


An Introduction to the Theory of Stellar
Structure and Evolution

Second Edition

Using fundamental physics, the theory of stellar structure and evolution
can predict how stars are born, how their complex internal structure
changes, what nuclear fuel they burn, and their ultimate fate. This textbook
is a stimulating introduction for students of astronomy, physics and
applied mathematics, taking a course on the physics of stars. It uniquely
emphasizes the basic physical principles governing stellar structure and
evolution.

This second edition contains two new chapters on mass loss from stars
and interacting binary stars, and new exercises. Clear and methodical, it
explains the processes in simple terms, while maintaining mathematical
rigour. Starting from general principles, this textbook leads students step-
by-step to a global, comprehensive understanding of the subject. Fifty
exercises and full solutions allow students to test their understanding. No
prior knowledge of astronomy is required, and only a basic background in
undergraduate physics and mathematics is necessary.

Dina Prialnik is a Professor of Planetary Physics at Tel Aviv University.
Her research interests lie in stellar evolution; the structure and evolution of
cataclysmic variables; comet nuclei and other small solar system bodies;
and the evolution of planets.

2



An Introduction to the Theory of Stellar
Structure and Evolution

Second Edition

Dina Prialnik
Tel Aviv University

3



University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of education,
learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521866040

First edition © Cambridge University Press 2000
Second edition © D. Prialnik 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant
collective licensing agreements, no reproduction of any part may take place without the written

permission of D. Prialnik.

First published 2000
Reprinted 2004, 2005, 2006, 2007, 2008

Second edition printed 2010
Reprinted 2010 (with corrections)

5th printing 2013

Printed by CPI Group (UK) Ltd, Croydon CR0 4YY

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Prialnik, Dina.

An introduction to the theory of stellar structure and evolution / Dina Prialnik. – 2nd ed.
p.    cm.

ISBN 978-0-521-86604-0 (hardback)
1. Stars – Structure.   2. Stars – Evolution.   I. Title.

QB808.P75     2009
523.8′8 – dc22     2009034267

ISBN 978 0 521 86604 0 Hardback

 

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party Internet websites referred to in this publication, and does not guarantee that

any content on such websites is, or will remain, accurate or appropriate.

4

http://www.cambridge.org
http://www.cambridge.org/9780521866040


 

To my son

5



Contents

Preface to the second edition
Preface to the first edition

1  Observational background and basic assumptions
1.1  What is a star?

1.2  What can we learn from observations?

1.3  Basic assumptions

1.4  The H–R diagram: a tool for testing stellar evolution

2  The equations of stellar evolution
2.1  Local thermodynamic equilibrium

2.2  The energy equation

2.3  The equation of motion

2.4  The virial theorem

2.5  The total energy of a star

2.6  The equations governing composition changes

2.7  The set of evolution equations

2.8  The characteristic timescales of stellar evolution

3  Elementary physics of gas and radiation in stellar interiors
3.1  The equation of state

3.2  The ion pressure

3.3  The electron pressure

3.4  The radiation pressure

3.5  The internal energy of gas and radiation

6



3.6  The adiabatic exponent

3.7  Radiative transfer

4  Nuclear processes that take place in stars
4.1  The binding energy of the atomic nucleus

4.2  Nuclear reaction rates

4.3  Hydrogen burning I: the p − p chain

4.4  Hydrogen burning II: the CNO bi-cycle

4.5  Helium burning: the triple-α reaction

4.6  Carbon and oxygen burning

4.7  Silicon burning: nuclear statistical equilibrium

4.8  Creation of heavy elements: the s- and r-processes

4.9  Pair production

4.10  Iron photodisintegration

5  Equilibrium stellar configurations – simple models
5.1  The stellar structure equations

5.2  What is a simple stellar model?

5.3  Polytropic models

5.4  The Chandrasekhar mass

5.5  The Eddington luminosity

5.6  The standard model

5.7  The point-source model

6  The stability of stars
6.1  Secular thermal stability

6.2  Cases of thermal instability

6.3  Dynamical stability

6.4  Cases of dynamical instability

6.5  Convection

7



6.6  Cases of convective instability

6.7  Conclusion

7  The evolution of stars – a schematic picture
7.1  Characterization of the (log T, log ρ) plane

7.2  The evolutionary path of the central point of a star in the (log T,
log ρ) plane

7.3  The evolution of a star, as viewed from its centre

7.4  The theory of the main sequence

7.5  Outline of the structure of stars in late evolutionary stages

7.6  Shortcomings of the simple stellar evolution picture

8  Mass loss from stars
8.1  Observational evidence of mass loss

8.2  The mass loss equations

8.3  Solutions to the wind equations – the isothermal case

8.4  Mass loss estimates

8.5  Empirical solutions

9  The evolution of stars – a detailed picture
9.1  The Hayashi zone and the pre-main-sequence phase

9.2  The main-sequence phase

9.3  Solar neutrinos

9.4  The red giant phase

9.5  Helium burning in the core

9.6  Thermal pulses and the asymptotic giant branch

9.7  The superwind and the planetary nebula phase

9.8  White dwarfs: the final state of nonmassive stars

9.9  The evolution of massive stars

9.10  The H–R diagram – Epilogue

8



10  Exotic stars: supernovae, pulsars and black holes
10.1  What is a supernova?

10.2  Iron-disintegration supernovae: Type II – the fate of massive stars

10.3  Nucleosynthesis during Type II supernova explosions

10.4  Supernova progenies: neutron stars – pulsars

10.5  Carbon-detonation supernovae: Type Ia

10.6  Pair-production supernovae and black holes – the fate of very
massive stars

11  Interacting binary stars
11.1  What is a binary star?

11.2  The general effects of stellar binarity

11.3  The mechanics of mass transfer between stars

11.4  Conservative mass transfer

11.5  Accretion discs

11.6  Cataclysmic phenomena: Nova outbursts

12  The stellar life cycle
12.1  The interstellar medium

12.2  Star formation

12.3  Stars, brown dwarfs and planets

12.4  The initial mass function

12.5  The global stellar evolution cycle

Appendix A – The equation of radiative transfer
Appendix B – The equation of state for degenerate electrons
Appendix C – Solutions to all the exercises
Appendix D – Physical and astronomical constants and conversion

factors
Bibliography
Index

9



Preface to the second edition

It is now a decade since the publication of the first edition of this book.
Despite the large number of research papers devoted to the subject during
this period of time, the basic principles and their applications that are
addressed in the book remain valid and hence the original text has been
mostly left unchanged. And yet a major development did occur soon after
the book first appeared in print: the ‘solar neutrino problem’ that had
puzzled physicists and astrophysicists for almost four decades finally
found its solution, which indeed necessitated new physics. However, the
new physics belongs to the theory of elementary particles, which must now
account for neutrino masses, rather than to the theory of stars. Also worth
mentioning is a major recent discovery that finally provides support to the
theory proposed about four decades ago regarding the end of very massive
stars in powerful supernova explosions triggered by pair-production
instability: SN2006gy, the first observed candidate for such a mechanism.
Thus the section on solar neutrinos is now complete and that on
supernovae expanded.

Stellar evolution calculations have made great progress in recent years,
following the rapid development of computational means: increasingly
faster CPUs and greater memory volumes. Nevertheless, I have made use
of new results only when they provide better illustration for points raised
in text. For the most part, old results are still valid and this long-term
validity is worth emphasizing; the theory of stellar structure and evolution,
with all its complexity, is a well-established physical theory.

The text was expanded to include two new chapters on topics that were
not addressed in the first edition: mass loss and interacting binary stars.
Both are complicated subjects, some aspects of which are still not well
understood, similarly to star formation. Although this may justify their
exclusion from a basic textbook on stellar structure and evolution theory,
an exposition of the theory would not be complete without some reference
to them. Each one deserves a full textbook by itself, and in fact books have
been devoted to each in the last decade, not to mention older texts dealing
with these subjects. In the new chapters I have touched upon them briefly
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enough to adapt the treatment to the general level and scope of this book,
but also in sufficient detail to arouse interest and enable a basic
understanding of where the problems lie.

I have also added an appendix that explains and develops more
rigorously the concept of degeneracy pressure in an attempt to dispel some
confusion related to the applicability of complete degeneracy, which was
the only form developed in the early edition: is the omission of
temperature an assumption or a justified result? Another, minor, addition is
a concise discussion of the mixing-length treatment of convection. Finally,
I have included a few more exercises, which are mostly of the same nature
and serve the same purpose as the older ones: to elucidate points made in
the text or provide additional information.

While I am still grateful to those who have helped, supported and
encouraged me during the writing of the original version of this book, it is
with new pleasure and gratitude that I thank those who have commented
on it since, who have used the book in their classes and have helped to
improve it. Among them are Nuria Calvet, Aparna Venkatesan, Allan
Walstad, Werner Däppen, Nicolay Samus, Bill Herbst, Phil Armitage,
Silvia Rossi and Barry Davids, and my long-time friends Mike Shara,
Mario Livio and Oded Regev. Special thanks are due to Robert Smith for
pointing out a number of inaccuracies and for making important
suggestions.
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Preface to the first edition

For over ten years I have been teaching an introductory course in
astrophysics for undergraduate students in their second or third year of
physics or planetary sciences studies. In each of these classes, I have
witnessed the growing interest and enthusiasm building up from the
beginning of the course toward its end.

It is not surprising that astrophysics is considered interesting; the field is
continually gaining in popularity and acclaim due to the development of
very sophisticated telescopes and to the frequent space missions, which
seem to bring the universe closer and make it more accessible. But
students of physics have an additional reason of their own for this interest.
The first years of undergraduate studies create the impression that physics
is made up of several distinct disciplines, which appear to have little in
common: mechanics, electromagnetism, thermodynamics and atomic
physics, each dealing with a separate class of phenomena. Astrophysics –
in its narrowest sense, as the physics of stars – presents a unique
opportunity for teachers to demonstrate and for students to discover that
complex structures and processes do occur in Nature, for the
understanding of which all the different branches of physics must be
invoked and combined. Therefore, a course devoted to the physics of stars
should perhaps be compulsory, rather than elective, during the second or
third year of physics undergraduate studies. The present book may serve as
a guide or textbook for such a course.

Books on astrophysics fall mostly into two categories: on the one hand,
extensive introductions to the field covering all its branches, from planets
to galaxies and cosmology, quite often including an introduction to the
main fields of physics as well; and on the other hand, specialized books,
often including up to date results of ongoing studies. The former are aimed
at readers who have not yet received any real training in physics, the latter,
at graduate students who are specializing in astronomy or astrophysics.
The present book is aimed at students who fall between these extremes:
undergraduates who have acquired a basic mathematical background and
have been introduced to the basic laws of physics during the first two or
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three semesters of studies, but have no prior knowledge of astronomy.
The purpose of this book is to satisfy the eagerness to comprehend the

realm of stars, by focusing on fundamental principles. The students are
made to understand, rather than become familiar with, the different types
of stars and their evolutionary trends. As far as possible, I have refrained
from burdening the reader with astronomical concepts and details, in an
attempt to make the text suitable for students of physics who do not
necessarily intend to pursue astrophysics any further. Thus, odd as it may
seem, there is no mention of concepts that are so familiar to astronomers,
such as magnitude, colour index, spectral class and so forth. Equally odd
may appear the use of SI units, which is still alien to astrophysics, but has
become common, in fact mandatory, in physics studies. I have complied
with this demand, despite my conviction that, perhaps surprisingly,
astrophysicists still think in terms of cgs units. (One hardly comes across
stellar opacities expressed in square metres per kilogram, or densities in
kilograms per metre cubed.) As is customary in textbooks, exercises are
scattered throughout the book and solutions are provided in an appendix.

The theory of stellar evolution is developed in a methodical manner.
The student is led step by step from the formulation of the problem to its
solution on a path that appears very natural, even obvious at times. I have
tried to avoid the widely adopted alternative of following the progress of a
star’s evolution, enumerating the different phases with their inherent
physical aspects. I find the logical, rather than the chronological, method
the best way of presenting this theory, the way any other established
theory is usually presented. When each chapter of a scientific book relies
on the preceding one and leads to the next, there is hope of arousing in the
reader sufficient curiosity for reading on. The fascinating history of the
theory of stellar structure and evolution is sometimes alluded to in ‘Notes’
and quotations.

The first chapter introduces the subject of stellar evolution, as it arises
from observations: the problem is defined and the basic assumptions
(axioms) are laid down. The following six chapters are essentially
theoretical: the second formulates the problem mathematically by
introducing the equations of stellar evolution; the third summarizes briefly
the basic physical laws involved in the study of stellar structure, serving
for reference later on. Chapters 4, 5 and 6 – dealing with nucleosynthesis
in stars, simple stellar models and stability – build up to Chapter 7, which
is the heart of this book. Combining the material of Chapters 3–6, it
presents a general, almost schematic picture of the evolution of stars in all
its aspects. From my experience, this picture remains imprinted in the
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students’ minds long after the details have faded away. Chapter 8 is, in a
way, a recapitulation of the previous chapter from a different angle: the
story of stellar evolution is retold, filling in many details, as it emerges
from numerical computations. Emphasis is now put on comparison with
observations, thereby closing the circuit opened in Chapter 1. The next
chapter deals with special objects: supernovae and their remnants, pulsars,
black holes (very briefly) and other radiation sources. Finally, Chapter 10
touches on the global picture of the stellar evolution cycle, from the
galactic point of view.

I have tried to give proper credit where it was due, but occasionally I
may have failed or erred. I apologize for any such failure or error, my only
defence being that it was not intentional. I have refrained from referring to
original papers in the text, in order not to interfere with fluency. A
selection of references (by no means complete) is given in the
bibliography.

Enthusiasm toward a subject of study is instigated not only by the
subject itself, but quite often by the teacher. In this respect I was lucky to
have been introduced to astrophysics by Giora Shaviv and I hope to have
carried on some of his passion to my own students. Computing and
numerical modeling, on which the subject matter of this book relies, are
not merely a skill but a true art of unique beauty and elegance. For having
introduced me to this art long ago and for having been a constant source of
encouragement and advice during the writing of this book, I am grateful to
my husband (and former teacher) Attay Kovetz. I would like to express my
gratitude and appreciation to Leon Mestel for a very careful and thorough
reading of the original manuscript. This book has tremendously benefited
from his countless observations, comments and suggestions. Special
thanks are due to Michal Semo and her team at the Desktop Publishing
unit of Tel Aviv University for their skilful and painstaking graphics work,
not to mention their endless patience and cheerfulness. Above all, I am
grateful to my son Ely for gracefully bearing with a busy and preoccupied
mother during the rather demanding years of adolescence.
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CHOOSE SOMETHING LIKE A STAR
by Robert Frost

O Star, (the fairest one in sight),
We grant your loftiness the right
To some obscurity of cloud –
It would not do to say of night,
Since dark is what brings out your light.
Some mystery becomes the proud.
But to be wholly taciturn
In your reserve is not allowed.
Say something to us we can learn
By heart and when alone repeat.
Say something! And it says ‘I burn’.
But say with what degree of heat.
Talk Fahrenheit, talk Centigrade.
Use language we can comprehend.
Tell us what elements you blend.
It gives us strangely little aid,
But does tell something in the end.
. . .
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1

Observational background and basic assumptions

1.1  What is a star?

A star can be defined as a body that satisfies two conditions: (a) it is
bound by self-gravity; (b) it radiates energy supplied by an internal source.
From the first condition it follows that the shape of such a body must be
spherical, for gravity is a spherically symmetric force field. Or, it might be
spheroidal, if axisymmetric forces are also present. The source of radiation
is usually nuclear energy released by fusion reactions that take place in
stellar interiors, and sometimes gravitational potential energy released in
contraction or collapse. By this definition, a planet, for example, is not a
star, in spite of its stellar appearance, because it shines (mostly) by
reflection of solar radiation. Nor can a comet be considered a star, although
in early Chinese and Japanese records comets belonged with the ‘guest
stars’ – those stars that appeared suddenly in the sky where none had
previously been observed. Comets, like planets, shine by reflection of solar
radiation and, moreover, their masses are too small for self-gravity to be of
importance.

