar radius. This result implies
that, for a star of a given mass, it is always possible to find a radius at which
an equilibrium between the two forces can be achieved and the pressure in
the core can support the weight of the overlying layers. The larger the mass
of the star, the smaller is its radius.

However, as the mass of the star increases, the material becomes relativis-
tically degenerate. In this limit, the pressure and gravitational forces vary as
the same power of the stellar radius, and an accommodation between the
two forces cannot always be achieved. Rather, as was first shown by S.
Chandresekhar, there is a critical mass—the Chandrasekhar limiting mass
M i—above which the gravitational force always prevails over pressure,
and the star will collapse to zero radius (formally) and infinite central density.
For a nonrotating, nonmagnetic star composed of any element other than
hydrogen, A4 ;,, = 1.44.4 . White dwarfs with 1.4 o < M4 < M, are re-
lativistically degenerate through much of their inner regions, become non-
relativistically degenerate near the surface, and are surrounded by a thin
skin of nondegenerate material. From stability considerations, it is found
that, except in this thin outer (observable) skin, a white dwarf must be
essentially devoid of hydrogen.

Once a star is a white dwarf, its radius is fixed by its mass, and it thenceforth
remains constant. Thus, as the star cools, it slides down a constant-radius
line in the H-R diagram on which L oc T%; or My, = —10 log Ty + c.
These constant-radius lines have a somewhat shallower slope than the theo-
retical main sequence. The observed positions of white dwarfs in the H-R
diagram are in good agreement with the theory, and they imply that these
objects typically have masses comparable to, but below, the predicted critical
mass.
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The existence of a limiting mass for white dwarfs naturally poses an evo-
lutionary problem for stars whose masses initially are larger than ./,.
What is the ultimate fate of such stars? One possibility is that, during its
evolution, a star loses some of its mass. We do, in fact, observe stars to be
losing mass in stellar winds and through the ejection of planetary nebulae.
Dense winds that imply significant mass-loss rates are found in OB super-
giants and in most red giants and supergiants. Also, planetary-nebula for-
mation occurs during the post-red-giant evolution of stars. Together, these
mechanisms provide a means by which stars having initial masses up to
some characteristic limit, say .#,,, can lose enough mass to reach the white-
dwarf regime with masses less than ;.

But some stars will have initial masses greater than .#,,, and it is thought
that the cores of these stars eventually implode violently, leading to the
catastrophic ejection of the overlying envelope as spectacular supernovae.
As we have just seen, protons will be transmuted to neutrons by inverse beta
decay during the collapse of the core, and either a degenerate neutron star
or a black hole will form, depending on whether the core mass is greater or
less than some (rather uncertain) limiting mass. Neutron stars were first
discussed theoretically in the 1930s, but it was only with the discovery of
pulsars in the late 1960s that their existence was verified observationally,
and their link to supernovae established. Unfortunately, it is harder to estab-
lish conclusively the presence of black holes in particular systems. At present,
the best we can do is to identify any very massive (./# > 3.4 ¢, say) compact
object as a potential black hole.

The actual value of the initial mass, .#,,, below which a star can shed
enough material during its lifetime to become a white dwarf with a mass
less than .#1im, is hard to determine. Present evolutionary theory is too un-
certain to yield .#,, reliably, and it must therefore be estimated semiempiri-
cally. This estimate can be made by several methods: (1) comparing the
formation rate for white dwarfs to the death rate for main-sequence stars
of different masses; (2) equating .#,, to the main-sequence turnoff point mass
in young clusters (for example, the Hyades and Pleiades) in which white
dwarfs are observed to be present; (3) using the observed numbers and ages
(on their cooling tracks) of white dwarfs in clusters to determine the main-
sequence positions of their precursors; and (4) assigning limits on .#,, to
obtain consistency with the observed rates of formation of planetary nebulae
and supernovae. The conclusion that emerges from such analyses is that
My S 5Mo. Stars initially less massive than this eject enough mass in
stellar winds and planetary nebulae to end as white dwarfs, while more
massive stars become supernovae and end as neutron stars or black holes.

Evolution of Spheroidal-Component Stars

Let us now consider the structure and evolution of the metal-poor spheroidal-
component stars.
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The Subdwarf Main Sequence and the Primordial Helium Abundance In
addressing the problem of the evolution of spheroidal-component stars, we
are immediately confronted with the question, “What is the helium content
of these stars?” Knowledge of the helium content of spheroidal-component
stars is important, not only because it determines their structure and evolu-
tion, but also because these objects are as old as our Galaxy itself. Therefore
their chemical composition gives vital clues about the composition of the
primordial material from which our Galaxy was formed.

On the theoretical side, there are two possibilities to be considered: (1)
the primordial material was essentially pure hydrogen, and both helium and
the heavy elements were manufactured by stellar nucleosynthesis processes,
or (2) the primordial material had a significant helium content, and only the
heavier elements were made in stars. Analysis of the first alternative shows
that it is possible, but difficult, to explain present-day abundances by means
of nucleosynthesis in stars alone, because element-building scenarios that
produce enough helium tend to give metal abundances in conflict with ob-
servations. In contrast, in an initial hot big bang, as indicated by the existence
of the cosmic microwave background, helium can easily be manufactured
in sufficient quantity to explain even the helium abundance in disk material,
Y ~ 0.28. In fact, a determination of the helium content of the oldest known
stars—those in globular clusters and the halo—can place valuable con-
straints on possible models for the early evolution of the Universe.

Observationally, the helium content of spheroidal-component stars is,
unfortunately, extremely difficult to determine. Most spheroidal-component
stars are too cool to excite the spectrum of He I, hence we cannot obtain
any spectroscopic information about their helium content. Helium lines are
observed in blue HB stars, but the abundances derived are anomalously
low—a factor of ten below that in disk stars. The present belief is that this
situation results from a gravitational settling of helium, which depletes the
helium abundance of the observable layers. In short, the spectroscopic
evidence is inconclusive, and we must turn to other methods.

Analysis of the location of the subdwarf main sequence in the theoretical
H-R diagram provides a powerful method of estimating the helium content
of the spheroidal-component stars. The luminosity and effective temperature
of a chemically homogeneous star of a given mass depends on Y and Z in a
known way. For stars with normal (that is, solar) Y, a decrease in Z produces
a main sequence lying below the normal zero-age main sequence. For stars
with X = 0.70, a change in Z from 0.02 to 4 x 10~* lowers the main se-
quence (measured at constant Teer) by about 1 mag (P3). On the other hand,
if Z is fixed and Y is decreased, then the main sequence rises above the
normal ZAMS. If Z = 0.02, then lowering Y from 0.28 to 0.18 raises the
main sequence (at constant Teer) by about 0.4 mag. The effect of a low value
of Z on the position of the main sequence can, in principle, be almost exactly
compensated by lowering Y; stars that are both metal poor and He poor
by just the right amounts would lie almost on the normal ZAMS (the
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mass-luminosity relation—which is unknown for spheroidal-component
stars—would, however, be different in the two cases). Because we know Z
spectroscopically, we can determine Y if we can fix the position of the sub-
dwarf main sequence in the theoretical H-R diagram.

Unfortunately, neither Mo nor T is directly observable, and the deter-
mination of the relative positions of the subdwarfs and the Hyades main
sequence in the (Muol, log Tesr) plane poses difficulties. First, because sub-
dwarfs are rare in the solar neighborhood, very few of them are close enough
to the Sun to have reliably known parallaxes. Indeed, only five extreme
subdwarfs [6(U — B) > 0.16] have trigonometric parallaxes >07035 (ES8),
and only one or two more (that are cool enough to be of relevance) have
distances that can be estimated from membership in moving groups. Second,
at the time this problem was first approached, it was rather difficult to
estimate reliable effective temperatures for subdwarfs.

In 1959, A. D. Code (C12) showed that the subdwarfs fall about 1 mag
below the normal main sequence in a plot of M, versus an index analogous
to (G — I). As the latter is known to be insensitive to line-blanketing, one
concludes that the subdwarfs are indeed intrinsically 1 mag less luminous
than normal stars of the same Tetr. Knowing that Zyq « Zo, one also infers
that these stars must have nearly solar He content. At about the same time,
O. J. Eggen and A. R. Sandage (E8), (S3) attempted to make a direct com-
parison of the subdwarfs and the Hyades using UBV photometry and line-
blanketing corrections as described in §3-6. In contradiction to Code’s
results, they found that, after allowance was made for line-blanketing effects,
the subdwarfs mapped almost exactly onto the Hyades sequence, and hence
these stars at not subluminous. Their results would imply that the subdwarfs
are severely helium deficient.

As was subsequently pointed out by R. Cayrel (C3), one is faced with a
serious dilemma when using the deblanketing procedure for UBV photom-
etry. On the one hand, the procedure works best for stars hotter than the
Sun, because the blocking coefficients can be determined reliably only for
solar and hotter stars. However, the spheroidal component is so old (see
§3-10) that such stars are already appreciably evolved and hence could well
be a magnitude (or more) more luminous than the true subdwarf main
sequence. Therefore, one would like to analyze stars cooler than the Sun.
But here the empirical deblanketing procedure becomes unreliable, for two
reasons. First, the blocking coefficients, and hence the slope of the blanketing
vectors, are ill determined. Second, the blanketing vectors become nearly
parallel to the Hyades sequence in the two-color diagram, which implies
that inferred blanketing corrections will be extremely sensitive, both to the
exact value of the adopted slope of the blanketing vector and to errors in
the measured colors.

Cayrel analyzed several cool subdwarfs with accurately known distances,
particularly Groombridge 1830, and he derived effective temperatures for
them from several different indices chosen specifically to be almost unaffected
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by line-blanketing. He showed convincingly that the subdwarfs do, in fact,
lie about 0.75 + 0.3 mag below the Hyades main sequence in the theoretical
H-R diagram. He suggested that Eggen and Sandage had found their result
because the stars they analyzed were already appreciably evolved. This
suggestion was later confirmed by Eggen (E6), who then extended the pho-
tometry to much cooler subdwarfs and showed that, in a plot of M, versus
(R — I), the subdwarfs lie 0.75 mag below the Hyades main sequence. Thus
we know today that the subdwarfs are actually underluminous compared
to metal-normal stars of the same effective temperature and hence that they
must have a nearly solar helium abundance, as would be expected if helium
is made primordially. If Y were exactly the same in the subdwarfs as it is in
the disk, then they should be about 1 mag less luminous than the normal
main sequence. From their actual position, Eggen concluded that ¥ ~ 0.23
in the subdwarfs. This figure is to be compared to Y ~ 0.28 for the disk. In
number ratios, N(He)/N(H) ~ 0.075 for subdwarfs and 0.10 in the disk.

In principle, another method of obtaining the He abundance of spheroidal-
component stars is to determine their mass-luminosity relation, which de-
pends sensitively on Y for a given value of Z. Unfortunately, masses are not
known for even one spheroidal-component star. As noted by T. R. Dennis
(D1), the most promising candidate for a mass determination is 4 Cas, which
has a reliable trigonometric parallax (and hence known luminosity), and for
which an absolute orbit of the primary star is known. Dennis pointed out
that, if one could measure the separation of the two components (even once),
then one could obtain (#; + .#5) from Kepler’s law and (#1, 4 >) from
the scale of the orbit of the primary. This information would yield .#; and
M individually. Attempts have been made to resolve this close binary, but
the results are not decisive (F1), (G2), (H13). The measurements should be
easily made with the Space Telescope.

Some additional evidence is provided by spectroscopic analyses of the
emission-line spectra of two planetary nebulae, one found in the globular
cluster M15 (O1), (P2), and the other in the halo in the direction of the
galactic pole (M15). In both cases, one finds ¥ ~ 0.3 £ 0.05, which again
argues for a large value for the primordial helium abundance. These results
are not in themselves conclusive, however, because there is the possibility
that the helium content of the matter from which these nebulae were formed
was enriched by mixing with material that underwent hydrogen burning in
the star during its evolution.

There are yet other indications that the helium content in the spheroidal
component lies in the range Y &~ 0.25 + 0.03. These indications are based
on evolutionary interpretations of globular-cluster CM diagrams and the
properties of cluster RR Lyrae stars, which we shall discuss in §3-8 and
§3-10. In summary, the current evidence supports a relatively high value for
the helium abundance of primordial material created in the cosmic big bang.

The Evolution of Globular-Cluster Stars Observations of globular clusters
provide us with very complete CM diagrams that contain a wealth of in-
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formation about the evolution of very old, metal-poor, solar-mass stars.
Although all globular-cluster stars having masses above solar have long
since evolved into white dwarfs (and hence have vanished below our present-
day observational capabilities), the advanced evolutionary phases of ap-
proximately solar-mass stars are well represented.

Up through the tip of the ascending giant branch, which is terminated by
the helium flash, the evolution of a globular-cluster star is qualitatively the
same as for low-mass disk stars, as described previously. However, an im-
portant difference in their evolutionary tracks is that, as can be seen in
Figure 3-14, the subgiant branch for metal-rich stars is flatter and more
extended, and the giant branch lies farther to the right in the H-R diagram
than is the case for metal-poor stars. Early work on giant-branch evolution
by F. Hoyle and M. Schwarzschild (H21) showed that these observed features
are well accounted for by theory, the differences arising from differences
in the envelope structure produced by the very different opacity sources
present in the two cases.

As was true for disk stars, mixing of nuclear-processed material into the
outer envelope occurs on the giant branch. In particular, some helium en-
richment of the envelope occurs (AY = 0.02). During the helium flash itself,
there is a possibility that material is mixed from the convective helium-
burning core into the hydrogen-burning shell by convective overshoot, but,
at present, detailed calculations suggest that this does not in fact occur.

As aresult of the helium flash, a star evolves very rapidly onto the zero-age
horizontal branch (ZAHB), as shown schematically in Figure 3-18. At that
point, electron degeneracy in the core has been lifted, and evolution is again
proceeding on a nuclear-burning time-scale. The structure of the star is well
approximated by a static model with a helium-burning core and a hydrogen-
burning shell. The core mass is found to be nearly independent of cluster
age, and typical values that give the correct luminosity for the HB are about
0.4.4 ». The total mass of the zero-age horizontal branch star lies in the
range of 0.6 to 0.8.# . This mass is somewhat smaller than the masses of
stars on the red-giant branch, from which one infers that mass-loss has
occurred (as is in fact observed in giant-branch stars). The primary factors
determining a star’s position on the zero-age horizontal branch are its total
mass, CNO abundance, and envelope helium abundance.

Detailed calculations during core helium-burning phases near the hori-
zontal branch show that, even when the most favorable assumptions are
made to prolong their evolution on the HB itself, the evolutionary tracks of
stars of a given mass span an interval in log T that is small compared to
the observed widths of globular-cluster HBs. From this, one concludes that
there must be a distribution of stellar mass among the stars that compose
real horizontal branches in clusters. This spread in mass is presumably pro-
duced by variations in the total amount of mass-loss a star experiences during
its stay on the ascending giant branch and as a result of the helium flash.

For all other parameters fixed, the location of a star on the ZAHB depends
strongly on the metal abundance parameter Z. The smaller the value of Z,
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Figure 3-18. Schematic evolution track for a representative
low-mass, globular-cluster star from the main sequence to its
ultimate demise as a white dwarf. The major energy sources
are indicated at several key phases. Dashed lines indicate
episodes of very rapid evolution, during which details of the
structure of the star are, at present, not too well known.
Compare this figure with Figure 3-13.

the bluer is the color of a star on the HB. A match to observed globular-
cluster HBs is achieved by models with Z ~ 10~*, which is in just the right
range. An interesting result is that, for values of Z appropriate to disk stars,
the ZAHB moves so far to the right that it merges into the giant branch.
This merger explains the existence of the clump found in the distribution of
stars along the giant branches of metal-rich disk clusters at just the lumi-
nosity appropriate to the HB as predicted by theory.

The lifetime of a star during its core helium-burning stages near the HB
is typically of the order of 5 x 107 to 108 years, and it is fixed mainly by the
initial mass of the helium core. As helium becomes exhausted in the core, a
star’s evolution proceeds very rapidly on a contorted path above the HB in
the H-R diagram. When helium burning in a thick shell is finally established,
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evolution again slows to a nuclear-burning time-scale, and the star evolves
from blue to red and rises along the asymptotic giant branch (see Figure 3-18).
As the evolution proceeds, the asymptotic giant branch approaches the first
giant branch more and more closely. In the initial phases of the rise along
the asymptotic branch, the helium-burning shell narrows, the rate of helium
burning rises, and, finally, the hydrogen-burning shell is extinguished. But,
as the tip of the curve is approached, the hydrogen-burning shell reignites,
and both the hydrogen-burning and helium-burning shell approach one
another, being separated by only a thin shell of almost pure helium.

At this point, the star becomes vulnerable to several strong instabilities.
One of these is the Schwarzschild-Hiarm (S12) double-shell-source thermal
instability that produces relaxation oscillations consisting of a succession of
extremely rapid thermal pulses, each followed by a slower adjustment of the
star back to a long interval of quiescent evolution. During each pulse, there
is a thermal runaway in the helium burning shell that generates an extensive
convection zone outside that shell, which may lead to mixing of the stellar
material and could bring exotic products of nucleosynthesis into the envelope.
It is not yet known whether mixing actually occurs, although current models
suggest that it does not. On the other hand, stars in this part of the H-R
diagram sometimes do show striking abundance anomalies.

As a star rises to the tip of the asymptotic giant branch, we observe that
it again begins to lose mass in dense stellar winds. These winds may be driven
by radiation pressure on grains that form in a star’s atmosphere at very cool
temperatures, or by energy input from the dissipation of shock waves that
are generated by pulsational instabilities. Most red supergiants are in fact
observed to be regular, semiregular, or irregular pulsating variables. As the
stellar luminosity increases, ordinary pulsations give way to relaxation
oscillations of the envelope and, finally, dynamical instability of the whole
envelope. This instability culminates in the ejection of planetary nebulae as
the envelope material passes escape velocity, leaving the core exposed. The
star evolves very rapidly over to the upper left of the H-R diagram and be-
comes a small, very blue planetary-nebula nucleus. After a brief existence there,
its nuclear shell sources burn out, and the star descends into the region of
the white dwarfs and thence moves down a cooling line to a dark, cold
oblivion.

The achievements of the modern theory of stellar evolution are indeed
impressive, and we undoubtedly do have at least a qualitative understanding
of the entire history of stars from their birth to their death. Nevertheless, we
should mention some of the uncertainties that remain, and it will be prudent
to bear these in mind when we apply the theory for interpretive purposes in
§3-9 and §3-10. To begin, there are always uncertainties in some of the basic
physical properties of stellar material (opacities, energy-generation rates,
neutrino-production rates, and so on) that introduce uncertainties of various
degrees of seriousness into the results. Likewise, considerable uncertainties
are caused by the lack of an adequate theory of convection.
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More fundamentally, several effects are normally neglected in stellar-
evolution computations that may be of great importance. Thus allowance is
not usually made for the effects of magnetic fields, rotation, mass exchange
between binary partners, or the internal hydrodynamics of a star upon its
evolution. For some stars in some evolutionary phases, these phenomena
may dominate the course of evolution and lead to results quite different from
those generally accepted at present. In addition, we have assumed that stellar
evolution proceeds without major mass-loss, although we in fact observe
copious mass-loss via stellar winds for virtually all giants and supergiants.
Integrated over the lifetime of a star, such noncatastrophic mass-loss might
have major evolutionary consequences. But, as we do not have a complete
theory of stellar winds, we cannot account for them unless we simply adopt
empirical mass-loss rates.

Finally, it is worth noting that, in a general way, the uncertainties in the
models grow more severe as evolution proceeds to more advanced stages,
with errors at each successive step tending to amplify and combine with others
as the computation proceeds. Although the main-sequence and early post-
main-sequence phases are probably fairly well understood, our under-
standing of later phases may at present be only qualitative.

3-8. PULSATING VARIABLE STARS
Basic Properties

Although the luminosity of most stars is essentially constant, some stars
exhibit very regular light variations of moderate to large amplitude, which
result from a pulsation of the star’s envelope. The variable stars that are the
best understood and most useful for galactic-structure research are the
Cepheid and RR Lyrae variables. We shall confine our discussion to these
stars exclusively.

Cepheids The Cepheid variables are supergiants of spectral classes F to K,
which are found in a narrow instability strip in the H-R diagram (see Figure
3-19). All stars in this region of the diagram have envelopes that are pul-
sationally unstable. Typical Cepheid periods lie in the range 1¢ < P < 509,
The Cepheids are usually divided into two subgroups, the classical Cepheids
(or 6 Cephei stars) and the W Virginis stars, each named after its prototype.
These two categories can easily be discriminated from one another by dif-
ferences in their light curves and their spectrophotometric properties.

The classical Cepheids are known to be high-mass stars in a phase of core
helium burning. The intersection of the instability strip with evolutionary
tracks of stars in their major helium-burning phase determines where con-
centrations of Cepheids of a given chemical composition and within a given
mass range will be found in the H-R diagram. From their concentration to
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Figure 3-19. Cepheid instability strip in the color-magnitude
diagram. Individual points represent the observed positions of
galactic Cepheids. Lines of constant period are labeled with
periods in days. [From (S24, 435), by permission. Copyright
© 1963 by the University of Chicago. ]

the galactic plane and the fact that they are found in galactic clusters, we know
that classical Cepheids are disk-component stars. From observations of
external galaxies, we find that they are associated with spiral arms. In con-
trast, the W Virginis stars are found at high galactic latitudes and in globular
clusters, and they show a concentration toward the galactic center. These
are spheroidal-component stars, and hence we infer that they are low-mass,
metal-poor stars in a core helium-burning phase.

Cepheid light curves show a strict periodicity (in all properties), and &
" Cephei stars typically have an abrupt rise (in about 20% of the period)
followed by a slower decline (about 509 of the period). In W Vir stars, the
rise times and fall times are more nearly equal, and the maximum is less pro-
nounced. At maximum light (phase = 0.0), the star has its highest tempera-
ture, earliest spectral type, and greatest outward radial velocity; at minimum
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light (phase ~ 0.75), it has its lowest temperature, latest spectral type, and
greatest inward velocity. The star achieves its maximum radius on the de-
scending part of the light curve (phase & 0.4) and its minimum radius shortly
after the next light-rise begins.

RR Lyrae Stars The RR Lyrae stars (or cluster variables, because they are
found in globular clusters) are mostly metal-poor giants, roughly of spectral
type A, that pulsate with periods P < 1¢. RR Lyrae stars with periods =
095 and AS 2 5 [see equation (3-45)] are commonly found in globular clus-
ters, in the galactic halo, and concentrated toward the galactic center. Hence
they are clearly spheroidal-component stars. RR Lyrae stars with periods <
0% and AS < 5 are concentrated to the galactic plane and are identified as
old disk-component stars. In globular clusters, the RR Lyrae stars always fall
in a narrow color range on the horizontal branch, and hence they can be
identified as low-mass, post-giant-branch, helium-core-burning stars that
have envelopes with just the right properties to be pulsationally unstable.

RR Lyrae stars were classified into Buailey types a, b, and ¢ according to
the shapes of their light curves. Classes a and b have been amalgamated into
one class, RR ;. These stars have asymmetric (Cepheid-like) light curves with
periods P, 2 0% and an average period (P> = 0955. In general, these
stars have large amplitudes, 0.5 < Am < 1.5 mag, and are in the fundamental
mode of pulsation. The RR, variables have symmetric (practically sinusoidal)
light curves with smaller amplitudes, Am < 0.5 mag, and shorter periods,
P, < 0% (average (P.> ~ 093). These stars are pulsating in the first-overtone
mode. About 909 of the RR Lyrae stars are RR,, and 109, are RR,. The
former are spheroidal-component stars, and the latter are old disk stars (see
also §4-5).

Because most RR Lyrae stars are metal poor, their metallic line spectral
types (classified by the standard criteria) tend to be earlier than the spectral
types appropriate to their hydrogen lines. G. Preston (P10) introduced the
parameter

AS = 10[spectral type (H lines) — spectral type (Ca II K lines)] (3-45)

where the spectral types are measured at minimum light in tenths of a spectral
class, as usual. This parameter correlates closely with the metal content of a
star; AS =~ O for stars of normal (that is, disk) abundances and rises to
AS =~ 10 to 12 for the most extreme metal-poor halo stars. AS has been
calibrated in terms of [ Fe/H] by means of curve-of-growth analyses of field
RR Lyrae stars (B13). A very tight correlation,

[Fe/H] ~ —0.16AS — 0.23 (3-46)

is observed. This relation can be applied to cluster variables to estimate metal
abundances in globular clusters.
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Significance for Galactic-Structure Research

Cepheids and RR Lyrae stars are of importance to galactic-structure re-
search because (1) their very distinctive light variations allow them to be
identified unambiguously and easily even in a crowded field of stars, and (2)
their absolute magnitudes can be calibrated accurately, and subsequently the
absolute magnitude of any particular star can be determined with good
precision from its observed light variation.

In 1912, it was discovered by Henrietta Leavitt (L4) that the Cepheids
obey a period-luminosity relation (PL relation). If the PL relation can be cali-
brated properly, then a simple observational determination of a Cepheid’s
period of variation yields its absolute magnitude and hence its distance from
its distance modulus. The classical Cepheids and W Vir stars obey different
PL laws because of their different masses and internal structures and because
of the differences in the pulsation properties of their envelopes resulting
from their very different metal abundances. Because the Cepheids are highly
luminous, they can be seen to fairly large distances within our own Galaxy,
and hence they can be used to trace parts of spiral arms. Furthermore, they
can be identified as individuals in other galaxies, and hence they are used as
important distance indicators in setting the extragalactic distance scale (see
§5-3 for details).

The RR Lyrae stars, being confined to the horizontal branch, allhave nearly
the same absolute magnitude, which can be calibrated by a variety of inde-
pendent methods. Although these stars are much fainter than Cepheids, they
can nevertheless be seen all the way to the galactic center in one or two
regions of low interstellar absorption (the so-called Baade windows). In fact,
their observed numbers in these windows show a peak at a definite apparent
magnitude and then a falloff. These observations can be used to estimate the
Sun’s distance from the galactic center (see §8-2). Moreover, because RR
Lyrae stars are so readily identified, they can be sampled in a given fieldto a
high level of completeness, and hence they can be used in stellar-density
analyses of the spheroidal component of our Galaxy (see §4-4). Finally, the
RR Lyrae stars are typically only 2 to 3 mag fainter than the brightest stars
in globular clusters. Thus they are relatively easy to observe, in addition to
being easily identified. Because they have well-defined absolute magnitudes,
they provide good distance indicators for clusters, and they allow us to avoid
having to observe down to the cluster main sequence (which is 5 mag fainter).

Physics of Cepheid and RR Lyrae Pulsations

The envelopes of both the Cepheids and RR Lyrae stars undergo self-excited
radial pulsations. The physics of this process is fascinating, and by now it is
fairly well understood through detailed hydrodynamical calculations. It
would take us too far afield to describe these computations; excellent reviews
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can be found in (C6) and (C14). We shall sketch only some of the basic physical
features of the problem.

The pulsation is driven by those zones in the envelope in which He™ is
ionizing to He™* *. The basic process involved, the x mechanism, was first
described by Eddington, but it was erroneously thought by early investigators
to apply to the hydrogen-ionization zone. Only when detailed models were
constructed was the correct identification of the driving zone made. The
instability is the result of the variation of the opacity of the material with
temperature. As He™ first begins to ionize, its opacity increases with increas-
ing temperature; this situation is contrary to the normal one (in stellar
interiors) in which the opacity decreases with increasing temperature. Because
of this peculiarity, when the material is compressed and therefore heats, it
becomes more opaque and hence traps radiation emanating from below. This
trapping tends to cause yet more heating and raises the internal energy of the
gas. Thus, as the material compresses, it builds up a reservoir of extra thermal
energy.

Eventually, the material reaches maximum compression and starts to
expand. During the expansion, the extra energy in the thermal reservoir is
tapped and performs work that drives the material to higher velocities than
it would have had if no radiant energy had been trapped earlier. As the mate-
rial expands, it cools, and because it cools, it becomes more transparent.
Therefore, during the expansion phase, energy escapes too freely, and the
material cools so much that, when the envelope reaches maximum extension,
the gas pressure is too low to support it (that is, the oscillation has “overshot”).
The envelope then collapses in another, even stronger compression stroke.

Thus the He™ ionization zone acts like any common heat engine, with the
opacity acting as a valve that regulates the cycle. Once a star is in the insta-
bility strip, any small perturbation from an initially static configuration will
produce a disturbance that will amplify into an ever-growing pulsation; thus
the pulsation is self-excited. The final amplitude of the pulsation is set by
nonlinear effects, which prevent the oscillation from growing indefinitely.

From a simple dimensional analysis, which in essence argues that the pul-
sation period should be of the order of the time required for a sound wave
to move through the star, one can show that a relationship of the form

P\ ]
P</_g> =0 (3-47)

exists. Here, P is the period, p denotes the mean density, and Q is the pul-
sation constant, which will, in general, depend (weakly) on P and other stellar
parameters such as the chemical composition. This period-mean-density re-
lation, which is verified by detailed model calculations, is very important and
has interesting implications in terms of the period-luminosity-color relation.
For example, we see immediately that the mere fact that L increases as T
decreases in the instability strip (as shown in Figure 3-19) implies that
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Cepheid radii increase with increasing L. Thus their mean densities decrease
with increasing L, and, on the basis of equation (3-47), we expect the most
luminous stars to have the largest periods. This is just what is observed.

Not only do modern theoretical pulsation calculations give an accurate
description of the observed variations of light, color, radial velocity, and so
on during a cycle, but also theoretical evolution tracks for stars in the appro-
priate evolutionary stages explain the observed distribution of Cepheids in
the CM diagram of such clusters as NGC 1866 [see (I3)]. We thus appear to
have a fairly sound understanding of Cepheids. As we shall see later, the
situation for the RR Lyrae stars is not quite as satisfactory.

Period-Luminosity-Color Relation for Classical Cepheids

The original PL relation discovered by Henrietta Leavitt was a linear corre-
lation of the apparent magnitudes of Cepheids in the Small Magellanic Cloud
with log P. To use this relation for distance estimation, we must express it in
terms of absolute magnitudes by determining the zero-point; this problem
has an interesting history [see (S25, Chapter 15)].

No Cepheid is found close enough to the Sun to have a measurable trigo-
nometric parallax, so for the calibration Shapley used statistical parallaxes
(see §6-6) derived from their observed proper motions and radial velocities.
A flaw in this work was that interstellar absorption was ignored, and hence
the estimated Cepheid luminosities were too small. In reality, most galactic
Cepheids are found at such large distances that their light is quite significantly
dimmed by interstellar absorption. The problem was compounded when the
classical Cepheids were assumed to have the same properties as the W
Virginis stars in globular clusters. When this assumption was made, it was
found that the RR Lyrae stars (using the then-available estimates of their
absolute magnitudes) and Cepheids all fell along a single apparently well-
defined period-luminosity law, and this seeming harmony lulled astronomers
into a false sense of security about the accuracy of the results.

Hubble’s use in 1929 of this PL relation to determine the distance to M31
provided a hint that there was a problem. At the estimated distance, M31
turned out to be about half the size of our Galaxy, and its globular clusters
were about a factor of four fainter than ours. But, given the uncertainties at
that time about the size of our Galaxy, the extragalactic distance scale, and
even the nature of external galaxies, these discrepancies did not loom large.

The root problem was uncovered by Baade in 1952 when he discovered
that 200-inch telescope photographs of M31 failed to reveal RR Lyrae vari-
ables in the globular clusters at the magnitude predicted by the then-adopted
distance scale, but instead showed only the brightest cluster giants. Inasmuch
as the absolute magnitudes of the RR Lyrae stars had been determined inde-
pendently from statistical parallaxes and cluster CM diagrams, he realized
that the error lay in the absolute magnitudes of the classical Cepheids, whose
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luminosities had been set about 1™5 too faint. Making this revision doubled
the estimated distance to, and the size of, M31 (hence making it comparable
to our Galaxy), and the revision brought its globular-cluster luminosities into
line with those of our Galaxy. Furthermore, it doubled the estimated size
of the Universe, because the extragalactic distance scale had been calibrated
using Cepheids.

With the development of pulsation theory, we have come to reco gnize that
the period-luminosity (-color) relation must depend on chemical composition,
so that the calibration for the classical Cepheids and W Virginis stars must
be different. The present calibration for the classical Cepheids rests securely
on absolute magnitudes determined for Cepheids that are members of
galactic clusters.

The classical Cepheids are also found to obey a rather precise period-
spectral type or period-color relation. A. D. Code (C11) showed that, at maxi-
mum light, all Cepheids have spectral types in the range F5 Ib to F7 Ib. This
fact means that they all have a well-defined intrinsic color at a convenient
time in their cycle (that is, when they are easiest to observe), which facilitates
corrections for interstellar reddening. From the intrinsic colors of Cepheids
in galactic clusters, R. P. Kraft (K5) has established a period-mean-color
relation that shows a very small scatter.

In observed PL relations for Cepheids, there is always much more scatter
around the mean curve than can be accounted for by observational errors
in the magnitudes, colors, or interstellar-absorption corrections. This scatter
is intrinsic; we can understand why it should exist from the following simple
argument. Given a period-mean-density relation of the form of equation
(3-47), and remembering that p = p(.#, R)and R = R(L, T,), it is clear that
some relationship of the form

fl(P> ’/Z’ L: Teff) = Q (3—48)

must exist. Furthermore, for a given chemical composition, we know that
L = L(4,age) and that Tey = Toe[(B — V), L] and B.C. = B.C.[(B — V),
L]. Equation (3-48) then implies a general relationship of the form

[P, L, (B — V), chemical composition, age] = Q (3-49)

where Q may also depend on composition, period, and age. In other words,
stars of a given age and composition do not obey a period-luminosity re-
lation but rather a period-luminosity-color relation (PLC relation).

Careful observational work over the past two decades has resulted in a
well-established PLC relation for classical Cepheids in our Galaxy. The
most complete analysis is that of A. R. Sandage and G. A. Tammann (S6).
They combined Cepheid data from the Large and Small Magellanic Clouds,
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M31, and NGC 6822 to derive the shape of a mean PL relation in the form of
My (or My) versus log P. The zero-point was set using nine Cepheids in
galactic clusters. For 3 < P < 409 their mean PL relation is well approxi-
mated by the expression

My(max) = —2.0 — 2.8 log P (3-50)

where a correction of —0.2 mag has been added to their numbers to allow
for the revision of the Hyades distance modulus. Then, using the best avail-
able relations linking T, and B.C. to (B — V), they rewrite equation (3-49)
as

log P + 0.239My, — 0.602((BY — <V>) = 0.838 + log @ (3-51)

where the angular brackets denote intensity averages. A prediction of this
equation is that, at fixed P, Cepheids should scatter in absolute magnitude
by an amount

AM, = 2.52A(B — V) (3-52)

where A(B — V) is the departure of the observed (unreddened) color of the
star from the color given for stars of the same period by the ridge line in the
period-color relation:

[(B> — <V>]mean = 0.264 log P + 0.37 (3-53)

Sandage and Tammann (S7) have also demonstrated the existence of a
period-luminosity-amplitude relation. This relation permits a very accurate
determination of M for any particular star from the light curve alone, and
it has the advantage that colors are not required (except as needed to correct
for interstellar absorption).

Theoretical pulsation calculations (I5), (I6) yield a relationship between
the period P, mass .#, luminosity L (in solar units), and effective temperature
T ¢ of the form

log P ~ 0.65 + 0.83(log L — 3.25) — 0.63(log .4 — 0.7)
— 3.44(log Ty — 3.77) (3-54)

Adopting estimates of L and T for galactic Cepheids, one can derive pul-
sation-theory estimates .# ;s of their masses from equation (3-54). These
estimates may be compared with the masses ./# .., deduced from fitting evolu-
tion tracks to the positions of Cepheids in the H-R diagram. Taking into
account the revised Hyades distance modulus, one finds 1og (A eyo1/ A puis) =
0.04, which indicates good agreement from the two independent theories.
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Finally, it is worth remembering that the PLC relation just discussed
applies, strictly speaking, only to our Galaxy. At the present time, we do not
know how large the variations in the PLC relation are from galaxy to galaxy.

Absolute Magnitudes of RR Lyrae Stars

The RR Lyrae stars are confined to the horizontal branch, and hence, in
contrast to the Cepheids, they all have about the same absolute magnitude
in a given cluster. The position of the horizontal branch in a cluster and the
pulsation properties of stellar envelopes both depend on metallicity, hence
M, (RR) should vary from cluster to cluster. There should also be an intrinsic
spread in the absolute magnitudes of field RR Lyrae stars induced by the
spread in metal content among them.

There are essentially three independent methods of estimating M, (RR): (1)
from the statistical parallaxes (see §6-5) of field RR Lyrae stars; (2) by the
calibration of globular-cluster CM diagrams by main-sequence fitting; and
(3) by comparison of RR Lyrae stars with classical Cepheids in the Magellanic
Clouds, using the known zero-point for the Cepheids. Each method has
advantages and disadvantages; the statistical parallaxes suffer from any
errors present in the proper motions and from the intrinsic spread produced
by variations in metal content among the stars. The problems with main-
sequence fitting of cluster CM diagrams were discussed in §3-6. The com-
parison of RR Lyrae stars and Cepheids in the LMC and SMC presumes
that those stars in the clouds are in fact identical to their counterparts in our
Galaxy. This may or may not be true.

Results from several studies are listed in Table 3-10. An overall average is
{(My(RR)) =~ +0.6 + 0.2, which is probably the best estimate that can be
made from the data available at the present time.

The differences, from cluster to cluster, among the values of M (RR) ob-
tained by main-sequence fitting are, unhappily, in disagreement with the
predictions of theoretical pulsation models. Specifically, the theory predicts
that the variables with the highest metallicity should be the faintest; only the
variables in 47 Tuc obey this rule, while those in M3 and M92 are in clear
violation of it. In the past, the theory has been given precedence over the
main-sequence-fitting results, and M,(RR) values for the various clusters
have been force fitted to the predictions of the theory (S2). The required
adjustments are alarmingly large. For M3, M,(RR) must be increased by
0.2 mag, and for M92 it must be decreased by 0.45 mag, implying relative
errors of the order of 0.65 mag! This is a very serious uncertainty indeed.
If the cluster HBs are forced to have the “correct” relative relationship
according to pulsation theory, then their main sequences all coincide in the
CM diagram [see Figure 17 of (S2)], which is contrary to what would be
expected if any reasonable allowance is made for line-blanketing effects.
Furthermore, in view of the complexity of the HB resulting from its sensitivity
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Table 3-10. Absolute Magnitudes of RR Lyrae Variables

Location of stars Method My, (RR) Reference
M3 Main-sequence fitting 0.60 (S2)
Mi13 Main-sequence fitting 0.05 (S2)
M15 Main-sequence fitting 0.98 (S2)
M92 Main-sequence fitting 0.91 (S2)
NGC 6838 Main-sequence fitting 0.35 (H9)
47 Tuc Main-sequence fitting 0.90 (H6)

<MV>cluster ~ 063 i 02
Galactic field Statistical parallax 0.7 +£ 0.2 (V4)
Galactic field Statistical parallax 06 + 0.2 (W9)
Galactic field Statistical parallax 0.5+ 0.2 (H11)
Galactic field Statistical parallax 05+ 04 (H14)
LMC, SMC Comparison with Cepheids 06 + 0.2 (G5)

to several diverse parameters (Y, Z, A oore, M oar» age), the validity of forcing
a fit to the pulsation theory is somewhat questionable. In any event, the
dilemma cannot be resolved with present data. Observations with the Space
Telescope should help considerably by providing accurate cluster H-R
diagrams down to the main sequence.

One of the most reliable predictions of the theory (I6) is the fundamental
pulsation period as a function of mass and luminosity (in solar units) and
effective temperature:

log Pr ~ —0.34 + 0.825(log L — 1.7) — 0.63(log .4 + 0.19)
— 3.34(log Ty — 3.85) (3-55)

The first overtone period is given by log Py = log Py — 0.127; these expres-
sions are nearly independent of the stellar composition parameters. Using
the period at the transition between the RR,, and RR, variables in a cluster
to fix Py, and adopting luminosities and effective temperatures determined
observationally, one can estimate masses for the variables from equation
(3-55). For M3, we find 0.55.# o < M4 < 0.75.4 o, which is in the range pre-
dicted by evolutionary theory to the main sequence and giant branch.
The pulsation-theory results also give a fairly sensitive method of esti-
mating the helium abundance in RR Lyrae stars, which is what one would
expect considering that the pulsations are driven by the He* ionization zone.
It is found that the properties of cluster variables support a relatively high
helium content in the spheroidal component. For example, in M3 one finds
(I6) Y ~ 0.22. We cannot, however, yet claim that these results are unequiv-
ocally accurate in view of the uncertainties just described in M, (RR).
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3-9. EVOLUTIONARY ANALYSIS OF SPIRAL-ARM
AND DISK STARS

Ages of Galactic Clusters and Associations

Equipped with the results from the theory of stellar evolution, we can now
make evolutionary analyses of the CM diagrams of galactic clusters and asso-
ciations. Ultimately, cluster age-dating is based on the fact that the main-
sequence lifetimes of stars diminish rapidly with increasing mass (see Table
3-9) and that, during its shell hydrogen-burning phase, a star evolves rapidly
away from the main sequence to the right in the CM diagram. This rightward
evolution is so rapid for massive stars that, in a typical cluster, there is essen-
tially no chance of finding stars in those phases, and hence the observed main
sequence simply terminates at some maximum luminosity (see Figure 3-6).
For less-massive stars (say, around [.Z ), the rightward evolution is much
slower and produces a subgiant branch. In either case, there will be a definite
main-sequence turnoff point, which is a sensitive function of age. In principle,
one can make age estimates using only the turnoff-point luminosity, but to
do this would be to ignore the information available elsewhere in the CM
diagram, which, of course, we cannot afford to do. Thus we need a more
comprehensive procedure.

On the assumption that the stars in a cluster all formed at about the same
time, the locus of stars in a cluster CM diagram clearly gives us information
about the relative evolutionary status of stars of differing masses at a single
instant after their arrival onto the ZAMS. Thus, to fit these data, we use sets
of isochrones, which are constructed by connecting together the points rep-
resenting the positions of model stars on their evolution tracks at a specified
time after the onset of core hydrogen burning. These points are found by
interpolation along each evolutionary track. Different sets of isochrones are
obtained for different choices of the composition parameters (Y, Z) and of
the ratio of the mixing length to scale height (//H) in convective layers in
the envelope. A representative set of isochrones is shown in Figure 3-20, and
an extensive collection is available in (C7).

To estimate a cluster’s age, one attempts to fit its H-R diagram with a
unique isochrone. In the isochrone-fitting process, one must first choose the
appropriate chemical composition parameters. Spectroscopic estimates of Z
can be made for most stars, but they can be made for Yonly for upper main-
sequence stars. Furthermore, it is necessary to map the theoretical isochrones
onto observed CM diagrams, or vice versa, and thus we need to know an
effective temperature scale and bolometric corrections.

On the upper main sequence, the isochrones are nearly vertical in the CM
diagram, and isochrone fitting is essentially equivalent to a determination
of the color of the bluest part of the main sequence. For these stars, mass loss
and rotation effects are both significant, and the assumption of coevality
suspect, so there can be important uncertainties in the results. On the lower



165

7.4 —

7.8

8.0

8.2

8.4

M, bol
I

ZAMS/ \ 8.8 -

9.0

4L \ 10.0)

10.4"

| | | | | | | |
44 43 42 41 40 39 38 37

log Te

Figure 3-20. Representative theoretical isochrones in the
H-R diagram for models with (X, Y, Z) = (0.70, 0.27, 0.03),
and mixing length to scale-height ratio (//H) = 1.5. The
curves are labeled with log (age in years). [From (C4,
Chapter 17).]

main sequence, one fits not only the luminosity and color near the turnoff
point, but also the shape of the isochrone as it curves into the subgiant branch.
The comparison between theory and observation is more secure for these
stars.

In some cluster CM diagrams, there is a distinctive gap in the main se-
quence below the turnoff point. Such gaps appear quite plainly for M67 and
NGC 188 (see Figure 3-14) and several other clusters. These gaps are the
result of rapid evolution in the H-R diagram during the period of overall
stellar contraction at the point of hydrogen exhaustion in a convective core,
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which occurs between two much slower phases of evolution. This phenome-
non happens only for a limited range of stellar masses, and gaps are therefore
expected only in clusters with ages in the range of about 10° to 7 x 10°
years. The luminosity at which the gap is found is a good age indicator,
which, however, depends sensitively on composition.

In the older disk clusters, in which even low-mass stars have evolved
appreciably, one gains additional leverage by fitting the subgiant and giant
branches. Unfortunately, stars in these parts of the CM diagram have con-
vective envelopes, and the models are therefore sensitive to shortcomings in
the convection theory, and the predicted values of T are not reliable. To
make matters worse, an accurate conversion from (B — V) to T for red
giants is also difficult. Thus, on the subgiant and giant branches, primary
attention is given to fitting the luminosity.

As an example, if we assume that M67 and NGC 188 have about the same
chemical composition, then the fact that NGC 188 has the less luminous
turnoff and subgiant branch (see Figure 3-14) shows that it is unquestionably
older than M67. The shape of the subgiant branch is also a useful age indicator
because, as can be seen in Figure 3-17, the ratio of the turnoff-point luminosity
to the minimum luminosity on the subgiant branch is closely correlated with
the mass of stars at the turnoff point, and hence with the age of the cluster.
Using this criterion, one again concludes that M67 is younger than NGC
188. Despite the uncertainties in the position of the theoretical giant branch
and its mapping into the CM diagram, relative positions of observed giant
branches yield important information about relative cluster ages quite di-
rectly, because we know that (for a given composition) the Hayashi tracks,
and hence giant branches, of stars move progressively farther to the red as
the mass decreases. On this basis, it is again obvious from Figure 3-14 that
NGC 188 is older than M67. Of course, we cannot compare the giant branches
of clusters with different compositions (for example, the globulars and NGC
188) in this way.

In analyzing cluster CM diagrams, a fairly wide variety of problems arise.
First, age estimates depend sensitively on the luminosity of the features being
fitted, and hence on the absolute magnitudes assigned to cluster stars. Any
error in the distance scale has serious consequences. Thus the revision of the
Hyades distance modulus upward by 0.2 mag increased the luminosities
assigned to stars in all clusters whose CM diagrams had been fitted to the
Hyades main sequence by A log L ~ 0.08. In old clusters, such as M67 and
NGC 188, this reduces their estimated ages by about 30%.

Second, as mentioned previously, the fitting process is vulnerable to errors
in assumed values of the abundance parameters Yand Z. Fortunately Z can
usually be estimated spectroscopically, and recent work has shown that the
age estimates for disk clusters are fairly insensitive to (reasonable) departures
of Y from the standard disk-component value (B2, 193).

Third, almost all cluster CM diagrams show a larger spread in the main
sequence, a main-sequence band, than is found in the Hyades. Observational
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errors and errors in interstellar-absorption corrections are inadequate to
explain this spread in well-observed clusters; it is intrinsic. Part of the spread
may result from a spread in the time of formation of individual stars in the
cluster (see later discussions). Part may result from abundance variations
from star to star. In some cases, stars may have suffered mass exchange in a
close binary (a mechanism that may also explain the blue stragglers). Part
of the spread may be the result of the operation of other factors, for example,
rotation, magnetic fields, mass exchange, mass loss, or accretion. The width of
the main-sequence band tends to make estimates of the age of a cluster un-
certain. For instance, in the o Per cluster, estimates range from 2 x 107 to
7 x 107 years, and for the Pleiades, from 6 x 107 to 8 x 107 years. In some
cases, these ranges can be narrowed by a star-by-star analysis. ‘

Finally, special problems are encountered in the analysis of very young
clusters and associations. Many of the stars contracting onto the main se-
quence are surrounded by dense circumstellar envelopes which contain
absorbing particles. As a result, both their intrinsic luminosities and effective
temperatures are difficult to estimate. Furthermore, there is clear evidence
that star formation occurs more or less continuously over a finite period that
amounts to a significant fraction of the entire age of a very young cluster. In
a typical young cluster, we find stars on the ZAMS up to some maximum
brightness, and, at lower masses, we find large numbers of stars still con-
tracting onto the ZAMS, spread out to the right in the CM diagram. We can
then make two different estimates of the cluster’s age. On the one hand, we
can determine a nuclear age t, from the turnoff point at the bright end of the
main sequence; t, measures the time interval since the arrival of the brightest
blue stars onto the ZAMS. On the other hand, we can determine a contraction
age t, from the luminosity of the faintest stars that are already on the ZAMS
and have no counterparts of equal mass still contracting onto the main
sequence. If the contraction of all protostars started simultaneously, we
should find ¢, ~ t,; but generally we find ¢, < t,, which means that star
formation has been proceeding continuously over a period of ¢, — t,. For
example, in h and y Persei, t, ~ 3 x 10° years and ¢, ~ 15 x 10° years,
which implies star formation has occurred over some 107 years. A spread of
this size obviously complicates the interpretation of CM diagrams of young
clusters, but, if it is a representative number, it would be inconsequential for
old clusters.

Bearing in mind the uncertainties and difficulties just discussed, let us now
consider briefly some typical results. Evolution ages for a number of very
young clusters and associations are given in (S24, 383), (S23). Some of the
noteworthy ones are: Ori OB Id (Sword), (3—4) x 10° years; Sco OB I,
4 x 10° years; Ori OB Ia, 107 years; h and y Per, 1.5 x 107 years; Lac OB
Ib, 2 x 107 years. Ages for young-to-intermediate clusters are: Pleiades,
6 x 107 years; Coma, 5 x 10® years; Hyades, 7 x 10® years. Ages for a
number of intermediate-to-old clusters as determined by P. Demarque and
R. D. McClure (T2, 199) and R. D. McClure and A. Twarog (B2, 193) are
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Table 3-11. Ages and Metal Abundances for Disk

Clusters

Cluster Age (10° years) (U — B) [Fe/H]
Hyades 0.7 0.0 0.20
NGC 2477 0.7 0.02 0.10
NGC 5822 0.9 0.03 —0.06
NGC 2360 1.3 0.04 —0.12
NGC 7789 1.6 0.08 —-0.23
NGC 752 1.7 0.05 —-0.18
NGC 3680 1.8 0.03 —0.06
M67 32 0.03 0.01
NGC 6819 3.5 0.06 —-0.16
NGC 2243 39 0.11 —0.48
NGC 2506 4.0 0.13 —0.53
NGC 2420 4.0 0.10 —-0.39
NGC 188 55 0.03 —0.06

SOURCE: (B2, 193)

listed in Table 3-11. Taken together, these results show clearly the enormous
range in ages of the galactic clusters.

Perhaps the most important single result in Table 3-11 is the age of NGC
188, the oldest known disk cluster, which (assuming Y =~ 0.3) turns out to
be (5-6) x 10? years old. The isochrones and observed CM diagram for this
cluster are shown in Figure 3-21. This estimate implies that NGC 188 is less
than one-half as old as the globular clusters (see §3-10), and it implies that the
galactic disk was formed much later than the spheroidal component (see also
§4-5 and §6-2). This age for NGC 188 (and also for M67) is significantly
smaller than was obtained in earlier work, for example, by Sandage and Eggen
(S4), who found (8—9) x 10° years for NGC 188 and (5.5 + 0.5) x 10° years
for M67. They concluded that the galactic disk is essentially as old as the
spheroidal component. Virtually all of the reduction in the estimated age is
a result of the increase in the Hyades distance modulus, which raises the
luminosity assigned to stars in this cluster. At the higher luminosity, the
observed main-sequence gap is in harmony with theoretical predictions,
whereas previously the existence of a gap posed problems [see (I3, 613)].

Although NGC 188 is the oldest disk cluster, it does not necessarily
contain the oldest disk stars. On statistical grounds, one might argue that
the oldest disk cluster that we find might be only about half as old as the
disk itself. On the other hand, the CM diagram for NGC 188 forms a clear
lower envelope for late-type field giants and subgiants with reliably known
distances in the solar neighborhood (W8). Hence it is likely as old as the
disk unless all older disk stars are metal deficient by at least a factor of two
relative to solar abundances [see (B2, 193) and (T2, 199) for further discus-
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Figure 3-21. Observed CM diagram and theoretical
isochrones for the old disk cluster NGC 188. The absolute-
magnitude scale was determined by fitting to the Hyades main
sequence [using the revised distance modulus (m— M)=3.30].
The isochrones are for models with (X, Y, Z) = (0.68, 0.30,
0.02) at ages (from top to bottom) of 4, 5, 7, 10, and 13 ( x 10°)
years. The main-sequence turnoff point indicates an age of
(5-6) x 10° years. [From (T2, 199).]

sion of this point]. As we shall see here and in §4-5, there is evidence that the
oldest disk stars do indeed have lower metal content, so the question is at
present unresolved.

The question “How reliable are these ages (and those of the globular
clusters)?” stimulates lively debate; probably it is unanswerable at present.
There are many possible sources of error, both theoretical and observational,
in the fitting procedure. These sources of error are usually seriously under-
estimated when (formal) error estimates are assigned to published results
[see (A5, Chapter 11) for an interesting discussion]. In practice, the changes
that have been made in age estimates (for example, for NGC 188) as the
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fitting procedure has “improved” have been much larger than the error
bounds quoted for any particular age determination. Whether the process
has now converged and current estimates can be regarded as reliable is
simply unknown.

Ages of Disk Field Stars

Under favorable circumstances, the ages of individual field stars can be
determined from an analysis of their location in the theoretical H-R diagram,
the (AM 1, log T.g) diagram, or the (log T, log g) diagram, provided that
their compositions are reasonably well known and that the evolutionary
tracks from which the isochrones are constructed are not too complicated
(C4, Chapter 17), (P3). Even at best, age estimates for individual stars are
much more difficult to make (and are much less reliable) than are estimates
of cluster ages, simply because much less information is available in the
fitting procedure. However, despite the difficulties, such studies can yield
key information and must be pursued.

Consider first the fitting of a single star in the H-R diagram or (AM o,
log T.) diagram. (The latter is a plot of curves giving the difference in My,
between points on an isochrone of specified age and the ZAMS at the same
T.. These are sometimes called curves of evolutionary deviation.) To make
the fit, we obviously require accurate values of T and My,. The former
can now be obtained fairly precisely from model-atmosphere analyses and
the empirical scale. To obtain accurate luminosities, we need accurate dis-
tances, and this limitation restricts the sample to nearby stars having reliably
known parallaxes. To avoid problems associated with uncertainties in stellar-
model radii (and hence effective temperatures), late-type stars having con-
vective envelopes must be excluded [see (C4, Chapter 11) for an illuminating
discussion of this problem using the Sun as an example]. Thus, in practice,
we can only hope to analyze F, G, and K dwarfs and subgiants, and even
then, for the later-type stars, the results depend strongly on the assumptions
made about the physics of convective transport.

If now we regard My,; and T as known, we can fit the data to isochrones,
which will depend on two abundance parameters, say (Y, Z). We can deter-
mine Z from spectrophotometric analyses. Hence, for an assumed value of
Y, we can fit the star’s observed position and thus estimate its age and mass.
It must be stressed that these results depend on the value of Y chosen, and
they can be no more accurate than our estimate of Y is reliable.

An extensive study of this kind was made by Perrin et al. (P3) for about
140 nearby (n” > 0704) F-K stars whose effective temperatures and metal
abundances were derived from detailed spectroscopic analyses. Those au-
thors deduced ages and masses assuming X = 0.7. They showed that, for
T < 5500 K, the observed width of the main-sequence band can be
accounted for by the known variations of Z within the sample; for T =
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6000 K, evolutionary effects dominate. They obtained masses that agree to
within +109% with “semi-astrometric” masses. (An error of +0.01 in Z
would induce a + 109 error in their mass estimate.) They concluded that all
the stars in their sample are old, having ages =4 x 10° years.

Isochrone fitting in the H-R diagram can also be carried out for eclipsing
spectroscopic binaries. Here one determines R and .# from orbital and
light-curve data. From a spectroscopic analysis, one can find Ty and Z.
Given T and R, one can compute L. Thus no distance determination is
needed, and the method can be applied to early-type stars, which are all
too distant for parallax measurements. (But, it must be remembered that
L oc T, so that very precise values of T, are needed.) For each star in
the binary, one can then determine the age and one composition parameter
(Y) because .# is known. If the full set of data is available for both stars,
one can demand that both stars fit the same isochrone (have equal ages).
Because the masses are known, this requirement determines both Y and Z.
In favorable cases [see, for example, (A6), (A7), (A9)], such analyses lead to
arather precise picture of the evolutionary status of the system, but in others
they result in a conundrum that poses a challenge to the theory (AS).

Isochrones in the (log T, log g) plane can be obtained from evolutionary
tracks inasmuch as these explicitly give L and R as a function of time for
models of known .#; a representative set (C4, Chapter 17) is shown in
Figure 3-22. The advantages of this diagram are that it provides a fairly
close connection between theory and observation because both T, and
log g can be derived directly from a spectroscopic analysis and that it is not
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Figure 3-22. Representative theoretical isochrones in the (log T, log g) diagram
for models with (X, Y, Z) = (0.70, 0.27, 0.03) and mixing length to scale-height ratio
(¢//H) = 1.5. The curves are labeled with log (age in years). [From C4, Chapter 17).]
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necessary to know the distance to the star (or to calculate L from Tg).
It is found that the position of the ZAMS in this diagram for log Tee; 2 3.85
is almost independent of X and that decreasing Z by 0.01 increases log g
for the ZAMS by about 0.06. Thus, in principle, the method is well suited
to the analysis of individual stars, although in practice it is difficult to
estimate log g accurately spectroscopically. For a single star, knowledge of
Tet, g, and Z yields the age and mass for an assumed value of Y. The derived
age is reasonably independent of Y, but the derived mass is not. For an
eclipsing spectroscopic binary, where masses are known in addition to Ter
and g, isochrone fitting of one component yields its age and helium content
(if Z is known). If both components are used, and if we demand that they
have the same age, we can determine both Y and Z. As was true for H-R
diagram fitting, this method sometimes yields very convincing results (C8)
and sometimes produces only a puzzle (G7). At least in some cases, the
problems may be produced by mass loss and mass exchange between the
binary members.

Time Variation of the Chemical Composition of Disk Stars

We have just seen how we can obtain estimates of the metal content and the
age of disk stars, both in the field and in clusters. We are now in a position
to pose the question “Is there evidence for a systematic variation of the
metallicity of the material in the galactic disk with stellar age?” The answer
to this question has been sought for at least two decades, but only now is it
beginning to emerge clearly.

Without doubt, spectroscopic studies yield the most reliable abundances,
but the sample of stars that has been studied in this way is not very large.
If we wish to determine the average variation of the metal content of disk
material with time, we must extend the analysis to as large a sample of stars
as possible. This extension can be accomplished by using photometric
metallicity estimates for field stars whose ages have been derived via the
methods described earlier. The uncertainties in these estimates for individual
stars are often comparable to the average variations being studied, and it is
only because the present sample is large (~ 10> stars) that definite, statistically
significant trends begin to emerge. Several studies have been made, and a
nice discussion by M. Mayor can be found in (B2, 213). We shall summarize
the results by quoting estimates of the change A{[Fe/H]> per 10'° years.

B. E. J. Pagel and B. Patchett (P1) used abundance estimates made by
Eggen (ES), Powell (P9), and M. Mayor (M9) for various stellar age groups
to construct Figure 3-23. Eggen’s data for 160 F and G stars near the main
sequence are divided into four age groups, and a mean value of [Fe/H] is
assigned to each group using observed values of (U — B)in equation (3-42).
Powell’s (U — B) data for 95 stars with 7’ > 0704 were divided into five
groups and analyzed similarly. Mayor’s Stromgren-photometry data, which
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Figure 3-23. Variation of {[Fe/H]) with stellar age as derived from three photo-
metric studies (ES), (P9), (M9) by Pagel and Patchett (P1). In the abscissa, each box
spans the estimated age range of the group of stars that it represents, and, in the
ordinate, it spans + two standard deviations in [Fe/H] around its geometric

mean. The dashed line shows A{[Fe/H]>/A(age) = —0.3/10° years, and the solid
line shows A([Fe/H]»/A(age) = —0.5/10*° years. [Adapted from (P1), by
permission.

yield Am, for 380 stars, are divided into four age groups and analyzed with
equations (3-43). It is clear that, on the average, there is a decrease A¢ [Fe/H]>
of the order of 0.3 to 0.5. Using uvby data, R. E. S. Clegg and R. A. Bell (C10)
estimate A([Fe/H]) =~ 0.8,and Mayor (M10) estimates d(Z/Z)/0t ~ 0.6 +
0.3, which is equivalent to A{[Fe/H]> ~ 0.4. From spectroscopic analyses,
J. B. Hearnshaw (H10) estimates A{[Fe/H]> ~ 0.8, and Perrin et al. (P3)
find 0.3. Less direct evidence comes from use of known correlations of [Fe/H ]|
with kinematic properties, coupled with correlations of kinematic properties
with age (see Chapter 7) to deduce an estimated variation of [Fe/H] with
age. In this way, Mayor (B2, 213) obtains A{[Fe/H]> ~ 0.7 from data by
K. A. Janes (J1), and 0.6 from data by M. Grenon (B2, 169).

Averaging over all estimates, we conclude that A([Fe/H])/At ~ 0.5 to
0.7 per 10'° years; that is, the metallicity in the disk has increased by about a
factor of three to five during its lifetime. Lines with these slopes are shown in
Figure 3-23, and it is seen that they are not inconsistent with the data.

Similar estimates can be made for galactic clusters, using the data in
Table 3-11. Although the number of clusters for which ages and metallicities
are known is relatively small, these data are inherently more reliable because
the ages are determined by fits to whole CM diagrams, and the abundances
are averages for several stars. On the other hand, it can be argued that the
composition of the material in the oldest clusters could have been contam-
inated by metal-enriched material recycled from cluster stars themselves,
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perhaps at a very early epoch in the cluster’s formation. Hence the composi-
tion may not be truly representative of the metallicity of the old disk material
out of which they were formed. Using the results in Table 3-11, one finds
that, with the exception of NGC 188 (which, though old, has an almost
normal metal content), the data suggest a trend of A{[Fe/H])> ~ 0.5 in
6 x 10° years or about 0.8 per 10'® years. But, as McClure and Twarog
(B2, 193) emphasize, part of the trend reflects spatial gradients—a general
decrease in [Fe/H] away from the galactic center and galactic plane (see
Chapter 4)—and, when these are taken into account, the trend is weakened
or even erased altogether. Further work on disk clusters in the solar neigh-
borhood is needed to decide the issue.