A direct implication of the definition is that stars must evolve: as they
release energy produced internally, changes necessarily occur in their
structure or composition, or both. This is precisely the meaning of
evolution. From the above definition we may also infer that the death of a
star can occur in two ways: violation of the first condition – self-gravity –
meaning breakup of the star and scattering of its material into interstellar
space, or violation of the second condition – internally supplied radiation
of energy – that could result from exhaustion of the nuclear fuel. In the
latter case, the star fades slowly away, while it gradually cools off,
radiating the energy accumulated during earlier phases of evolution.
Eventually, it will become extinct, disappearing from the field of view of
even the most powerful telescopes. This is what we call a dead star. We
shall see that most stars end their lives by a combination of these two
processes: partial breakup (or shedding of matter) and extinction. As to the
birth of a star, this is a complex process, which presents many problems
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that are still under intensive investigation. We shall deal with this phase
only briefly, mainly by pointing out the circumstances under which it is
expected to occur.

We shall therefore start pursuing the evolution of a star from the earliest
time when both conditions of the definition have been fulfilled, and we
shall stop when at least one condition has ceased to be satisfied,
completely and irreversibly. Finally, we shall consider the life cycle of
stellar populations and the effect of stellar evolution on the evolution of
galaxies within which stars reside. Galaxies are large systems of stars (up
to 1011 or so), which also contain interstellar clouds of gas and dust. Many
of the stars in a galaxy are aggregated in clusters, the largest among them
containing more than 105 stars. The object of reference in stellar physics
is, naturally, the Sun, and in galactic physics, the Galaxy to which it
belongs, also known as the Milky Way galaxy.

1.2  What can we learn from observations?

Astrophysics (the physics of stars) does not lend itself to experimental
study, as do the other fields of physical science. We cannot devise and
conduct experiments in order to test and validate theories or hypotheses.
Validation of a theory is achieved by accumulating observational evidence
that supports it and its predictions or inferences. The evidence is derived
from events that have occurred in the past and are completely beyond our
control. The task is rather similar to that of a detective. As a rule of thumb,
a theory is accepted as valid (or at least highly probable) if it withstands
two radically different and independent observational tests, and of course,
so long as no contradictory evidence has been found.

The information we can gather from an individual star is quite restricted.
The primary characteristic that can be measured is the apparent
brightness, which is the amount of radiation from the star falling per unit
time on unit area of a collector (usually, a telescope). This radiation flux,
which we shall denote Iobs is not, however, an intrinsic property of the
observed star, for it depends on the distance of the star from the observer.
The stellar property is the luminosity L, defined as the amount of energy
radiated per unit time – the power of the stellar engine. Since L is also the
amount of energy crossing, per unit time, a spherical surface area at the
distance d of the observer from the star, the measured apparent brightness
is
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(1.1)

and L may be inferred from Iobs if d is known. The luminosity of a star is
usually expressed relative to that of the Sun, the solar luminosity L  = 3.85
× 1026 Js−1. Stellar luminosities range between less than 10−5L  and over
105L .

Note: The only direct method of determining distances to stars (and other celestial bodies) is
based on the old concept of parallax – the angle between the lines of sight of a star from two
different positions of the observer. The lines of sight and the line connecting the observer’s
positions form a triangle, with the star at the apex, as shown in Figure 1.1. The larger the distance to
the object, the wider the baseline required for obtaining a discernible parallax: for objects within the
solar system distant points on Earth suffice; for stars, a much larger baseline is needed. This is
provided by the Earth’s orbit around the Sun, yielding a maximal baseline of ~3 × 1011 m, twice the
Earth-Sun distance a(= 1 AU). Thus, the stellar parallax is obtained by determining a star’s position
relative to very distant, fixed stars, at an interval of half a year. Even so, the triangle obtained is
very nearly isosceles, with almost right base angles, while the parallax p, defined as half the apex
angle, is less than 1″ (the largest known stellar parallax is that of Proxima Centauri – the star
closest to our Sun, p = 0″.76). Consequently, to a good approximation, d ≈ a/p. Based on this
method, distances of up to about 500 light-years may be directly measured. (One light-year, 9.46 ×
1015 m, is the distance travelled in one year at the speed of light.) A common astronomical unit for
measuring distances, called parsec, is based on the parallax method: as its name indicates, it is the
distance corresponding to a parallax of 1″, amounting to about 3 light-years. Recently, the number
of stars for which we have accurate distances has grown a hundredfold as a result of the activity of
the satellite specially designed for this task, Hipparcos (High Precision Parallax Collecting
Satellite), named after the greatest astronomer of antiquity, Hipparchus of Nicea (second century
BC), who measured the celestial positions and brightnesses of almost a thousand stars and produced
the first star catalogue. The satellite Hipparcos, which operated during 1989–93, gathered data on
more than a million nearby stars. But on the astronomical scale, distances that can be directly
measured are quite small and hence indirect methods have to be devised, some of which are based
on the theory of stellar structure and evolution, as we shall see in Chapter 9.
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Figure 1.1  Sketch of the parallax method for measuring distances to stars.

The surface temperature of a star may be obtained from the general
shape of its spectrum, the continuum, which is very similar to that of a
blackbody. The effective temperature of a star Teff is thus defined as the
temperature of a blackbody that would emit the same radiation flux. It
provides a good approximation to the temperature of the star’s outermost
layer, called the photosphere, where the bulk of the emitted radiation
originates. If R is the stellar radius, the surface flux is L/4πR2, and hence:

(1.2)

where σ is the Stefan-Boltzmann constant. Thus

(1.3)

The surface temperatures of stars range between a few thousand to a few
hundred thousand degrees Kelvin (K), the wavelength of maximum
radiation λmax shifting, according to Wien’s law

(1.4)

from infra-red to soft X-rays. The effective temperature of the Sun is 5780
K. We should bear in mind, however, that conclusions regarding internal
temperatures cannot be drawn from surface temperatures without a theory.
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The chemical composition, too, can be inferred from the spectrum. Each
chemical element has its characteristic set of spectral lines. These lines can
be observed in the light received from stars, superimposed upon the
continuous spectrum, either as emission lines, when the intensity is
enhanced, or as absorption lines, when it is diminished. The elements that
make up the photosphere of a star, which emits the observed radiation,
may thus be identified in the stellar spectrum. But since the photosphere is
very thin, the deduced composition is not representative of the bulk,
opaque interior of the star. Most of the chemical elements were found to be
present in the solar spectrum. In fact the existence of the element helium
was first suggested by spectral lines from the Sun (in the 1860s); its name
is derived from ‘helios’, the Greek word for Sun.

Under certain conditions, the mass of a star that is a member of a binary
system can be calculated, based on spectral line shifts, as we shall show in
Chapter 11. Very seldom, in eclipsing binary systems, may the radius of a
star be directly derived; it can, however, be estimated from the
independently derived luminosity (when possible) and effective
temperature using Equation (1.3). Stellar masses and radii are measured in
units of the solar mass, M  = 1.99 × 1030 kg, and the solar radius, R
 = 6.96 × 108 m. The mass range is quite narrow – between ~0.1M  and a
few tens M ; stellar radii vary typically between less than 0.01R  to more
than 1000R . Much more compact stars exist, though, with radii of a few
tens of kilometres.

Besides being sparse, the information one can gather is confined to a
very brief moment in a star’s life, even if observations are carried on for
hours or years, or, hypothetically, hundreds of years. To illustrate this
point, let us compare the life span of a star to that of a human being:
uninterrupted observation of a star since, say, the discovery of the
telescope some 400 years ago, would be tantamount to watching a person
for about 3 minutes! Obviously, it would be impossible to learn anything
(directly) about the evolution of the star from such a fleeting observation.
The body of data available to the astrophysicist consists of accumulated
momentary information on a very large number of stars, at different
evolutionary stages. From these data, the astrophysicist is required to form
a scenario describing the evolution of a single star.

Imagine, for comparison, an explorer who has never seen human beings,
trying to figure out the nature and evolutionary course of these creatures,
based solely on a large sample of photographs of many different humans
chosen at random. The explorer will find that humans differ in many
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properties, such as height, colour of skin, etc., and will note, for example,
that the height of the majority varies within a narrow range around a mean
of, say, 1.75 m, and only the height of a small minority is significantly
below this mean. These findings may be interpreted in two ways: (a)
humans are intrinsically different, the tall ones being more numerous than
the short ones; (b) humans are similar to one another, but their properties
change in the course of their lives, their height either increasing or
decreasing with age (one would not be able to tell which). In the latter
case, based on the hypothesis that humans evolve, it may also be inferred
that individual human beings are tall for a longer part of their lives than
they are short. It might even be possible to calculate the rate of change of
the human height from the relative number of individuals in different
height ranges.

In a similar manner, if we find that a certain property is common to a
great number of stars, we may infer – on the basis of the evolution
hypothesis – that such a property prevails in stars for long periods of time.
By the same token, rarely observed phenomena might not be rare events,
but simply short-lived ones. At the same time, the possibility of actually
rare phenomena cannot be entirely ruled out. This is a sample of the
problems one would have to face if the understanding of stars and their
evolution were to rest entirely on observation.

As the information available for any given star is so limited, the theory
of stellar evolution is not meant to describe in detail the structure and
expected evolutionary course of any individual star (with the exception of
the Sun). Its purpose is rather to construct a general model that explains
the large variety of stellar types, as well as the relations between different
stellar properties revealed by observations (such as the correlation between
luminosity and surface temperature, or between luminosity and mass,
which we shall shortly encounter).

1.3  Basic assumptions

Guided by the observational evidence, we may add several fundamental
assumptions (or axioms) to the general definition of a star, on which to
base the theory of stellar structure and evolution.

Isolation
Regarding its structure and evolution, a single star may be considered
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isolated in empty space, although it is invariably a member of a large
group – a galaxy – or even a denser group within a galaxy – a stellar
cluster. (We exclude from the present discussion binary stars – a pair of
stars that form a bound system that we shall address in Chapter 11.)
Consequently, the initial conditions will exclusively determine the course
of a star’s evolution. Thus the evolutionary process of a star
(metaphorically termed life) differs from that of live creatures, the latter
being influenced to a large extent by interaction with their environment.
To better grasp the isolation of stars, consider the star closest to our Sun
(Proxima Centauri), which is at a distance of 4.3 light-years. This distance
is larger than the solar diameter by a factor of 3 × 107. Such a situation
would be similar to nearest neighbours on Earth being separated by a
distance 3 × 107 times their height, which roughly amounts to 50 000 km.
This is four times the Earth diameter or one seventh of the distance to the
Moon. We would call this isolation! Both the gravitational field and the
radiation flux, which vary in proportion to 1/d2, are diminished by a factor
of at least 1/(3 × 107)2 ~ 10−15 from one star to another.

Uniform initial composition
A star is born with a given mass and a given, presumably homogeneous,
composition. The latter depends on the time of formation and on the
location within the galaxy where the star is formed. The composition of
stars has been a question of intense debate for a long time. It turned out,
finally, that most of the material of a newly formed star, about 70% of its
mass, consists of hydrogen. The second most important element is helium,
amounting to 25–30% of the mass, and there are traces of heavier
elements, of which the most abundant are oxygen, carbon and nitrogen (in
that order), known collectively as the CNO group. In the Sun, for example,
for every 10 000 hydrogen atoms, there are about 1000 helium atoms, 8
oxygen atoms, almost 4 carbon atoms, one atom of nitrogen, one of neon
and less than one atom of each of the other species. The composition of
stellar material is usually described by the mass fractions of different
elements, the mass of each element per unit mass of material. It is common
to denote the mass fraction of hydrogen by X, that of helium by Y, and the
total mass fraction of all the other elements by Z, so that X + Y + Z = 1.

Exercise 1.1: Calculate the mass fractions of hydrogen, helium, carbon, oxygen, nitrogen and
neon in the Sun.
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Thus, since both hydrogen and helium, the predominant stellar
components, are found in the gas phase unless the temperature is
extremely low or the density (pressure) extremely high, we may quite
safely deduce that stars are made of gas. We shall return to this point later
on, when we gain more insight into stellar interiors.

With very few exceptions, the abundances of the chemical elements, as
derived from stellar spectra, are remarkably similar. Moreover, they are
very similar to those prevailing in the interstellar medium. As stars are
born in interstellar clouds, and the composition of their surface layers is
expected to be the least affected by evolutionary processes, it may be
concluded that there is little difference in the initial composition of stars.
The largest differences occur for the abundances of the heavy elements,
which vary among different stars between less than 0.001 to a few per cent
of the entire stellar mass. But differences in the initial abundances of these
elements are of secondary importance to stellar evolution. For simplicity,
we shall ignore differences in the initial composition of stars. In numerical
examples we shall generally adopt the solar composition. The fate of a star
will then be solely dependent upon its initial mass M.

Historical Note: The first to show that the Sun’s atmosphere is dominated by hydrogen was
Cecilia Payne in her doctoral dissertation completed in 1925. Not only did she show that the most
abundant elements were hydrogen and helium, but she also suggested that the relative abundances
of the heavier elements were roughly constant throughout the galaxy, thus indicating the
homogeneity of the universe. These findings followed from Saha’s equation (see Section 3.6), then
new, according to which, the strength of spectral lines depends on physical conditions as well as on
elemental abundances. These conclusions, very much opposed to the common wisdom of the time,
were largely ignored. It was only a few years later, when, corroborated by further evidence, the
prevalence of hydrogen and helium in the Sun’s atmosphere was convincingly argued by Henry
Norris Russell, whose fame will become apparent shortly.

A doctoral degree awarded to a woman was extremely unusual in those days. In her
autobiography, Cecilia Payne-Gaposchkin writes ‘One serious obstacle existed: there was no
advanced degree in astronomy, and I should have to be accepted as a candidate by the Department
of Physics. The redoubtable Chairman of that department was Theodore Lyman, and Shapley
[Harlow Shapley, her mentor] reported to me that he refused to accept a woman candidate.’ In the
end she became the first person to earn a doctorate in astronomy from Harvard University.

Spherical symmetry
Departure from spherical symmetry may be caused by rotation or by the
star’s own magnetic field (since by assuming isolation, we have excluded
all possible external force fields). In the overwhelming majority of cases,
the energy associated with these factors is much smaller than the
gravitational binding energy. We know, for example, that the period of
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revolution of the Sun around its axis is about 27 days, so that its angular
velocity is ω  2.5 × 10−6 s−1. The spin velocity of more distant stars can
be deduced from the broadening of spectral lines caused by the Doppler
effect. The kinetic energy of rotation relative to the gravitational binding
energy is of the order:

where G is the constant of gravitation. (This is also the ratio of the
centrifugal acceleration to the gravitational acceleration at the equator.)

The magnetic fields of stars similar to the Sun range from a few
thousandths to a few tenths of a tesla. The larger ones may be directly
deduced from split spectral lines caused by the Zeeman effect, whose
separation can be measured. The energy density associated with a
magnetic field B is B2/2µ0, while the gravitational energy density is of the
order of GM2/R4; for the Sun, even taking B = 0.1 T (typical of sunspots,
but larger than the average magnetic field), we have

Compact stars tend to have higher magnetic fields, but their small radii
(large binding energies) compensate for them. Hence, magnetic effects on
the structure of a star can usually be ignored.

Neglecting deviations from spherical symmetry, the physical properties
within a star change only with the radial distance r from the centre and are
uniform over a spherical surface of radius r. The spatial variable r may be
replaced by the mass m enclosed in a sphere of radius r, as shown in
Figure 1.2. The transformation between these variables is given in terms of
the density ρ:

or, in differential form,

(1.5)
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The advantage of using m instead of r in calculations of the changing
stellar structure is that its range of variation is bounded, 0 ≤ m ≤ M,
whereas the radius may change by several orders of magnitude in the
course of evolution of a star.

Figure 1.2  The relationship between space variables r and m in spherical symmetry.

Exercise 1.2:  In a star of mass M, the density decreases from the centre to the surface as a
function of radial distance r, according to

where ρc is a given constant and R is the star’s radius. (a) Find m(r). (b) Derive the relation
between M and R. (c) Show that the average density of the star (total mass divided by total
volume) is 0.4ρc.

1.4  The H–R diagram: a tool for testing stellar evolution

As we have seen, the two most fundamental properties of a star that can be
inferred from observation are the luminosity L and the effective
temperature Teff. It is only natural that a possible correlation between them
be sought. This was initiated independently by two astronomers at about
the same time: Ejnar Hertzsprung in 1911 and Henry Norris Russell in
1913. Hence the diagram whose axes are the (decreasing) surface
temperature (or related properties) and the luminosity (or related
properties) bears their names, being known as the H–R diagram. Each
observed star is represented by a point in such a diagram, an example of
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which is given in Figure 1.3. The results depend to some extent on the
criterion used for choosing the sample of stars, for example, stars within a
limited volume in the solar neighbourhood, or members of a given star
cluster, or stars of apparent brightness greater than a prescribed limit, etc.
The question we are interested in is whether something can be learned
from this diagram regarding the evolution of stars.

Figure 1.3  The H–R diagram of stars in the neighbourhood of the Sun.

It is immediately obvious from the examination of any H–R diagram
that only certain combinations of L and Teff values are possible (a priori
there is nothing to impose such a constraint): most points are found to lie
along a thin strip that runs diagonally through the (log Teff, log L) plane.
This strip is called the main sequence and the corresponding stars are
known as main-sequence stars.

Another populated area of the diagram is found to the right and above
the main sequence: it represents stars that are brighter than main-sequence
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stars of same Teff, or of lower Teff for the same L, meaning that their
spectrum is shifted toward longer wavelengths and their colour is reddish.
A higher L and lower Teff implies, according to Equation (1.3), a large
radius. Such stars are therefore called red giants. Their radii may attain
several hundred solar radii and even more. If the Sun were to become a red
giant, it would engulf the Earth and reach beyond Mars.

Another region of the (log Teff, log L) plane that is relatively rich in
points is located at the lower left corner: low luminosities and high
effective temperatures. Stars that fall in this region have a small radius and
a bluish-white colour; accordingly, they are named white dwarfs. White
dwarf radii are of the order of the Earth’s, although their masses are close
to the Sun’s. The typical densities of such stars are therefore tremendous;
one cubic centimetre of white dwarf material would weigh more than a ton
on Earth.

There are points outside these three main regions and there are
conspicuously empty spots within densely populated areas of the diagram,
but we shall ignore them for the moment and concentrate on the three main
ones. What, if anything, can we learn from them? We recall that, in view
of our basic assumptions, stars may differ from one another only in their
initial mass and their age. We can therefore interpret the H–R diagram in
two different ways:

1.  The scatter of points is due to the different ages of the stars. The
implied assumption in this case is that the stars were formed at
different times, and hence there are ‘old’ stars and ‘young’ stars.
According to this hypothesis the evolution of a star can be traced in
the H–R diagram by some line, with the time elapsed from the
formation of the star being the changing parameter along it. Looking
at a large sample of stars, each one is caught at a different age – hence
the scatter of points in the diagram.

2.  The properties of a star, in particular its luminosity and surface
temperature, depend strongly upon its mass, the only distinguishing
parameter at birth. Thus, different points in the diagram represent
different stellar masses.

This is the same dilemma our earlier explorer of the human race was
faced with: are the observed differences inherent or evolutionary? The
explorer would have been able to choose the correct explanation if sets of
snapshots of humans of the same age, for example, pupils of different
school grades, were supplied. The explorer would have immediately
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concluded that height is determined by age, whereas skin-colour is an
innate property. Similarly, the astrophysicist is aided by H–R diagrams of
star clusters. Stars within a cluster are formed more or less simultaneously,
by fragmentation of a large gas cloud (as will be explained in Section
12.2). Images of star clusters are shown in Figure 1.4. Examples of H–R
diagrams of such clusters are given in Figure 1.5. We note that the main
sequence ends at different luminosities for each cluster: in one case it
extends up to very high luminosities; in another case it is shorter, but at the
same time there appear some red giants, which were absent in the first
cluster; in yet another one, the main sequence is shorter still, and red giants
are numerous.
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Figure 1.4  Stellar clusters: (a) the young open (amorphous shape) Pleiades cluster; (b) the old
globular cluster 47 Tucanae (copyright Anglo-Australian Observatory/Royal Observatory
Edinburgh, photographs by D. Malin).
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Figure 1.5  The H–R diagram of star clusters: (a) the Pleiades cluster (adapted from H. L.
Johnson & W. W. Morgan (1953), Astrophys. J., 117); (b) the Hyades cluster (adapted from H. L.
Johnson (1952), Astrophys. J., 116); (c) the globular cluster M3 (adapted from H. L. Johnson &
A. R. Sandage (1956), Astrophys. J., 124).

Generally, as the main sequence is depleted, the red giant and white
dwarf branches are enriched. The lower part of the main sequence is
always present and equally populated, allowing for observational
constraints. We may therefore conclude that being on or outside the main
sequence is determined by age, whereas the location of a star along the
main sequence is determined by its initial mass.

We are still unable to trace the evolutionary trajectory, whether toward
or away from the main sequence, so long as the cluster ages are not
determined; but the second inference can be tested. We may choose main-
sequence stars with known masses and look for a correlation between their
masses and luminosities. This is shown in Figure 1.6, which demonstrates
that indeed there is a power-law dependence of a main-sequence star’s
luminosity upon its mass:

with ν ranging between ~3 and ~5 over most of the mass range. As the Sun
is a main-sequence star, the relation can be calibrated to read

(1.6)

Do stars leave the main sequence to become red giants? Do they later
turn into white dwarfs? Or, do some stars become red giants and others
white dwarfs? Why are there always – in all H–R diagrams – lower main-
sequence stars? Why are some changes in the stellar structure so rapid as
to leave a blatant gap in the H–R diagram? Observation alone is incapable
of providing answers to all these questions. We must resort to theory, and
use the observations that have guided us so far, in particular the H–R
diagram, as a test. Here Martin Schwarzschild’s words come to mind:

If simple perfect laws uniquely rule the universe, should not pure thought be capable of
uncovering this perfect set of laws without having to lean on the crutches of tediously
assembled observations? True, the laws to be discovered may be perfect, but the human brain
is not. Left on its own, it is prone to stray, as many past examples sadly prove. In fact, we have
missed few chances to err until new data freshly gleaned from nature set us right again for the
next steps. Thus pillars rather than crutches are the observations on which we base our
theories; and for the theory of stellar evolution these pillars must be there before we can get far
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on the right track.
Martin Schwarzschild: Structure and Evolution of the Stars, 1958

Our aim throughout most of the following chapters will be to develop a
theory of the stellar structure and evolution based on the laws of physics.
This should ultimately lead to a theoretical H–R diagram, to be confronted
with the observational one.

Figure 1.6  The mass-luminosity relation for main-sequence stars. Data from O. Yu. Malkov
(2007), Mon. Not. Roy. Astron. Soc., 382, based on detached main-sequence eclipsing binaries
(triangles), E. A. Vitrichenko, D. K. Nadyozhin and T. L. Razinkova (2007), Astron. Lett., 33
(squares) and from the compilation by O. Yu. Malkov, A. E. Piskunov and D. A. Shpil’kina
(1997), Astron. Astrophys., 320 (dots).
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2

The equations of stellar evolution

We have learned a star to be a radiating gaseous sphere, made
predominantly of hydrogen and helium. Radiation may be regarded as a
photon gas, each ‘particle’ carrying a quantum of energy hν, proportional
to the frequency ν of the associated electromagnetic wave, and a
momentum hν/c, where h is Planck’s constant and c is the speed of light.
This mixture of gases that makes up a star is governed by frequent
collisions between its particles, ions, electrons and photons alike. This is
how Sir Arthur Eddington describes The Inside of a Star:

. . . Try to picture the tumult! Dishevelled atoms tear along at 50 miles a second with only a
few tatters left of their elaborate cloaks of electrons torn from them in the scrimmage. The lost
electrons are speeding a hundred times faster to find new resting-places. Look out! there is
nearly a collision as an electron approaches an atomic nucleus; but putting on speed it sweeps
round it in a sharp curve. A thousand narrow shaves happen to the electron in 10−10 of a
second; sometimes there is a slide-slip at the curve, but the electron still goes on with increased
or decreased energy. Then comes a worse slip than usual; the electron is fairly caught and
attached to an atom, and its career of freedom is at an end. But only for an instant. Barely has
the atom arranged the new scalp on its girdle when a quantum of aether waves (photon) runs
into it. With a great explosion the electron is off again for further adventures. Elsewhere two of
the atoms are meeting full tilt and rebounding, with further disaster to their scanty remains of
vesture. . . .

And what is the result of all this bustle? Very little. Unless we have in mind an extremely
long stretch of time the general state of the star remains steady.

Sir Arthur S. Eddington: The Internal Constitution of the Stars, 1926

Frequent collisions lead to a state of thermodynamic equilibrium, which is
characterized by a temperature, indicative of the energy distribution of the
particles. For example, a free ideal gas in thermodynamic equilibrium is
described by a Maxwellian velocity (kinetic energy) distribution.

2.1  Local thermodynamic equilibrium

When the average distance travelled by particles between collisions – the
mean free path – is much smaller than the dimensions of the system,
thermodynamic equilibrium is achieved locally, and the system may
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assume different temperatures at different points. It is thus described by a
temperature distribution. If, moreover, the time elapsed between collisions
– the mean free time – is much shorter than the timescale for change of
macroscopic properties, then thermodynamic equilibrium is secured, but
the temperature distribution may change with time. Such is the situation in
stars.

Equilibrium between matter and radiation can be achieved as well, by
‘collisions’ (interactions) between mass particles and photons. In this case
the radiation becomes a blackbody radiation, where the energy distribution
of the photons is described by the Planck function, and the temperatures of
gas and radiation are the same. As we shall see in more detail in the next
chapter, the average mean free path of photons in stellar interiors is many
orders of magnitude smaller than typical stellar dimensions. Needless to
say, the corresponding mean free time of photons is vanishingly small.
Consequently, the gas and the radiation may be assumed in
thermodynamic equilibrium locally, that is, the gas temperature is the same
as the radiation temperature at each point (although the temperature of a
star is neither uniform nor constant). This means that the radiation in
stellar interiors is very nearly blackbody radiation, described by the Planck
function corresponding to the local unique temperature. Such a state is
known as local thermodynamic equilibrium (LTE). It should be stressed
that radiation and matter are not always in a state of equilibrium. For
example, the solar radiation passing through the Earth’s atmosphere does
not reach equilibrium with the gas: the radiation temperature is the
effective temperature of the Sun, about 6000 K, while the gas temperature,
around 300 K, is more than 20 times lower. Similar situations occur in
gaseous nebulae that are illuminated by stars embedded in them. There are
also mixtures involving more than two temperatures; for example, in an
ionized gas, the temperatures of the electrons, the ions and the photons
may all differ from each other. Such is the situation in the solar wind – the
flux of particles, mainly protons and electrons, emanating from the Sun. In
this case, the characteristic temperatures of the two gases – about 106 K for
the protons, and almost twice as much for the electrons – are higher than
that of the radiation (6000 K).

The assumption of LTE constitutes a great simplification, for it enables
the calculation of all thermodynamic properties in terms of the
temperature, the density and the composition, as they change from the
stellar centre to the surface. Thus the structure of a star of given mass M is
uniquely determined at any given time t, if the density ρ, the temperature T
and the composition – the mass fractions of all the constituents – are
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known at each point within it. By ‘point’ we mean any value of the
independent space variable chosen (r or m), which refers to a spherical
surface around the centre. The temperature, density and composition
change not only with distance from the centre of the star, but also with
time. Hence the evolution of a star composed of n different elements is
described by the n + 2 functions, ρ(m, t), T (m, t) and the mass fractions
Xi(m, t), where 1 ≤ i ≤ n, of two independent variables, time and space. A
set of n + 2 equations is thus required, of which these functions are the
solutions.

We thus invoke the basic conservation laws that apply to any physical
system: conservation of mass, momentum, angular momentum and energy.
As we have assumed a star to be a nonrotating system, the angular
momentum is uniformly zero at all times. (Nevertheless, the global
conservation of angular momentum will be invoked later on to explain
special features of peculiar stars.) Conservation of mass is implicitly
included in the relation between dm and dr. Only two conservation laws
remain to be applied, for energy and momentum, which together with the
equations for the rate of change of abundance for each species will form
the set of equations of stellar evolution.

2.2  The energy equation

The first law of thermodynamics, or the principle of conservation of
energy, states that the internal energy of a system may be changed by two
forms of energy transfer: heat and work. Heat may be added or extracted,
and work may be done on the system, or performed by the system, and
involves a change in its volume – expansion or contraction. Consider a
small element of mass dm within a star, over which the temperature,
density and composition may be taken as approximately constant. In view
of the spherical symmetry assumed, such an element may be chosen as a
thin spherical shell between radii r and r + dr – as shown in Figure 2.1 –
so that its volume is dV = 4πr2dr and

(2.1)

(see Equation (1.5)). Let u be the internal energy per unit mass and P the
pressure. We denote by δf a change that occurs in the value of any quantity
f within the mass element over a small period of time δt (a Lagrangian
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rather than Eulerian change). Then, if δQ is the amount of heat absorbed
(δQ > 0) or emitted (δQ < 0) by the mass element and δW is the work
done on it during the time interval δt, the change in the internal energy,
according to the first law, is given by:

(2.2)

where we have used the conservation of mass in assuming dm to be
constant. The work may be expressed as

(2.3)

We note that compression means shrinking of the element’s volume, or
δdV < 0, and hence entails an addition of energy, while expansion (δdV >
0) is achieved at the expense of the element’s own energy.

Figure 2.1  Spherical shell within a star and the heat flow into and out of it.

The sources of heat of the mass element are: (a) the release of nuclear
energy, if available, and (b) the balance of the heat fluxes streaming into
the element and out of it. The rate of nuclear energy release per unit mass
is denoted by q and the heat flowing perpendicularly through a spherical
surface by F (m). Thus F has the dimension of power (not to be confused
with the strict definition of a heat flux – power per unit area), and
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obviously F (M) ≡ L. Accordingly,

But F (m + dm) = F (m) + (∂F /∂m)dm and hence

(2.4)

Substituting Equations (2.3) and (2.4) into Equation (2.2), we may write
the latter as

(2.5)

and in the limit δt → 0 we obtain

(2.6)

where we have used the notation  for the temporal (partial) derivative ∂f/
∂t of a function f (the notation introduced by Newton).

In thermal equilibrium, when temporal derivatives vanish, we have

(2.7)

Integrating over the mass,

(2.8)

for the heat flow must vanish at the centre to avoid singularity. The left-
hand side is the total power supplied in the star by nuclear processes,
which is commonly denoted by Lnuc, the nuclear luminosity,
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(2.9)

and thus thermal equilibrium implies that energy is radiated away by the
star at the same rate as it is produced in its interior, L = Lnuc.