All together, the bulk of the data indicate that the material from which the
disk formed was already metal enriched to within a factor of two to five of
present-day levels, in marked contrast to the material from which the
spheroidal component formed (excluding the galactic bulge). The stars in
the disk appear to have formed well after the formation of the spheroidal
component, and, since the formation of the disk, its material appears to have
undergone a progressive metal enrichment as a result of nucleosynthesis in
stars. The results bear upon detailed theoretical models of the chemical
evolution of our Galaxy, which we shall discuss in Chapter 19.

3-10. EVOLUTIONARY ANALYSIS OF
SPHEROIDAL-COMPONENT STARS

Ages of Globular Clusters and Subdwarfs

When we compare theoretical isochrones with observed H-R diagrams of
globular clusters, we find good basic agreement, and it would be reasonable
to suppose that we should be able to assign cluster ages with fair confidence.
But, in practice, a large number of difficulties arise, and current results are
still subject to considerable uncertainties.

For instance, on the observational side, the absolute-magnitude scale in
globular clusters is still uncertain. One can fix the scale, using the main-
sequence fitting procedure described in §3-6 or by means of estimated
absolute magnitudes of the cluster RR Lyrae variables (§3-8). Unfortunately,
the two scales are not mutually consistent. Furthermore, on the theoretical
side, we noted earlier that the radii of models with convective envelopes
depend sensitively on convection theory. These difficulties can be surmounted
partially by the use of the relative positions of features in the H-R diagram.
For example, one can show that the difference in luminosity between the
main-sequence turnoff point and the horizontal branch can be fitted only
by theoretical isochrones in a limited age range. Next, we must admit that
the value of the helium abundance in the spheroidal components is not
accurately known, and we must regard it as one of the parameters to be
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derived. Naturally, this problem reduces the precision with which we can
hope to determine ages. Furthermore, there are yet other abundance param-
eters (particularly CNO—see the following discussion) that can critically
affect the structure of a star in certain phases, and these parameters are often
unknown or poorly known. Finally, we must realize that many of the most
prominent features that we wish to interpret represent stars in very advanced
evolutionary phases, and we must remember that the models for these stars
are subject to considerable uncertainty.

Faced with these difficulties, we must exploit the information available as
fully as possible, and it is worthwhile to be aware of what kinds of information
are provided by specific features in cluster H-R diagrams [see (B2, 133) for
further details].

1. The location of the main sequence depends primarily on Y and Z.
For-low-mass, metal-poor stars, the variation in luminosity pro-
duced by changes in (Y, Z) at fixed T, ~ 6000 K is

AM,,, ~ 2.84AY — 1.33Alog(Z + 0.001) (3-56)

2. The turnoff-point luminosity depends on the cluster age and on
(Y, Z) through the position of the main sequence. It is insensitive
to the treatment of convection, which affects mainly R, but not L,
of a model.

3. The slope of the subgiant branch depends on stellar mass (hence
age) and Y, being steeper for low-mass stars and large Y. It is
almost independent of Z.

4. The luminosity of the subgiant branch depends fairly strongly on
Y.

5. The location of the red-giant branch depends on mass (hence age)
because Hayashi tracks move farther to the right for low-mass
stars, and also upon (Y, Z) and (¢//H).

6. The slope of the giant branch depends mainly on Z (see §3-6).

7. The position of the horizontal branch depends on age, mass (after
mass loss), Y, and Z. The distribution of stars along the HB de-
pends on the variation in mass loss that occurs in pre-HB phases.

8. The separation in luminosity of the HB from the turnoff point
depends primarily on cluster age.

9. Both evolutionary theory and pulsation theory yield information
about RR Lyrae variables, and they often provide two independent
estimates for the same parameter, thus affording a consistency
check. Bounds can be placed on masses, luminosities, and Y for
these stars. In particular, the blue edge of the instability strip
depends sensitively on Y.
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10. Comparison of observed and theoretical luminosity functions for
stars at various positions along the cluster locus provides estimates
of age and Y.

11. Finally, theoretical lifetimes of stars in different evolutionary stages
can be compared with observed number ratios in those stages. In
particular, the relative numbers of red giants and HB stars is
sensitive to Y.

Armed with these tools, one can attempt to estimate globular-cluster ages
and helium abundances. We consider the latter first. From the pulsation
properties of the RR Lyrae stars, Sandage (S2) estimated Y =~ 0.3 for M3,
M13, M15, and M92. More recent estimates, based on better theory, (I4)
yield Y ~ 0.22 for M3 (see §3-8). Variations in the pulsation properties of
cluster variables suggest variations of the order of AY = 0.02 from cluster
to cluster. Using luminosity functions, several authors have estimated
Y ~ 0.2, but the precision of these estimates is not high. Another approach
is to compare observed and predicted properties of HB stars in the (log Tesr,
log g) plane. This method is sensitive to Y and insensitive to uncertainties
in the other model parameters (for example, core mass and CNO abundance).
Present estimates give Y 2 0.3 + 0.04. Comparisons of the predicted num-
ber ratio of red giants to HB stars with the observed values give estimates of
Y that range from 0.16 to 0.28. A serious problem with this approach is that
it is difficult to disentangle asymptotic giant-branch stars from stars on the
first giant branch observationally; hence the observed number ratio is
relatively rough. Finally, we recall that the position of the subdwarfs in the
H-R diagram yielded Y 2 0.23. Overall, it seems safe to conclude that, in
the spheroidal component, ¥ 2 0.2, but it is not as high as in the disk. A
reasonable estimate is Y &~ 0.25 + 0.03.

Let us now consider age estimates. The essential difficulty always en-
countered here arises in the choice of an absolute-magnitude scale for the
cluster. Differences among models also introduce appreciable (but less
serious) uncertainties. For example, using the absolute magnitudes for
cluster variables that are obtained from a force fit to theoretical predictions
about their dependence on Z (as described in §3-8), and adopting Y = 0.3,
Sandage derived (S2) the following ages for four globular clusters: M3,
(11-13.5) x 10° years; M13,(9.5-11.5) x 10° years; M15, (9.5-11.5) x 10°
years; M92, (9.5-11.5) x 10° years. The age spread quoted is for two different
sets of models. These results imply that all the globular clusters have es-
sentially the same age.

In contrast, fixing M (RR) = +0.6, taking Y = 0.2, and using isochrones
computed for the observed values of Z, P. Demarque and R. D. McClure
(T2, 199) have recently derived the following results, which are essentially
independent of the adopted value of Y: M92, (14-16) x 10° years; M15,
(14-16) x 10° years; M13, (13—-15) x 10° years; M3, (13-15) x 10° years;
47 Tuc, (10-11) x 10° years. A typical fit (for M92) is shown in Figure 3-24.
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Figure 3-24. Observed CM diagram and theoretical
isochrones for the globular cluster M92. The absolute-
magnitude scale was fixed by setting M(RR) = +0.6. The
isochrones are for models with (X, ¥, Z) = (0.80, 0.20,

1 x 107%) at ages (from top to bottom) of 10, 12, 14, 16, and
18 (x 10°) years. The turnoff point indicates an age of
(14-16) x 10° years. [From (T2, 199).]

These last results indicate that there is an appreciable spread in the ages of
globular clusters. For 47 Tuc, F. D. A. Hartwick and J. E. Hesser (H6)
estimate an age of 10.5 x 10° yearsif Y ~ 0.3,0r 13.5 x 10° yearsif Y =~ 0.2
(substantially larger than the values just quoted). From the slope of the
subgiant branch, they estimate ¥ ~ 0.23 + 0.1.

For an adopted value Y = 0.25, it appears that all of the preceding clusters
can be fit to isochrones having T = 12.5 + 1.5 billion years. But, because
neither of the absolute-magnitude scales in this discussion agree with that
obtained from the basic main-sequence fitting technique (see §3-6), which
would yield yet another set of cluster ages, we must admit there is still con-
siderable uncertainty about cluster ages, despite the considerable effort that
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has been devoted to determining them. Certainly, the present evidence will
not support the claim (S2) that we can limit the spread in cluster ages to
(AT/T) ~ 0.014 or even that we know ages to &1 or 2 billion years. Such
claims are obviously a strong function of the assumptions used to derive
ages, and their apparent precision is illusory. On the other hand, the con-
clusion (C4, Chapter 11) that all we can say is that cluster ages lie in the
range of 8 x 10° to 18 x 10° years seems pessimistic. The situation will
improve fundamentally only when we can observe, with very high accuracy,
down to the main sequence in a large sample of globular-cluster CM dia-
grams. As mentioned in §3-8, the Space Telescope should enable us to do
this.

Little work has been done on age determinations for field subdwarfs,
mainly because their luminosities are relatively uncertain. Perrin et al. (P3)
have analyzed nine extreme subdwarfs. Their work shows conclusively that
the hotter subdwarfs (for example, HD 19445 and HD 140283) with T ~
6000 K are appreciably evolved. But their age estimates for these stars are
alarmingly large (225 x 10° years if Y ~ 0.3), and they are in conflict with
the expansion age of the Universe. Part of the problem may be that their
chosen value for Y is too large. It would be extremely helpful to know the
masses of these stars!

In addition to the difficulties just described concerning cluster age dating,
there are yet other problems. For example, it has been known for some time
that, in » Cen, the color spread on the giant branch at a given luminosity is
far too large to be explained by photometric errors or by allowable spreads
in stellar mass or Y. The only remaining interpretation is that there must be
a spread, from star to star in the cluster, in the abundances of one or more of
the heavier elements (I4). This interpretation has been shown to be correct
by direct spectrophotometric analyses (B14), (D4), (F4), (M6), (N4). Further-
more, narrow-band photometric analyses [see, for example, (H15), (H16),
(M1), (M5)] of red giants in several other globular clusters have shown
conclusively that there are major variations in the CN-band strengths from
star to star within a cluster. These may result from large differences in the
primeval (C/O) ratio among cluster stars, from abundance gradients within
the cluster that result from successive waves of star formation, or, more
likely, from a sporadic variation from star to star of the mixing of internally
produced elements into the envelope. In any case, the basic conclusion that
stars at a given location in a globular-cluster CM diagram do not necessarily
all have identical structural or chemical-evolutionary histories seems inescap-
able. It is known that red-giant models are very sensitive to assumed CNO
abundances. Thus the large variations observed in these abundances raise
some very discomforting questions about our basic interpretive techniques
for cluster CM diagrams.

In summary, it seems that, despite our best efforts, at present we have only
a rudimentary understanding of the evolutionary status of globular clusters.
Our ideas about them will be substantially revised by future work.
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Time Variation of the Chemical Composition of Globular Clusters

Having discussed estimates of the age and metal content of globular clusters,
we may now ask, “Are they correlated?” The answer to this question is of
tremendous importance because, when coupled with information about the
time variation of the metal content within the disk component (§3-9) and
about spatial gradients of metallicity within our Galaxy (§4-3 and §4-4), it
helps us to build a picture of the chemical evolution of our Galaxy.

It is interesting to note how much the accepted opinions on the question
of the time variation of the metal content of galactic material have altered
in the past two decades. For example, in 1962, Eggen, Lynden-Bell, and
Sandage (E7) argued on kinematic grounds that, in its early history, our
Galaxy must have undergone a very rapid collapse. They estimated the
collapse time to be about 2 x 10® years. They suggested that, during this
collapse, the spheroidal-component stars were formed, evolved, and pro-
gressively enriched the infalling material, which, at the end of the collapse,
resulted in the galactic disk. In later work, Eggen and Sandage (E9) con-
cluded that (1) all globular clusters have about the same age, but their metal
content rose extremely rapidly during the rapid collapse; (2) the oldest
galactic cluster, NGC 188, is as old as the globulars but has normal metal-
licity, which implies that the material was fully enriched during the rapid
collapse; and (3) the metallicity of disk material has not been significantly
increased since disk formation, although there are random variations of
metallicity by a factor of two around the solar metal abundance.

On the basis of the information now available, the picture could look
rather different.

1. As we have just seen, the most recent results may indicate a signif-
icant spread in globular-cluster ages. If we accept these ages, we
would find a clear correlation of metallicity with age [see (A10),
(B2, 193)], with [Fe/H] rising from about —2 for clusters 15 x 10°
years old to about —0.4 for a cluster 11 x 10° years old. Further-
more, they would imply a slow halo collapse, extending over bil-
lions of years.

2. As we saw in §3-9, there is some evidence that the oldest objects in
the disk could be as little as half the age of the globular clusters.
This evidence seems to indicate that the disk formed well after the
initial spheroidal-component collapse. If this is true, then, in the
time interval between the initial halo collapse and the settling of
material into the disk, there would be time for a substantial amount
of metal-rich material to be “rained” into the disk from dying stars.

3. The material in the disk at its earliest epochs of star formation was
already fairly metal-rich. But, in addition, there has been a pro-
gressive metallicity enrichment by about a factor of three during
the lifetime of the disk. Furthermore, despite the uncertainties in
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our present estimates of Y for the spheroidal component, it seems
likely that its helium content (Y & 0.22-0.25) is in fact slightly
lower than that of the disk component (Y = 0.28). It thus appears
that at least some helium enrichment of the interstellar material in
the disk has resulted from stellar nucleosynthesis. Over and above
these time variations, we shall see in the next chapter that there are
clear spatial variations of the metallicity within both the disk and
the spheroidal component.

It would obviously be premature to assert that the picture we have just
described is correct, but it does account for the available observations
satisfactorily. Furthermore, we shall see in Chapter 19 that models of this
type account nicely for important additional evidence concerning the
chemical evolution of galaxies that is reviewed in later chapters. However,
no model of the chemical evolution of the Galaxy can be more secure than
the interpretation of the observations on which it is founded—and we
have seen that the relative ages and metallicities of globular-cluster and
field halo stars are still very insecurely determined. Therefore, until more
conclusive observations are available, it would be wrong to commit oneself
to any particular theory of galactic chemical evolution.

3-11. INTERSTELLAR ABSORPTION
The Interstellar Medium

Since the late nineteenth century, there has been an accumulation of evidence
pointing to the existence of an interstellar medium (ISM), that s, material
distributed throughout the space between stars. The ISM is composed of
gas (molecules, atoms, ions) and dust (small grains of material made of ices
of various kinds, graphite, silicates, and possibly metals). The gas reveals its
presence through characteristic absorption lines, both optical and radio,
seen in the spectra of stars and radio-continuum sources and through
emission features, ranging from optical emission lines emitted by diffuse
nebulae (H II regions in the vicinity of hot stars) to radio emission in
numerous molecular lines, the H I 21-cm line, radio recombination lines,
and the radio continuum. Dust appears prominently in dark absorbing
nebulae and in reflection nebulae, which shine by light from a star near them
reflected off its grains. The presence of a pervasive general absorbing medium
in the galactic disk was demonstrated by Trumpler, who showed that it
produced both a systematic dimming and reddening of the light from
distant stars. Roughly speaking, there is an absorption of about 1 mag/kpc
and a reddening in (B — V) of about 0.3 mag kpc™'.

A vast amount of both theoretical and observational study in the X-ray,
UV, optical, IR, and radio spectral regions has been devoted to the ISM,
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and we now have a reasonably coherent picture of its composition and
physical properties [see Spitzer’s excellent monographs (S21), (S22) for a
summary]. In broad terms, we know that the gaseous material in the ISM
comprises at least five distinct components:

1. Very cold, dense molecular gas (T ~ 20 K, n > 10° cm~?) that is
distributed in giant molecular clouds. These clouds contain an
appreciable fraction of the galactic interstellar medium, although
they occupy only a very small fraction (< 1%) of interstellar space
(S13).

2. Cold gas (T ~ 100 K, n &~ 20 cm~?) that is predominantly in
neutral atomic form and is distributed in relatively dense clouds,
which occupy about 2% to 4% of the volume.

3. Hot neutral gas (T ~ 6 x 10° K, n &~ 0.3 cm~3) that envelops the
cooler interstellar clouds and fills about 20% of space.

4. Hot ionized material (T ~ 8 x 10* K, n > 0.5 cm™3), exemplified
by the material of ordinary H II regions that surround groups of
hot stars. This component may occupy as much as 10% of
interstellar space.

5. A very hot, low-density medium (T =~ 10° K, n ~ 1073 cm ™ 3),
which is gas that has been heated by blast waves from supernovae
and occupies perhaps 709, of the volume [see (F3), (M3)].

All these components, except the first (each cloud of which is probably
probably gravitationally bound) and the fourth (which is expanding into
the volume occupied by the other components) exist in approximate pressure
equilibrium with one another. The gaseous material is composed of a wide
variety of constituents, ranging from simple particles such as free electrons,
protons, neutral H atoms, and H, molecules to fairly complicated organic
molecules. The dust grains have also been studied extensively (F2), (W6),
and questions concerning their formation and composition present many
fascinating problems in solid-state physics.

Despite the great inherent interest of the problems encountered in analyz-
ing the physical properties of the ISM, we shall not be able to discuss them
in this book. Rather, we shall focus on the absorption and reddening effects
produced by dust grains because these affect stellar-distance estimates and
hence star-density analyses, which makes these effects of primary importance
to galactic-structure research. We therefore concentrate exclusively on the
question of correcting for absorption and reddening observationally.

The Absorption Law

Trumpler showed that interstellar reddening (measured in magnitudes) is
approximately described by the law , = a + (b/A). If the dust grains were
large compared with a wavelength of light, then the absorption would be
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neutral, that is, independent of wavelength. If the grains were of molecular
size, their reddening effects would follow a Rayleigh scattering law, r; =
¢ + (d/2%). The observed /™! variation implies that the particles fall between
these two extremes and have a grain size of the order of 1073 c¢m, roughly
the size of a wavelength of light. The average mass density associated with
the grains is about 10726 gecm™ in the galactic plane, about 17 of the
average mass density of the gas.

Suppose the grains have a number density n(x)(cm %), where x measures
the position along a line of sight from the observer, and an average extinction
cross section per particle k;(cm?) at wavelength 4. Then, a beam of light of
incident intensity I, passing through a slab of thickness dx suffers an intensity
drop dI, given by

dl, = —Lin(x)k;dx = —1I,dt, (3-57)

where dt, = n(x)k,dx is an increment of optical depth along the path.
Integrating equation (3-57), we find that the intensity I, received by an
observer from a star that emits an intensity I3 is

I, = %™ (3-58)
where

1, =k, fo n(x)dx' = k;N(x) (3-59)

is the total optical depth between the observer and the star at wavelength
. N(x) in equation (3-59) is the column density of absorbing grains along the
line of sight. The optical depth is clearly just a measure of the total absorptivity
of the material along the line of sight.

If we express the absorption suffered by the starlight in magnitude units,
we find

A, = —25logo(I,/I9) = —2.5(logyo ¢)In(e™*) = 1.0867; (3-60)

That is, the absorption in magnitudes is numerically almost equal to the
optical depth along the line of sight—a handy result to remember. Inasmuch
as N(x) is a fixed number for a given star, it is obvious from equations (3-60)
and (3-59) that the variation of A, with 4 reflects faithfully the variation of
k, with A. The absorption is largest in the ultraviolet and smallest in the
infrared. As we shall see, it is because 4, depends on A that we can detect it
at all and hence correct for it. A corollary is that, if there is a strictly neutral
absorption component present, we could be completely unaware of it.

As a first crude model of the distribution of absorbing material, let us
suppose that it is in a homogeneous, finite layer of equal thickness above and
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below the galactic plane; a representative thickness is + 150 pc. Suppose
that, at some specified wavelength, the optical thickness of half of this layer,
measured in the direction perpendicular to the galactic plane, is 7, (see
Figure 3-25). Then, light from a distant source—for example, an external
galaxy—at galacticlatitude b would have to pass through an optical thickness

7(b) = 7ty csch (3-61)

and hence its apparent magnitude as a function of latitude would increase
by an amount

Am(b) = 1.0867; csc b = Am(90°) + 1.0867,(csch — 1) (3-62)

Hubble realized that, with this model, one could explain the observed
variation of the number of external galaxies (“extragalactic nebulae”) counted
per square degree down to some limiting apparent magnitude, and, in
particular, he could explain why there is a zone of avoidance near the galactic
plane [because clearly Am(0) — oo in this model]. If galaxies are uniformly
distributed in space, and if there is no interstellar absorption, then N(m),
the number that can be counted down to a limiting apparent magnitude m,
will be given by the relation [see equation (4-8)]

log No(m) = 0.6m + C (3-63)

But galaxies that would have appeared at magnitude my in the absence of
absorption will appear only at magnitude m(b) = m, + Am(b) when absorp-
tion is present. Thus the number we can actually count down to a given
magnitude m will necessarily be smaller than the true number. If N(m, b) is
the observed number at latitude b down to magnitude m, including absorp-
tion, then, from equations (3-62) and (3-63), we have

log N(m, b) = log No(m) — 0.6Am(b) (3-64a)

Figure 3-25. Optical depth in a homogeneous
absorbing layer in the galactic disk having an optical
half thickness 7; measured perpendicular to the
galactic plane.
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or

log N(m, b) = log N(m, 90°) — 0.6[Am(b) — Am(90°)]
— log N(m, 90°) — 0.6[1.0867,(csch — 1)]  (3-64b)

or, yet more simply
log N(m,b) = A — Bcsc b (3-65)

The coefficient B in equation (3-65) can be determined empirically from
observed galaxy counts; knowing B we can immediately compute 7;. In the
V band, one finds (t1)y &~ 0.36 mag, and in the B band, (z1)s ~ 0.47 mag.
Given a value for 71, equation (3-62) can then be used to derive rough
statistical corrections for the absorption suffered by the light from objects
" well outside the galactic plane—for example, globular clusters and external
galaxies—when no other estimates are feasible. However, it is well known,
from studies such as those by Shane and Wirtanen at Lick Observatory,
that the absorption in the disk is extremely patchy and that the corrections
predicted by equation (3-62) can be very rough indeed. They should therefore
be applied with caution. For example, the region near the north galactic
pole is apparently relatively “cloudless,” with a total absorption certainly
less than 0.3 mag, and possibly even unobservably small. Furthermore, the
estimates provided by equation (3-62) are worthless for objects inside the
layer, because then we must know what fraction of the layer the line of sight
to the object traverses. We must therefore confront the problem of deter-
mining directly the absorption for any particular object that we observe.

Interstellar Reddening

One of the enigmatic problems of stellar spectrophotometry in the 1920s
was the observation that some stars having O- and B-type spectra have red
colors characteristic of much later spectral types. This problem posed the
puzzling question “How does a star that appears to have a high atmospheric
temperature, as judged by the degree of excitation and ionization of the
material, radiate a continuous spectrum that is appropriate to a much cooler
temperature?” Once the existence of interstellar absorption was recognized,
the mystery evaporated and the answer emerged clearly: It doesn’t! It
radiates the same continuous spectrum as any other star of its type. But
the light we receive is reddened by selective absorption processes in the inter-
stellar medium, which dim the light more efficiently at short wavelengths
than at long wavelengths. The process is very similar to the one that reddens
the sun and moon when they are seen near the horizon on hazy, dusty, or
polluted days. And therein we find the key to a diagnostic procedure for the
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determination of the amount of interstellar absorption: Granting that stars
with identical spectra all have a unique intrinsic color, then from any par-
ticular star’s observed color we derive the amount of reddening the light
has suffered, and from that information, the amount of absorption itself.

Suppose that, at some wavelength 4;, the amount of interstellar absorption
is A(%;) mag. Then the observed magnitudes m; and m; at two different wave-
lengths 4; and A; are related to the intrinsic magnitudes m?, m} by the
expressions

m? + A(L) (3-66a)
md + A(%;) (3-66b)

m;

m;

Thus the observed color index C;j = m; — m; is related to the intrinsic color
index C% = m? — mj by

Cij = Ch + [A() — A(y)] = Cf + Ey (3-67)

where E;; is called the color excess. In the UBV system, the customary
notation for color excesses is

EB—-V)=B-V)—B -V (3-68a)
E(U — B)= (U — B) — (U — B)o (3-68b)

where the unadorned color indices denote observed values, and those with
subscript zero denote intrinsic values. Because A(4;) > A(4;) for 4; < 4; (at
least in the visible spectrum—see Figure 3-28), E;; is positive; that is, the
colors defined in the usual way become redder in the presence of interstellar
absorption.

Interstellar reddening effects, measured by color excesses, can be deter-
mined directly from observation. The classic studies in the UBV system are
those by Hiltner, Johnson, and Morgan (J5), (H18). These authors analyzed
a large sample of O-B stars, which are ideal for determining reddening
effects because (1) they are highly luminous and hence can be seen to large
distances, over which the reddening can accumulate to large values; (2) they
are intrinsically blue and hence strongly susceptible to reddening; and (3) they
have distinctive spectra that can be classified with high precision. Accurate
MK spectral types were determined for all stars in the sample, and their
UBYV colors were measured. Figure 3-26 shows how stars of identical MK
type are distributed along a reddening line in the two-color diagram. The
bluest stars on this line are taken to be unreddened, and these define the
intrinsic two-color sequence given in Table 3-3 and Figure 3-7. More red-
dened stars move down the line to larger values of (U — B) and (B — V).
This procedure can be applied to a group of stars of any spectral type (so
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Figure 3-26. Effects of interstellar reddening in the UBV
system two-color diagram.

long as it is known in advance) to determine both the intrinsic color and
the reddening line for the type.

Of course, the reddening lines for stars of differing MK types originate at
different points in the two-color diagram, but they are all found to have
practically identical slopes. From a careful analysis of the data for stars of
types O through B9, the slope of the reddening line is found to be given by

E(U — B)
EB=V) 0.72 + 0.05E(B — V) (3-69)
The second term on the right-hand side of equation (3-69) is small and can
usually be neglected. It arises mainly because the changes in shape of the
stellar energy distribution produced by reddening change the effective wave-
lengths of the filters.

Thus far, we have assumed that the spectral types of the stars under study
are known, so that we can determine color excesses by comparing the
observed colors of each star with those of an unreddened star of the same
(known) type. However, in many cases, we do not have spectral types for
the stars we wish to study. Nevertheless, given the slope of the reddening
line, it is possible to define a photometric parameter that depends only on
the spectral type of a star and is independent of the amount of reddening.
In the UBV system, this parameter is

E(U — B)

e=U=9"55-m

B-7) (3-70)
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or
Q=({U—-B)—072(B—-V) (3-71)

If we substitute equations (3-68) into (3-70), we can verify immediately that
Q is indeed reddening independent, because then

Q= (U = Blo + BU = B) = 2z =B = Vo + EB — V)]
) E(U - B) _
= (U — B)o — m(B —V)o= 0o (3-72)

Values of Q for stars of spectral types O through B9 are listed in Table 3-12.
The importance of this parameter is that, for early-type stars, it uniquely
determines a star’s intrinsic color from photometric data alone without the
need for spectra. Furthermore, Q can be measured easily for stars that are
much too faint for spectral classification. From the data given in Tables 3-3
and 3-12, one finds that, to a good approximation,

(B — V), = 03320 (3-73)

To summarize, we can determine (B — V), for early-type stars from Q.
Once (B — V), and (U — B), are known, we find E(B — V) from (B — V),
and, as we shall see later, the visual absorption A4, (or A4, at any other 1)
follows from E(B — V).

For spectral types later than AO, Q is not a unique function of spectral
class [see (S24, Chapter 13) for the full dependence of Q on spectral type],
and hence it is no longer useful in estimating the amount of reddening present.

Table 3-12. Q Versus Spectral Class for Early-Type

Stars

Spectral type 0 Spectral type )
05 —0.93 B3 —0.57
06 —0.93 B5 —0.44
08 —0.93 B6 -0.37
09 —0.90 B7 —0.32
BO —0.90 B8 -0.27
BO.5 —0.85 B9 —0.13
B1 —0.78 A0 0.00
B2 —0.70

SOURCE: (J5), by permission. Copyright © 1953 by the
University of Chicago.
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This failure occurs because the reddening line happens to have almost the
same slope as the unreddened main-sequence curve for late-type stars,
shown in Figure 3-26, which means that it is nearly impossible to tell (from
UBYV data alone) whether a given star has been reddened or is unreddened
but of a later type. Nevertheless, even for late-type stars, Q is still reddening
free, and, as mentioned in §3-6, it provides a useful metallicity indicator for
globular clusters.

Finally, it is worth noting that reddening-free indices can be defined in
other photometric systems as well. For example, in the Stromgren uvby
system, we can define

[ci]=¢y — 020 — y) (3-74a)
[m,] = m; + 0.18(b — ) (3-74b)
[u—=b]=@w—b)— 184 — y) = [c1] + 2[m4] (3-74c¢)

from which intrinsic stellar properties can be inferred in certain ranges of
spectral types.

Let us now turn to the primary problem at hand, namely, that of deter-
mining the total absorption, in magnitudes, in some photometric band—say
Ay in the visual band—directly from observed data. From equations (3-67),
(3-60), and (3-59), we see that

_ Ay - Ty N ky
R = EB—v) "Gt o=y (3-75)

This result tells us that the absorption Ay is proportional to the color excess
E(B — V) or, indeed, any other color excess, and that the value of the
constant of proportionality Ry is fixed by the wavelength dependence of the
extinction coefficient. Our goal is to determine R,. Once we know R, then
an observational determination of E(B — V') for any star immediately yields
Ay. An assumption we shall make for the present is that the physical prop-
erties (hence k,) of the interstellar material are everywhere the same in our
Galaxy, so that a unique value of R, actually exists. We can check this
assumption later. There are basically two approaches to determining Ry .

Extinction-Curve Method Ideally, we wish to determine not just 4, but the
absorption 4, as a function of A over the entire spectrum, that is, the complete
interstellar extinction curve. To do this, we compare, at several wavelengths,
the energy distribution of a reddened star with that of another star that is
assumed to be unreddened and of identical spectral type and hence is assumed
to have the same intrinsic energy distribution. The energy distributions can
be compared using either spectrum-scanner data or filter-photometry mea-
surements. For expository convenience, we shall assume that the measure-

ments have been made using the 10-color Johnson system described in
Table 2-5.
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From a comparison of the colors of the chosen pair of stars, we derive a
set of color excesses for example, E(U — V), E(B — V),E(I — V),E(J — V),
..., E(N — V)—all relative to a single reference waveband, V. For any
particular star, the observed color excesses will be proportional to the number
of absorbing grains along the line of sight [see equations (3-67), (3-60), and
(3-59)]. This number will naturally vary from star to star. We must therefore
reduce the observations to some standard optical depth. It is customary to
do this by normalizing E(B — V) to unity and scaling the color excesses in
all the other bands accordingly. For each star in our sample, we then plot the
normalized values of E(X — V), where X stands for any one of the measured
photometric bands, against 1/4, the reciprocal of the corresponding effective
wavelength of that band. Typically we obtain a curve like the one shown in
Figure 3-27.

Level of reddening curve
— >

— 3 —— = e
extrapolated to zero .~ =
absorption at

N A=o —

| |

3 2 X)) 1 0

Reciprocal microns !

Figure 3-27. The interstellar absorption curve in the
visible and infrared. The data are for the Perseus region
as measured by H. L. Johnson (J3). The observed

color excesses are scaled so that E(B — V) = 1 mag.
The resulting curve is extrapolated to infinite wavelength
(1/A = 0), where the absorption is presumed to be zero.
The absorption at any wavelength A, per unit (B — V)
color excess, can be read directly from the curve. For
example, in the visible, 4, = 3 mag. Thus, in this region
of the sky, R, = A,/E(B — V) = 3. [Adapted from (J3).
by permission. Copyright © 1965 by the University

of Chicago. ]
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We must now set the zero-point of the absorption scale. To do this, we
argue that, as 4 — oo (so that 1/4 — 0), we expect 4, — 0 because the small
interstellar grains are physically unable to absorb radiation whose wave-
length is much larger than grain size. Of course, in practice, we cannot observe
to 1/4 = 0, and to estimate the zero-point of the scale, we must extrapolate
the available data. To minimize the uncertainties in the extrapolation, it is
crucial to push the photometry as far into the infrared as possible. An example
of the procedure is illustrated in Figure 3-27.