2.3  The equation of motion

Newton’s second law of mechanics, or the equation of motion, states that
the net force acting on a body of fixed mass imparts to it an acceleration
that is equal to the force divided by the mass. This is the momentum
conservation law for a body of fixed mass. Consider a small cylindrical
volume element within a star, with an axis of length dr in the radial
direction, between radii r and r + dr, and a cross-sectional area dS, as
shown in Figure 2.2. If the (approximately uniform) density within the
element is ρ, its mass Δm is given by

(2.10)

The forces acting on this element are of two kinds: (a) the gravitational
force, exerted by the mass of the sphere interior to r (the net gravitational
force exerted by the spherical mass shell exterior to r vanishes) and (b)
forces resulting from the pressure exerted by the gas surrounding the
element. The gravitational force is radial and directed toward the centre of
the star. Due to the spherical symmetry assumed, the pressure forces acting
perpendicularly to the side of the cylindrical element are balanced and
only the pressure forces acting perpendicularly to its top and bottom
remain to be considered. Denoting by  the acceleration ∂2r/∂t 2 of the
element, we may write the equation of motion in the form

(2.11)

But P (r + dr) = P (r) + (∂P /∂r)dr and hence
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where we have substituted Δm from Equation (2.10). We may now divide
by Δm to obtain

(2.12)

If m is chosen as the independent space variable rather than r and the
transformation dr = dm/(4πr2ρ) is used, Equation (2.12) becomes

(2.13)

When accelerations are negligible, Equations (2.12) and (2.13) describe a
state of hydrostatic equilibrium, with gravitational and pressure forces
exactly in balance:

(2.14)

or

(2.15)

As the right-hand side of Equation (2.14) or (2.15) is always negative,
hydrostatic equilibrium implies that the pressure decreases outward. The
pressure gradient vanishes at the centre, since on the right-hand side of
Equation (2.14) m/r2 tends to zero with r.
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Figure 2.2 Cylindrical mass element within a star.

We may estimate the pressure at the centre of a star in hydrostatic
equilibrium by integrating Equation (2.15) from the centre to the surface of
the star,

(2.16)

On the left-hand side we are left with the central pressure Pc ≡ P (0), since
at the surface the pressure practically vanishes, P (M) ≈ 0. On the right-
hand side we may replace r by the stellar radius R ≥ r, to obtain a lower
limit for the central pressure:

(2.17)

yielding

(2.18)

The pressure at the centre of the Sun exceeds 450 million atmospheres!
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Exercise 2.1:  For a star of mass M and radius R, find the central pressure and check the
validity of inequality (2.18) for the following cases: (a) a uniform density and (b) a density
profile as in Exercise 1.2.

Exercise 2.2:  Suppose that the greatest density in a star is ρc at the centre and let Pc be the
corresponding pressure. Show that

2.4  The virial theorem

An important consequence of hydrostatic equilibrium is a link that it
establishes between gravitational potential energy and internal energy (or
kinetic energy in a system of free particles). Multiplying the equation of
hydrostatic equilibrium (2.15) by the volume  and integrating
over the whole star, we obtain

(2.19)

The integral on the right-hand side of Equation (2.19) is none other than
the gravitational potential energy of the star, that is, the energy required to
assemble the star by bringing matter from infinity,

(2.20)

The left-hand side of Equation (2.19) can be integrated by parts,

(2.21)

The first term on the right-hand side vanishes, since at the centre V = 0 and
at the surface P = 0. Combining Equations (2.19)–(2.21), we finally obtain

(2.22)
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or, since dV = dm/ρ,

(2.23)

This is the general, global form of the virial theorem, which will prove
extremely valuable in many later discussions. A similar relation,
applicable to part of the star, may be obtained by carrying the integration
of Equation (2.19) up to a radius Rs < R:

(2.24)

Here, Ωs is the gravitational potential energy of the sphere whose
boundary is at Rs, which is unaffected by the shell outside it (between Rs
and R), while Ps is the pressure at Rs, exerted by the weight of the
overlying shell.

Consider the particular case of an ideal gas of density ρ and temperature
T (to be treated in more detail in the next chapter); let the mass of a gas
particle be mg. The gas pressure is then given by P = (ρ/mg)kT, where k is
the Boltzmann constant. The kinetic energy per particle is  and since
for an ideal gas the internal energy is the kinetic energy of its particles, the
internal energy per unit mass is

(2.25)

Combining Equation (2.25) with the virial theorem (2.23), we have 

 The integral on the left-hand side is simply the

total internal energy U and hence

(2.26)

We can use this result to estimate the average internal temperature of a star
(assuming that stellar material behaves as an ideal gas – an assumption that
will be justified later on). The gravitational potential energy, Equation
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(2.20), of a star of mass M and radius R is given by

(2.27)

where α is a constant of the order of unity, determined by the distribution
of matter within the star, that is, by the density profile. By the virial
theorem, we have on the one hand  on the other hand,

from Equation (2.25),

(2.28)

where  is the temperature averaged over the stellar mass. Combining the
two results, we obtain

(2.29)

Substituting the average density  in Equation (2.29), we

obtain  meaning that between two stars of the same
mass, the denser one is also the hotter.

Exercise 2.3: For a star of mass M and radius R, find the value of α in the expression for the
gravitational potential energy for two cases: (a) a uniform density and (b) a density profile as
in Exercise 1.2.

Taking  and assuming the gas to be atomic hydrogen, we find that

the average temperature of a star is

(2.30)

We note that  is much higher than the surface temperature Teff (as
obtained from observations), implying that internal temperatures must
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reach still higher values. At temperatures of millions of degrees Kelvin,
hydrogen and helium are completely ionized, and even heavier elements
are found in gaseous, highly ionized form. Stellar material is therefore a
plasma, a mixture of ions – nuclei stripped of almost all their electrons –
and free electrons.

2.5  The total energy of a star

We start by integrating the energy equation (2.6) over the entire star:

(2.31)

Since the variables t and m are independent, the order of differentiation
and integration may be interchanged. Hence the first term on the left-hand
side is

(2.32)

Now

(2.33)

and

(2.34)

Integrating by parts the second term on the left-hand side of Equation
(2.31), we obtain

(2.35)
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and since at the centre  vanishes with r and at the surface P vanishes, we
finally have

(2.36)

We turn now to the equation of motion and integrate it, too, over the
entire star, after multiplying by :

(2.37)

As the total kinetic energy of the star is given by

(2.38)

the integral on the left-hand side of Equation (2.37) is

(2.39)

The first term on the right-hand side of Equation (2.37) is

(2.40)

Thus Equation (2.37) reads

(2.41)

45



Combining Equations (2.36) and (2.41), we have

(2.42)

where the left-hand side is the rate of change of the total stellar energy,
that is, 

(2.43)

If a star is in thermal equilibrium, it follows that  and the energy
is constant. If, in addition, the star is in hydrostatic equilibrium, 
vanishes. In this case U and Ω are related by the virial theorem, and hence
either of them determines the total energy of the star. Consequently, each
one of them is conserved, not only their sum. For example, a star in
thermal and hydrostatic equilibrium cannot cool throughout and expand
(although cooling decreases the energy and expansion increases it); it must
conserve the internal (thermal) energy and the gravitational potential
energy separately. Another, apparently puzzling, conclusion is that a star
in hydrostatic equilibrium has a negative heat capacity, meaning that it
becomes hotter upon losing energy! This follows again from the virial
theorem: for an ideal gas, we have

(2.44)

and in the general case the right-hand side is multiplied by a constant of
the order of unity. Hence if  then U, and with it (by Equation
(2.28)) the average temperature of the star, must increase. At the same
time, the star must contract. (We shall see shortly that contraction does not
necessarily imply violation of hydrostatic equilibrium, so that the last
argument is not contradictory.) In fact, the gravitational potential energy
released in contraction supplies both the energy that is lost (radiated) and
the thermal energy that causes the temperature to rise – in equal amounts
in the case of an ideal gas.

Exercise 2.4:  Assuming that a star of mass M is devoid of nuclear energy sources, find the
rate of contraction of its radius, if it maintains a constant luminosity L.
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2.6  The equations governing composition changes

As we have seen that stellar material is composed of free electrons and
(almost) entirely bare, chemically unbound nuclei, composition changes –
if any – cannot be of a chemical nature. The only possible changes in the
abundance of the constituents can occur by transformations of one element
into another, that is, by nuclear reactions – interactions between nuclei.

The atomic nucleus is made of protons and neutrons, collectively called
nucleons, which belong to the class of heavy particles named baryons
(‘baryon’ meaning ‘heavy one’ in Greek). The proton has a positive
electric charge of unity (in units of the elementary charge e); the neutron
has zero charge. These particles may therefore be characterized by two
numbers, baryon number  and charge , (1, +1) for the proton and (1, 0)
for the neutron. Electrons, like protons, are charged particles. Their baryon
number is 0, meaning that electrons are not heavy particles (indeed, the
electron mass is almost 2000 times smaller than the proton mass).
Associated with the electrons are the neutrinos, of baryon number 0 (the
neutrino mass is still controversial, although it is no longer thought to be
zero) and charge 0. Electrons and neutrinos belong to a class of particles
called leptons (‘light ones’ in Greek). For each particle, relativistic
quantum mechanics postulates the existence of an antiparticle, for which
the signs of baryon or lepton number and charge are reversed. The best
known antiparticle is the positron, the electron’s antiparticle.

Protons and neutrons are bound together in the atomic nucleus by a
force of attraction called the strong nuclear force. This is a short-range
force, independent of charge, that surpasses the repulsive Coulomb force
between protons at nuclear length scales – a few fermis (1 fermi = 10−15

m). Another force that can act on protons and neutrons is the weak force,
whose range is estimated to be still shorter (<10−17 m). The weak
interaction is responsible for the conversion of protons into neutrons (or
vice versa). In a nuclear reaction (interaction by means of the strong or the
weak force) the charge as well as the baryon and lepton numbers are
conserved. Hence in a weak interaction, an electron or a positron must be
involved in order to conserve charge, and a neutrino or antineutrino, so as
to conserve the lepton number. Conservation of lepton number means
equal numbers of leptons and antileptons; hence a positron (antilepton)
will be accompanied by a neutrino and an electron by an antineutrino.

If the bulk density in some part of a star is ρ and the partial density of
the ith nuclear species is ρi, the mass fraction of this species is given by
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(2.45)

and the number density – number of nuclei per unit volume – is given by
the partial density divided by the mass of one nucleus. The mass of an
atomic nucleus is slightly less than the sum of masses of its constituent
protons and neutrons as free particles. However, to a good approximation
we may write

(2.46)

where mH is the atomic mass unit representing the mass of a (bound)
nucleon, usually defined as a twelfth of a carbon nucleus mass. Despite the
notation, mH is slightly different both from the proton mass and from the
mass of a hydrogen atom. Combining Equations (2.45) and (2.46), we
obtain the relations

(2.47)

The number of nuclei in a given volume may change as a result of
nuclear reactions that create it and others that destroy it. The creation or
destruction of a nucleus takes place by fusion of lighter nuclei or by
breakup of a heavier nucleus and may involve capture and release of light
particles, such as positrons and electrons, neutrinos (and antineutrinos) and
energetic photons. Specific nuclear reactions will be considered in Chapter
4. A general way of describing a nuclear reaction is by two different nuclei
combining to produce two other nuclei. Since the nucleus of any element
is uniquely defined by the two integers  and  we denote the reactants
by the symbols  and  and the products by the
symbols  and  A nuclear reaction can proceed in
either direction (similarly to chemical reactions and ionization-
recombination processes), depending on the temperature (kinetic energy)
and density of the particles, and can therefore be described symbolically
by
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(2.48)

subject to two conservation laws:

(2.49)

(2.50)

If positrons or electrons are also involved, they must be taken into account
as well: for them  and  and conservation of lepton number
must be obeyed. Therefore, any three of the four nuclei involved in the
reaction uniquely determine the fourth. The reaction rate, say from left to
right, can be identified by three indices: two for the reactants and one for
one of the products.

Let us now attempt to evaluate the rate at which nuclei of type I are
destroyed by reactions of type (2.48) with the help of a simplified picture.
Consider a unit volume and assume that each I nucleus within it has a
cross-sectional area ς, meaning that any J nucleus striking this area will
cause a reaction to occur. Assume further that the relative velocity of I
nuclei with respect to J nuclei is v, so that I nuclei may be considered as
targets at rest, while J nuclei flow toward them at velocity v. The effective
target area is therefore niς; the number of particles crossing a unit area per
unit time is nj v. Hence the number of reactions that occur per unit time in
this unit volume is ninj ςv or ninj Rijk, where Rijk ≡ ςv – having the
dimension of volume divided by time – is called the reaction rate. In the
case of particles of one kind, say I , interacting with each other, the
product ninj is replaced by  The velocity of gas particles in the star is
the thermal velocity – this is why nuclear reactions occurring in stars are
called thermonuclear reactions – and the cross-section depends on the
properties of the reacting nuclei (such as their charges) as well as on the
properties of the products.

We may now write the rate of change of the ith element’s abundance
resulting from all possible nuclear reactions, both destructive and
constructive, in the form

(2.51)
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where δij has its usual meaning: for j ≠ i, δij = 0, while for j = i, δij = 1 (the
Kronecker delta). We note that two particles of type i are destroyed when
j = i, hence the factor (1 + δij ) in the first term on the right-hand side of
Equation (2.51). Using Equation (2.47), we obtain the rate of change of the
mass fraction:

(2.52)

and similar equations for the other mass fractions. For simplicity, we may
define a composition vector by X ≡ (X1, . . . , Xn) so that the set of
equations describing composition changes may be symbolically written as
one equation with n components, one for each element,

(2.53)

In nuclear equilibrium, when  the mass fractions Xi are readily
obtained from the set of equations fi = 0.

2.7  The set of evolution equations

The set of non-linear partial differential equations describing the
evolutionary course of the internal structure of a star is:

(2.54)

together with the time-independent relation (1.5). As it stands, the set is
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not complete; besides the structure functions – ρ(m, t), T (m, t), and Xi(m,
t) – that form the set of unknowns, it contains additional functions: (a) P
and u, (b) F and (c) q and f, which have to be supplied in terms of the
unknowns. To this purpose, we shall have to invoke different branches of
physics: thermodynamics and statistical mechanics in case (a); atomic
physics and the theory of radiation transfer in case (b); and nuclear and
elementary particle physics in case (c). This is, in fact, what distinguishes
astrophysics from other physical disciplines. Astrophysics does not deal
with a special, distinct class of effects and processes, as do the basic fields
of physics. Nuclear physics, for example, deals exclusively with the
atomic nucleus; there are many ramifications to this field of research, such
as nuclear forces, nuclear structure and nuclear reactions, but they are all
intimately connected. Nuclear physics has very little to do, say, with
hydrodynamics, the study of the motion of continuous media. By contrast,
astrophysics deals with complex phenomena, which involve processes of
many different kinds. It has to lean, therefore, on all the branches of
physics, and this makes for its special beauty. The theory of the structure
and evolution of stars presents a unique opportunity to bring separate,
seemingly unconnected physical theories under one roof. In the next
chapter we shall interrupt our pursuit of the evolutionary course of stars, in
order to extract from different physical theories the information that will
enable us to resume it.

Finally, in order for the set of differential equations to be solved,
boundary and initial conditions have to be supplied. The two space
derivatives require two boundary conditions and the n + 3 time derivatives
require n + 3 initial distributions of physical properties. The boundary
conditions are straightforward: P (M, t) = 0 and, in order to avoid a
singularity at the centre, F (0, t) = 0. The initial conditions could be ρ(m,
0), T (m, 0), (m, 0) and Xi(m, 0), or related functions. Here, it seems, we
run into serious difficulties: as mentioned before, star formation is still a
subject of study. The initial state of a star is, therefore, rather obscure.
Fortunately, as we shall see shortly, this problem can be overcome, or
more precisely, avoided.