Having fixed the zero-point, we see that the absorption 4, [per unit
E(B — V)] at any 4 is just the vertical distance in magnitudes from the level
of zero absorption to the appropriate point on the curve. Thus, for the star
illustrated in Figure 3-27, we see that, in the V band, 4, = 3. Hence for this
absorption curve, we find R, = A,/E(B — V) = 3.0.

One of the classic studies of the interstellar absorption curve was made
by A. E. Whitford (W5), who used spectrum-scanner data extending to 2.
From observations in several regions of the sky, he established an average

12 T T T T T 7

11+~ —

AJEB-V)

UN(p")

Figure 3-28. The mean interstellar absorption curve

in the visual and ultraviolet [ normalized to E(B — V)= 1]
as determined from OAO-2 observations. [ From

(B8), by permission. Copyright © 1972 by the

University of Chicago. ]
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absorption curve quite similar to that shown in Figure 3-27. In later work,
H. L. Johnson (J3) extended the coverage to 10y using broad-band photo-
metry, which made possible a much more reliable extrapolation of the data
to 1/4 = 0. Yet more recently, it has been possible to determine the inter-
stellar absorption curve in the ultraviolet using measurements made from
space observatories. A mean curve obtained from OAQO-2 data is shown in
Figure 3-28. Notice the very high absorption peak near 42150 A. This peak
has been variously attributed to absorption by graphite or silicates or small
oxide grains, according to different views about the composition of the grains
[see, for example, (B8), (D5), (F2, 89)].

Cluster Method When we examine stars in a cluster, we know that they are
all at essentially the same distance from us, and we expect ¥ — My, to be the
same for every cluster star except for differences produced by variations in
the amount of interstellar absorption along the line of sight to each star.
That is, we should find

V—M,=C+ A,=C+ RyEB—V) (3-76)

where C is a constant for the whole cluster, depending only on the cluster’s
distance, and A, is the total absorption suffered by the light from each cluster
star. Variations in A, can result from changes in the amount of absorption
along the line of sight both between the observer and the cluster and within
the cluster itself.

To find R,, we determine the MK spectral types and UBV magnitudes of
several cluster stars. The MK types yield My, and (B — V), directly from the
calibrations given in Tables 3-2 and 3-3. We then compute (V' — My) and
E(B — V) for each cluster star, and we plot (V' — My) versus E(B — V). By
making a least-squares fit, we determine the slope of the straight line that
best fits the data. As can be seen from equation (3-76), this slope is Ry For
most clusters, Ry, is found to be near the “standard” value of 3.2.

Variations in R, Most regions of the sky yield values of Ry close to the
standard value of 3.2. The data are usually summarized by saying that
R, ~ 32 + 02. A few special regions have long been known to have
anomalous values of R,. For example, in the Trapezium in the Orion nebula,
we find R, ~ 6 (S18). At one point, work by Johnson (J3) seemed to indicate
that there were numerous regions where the absorption curve, determined
by 10-color photometry, differed significantly from the standard Whitford
curve and yielded much larger values of R,. Johnson found that highly
reddened stars sometimes showed an abrupt rise in brightness in the far
infrared, and he attributed this to additional absorption at wavelengths
somewhat shorter than the longest wavelength bands observed. Recent
work has shown that this interpretation was wrong and that, in most of these
cases, the stars actually emit excess far-infrared radiation, which arises in
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extensive cool circumstellar shells. These shells are composed of grains that
are heated to moderate temperatures by energy absorbed from stellar radia-
tion at short wavelengths. They then reradiate copiously at much longer
wavelengths, near the peak of the Planck curve appropriate to the low tem-
perature of the material in the shell.

In summary, the value R, = 3.2 can be considered as representative; but,
for the most precise work, one should ideally attempt to determine R,
directly for each specific field under study.
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4

"The Space Distribution
of Stars and the
Chemical Elements

in Our Galaxy

Having considered a qualitative description of our Galaxy, and having dis-
cussed properties of individual stars, we may now begin assembling a quan-
titative picture of our Galaxy’s structure and dynamics. As a first goal, we
shall attempt to determine something about the distribution of stars in space
and the nature of the major structural features of our Galaxy. As we shall see,
it is possible to obtain fairly complete statistical information about the space
densities of stars of various types in the solar neighborhood, which we can
assume is a typical region of the galactic disk. From these data, we can con-
struct a reasonably detailed picture of the structure of the galactic disk and a
model of the spheroidal component, which, though less detailed, permits us
to estimate the radial star-density gradient in the halo, star densities in the
galactic bulge, and also the Sun’s distance from the galactic center. By
coupling information about the distribution of stars with information about
their composition, we can begin to develop a rough picture of the nature and
size of chemical-composition gradients, both in the disk and in the spheroidal
component. Finally, we can integrate this information into a picture that
describes the stellar populations within our Galaxy, that is, one that shows
how our Galaxy is made up of stars of different ages, compositions, and
kinematic properties (see Chapters 6 and 7). From this picture, we get im-
portant hints about the evolutionary history of our Galaxy (see Chapter 19).

How are we to proceed? Naively, we might ask whether we can determine
distances for individual stars directly, and thus map them one by one. The
answer is obviously no. Direct distance-measurement techniques are re-
stricted to stars in a very small volume of space around the Sun, and, even if
they were not, there are too many stars to analyze in this way. We must
therefore proceed indirectly. One approach is to use star counts—that is, the
numbers of stars that can be seen in an area on the sky at successively fainter
apparent magnitudes—to find space densities. Alternatively, we can use
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particular objects that are characteristic of a specific structural feature—for
example, a spiral arm—as tracers to delineate the outlines of that feature.
Limits on these procedures are set by the presence of interstellar absorbing
material and the apparent magnitude which can be reached by existing tele-
scopes. As we shall see, we cannot derive much useful information about space
densities of most stellar types in the galactic disk beyond about 1 kpc from
the Sun. (This rises to about 2.5 kpc for B stars, which are more luminous.)
Perpendicular to the disk, where there is much less absorption, we can derive
information about intrinsically luminous stars, such as A dwarfs or G and
K giants, out to distances of about 2 kpc. For intrinsically faint stars, such
as K dwarfs, we are limited to only 200 pc or so. In the spheroidal component,
we can derive useful information from RR Lyrae stars even at distances com-
parable to the size of our Galaxy because these stars are reasonably bright,
can be found in large numbers outside the obscuring dust layer, and show
distinctive light variations that permit their identification with high reliability
even at faint apparent magnitudes. And, of course, the very brightest ob-
jects—the globular clusters—can be seen at immense distances, and, as de-
scribed in Chapter 1, outline the large-scale structure of our whole Galaxy.

4-1. THE APPARENT DISTRIBUTION OF STARS
Observations

When we look at the sky on a clear night, we see a fairly uniform distribution
of the brighter stars over the entire sky and a rather faint, diffuse band of
light—the Milky Way—which runs a full 360° in a great circle around the
sky and which, when examined with even a small telescope, is found to be
composed of innumerable faint stars. We mentioned in Chapter 1 that the
basic significance of these observations (as was first realized by Herschel) is
that our Galaxy is a disklike system, much broader than it is thick, and that
the Sun is immersed in the disk near the central plane. Nearby (and hence
apparently bright) stars are thus seen in all directions, but distant (and hence
apparently faint) stars will be seen only in a narrow strip of the sky that con-
tains those lines of sight that are confined to the disk. One can also easily
see with the naked eye a dark rift through the Milky Way. Such a feature is
seen as well in other edge-on galaxies (see Figures 1-6 and 1-7), and it is
attributed to the presence of a layer of obscuring interstellar dust in the
galactic plane. The dust layer has a characteristic thickness somewhat smaller
than that of the disk of stars.

We can describe the distribution of stars on the sky quantitatively by star
counts. Let A(m, b) be the number of stars at apparent magnitude m, per unit
magnitude interval, per square degree, at galactic latitude b. In practice, one
determines A(m, b) by counting the number of stars on the magnitude range
from m — % to m + 4; given a smooth run of A(m, b), for purposes of analy-
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sis we can consider A(m, b) dm to be the number of stars per square degree
with apparent magnitudes in the range (m, m + dm). Star-count data for our
Galaxy in the galactic plane (b = 0°, averaged over longitude) and toward
the north galactic pole (b = 90°) are shown in columns 2 and 4 of Table 4-1.
The magnitude scale is the photographic apparent magnitude m,,. The last
two columns give the light received (in the photographic band) per square
degree from stars of magnitude m, in units of an equivalent number of tenth-
magnitude stars per square degree; that is,

¢(m, b) = A(m, b)10°-410—m 4-1)
An inspection of Table 4-1 immediately shows the following:

1. From the ratio A(m, 0°)/A(m, 90°), we can see that the bright stars
(m < 9) are fairly uniformly distributed between the galactic pole
and plane. There are, of course, more of these stars in the plane
than near the pole, but the ratio is nearly constant as a function of
apparent magnitude. In contrast, there are enormously many more
faint stars in the galactic plane than near the pole. The data merely
give quantitative expression to the qualitative impression one ob-
tains from a direct visual inspection of the sky.

2. The columns #(m, 0°) and #(m, 90°) show that, whereas the major
contribution to the light we observe in the direction of the galactic
poles comes from brighter stars, the diffuse glow in the galactic
plane is produced mainly by light from the much more numerous
faint stars (maximum light coming from stars with m ~ 14), each
of which is much too faint to be seen individually by the naked eye.

From differential star counts A(m, b), we can determine an integrated
star count N (m, b), the cumulative number.of stars, per square degree, having
apparent magnitudes less than or equal to m. Thus

dN(m, b)
dm

A(m, b) (4-2)

or

N(m, b) = f " A, b)dm' (4-3)

=00.

In practice, we compute N(m, b) from real data as

N(m, b) = i A(m', b) (4-4)

m=-2
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Table 4-2. Integrated Star Counts in the Galactic
Plane, at the North Galactic Pole, and Summed over
the Sky

my  log N(m, 0°) log N(m, 90°) N,o(m)

4 =155 —-2.20 5.2 x 10?
5 —1.08 —1.69 1.6 x 103
6 —0.60 —1.20 48 x 103
7 —0.16 —-0.74 1.4 x 10*
8 0.29 —0.30 41 x 10*
9 0.78 0.14 1.2 x 10°
10 1.25 0.55 33 x 10°
11 1.73 0.96 9.0 x 10°
12 2.18 1.33 2.4 x 108
13 2.60 1.69 6.1 x 10°
14 3.02 2.01 1.5 x 107
15 342 2.27 3.6 x 107
16 3.78 2.54 8.2 x 107
17 4.13 2.78 1.8 x 108
18 4.50 3.02 3.7 x 108
19 4.8 32 6.5 x 108
20 5.0 34 1 x 10°
21 53 35 2 x 10°

SOURCE: (Al, 244), by permission

in which case N(m, b) gives, strictly speaking, the total number down to
apparent magnitude m + 3. Integrated star counts in the galactic plane and
at the north galactic pole are given in columns 2 and 3 of Table 4-2; the
fourth column gives the total number N, (m) summed over the entire sky.
In the table, the magnitude scale is visual apparent magnitude m, (or V). The
total amount of starlight received from the whole sky is equivalent to about
4.6 x 10° tenth-magnitude stars in ¥, or 2.3 x 10° tenth-magnitude stars
in mp,.

The concentration of stars toward the galactic plane is strikingly different
for stars of different spectral classes, as is illustrated in Figure 4-1. These
data were drawn from counts of stars in the Henry Draper Catalog in
several small zones on the sky, and thus they apply to stars with m,, < 8.5.
As can be seen in the figure, O and B stars show an extremely strong concen-
tration to the plane. They also show a marked tendency to clump into
clusters and associations. Likewise, open clusters and classical Cepheids are
very strongly concentrated to the plane. All of these objects are very young,
and they are generally closely associated with spiral arms; as we mentioned
earlier, the O and B stars have such short lifetimes and small random
velocities that they must be found today very close to their places of formation
(which are the clusters and associations).
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Figure 4-1. Apparent distribution of stars of various types as a function of
galactic latitude. Ordinate gives average number of stars per square degree.
[From (N2).]

The A stars show a fairly strong concentration to the plane, but they are
less concentrated than the O—B stars; the A stars are, on the average, much
older than the O-B stars, and they have existed a sufficient time for their
random velocities to disperse them over a fairly large volume of space in
the disk. The average A star with m,, < 8.5 will also be nearer than the
average O—B star of similar apparent brightness, and hence, even if both
groups had the same distribution relative to the plane, the A stars would
appear to be more widely spread at a given level of apparent brightness.
The concentration to the plane of T Tauri stars, novae, and planetary nebulae
is similar to that of the A stars.

The F stars and late-type variables show only a slight concentration to
the plane, and stars of types G and M show essentially no concentration at
all. The latter two groups are composed mainly of stars that are, in fact,
contained in the disk, but they are intrinsically faint. Consequently, down
to my,, &~ 8.5, we sample only nearby stars within a small volume surrounding
the Sun, and, because the Sun is itself immersed in the disk, the distribution
of these late-type dwarfs appears isotropic. The RR Lyrae stars and globular
clusters also show no concentration to the plane (although they do show a
concentration toward the galactic center). These objects are intrinsically
luminous and we know, therefore, that they are distributed at large within
the spheroidal component and are not confined to the disk. The distribution
of K stars shown in Figure 4-1 appears anomalous at first sight (more strongly
concentrated than G stars, which are of earlier type), but this appearance is
aresult of the fact that most of the K stars in the sample are K giants, which
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are actually evolved massive stars that were themselves strongly concentrated
in the plane. We shall see, in the material which follows, that these distinctive
space distributions are correlated with stellar kinematic properties, ages, and
compositions. Taken together, these correlations delineate important stellar-
population characteristics.

Another point of interest is that, while we find the apparently faint (m > 6)
and hence more distant B stars fairly uniformly distributed above and below
the galactic plane, the brightest B stars lie along a great circle, Gould’s belt,
inclined at about 16° to the galactic equator. This distribution is clearly a
local feature, and it probably arises because these stars all belong to a com-
mon spiral arm.

Galactic nebulae, both luminous and dark, are also strongly concentrated
to the plane. As we mentioned in Chapter 1, this heavy concentration of
absorbing material to the plane gives rise to the zone of avoidance, within
which almost no external galaxies are observed. Numerous dark nebulae
can be seen in even the most casual examination of the Palomar Sky Survey
prints, or the Atlas of Selected Regions of the Milky Way (B2). A compre-
hensive map of the major absorbing clouds is shown in (L4). One can readily
see on this map that the whole region around the galactic center (except for
one or two small windows) is extremely heavily obscured by dark nebulae,
and the galactic center itself is virtually invisible except at X-ray, far-infrared,
and radio wavelengths.

Predictions for a Uniform Galaxy

Let us now consider what star counts we might expect to observe in our
Galaxy. The simplest conceivable model is obtained if we assume that (1) stars
are strictly uniformly distributed in space with density D stars per cubic
parsec, (2) our Galaxy is infinite in extent, and (3) there is no interstellar
absorption. While none of these assumptions is correct, the model provides
basic orientation. Suppose that, in some area of the sky, we examine a star
field subtending a solid angle w. [Note that one square degree subtends
(m/180)% = 1/3283 steradians (sr), and the entire sky contains 47 st = 41,253
square degrees. | Then the volume element contained in the distance interval
(r,r + dr) is wr? dr (see Figure 4-2), so that the total number of stars out to

(O] (1)”2
Figure 4-2. The volume element on
the distance interval (r, r + dr) within
r a field subtending solid angle w is
dr

wr?dr.
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distance r is

N(r) = wDﬁ: )? dr' = twDr? (4-5)

where D is the (uniform) star density. If all the stars have an absolute magni-
tude M, then, from equation (2-13),

r = 10[0.2(m—M)+ 1] (pc) (4_6)
Combining equations (4-5) and (4-6), we have

N(m) = 10©6m~0 (4-7)
or

log N(m) = 0.6m + C (4-8)

where C is a constant that depends on D, w, and M.

In deriving equation (4-8), we have assumed that all stars have the same
absolute magnitude M, but this assumption is not really necessary—it
merely simplifies the derivation. Indeed, inasmuch as equation (4-7), with
an appropriate value of C, is true for each group of stars at any specified
absolute magnitude, it is clear that an equation of the same form (that is,
N oc 10%-°™) can be written for a superposition of several distinct groups of
stars, each with a different absolute magnitude and space density. It follows
that, in passing to the limit of infinitely many groups, equation (4-8) will
be valid for an arbitrary distribution of stars over absolute magnitude,
provided that this distribution is everywhere the same and that the three
assumptions just stated still hold. Only the constant in the equation is
changed when stars with a spread of absolute magnitudes are present.

According to equation (4-8), in each unit magnitude interval, log N should
change by 0.6; that is, the total number of stars should go up by very nearly
a factor of four as we count to each successive apparent magnitude. Before
we compare with actual data, let us first ask whether this is a plausible
result. In fact it is not, because it leads to an absurd conclusion. Let us write

N(m) = C,10°-6™ = C,e0-6#m 4-9)
where y = In 10 = 2.303. Then
A(m) = dN(m)/dm = 0.6uC, e’ = C,10°-°m (4-10)

Now, if the light we receive from a star with m = 0 is £, then the light we
receive from each star of magnitude m is

L(m) = £,10704m (4-11)
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Hence the light received from all stars of magnitude m is
L(m) = £(m)A(m) = £,10~°4mC,10°-%™ = C,;10°-2" (4-12)

The total light received from all stars with magnitudes m’ < m is obtained
by integrating equation (4-12), which yields

m

Lom) = ff’w L(ydm' = C, f _10°2™ g = K10%2"  (4-13)

where K = C5/(0.2u). This shows that, as m grows larger, %, diverges
exponentially!

Thus for an infinite, homogeneous, transparent Galaxy, the sky should be
a blazing bright surface, which is contrary to observation. This contradic-
tion, commonly called Olbers’ paradox, shows that one of our assumptions
is wrong. In particular, for a discussion of the structure of our Galaxy, we
can obviously abandon the assumption of infinite extent. Then, provided
that the star density is finite (as it must be), the total number of stars (and
hence %) in the system will be bounded. Precisely the same problem arises
again in discussions of the whole Universe, where now galaxies are the
luminous bodies rather than stars. In this context, Olbers’ paradox is not
so easily evaded; it is resolved only by taking into account the effects of the
large-scale expansion of the Universe.

The Kapteyn Universe

Let us now ask to what extent the magnitude dependence of the observed
star counts in our Galaxy resembles equation (4-8). We immediately see from
Table 4-1 that the counts do not agree with the predictions of this simple
model. Specifically, the changes in log A(m) for Am = 1 are always less than
the theoretical value of 0.6. The observed differences A log A(m) are fairly
constant for the brighter stars, but they become progressively smaller for
fainter stars; the number of faint stars grows much more slowly than pre-
dicted by equation (4-8). .

One interpretation of these results is that our Galaxy is finite, or, more
generally, that the space density of stars decreases with increasing distance
from the Sun. In either case, we will observe fewer stars than predicted by
equation (4-8). This explanation is essentially the one offered by Kapteyn, who
(as described in Chapter 1) undertook a study of star counts early in this
century, using the techniques to be described in §4-2. From this study, he
derived a model for the space density of stars in our Galaxy. Kapteyn did not
allow for the effects of interstellar absorption, the existence of which had not
yet been recognized. From his analysis, he concluded that the star density



208 Chapter 4: The Space Distribution of Stars

fell to half its value in the solar neighborhood at a distance of about 150 pc
in the directions of the galactic poles and about 800 pc in directions lying in
the galactic plane. (Corresponding figures for a decrease to 1%, were about
1700 pc and 8500 pc, respectively.) Kapteyn’s work thus suggested a rather
small ellipsoidal Galaxy with the Sun near its center, a model commonly
referred to as the Kapteyn Universe. We know today that this model for our
Galaxy is fundamentally incorrect, the flaw in its derivation being the omis-
sion of absorption effects. We also described in Chapter 1 how Shapley’s
observations of globular clusters led to a much more realistic model, which
has been confirmed by all subsequent work.

An alternative explanation of the slow growth of N(m), then, is that there
is interstellar absorption of starlight. Suppose that there is an absorption of
a(r) magnitudes at distance r. If m is the apparent magnitude that a star
would have if no absorption were present, then the apparent magnitude at
which we will actually observe it is m + a(r). If we were to ignore the effects
of absorption, we would conclude that the star is more distant than it really
is. Thus, if r is the true distance to the star, given by logr = 0.2(m — M) + 1,
then p, the apparent distance to the star, which is larger than r because of
absorption, is log p = 0.2(m — M) + 1 + 0.2a(r), so that

log p = logr + 0.2a(r) (4-14)

or
p = 100-2400 (4-15)

For example, if the light from stars in some field were dimmed by an absorp-
tion of 1.5 mag that we did not know about, then we would overestimate
their distances by a factor of two. The volume assigned to a group of stars
scales as the cube of their average distance, so we would underestimate their
average space density by about a factor of eight, thus producing a very
strong apparent (but actually spurious) drop in density away from the Sun.

We know today that both effects just mentioned are important. On the
one hand, in the directions of the galactic poles, the amount of interstellar
absorption is relatively small, and the main factor affecting star counts is a
steep decrease in the actual star density with increasing distance away from
the galactic plane. In contrast, within the galactic disk, the star density in
the solar neighborhood is roughly uniform (increasing gradually toward the
galactic center), and the main effect seen in the counts is strong absorption
by the interstellar medium. A fair estimate of the absorption in the disk is
about 1 magkpc ™!, which implies a factor-of-fifteen reduction in the apparent
star density over a distance of 2 kpc, a result not too different from the
Kapteyn model. Thus it is clear that, if we wish to determine the space density
of stars in the galactic disk, we shall have to formulate methods that account
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fully both for density variations as a function of position along the line of
sight and for the effects of interstellar absorption. Let us now turn to this
problem.

4-2. STAR-COUNT ANALYSIS
Formulation

Our ultimate objective is to determine the space density v(r, Z, b, M, S) (stars
pc™?) of stars of absolute magnitude M and spectral type S at distance r
from the Sun, in the direction whose galactic coordinates are (Z, b). By S, we
shall mean here the full MK spectral type, that is, both spectral class and
luminosity class. Thus G V and G III stars, for example, would each be de-
noted by a different S in this analysis. The basic data from which we hope to
deduce v(r, 7, b, M, S) are the observed star counts A(m, Z, b, S) of stars of
spectral type S in direction (¢, b). For brevity, we shall henceforth drop the
variables # and b in our notation, with the understanding that any particular
analysis will be carried out for a definite field with a specific £ and b.

It is usually assumed that v(r, M, S) can be represented as the product of
two factors: a function Ds(r) representing the density of stars of spectral type
§ at distance r in units of the corresponding stellar density near the Sun, and
a distribution function ®(M, S) giving the actual number of stars having
absolute magnitude M and spectral type S per cubic parsec in the solar
neighborhood. We can then write

v(r, M, S)ydM dV = ®(M, S)dM Ds(r) dV (4-16)

where dVis a volume element and dM is an increment of absolute magnitude.
In the astronomical literature, Ds(r) is called the relative density function, and
®(M, S), the luminosity function.

We now inquire how the star counts A(m, S) in a given field on the sky are
related to the space density of stars. If a star has an absolute magnitude M,
then it will have an apparent magnitude m if it is at a distance r such that

m=>5logr+a(r)+ M — 5 4-17)
where a(r) is the absorption in magnitudes along the line of sight. Now, in a
field subtending a solid angle w, stars on the distance interval (r, r + dr)
occupy a volume dV = wr? dr. Hence, from this volume we obtain a con-

tribution to the star count at apparent magnitude m of

dA(m, S) = ®[m + 5 — 5logr — a(r), S]Ds(r)cwor? dr (4-18)
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from stars at the appropriate absolute magnitude M(m, r) as determined
from equation (4-17). Stars at some other distance, say, 7, and of a different
absolute magnitude, M’, can also contribute to A(m, S) if the combination
m, ', M' satisfies equation (4-17). Thus the total number of stars A(m, S) is
obtained by summing over all distances or, equivalently, over stars at all
absolute magnitudes distributed along the line of sight in such a way as
always to have the chosen apparent magnitude m. That is,

Am, S) = @ fo‘”@[m 45— 5logr — a(r), SIDs()r?dr  (4-19)

The analysis as formulated thus far has presumed that we actually have
star-count data for stars of a specified MK spectral type S (or a narrow range
of types). This means, of course, that somehow we must have selected just
these stars within the field on the basis of some spectrophotometric criterion.
As this assumption clearly implies that we have examined every single star
in the field, however casually, it is obvious that the practical data-acquisition
and data-analysis problems are formidable. Often these data simply do not
exist, and many studies of star counts, particularly the early ones such as
Kapteyn’s, have been based on general star counts giving A(m), the total
number of stars at apparent magnitude m, irrespective of spectral type S.
While the approach of lumping all spectral types together seems much
simpler than a separate treatment of each type because it demands fewer
data, we shall see that general star-count analyses yield much less informa-
tion, have very restricted validity, and are subject to great inaccuracies.

For general star counts, we can write an equation of the same form as
equation (4-19), namely

Am) = fowfl)[m +5— 5logr — a(r)]D(r)r? dr (4-20)

Here ®(M) now denotes the general luminosity function

OM)= > OWM,S) (4-21)
a]llyspl:‘,zcéml

and the density function D(r) appearing in equation (4-20) is to be inter-
preted as the total number of stars of all types per unit volume at distance r
in units of the total number of all types per unit volume in the solar neigh-
borhood. But this interpretation will be strictly correct only if the relative
proportions of stars of different spectral classes per unit volume are the same
everywhere along the line of sight, so that the luminosity function ®(M)
determined in the solar neighborhood is, in fact, valid throughout the
volume of integration. That this is necessary can be seen by summing equa-
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tion (4-19) over all S, which yields equation (4-20) only if

o, r) = 3 2s0)

sMﬂqMSEQW) (4-22)

This equation can be true only if the fraction [Dg(r)/D(r)] is everywhere
unity for each §, that is, if the mixture of stars of different types is everywhere
the same as in the solar neighborhood. (Recall that both Dg and D are
relative densities and hence are identically unity near the Sun.) If the mixture
of stars of different spectral types changes from position to position, then
the assumptions on which general star-count analyses are based become
invalid.

Equations (4-19) and (4-20) are integral equations for Dg(r) and D(r), re-
spectively. In principle, they can be solved provided that we know (1) A(m, S)
or A(m) from observation, (2) a(r), either from observation or an assumed
model, and (3) (M, S) or ®(M). Later in this section, we shall discuss how
we handle absorption effects, how we determine the luminosity functions,
and how we solve the integral equations. But before we consider these
questions in detail, we want to mention a few general points.

First, although the integrations in equations (4-19) and (4-20) formally
extend to infinity, in reality they are truncated at some maximum distance
by the fact that there is a physical upper limit to stellar luminosities. Thus,
from Table 3-2, we recall that there are no stars to which we assign absolute
magnitudes My, < —9, and, indeed, stars with M,, < —6 are extremely
rare (see Table 4-4). Thus, in practice, there will be essentially no contribu-
tion to the integrals from distances greater than those determined by the
relation

1og 7max = 02(m + 6) + 1 — 0.2a(rmay) (4-23)

Most star-count analyses have typically been carried down only to about
m = 16, so that a representative upper limit on 10g .y 1S 5.4 — 0.2a(7 pax)-
As mentioned earlier, a reasonable estimate for a(r) along lines of sight
lying in the disk is about 1 mag/kpc. Therefore, even the very brightest
stars that exist will not contribute to the observed star counts from distances
beyond about 7.5 kpc. For a more realistic example, say A stars with M = 1,
the limit is log 7.y & 4 — 0.2a(rmay), Which leads to 7., ~ 2.3 kpc for the
same assumed absorption. For fainter stars, the limiting distances become
even smaller. Thus star-count analyses will yield useful information only in
a rather restricted volume of space around the Sun, unless they are pushed
to very faint apparent magnitudes in fields of very low absorption. On the
other hand, observations made from satellites in astutely chosen X-ray or
infrared bands in which interstellar absorption is not important may possibly
allow the classical method of star-count analysis to be applied on a Galaxy-
wide basis for objects that emit at those wavelengths.
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Second, one should realize that there are important differences in the
amount and reliability of the information we can obtain from general star
counts and from counts for a specific spectral type. Broadly speaking, the
general counts are inferior, even though the data for them are much easier
to acquire, for the following reasons:

1. Both equations (4-19) and (4-20) are essentially convolution integrals
of the density function against the luminosity function. In these
integrals, the effective width of the luminosity function—that is, the
range of absolute magnitudes for which it contains large numbers of
stars—determines the range of distances that can contribute to the
observed number of stars at some specified apparent magnitude.
For the sake of argument, suppose that ® is constant on some range
(M, M + AM) and identically zero outside this range. If stars of
absolute magnitude M contribute to A(m) for some m when they
are at distance r,, then stars with absolute magnitude M + AM
can also contribute to A(m) when they are at some distance r; < r,,
and stars within the whole distance range (4, r,) will affect A(m).
Clearly, the larger the value of AM, the larger the distance spread
Ar = r, — ry within which stars contribute to the observed counts.
The larger Ar becomes, the more severely information about D(r) is
smeared out, and the more difficult it is to recover, because a fluc-
tuation in, say, D(r') can be masked by a suitable opposite fluctu-
ation in D(r"), where both " and »" are on the range (r,, r,). Given
that the observational data A(m) inevitably contain errors, a large
width AM in @ generally implies that the density function is poorly
determined or may even be indeterminate. As we shall see, the
general luminosity function has an enormous width in AM (about
10 mag). Hence analyses of general star counts suffer from a severe
lack of resolving power, and D(r) is often very poorly known. In
contrast, stars of a single MK type have well-defined absolute mag-
nitudes (see Table 3-2), which scatter over a very narrow range,
typically less than 1 mag. Thus, if we choose stars of a single type S,
only a very narrow range Ar can contribute to A(m, S), and Dg(r) is
correspondingly much better determined.

2. As we have already mentioned, when we group all spectral types
together in a general star-count analysis, we are tacitly assuming
that the general luminosity function ®(M) is the same at every point
within our range of observation, as it is within the solar neighbor-
hood. This assumption means that the relative proportions of var-
ious spectral types in the sample must remain the same within the
entire volume analyzed; it simply ignores changes in these propor-
tions that result from stellar-revolutionary effects (for example,
O-B stars are for the most part confined to spiral arms because
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" their lifetimes are so short), and it ignores changes in the relative
numbers of stars from different age groups or population groups
that result from spatial gradients or differences in kinematical
properties. These problems are particularly severe along lines of
sight out of the galactic plane, for, as we shall see in §4-3, stars of
different types have markedly different scale heights above and be-
low the galactic plane (already apparent in Figure 4-1). In contrast,
for stars of a specific spectral type S, ®(M, S) is essentially a de-
scription of the distribution of stars around a well-defined mean
value of M. Insofar as stars of a definite MK type have well-
defined physical properties and a definite evolutionary status,
there is no reason to suppose that the form of this distribution or
its associated mean magnitude will change significantly, even
over large distances in our Galaxy. Hence the use of a particular
®(M, S) is probably valid within a very large volume of space.