2.8  The characteristic timescales of stellar evolution

The evolution of a star is described by the three time-dependent Equations
(2.54), each dealing with a different type of change: the first involves
dynamical or structural changes, the second describes thermal changes and
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the third deals with nuclear processes leading to changes in composition
(and in the rest-mass energy). Each change, or process, has its
characteristic timescale τ, which can be defined as the ratio of the quantity
(or physical property) ϕ that is changed by the process and the rate of
change of this quantity:

(2.55)

The simplest example would be of a motion, whose duration – or
characteristic timescale – is given by distance divided by velocity.
Obviously, a rapid process (large ) has a short timescale and vice versa.
It is instructive to estimate and compare the timescales of the different
processes that occur in stars.

The dynamical timescale
We can envisage a considerable change in the structure of a spherically
symmetric star as a change in its characteristic dimension, the radius R;
hence in this case we may take ϕ = R. As gravity is the binding force of a
star, the typical rate of change of R would be the characteristic velocity in
a gravitational field: the free-fall or escape velocity 
hence  The dynamical timescale may therefore be
estimated by

(2.56)

or, in terms of the average density  neglecting factors of
the order of unity,

(2.57)

There are many ways to obtain the dynamical timescale, but they all lead
to the same result, within factors of the order of unity. The dynamical
timescale of the Sun is about 1000 s (roughly a quarter of an hour), and
generally:
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(2.58)

The dynamical timescale is extremely short, many orders of magnitude
shorter than typical stellar ages. The estimated age of the Sun, for
example, is 4.6 billion years, or ~1.5 × 1017 s, about 1014τdyn. What is the
meaning of this result? A dynamical process occurs in a star whenever the
gravitational force is not balanced by the pressure forces (see Equation
(2.12)). Such a situation can develop either into contraction, if there is
insufficient pressure to counteract gravity, or into expansion, if the
pressure is too high. It can end either in a catastrophic event – collapse or
explosion – or in restoration of hydrostatic equilibrium, when the forces
are again in balance. Either of these end states will be achieved within a
period of time of the order of the dynamical timescale. This leads us to the
following conclusions:

1.  If a star cannot recover from a dynamical process (by restoring
hydrostatic equilibrium), the ensuing collapse – or explosion – should
be observable in its entirety. Indeed, such events have been known to
occur: they are called supernovae. We shall return to them in Chapter
10.

2.  Rapid changes that are sometimes observed in stars may indicate that
dynamical processes are taking place, but on a smaller scale, not
involving the entire star. From the timescale of such changes –
usually oscillations with a characteristic period – we may roughly
estimate the average density of the star. The Sun has been observed to
oscillate with a period of minutes. Oscillations with periods of a few
tens of seconds indicate that the star should be a compact one, such as
a white dwarf.

3.  As a rule, stars may be assumed to be in a state of hydrostatic
equilibrium throughout. Any perturbation of this state is immediately
quenched. This does not mean, of course, that stars are static during
their entire life span, but rather that they evolve quasi-statically,
constantly adjusting their internal structure so as to maintain
dynamical balance. Consequently, the left-hand side of Equation
(2.12) may be assumed to vanish, and the virial theorem (Section 2.4)
may be assumed to hold at all times. This means that the gravitational
potential energy and the thermal energy of the star each follows the
behaviour of the total energy.
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The thermal timescale
Thermal processes affect the internal energy of the star; hence in this case
we may take ϕ = U. By the virial theorem (which, as we have seen, is
applicable), U ≈ GM2/R. The characteristic rate of change of U is the rate
at which energy is radiated away by the star; thus we may set  = L. The
thermal timescale may be therefore estimated by

(2.59)

For the Sun, τth ≈ 1015 s, or about 30 million years, and generally

(2.60)

The thermal timescale is many orders of magnitude longer than the
dynamical timescale, but it still constitutes only a small fraction – about
1% or less – of the lifespan of a star. Thus, although we would not be able
to observe the development of a thermal process in a star (in fact, we have
no way of knowing whether any observed star is in thermal equilibrium or
not), we may assume that throughout most of its life a star is in a state of
thermal equilibrium. If a star maintains both thermal and hydrostatic
equilibrium during an evolutionary phase, its total energy is conserved (or
changes very slowly) during that phase, and by the virial theorem, the
gravitational potential energy and the thermal energy, separately, are
conserved. Thus, if contraction occurs (quasi-statically) in some part of the
star, it follows that other parts should expand so as to conserve Ω.
Similarly, if the temperature rises in some place, it should decrease in
another, so as to keep U constant. Later on we shall make use of such
arguments.

The thermal timescale may be interpreted as the time it would take a star
to emit its entire reserve of thermal energy upon contracting (as we have
shown in Section 2.5), provided it maintains a constant luminosity. This
was, in fact, the way William Thomson (better known as Lord Kelvin)
and, independently, Hermann von Helmholtz estimated the Sun’s age more
than a century ago, and for this reason, the thermal timescale is often
called the Kelvin-Helmholtz timescale.
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Historical Note: Kelvin’s (1862) estimate imposed an upper limit on the age of the Earth, which
was in marked conflict with the new theory put forward by Charles Darwin (in 1859). This theory
required that geological time be much longer, so as to account for the slow evolution of countless
species of plants and animals (living and fossil) by natural selection. A long and intense debate
ensued between the two eminent scientists. To the end Darwin remained convinced that, in time,
physicists would change their minds. Harsh criticism of Kelvin’s estimate came toward the end of
the nineteenth century from the geologist Thomas C. Chamberlin:

Is present knowledge relative to the behaviour of matter under such extraordinary conditions as
obtain in the interior of the sun sufficiently exhaustive to warrant the assertion that no
unrecognized sources of heat reside there? What the internal constituents of the atoms may be
is yet an open question. It is not improbable that they are complex organizations and the seats
of enormous energies.

T. C. Chamberlin: Annual Report of the Smithsonian Institution, 1899

And two decades later Eddington, addressing the same issue, predicted that the source of energy in
stars should be ‘subatomic’:

Only the inertia of tradition keeps the contraction hypothesis alive – or rather, not alive, but an
unburied corpse . . .

A star is drawing on some vast reservoir of energy by means unknown to us. This reservoir
can scarcely be other than the subatomic energy which, it is known, exists abundantly in all
matter . . . There is sufficient in the Sun to maintain its output of heat for 15 billion years . . .

If, indeed, the subatomic energy in the stars is being freely used to maintain their great
furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent
power for the well-being of the human race – or for its suicide.

Sir Arthur S. Eddington: Observatory 43, 1920

Finally, after about ten more years, the controversy was settled (in Darwin’s favour!) by quantum
and nuclear physics, which solved the puzzle of the energy source of stars.

The nuclear timescale
The quantity that is changed by nuclear processes, besides abundances, is a
(small) fraction of the rest-mass energy given by Einstein’s famous
relation E = mc2. This fraction, which may be turned into other forms of
energy, constitutes the nuclear potential energy. Hence we may take
ϕ = εMc2, where ε can be estimated by the typical binding energy of a
nucleon divided by the nucleon’s rest-mass energy, which amounts to a
few 10−3. The rate of change of the nuclear potential energy is, obviously,
the nuclear luminosity Lnuc, and since we are allowed to assume thermal
equilibrium, we may take  = Lnuc = L. Hence

(2.61)
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or, using solar units,

(2.62)

For the Sun, this is many times its age; in fact, τnuc is larger than the
estimated age of the universe. An immediate conclusion that emerges is
that stars seem to have actually consumed only a small fraction of their
available nuclear energy, meaning that only a fraction of the stellar mass
has changed its initial composition. Another is that, generally, nuclear
equilibrium is not to be expected.

To summarize our results,

(2.63)

Consequently, it is the rates of nuclear processes that determine the pace of
stellar evolution, throughout which the star may be assumed to maintain
thermal and hydrostatic equilibrium at each stage. The set of evolution
equations (2.54) reduces to

(2.64)

This is a considerable simplification of the original set. In particular, we
need not know the initial structure of the star in order to be able to trace its
evolution. All we need to know is the initial composition, which we shall
assume to be homogeneously distributed throughout the star, and this is
precisely what we do know reasonably well. Our task of investigating the
evolution of stars now divides into two different parts, or two main
questions: (a) What is the sequence of nuclear processes that take place in
stellar interiors? (b) Given the composition, what is the structure –
distribution of temperature and density – of a star in hydrostatic and
thermal equilibrium? Clearly, these questions cannot be separated: nuclear
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processes depend on temperature and density, and the structure of a star
depends on its composition. But they can be answered in turn and the
answers may then be combined into a comprehensive picture of stellar
evolution.

We shall address the first question in Chapter 4 and the second in
Chapters 5 and 6. The next chapter, dealing in a general manner with the
physics of stellar interiors, may be skipped by readers who are familiar
with the physics of gaseous systems and of radiation.
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3

Elementary physics of gas and radiation in stellar
interiors

As a star consists of a mixture of ions, electrons and photons, the physics
of stellar interiors must deal with (a) the properties of gaseous systems, (b)
radiation and (c) the interaction between gas and radiation. The latter may
take many different forms: absorption, resulting in excitation or ionization;
emission, resulting in de-excitation or recombination; and scattering. In
order not to stray too far from our main theme, we shall only consider
processes and properties that are simple enough to understand without
requiring an extended physical background, and yet sufficient for
providing some insight into the general behaviour of stars. The full-scale
processes are incorporated in calculations of stellar structure and
evolution, performed on powerful computers by means of extended
numerical codes that include enormous amounts of information. These,
however, should be regarded as computational laboratories, meant to
reproduce, or simulate, rather than explain, the behaviour of stars. Our
purpose is to outline the basic principles of stellar evolution and we are
therefore entitled to some simplification. Eddington defends this right
quite forcefully:

I conceive that the chief aim of the physicist in discussing a theoretical problem is to obtain
‘insight’ – to see which of the numerous factors are particularly concerned in any effect and
how they work together to give it. For this purpose a legitimate approximation is not just an
unavoidable evil; it is a discernment that certain factors – certain complications of the problem
– do not contribute appreciably to the result. We satisfy ourselves that they may be left aside;
and the mechanism stands out more clearly, freed from these irrelevancies. This discernment is
only a continuation of a task begun by the physicist before the mathematical premises of the
problem could be stated; for in any natural problem the actual conditions are of extreme
complexity and the first step is to select those which have an essential influence on the result –
in short, to get hold of the right end of the stick. The correct use of this insight, whether before
or after the mathematical problem has been formulated, is a faculty to be cultivated, not a
vicious propensity to be hidden from the public eye. Needless to say the physicist must if
challenged be prepared to defend the use of his discernment; but unless the defence involves
some subtle point of difficulty it may well be left until the challenge is made.

Sir Arthur S. Eddington: The Internal Constitution of the Stars, 1926
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3.1  The equation of state

A relation between the pressure exerted by a system of particles of known
composition and the ambient temperature and density, P = P (ρ, T, X), is
called an equation of state.

In previous sections we have repeatedly assumed the stellar gas to be an
ideal gas, which implies a mixture of free, noninteracting particles (a
perfect gas). The time has come to justify this assumption. At the
temperatures prevailing in stars, gases are ionized, and Coulomb
interactions can be expected to occur. We shall show that the energy
involved in such interactions is small compared with the kinetic (thermal)
energy of the particles. For an average density  and a gas particle mass 

 the mean interparticle distance is

(3.1)

where  has been expressed in terms of stellar mass M and radius R. If the
particle charge is  (e denoting the electron charge), the typical Coulomb
energy per particle may be estimated as

(3.2)

The kinetic energy (per particle) is of the order  and hence, after
substituting  from Equation (2.29),

(3.3)

ignoring factors of the order of unity. For  and M = M ,
this ratio is about 1% and, to this accuracy, Coulomb interactions may
therefore be neglected. For higher , we have  and the ratio
(3.3), which varies as  remains well below unity even for a
composition of pure iron. We should note, however, that  for
mass  Although stars do not belong to this dangerous
zone, planets do: the mass of Jupiter is roughly 10−3M . Consequently, the
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structure of planets cannot be described by a mixture of free gases; more
complicated equations of state must be invoked. Since 
characterizes solids, we may conclude that the smaller a planet’s mass, the
closer to a solid is its structure.

A general theorem enables the calculation of the pressure of a free
particle system by means of an integral known as the pressure integral:

(3.4)

where v is the particle velocity, p its momentum, and n(p) dp is the number
of particles per unit volume with momenta within the interval (p, p + dp).
The proof of this theorem is as follows: Consider a surface (real or
imaginary) within the system of particles. The pressure on this surface
results from the momentum imparted by particles colliding elastically with
it. The momentum transferred by an incident particle is twice the
momentum component normal to the surface

(3.5)

Consider a beam of particles impinging on the surface at a velocity v
making an angle θ with the normal to the surface (as shown in Figure 3.1).
Let n(θ, p) dθ dp be the number density of particles with momenta in the
range (p, p + dp) and directions within a cone (θ, θ + dθ). Since the
particle distribution is isotropic, the number of particles within any solid
angle dω is proportional to the solid angle, or

(3.6)

The number of particles from this beam striking the surface in a time
interval δt is given by the number density multiplied by the volume vδt dS
cos θ, where dS is the area of incidence of the beam on the surface. Hence
the momentum transferred to the surface by these particles is given by

(3.7)
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The contribution of these particles to the pressure – the momentum
transferred per unit time per unit surface area – is therefore given by
Equation (3.7), combined with Equations (3.5) and (3.6), after dividing by
δtdS:

(3.8)

and the total pressure is obtained by integrating over all angles of
incidence (0 ≤ θ ≤ π/2) and all momenta. Since

(3.9)

the proof is completed. Obviously, the pressure of a mixture of free,
noninteracting particles of different species will be given by the sum of the
pressures exerted by each species separately. This will include the
radiation pressure, which is the pressure exerted by photons.
Consequently, in stars, P will be the sum of three different terms: PI for
the ions, Pe for the electrons and Prad for the photons, the first two
constituting the total gas pressure,

(3.10)

It is customary to define a parameter β as the fraction of the pressure
contributed by the gas; thus

(3.11)

(3.12)
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Figure 3.1  Beam of particles impinging on a hypothetical surface, making an angle θ with the
normal to the surface.

3.2  The ion pressure

The equation of state for an ideal ion gas is the well-known relation

(3.13)

where nI is the number of ions per unit volume. This relation is obtained
by applying the theorem just proven to a free particle gas in
thermodynamic equilibrium, which is characterized by a Maxwellian
velocity distribution:

(3.14)

Using relations (2.47), we obtain the total number of ions in a unit volume
by summing over all the ion species i:

(3.15)

The mean atomic mass of stellar material µI is defined by
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(3.16)

so that

(3.17)

and µI may be approximated by

(3.18)

where  is the average atomic mass of the heavy elements (elements
other than hydrogen and helium, sometimes referred to as metals). For the
Sun, for example, X = 0.707, Y = 0.274, and  whence µI = 1.29.
The ratio k/mH is usually known as the ideal gas constant

(3.19)

Substituting Equations (3.17) and (3.19) into Equation (3.13), we finally
obtain

(3.20)

3.3  The electron pressure

If the electrons constitute an ideal gas, the equation of state is, as Equation
(3.13) above,

(3.21)

where ne is the number of (free) electrons per unit volume. Here we shall
make a simplifying assumption by taking the atoms to be completely
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ionized. This is certainly correct for the main stellar constituents, hydrogen
and helium, at temperatures exceeding 106 K. The assumption is obviously
incorrect for stellar photospheres, but we are mainly concerned with the
interior. With this assumption, the total number of electrons per unit
volume is

(3.22)

We define  as the average number of free electrons per nucleon,

(3.23)

leading to

(3.24)

In terms of the mass fractions X and Y, we have

(3.25)

where  is the average value for metals, which may be approximated
reasonably well by . Hence

(3.26)

which for the Sun amounts to µe ≈ 1.17 and for hydrogen-depleted stars, to
µe ≈ 2. The electron pressure is thus given by

(3.27)
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Combining Equations (3.20) and (3.27), we obtain the total gas pressure

(3.28)

where

(3.29)

yielding µ = 0.61 for the solar composition. Note that for hydrogen, the
contributions of ions and electrons to the gas pressure are equal; for all
heavier elements, the electron pressure is higher than the ion pressure
(twice as high for helium, for example).

The assumptions explicitly made so far were (a) lack of interactions
between gas particles, and (b) complete ionization. Other assumptions
were, however, implicitly included when adopting the classical physics
approach, ignoring quantum and relativistic effects. But the conditions of
stellar interiors are such that these effects cannot always be neglected.

According to quantum mechanics, the simultaneous position and
momentum of an electron (or any other particle) cannot be known more
precisely than allowed by the Heisenberg uncertainty principle. More
specifically, if a particle’s location is known to be within a volume
element ΔV and its momentum is within an element Δ3p in the three-
dimensional momentum space, then ΔV and Δ3p are constrained by the
condition

(3.30)

Consider now an ideal electron gas of temperature T ; the temperature
determines the distribution of momenta according to Equation (3.14). In
particular, the average momentum (or velocity) is uniquely determined by
T . Imagine now that the gas is compressed. The volume occupied by each
particle, ΔV ∝ ρ−1, decreases. As long as the temperature is sufficiently
high (and, with it, the average velocity, or momentum), so that
compression (decrease of ΔV ) does not lead to the violation of
Heisenberg’s principle, we should be allowed to ignore quantum effects.
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Eventually, however, the density may become high (ΔV low) enough for
the range of momenta dictated by the uncertainty principle to exceed the
momentum corresponding to the gas temperature. Practically, this means
that the electron pressure must be higher than that inferred from the
temperature. In order to estimate the electron pressure under these
conditions, we have to take account of another quantum mechanics
principle, the Pauli exclusion principle, which postulates that no two
electrons can occupy the same quantum state, that is, have the same
momentum and the same spin. Since an electron can have two spin states
(up and down), this means that each element of phase space – location and
momentum space – can be occupied by two electrons at most. The
pressure generated by electrons that are forced into higher momentum
states as their density increases is called degeneracy pressure. A state of
complete degeneracy is obtained when all the available momentum states
are occupied up to a maximum momentum value. In this case ΔV Δ3p is
minimal and condition (3.30) becomes an equality. Such an ideal situation
can only be achieved at zero temperature, but it constitutes a good
approximation to states of high degeneracy and has the advantage of
enabling a straightforward calculation of the pressure. Therefore, although
the transition from a Maxwellian to a completely degenerate momentum
distribution occurs gradually, we shall discuss only the extreme situations.
A more detailed treatment of the degenerate equation of state may be
found in Appendix B.

Applying the Heisenberg and Pauli principles to a completely
degenerate isotropic electron gas yields the momentum distribution – the
number of electrons with momenta in the interval (p, p + dp) per unit
volume:

(3.31)

The maximal momentum p0 can be obtained by integrating, 
 and reversing the relation between ne and p0:

(3.32)
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We may now use Theorem (3.4), substituting Equation (3.31), taking
v = p/me, where me is the electron mass, and carrying the integral up to p0,
to obtain the degeneracy pressure of an electron gas

(3.33)

where we have used relation (3.24) for µe. We note that the degeneracy
pressure is inversely proportional to the particle (electron) mass. Hence,
although the arguments presented for electrons could be equally applied to
protons and neutrons, as they are nearly 2000 times more massive than
electrons, quantum effects become important in their case under much
more extreme conditions (much higher densities for a given temperature,
and much lower temperatures for a given density), and may usually be
ignored. We also note that, in spite of the high densities characteristic of
degenerate matter, the particles may be still considered free, since the
particle energy, of the order of  is still higher than the Coulomb
energy 

Exercise 3.1:  Find the condition that the electron number density ne must satisfy, for a
degenerate electron gas to be considered perfect.

Inserting the numerical values of constants in Equation (3.33), we obtain

(3.34)

where 
For a composition devoid of hydrogen (and not very rich in extremely
heavy elements), µe ≈ 2 and hence the degeneracy pressure (3.33) is
simply given by

(3.35)

where K1 is a constant. This relation will be often used in future
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discussions.
If the electron density is increased further, the maximal momentum in a

completely degenerate electron gas grows larger. Eventually, a density is
reached such that the velocity p0/me approaches the speed of light. The
electrons now constitute a relativistic degenerate gas, for which the simple
relation between momentum and velocity p = mv no longer holds and has
to be replaced by the relativistic kinematics relation. Here again, for
simplicity, we shall only consider the extreme case in which the velocity is
very close to c. Replacing v by c in the pressure integral (3.4), we obtain
by the same procedure as before

(3.36)

for the pressure exerted by a completely degenerate relativistic electron
gas in the limit v → c. The transition between relations (3.33) and (3.36) is
a smooth function of v/c or p/mec, which we shall not address here (but see
Appendix B). Inserting the numerical values of constants in Equation
(3.36), we obtain

(3.37)

where 
 and

finally, for a fixed value of µe,

(3.38)

where K2 is another constant.
We should keep in mind that relations (3.35) and (3.38) for the pressure

were obtained on the assumption of vanishing temperature and hence,
naturally, the pressure is only a function of density (for a given
composition). It is true, however, that even in the case of incomplete – or
partial – degeneracy, the temperature plays a far smaller role than in the
case of an ideal (nondegenerate) gas. Thus as a crude approximation, the
degeneracy pressure may be considered as insensitive to temperature. The
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approximation is good provided kT is only a fraction of the kinetic energy
of a particle with the highest momentum p0(ne). A more accurate treatment
of degeneracy pressure may be found in Appendix B.

3.4  The radiation pressure

Radiation pressure is due to photons that transfer momentum to gas
particles whenever they are absorbed or scattered. In thermodynamic
equilibrium the photon distribution is isotropic and the number of photons
with frequencies in the range (ν, ν + dν) is given by the Planck (blackbody
distribution) function

(3.39)

The pressure is then readily obtained from Equation (3.4):

(3.40)

where a is the radiation constant

(3.41)

Although the expression for radiation pressure was easily derived from
the pressure integral, the concept deserves further (intuitive) explanation.
Imagine a collimated beam of photons striking an atom. Each photon is
absorbed, thereby exciting the atom, which consequently returns to its
original state by emitting a photon. The direction of the emitted photon is
random, the initial direction of the absorbed one having been ‘forgotten’.
Each such interaction involves an exchange of momentum. By absorbing
the photon, the atom gains momentum in the direction of the photon beam.
When it emits a photon, the atom recoils in the direction opposite to that of
the emitted photon. After a long series of such interactions, the random
changes of momentum due to emission cancel out and the net change in
the atom’s momentum is in the direction of the photon beam, as if material
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pressure has been exerted on it in that direction.

3.5  The internal energy of gas and radiation

The specific energy (energy per unit mass) of a perfect gas, which is due to
the kinetic energy  of the motion of the individual particles, is generally
given by

(3.42)

where the integral represents the energy density (energy per unit volume).
For a classical gas,  for a relativistic gas

(3.43)

which tends to p2/2mg in the limit p  mgc. Performing the integral for a
simple classical ideal gas, we obtain for the energy density the well-known
result  which is equivalent to  The specific energy is therefore

(3.44)

For a classical completely degenerate electron gas we obtain the specific
energy by integrating Equation (3.42) up to the highest momentum p0 and
the result is identical with that obtained for the classical ideal gas –
Equation (3.44). For the relativistic completely degenerate case we obtain
by the same procedure

(3.45)

The energy density of radiation is given by
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(3.46)

where the integral is the same as in Equation (3.40), the specific energy
being

(3.47)

Exercise 3.2:  Assuming a uniform value of β throughout the star and defining U = ∫(ugas +
urad)dm, show that the virial theorem (2.23) leads to

for a classical (nonrelativistic) gas. Note in particular the limits β → 1 and β → 0. If the star
contracts, maintaining the same uniform β, which fraction of the gravitational potential energy
released is radiated away and which fraction is turned into heat?

3.6  The adiabatic exponent

Thermodynamic processes of a special kind, which will be of interest in
later discussions, are those occurring in a system without exchange of heat
with the environment. Such processes are called adiabatic. From the first
law of thermodynamics (mentioned in Section 2.2) it follows that adiabatic
processes satisfy the condition

(3.48)

In the previous section we have seen – at least for simple systems – that
the specific energy u is always proportional to P /ρ. We may therefore
write

(3.49)
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which, by differentiating and substituting into Equation (3.48), leads to

(3.50)

Accordingly, the dependence of the pressure on density is described by a
power law

(3.51)

The power (d ln P /d ln ρ) is called the adiabatic exponent, denoted γa; the
proportionality factor (to be denoted Ka) is determined by the properties of
the system (it is a direct function of the entropy). In conclusion, adiabatic
processes are characterized by the law

(3.52)

It is easily seen that for the systems we have considered, the value of γa
is 5/3 in the case of a nonrelativistic ideal gas or a completely degenerate
electron gas, and 4/3 in the case of a relativistic degenerate electron gas or
of pure radiation. Intermediate values will obtain for mixtures, such as gas
and radiation, and for nonextreme cases, such as a moderately relativistic
degenerate electron gas.

So far we have considered gases of a fixed number of particles: either
(almost) fully ionized, as in the deep stellar interior, or (almost) fully
recombined, as in the outer layers of a cool stellar atmosphere. When
ionization takes place and the number of particles changes with the other
physical properties, the adiabatic exponent changes too. Since this will
prove to be of particular importance to the stability of stars, it deserves
some discussion. We shall only consider the very simple case of a singly
ionized pure gas (rather than a mixture of gases), say, hydrogen. Hence we
have to deal with three different types of particles: neutral atoms, whose
number density we denote by n0, ions of number density n+, and free
electrons of number density ne (obviously, ne = n+). The pressure exerted
by the gas is proportional to n0 + n+ + ne, while the mass density is
proportional to n0 + n+. The degree of ionization is defined by
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(3.53)

The densities of ions and neutrals are related by Saha’s equation (after
Meghnad Saha, who derived it in 1920)

(3.54)

where g is a constant and χ is the ionization potential (the energy required
to create an ion by removing an electron from an atom). In terms of the
degree of ionization, we have

(3.55)

and Saha’s equation becomes

(3.56)

In the case of a partially ionized gas, the specific energy has an additional
term, χn+/ρ = χn+/[(n0 + n+)mH] = χx/mH, which is due to the available
potential energy of ionization. Thus

(3.57)

replaces Equation (3.49). Using Equations (3.55) and (3.56) to express the
degree of ionization as a function of pressure and density x = x(P, ρ),
differentiating Equation (3.57), and substituting into Equation (3.48) yields

(3.58)

Multiplying by ρ/P and assembling terms, we have

73



(3.59)

from which, after not inconsiderable manipulation, γa(x) may be
calculated:

(3.60)

In the limit x = 0 or x = 1, we obtain γa = 5/3, as before; the minimum
value is obtained for x = 0.5; it is 1.63 for χ/kT = 1, for example, and 1.21
for χ/kT = 10.

3.7  Radiative transfer

Consider a slab of thickness dr and density ρ between parallel surfaces A
and B of unit area, as shown in Figure 3.2. A radiation flux H (energy per
unit area per unit time) incident on A emerges at B after losing an amount
dH, which has been absorbed by the slab (in reality, the slab may also emit
radiation, which would have to be taken into account). Obviously, the
amount of absorbed radiation should be proportional to the incident flux
and to the amount of material, that is, to the density of absorbing
(scattering) particles and to the length of the path travelled by the photons,
and hence to their product Hρdr. We may therefore write:

(3.61)

where the minus sign indicates that the flux has been diminished, and κ is
the proportionality factor, called the opacity coefficient, determined by the
properties of the material the slab is made of, such as composition, density
and temperature.
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Figure 3.2 Radiation flux passing through a slab.

A dimensionless quantity, τ, may be defined by dτ ≡ −κρdr; called
optical depth, it is a measure of the transparency of a medium to radiation.
The minus sign appears because radial distance is measured positively
outwards, while depth is measured positively inwards. An opaque medium
has a large optical depth, which may be due to a large physical depth, a
high opacity, or a high density, or to a combination of these factors. A
transparent medium, which lets through most of the radiation crossing it,
has a low optical depth. Integrating Equation (3.61) inwards, we thus
obtain

(3.62)

for the radiation flux at a distance r from a source H0. By definition, τ0 > τ
(r), so that H (r) < H0. The characteristic absorption length, (κρ)−1, may be
regarded as the mean free path of a photon.

In a star, the concept of optical depth serves to define the photosphere.
Being a gaseous sphere, a star does not have a well-defined surface; the
stellar radius is, by definition, the radius of the surface where T = Teff. To
find this surface, we recall that the bulk of stellar radiation is emitted from
the region lying above R, which is the photosphere; hence the optical depth
of the photosphere,  must be of the order of unity. The
condition  may be regarded as a definition of R, the exact
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value of the photospheric optical depth being determined by a detailed
treatment of radiative transfer and its inherent assumptions and
approximations.

Exercise 3.3:  Show that the equation of hydrostatic equilibrium may be written as

where g is the local gravitational acceleration. (This form is useful in models of stellar
atmospheres.) Use this form to evaluate the pressure at R and estimate the ratio between the centre
and surface pressures of a star. For simplicity, assume an average constant opacity for the
photosphere.

As photons of different frequencies interact differently with matter, the
opacity coefficient is also a function of the frequency (or wavelength) of
the radiation and the foregoing discussion applies strictly only to
monochromatic radiation. It is, however, possible to define an average
opacity, independent of wavelength (see Appendix A). The most important
interactions between stellar matter (of high temperature) and radiation are
those involving electrons (rather than the much heavier nuclei). These are
of several types.

1.  Electron scattering – the scattering of a photon by a free electron. In
the classical case, known as Thomson scattering (after J. J. Thomson),
the photon’s energy (that is, frequency) remains unchanged. In the
less common, relativistic case, known as Compton scattering, the
photon’s energy changes.

2.  Free-free absorption – the absorption of a photon by a free electron,
which makes a transition to a higher energy state by briefly
interacting with a nucleus or an ion. The inverse process, leading to
the emission of a photon, is known as bremsstrahlung.

3.  Bound-free absorption – which is another name for photoionization –
the removal of an electron from an atom (or ion) caused by the
absorption of a photon. The inverse process is radiative
recombination.

4.  Bound-bound absorption – the excitation of an atom due to the
transition of a bound electron to a higher energy state by the
absorption of a photon. The atom is then de-excited either
spontaneously or by collision with another particle, whereby a photon
is emitted.
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In the deep stellar interiors, where temperatures are very high, the first two
processes are dominant, simply because there are very few bound
electrons, the material being almost completely ionized. Furthermore, the
energy of most photons in the Planck distribution is of the order of keV,
whereas the separation energy of atomic levels is only a few tens eV.
Hence most photons interacting with bound electrons would set them free.
Thus bound-bound (and even bound-free) transitions have extremely low
probabilities, interactions occurring predominantly between photons and
free electrons.