From the points just discussed, it should be clear why most recent inves-
tigations have focused on determining space densities for samples of stars
having a narrow range of spectral type. The disadvantage, of course, comes
in having to identify those particular stars among all stars found within a
field. Either one must be able to screen a vast number of stars photometrically
or spectroscopically with a very efficient technique, or one must be able to
choose the desired stars in some other way (for example, by means of a
distinctive light variation, such as that used to pick out RR Lyrae variables).

Elimination of Absorption Effects

Before we can find the true space density of stars, we must eliminate absorp-
tion effects. There are basically two ways in which this can be done. First,
for some spectral types (particularly early types), it is possible to determine
the amount of absorption directly for each star observed. For example, we
could measure the reddening-free parameter Q [see equation (3-71)] for all
the stars in a field, and, from these data, find intrinsic colors, color excesses,
and hence absorptions for each star. If we then merely subtract the measured
absorptions from the observed apparent magnitudes of the stars before we
construct the counts A(m, S), we can solve equation (4-19) directly for Dg(r),
using mathematical techniques to be discussed later. This approach, while
straightforward in principle, requires that we make the appropriate photo-
metric measurements for every star in the sample, which may not be prac-
ticable.

If we cannot eliminate absorption effects directly before analyzing the data,
then we can take a second approach and derive a fictitious density distribu-
tion by initially ignoring absorption and working with apparent stellar
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distances rather than true distances. If we can later determine a(r) by some
independent means, we can ultimately convert the fictitious density function
to the true density function. Thus, let p be the apparent distance of a star,
and r its true distance; p and r are related by equation (4-14) or (4-15). For
A(m, S), we then write

A(m,S) = o [ Ds)®[m + 5 — Slogr — a(r), S} dr

w fow Ag(p)®(m + 5 — 5log p, S)p*dp (4-24)

where Ag(p) is the fictitious density function, which will be the same as the
true density function Dg(r) only if there is no absorption. Clearly, these two
functions are related by the expression

24
Ds(r) = (”—2 d—") As(p) (@-29)
r ¥
or, from equation (4-15),
Ds(r) = [(1 + 0.2ur %)100-6‘*@} AsLp(r)] (4-26)

where again ¢ = In 10. Thus, if we can find Ag(p) and determine a(r) by one
means or another, then we can calculate the true density Dg(r), corrected for
absorption, from Ag(p) via equation (4-26).

In the approach just described, we determine a(r) from direct measure-
ments of the absorption suffered by a selected sample of stars in the field,
chosen such that their individual absorptions are readily determinable and
their distribution along the line of sight defines the run of a(r) with the desired
degree of precision. These stars are employed merely as tracers, and they need
not be of the same spectral type as the group under analysis. Moreover, we
do not need to measure absorptions for all stars under analysis, but only
for a sufficient number to find a(r). We then assume that this run of a(r) is
valid for all stars in the field, which is reasonable unless the absorption in
the field is patchy (a matter that can be investigated observationally), and
then we can use it in equation (4-26) to convert Ag to Dy.

If a(r) has not been determined directly from observation for some particu-
lar field, one can attempt to correct for absorption effects by using some
assumed run of a(r). A common choice is a(r) = kr, where k is the extinction
in magnitudes per parsec or per kiloparsec. In this simple case, equation
(4-26) reduces to

Dg(r) = (1 + 0.2ukr)10%%% Ag[ p(r)] (4-27)
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Table 4-3. Illustration of Effects of Inter-
stellar Absorption on Distance and Space-
Density Estimates*

r(pc)  a(r)(mag) p(pc) A(p)/D(r)

0 0.00 0 1.00
10 0.01 10 0.98
100 0.10 105 0.83
200 0.20 219 0.69
500 0.50 630 0.41
800 0.80 1,155 0.24
1000 1.00 1,580 0.17
4000 4.00 25,200 0.0014

1

*a(r) = kr, k = 1 mag kpc™

The choice of k is naturally rather problematical, and, although one might
be guided in setting its value if direct estimates of a(r) are available for adja-
cent fields, the final results are actually extremely sensitive to the run of a(r),
and one cannot expect to obtain results of high accuracy in this way. At best,
the use of an assumed form for a(r) merely provides an illustration of the
effects of absorption.

To see how important absorption effects can be, consider Table 4-3, which
was constructed assuming k = 1 magkpc™! = 0.001 mag pc~ . Itis obvious
from the table that, beyond a few hundred parsecs, the correction factors
required to convert the fictitious density function to the true density function
become enormous, and thus even small errors in a(r) will translate to huge
errors in Dg(r). This fact demonstrates the need for determining a(r) with as
much precision as possible.

Finally, before leaving the subject of the effects of absorption on star counts,
it is worth mentioning that, in a plot of A(m) versus m, one occasionally sees
a rather distinctive break in the curve at some particular m, where the slope
suddenly decreases in some magnitude interval and then rises again with the
same slope as before, as illustrated schematically in Figure 4-3. Such plots
are called Wolf diagrams in honor of M. Wolf, who used them in pioneering
studies of the properites of interstellar absorption clouds. He realized that
the observed effect is caused by the presence of a discrete interstellar cloud
along the line of sight. The near edge of the cloud is located at the distance
corresponding to apparent magnitude m;, and the far edge is located at the
distance corresponding to apparent magnitude m, (the absolute magnitude
of the stars presumably being known). The total absorption in the cloud is
Am, as shown in the figure. These diagrams were of importance historically
in helping to define (roughly) the physical properties of dark absorption
clouds.



216
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Figure 4-3. Schematic Wolf diagram. Ordinate:
star count A(m); abscissa: apparent magnitude m;
solid curve: observed counts; dashed curve: counts
that would have been obtained in absence of
absorbing cloud. The spatial extent of the cloud can
be determined from m, and m,, and the total
absorption in the cloud is Am.

The Luminosity Function

Let us now turn to the problem of determining the luminosity functions
®(M) and ®(M, S). These functions can be derived in several different ways.
We shall consider here only the most direct approach, which utilizes trigo-
nometric parallax data. Our discussion will rather closely parallel that of
Trumpler and Weaver in their book Statistical Astronomy (T4, Chapter 4.2),
which should be consulted for further details and for discussion of other
methods.

In the determination of ®(M), a number of difficulties are encountered
because of the incompleteness of the observations and because of the operation
of selection effects. As problems of this sort often arise in the analysis of
galactic data, we shall examine these difficulties in modest detail as an ex-
ample of the elaborate chain of reductions and corrections that must some-
times be applied to extract the desired information from incomplete data.
The methodology has been rather highly developed in this case, and it thus
provides a good model (unfortunately often disregarded) of how one should
proceed in determining true distributions for the more recently discovered
exotic objects, such as pulsars, X-ray sources, radio galaxies, and quasars. For
these objects, the observational data are necessarily woefully incomplete.
Nevertheless, careful attention to the details of how the observed sample is
selected allow statistical corrections to be applied, at least to some extent.
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The General Luminosity Function, ®(M) Consider the stars within a sphere
of radius 50 pc centered on the Sun. This volume is large enough to contain
a statistically useful sample of stars while still small enough that interstellar
absorption can be neglected within it. Inside this sphere, stellar parallaxes
are all 0702 or more, and they can therefore be measured trigonometrically
with reasonable accuracy. To obtain ®(M) for this sample of stars, we would
in principle (1) select all stars with parallaxes > 0702 from parallax catalogs,
(2) calculate M from m and = for each star, (3) add the total number of stars
in each interval of M, and finally (4) divide by the volume of the 50-pc sphere.

While in theory one might think that this procedure would give the number
of stars per cubic parsec in the solar neighborhood at successive values of M,
in practice it is worthless, and the actual procedure is much more complicated,
for several reasons. First, and most important, the parallax data are very
incomplete. Parallaxes have thus far been measured for only a tiny fraction
of the stars within 50 pc of the Sun. For example, suppose we want to analyze
all stars with absolute magnitudes M < 15 within 10 pc of the Sun. In prin-
ciple, we want to choose, from all stars with apparent magnitudes m < 15,
just those stars with parallaxes > 0710. But there are roughly 4 x 107 stars
with m < 15 on the sky, and parallaxes are known for only a few thousand
stars! Moreover, the task of extending the body of presently available data
by orders of magnitude is obviously hopeless, given that even a single par-
allax determination requires an extensive series of observations over a period
of years and then a large effort to measure and reduce the observations. A
practical way around this impasse is to make use of proper-motion data,
exploiting the fact that, in general, stars that are close to the Sun tend to have
large values of u. Such stars are relatively easily found from proper-motion
surveys, and an extensive body of data exists (see Table 2-6). Of course, there
will still be stars close to the Sun whose motions relative to it happen to lie
nearly along the line of sight, so that their proper motions are small. These
stars will be missing from the proper-motion surveys, but, as we shall see,
an allowance can be made for them by means of an appropriate statistical
correction.

Second, the measured parallaxes contain random errors of the order of
0”01. Some stars whose true parallaxes are really 0702 or larger will have
measured parallaxes less than 0702, and hence they will inadvertantly be ex-
cluded from the sample. Likewise, some stars that have true parallaxes less
than 0702 will have measured parallaxes of 0702 or more, and hence they will
spuriously be included in the sample. As the number of stars rises rapidly
with decreasing parallax (increasing distance) because larger volumes are sur-
veyed, the net effect of these errors causes us to include more stars in the 50-pc
sphere than really belong there. Again, a statistical correction can be made
for this effect.

Finally, high-luminosity stars are very rare within 50 pc of the Sun. In fact,
from this volume of space, essentially no information can be derived about
®(M) for M < —2. For the intrinsically brightest stars, we must survey
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Figure 4-4. Region in the (m, u) plane 6 i
where the observed sample of stars is 4 =
complete. At very bright magnitudes, :

there are too few stars to permit an 2
adequate statistical discussion. [ From
(T4, 373), by permission. | 0 05 110

through larger volumes and carry out the analysis for one spectral class at a
time.

With the foregoing remarks in mind, let us now consider the actual pro-
cedure by which ®(M) has been determined. We begin by counting the num-
ber of stars for a specified set of values of m and u in proper-motion catalogs.
We restrict the region in the (m, ) plane over which counts are made (see
Figure 4-4) by fixing, for each m, a minimum value p, chosen to be large
enough to ensure that, at the apparent magnitude specified, most stars with
U > po have in fact been discovered in the proper-motion surveys. Repre-
sentative choices for y, in various ranges of m are as follows: (m, ) = (5, 0);
(5-9,072); (9-15, 0”5). Now, for all stars in the proper-motion catalogs that
have a specified m and g, only a fraction will have measured parallaxes. To
allow for this fact, we define the quantity K,(m, u) as

number of stars with chosen (m, 1) (4-28)

K m, u) = -
1lm, ) number of stars with chosen (m, ) and measured n

Those stars referred to in the denominator of this ratio will, of course, have
some distribution over parallax. If we can assume that all stars in the (m, p)
group have the same distribution, then K,(m, u) is a valid estimate of the
factor by which any star with some measured parallax within some (m, )
group should be multiplied to give the total number that really have that
value of the parallax in that (m, ) group.

If we now turn to the parallax catalogs, we can find the number of stars
with a specified m and observed parallax ©'. Each such star has a known
proper motion u, and, to correct for incompleteness of the parallax data, we
count it as K,(m, p) stars using the factors just derived. By summing over
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all values of u at a set of fixed values of (m, 7'), we can then construct nu-
merically the distribution function Gy(m, 7’ | U > lg), which gives the number
of stars of apparent magnitude m and parallax =’ for all proper motions
down to the limit u, specified earlier.

We must now consider the effects of errors in the measured parallaxes.
If the errors of measurement are random, then it is reasonable to compute
the probability of measuring a parallax n’ for a star of true parallax © from
the Gaussian distribution

P, m) = <°'756>e—<“'-")’/"2 (4-29)

where ¢ is /2 times the standard deviation of the measuring errors. If the
true distribution of stars over parallax is f(n), then the observed distribution
fops(m') will be given by

0.56

foul) = ( ) [* faete==riean (4-30)

()

We wish to determine f(r) from the observed function f,,(n'); to do this
we must deconvolve equation (4-30). If ¢ is small, we can perform the de-
convolution approximately in the following way. Suppose we expand f(r)
in a power series around n = 7'; that is, we write

f@) = f(@) + (0 — D)f (@) + 3(n — 2Pf"@) + -0 (431)

Substituting this expression into equation (4-30), we find that the dominant
terms that survive the integration are

fons(®) = f(@) + 30°f"(@) + 0(c*)

If o is small, then we can neglect the higher-order terms, and because we
expect the correction term to be small (it is proportional to ¢%) we can
approximate f”(n)—the second derivative of the true distribution with
respect to m, evaluated at m'—by fi(n')—the second derivative of the
observed distribution function, which can be estimated numerically by dif-

ferencing the data. Hence we can write
J1) X forsm) — 20°f Gos(m) (4-33)

In practice this result is useful only if o, which can be estimated directly
from the parallax observations, is small and if the data are smooth enough
to survive two differencing operations and still yield a reasonably good
estimate of 1.
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We make use of equation (4-33) in the following way. If we simply disregard
proper motions for the moment, then, at a specified value of m, the function
Go(m, 7' | U > o) gives the number of stars as a function of 7'. We can identify
this distribution with fys (7') and apply equation (4-33) to obtain the true
distribution f(m). By carrying this procedure through at each successive
apparent magnitude m, we obtain the corrected distribution function,
G(m, | > po).

Next, we must allow for the fact that some stars within the 50-pc sphere
have proper motions below our completeness limit, that is, 4 < po. These
stars are missing from the proper-motion catalogs, but they must, of course,
be included in the determination of ®(M). Given a kinematic model for the
distribution of stellar random velocities, both in direction and in speed, we
can calculate the distribution of proper motions that we will observe for a
group of stars at some specified distance. Hence it is possible to evaluate a
correction factor K(m, 7| o), such that the function

Flm, m) = Ka(m, 7| 10)Glm, |t > o) (4-34)

is the total number of stars of apparent magnitude m and parallax = within
the 50-pc sphere, irrespective of proper motion. The value obtained for
K;(m, n[uo) depends mainly on the direction and magnitude of the solar
motion (see §6-3) with respect to the stars under study and on their random-
velocity dispersion. The dependence of K, upon m is very weak. The cal-
culation of K,(m, 71:[ Uo) can be based on an ellipsoidal random-velocity
distribution (see §7-1), which is a superposition of three independent Gaussian
distributions having different dispersions along three orthogonal axes, ori-
ented in a particular way with respect to the galactic center. The details of
the computation are a bit too lengthy to discuss here, but they are described
briefly in (T4, 375-377). Typical values for K,, computed for an isotropic
random-velocity distribution and averaged over the sky, are given in Table
4-4 for a representative range of 7. When K, is large, say 2 or greater, it is
obvious that the majority of the stars in the corresponding (m, ©) group are
missing from the catalogs, and hence the statistical sample is too small to
yield reliable results. Such groups are therefore excluded from the analysis.

Table 4-4. Correction Factor K (m, m|u,)

m K,(m, ©]072) K, (m, ©[075)
0702 2.7 830
0705 1.18 2.7

0710 1.04 1.28
0720 1.01 1.06

SOURCE: (T4, 377), by permission
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The region of the (m, 7) plane within which G(m, 7) can be determined reliably
is shown in Figure 4-5.

The final step in deriving ®(M) is to convert G(m, «), the distribution over
apparent magnitude m, into a distribution H(M, ) over absolute magnitude
M by use of the relation

M=m+5+5logn (4-35)

This conversion can be done reliably within the shaded region shown in
Figure 4-6. We then choose a specific value of M and sum the tabulated values

M
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12+ 42
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10 B 23
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6 B 65.5 transformation of G(m, ) to H(M, r).
b 65.5  The numbers at the right-hand edge
- 65  of the diagram are the volumes (in
2 % units of 103 pc®) employed in the
i B T504 magnitude ranges indicated, as de-
L Ll 111y, 367 scribedin the text. [From (T4, 379),

0.02 0.16 030 = by permission. |
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of H(M, ) over the range of 7 for which data exist. Finally, we divide this
sum by the volume corresponding to that range of 7, which yields an estimate
of ®(M), the number of stars of absolute magnitude M per cubic parsec in
the solar neighborhood. Repeating this procedure for successive values of
M yields the full run of ®(M).

The results for the general luminosity function as obtained by van Rhijn,
McCuskey, and, most recently, Luyten (L.3) are presented in Table 4-5. This
luminosity function is often referred to as the van Rhijn luminosity function in

Table 4-5. General Luminosity Function

(Z/Z o)
log ®(m) + 10 ®(M) per 10* pc? per 10* pc?
(M| M 5)
M M, M, M, M, Photo | Vis per 10* pc?
<—6 3 1
—6 2.4 2.1 0.0002 0.0001 6 3 0.005
=5 3.1 2.8 0.0012 0.0006 13 6 0.02
—4 3.63 3.46 0.0043 0.0029 17 11 0.06
-3 4.21 4.10 0.016 0.013 26 20 0.17
-2 4.77 4.72 0.06 0.05 37 33 0.5
-1 531 5.40 0.20 0.25 51 63 1.6
0 5.87 6.05 1 1 74 112 4
1 6.36 6.54 2 3 91 138 10
2 6.70 6.80 5 6 79 100 12
3 6.98 7.06 10 12 60 72 18
B 7.19 7.28 15 19 39 48 23
) 7.34 753 22 34 22 34 37
6 747 7.63 30 42 12 17 38
7 7.53 7.55 34 33 5 6 26
8 7.61 7.62 41 42 3 3 26
9 7.70 7.73 59 54 1 1 29
10 7.81 7.89 65 78 1 1 34
11 7.90 7.99 80 98 35
12 797 8.03 93 107 34
13 8.01 8.07 102 117 28
14 8.06 8.11 115 129 23
15 8.10 8.10 126 125 20
16 8.08 8.08 120 120 15
17 8.03 8.03 107 107 9
18 795 792 89 83 6
19 7.8 7.7 63 50 4
20 7.6 7.5 40 30 2
21 73 71 20 13 il
22 6.9 6.7 8 5 1
Total 1247 1310 540 669 437

SOURCE: (A1, 248), by permission
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recognition of van Rhijn’s pioneering efforts in its determination. The first
column of the table gives the absolute magnitude of the group considered.
The second and third columns give logarithms of ®(M), the number of stars
of absolute magnitude M per cubic parsec, for two different magnitude scales,
M,, and My, respectively. The fourth and fifth columns give ®(M) directly.
The sixth and seventh columns give the light emitted by each absolute-
magnitude group per unit volume in the photographic and visual bands,
respectively, in solar units. The last column gives the mass density per unit
volume in solar units. A scale factor of 10* has been incorporated into
columns 4 through 8 for convenience, so that the numbers given there are
appropriate to a volume of 10* pc®.

The basic significance of the results in Table 4-5 is that they begin to provide
the outlines of a picture of the properties of the stars found in a typical volume
element of the galactic disk. Details of the picture will begin to emerge when
we break the data down according to spectral types and stellar-population
groups. Inspection of Table 4-5 reveals several noteworthy features.

First, we see that most stars in the solar neighborhood are intrinsically faint.
The maximum in ®(M) occurs near M,, ~ 15.5. These stars are typically K
and M dwarfs. This fact alone shows the extreme value of being able to make
a detailed analysis of the local neighborhood, for it is obvious that we shall
never be able to analyze such faint stars at remote locations in our Galaxy
(not to mention other galaxies!), and yet these are by far the most common
stellar constituent of galaxian disks.

Second, we see that essentially all the light emitted per cubic parsec is con-
tributed by intrinsically luminous stars despite the fact that they are extremely
rare. The peak emission comes from stars with My ~ +1. These stars are
typically A dwarfs and K and M giants. It is worth stressing just how strong
this bias toward high luminosities really is. For example, stars at M, ~ —3,
typically B stars, emit as much light per unit volume in the ¥ band as do the
stars at M, ~ +6, mostly G and K dwarfs, even though the latter are 4000
times as numerous and contain 225 times as much mass! The average light
output per unit volume is about 0.067 solar unit pc ™ in the visual band and
about 0.054 solar units pc~3 in the photographic band, which implies that
the average color of the light emitted from the disk is somewhat redder than
solar radiation. The redder color results from the fact that a large fraction of
the most luminous stars in the disk are red giants, whose spectrum would in
fact dominate in the integrated spectrum of the disk that would be measured
by an external observer.

Third, we see that most of the stellar mass density in the solar neighborhood
is contributed by the vast number of low-luminosity stars. This situation has
the unpleasant implication that the dynamics of our Galaxy are dominated
by stars that are at best inconspicuous, while those very luminous objects
that we can so readily observe in our own Galaxy and in other galaxies con-
tribute but little to the gravitational forces in the system. Therefore, except
insofar as the few high-luminosity stars can be used as tracers of the entire
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population, it is dangerous to assume that the luminosity density in galaxies
is proportional to the mass density. The only safe procedure is to infer the
mass distribution by studying the gravitational field of the whole system
through dynamics of the population of bright stars. We shall often have occa-
sion to return to this point in the following chapters. The total mass density
from the stars in Table 4-5 is about 0.044.# ,, pc~ 3. However, these data omit
most of the white dwarfs, which are numerous but intrinsically very faint
(My ~ +13 to +16) and yet have masses of the order of 0.5 to 1.4 per
star. When the white dwarfs are taken into account, one finds (W1) that they
contribute approximately an additional 0.02.# ¢ pc~3 (see Tables 4-7, 4-9,
and 4-10). Hence the total stellar mass density is about 0.065.# ¢ pc 3. This
number gives a feeling for the relative emptiness of space in the galactic disk
in the solar neighborhood.

Fourth, we see that the average mass-to-light ratio, that is, the mass per
unit volume divided by the light emission per unit volume (in solar units),
is about (/L) =~ 0974 /<, in the visible band and about 1.2 in the
photographic band. In round numbers, the light emitted by the diverse mix-
ture of stars found in the solar neighborhood averages out to about one solar
luminosity per solar mass. These numbers are useful, for, insofar as they are
typical for a galaxian disk, they can be used to convert observed light dis-
tributions in other galaxies into rough first estimates of stellar mass distri-
butions, thereby providing some input into dynamical analyses of these
objects. On the other hand, note that even for the solar neighborhood the
value for (/%L gpservea just quoted is surely a lower limit, because many
kinds of objects (for example, faint companions in multiple stars, dead white
dwarfs and neutron stars, stars lost in dense interstellar—mparticularly
molecular—clouds, and so on) would evade discovery. Cumulatively, these
objects could add appreciably to the mass density while contributing
nothing to the emitted light.

We have mentioned that the actual stellar composition of a sample volume
in the galactic disk is strikingly different from that which would be inferred
from examining a sample of apparently bright stars, because the latter con-
tains a disproportionately high number of intrinsically luminous stars. These
stars can be seen to large distances and hence through a larger volume
than faint stars. This disparity is shown clearly in Table 4-6, which gives
¢(MV|V < V), the expected distribution of 100 stars having M, < 5 in
samples that are complete down to an apparent magnitude ¥, (for two
values of V), and ¢(M), the general luminosity function normalized to
100 stars with M, < 5.

If any one point emerges from the preceding discussion, it is that the be-
havior of ®(M) at faint magnitudes is of great importance to galactic research.
For this reason, a tremendous effort has been lavished on its determination.
A perennial question has been whether the decrease of ®(M) for M, > 15.5
shown in Table 4-5 is real or whether it is a spurious result produced by
incompleteness of the observational data. For example, a few years ago, the
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Table 4-6. Absolute-Magnitude Distribu-
tion of Apparently Bright Stars Contrasted
to General Luminosity Function

M|V < Vo)
M,y Vo = 2.5% Vo=6 d(M)
<—6 6 0 0
—6 7 1 0
—35 9 1 0
—4 10 3 0
-3 10 7 0
—2 9 10 0
-1 12 14 0.5
0 17 18 1.5
1 12 21 4
2 5 15 8
3 2 6 16
4 1 3 25
5 0 1 45

* These data are smoothed.

claim was made that the standard general luminosity function grossly under-
estimates the density of M dwarfs and that these stars actually occur in such
large numbers as to almost double the local mass density attributable to
stars. For reasons that we will discuss in the companion volume to this book,
this claim produced considerable interest among astronomers studying the
dynamics of our Galaxy, but, in the end, it was shown to be false, having
been the result of a systematic error in the photometry of the faint red stars
being studied.

The practical difficulties faced in the determination of ®(M) for M > 15
are formidable. First, observations to very faint apparent magnitudes, m ~ 18
to 20, are required. Second, an extensive search for faint stars with large
proper motions must be made to identify, among the multitudes of stars in
this apparent-magnitude range, those stars that are likely to be close to the
Sun. Finally, accurate distances must be determined for a sizeable fraction
of these stars. The most extensive body of data for this type of analysis has
been accumulated with the Palomar 48-inch Schmidt telescope by Luyten,
who has unselfishly devoted a lifetime of effort to determining ®(M) at the
faintest magnitude limits now accessible. An alternate approach has been
followed by van de Kamp, who has attempted to make a complete census of
all the stars within a few parsecs of the Sun. The difficulty here is that this
census can be done in only a very small volume of space, and the resulting
sample is small and totally omits many stellar types. Nevertheless, it provides
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important information about the number of stars in binaries and multiples
and about the occurrence of white dwarfs. For example, out to about 10 pc,
one finds a sample of 8 white dwarfs, 2 subgiants, and 245 main-sequence
stars down to M, = 18. This sample includes no O-B stars and only 4 A
stars. It contains no giants or supergiants, and at least 509, of the stars are
members of binaries or multiple systems. Similarly, one can use Gliese’s
catalog of stars within 20 pc to estimate ®(M). The results (W2) for M, < 13
are in excellent agreement with Luyten’s results; for stars fainter than this
limit, the data in Gliese’s catalog become seriously incomplete and yield only
lower bounds on ®(M).

At the present time, the evidence seems categorically to support the exis-
tence of a maximum in ®(M) near M, ~ 15.5, with a subsequent decline at
fainter luminosities. Nevertheless, we may not yet have the complete picture.
In particular, there could be huge numbers of dark objects (for example,
degenerate stars, black holes, or merely substellar masses) that are unde-
tectable by current radiation-measuring techniques, but which nevertheless
contain enough material to contribute significantly to the total mass density
and to influence galactic dynamics. As this issue is, at present, only specu-
lative, we shall leave it for future research and turn to another matter.

The Luminosity Function for a Specified Spectral Type, ®(M, S) The van
Rhijn luminosity function lumps together all spectral types, and, at a given
M, several radically different kinds of stars may contribute to ®(M). As men-
tioned earlier, the use of ®(M) in general star-count analyses leads to a loss
of resolution in the solution for stellar space densities. Moreover, ®(M) does
not apply universally throughout our Galaxy, particularly at points away
from the galactic plane. Most important, by lumping spectral types together
indiscriminately, we obliterate information of great astrophysical interest. It
is essential, therefore, to study the luminosity function for stars of specified
spectral types.

To determine ®(M, S), we proceed essentially as we did before for ®(M),
but for one spectral type S at a time. The same problems arise as before, one
of the more troublesome being the scarcity of intrinsically bright stars. Re-
sults from several studies of ®(M, S) are summarized in Table 4-7, which gives
numbers of stars per 10° pc®. These data can be used to construct a Hess
diagram, which is, in effect, a relief map of the conventional H-R diagram, in
which one plots contours of equal stellar space density in the (M, spectral
type) plane [see (T4, 393) for an example].

Detailed studies of individual groups of stars of specified MK type show
that, to a very good approximation, the data can be represented by a dis-
tribution function of the form

(D 2 2
OM, §) = sy ¢ MO (4-36)
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Table 4-8. Parameters M, and
gin ®(M, S)

Spectral type M, o

B0-B1 —40 10
B2-B2 -20 11
B5 —10 09
BS-A0 +05 1.0
A2-A5 +15 10
dFO-dF5 +30 10
dF8-dG2 +45 11
dGs +55 11
dG8-dK3 +60 12
dK <73 15
G +20 09
gk +24 08

SOURCE: (A1, 200), (B7, 23), (M5)

That is, the stars scatter around a mean magnitude M, in a Gaussian dis-
tribution with dispersion . This is an extremely useful result, for, as we shall
see, it makes possible a clever analytical method for solving equation (4-19)
for the stellar space-density function. The coefficient @, in equation (4-36) is
just the number of stars per pc® for the chosen spectral type (or group of
types), as given in Table 4-7. The value of M, is the mean absolute magnitude
assigned to the type or types within a group by the fundamental calibration
procedures described in §3-5 (see Table 3-2). The dispersion o represents (1)
the intrinsic cosmic dispersion associated with individual MK types (recall
that the classification procedure segregates stars into discrete categories,
which necessarily must embrace a spread of stellar properties), (2) the addi-
tional spread that may result if a range of types are grouped together, and
(3) the scatter caused by errors in the actual spectral-classification procedure
used in selecting stars for the star counts (usually done at much lower dis-
persion than fundamental MK classification work). Typical values of M,
and ¢ for representative stellar groups are listed in Table 4-8. Note that the
stars listed as G and K giants are a mixture of giants and subgiants.

Given the information about ®(M, S) contained in Table 4-7, we can now
partition the data in the direction orthogonal to that chosen in constructing
®(M), that is, we can group stars according to spectral class and luminosity
class only, irrespective of their absolute magnitudes M. We then obtain the
values listed in Table 4-9 for the total numbers of stars (down to My, = +16)
per 10° pc?® in each spectral group. This table shows that the total space
density of white dwarfs in the solar neighborhood is about 309, that of main-
sequence stars, while the total density of giants and supergiants is about 19
that of the main sequence. The local mass density of these stellar types is
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Table 49. Number Density of Stars by Spectral Type; log (number/10° pc?)

Spectral class

Luminosity group O B A F G K M Totals
Giants and supergiants 1.7 22 2.6 14 2.8
Main sequence —16 2.0 2.7 34 38 4.0 4.8 49
White dwarfs 3.8 4.0 3.7 3.7 34 44

SOURCE: Adapted from (A1, 247), (A1, 249), by permission

Table 4-10. Mass Densities (. 5/10° pc®) of Various Objects in the

Solar Neighborhood
Object Mass density Object Mass density
O-B 0.9 White dwarfs 20

A 1 Cepheids 0.001
E 3 Long-period variables 0.001
dG 4 Planetary nebulae 5 x 107¢
dK 9 Galactic clusters 0.04
dM 25

G 0.8 Subdwarfs 0.15
gk 0.1 RR Lyrae variables 1076
M 0.01 Globular clusters 0.001

SOURCE: Adapted from (A1, 247), (A1, 251), (O4), and (S5), by permission

given in Table 4-10, which again shows how the dynamical effects arising from
stars in the disk are dominated by the most inconspicuous stars—the K and
M dwarfs and the white dwarfs. For completeness, the table also lists average
mass densities from other distinctive disk objects. The last three entries give
local densities of members of the spheroidal component (that from globular
clusters being averaged over a spherical shell of the appropriate radius). Of
these objects, only the subdwarfs have an appreciable local mass density,
about 3% of the total. As we shall see in §4-4, the situation is entirely different
near the galactic center, where the mass density of the spheroidal component
dominates that of the disk.

The Initial Luminosity Function and Initial Mass Function The general lu-
minosity function ®(M) describes the stellar composition of a unit volume
in the solar neighborhood at the present time. The distribution of stars over
luminosity, or mass, implied by ®(M) is not, however, an accurate represen-
tation of the relative frequencies with which these stars are formed. This is
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because the main-sequence lifetime tys(.#) of stars decreases rapidly with
increasing mass. Therefore, below some critical mass .#,, somewhat smaller
than a solar mass .# o, stars will persist on the main sequence for periods
longer than 7¢, the age of our Galaxy, whereas stars with .4 > .4, will
evolve away from the main sequence and subsequently “die” quietly as white
dwarfs or explosively as supernovae, in a period Tys(#) < t¢. Thus the
faint end of ®(M) contains stars that have been created throughout the
entire lifetime of our Galaxy (or at least the lifetime of the disk), while, for
brighter and brighter stars, ®(M) comprises the stars formed over an ever-
decreasing fraction of that period. Clearly, this effect leads to a great prepon-
derance of low-mass, faint stars, and it gives a very distorted picture of the
direct results of star formation.