Opacity coefficients may be measured or – for conditions typical of
stellar interiors – calculated, taking into account all the possible
interactions between different elements and photons of different
frequencies. This is a tedious task that requires an enormous amount of
calculation. When it has been performed, the results are usually
approximated by relatively simple formulae in the form of power laws in
density and temperature for a given composition:

(3.63)

The opacity resulting from electron scattering is temperature and density
independent (a = b = 0); it is given by

(3.64)

where κes,0 = 0.04 m2 kg−1 (0.4 cm2 g−1). The opacity resulting from free-
free absorption, first derived by Hendrik A. Kramers, is well approximated
by a power law of the form (3.63), with a = 1 and b = −7/2, known as the
Kramers opacity law,

(3.65)

where complete ionization is assumed and  The

constant κff,0 has the value 7.5 × 1018 m5 kg−2 K7/2 (7.5 × 1022 cm5 g−2

K7/2) with an accuracy of about 20%. Electron scattering and free-free
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opacities are both due to the free electrons; both coefficients, κes and κff,
are thus proportional to the electron number density and hence to  (see
Equation (3.24)). Opacity coefficients for solar composition material are
given, as an example, in Figure 3.3; note that above a few 104 K they may
indeed be quite accurately represented by power laws.

Figure 3.3  Opacity coefficients (in units of cm2 g−1) for a solar composition as a function of
temperature for different density values; the numbers beside each curve are log ρ(g cm−3) (data
from C. A. Iglesias & F. J. Rogers (1996), Astrophys. J. 464).

The average opacity of stellar material (of solar composition) is of the
order of 0.1 m2 kg−1 (1 cm2 g−1), and since the average density is of the
order of 1000 kg m−3 (1 g cm−3), the mean free path of photons in the
interior of a star is about 0.01 m (1 cm). The temperature drop over such a
radial distance within a star is about 0.001 K (estimated as  /R). This is
why the radiation in stellar interiors is so close to that of a blackbody. But
blackbody radiation is also isotropic; what, then, is the meaning of a
radiation flux from the interior of the star to the surface (the function F in
Equation (2.6))? It turns out that the minute deviation from isotropy is
sufficient for the transfer of energy that results in the stellar luminosity.

To calculate the radiative flux we shall adopt a simple approach due to
Eddington. The absorption of radiation energy by the slab just considered
also involves a corresponding amount of momentum: the momentum
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absorbed by the slab per unit time is |dH |/c. The rate of increase of the
momentum must be equal to the net force applied to the slab by the
radiation field (Newton’s second law). This force is simply the difference
of the radiation pressures exerted on the surfaces A, say at r, and B, at r +
dr (see Figure 3.2): Prad(r) − Prad(r + dr) = −(dPrad/dr) dr. Consequently,

(3.66)

and since the radiation may be assumed to be blackbody radiation, the
pressure is given by Equation (3.40) and

(3.67)

A rigorous derivation of this equation, leading to the correct evaluation of
the average opacity, is given in Appendix A. To obtain the total flux F
crossing a spherical surface of radius r, we multiply H by the surface area
4πr2:

(3.68)

We may invert this relation to obtain the temperature gradient in terms of
the flux:

(3.69)

or, using m as the independent space variable,

(3.70)

We have now gathered sufficient information on the physics of stellar
interiors to allow us to pursue the investigation of stellar evolution.
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4

Nuclear processes that take place in stars

The evolution – continuous change – of stars is due to their sustained
emission of radiation originating from an internal source. The energy
source that supplies the luminosity of stars during most of their lifetimes is
nuclear fusion, which turns a small fraction of the rest mass into energy.
Although this was only realized at the beginning of the twentieth century,
with Einstein’s formula E = mc2, the concept of conversion of matter into
light dates back to Newton, at the beginning of the eighteenth century.

The changing of bodies into light, and light into bodies, is very conformable to the course of
Nature, which seems delighted with transmutations.

Isaac Newton: Opticks, 1704

The formalism by which nuclear reactions are incorporated into the stellar
evolution theory was given in Section 2.6. The purpose of the present
chapter is to examine in more detail the nuclear processes that are bound to
take place in stars and the energy each of them can supply.

4.1  The binding energy of the atomic nucleus

The energy released or absorbed in a nuclear reaction being a fraction of
the rest-mass energy of the particles involved, mass is not strictly
conserved: the total mass of the products differs slightly from the total
mass of the reactants, the difference depending on the binding energies of
the interacting nuclei. As we have seen in Section 2.6, the general
description of a nuclear reaction is of the form (2.48),

Denoting by Qijk the amount of energy released in this reaction, and by 
 the mass of a nucleus of type I, we have

(4.1)
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neglecting the small masses of possible light particles that may be
involved. Using the mass unit mH, we may write Equation (4.1) as

(4.2)

where the second term on the right-hand side vanishes, by conservation of
baryon number, Equation (2.49). The difference

(4.3)

(whether positive or negative) is called mass excess, despite its being a
measure of energy. Mass excesses are listed in tables of nuclear data in
units of MeV (1 MeV = 106 eV = 1.6021772 × 10−13 J). We note that
mass-excess values depend on the atomic mass unit employed, but Qijk,
which involves differences of mass excesses, is independent of the
(arbitrary) mass unit.

We may now calculate the total rate of energy release at a given point in
a star: since the number of reactions of type (2.48) that occur per unit
volume per unit time is ninj Rijk (if I = J, ninj should be replaced by ),
the energy released by such reactions per unit volume per unit time is ninj
RijkQijk. Summing over all nuclear reactions that can occur at that point,
and dividing by ρ to obtain the rate of energy released per unit mass, we
have

(4.4)

for the term that appears on the right-hand side of the energy equation
(2.6). In reality, the available energy (to be turned into heat) may be less. If
neutrinos are produced by the nuclear reactions (or by other processes),
their energy is lost to the star, which is transparent to neutrinos. These
‘particles’ leave the star without undergoing collisions and sharing their
energy with the medium. Therefore, the net rate of energy release is qnuc −
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qν, where qnuc is given by Equation (4.4) and qν is the neutrino energy lost
per unit mass per unit time.

Neutrinos are not only produced in nuclear reactions involving electrons
and positrons, but also in interactions similar to those of an electron with
the radiation field (photons), in which a change in the electron’s
momentum occurs. Simply, the emerging photon is sometimes – usually
extremely seldom – replaced by a neutrino-antineutrino pair. Thus
photoneutrinos are produced when a photon is scattered by an electron,
replacing the outgoing photon. The annihilation of an electron-positron
pair (discussed in Section 4.9), which normally results in the creation of
two photons, may produce a neutrino-antineutrino pair instead, with a
probability of about 10−19. Bremsstrahlung photons, emitted when an
electron is decelerated by the Coulomb field of a nucleus or an ion (see
Section 3.7), may also be replaced by a neutrino-antineutrino pair. Finally,
a photon may itself decay into a neutrino-antineutrino pair, when the
radiation field is affected by the electromagnetic field of the stellar plasma.
The role of the electron is replaced in this case by a virtual particle called
plasmon – essentially, a quantized plasma wave. All these processes
become important either at very high densities or at very high temperatures
(or both). Then, due to the transparency of stellar material to neutrinos (the
mean free path of stellar neutrinos is about 109R !), they may cause
efficient local cooling.

The energy released in a nuclear reaction Qijk is a measure of the
difference between the binding energies of the reactants and the products.
The total binding energy of a nucleus is, of course, a function of the
number of nucleons; but even the binding energy per nucleon differs from
element to element, or among isotopes of the same chemical element
(nuclei with the same , but different ). This implies that some nuclear
structures are more stable than others. There are also unstable nuclei that
spontaneously decay by emitting light particles such as electrons (β−

decay) or positrons (β+ decay) – these are called radioactive isotopes; and
there are excited nuclei, in a high-energy state, that emit energetic photons,
thereby becoming more strongly bound. The nuclear-shell model, similar
in many respects to the electron-shell model of the atom, explains these
properties.

For our purposes, the important result is the variation of binding energy
per nucleon with baryon number , shown in Figure 4.1, relative to the
free proton – the hydrogen nucleus. The general trend is an increase of the
binding energy per nucleon with atomic mass up to iron  and a

82



slow monotonic decline beyond iron. The steep rise of the binding energy
from hydrogen, through deuterium and 3He, to 4He implies that fusion of
hydrogen into helium should release a large amount of energy per nucleon
(unit mass), considerably larger than that released in, say, fusion of helium
into carbon. Energy may be gained by fusion of light nuclei into heavier
ones up to iron and, to a lesser extent, by breakup, or fission of heavy
nuclei into lighter ones down to iron. In a different context, we recognize
the first process as the basic mechanism of the H-bomb, and the second, as
the mechanism of the A-bomb. Another important fact related to the
binding energy of atomic nuclei is that there are no stable configurations
for  and for  4He is more tightly bound than its immediate
neighbours.
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Figure 4.1  Variation of the binding energy per nucleon with baryon number.

4.2  Nuclear reaction rates

In Section 2.6 we have seen that the rate of a nuclear reaction is essentially
the product of the cross-sectional area of a (target) nucleus and the relative
velocity of the interacting gas particles. For the latter, we may simply
assume a Maxwellian velocity distribution (Equation (3.14)): this means
that the probability of the velocity of a particle of mass mg being within an
interval dv around a velocity v would be proportional to exp(−mgv2/2kT ),
decreasing with increasing v. Since, in reality, the target nuclei are not at
rest (as assumed, for simplicity, in Section 2.6) and as v is the relative
velocity of the interacting particles I and J, mg is their reduced mass
[mg,img, j /(mg,i + mg, j)]. The cross-sectional term ς in the product presents
a more difficult problem: in order to induce a nuclear reaction, nuclei have
to come within a distance comparable to the range of the strong force.
Since they are positively charged, to do so they must overcome the
Coulomb repulsive force, which tends to separate them. This force
imposes an effective barrier at a separation distance d, where the kinetic
energy of the particles equals the electric potential energy,

(4.5)

For average stellar temperatures (as derived in Section 2.4), the thermal
velocities are such that the Coulomb barrier is set at a distance which is
almost three orders of magnitude larger than the typical range of the
strong nuclear force! This is illustrated schematically in Figure 4.2. In
other words, the kinetic (thermal) energy of the gas in stellar interiors is of
the order of keV, while the height of the Coulomb barrier at nuclear
distances is of the order of MeV.
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Figure 4.2  Schematic representation of the Coulomb barrier – the repulsive potential
encountered by nucleus in motion relative to another – and the short-range negative potential well
that is due to the nuclear force. The height of the barrier and the depth of the well depend on the
nuclear charge (atomic number).

We can now understand why, during the first quarter of the twentieth
century, it was thought impossible for such interactions to take place in
stars: simply, stars appeared not to be sufficiently hot. The solution to this
puzzle was provided by quantum mechanics. A rigorous explanation is
beyond the scope of this text; suffice it to say that, according to quantum
mechanics, there is a finite (nonvanishing) probability for a particle to
penetrate the Coulomb barrier, as if a ‘tunnel’ existed to carry it through.
This quantum effect, discovered by George Gamow in 1928 in connection
with radioactivity, is indeed called ‘tunnelling’. It was applied to energy
generation in stars by Robert Atkinson and Fritz Houtermans in 1929, soon
after its discovery.
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The penetration probability, as calculated by Gamow, and with it the
nuclear cross-section, is proportional to exp  thus
increasing with v. In conclusion, the product exp
exp(−mgv2/2kT ), where the first exponent increases and the second
decreases with increasing v, has a maximum known as the Gamow peak.
To calculate the reaction rate, we would have to integrate the product over
all velocity values. It can be shown that the value of the integral, and with
it the reaction rate, is proportional to the maximum of the product, which
occurs for

(4.6)

Hence the reaction rate

increases with increasing temperature and decreases with increasing
charges of the interacting particles. Fusion of heavier and heavier nuclei
would therefore require higher and higher temperatures. Reactions of a
special type, called resonant reactions, interfere with this monotonic trend.
They occur when the energy of the interacting particles corresponds to an
energy level of the compound nucleus (I + J ), which is formed for a very
brief period of time, before decaying into the reaction products K and L. In
this case the reaction cross-section has a very sharp peak at the resonant
energy, several orders of magnitude higher than the cross-sections at
neighbouring energies.

The typical timescale of a nuclear reaction is inversely proportional to
the reaction rate. For example, the characteristic time of destruction of
type I nuclei by collisions with type J nuclei, leading to reactions of the
form (2.48), would be given by

The extremely high sensitivity of nuclear reaction rates to temperature
leads to the concept of ‘ignition’ of a nuclear fuel: each reaction (or
nuclear process) has a typical narrow temperature range over which its rate
increases by orders of magnitude, from negligible values to very
significant ones. Around this range, the temperature dependence of the
reaction rate may be well approximated by a power law (with a high
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power) and an ignition or threshold temperature may be defined. Hence,
by Equation (4.4), we should characteristically have q ∝ ρT n, or

(4.7)

The process of creation of new nuclear species by fusion reactions is
called nucleosynthesis. And since the kinetic energy of particles is that of
their thermal motion, the reactions between them are called
thermonuclear, as mentioned in Section 2.6. The simple chain of
arguments presented here may be misleading; nuclear reaction rates
involve quite complicated calculations, taking into account the particular
structure (energy states) of the interacting nuclei. A detailed account of the
physics of nuclear reactions may be found in Donald Clayton’s classic
book, Principles of Stellar Evolution and Nucleosynthesis, first published
in 1968.

4.3  Hydrogen burning I: the p – p chain

The most abundant element in newly born stars is hydrogen, with  = 1.
Fusion of hydrogen into the next element, helium, with  = 2, would
require an encounter of three or four protons – hydrogen nuclei – within a
distance of the order of fermis. The probability of such a multiple
encounter is vanishingly small. Thus the process by which hydrogen is,
eventually, turned into helium does not happen at once but gradually,
through a chain of reactions, each involving the close encounter of only
two particles. The first link of this chain should obviously be fusion of two
protons (by the nuclear force – the strong interaction). The resulting
particle would be, however, unstable and it would immediately
disintegrate back into two separate protons. The way out of this impasse
was found by Hans Bethe in 1939: during the close encounter of two
protons, the weak interaction may convert one proton into a neutron, thus
forming a heavier, stable isotope of hydrogen, deuterium:

We note that all three conservation laws are obeyed – baryon number,
lepton number and charge. Then deuterium captures a proton to form the
lighter helium isotope, 3He:
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where γ indicates the emission of an energetic photon, which will soon be
absorbed, and whose energy will be shared by neighbouring particles. The
chain now ramifies: one branch following the encounter of two 3He
isotopes, and the other, the encounter of a 3He isotope with a 4He one;

or

The first branch marks the end of a chain – called the p – p I chain – that
turns six protons into a 4He nucleus (also known as an α particle),
returning two protons, as illustrated in Figure 4.3. The second branch
ramifies again, defining the p – p II and the p – p III chains shown in
Figure 4.3. The p – p II chain proceeds with the capture of an electron by
the beryllium nucleus, accompanied by the emission of a neutrino:

and the subsequent capture of another proton, to form two 4He nuclei:

The p – p III chain results from the capture by 7Be of a proton, instead of
an electron:

The radioactive boron isotope 8B decays into 8Be, which is highly unstable
and immediately breaks into two 4He nuclei:

This completes the p – p chain, whose three branches operate
simultaneously. The relative importance of these chains, that is, the
branching ratios, depend upon the conditions of hydrogen burning:
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temperature, density and abundances of the elements involved. For
example, for X = Y, the transition from p – p I to p – p II occurs gradually
between temperatures of 1.3 × 107 K and 2 × 107 K; above 3 × 107 K the p
– p III chain dominates. However, at such high temperatures, a different
hydrogen-burning process may favourably compete with the p – p chains,
as we shall see shortly.

Figure 4.3  The nuclear reactions of the p – p I, II and III chains.