To describe the rate of star creation as a function of luminosity, E. E.
Salpeter introduced (S1) the initial luminosity function ¥ (M), which gives
the relative numbers of stars formed, per unit magnitude interval per unit
volume, as a function of M. An equivalent description is given by the initial
mass function (), which gives the numbers of stars formed per unit mass
interval in a unit volume as a function of mass .#. Although these functions
have no direct relevance to star-count analyses, they are of considerable
theoretical importance, and it is convenient to discuss them here.

One can attempt to derive the initial luminosity function ¥ in two ways:
(1) By determining the relative numbers of main-sequence stars as a function
of My in extremely young clusters, one finds W for stars up to the turnoff-
point luminosity. By studying several clusters and using matching techniques
similar to those employed in the derivation of the ZAMS, and by normalizing
¥ to @ at the faint end, one can estimate ‘¥ all the way up to the intrinsically
most-luminous stars. (2) An alternative approach is to use theoretical main-
sequence lifetimes and write

¥Y(My) = ®(My) for  vs = 16 (4-37a)
and
P(My) = S O(M,)  for  Tus < T (4-37b)
MS

Equations (4-37a and b) tacitly assume that W(M,) has been independent
of time. If the form of W(My) has remained unchanged, but the rate of
birth of stars has been decreasing with (suppose) an exponential rate
exp(—at), then the factor (t4/tys) in equation (4-37b) should be replaced by
(te)exp(tga)/[exp(tmset) — 1]. Then, by requiring that the two methods
of deriving W(M) just described should agree, we derive some information
about «, which indicates that star formation has been a slowly declining
function of time: £ < 7500 < 2.
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Figure 4-7. Comparison of the
initial luminosity function

4= —  W(M,) with the general
luminosity function ®(M).
Ordinate gives (log @ + 10) or

log (@ or ¥)+10
w
I
|

3 7 (log¥ + 10), that is, the
logarithm of the number of
9 I I | | | stars in a volume of 10*° pc?;
-6 —4 -2 0 2 4 6 abscissa gives absolute visual
M, magnitude M.

Several different studies have been made to determine the initial luminosity
function [see, for example, (M3), (S1), (S2),(S3), (S4)].Both ¥(My) and O (M)
are plotted in Figure 4-7, where we can see that the formation of a luminous
star is not in reality a very rare occurrence. Even B stars are created about
10%; as frequently as solar-type stars.

The initial luminosity function W(M,) yields the initial mass function
E(A) via the known mass-luminosity relation for main-sequence stars (see
Table 3-6). Salpeter found (S1) that, to a fair approximation, the results
could be represented by a simple power law,

EM) = C(M| M) (4-38)

More recent work has shown that &(.#) is significantly flatter than this for
low-mass stars [exponent &~ —1.25 for 04 < (#/ M) < 1] and signifi-
cantly steeper for high-mass stars [exponent ~ —3.2 for 3 < (M) Mo) S
20]. Certain important statistical calculations will contain significant errors
if a constant exponent is used for all masses.

If ¢() is regarded as known and is assumed to have the same form at all
times, then one can write the stellar birthrate function in the galactic disk,
that is, the number of stars born per unit volume in the mass range (./,
M + dA)and time interval (t, t + dt) as

b(AM,t)dM dt = E(M)B(t)dA dt (4-39)

where fS(t) is the total birthrate function (see §3-7) and E(#) is presumed to
be normalized over all masses. If this description is accurate, then one can
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compute v(.#), the present space density of stars of mass .# (at time t¢), as
W) = [1 b, 0)de = &) [ Be)yde = EMKByTe  (4-40)

for stars whose main-sequence lifetimes exceed 74, and as

VM) = b(M,t6) s (M) = S(M)B(t6) tms(A) (4-41)

for short-lived stars. By fitting the predicted results to presently observed
conditions in the galactic disk, one can develop an understanding of the
time variation of star formation in the disk, and with it the history of the
chemical composition of the disk, topics to which we shall return in Chapter
19.

There is no strong reason to suppose that £(.#) is a universal function,
valid at all positions and times in our Galaxy. Indeed, considering that the
physics of star formation ought to depend on the physical properties of the
material (for example, its composition) and on local conditions (shear and
turbulence in the primordial gas, magnetic fields, and so on), one would
expect it not to be. It may thus be necessary to admit functions of the form
&, t) or even E(,r, t), where ¢ and r denote age and position in our
Galaxy of the material from which the stars form.

The Luminosity Function for Spheroidal-Component Stars The spheroidal-
component stars have a markedly different chemical composition from disk
stars, and they are, on the average, much older. We therefore expect them
to have a distinctive luminosity function. Again, although this function is
not of direct relevance to space-density analyses, it is convenient to discuss
it here. The representatives of the spheroidal component in the solar neigh-
borhood, namely, the subdwarfs, are very rare, and only a small sample
have reliable parallaxes. It is therefore quite difficult to use these objects
to deduce a luminosity function.

The first attempts to derive a luminosity function for spheroidal-compo-
nent stars used star counts in globular clusters that had been observed down
to the main sequence (for example, M3, M13, M15, M92, and 47 Tuc) and
for which reasonably accurate absolute-magnitude scales had been estab-
lished. These data gave relative numbers of stars down to about M, ~ +5.
On the (reasonable) assumption that, at fainter magnitudes, ®(M,,) for the
globular-cluster stars has about the same shape as the general luminosity
function for disk stars, it has been customary to normalize the two to the
same value at M, = +5 and to extrapolate the globular-cluster function to
fainter magnitudes by using the disk function. The results of this procedure
are given in Table 4-11 and are plotted in Figure 4-8. At some future time,
observations of globular clusters with the Space Telescope should directly
yield ®(M,) down to much fainter absolute magnitudes.
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Table 4-11. Luminosity Function for Globular-Cluster Stars*

My, log ®(My) + 10 M, log (M) + 10
-3 4.0 4 73
=2 54 5 75
-1 5.7 6 76
(1) 2(2) ; Probably the same as the
2 6.3 9 general luminosity function
3 6.8 10 for disk stars (Table 4-5)

* Arbitrarily normalized to disk luminosity function at M, = 5.
SOURCE: (A1, 249), by permission
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general luminosity function for
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In comparison to the general luminosity function, the globular-cluster
function (normalized as just described) shows a deficiency of stars on the
range 1 < M, < 4.This situation occurs because, in globular clusters, such
stars are subgiants and giants passing through evolutionary phases with
lifetimes that are short compared to the main-sequence lifetimes of disk stars
on the same absolute-magnitude range. The bump at M, ~ 0 is produced
by the concentration of globular-cluster stars on the horizontal branch. The
relative excess of stars on the range —3 < M, < 0 results from the well-
developed giant branches in globular clusters and from the rapid decrease
in the main-sequence lifetime of massive disk stars, which produces a rapid
drop in the general luminosity function ®(My) for luminous stars. [ Notice
that the initial luminosity function W(M,) lies well above the globular-
cluster luminosity function ®(My) in this absolute-magnitude range. ] Finally,
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the globular-cluster luminosity function terminates at M, ~ —3, because
these are the brightest stars in globular clusters, while the luminosity func-
tion for the disk, of course, persists to brighter magnitudes.

Only recently have enough data accumulated to permit one even to
attempt a direct estimate of the space density and luminosity function for
spheroidal-component stars in the immediate solar neighborhood. An anal-
ysis by Schmidt (S5) of some 125 stars, constituting a complete sample of
subdwarfs with M, < 16 and u 2 1”3 year, yiclded a total number density
ofabout 2 x 10~ *stars pc™ 3, a mass density of about 1.5 x 10™“.# ¢ pc™?,
and a luminosity density of about 4 x 107°% o pc~>. Thus the average
mass-to-luminosity ratio for halo stars in the solar neighborhood is roughly
(ML =~ 546/ o. It should be stressed that this analysis is extraordi-
narily difficult, and great skill and care must be exercised in applying appro-
priate statistical corrections to the very limited body of data now available.
The situation should improve as continued observational work yields proper
motions and parallaxes of a larger group of halo stars.

Mathematical Solution for the Stellar Density Function

Let us now consider how one can actually solve the integral equations (4-19)
or (4-20) for D4(r) of D(r). More precisely, we shall focus on the solution of
equation (4-24) for the fictitious density function Ag(p), with the under-
standing that we will later convert Ag(p) into Dg(r) using a known run of
the absorption with distance, a(r). Thus, suppose that, in a field subtending
asolid angle w, we are given a set of observed star counts A(m, S), the number
of stars of spectral type S in the apparent magnitude range (m — 3, m + 3),
along with a known luminosity function ®(M, S). We then wish to solve
the equation

A(m, S) = @ fo‘” As(p)®(m + 5 — 51log p, S)p* dp (4-24)

for Ag(p). There are two commonly used methods of effecting this solution.
We shall discuss each of these in some detail as illustrations of the practical
difficulties involved in obtaining physically acceptable solutions to integral
equations of the type of equation (4-24) from noisy data. We shall encounter
similar difficulties on many occasions in subsequent chapters, and it is
important to understand how one treats problems of this type, and why.

Method of (m,log m) Of the two methods that we shall describe, the
method of (m, log ) is the more general and flexible because it makes few
restrictive assumptions and can be used with an arbitrary luminosity func-
tion. We begin by replacing the integral by a summation over discrete
spherical shells. This may be done in several ways, the simplest being to
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represent the product of A times @ as a step function having a constant
value within each shell. Then

Am, 5) = ), As(p)®(m + 5 — 5log p, S)oV; (4-41)

k=1

where 0¥, equals the volume of shell number k. The shells are customarily
chosen [see, for example, (B7, 26—-37)] so that their midpoints lie at distances

log p, = —log m, = &k k=12..) (4-42)
All stars in the kth shell are, in effect, assumed to lie at distance p,. The
spacing Alog p, = 0.2 between successive shell centers is a convenient
choice, which causes the brightnesses of identical stars in neighboring shells
to differ by exactly 1 mag. The edges of the kth shell are chosen to be at
Pr+1/2, Where

log Pr+1/2 = 1_20(k + %) (k=1,2,...) (4-43)

The first shell is taken to be a complete sphere having p, ;2 = 0. The volume
of the kth shell within a field subtending a solid angle w (in steradians) is

oV = %W(Pgﬂ/z - Pf~1/2) (4-44)

Typical values of p,, and of 6V for a 1° x 1° field, are listed in Table 4-12.
It is evident that the volume of each successive shell increases by about a
factor of four over its predecessor [A(log 6V;) = 0.6].

Table 4-12.  Shell Centers, Edges, and Volumes in Method of (m, log )

Shell edges
Shell number Shell center Shell volume 6V

k log py log px—1,2 1og pys1/2 (pc®) for 1° x 1° field
1 0.2 - 0.3 8.12 x 1074
2 04 0.3 0.5 240 x 1073

3 0.6 0.5 0.7 9.56 x 1073
4 0.8 0.7 0.9 3.80 x 1072

5 1.0 0.9 1.1 0.15

6 1.2 1.1 1.3 0.60

7 14 1.3 1.5 2.40

8 1.6 1.5 1.7 9.56
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Once we have chosen volume elements J6V; and have evaluated
®(m + 5 — 5log py, S), equation (4-41) for several values of m constitutes
a set of linear equations for the unknowns, A(p,). These equations can, in
principle, be solved directly by standard methods. Such an approach usually
fails, however, because the data A(m, S) normally contain substantial random
errors, and the system of equations is so poorly conditioned (especially for
general star counts) that it is unstable, so that one obtains nonsensical
results [for example, negative values of Ag(p) or wild fluctuations in Ag
from shell to shell]. To overcome these problems, one can use specially
developed least-squares techniques, or one can even turn to a trial-and-error
hand-calculation procedure, which allows one to monitor the solution and
find one that fits the data to within the errors and is physically plausible.

As an example, suppose we wish to analyze a given body of general star-
count data. We choose a set of shells as described, and, using the general
luminosity function given in Table 4-5, we form a table of the product
®O(m + 5 — 5log p,)dV,, in which the rows are evaluated at constant log py,
and successive columns at constant m, in 1-mag steps over the relevant
range. An example for a 1° x 1° field is shown in Table 4-13 [see also
(B7, 26—-30)]. The last column in the table gives the logarithm of the volume
elements 6V, in each shell, except for the first entry, which is for the volume
of a complete sphere of radius p; = 12.6 pc. Each entry in this table corre-
sponds to a definite (integer) value of the absolute magnitude M, and it gives
the number of stars at this absolute magnitude in the volume element 6V}
if A(p,) = 1. Note that lines of constant M run diagonally across the table
from upper left to lower right. Successive rows correspond to stars that are
1 mag brighter in absolute magnitude than in the preceding row.

To determine A(p), we begin by making some initial estimate of this
function. For example, as a first guess, we might assume that A(p) = 1 for
all values of p, that is, that the stellar density is everywhere the same as in
the solar neighborhood. Then, for each successive column, we multiply the
appropriate entries in Table 4-13 by the assumed A(p) and sum down that
column to obtain, at a definite m, a computed value for A(m). Ideally, this
computed value should agree with the observed value. In general, we will
find that the computed and observed values do not agree. We therefore go
back and adjust A(p,) at each p, in such a way as to yield computed values
of A(m) that more nearly equal the observed values. This adjustment process
can be repeated again and again until we obtain agreement of the computed
and observed values of A(m) to within the accuracy of the observational data.
The final step is to use the absorption function a(r) (determined observa-
tionally or merely estimated) to convert p into r by equation (4-15), and
A(p) into D(r) by equation (4-26). Improvements and extensions of this basic
technique are described in (T4, 454—-481).

To illustrate the method, suppose we analyze the observed values of
A(m, 0°) given in Table 4-1. Following the procedure just outlined, we
obtain the fictitious density distribution A(p) given in Table 4-15. This
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Table 4-14. Example of Observed and Computed
Star Counts

Observed Computed

m A(m) log A(m) A(m) log A(m)

8 1.26 0.10 1.26 0.10

9 3.80 0.58 3.85 0.59
10 11.0 1.04 10.7 1.03
11 31.6 1.50 31.6 1.50
12 87 1.94 87 1.94
13 224 2.35 229 2.36
14 575 2.76 572 2.75
15 1410 3.15 1368 3.14
16 2885 3.46 3160 3.50
17 6920 3.84 7032 3.85
18 15850 42 15170 4.18

Table 4-15. Example of Stellar Density Distri-
bution Derived from Star Counts

logp  A(py*  logr'  r(pc)  D()*

1.0 1.00 1.00 10 1.00
1.2 0.98 1.19 155 1.00
1.4 0.96 1.38 24 1.00
1.6 0.91 1.57 37 0.98
1.8 0.81 1.76 57.5 0.90
20 0.69 1.96 91 0.82
22 0.55 2.15 141 0.72
2.4 0.43 2.34 218 0.64
2.6 0.33 2.52 331 0.60
2.8 0.25 2.70 502 0.61
3.0 0.19 285 708 0.67
32 0.14 3.00 1000 0.81
34 0.10 3.12 1320 0.99
3.6 0.06 3.24 1740 1.19
3.8 0.031 3.34 2190 1.33
4.0 0.018 3.44 2760 1.85
4.2 0.010 3.52 3330 2.51
4.4 0.005 3.60 4000 3.56
4.6 0.0025 3.65 4460 3.61

* In units of the density in the solar neighborhood
* Obtained on the assumption that a(r) = kr, with
k = 1 mag kpc™!
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density distribution yields the computed counts shown in Table 4-14, which
are seen to be in satisfactory agreement with the observed counts. (Note
that to obtain the computed values for m > 16, the contributions of A out
to log p ~ 5.2, extrapolated linearly in a plot of log A versus log p, must be
taken into account.) To convert A(p) to D(r) in this example, we have as-
sumed that a(r) = kr, with k = 1 mag/kpc. From these results, we see that,
when absorption is neglected, there is a sharp apparent decrease of the
density with distance. Indeed, our results strongly resemble the Kapteyn
Universe. When absorption is accounted for, however, we obtain a radically
different solution. The density now shows a modest decrease out to about
500 pc and then increases. The density increase at large distances shown in
Table 4-15 is not real but is an artifact produced by an overcorrection for
interstellar absorption by our ad hoc absorption law. Had we chosen a
smaller value for k in a(r), we would have found a deeper initial drop in
D(r), with a final rise back to about unity. This ambiguity shows that it is
imperative to determine the interstellar absorption in a field with the highest
accuracy possible if one is to obtain results that are at all physically
meaningful from star-count analyses.

Malmgquist's Method If one obtains a solution to equation (4-24) by the
method of (m, log ) just discussed, one suppresses the tendency of the noise
in the data to generate physically absurd predictions for A(p) by hand
fitting, through trial and error, a run of stellar density A(p) that is both
plausible and compatible with the data. What one is really doing here is
picking, out of a range of mathematically possible solutions, that one which
conforms with one’s a priori conviction that the run of stellar density must
be a smooth function of distance. But, it is not necessary to do this by hand.
One can equally well pick out the desired physically acceptable solution by
constraining some part of the solution to be of a certain functional form.
Malmquist (M1), (M2) developed a technique of this second type for solving
equation (4-24). For the sake of definiteness, we shall assume that the effects
of interstellar absorption have been eliminated from the star counts prior to
their analysis (for example, by the use of multicolor photometry). If one
analyzes uncorrected data, the calculation proceeds analogously in terms of
the pseudodistances p introduced earlier.

Malmquist started by assuming that the luminosity function ®(M, S) is of
Gaussian form, with known amplitude ®,, mean M, and dispersion ¢. As
we saw [equation (4-36) and Tables 4-7 and 4-8], these assumptions are
valid if ®(M, §) describes the distribution of stars of any one MK type (or
a narrow range of types). Malmquist then sought the distribution ®,(M, S)
of the absolute magnitudes of the stars that are observed to have a certain
apparent magnitude m. If one can determine this distribution from the data,
one is close to a solution to Dg(r). Indeed, any scatter in the M values of
stars of fixed m must arise because the stars are distributed through a shell
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of a certain thickness in r, so, if one knows the distribution with respect to
M, one can readily deduce that in r.

Now, any reasonable distribution can be written as a Gaussian plus an
(infinite) series of functions that describe the deviation of the given distribu-
tion from the normal distribution. Malmquist expanded ®,,(M, S) in this
way, writing

A1) 12
o s - N0 {_ [M — M(m)]

(2n)2s,, 202

+ AN + -, (4-45)

}+ A3(DIH(M)

where M(m) is the mean absolute magnitude of the N(m) stars observed to
have apparent magnitude m, o,, is the corresponding dispersion of absolute
magnitudes, and the symbols ®"(M), etc., stand for certain polynomials
(Hermite polynomials) in y = [M — M(m)]/s,, multiplied by exp(—3y?).
The precise specification of the functions @™, @', and so on does not matter,
however. All one needs to know is that there exist certain functions that
allow expansion of ®,(M, S) in the form specified by equation (4-45), and
they are such that

[7 omamam = [ Moy am = |7 MPo™dM =0 (4-46)

and that the constants A4, can be determined from the nth moments
[ M"®,(M, S)dM of the distribution ®,(M, S).

Malmquist’s next step was the evaluation of these moments from the data.
Let g(m, r) be the number of stars at distance r that appear to be of magni-
tude m in a field subtending a solid angle w. Then M(m) is nothing but

oo fooo M(m, r)q(m, r)dr
m) =

fo q(m, r)dr

(4-47)

where M(m, r) = m + 5 — 5log r as usual. Now, from equation (4-18), we
see that

g(m, r)dr = ®[M(m, r), S]Ds(r)wr* dr = dA(m, S) (4-48)
and thus that

Am,S) = [ " qm, r)dr (4-49)
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Therefore,
M(m) = @ f M(m, r)®[ M(m, r), S]Dg(r)r? dr
A(m S) Jo
w D,

:Wmfoww 5 — 5logr)

(m+5—>5logr —
x exp| — 552

M 0)2} Ds(r)r*dr  (4-50)

where we have made use of the explicit form of ®(M, S) given by equa-
tion (4-36). Similarly,

— Slogr —
AN B P

A(m, S) = MO)Z}DS(r)rzdr (4-51)

and, by differentiation with respect to m, we obtain
dA(m, S) 1 o®y (o

(m+5—>5logr —
x exp| — 52

M 0)2] Dg(r)r?dr  (4-52)

Comparing equation (4-52) with (4-50), we easily see that

dA —
_02# = A(m, S)M(m) — A(m, S)M, (4-53)
and hence that
o>  dA(m, S) , dlog A(m, S)
IV = M, — uo? L8]y 54
M) = Mo — 2 0 = pot — #-59

Differentiating (4-52) again with respect to m and dividing by A(m, S), one
obtains, in analogous fashion, the dispersion ¢, of the stars observed to
have apparent magnitude m:

-
02 = g° Ll + ug? (4-55)

Continuing to differentiate (4-52) with respect to m, one obtains, successively,
the third, fourth, and so on moments of ®,(M, S), and thus (as Malmquist
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showed) the initially unknown cogfficients 4, of the expansion specified by
equation (4-45). For example, one has

_uo’3N(m) a3 log A(m, S)
6(2m)t/? dm?

Ay = (4-56)

Before proceeding further, it is worthwhile to notice an important conse-
quence of equation (4-54). If, as will normally be the case, more stars are
observed at faint magnitudes than at bright ones, so that (dA/dm) > 0, then
equation (4-54) predicts M(m) < M ,—that is, under these circumstances, the
stars one sees at a given apparent magnitude are, on the average, more
luminous than the average for all the stars in a given volume. This effect,
called the Malmquist bias, arises because, when one selects stars of fixed
apparent magnitude, the volume element containing the more distant, in-
trinsically luminous stars is larger than that occupied by the nearer, fainter
objects. The Malmquist bias also plays an important role in connection with
counts of radio galaxies, quasars, and other objects that have been used as
cosmological probes.

Let us now return to the problem of solving (4-24) for Dg(r). Malmquist’s
technique for preventing the noise in the data generating a physically un-
acceptable solution for @,,(M, S), and hence for Dg(r), was simple. He set all
the A4, in equation (4-45) to zero. That is, he considered that the expansion
(4-45) neatly divided the ®@,(M, S) that one would derive from a complete
analysis of the data into signal, in the form of the first (Gaussian) term, and
noise (everything else). Equations (4-56) and the analogous equations cou-
pling the other 4, to higher derivatives of the data indicate that it is indeed
unlikely that any useful information is contained in the part of equation (4-45)
neglected by Malmquist.

The procedure for determining Dg(r) from A(m, S) is now fairly straight-
forward. First, from the observed counts A(m, S), using equations (4-54) and
(4-55) we compute M(m) and o,, at each value of m (which we assume are
separated by a constant increment Am) for which we have data. The practical
difficulty encountered here is the evaluation of physically meaningful esti-
mates for (d4/dm) and (d*A/dm?) from data that inevitably contain apprecia-
ble random errors. Assuming that satisfactory values of M(m) and o,, can,
in fact, be derived, then, from each m at which we know A(m, S), we compute
®,(M, S) over that range of a predetermined set of M values within which
®,, is significantly different from zero. For convenience, we choose AM = Am.
The size of these steps should be smaller than the dispersion g, to ensure
that the Gaussian distribution is sampled adequately. This operation pro-
duces a table in which each entry gives the number of stars of absolute
magnitude M that have apparent magnitude m.

We next compute log r = 02(m — M) + 1 for each entry in the table.
Because we chose Am = AM for the magnitude differences between neigh-
boring entries in our table, only a discrete set, log r, of values of log r will
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arise in this way. These values will be constant on diagonal linesm — M =
constant through our table. Next, add the numbers along one of these lines
of constant r to find the total number of stars at each r,, irrespective of m
or M. We consider these stars to be distributed in a shell whose midpoint
radius is r, and whose boundary surfaces are at r, , ; 2 = (re+17)'?. Finally,
dividing by the volume 6V, of this shell (equation 4-44), we obtain Dg(ry),
the density of stars of all magnitudes at r, [see (B7, 37) for further details].
Malmquist’s method and variants based on it have often been used to
analyze the space distributions of well-defined classes of objects, such as
RR Lyrae stars (see §4-4).

4-3. THE DISTRIBUTION OF STARS AND
THE CHEMICAL ELEMENTS WITHIN THE DISK

Space Distribution of Stars in the Galactic Plane near the Sun

We saw in §4-2 that, in principle, we can map the space distribution of stars
in the galactic disk by a suitable analysis of star-count data. We can thereby
begin to build a picture of the structure of our Galaxy in the solar neighbor-
hood. This goal has been pursued industriously in numerous studies over
the past fifty years, but, although some interesting results have emerged, in
some ways the return on the effort has been disappointingly small. In
particular, the early work, using general star counts, was hampered by a
lack of resolving power induced by the vast range of intrinsic brightnesses
of the stars that were lumped together in the general luminosity function.
It also suffered from uncertainties in this luminosity function and questions
about its applicability at different positions within our Galaxy, and it was
seriously impaired by inadequate precision in the determination of the
amount and distribution of interstellar absorption.

Despite these difficulties, a few apparently trustworthy results emerged
[see (B6, Chapter 1)]. Average relative density distributions have been
determined for three to six fields centered around each of a dozen lines of
sight in the galactic plane, separated by AZ ~ 20° to 30° in the range 20° <
¢ < 220°. From these results, one finds evidence for an elongated high-density
region with its maximum 300 to 500 pc from the Sun in the direction of the
galactic anticenter. This feature is probably associated with the local spiral
arm (the Orion-Cygnus arm—see Figure 4-11). In longitudes toward the
galactic center, there is a rapid decrease in relative density to 0.2 at 600 pe,
followed by a rise to about 1.0 at 2 to 3 kpc from the Sun. These results are
much less reliable than those for the anticenter regions because of the
difficulty of making adequate allowance for absorption effects, yet they are
compatible with the existence of an inner arm (the Sagittarius arm—see
Figure 4-11) and the location of the Sun near a relative density maximum.
A high-density region is found in the range 210° < /Z < 215°, with D(r) ~ 1
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out to 2.5 kpc from the Sun. This apparent concentration may be associated
with the fact that these lines of sight will be nearly tangent to the Orion
arm and hence will pass through regions of high density along considerable
path lengths. In the longitude range 170° < / < 200°, there is a marked
deficiency, relative to the immediate solar neighborhood, of stars at distances
beyond 1 kpc. Here one probably has looked through the local arm into
the interarm region beyond. Results for individual regions indicate large
local density fluctuations within 1 kpc of the Sun. These fluctuations may
be partly real, but most probably they reflect irregularities in the absorbing
material. Such irregularities remain a key factor limiting the reliability of
stellar density maps, and unfortunately the reality of many individual features
remains questionable.

Somewhat more reliable information can be deduced from counts of
individual spectral types. The most comprehensive studies of this kind are
those of S. W. McCuskey, discussed thoroughly in (M5) and (B6, Chapter 1).
We shall summarize just a few results of this work. A map of the space
density of B5 stars is shown in Figure 4-9. The prominent concentrations
running diagonally from upper left to lower right are probably associated
with the local arm. The feature at 1.5 to 2 kpc in the direction / = 130°
is probably associated with the Perseus arm. The early A stars (B8—A0)
show a very strong concentration within 500 pc in the directions ¢/ = 85°
to 135°. This feature is in the local arm (see Figure 4-10). In addition, between
1 and 2 kpc from the Sun in the directions 165° < 7 < 215°, they show a

(=180°

Figure 4-9. Distribution of
B5 stars in the galactic plane
in the solar neighborhood.
Curves give contours of equal
space density in numbers of
stars per 107 pc®. [Adapted
from (B6, Chapter 1), by
permission. Copyright © 1965 Y
by the University of Chicago.] To galactic center
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£=180°

Figure 4-10. Distribution of
B8—AO stars in the galactic
plane in the solar neighbor-
hood. Curves give contours of
equal space density in numbers
of stars per 10° pc®. [Adapted

3000pc from (B6, Chapter 1), by
Y permission. Copyright © 1965
To galactic center by the University of Chicago.]

very strong concentration with about four to five times the density in the
immediate solar neighborhood. This feature is probably associated with the
Perseus arm.

The space distribution of the middle A stars (A2—A5) qualitatively
resembles that for the B5 stars. The G giants (gF8—gK3) show a density
peak on the range 90° < /7 < 145° within 500 pc, which is similar to that
shown by the early A stars. This resemblance is not surprising because many
of these stars are probably evolved A stars. Except for this one concentration,
the relative space density of G giants is quite uniform within 700 pc of the Sun.

Our knowledge of the space distribution of late-type dwarfs is limited
by their low intrinsic luminosity. In the region within 500 pc of the Sun
that has been investigated, the space distribution of these stars appears to
be fairly uniform. No significant concentrations can be identified, but there
are fluctuations of the order of a factor of two up and down from region
to region.

We remind the reader that, when assessing the results described here and
shown in Figures 4-9 and 4-10, one must bear in mind that many of the
details seen in these maps may be more the result of interstellar absorption
effects than real variations in the space density. Unfortunately, it does not
appear that this situation can readily be improved.

What can be said about the large-scale variation of stellar density within
the disk? Unhappily, we have almost no direct observational data with
which to answer this question, because, as we have repeatedly emphasized,
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the location of the Sun (immersed in a dust-filled disk) is extremely unfavor-
able for observations of the disk itself, and attempts to infer the variation
of stellar space density in the disk at distances beyond 1 or 2 kpc are invariably
thwarted. We know, however, from observations of external galaxies (see
Chapter 5), that the density in galaxian disks rises exponentially toward
their centers, with an e folding length of about 3 to 5 kpc. We have every
reason to suppose that the disk of our own Galaxy has a similar density
rise toward the center, despite our lack of direct proof that it does.

Spiral Structure Inferred from Optical Data

From both its large-scale disk structure and from the kinds of astrophysical
objects we observe within the galactic disk (for example, young open clusters
and O associations, Cepheids, and H II regions) we believe that our Galaxy
is a spiral of an intermediate type—about Sb or Sbc (see §5-1 for a discussion
of galaxian classification schemes). This conclusion is strongly supported
by wide-angle infrared photographs of our Galaxy, which show a central
nuclear bulge, an equatorial belt of obscuring material, and a general ap-
pearance strikingly similar to that of Sb spirals seen edge-on (see Figures 1-6
and 1-7). We expect, therefore, that our Galaxy should have spiral arms. If
we were to attempt to delineate spiral structure from density analyses of
common field stars, we would probably fail for at least three reasons: (1) As
we have seen, the analyses suffer severe limitations of accuracy and pene-
trating power because of interstellar absorption. (2) There is no dynamical
reason to suppose that spiral arms represent major density concentrations.
Current work suggests that the potential well associated with arms is rela-
tively weak. (3) Most of the field stars are so old they they would have diffused
randomly to rather large distances away from their original sites of formation,
and they would no longer show a clear spiral pattern, even if one had
originally existed. Typical field stars have random velocities of about 20 to
30 km s~ ! (see §7-1), which means that stars, say, 3 x 107 years old have
already diffused through a volume 0.5 to 1 kpc in diameter, and hence any
initial pattern would have been largely obliterated. At best, these stars would
respond only weakly to a spiral potential fluctuation, and they would there-
fore show only a modest concentration into a broad spiral pattern [see
§5-2 and (S6)].

Tracers Toisolate the galactic spiral arms, we thus take a different approach
and analyze the distribution, relative to the Sun, of carefully selected objects
that serve as spiral-arm tracers. The ideal tracers should satisfy the following
criteria:

1. They should be known, from observations of external galaxies, to
be closely associated with spiral arms.
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2. They should be young, so that, during their lifetime, they cannot
have moved far from their original birthplace.

3. They should be luminous, so that they can be seen at large dis-
tances, thus allowing us to trace the arms coherently over substan-
tial arc lengths.

4. They should be objects whose intrinsic brightnesses are well defined
and easily determined and for which interstellar absorption and
reddening effects can be estimated precisely.

Several types of objects satisfy these criteria; among them are H II regions,
O associations, young galactic clusters, Cepheids, and certain types of
supergiants. The close association of H II regions with spiral arms was
demonstrated by Baade and Mayall (B1), and, for the other objects, by
several observers (among them Hubble and Baade) in many studies. H II
regions are easy to find and identify, and, because their sources of excitation
are O stars, they satisfy the criteria of youth and high luminosity. Their
distances can be estimated from knowledge of the spectral types, reddenings,
and apparent magnitudes of the stars associated with them. Young clusters
satisfy all the criteria we have listed. Very precise distances can be determined
for these objects, because their stars lie very nearly on the ZAMS and hence
will have very little scatter in absolute magnitude and have accurately
known colors. Furthermore, averages can be formed from many stars within
a single cluster, which tends to reduce the effects of errors in photometry,
in reddening corrections, and in the estimated absolute magnitude of each
individual star. Similar remarks apply to O associations, which are extremely
young. A problem with clusters, and particularly with associations, is that,
when they are at large distances, they tend to be hidden by the foreground
field and become hard to identify. This difficulty is somewhat ameliorated
by their very distinctive stellar content. Classical Cepheids are known to be
fairly good spiral-arm tracers, and, because they obey well-established
period-color-luminosity and period-amplitude relations (see §3-8), their
distances can be estimated quite accurately. Supergiants of types A—M are
commonly observed in spiral arms in external galaxies, and they are often
found in associations that appear as large clumps along the arms. However,
they are also found singly in the field. These stars cannot be expected to
trace the arms as sharply as H II regions or O associations, because they
are appreciably older than those objects (being evolved early-type main-
sequence stars) and hence have probably diffused a significant distance away
from their places of formation. Moreover, the absolute-magnitude calibration
for these stars is not terribly precise, and it is often extremely difficult to
determine the amount of interstellar reddening they have suffered. Together,
these difficulties induce uncertainties of the order of +30% in their estimated
distances.
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Figure 4-11. Spiral arms in the solar neighborhood as
inferred from optical evidence. Individual points are at
positions of young star clusters and H II regions. Three
arms are clearly indicated, separated from one another
by about 1.5 kpc: the outer Perseus arm, the local
Orion-Cygnus arm, and the inner Sagittarius arm. The
Sun is near the inner edge of the Orion-Cygnus arm.
[From (BS5, 205), by permission.]

Results The spiral arms in our Galaxy were traced optically for the first
time by W. W. Morgan, S. Sharpless, and D. E. Osterbrock (M8) through a
study of galactic H II regions. A spiral pattern was established definitely,
and segments of two arms were delineated (the local Orion-Cygnus arm
and the Perseus arm; see Figure 4-11). Shortly afterward, Morgan, Whitford,
and Code (M9) determined positions for about thirty O associations, thus
tracing the local and Perseus arms more clearly and establishing the existence
of the Sagittarius arm. Since that time, a large number of studies of spiral-
arm tracers have been made [ see, for example, (B6, Chapter 7) for a summary .
A recent map by W. Becker and R. Fenkart (B5, 205) of the positions of H II
regions and young galactic clusters is shown in Figure 4-11. All three arms
show quite unambiguously. The arms are separated by about 1.5 kpc, are
inclined by about 25° to a radius vector from the galactic center, and trail
with respect to the direction of galactic rotation (clockwise in the diagram).
The significance of this map is strikingly demonstrated by comparing it to
a map of the positions of old clusters, constructed using the same techniques
(B5, 205). The old clusters scatter at random in the map and show no hint
whatsoever of spiral structure.

Plots of the positions of supergiants on a map such as Figure 4-11 show
that these stars do not, in themselves, define spiral arms clearly (the picture
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is blurred by their uncertain distances). However, they do indeed follow the
spiral pattern established by the other objects. Some associations (for
example, h and y Persei) pass through a brief evolutionary phase during
which the most massive members become M supergiants. Reasonably good
distances can be determined for four such groups of M-supergiants, and,
when plotted on a map of the spiral arms, they are found to be clearly in
the local and the Perseus arms (B6, Chapter 7). Studies of the distribution
of classical Cepheids (B6, Chapter 8) have shown that they outline the Perseus
and the Orion-Cygnus arms.

In this section, we have considered only the optical evidence for spiral
arms. Information can also be obtained from H I 21-cm line observations,
as will be discussed in §9-1.

Space Distribution Perpendicular to the Plane

Analyses of the space densities of common stars perpendicular to the galactic
plane can be made in a limited region around the position of the Sun. The
results of this work are of great interest, for, as we shall discuss in Chapter 14,
they can be used in dynamical discussions to infer information about the
gravitational potential of our Galaxy in the direction perpendicular to the
plane. Furthermore, as we shall see in §7-1, these data yield information
about the time variation of the random velocities of disk stars. In general
terms, density analyses in the z direction (that is, perpendicular to the plane)
have been relatively more successful than analyses in the plane, partly
because density gradients in this direction are large and hence easy to
detect, and partly because interstellar absorption is generally considerably
smaller away from the plane than in it.

It has been recognized since the earliest work on this problem by Lindblad
(L2) more than fifty years ago that the most striking feature of the distribution
of stars perpendicular to the plane is that the density gradient is markedly
different for different spectral types, the earlier types showing a much stronger
concentration to the plane. This fact vitiates general star-count analyses in
the z direction, for it implies that the general luminosity function ®(M)
depends strongly on z and must be substantially different from what it is
in the plane at even a few hundred parsecs above the plane. Analyses of
individual spectral types naturally do not suffer from this defect because,
insofar as the physical properties (in particular the absolute magnitudes)
of stars of a given type are the same at all distances from the plane, the function
®(M, S), which merely gives a distribution around the mean magnitude for
the group, remains valid.

The mathematical techniques used to determine Dg(z) are the same as
those already described for the determination of Dg(r) in the plane. Several
studies have been made, and they are summarized by T. Elvius in (B6,
Chapter 3). We shall quote merely a few representative results here. Because
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they are reasonably luminous, A dwarfs and G and K giants can be studied
out to about 2 kpc from the plane. In contrast, K dwarfs can be reached
only out to about 200 to 300 pc. For A and F stars, it is usually assumed (and
has been verified observationally) that essentially all the stars in the sample
are dwarfs. For G and K stars, however, the separation of dwarfs from giants
is a long-standing problem, and spectroscopic classification is required to
segregate the two groups. In addition, in samples of later-type stars, the
relative proportions of disk stars and spheroidal-component stars—which

have substantially different physical properties and space distributions—

change as one proceeds farther from the plane, the latter group becoming
more numerous.

Some typical results for the run of Ds(z) with z are shown in Figure 4-12.
The strong concentration of A stars to the plane relative to later types is
quite apparent. As can be seen from the figure, the data can be at least
roughly represented by the standard barometric equation

log Ds(2) = log Ds(0) — (|2[/Bs)/n (4-57a)
or

DS(Z) — DS(O)e_(|Z|/ﬂS) (4-57b)

where p = In 10, and fg is the scale height, or mean z distance, from the
plane of stars of spectral type S. This description is quite convenient, as it
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gives a succinct and easily comprehended parameterization of the space
distribution. It is, however, not exact. Near the plane z = 0, a parabolic or
Gaussian fit to Dg(z) is better. Moreover, equation (4-57) implies a discon-
tinuity in the density gradient at z = 0, whereas physical intuition suggests
that (dDg/dz) — O as z — 0.

The product Dg(0)fs has an important physical significance. It is, in fact,
equal to half the total surface density Zg of the stellar type S

%5 = |7 Dylz)dz = 2D5(0)ps (4-58)

The surface density X is actually a much more fundamental quantity than
a volume density like Dg(z) or Dg(0), because, during the course of time,
stars diffuse away from their initial birthplaces near z = 0 into a more
extended distribution. By comparing relative values of Zg/Zs for different
types of stars, we compensate for this diffusion and obtain realistic estimates
of the relative total numbers of these stars born in the disk over the age of
our Galaxy. Furthermore, it is surface densities that we measure directly
for other galaxies. Representative values of Zg for various classes of disk
objects in our Galaxy are shown in Table 4-16. Results are not given for
spheroidal-component objects, as equations (4-57) and (4-58) do not provide
a quantitatively realistic representation of their distribution. We have already
noted the increase in stellar numbers in the solar neighborhood with
diminishing luminosity and increasing age. We see now that the prepon-
derance of low-mass stars is even greater if we look at total surface densities
2g because of the increase of both S and Dg(0) with decreasing mass.

The values of the scale heights By for various types of stars and other
objects given in Table 4-16 show a number of interesting features. First,
notice that the scale height of the youngest stars (O—B stars) is smaller
than that of the interstellar gas whence they form. This fact can be understood
if we suppose that the total birthrate function (see §3-7) for stars varies as a
power o > 1 of the density, that is, § = kp* for the densest regions of the
gas would then produce stars most efficiently. Consequently, the stars would
have a smaller scale height. Turning the argument around, one can use the
observed scale heights to estimate the exponent o; typical results (B3, 165)
are 1.5 < « < 2. Second, we sec that, for disk stars, Sy generally increases
with increasing mean age of the stellar group in question. Now, the mean
height away from the plane to which stars can penetrate increases as their
average z velocity (or kinetic energy in the z direction) increases. The data
thus suggest that, for stars in the galactic disk, some mechanism produces a
secular “heating” of the “gas™ of stars during their lifetimes. We shall return
to this question in §7-1 and in the next volume. Third, in the last four lines
of the table, we give scale heights for spheroidal-component objects.
Obviously, these are distributed throughout the halo, even at enormous
distances above and below the plane (see §4-4). Finally, knowing Dg(z) for
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Table 4-16. Scale Heights Bg in the Direction Perpendicular to the Galactic
Plane and Surface Density X for Various Objects

Object Bspe) (Starf) 1 <£§>
pc pe

O stars 50 1.5 x 107 1074
Classical Cepheids 50 75 x 1076 5x 1073
B stars 60 6 x 1073 6 x 1072
Galactic clusters 80 - -
Interstellar dust and gas 120 -
A stars 120 6 x 1072 0.1
F stars 190 0.6 0.6
Planetary nebulae 260 - N
gK stars 270 1.2 x 1073 3 x 1072
Novae 300 - -
dG stars 340 2 2
dK stars 350 35 2.5
dM stars 350 20 9
gG stars 400 6 x 1072 1.6 x 107!
White dwarfs 500 125 10
Long-period variables (M5-M2S) 700
RR Lyrae variables (P < 0%5) 900
Long-period variables (M0-M4) 1000
RR Lyrae variables (P > 0¢5) 2000
W Virginis variables (spheroidal-

component Cepheids) 2000
Subdwarfs 2000
Globular clusters 3000

SOURCE: Adapted from (A1, 247), (A1, 249), and (A1, 251), by permission

various spectral types, one can reconstruct a general luminosity function
®(M, z) as a function of z. Typically, one finds [see (A1, 251), (B6, 54)] that
use of the general luminosity function for the plane would provide a reason-
able estimate of ®(M, z) for stars with M, = 2 up to perhaps 100 pc away
from the plane, but it would greatly overestimate the number of intrinsically
very luminous stars. At 200 pc, the cutoff is already M, 2 4, and, at 500 pc,
the cutoff is at M, = 8. Indeed, at 500 pc, the issue is problematical anyway
because the stellar-population characteristics (see §4-5) of the stars have
changed to include a substantial admixture of spheroidal-component stars.

Chemical-Composition Gradients in the Disk

In addition to variations in the space density and the distribution over
spectral type of stars as a function of R and z (the radial distance from the
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galactic center in the galactic plane and the distance away from the plane),
a number of studies have shown that there are gradients in R and z of the
chemical composition of disk stars. Recent reviews of this work have been
given by M. Mayor (B3, 213) and M. Peimbert (B3, 149). The existence and
nature of these gradients are matters of great interest, for they provide
important constraints on possible evolutionary histories of our Galaxy.

Results from several studies of abundances in disk stars are given in
Table 4-17. As was true for the problem of estimating the variation of the
metallicity of disk stars with age, the accuracy of these (mainly photometric)
determinations is often quite poor for individual stars, and significant trends
emerge only because a large sample of stars can be analyzed.

The results definitely show a decrease in average metallicity with increasing
radial distance (in the plane) from the galactic center. Although the deriva-
tives given are, of course, purely local values, they suggest (excluding young
objects) a decrease in average metal abundance by about a factor of two to
three over 10 kpc. The average metallicity of stars in the nuclear bulge is
thus probably about a factor of two above solar. Observations of integrated
starlight in other spiral galaxies, for example, M31 and M81, also show strong

Table 4-17. Radial Composition Gradients in the Galactic Disk in the
Vicinity of the Sun

Stars

d[Fe/H]/dR
Group (kpc™1) References
G and K dwarfs and giants —0.05 (C3, Chapter 55)
Nearby stars earlier than K5 —0.07 (B3, 169)
K giants —0.03 (B3, 173), (C3, Chapter 28)
dF and gG—dK, (all stars) —0.04 (M4)
dF and gG—gK, (intermediate-age) —0.02 (M4)
dF and gG—gK, (young) —0.08 (vi4)
Cepheids —0.08* (B3, 149)

Nebulae

Objects d[He/H]/dR d[O/H]/dR d[N/H]/dR References
H II Regions —-0.2 —0.13 —0.23 (B3, 149)
H II Regions —0.05 —0.10 (H2)
Planetary nebulae —0.02 —0.06 —0.18 (B3, 149)

* Value given is for d[O/H]/dR, not d[Fe/H] dR
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increases in CN-band strengths in their disks at decreasing radial distances
from their centers [see (V1) for references]. The most straightforward inter-
pretation of these observations is an increase in average stellar metal content
toward the galaxian nucleus.

The two samples of young stars in Table 4-17 show a much swifter rate of
change than do the older stars. Furthermore, for the sample of K giants
studied by K. A. Janes (B3, 173), (J1), it was found that the gradient is steeper
in the outer part of the galactic disk. He estimates d[Fe/H]/dR ~ —0.05
for R ~ 10 kpc and d[Fe/H]/dR =~ —0.1 for R 2 10 kpc.

The stellar results we have quoted are supported by analyses of the
spectra of emission nebulae. We defer full discussion of nebular abundance
determinations to §5-4, because the majority of studies of this type have
been concerned with external galaxies [see (P1), (S7), (S10), (V1)]. Here we
note only the most important results obtained for galactic H II regions.
The abundances of oxygen and nitrogen relative to hydrogen have been
estimated for about two dozen galactic H II regions covering galactocentric
distances in the range 7 kpc < R < 14 kpc. Typically, the nebulae show
approximately solar abundances of oxygen and nitrogen, although the abun-
dances of both these elements tend to be higher in emission regions observed
in the direction to the galactic center than in the anticenter direction. In
Table 4-17, we collect the best available estimates of the gradients in [He/H],
[O/H] and [N/H] from galactic H II regions. Notice two points: (1) The
gradients in [O/H] and [N/H], derived by different workers in contempo-
rary studies, are significantly different in magnitude, although the relative
sizes and senses of the [O/H] and [N/H] gradients do agree. (2) Both the
studies quoted conclude that the gradient in [N/H] is about twice as great
as that in [O/H]. The suggestion that the abundance of nitrogen increases
toward the galactic center faster than does that of oxygen has received a
good deal of attention, because it would seem to confirm the classical theory
of nucleosynthesis, according to which the production of nitrogen occurs
only in stars that already contain carbon and oxygen. We shall see in Chap-
ter 5, however, that recent studies of H II regions in other galaxies have
tended not to confirm the early suggestion of especially steep gradients in
[N/H]. Furthermore, determinations of element abundances in galactic H II
regions are severely hampered by interstellar absorption, which restricts the
range of radii (and therefore abundances) at which emission regions can be
observed, and renders uncertain the determination of nebular temperatures
from temperature-sensitive line ratios, by selectively absorbing the shorter
wavelength line (see §5-4). Therefore, the inference that the gradient in [N/H]
is steeper than that in [O/H] should be treated with caution.

Observations of the stellar and nebular content of other galaxies are of
great importance because, unlike observations within our Galaxy, which
are confined by interstellar absorption to relatively nearby objects, they can
sample the whole disk. Thus they show directly that the radial abundance
gradient is, in fact, a large-scale phenomenon. All the evidence available
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from such studies confirms that metallicity gradients are a general property
of galaxian disks.

Composition gradients perpendicular to the plane have been studied by
A. Blaauw (M10, 51) and M. Grenon (M10, 55) by determining directly the
variation with z of photometric composition indicators, such as the Strém-
gren-system index Am;. A weakness of this method is that it requires
very accurate photometry and an accurate absolute-magnitude calibration.
Martinet and Grenon (B3, 289) have synthesized the z gradient from data
for stars in the galactic plane by considering a mixture of four subgroups
of differing metallicities and average z velocities and calculating the variation
in the properties of this mixture as a function of height, using an assumed
force law in the z direction. All the results show a swift drop in metallicity
with height, d[Fe/H]/dz ~ —0.5 to —0.6 kpc™*.

The question that immediately occurs is “What are the origin and the
significance of these observed composition gradients?” We shall offer only
a couple of brief comments on this question here and defer fuller discussion
until a later chapter. One possibility is that the gradients in the disk were
established before much star formation occurred there, and they have been
but little modified since. In this case, the spatial variation of the composition
of disk material would have to reflect mainly the manner in which enrich-
ment by recycled material, shed by evolved halo stars, occurred, and the
effects of enrichment by nucleosynthesis in the disk stars themselves would
have to be negligible. Alternatively, the gradients may reflect more frequent
or more efficient recycling of material by disk stars in the inner regions of
the disk than in the outer regions, perhaps a result of more rapid rates of
star formation in regions of higher surface density. One could then argue
that the gradient should progressively steepen in time (at least until the gas
in the disk is exhausted), which would seem to be in harmony with the
steeper gradient found for young stars and nebulae. We shall return to these
matters in Chapter 19, where we discuss the chemical history of our Galaxy
in more detail and try to incorporate the observations of the present state
of our Galaxy into a coherent picture of its formation and dynamical
evolution.

4-4. THE DISTRIBUTION OF STARS AND THE CHEMICAL
ELEMENTS IN THE SPHEROIDAL COMPONENT

Having discussed the distribution of stars and of the chemical elements
within the galactic disk, we now turn to the same questions for the spheroidal
component. As we shall now deal with a system whose constituents are rare
near the Sun (being represented in the solar neighborhood by subdwarfs and
RR Lyrae stars), and as we are interested in its properties on the largest
observable scales, our approach must necessarily be rather different, and the
information we shall be able to derive is much less detailed.
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Globular Clusters

The most prominent members of the spheroidal component are the globular
clusters, which are found throughout the halo and in the vicinity of the
galactic center. These objects make ideal tracers for the spheroidal compo-
nent because they are luminous and easy to detect, the properties of their
stars are sufficiently well understood that they can be used to obtain fairly
reliable distance estimates, and the sample of known clusters is relatively
complete. It is likely that the space density of globular clusters is representa-
tive of the density within the spheroidal component as a whole, and, insofar
as this is true, they provide a uniquely powerful tool for studying its structure.
As a result of recent comprehensive studies [see, for example, (H1), (03),
(W3), and the summary of older work in (B6, Chapter 19)], there have been
major improvements in the quantity and quality of the data. In particular,
dozens of new color-magnitude diagrams have been constructed and ho-
mogeneous, precise measurements of foreground interstellar reddening and
absorption have been made.

The apparent distribution of globular clusters on the sky is totally different
from that of any constituent of the disk population. They are found predomi-
nantly at high galactic latitudes, and they show a distinct deficit near the
galactic plane, where they are hidden by interstellar absorption. In addition,
they are concentrated toward the direction of the galactic center (more than
50% lie in the longitude range —15° < / < 15°). As was early recognized by
Shapley, this apparent distribution reflects a true distribution that is basi-
cally spherically symmetric about, and strongly concentrated toward, the
galactic center. The group of all known globular clusters is small enough
that, to determine their distribution in space, we can employ a direct cluster-
by-cluster mapping technique based on measurements of individual cluster
directions and distances from the Sun, combined with an estimate of the Sun’s
distance from the galactic center.

Distance Indicators The most fundamental distance indicators for globular
clusters rest on estimates of the intrinsic brightness of some class of cluster
stars or of some specific feature in their CM diagrams. In the final analysis,
these estimates are based on cluster main-sequence fitting, which was
described in §3-6.

The most important single quantity of this type is {(My )gg, the average
absolute magnitude of RR Lyrae stars (which is almost identical with the
average absolute magnitude (M} )y of the horizontal branch). As we saw
in §3-8, the current best estimate is (M Ygg &~ 0.6 + 0.2. The question wheth-
er (and if so, how) this result depends on the metallicity of the stars is still
not satisfactorily resolved, and the best we can do at present is to adopt the
mean value. But it should be noted that even an uncertainty of only +0.2
mag in (My)gg induces an uncertainty of +10% in cluster distances, and
thus +30% in space densities. Indeed, the intrinsic spread in {My)gg Pro-
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duced by differences in cluster metallicities (and in other evolutionary param-
eters) could be even larger (see the discussion of main-sequence fitting in §3-6).

A second primary distance indicator is obtained by calibrating M, s, the
mean absolute magnitude of the 25 brightest cluster stars. Here it is necessary
to account for two effects: (1) The mean magnitude M, s depends on the total
cluster population (and hence luminosity), simply because the more cluster
members there are, the higher is the probability of finding very rare stars of
the highest luminosity in the sample. (2) The mean magnitude also depends
on the metallicity of the cluster stars because, as we saw in §3-6, the height
of the tip of the giant branch above the horizontal branch is a strong function
of metal content. Details of methods that compensate for these effects and
allow M, to be obtained directly from observable data are described in
(H1) and (W3).

Secondary distance indicators that make use of integrated properties of
clusters can be devised. They have the advantage that they can be measured
in many instances where information about features in the CM diagram is
unavailable. These secondary indicators are calibrated using clusters in which
both the secondary indicators and a primary indicator can be measured.

Of the 110 clusters for which comprehensive data are available, primary
indicators can be used to derive distance moduli for about 75 clusters, and
secondary indicators can be used for the remainder. When combined with
reddening and absorption measurements, the distance moduli yield positions
of the clusters relative to the Sun.

The Sun’s Distance firom the Galactic Center From the positions of clusters
with respect to the Sun, one can estimate the Sun’s distance from the galactic
center on the hypothesis that the clusters are distributed symmetrically about
the center. Let (x, y, z) measure a cluster’s position relative to the Sun in a
system with axes aligned along the Sun-center line (/ = 0°, b = 0°) toward
the direction of galactic rotation (/ = 90°, b = 0°) and toward the north
galactic pole (b = 90°), respectively. Forming means for 106 clusters within
40 kpc of the center, W. E. Harris (H1) finds

(x> =173+ 06 kpc (4-59a)
{y> =04+ 0.6 kpc (4-59b)
(z) = 0.3 %+ 0.6 kpc (4-59¢)

From the essentially zero values for {y) and (z), we see that the clusters are
indeed distributed symmetrically around the center, and, from ¢ x}, we obtain
a lower bound on R, the Sun’s distance from the center.

The value of {x) quoted sets only a lower bound on R, because of selection
effects. Globular clusters lying beyond the center (particularly those near
the galactic plane) suffer heavier interstellar obscuration and tend to be lost
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from the sample, which is therefore biased toward too small an average
distance {x>. To overcome this effect, one can consider samples of clusters
that lie beyond some specified distance away from the plane, that is, that
have z > z,,,, and calculate the centroid {x) for various values of z,;, (B6,
Chapter 19). One expects to find an asymptotic value for {x) for large zin,
because then absorption effects become negligible, and the sample should be
unbiased. But, in practice, for very large z,;,, the sample contains too few
clusters to yield a statistically reliable result, and a compromise must be
struck at some intermediate value. Harris finds a fairly clear upper envelope
in a plot of {x) Versus zp, for z,;, X 2.5 kpc, and, from this, he estimates
R, ~ 8.6 + 1.5 kpc.

L. Woltjer (W3) has noted that, if one segregates halo (metal-poor) and
disk (metal-rich) clusters into two groups, the latter yield a value for {x)
some 2.6 kpc larger than the former. This situation is precisely the opposite
of what is expected, because the disk clusters, which on the average lie much
closer to the plane than the halo clusters, should suffer more obscuration, and
hence that sample should be more strongly biased toward clusters that lie
closer to the Sun. As Woltjer points out, this discrepancy could indicate that
the mean absolute magnitude of RR Lyrae stars is, in fact, larger for the more
metal-rich clusters, perhaps around {My gz &~ +1.0. This conclusion is
only tentative at present, and it requires confirmation. In any case, the value
of R, derived by Harris should be but little affected, even if this turns out to
be true, because the value of z,,;, at which R, is estimated is already so large
that the sample excludes most metal-rich clusters, and {My g 18 calibrated
with metal-poor stars near the Sun.

Completeness Having a reliable value for Ry, one can estimate the com-
pleteness of the known sample of clusters. Although some earlier investigators
[see, for example, (B6, Chapter 19)] considered the presently known sample
to be essentially complete, it is readily apparent that severe selection effects
still exist in the data. For example, a plot of cluster positions in the (x, z)
plane shows that, for x X 9 kpc (that is, beyond the galactic center), the
number of clusters with |z| < 2 kpc drops sharply. Indeed, a wedge-shaped
gap centered on the galactic plane appears in the observed distribution. It is
obvious that many clusters near the galactic center have suffered such heavy
obscuration that they have not been identified and still await discovery.

At present, about 130 globular clusters are known (a number larger than
the total estimated to exist in early analyses of the completeness question!).
A reasonable lower bound on the total number can be obtained by doubling
the number of clusters known to lie on the Sun’s side of the galactic center
(x < Ry), as this sample suffers the least absorption and hence is known to
the highest degree of completeness. W. E. Harris (H1) estimates that there
are 85 + 15 clusters with x < R, (the “error” allows for the uncertainty in
R,). Thus, by symmetry arguments alone, one concludes that there should
be at least 170 globular clusters in our Galaxy. Allowing for a 20%; incom-
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pleteness (a mere guess) for low-latitude clusters on the Sun’s side of the
galactic center, Harris concludes that a reasonable estimate for the total is
about 200 + 30 clusters, which implies that the present sample is about
659, to 75% complete. From the discussion presented later on the number
of clusters very near to the center, it appears that the larger value (that is,
230) derived by Harris for the total number is likely to be the more realistic.

Space Distribution The space distribution of the system of globular clusters
is characterized by an approximately spherical symmetry about the galactic
center. This situation is most readily seen in a plot of cluster positions pro-
jected onto the (y, z) plane, as shown in Figure 4-13. There we see that the
clusters are distributed at large throughout a halo of at least a 20-kpc radius
and that they show a strong concentration toward the galactic center.

The question whether the space distribution of globular clusters is truly
spherical or has a significant ellipticity is an important one, for it has dy-
namical implications. The conventional picture built on several older studies
(B6, 401), (K2), (K3), (O1, 303) is that the halo clusters form an essentially
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Figure 4-13. Distribution of globular clusters projected
on the (y, z) plane, that is, the plane through the galactic
center perpendicular to the Sun-center line. This pro-
Jjected distribution is plainly consistent with a spherically
symmetric true space distribution around the center.
[From (H1), by permission.]
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unflattened system, and the metal-rich (G type) disk clusters and the inner-
most F type clusters are concentrated toward the galactic plane in a sub-
system showing a significant degree of flattening. However, recent work (H1),
(W3) has shown that this result is spurious and is an artifact of random errors
in estimated cluster distances. These errors tend to induce a large spread in
cluster positions along the line of sight, which in turn produces an illusory
ellipticity. Woltjer has stressed that, taken at face value, the apparent distri-
bution of “disk” clusters would imply that the subsystem is cigar-shaped, with
its major axis directed toward the Sun. Such an arrangement is so improbably
fortuitous that it can be immediately rejected.

Actually, it is much better to avoid projections onto the (x, y) or (x, z) planes
and study only the (y, z) plane, in which errors in the distances do not alter
the ratios (y/z) of the coordinates of individual clusters. Recently, S. van den
Bergh (V2) has studied the way absorption affects the apparent distribution
of globular clusters in this plane. One hundred “globular clusters” were dis-
tributed in spheroidal distributions through the halo of a model galaxy
according to the radial density profile p ~ R™*[0.2 < R(kpc) < 20], which
is found to approximate that of the globular clusters (see below). Van den
Bergh then assembled the y and z coordinates that would be assigned to these
clusters when viewed from the solar neighborhood through a 240-pc thick
disk of absorbing material having an extinction 4, = 1.5 mag kpc™!. A
cluster was assumed to become invisible when its apparent distance modulus
m — M =~ 20. Using this model, van den Bergh concluded that the (centrally
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Figure 4-14. Distribution of F type (metal-poor) and G type (metal-rich)
globular clusters projected onto the (y, z) plane. It is clear that the space
distribution is basically spherically symmetric about the galactic center for
both groups, with the metal-poor group distributed throughout the entire halo,
and the metal-rich group strongly concentrated toward the center. [From (H1),
by permission. ]
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concentrated) G type clusters can appear to be as nearly circularly symmet-
rical in the (y, z) plane as they actually do (see Figure 4-13 and 4-14), only if
in reality they form a flattened system (axial ratio about 1:2). By contrast,
the F type clusters, which also appear to be circularly distributed in the (y,
z) plane, really are spherically distributed. The counts of these more outlying
clusters are only slightly affected by absorption, so their apparent distribution
is a true reflection of their actual distribution. Thus, according to this model,
the system of globular clusters is rather flattened very close to the galactic
center and becomes essentially spherical beyond 2—3 kpc. The approximate
spherical symmetry of the distribution of more outlying globular clusters may
indicate that the equipotential surfaces of our Galaxy are more spherical
than would be expected from the distribution of the highly luminous material
that dominates the measured light, because we might expect the globular
clusters (as test particles in the general galactic gravitational field) to adopt
at least as flattened a configuration as the galactic potential. We shall return
to this question in later chapters.

The average space density of globular clusters (clusters kpc ™) as a func-
tion of galactocentric distance can be obtained directly, by counting the
number of clusters contained in successive spherical shells and by dividing by
the volume of each shell. To minimize incompleteness effects, the sample can
be limited to clusters on the Sun’s side of the center. The results obtained by
Harris (H1) are shown in Figure 4-15; R measures the radial distance from
the center. The points plotted for the innermost shells (R < 3 kpc) are only
lower limits because of incompleteness of the sample near the galactic center.
The basic conclusion that emerges is that, over the entire range R > 3 kpc, the
space density is well approximated by a power-law distribution of the form
v(R) oc R™% with a & 3.5 4+ 0.25. There is a suggestion that the slope may
be shallower for the inner regions, say, v oc R™> for R < 10 kpc, and steeper
outside, say, v oc R™* for R > 10 kpc, but the observational errors are too
large for one to be sure that this result is significant. It seems best to use a
single power law for R 2 3 kpc.

The result obtained for the exponent o is in harmony with results for halo
stars (RR Lyrae variables—see below) and density estimates made via a
dynamical analysis of the observed asymmetric drift of clusters relative to the
Sun (see §6-4 and Chapter 14). It also agrees with the light distributions
observed in the spheroidal components of other nearby edge-on disk
galaxies (see §5-2). On the basis of this agreement, it seems reasonable to
suppose that the globular clusters are truly representative spheroidal-
component tracers whose space distribution describes that of the spheroidal
component as a whole.

A luminosity can be assigned to each cluster once its distance is known,
and, by adopting an assumed average mass-to-luminosity ratio of 1.5 in solar
units, one can estimate that the average cluster’s mass is about 2 x 10° and
that the total mass of the halo cluster system is about 4 x 107.# . A detailed
mass-density distribution p(R), as a function of R for the globular-cluster
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Figure 4-15. Average space density v(R) (clusters
kpc™?) of globular clusters in spherical shells
around the galactic center as a function of log R
(kpc). For the outermost four shells, the small dots
correspond to the densities obtained if the low-
concentration Palomar clusters and the dwarf ellipticals
are included, while the large dots correspond to the
densities found if these systems are omitted. The
distribution is well approximated by a power law of
the form v cc R™33 over the entire range R 2 3 kpc.
[From (H1), by permission.]

system, is tabulated by Harris (H1). The average mass density of globular
clusters at the Sun’s distance from the center is about 1.4 x 107 %.#¢ pc 3,
which is miniscule compared to the density of the disk. As can be seen in
Table 4-10, the mass density of extreme subdwarfs, which have kinematic
and spectroscopic properties identical to the globular-cluster stars, is orders
of magnitude larger than the average mass density resulting from the globular
clusters. The physical similarity of these two groups of stars, coupled with
the implausibility of forming individual halo stars singly in the very low-
density regions in which they are found, has led several workers to speculate
that most of the stars now found in the general field of the spheroidal com-
ponent were actually born in globular clusters that have subsequently
“dissolved” [see (F1) for references]. If this speculation is true, then we
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now observe only a small fraction of the original population of globular clus-
ters, an inference of importance for theories of galactic evolution and of the
formation and dynamics of globular clusters.

Number Density at the Galactic Center Almost no direct observational
information is available about the number of globular clusters that may
exist within 1 kpc of the galactic center. Such clusters would be extremely
heavily obscured, and they would be most readily detectable (if at all) by far-
infrared observations. Until such data become available, one can do little
more than attempt a theoretical extrapolation of the existing data by use of
a dynamical model; this approach has recently been taken by Oort (O3). The
results obtained depend on the random-velocity dispersions assigned to the
globular-cluster system. Oort makes estimates for two values of (v?>!/?,
namely 134 and 147 km s~ 1, the latter being a plausible upper bound on the
true dispersion and yielding the more conservative estimate of the number of
clusters. Normalizing the predictions of the model to the observed space
densities for R > 2.5 kpc, he finds that initially there must have been of the
order of 110 clusters within 1.25 kpc of the center. Of these, roughly 209
were massive systems with integrated absolute magnitudes M, < —9.5, and
the remainder were less massive, fainter systems.

The numbers quoted are markedly changed over the lifetime of our Galaxy
(~10'° years) by the effects of dynamical friction, which tends selectively to
drag the more massive clusters into the center, where they coalesce to form
a small nucleus. On the basis of theoretical work by Tremaine et al. (T2), (T3),
Oort estimates that roughly 5 clusters with M, < —9.5 and 50 clusters with
My > —9.5 survive today. Assigning these clusters mean masses of
1.8 x 10°4# o and 7 x 10°.4 o, respectively, he concludes that the nuclear
globular clusters presently account for about 4.5 x 107.# and that the
mass of the nuclear core itself is about 2 x 107.# . The fact that the total
mass in the clusters near the center is probably equal to that of the clusters
in the entire halo again emphasizes the strong central concentration of
this system.

Chemical-Composition Gradients We saw in §3-6 how the metallicity of
cluster stars can be inferred from spectroscopic and photometric data, and
we have noted that metal abundances in clusters range from near solar to
less than 1072 times solar. If one combines information about cluster metal
abundances with knowledge of their positions with respect to the galactic
center, one finds evidence for a correlation within the inner halo (R < 10 kpc)
between metallicity and galactocentric distance (H1), (M6), (M?7), (S8). The
basic result is that, within the inner halo, the most metal-rich clusters are
found closest to the galactic center, and clusters of progressively lower
metallicity tend to fill larger and larger spherical volumes around the center.
For example, Harris (H1) divides his sample of globular clusters into three



264 Chapter 4: The Space Distribution of Stars

metallicity groups, F~ (most metal poor), F* (intermediate), and G (most
metal rich), and he finds that no G clusters are found beyond about 7 kpc
from the center, no F* clusters beyond about 20 kpc, and only F= clusters
beyond 20 kpc. Thus, the closer to the center one observes, the greater is the
range in abundances among the clusters found there. Indeed, near the center,
one finds clusters of low, intermediate, and high metallicity occurring with
roughly equal frequencies.

It is generally believed at present that these results imply a composition
gradient within the halo. However, it is possible (as suggested by some
authors) that there is no gradient and that the central location of metal-rich
clusters is a result of their being the tail in a distribution function of abun-
dances, which is seen only when the density of all clusters is high (that is, at
the galactic center). Further research is required to decide the issue. Because
metal-poor clusters fill the whole volume of the halo and bulge, while the
most metal-rich clusters are confined to a central region, the metallicity
gradient (assuming that there is one) of inner-halo material is best measured
not by average abundances but by the upper envelope of the metal-abundance
distribution as a function of galactocentric distance.

The situation in the outer halo (R > 10 kpc) is rather different. Here, at
30 < R(kpc) < 100, one finds, besides ordinary globular clusters, the low-
concentration Palomar systems and the dwarf-spheroidal systems (for ex-
ample, the Draco system; see §5-1). These systems show no clear evidence for a
metallicity gradient (C1), (C2), (C4), (S8), (Z1), but rather they seem to have an
essentially random distribution of metallicities in the range —25<
[Fe/H] < — 1.5. At face value, the observations indicate that the metal abun-
dance of objects in the very outer halo (R > 40 kpc) is always above a floor
value of around [Fe/H] ~ —2.2 + 0.3, but it is not clear at the present time
whether this floor value is real or is the result of the spectrophotometric
metallicity indicators—for example, 6(U — B)—becoming very insensitive
to [Fe/H] once the opacity of the stellar atmospheric material is no longer
determined by the number of electrons liberated by the ionization of the
metals. Further observational and theoretical work will be required to
provide definitive results.

To explain the results just described, one can offer the following scenario.
During the collapse of the halo, clusters with low metallicities were apparently
formed at large distances from the galactic center, and now they fill the entire
halo as a result of their orbital motion (on highly eccentric plunging orbits).
Clusters of progressively higher metal contents were formed from progres-
sively more metal-enriched material closer and closer to the center, and hence
they are now confined to smaller volumes around it. The assumptions made
here, of course, are that the apparent metallicity gradient in the halo is real
and that present-day cluster metallicities do still accurately reflect the metal
content of the material out of which they were formed. Presumbly, the pro-
gressive enrichment of the inner-halo material is the result of the recycling,
by evolved halo and cluster stars, of nuclear-processed material into the
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ambient medium. Furthermore, the floor value of [Fe/H] ~ — 2.3 suggests
that even the primoidal protogalactic material had been enriched by nucleo-
synthesis processes from some primeval stellar population.

Halo Stars

The distribution of material in the spheroidal component can also be studied
by determining the space densities of individual halo and nuclear-bulge stars.
The large-scale structure of the halo is best revealed by RR Lyrae variables.
A rough picture of the three-dimensional structure of the spheroidal com-
ponent in the vicinity of the Sun’s position in our Galaxy can be derived from
analyses of the z distribution of various kinds of stars.

The Large-Scale Distribution of RR Lyrae Variables The RR Lyrae vari-
ables can be observed to distances beyond the galactic center in certain fields
of high transparency near the center, and they have therefore been intensively
studied, first by Baade, later by Kinman and others (K4), (K5), (L1), and most
recently and most completely by Oort and Plaut (O4) using data from the
Palomar-Groningen Survey with the 48-inch Schmidt telescope. The
limiting apparent magnitude in the survey is M, &~ 19.5-20. The variables
were identified by blink-comparator searches in ten plate pairs for each of
six fields. The stars selected were RR,, variables with amplitudes Am = 0.5
mag, which can be discovered with a high degree of completeness. Oort and
Plaut estimate average completeness fractions, in the magnitude ranges
indicated, to be as follows: (m < 15,0.9),(15 < m < 16,0.8),(16 < m < 17,
0.75), (17 < m < 18,0.65), (18 <m < 19,045), and (m > 19,0.25). To
reach the galactic center, one must observe stars in the range 16 < m < 16.5,
for which the completeness fractions are quite high. Corrections for inter-
stellar absorption were derived directly for each star from its observed colors.

The distances to individual stars were assigned by adopting{M,> = +0.6,
in agreement with the results cited in §3-8. Plots of the observed numbers of
stars in interval Am = 0.25 mag show sharp maxima along each line of sight.
These maxima are presumed to be associated with a density maximum at the
galactic center, and hence they can be used to determine R,,.

To analyze the data, Oort and Plaut adopted a model-fitting procedure
that assumes (1) the equidensity surfaces are oblate spheroids centered on the
galactic center with major axis a, minor axis ¢, and equatorial plane coinci-
dent with the plane of our Galaxy; (2) the space density varies as v = v, s
(1.5/a)*, where v, s is the density at 1.5 kpc, and « is a constant; and (3) the
average random error (Gaussian-distributed) of a stellar magnitude corrected
for absorption is ¢. Their model is specified by the set of independent param-
eters (c/a), o, & v;.5, and Ry. They proceeded by first plotting log n, the
logarithm of the observed number of stars in the field, versus log r, the
logarithm of the distance from the Sun in kiloparsecs. For each model,
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specified by a choice of (c/a), o, and ¢, they then computed a theoretical
log n curve by (1) calculating the product of the number density (using the
assumed density law) and the volume element associated with the field as a
function of (R/R,) along the line of sight, (2) convolving this distribution
with a Gaussian error function for the assumed value of ¢, and (3) multiplying
the resulting numbers by the appropriate incompleteness functions. In this
procedure, the shape of the computed curve depends only on (c/a), o, and
¢. Hence, by fitting the theoretical curve to the observed curve by horizontal
and vertical shifts (on a logarithmic scale), they found absolute values for
Ry and vy s.

Even this relatively simple model has a fairly large number of free param-
eters. But, from detailed analysis, rather close limits can be set on each of
them. The parameter o is found unambiguously from the asymmetry of the
curves around their peak. The parameters (c¢/a) and ¢ cannot be determined
independently, but one can find a lower limit for (¢/a) by using the minimum
possible value for ¢ (conservatively estimated to be +0.25 mag). Overall,
Oort and Plaut find that the best representation of the data is given by
o = —3.0, and, in the best fields, they find that lower bounds on (c/a) lie
between 0.8 and 1.0, that is, the distribution is nearly spherical (a conclusion
made firmer if a larger value of ¢ is admitted).

Thus, to a good approximation, the space distribution of RR Lyrae vari-
ables is given by v(R) = v, 5(1.5/R)?, where R is in kilopersecs, and v s is
estimated to be about 2.6 x 1077 stars pc>. This density variation is fairly
well established for R < 5 kpc, and it is best determined on the range
1 < R < 3 kpe. The exponent o agrees well with the results obtained for the
globular clusters, and it also agree with the results from the analysis of the
asymmetric drift of subdwarfs and RR Lyrae variables in the solar neighbor-
hood. The weighted mean value for R, is found to be R, = 8.7 + 0.6 kpc,
which Oort and Plaut consider to be one of the most reliable estimates of this
parameter.

General Density Distribution in the Halo near the Sun Some additional in-
formation about the distribution of stars in the spheroidal component near
the Sun can be obtained from star-count analyses at intermediate and high
galactic latitudes. Only a few studies of this kind have been made; an impor-
tant example is the early work of Oort (O2) using general star counts (com-
prising mainly K giants).

Oort attempted to deduce the large-scale variations in stellar density in
regions away from the galactic plane by comparing the observed star counts
in high-latitude fields with the numbers that would be expected (on the basis
of counts toward the galactic pole) if the surfaces of equal density were
exactly parallel to the galactic plane. He concluded that most of the inter-
stellar absorption occurs close to the plane and can be treated as a foreground
effect. (This conclusion is somewhat open to question, however.) Then, from
the fact that, in a field of angular size w, the contribution to A(m)—the
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number of stars with apparent magnitude m—from stars in the range
(r,7 + dr) scales as nowr? dr, and from the fact that, on a surface with z
constant, the distance r, of a point at latitude b is r, = rgq csc b, it follows
that, if the equal-density surfaces were parallel to the galactic plane, then
at latitude b and apparent magnitude m;, we would expect to observe star
counts

A(my, b) = csc® b A(mgo, 90°) (4-60)
where
my — 510g(ry/roo) — Aa
m, + 5 log(sin b) — Aa (4-61)

Mgo

and Aa is the excess absorption at latitude b relative to the pole.

From an analysis of the deviations of the observed star counts from those
predicted by equations (4-60) and (4-61), Oort was able to deduce the defi-
ciency (or excess) of the space density of stars, relative to the hypothesis
D(z) = constant, as a function of (x, y) around the direction to the galactic
pole. He concluded that the isodensity surfaces were inclined to the galactic
plane by about 10°, rising toward the galactic center, as sketched in Figure
4-16. He also concluded that the radial density gradient was (¢ In v/0 In R) =~
— 3.2, which is in good (perhaps fortuitous) agreement with the recent results
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Figure 4-16. Density distribution of all stellar types in the
vicinity of the Sun projected on the (x, z) plane perpendicular
to the galactic plane along the Sun-center line. Curves give
isodensity contours in units of the density near the Sun.
[Adapted from (02).]
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for globular clusters and RR Lyrae stars discussed earlier. Qualitatively
similar density contours have been obtained in recent work by W. Becker
(B4), whose data extend to much larger distances and show an increasing
tilt at higher z’s (that is, an approach to a more nearly spherical distribution).
Oort also plotted contours close to the plane, but we have omitted these
because they are very uncertain owing to the very rough treatment of inter-
stellar absorption in his work. Other studies of this general character are
discussed in some detail by Elvius (B6, Chapter 3).

Taken at face value, Oort’s results imply a rather surprisingly flat distribu-
tion for the halo if the stars in his sample were all true halo objects. In fact,
this is not the case. Within + 1 kpc of the plane, one finds mainly old disk
stars with fairly high metallicities. These are not true halo objects at all, but
merely stars that can penetrate to relatively large distances from the plane
because they have substantial random velocities in the z direction. These disk
stars strongly bias the sample studied by Oort. As we shall see in Chapter 7,
stars of progressively decreasing metallicity show a progressive increase in
their velocity dispersion {w?»!/? perpendicular to the plane, and, if one
confines attention to true halo objects [6(U — B) 2 0.2], one finds that these
stars must be fairly uniformly distributed through distances up to +6 kpc
around the plane. Hence they really do have an unflattened density
distribution.

Mass Densities of Halo Stars; Mass of the Inner Halo The space densities
just derived for the globular clusters and RR Lyrae stars can be used to
make rough mass estimates for the inner halo. The basic hypothesis is that,
because the form of the space-density distribution is the same for both
classes of object, either one provides a valid indicator of the form of the
mass distribution for the halo as a whole. In particular, we hypothesize that
the ratio u = p(halo)/p(globular clusters) is constant throughout the halo
and equals .#(halo)/.#(globulars). We have seen that the system of globular
clusters is thought to contain about 4.5 x 107.# o within about 1 kpc of
the center and about 4 x 107.# outside this central region and within
about 20 kpc, for a total mass of about 9 x 107.# ¢ within 20 kpc.

Woltjer (W3) has estimated that, within 9 kpc of the center (R < Ry), the
total number of RR Lyrae variables in globular clusters is about 200 and,
from the Oort-Plaut data, that the general field contains about 2 x 10* RR
Lyrae variables. Assuming that the mass-distribution function (or luminosity
function) is the same for field stars and cluster stars, one then finds u ~ 100,
and hence that .#(halo) ~ 9 x 10°.# within 20 kpc of the center. Alter-
natively, one can try to estimate the ratio p by using observed values of
po(halo) near the Sun, knowing (H1) that py(globular clusters) ~ 1.4 x
10784 o pc™3. To fix pg(halo), we could use the observed density of 10~°
RR Lyrae stars per pc® in the solar neighborhood (O4) and the luminosity
function for spheroidal-component stars (Table 4-11) to estimate p(halo) ~
3 x 107°.4 ¢ pc™3, and hence u ~ 20. Alternatively, the space density of
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subdwarfs in the immediate solar neighborhood implies p(halo) ~ 1.5 x
10~ o pc™3 (see Table 4-10), and hence u =~ 100. Thus .#(halo) within
20 kpc of the center appears to lie in the range of 2 x 10° to 9 x 10°./4;
this result must be regarded as fairly uncertain, however. In the companion
volume, we shall make more definite estimates of .#(halo) by combining
observational data with dynamical considerations. In conclusion, it is
worth emphasizing that the halo mass estimates just made apply only to the
easily detected luminous material in the halo. The mass of the hypothetical
dark population mentioned in Chapter 1 remains undetermined by the
evidence we have considered thus far.

The Nuclear Bulge

Although the analyses just described tell us something about the density
of stars in the central regions of our Galaxy, they tell us little about their
physical nature. Such information is difficult to obtain because the galactic
nucleus is extremely heavily obscured (see §9-4). It can be observed clearly
only at X-ray, infrared, and radio wavelengths, and it can be partially ob-
served in the visible spectrum through the low-absorption “Baade windows”
mentioned earlier.

Just about the only information we have about the stellar content in the
nuclear region of our Galaxy comes from observations of the integrated
spectra of stars in the Great Star Cloud in Sagittarius by W. W. Morgan
(M7). He used the same spectrographic techniques as he had employed in
his work on the classification of globular clusters and on the integrated
spectra of galaxies. His primary conclusion was that, in the blue-violet (that
is, photographic) region of the spectrum, the principal contributors to the
light received from the galactic nuclear bulge are probably K giants, and
the integrated spectrum strongly resembles that of the nuclear bulge of M31.
These results are of enormous importance, for they indicate that stars in
the innermost regions of the spheroidal component are metal rich (that is,
have solar or above solar metal content).

Morgan further showed that, as one examines regions with increasing
amounts of interstellar absorption (within which the line of sight will pene-
trate less and less closely to the center), one sees a progressively larger con-
tribution from stars of earlier types; this is direct evidence for a change in the
characteristic stellar population as one proceeds from the bulge to the inner
disk. The same effect is observed in spectra of M31, where one can see unam-
biguously that the stars in the inner disk differ systematically from those in
the nuclear bulge itself.

Further evidence about the nature of the stars in the galactic nuclear bulge
is given by the observation that, although the density of RR Lyrae stars in
the central regions of our Galaxy is extremely high, these stars are neverthe-
less outnumbered two-to-one (N1) by ordinary M giants! Moreover, the
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color-magnitude diagram of nuclear-bulge stars (V1) resembles that of the
old metal-rich cluster NGC 188, and it is markedly different from those of
typical halo globular clusters. This effect is also seen in integrated colors;
for example, the unreddened values of [(U — B), (B — V)] for M3, the nu-
clear bulge, and NGC 188 are (0.54, 0.0), (0.77, 0.33), and (0.80, 0.37), respec-
tively. The inescapable conclusion is that the stars in the nuclear bulge of our
Galaxy (and of M31) are old and metal rich. Their properties seem entirely
consistent with an inward-rising, radial metallicity gradient of the spheroidal
component, as is apparently exhibited by the globular clusters.

4-5. STELLAR POPULATIONS

Historical Perspective

In Chapter 1, we described the introduction of the concept of stellar popu-
lations by Baade. Baade discriminated two population groups: Population I,
characterized by the spiral-arm stars, and Population II, characterized by
stars found in the smooth spheroidal components of spirals (halo plus bulge)
and throughout elliptical galaxies. He emphasized the fundamentally dif-
ferent nature of the H-R diagrams for these two groups, Population I having
an H-R diagram resembling those of open clusters in our Galaxy, and Popu-
lation II having one resembling those of globular clusters (in particular,
halo clusters). It was soon recognized that the concept of stellar populations
provided a unifying framework for describing the stellar content in a galaxy
in terms of a number of distinctive subgroups, each with a characteristic space
distribution, age, chemical composition, set of kinematic properties, and
distribution in the H-R diagram. In the next two decades after Baade’s dis-
covery, there was an intensive development and elaboration of a scheme of
stellar populations in our Galaxy, including subdivisions of Baade’s original
types, and there were numerous attempts to apply these ideas to other
galaxies.

By the middle 1960s, a rather definite conventional picture had emerged.
While it is not our intention to discuss this picture in great detail—particu-
larly in the face of excellent review articles written, for example, by Blaauw
(B6, Chapter 20), Gratton (S9, 13), Oort (B6, Chapter 21), (S9, 85), and the
whole book Stellar Populations (0O1) summarizing the famous Vatican con-
ference on the subject—we must nevertheless sketch the broad outlines of
the ideas that were developed in order to indicate the conceptual background
against which later developments are to be viewed. The reader is urged to
consult the references just cited for details of the rationale and implications
of this scheme, for we cannot do them justice in our brief discussion. We
must also mention that we shall have to draw on a certain amount of kine-
matical evidence in this section, even though we shall not discuss that
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material until Chapters 6 and 7; it will pay the reader to reread this section
after reading those chapters.

As a result of the vigorous research initiated by Baade’s introduction of
the idea of stellar populations, a number of important facts emerged. First,
from the theory of stellar evolution, it was realized that the globular clus-
ters—the paradigm of Population II—are all old, while Population I objects
are young. Second, both evolutionary theory and direct spectroscopic evi-
dence indicated that Population I is metal rich and that Population II stars
in the solar neighborhood are metal poor. Third, the two populations were
recognized to have markedly different kinematic properties. Population I
stars move dominantly on nearly circular orbits around the galactic center
with a small random-velocity dispersion around the exact circular velocity;
in contrast, Population II objects (globular clusters and the extreme sub-
dwarfs) were found to have a low (perhaps zero) systemic rotation and a very
large random-velocity dispersion, which implies that they move on highly
eccentric orbits through large ranges of galactocentric radial distance.
Fourth, it was found that the space distribution of Population I is strongly
flattened, and the space distribution of Population II is essentially unflattened.

Putting these various lines of evidence together, and considering what
seemed to be a reasonable rough outline of the dynamical evolution of our
Galaxy, astronomers developed a scenario that went something like this:
The Galaxy may be supposed to have been formed by the condensation and
collapse of the primordial material contained initially in a huge volume of
space. During this collapse, a sequence of distinctive populations was es-
tablished, whose properties bear a one-to-one relationship to the dynamical
state of the system at definite epochs. The sequence of populations is thus
conceived to be fundamentally one-dimensional with all relevant properties
being a function of a single parameter (say, stellar age). The first stars that
formed were widely distributed in an unflattened system, of low rotation
velocity, out of material with very low metal content. Successive groups of
stars, each corresponding to a definite population subdivision, formed a
sequence of systems that were progressively more flattened (concentrated
to the galactic plane), contained stars that moved on more nearly circular
orbits, and were composed of progressively more metal-rich material. It was
thought that this sequence progressed from the distended Halo Population 11
through a more flattened Intermediate Population II and culminated in a
great burst of star formation that produced the Disk Population, whose
identification with Population I or II varied from author to author. After
the formation of the disk, it was supposed that star formation proceeded at
a slower rate; the spiral-arm stars now forming were designated Extreme
Population I, while somewhat older (but still young compared to globular
clusters) metal-rich stars in the general field, such as the Sun, were called
Older Population I.

From among the arguments advanced in support of this scheme, we single
out the following two for discussion: (1) The metal-rich globular clusters
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were thought to be selectively concentrated toward the galactic plane com-
pared to metal-poor halo clusters. (2) In the solar neighborhood, it was
found, from kinematic evidence, that groups of stars having progressively
larger velocity dispersions perpendicular to the galactic plane, and which
can therefore move to larger distances away from the plane, show progres-
sively lower metal contents as inferred from spectrophotometric data. This
progression seems, at first sight, to merge continuously into the halo stars
exemplified in the solar neighborhood by the most extreme metal poor sub-
dwarfs. As we shall see later, both of these bits of evidence are false leads.

As research progressed, it became evident that the basic, one-dimensional
scheme just described is inadequate in that it leads to contradictions and
serious ambiguities. We shall not attempt to discuss in detail all the problems
that arose, as excellent critiques focusing on different problem areas can be
found in review articles by King (K1), (T1, 1), Spinrad (S11), Unséld (U1), van
den Bergh (V1), and others; most of these make very good reading. Let us just
choose two problems as examples. First, as time went by, stellar metal
content became the primary population discriminant used. This choice was
probably a result of its being well correlated with easily measured photo-
metric indicators, such as 6(U — B) and Am;,. In particular, “Population II”
came to mean, for all practical purposes, metal-poor stars. Astronomers who
adopted this view were then confronted with a logical cramp when it was
shown that stars in the nuclear bulge in our own Galaxy and others (for
example, M31), and the stars in the central regions of elliptical galaxies—all
of which are Population II by every other criterion—are metal rich! Second,
detailed analyses of stars in the solar neighborhood showed that the picture
of a one-to-one correlation of stellar metal content and kinematic properties
simply does not hold. Specific examples were identified of groups of stars
that all have practically identical values of 6(U — B) and yet fall neatly into
two distinct kinematic subgroups, one clearly having “halo population”
characteristics (high z velocities, eccentric orbits) and the other clearly having
“disk population” characteristics (low z velocities, circular orbits). Beyond
these two specific problems, many precepts of the scheme that were self-
consistent in the solar neighborhood gave rise to contradictions when applied
to other parts of our Galaxy. In fact, so many other contradictions, dilemmas,
counterexamples, and inconsistencies have arisen that it has become clear
that the picture just outlined is fundamentally oversimplified, and a new
picture is required.

Structural and Evolutionary Framework

In what follows, we shall start afresh and attempt to build a simple descrip-
tive system of stellar populations which will provide a framework for further
discussion. We stress that this system is not comprehensive and that we have
no illusions that it will be “definitive.” Yet, it is compatible with, and coor-
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dinates well, the observed facts as we understand them at present. From a
purely structural point of view, it is clear that our Galaxy consists of two
major components: the spheroidal component and the disk. In developing
a scheme of stellar populations, it is fruitful to focus on each of these dis-
tinctive entities more or less separately, an approach that is supported by
contemporary views that the dynamical histories of the two are quite dif-
ferent. We shall omit any discussion, necessarily speculative, of the hy-
pothetical “dark population” here, and we shall refrain from (probably)
artificial distinctions between galactic “nucleus,” “bulge,” and “halo,” be-
cause there seems to be a very smooth progression of physical properties
within the spheroidal component.

In Chapter 1, we sketched briefly an evolutionary picture upon which a
discussion of stellar populations can be based, and, as we shall consider it
in detail in the next volume, we shall not discuss it here beyond the following
remarks. To begin, it is now thought likely that the entire spheroidal com-
ponent was formed in an essentially radial collapse that produced a roughly
spherical system (or sequence of subsystems) with a radial composition
gradient of increasing metallicity toward the center. The composition gra-
dient was presumably established through progressive enrichment of the
infalling material as a result of the recycling of nuclear-processed material
from terminally evolved massive stars, formed slightly earlier in the collapse
of the halo. (The evolutionary lifetimes of massive stars are short compared
with the freefall time of the halo.) An essential point of difference between
this scheme and the old one is that we now realize that the metal-rich globular
clusters are not concentrated to the galactic plane; rather, they are concen-
trated toward the center (see discussion in §4-4). Therefore, the spheroidal
component probably does not comprise a set of subsystems that become
progressively more flattened and merge continuously into the disk in the
galactic plane. It is more likely a sequence of relatively unflattened systems,
each of which occupies a characteristic volume (out to, say, some R = R,.,,)
and cuts through that part of the disk that lies within its volume (that is,
R < R,_,) Thus, at any point within the disk, we should find a mixture
of disk stars plus that range of subgroups of spheroidal-component stars
whose containment volumes extend far enough from the center.

In the disk, the situation is rather different. Current estimates of cluster
ages (see §3-9 and §3-10) suggest that, well after the spheroidal component
collapsed, the disk formed out of material that was already metal enriched
to within about a factor of three to five of solar, and it has since that time
been progressively enriched with metals at a rate of perhaps a factor of three
to five per 10'° years (see §3-9). An essential ingredient in our present picture
of the disk is the realization that stars in the disk have had their random
velocities significantly increased over the lifetime of the disk (possibly by
encounters with interstellar clouds) and that this increase has substantially
altered their kinematic properties and space distributions. In particular,
recent work (see §7-1) has shown that the increase in stellar random velocities
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during the lifetime of the disk is sufficiently large to allow an unambiguous
identification of many previously enigmatic groups as very old disk stars
that have been widely dispersed, both in the plane and away from it. In
effect, the “gas” of disk stars grows “hotter” as it grows older, and the
“molecules” (stars) diffuse around within the disk on increasingly eccentric
orbits and into a thicker layer above and below the galactic plane on relatively
steeply inclined orbits.

The progressive “heating” of disk stars as a function of time has the
important implication that at least part of the correlation of decreasing
[Fe/H] with increasing z,, (the maximum distance a star can move away
from the plane, which is determined by the size of its z velocity) must be
produced by the progressive increase of the disk thickness for older disk
stars, which are less metal-rich than currently forming disk stars. Hence at
least part of the evidence advanced in the old picture for a progressive
flattening of the collapsing halo system (as seen locally) can be explained
instead by precisely the opposite effect—namely, a progressive rediffusion
outward of older and older stars away from a disk whose metal content is
progressively increasing with time.

There is, in addition, another effect that leads to a systematic overestimate
of the degree of flattening of the space distribution of halo stars observed in
the solar neighborhood. Suppose we examine a sample of extreme subdwarfs
in the galactic plane in the immediate vicinity of the Sun. (Recall that the
data are restricted to a volume whose radius is only 25 pc.) Assume that
these stars are, in reality, distributed throughout a spherical volume R < R
on highly eccentric (in-and-out) orbits. If we choose a particular radius
vector, then stars whose instantaneous orbital major axes lie along that
vector, and for which R.x > Ro, will be confined to a rather narrow cigar-
shaped volume around it (that is, a volume much longer in the radial direc-
tion than in the tangential directions), because the orbits are so eccentric
and their orbital planes are oriented isotropically around this chosen axis.
Now, in actuality, the whole sphere R < R, is filled with these cigar-shaped
volumes surrounding randomly oriented radius vectors. But, if we can sample
only one such volume (specifically, that one whose axis passes through the
Sun’s position in the plane) and no other because we can neither identify a
complete sample of the relevant stars nor measure their space motions
beyond 25 pc, then the sample is biased. From an analysis of the orbits of
the stars in this biased sample, we would be led to the false conclusion that
all such stars were distributed in a narrow range of distances (at most two
“cigar-widths”) above and below the galactic plane. We would simply miss
all those stars whose “cigar-volumes” do not happen to include the Sun,
that is, all orbits whose major axes are inclined so steeply to the plane that
the orbit cannot pass through the galactic plane at R = R,. Put another
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