The energy released in the formation of an α particle by fusion of four
protons is essentially given by the difference of the mass excesses of four
protons and one α particle,
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according to the atomic mass table. Since any reaction chain that
accomplishes this task must also turn two protons into neutrons, two
neutrinos are emitted, which carry energy away from the reaction site. (In
fact, it is these neutrinos that bear direct testimony to the occurrence of
nuclear reactions in the interiors of stars, which would be otherwise
unobservable. We shall return to this point in Section 9.3, when we discuss
solar neutrinos.) The amounts of energy carried by the neutrinos vary for
the different reaction chains: from 0.26 MeV for the creation of deuterium,
to 7.2 MeV for the boron decay. Since the p – p III chain, which includes
the boron decay, has a small probability (branching ratio), 26 MeV are
liberated on the average for each helium nucleus assembled, which,
translated into energy per unit mass, yields 6 × 1014 J kg−1 (6 × 1018 erg g
−1).

Finally, the rate of energy release is determined by the slowest reaction
in the chain, which is the first one, with a typical timescale of almost 1010

yr. It may be approximated by a power law in temperature with an
exponent ranging from less than 4 and up to ~6. Roughly, we may assume

(4.8)

Not only does the p – p chain require the lowest temperature among fusion
processes, but it also exhibits the weakest temperature sensitivity.

4.4  Hydrogen burning II: the CNO bi-cycle

We have seen in Chapter 1 that a small percentage of the initial
composition of any star consists of carbon, nitrogen and oxygen (CNO)
nuclei. These nuclei may induce a chain of reactions that transform
hydrogen into helium, in which they themselves act similarly to catalysts
in chemical reactions: they are destroyed and reformed in a cyclic process.
The process, which is accordingly named the CNO cycle, was suggested
by Bethe and, independently, by Carl-Friedrich von Weizsäcker, in 1938.
The reactions involved are shown schematically in Figure 4.4. We note
that here, too, as in the case of the p – p chain, the process may ramify,
with the two different branches forming a bi-cycle. Each of the two closed
chains that form the CNO bi-cycle involves six reactions resulting in the
production of one 4He nucleus: four proton captures and two β+ decays
accompanied by the emission of neutrinos per chain. They are listed
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below, in parallel.

We note that the number (total abundance) of CNO (and F) nuclei
taking part in the process is constant in time; the relative abundances of the
species depend upon the conditions of burning, mainly the prevailing
temperature. The burning rate – as in any chain of reactions – is
determined by the slowest reaction in the chain. In this context, it is
important to note that, while β decays are independent of external
conditions, capture reactions are extremely sensitive to temperature. Hence
a very wide range of burning rates is to be expected, but only so long as
capture reactions proceed more slowly than β decays. At the extremely
high temperatures for which the situation is reversed, β decays would act
as a bottleneck to the nuclear reaction sequence, regardless of temperature.
This may occur in explosive hydrogen burning (see Section 11.6).
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Figure 4.4  The nuclear reactions of the CNO bi-cycle.

The energy released in the formation of a 4He nucleus by the CNO cycle
is ~25 MeV, after subtracting the energy carried away by the neutrinos.
The temperature dependence of the energy generation rate q may be
roughly approximated by a steep power law

(4.9)

Thus, both processes of hydrogen burning – the main source of stellar
energy – were brought to light at about the same time, and Bethe played a
crucial role in both. Many years later, in 1967, he was awarded the Nobel
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Prize for Physics for his contribution to the understanding of energy
production in stars.

4.5  Helium burning: the triple-α reaction

As in the case of hydrogen burning, the simplest and most obvious nuclear
reaction in a helium gas should be fusion of two helium nuclei (α
particles). But we have seen in Section 4.1 that there exists no stable
nuclear configuration with  = 8 (regardless of ). Two helium nuclei
may be fused into a beryllium isotope

but the 8Be lifetime is only 2.6 × 10−16 s! The solution to this new problem
was provided by Edwin Salpeter in 1952. Short as the 8Be lifetime may
seem, it is nevertheless longer than the mean collision (scattering) time of
α particles at temperatures of the order of 108 K. Therefore, even at the
seemingly negligible 8Be abundance of one in 109 particles, there is a
nonvanishing probability that an α particle will collide with a 8Be nucleus
before it decays, to produce carbon:

Fred Hoyle realized shortly afterwards that the small probability of an α
capture by a beryllium nucleus would be greatly enhanced if the carbon
nucleus had an energy level close to the combined energies of the reacting
8Be and 4He nuclei. The reaction would then be a relatively fast resonant
reaction. Remarkably, such a resonant energy level of 12C (at 7.65 MeV)
was subsequently found experimentally in the Kellogg Radiation
Laboratory at the California Institute of Technology. The excited 12C
nucleus decays back into three α particles with high probability, but with a
nonnegligible probability it decays to its ground state, emitting an
energetic photon (γ -decay).

Thus helium burning proceeds in a two-stage reaction that leads to the
fusion of three helium nuclei into 12C; hence the name of this reaction:
triple-α (or 3α). The energy released in such a reaction is easily calculated:
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and, correspondingly, the energy generated per unit mass is 5.8 × 1013 J kg
−1 (5.8 × 1017 erg g−1). This is about one tenth of the energy generated by
fusion of hydrogen into helium! The rate of this process is determined by
the second reaction in the chain (which itself has two stages: α-capture and
γ -decay). It is thus proportional to the 8Be abundance, which itself varies
as the square of the helium abundance. Consequently, the energy
generation rate depends on the square of the density. Its temperature
sensitivity is quite astounding:

(4.10)

When a sufficient number of carbon nuclei have accumulated by 3α
reactions, it seems reasonable that α captures by these nuclei, and possibly
by their products, could lead to the formation of heavier and heavier
particles. In reality, it turns out that the increasing Coulomb barrier renders
the probability of such captures very low compared with that of the 3α
reaction, at least until the helium abundance becomes small. Hence the
only significant α capture reaction that takes place is

The energy released by this reaction is 7.162 MeV, amounting to 4.3 ×
1013 J kg−1. To summarize, the products of helium burning are carbon and
oxygen, in relative abundances which depend on temperature. The process
is shown schematically in Figure 4.5.
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Figure 4.5 The triple-α process.

Note:  It was the competition between the 12C + 4He and the 8Be + 4He reactions that led Hoyle
to the prediction of the resonant energy level in the carbon nucleus. Already in 1946, with
remarkable foresight, Hoyle had postulated that all nuclei (not only helium) build up from lighter
nuclei by fusion reactions that take place in the interior of stars. Pursuing this idea, he considered
the synthesis of elements from carbon to nickel, in 1953–1954, with the Salpeter process as starting
point. He then showed that the observed cosmic abundance ratios He : C : O could be made to fit
the yields calculated for the above reactions, if the 8Be + 4He reaction had a resonance
corresponding to a level at ~7.7 MeV in the 12C nucleus. Otherwise, the inferred cosmic carbon
abundance would be too low. Eager to test this prediction, Hoyle even collaborated in the first
attempts to detect such a level experimentally.
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Exercise 4.1:  Calculate the energy generated per unit mass, if helium burning produces equal
amounts (mass fractions) of carbon and oxygen.

4.6  Carbon and oxygen burning

Carbon burning – fusion of two carbon nuclei – requires temperatures
above 5 × 108 K and oxygen burning, having to overcome a still higher
Coulomb barrier, occurs only at temperatures in excess of 109 K.
Interactions of carbon and oxygen nuclei need not be considered, for at the
intermediate temperature required by the intermediate Coulomb barrier,
carbon nuclei are quickly exhausted by interacting with themselves.

The processes of carbon and of oxygen burning are very similar: in both
cases a compound nucleus is produced, at an excited energy level, and it
subsequently decays. Several decay options are open, with different,
temperature-dependent probabilities (branching ratios).

The possible reaction channels are shown schematically in Figure 4.6.
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Figure 4.6  The nuclear reactions involved in carbon and in oxygen burning.

On the average, 13 MeV are released for each 12C + 12C reaction and
about 16 MeV for each 16O + 16O reaction, amounting to ~5.2 × 1013 J kg
−1 and ~4.8 × 1013 J kg−1, respectively. These reactions entail production
of light particles, such as protons and helium nuclei, which are
immediately captured by the heavy nuclei present, because of the
relatively low Coulomb barriers. Thus many different isotopes are created
by secondary reactions, besides those primarily produced by fusion of
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carbon or oxygen. The major nucleus formed by oxygen burning is silicon
(28Si), although other elements are also significantly abundant.

4.7  Silicon burning: nuclear statistical equilibrium

In principle, we may now assume by analogy that two silicon nuclei could
fuse to create iron, the most stable element – the end-product of the
nuclear fusion chain. In reality, however, the Coulomb barrier has become
prohibitively large. At temperatures above the oxygen burning range, but
way below those that would be required for silicon fusion, another type of
nuclear process takes place. It involves the interaction of massive particles
with energetic photons, which are capable of disintegrating nuclei, much
as less energetic photons are capable of breaking up atoms by tearing
electrons away. The process, called photodisintegration, is similar in many
respects to photoionization of atoms, except that the binding force is
nuclear, instead of electric, and the emitted particles are light nuclei,
instead of electrons. As in the case of ionization, reactions can proceed
both ways and equilibrium may be achieved, with relative abundances
depending on the prevailing physical conditions. The reaction 

 for example, produces neon at temperatures
around 109 K, but reverses direction above 1.5 × 109 K. The energy
absorbed in the inverse reaction (photodisintegration) is supplied by the
radiation field.

Silicon disintegration occurs around 3 × 109 K; the light particles
emitted are recaptured by other silicon nuclei, building up an entire
network of nuclear reactions, with light particles exchanged between
heavy nuclei. Although the nuclear reactions tend to equilibrium, where
direct and inverse reactions occur at (almost) the same rate, the resulting
state of nuclear statistical equilibrium is not perfect: a leakage occurs
toward the stable iron group nuclei (Fe, Co, Ni), which resist
photodisintegration until the temperature reaches ~7 ×109 K.

The major nuclear-burning processes that we have encountered and their
main characteristics are summarized in Table 4.1. Their common feature is
the release of energy upon consumption of nuclear fuel. The amounts and
the rates of energy release vary, however, enormously. But nuclear
processes that absorb energy (from the radiation field) are also possible
under conditions expected to occur in stellar interiors. Their consequences
may range from mild to catastrophic, depending on the amount of
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absorbed energy and, especially, on the rate of energy absorption. Such are
the processes discussed in the following sections.

Table 4.1  Major nuclear-burning processes

Exercise 4.2:  Estimate the minimal stellar mass required for the central ignition of the
different nuclear fuels, according to the threshold temperatures of Table 4.1, by assuming (a) a
density profile as in Exercise 1.2; (b) solar composition; (c) nondegeneracy.

4.8  Creation of heavy elements: the s- and r-processes

So far we have considered charged particle interactions, their rates being
controlled by the height of the Coulomb barrier and interactions of nuclei
with photons, which become efficient at high temperatures. Another type
of interaction becomes possible in the presence of free neutrons, which are
produced during carbon, oxygen and silicon burning. Neutron capture by
relatively heavy nuclei is not limited by the Coulomb barrier and can
therefore proceed at relatively low temperatures. The only obstacle in the
way of neutron-capture reactions is the scarcity of free neutrons.

Suppose a sufficient number density of neutrons is available. A chain of
reactions would then be triggered, with nuclei capturing more and more
neutrons, thus creating heavier and heavier isotopes of the same element:

99



So long as IN is stable, the chain of neutron captures may continue, but
eventually a radioactive isotope should be formed. Such an isotope would
subsequently decay by emitting an electron (and an antineutrino), thus
creating a new element

If the new element is stable, it will resume the chain of neutron captures.
Otherwise, it may undergo a series of β− decays:

until a stable nucleus of mass  and atomic number  say, is
produced. Either way, increasingly heavier elements and their stable
isotopes are thereby created.

In the process just described two types of reactions – neutron captures
and β− decays – and two types of nuclei – stable and unstable – are
involved. Stable nuclei may, of course, undergo only neutron captures; for
unstable ones both tracks are open and the outcome depends on the
timescales of the two processes. The timescales of β− decays (or half-life
times of β-unstable isotopes) are constants – independent of prevailing
physical conditions. Those of neutron captures may change according to
temperature and density. Hence neutron-capture reactions may proceed
more slowly or more rapidly than the competing β decays. The resulting
chains of reactions and products will be different in the former case, called
the s-process and in the latter, called the r-process (terms coined by
Margaret and Geoffrey Burbidge, William Fowler and Fred Hoyle in their
seminal paper of 1957). This is illustrated schematically in Figure 4.7,
where the s-process products are labelled s, those of the r-process are
labelled r, and those which may be produced by both are labelled s,r.
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Figure 4.7  Schematic representation of the s-process and the r-process, showing reaction chains
that involve neutron captures and β− decays, leading to the formation of stable isotopes. Nuclei
marked s, r or s, r are formed by one of the processes (respectively), or by both (adapted from D.
Clayton (1983), Principles of Stellar Evolution and Nucleosynthesis, University of Chicago
Press).

In the course of the main burning processes, the s- and r-processes
operate as secondary reactions and a wealth of nuclear species results,
although the abundances of elements heavier than iron are relatively small.
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4.9  Pair production

We have already seen in this chapter many examples of transmutations of
mass into ‘light’: all the major burning stages release energy at the expense
of a small fraction (less than 1%) of the mass. But the reverse
transmutation – of light into mass – is also possible.

During the interaction with a nucleus, a photon may turn into an
electron-positron particle pair, provided its energy hν exceeds the rest-
mass energy of the particles, hν > 2mec2. The presence of the nucleus is
required for the simultaneous conservation of momentum and energy. The
typical temperature at which the condition for pair production is satisfied
may be estimated by kT ≈ hν ≈ 2mec2, yielding T ≈ 1.2 × 1010 K. However,
even at temperatures T ≥ 109 K, a large number of photons – at the tail of
the Planck distribution function (3.39) – are already sufficiently energetic
to produce electron-positron pairs. At the same time, the inverse reaction –
annihilation of electron-positron pairs into photon pairs – tends to destroy
the newly created positrons. As a result, the number of positrons reaches
equilibrium. Pair production, as photodisintegration, bears similarity to the
ionization process: an increase in temperature leads to an increase in the
number of particles, at the expense of the photon energy; an increase in
density has the opposite effect. Thus, at a few times 109 K (depending on
the electron density) the number of positrons becomes a significant
fraction of the number of electrons. We note that having a lot of pairs at a
temperature of a few 109 K (much less than 12 × 109 K) is similar to
having a considerable fraction of, say, ionized hydrogen at a few 104 K
(much less than ~15 × 104 K, corresponding to χ = 13.6 eV).

4.10  Iron photodisintegration

If sufficiently high temperatures are achieved, even the stable iron nuclei
do not survive photodisintegration. They break into α particles and
neutrons,

thus reversing almost entirely the nucleosynthesis process. Each reaction
of this kind absorbs about 124 MeV of energy.

At temperatures above ~7 × 109 K, helium becomes more abundant than
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iron. At still higher temperatures, helium itself is disintegrated by the
energetic photons into protons and neutrons. In conclusion, bound nuclei
require temperatures above a few 106 K in order to be created and below a
few 109 K so as not to be destroyed. This, as we shall see, is precisely the
range of temperatures characteristic of stellar interiors.
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5

Equilibrium stellar configurations – simple
models

5.1  The stellar structure equations

The main conclusion of Chapter 2 was that the evolution of a star may be
perceived as a quasi-static process, in which the composition changes
slowly, allowing the star to maintain hydrostatic equilibrium and,
generally, thermal equilibrium as well. The chain of processes through
which the composition gradually changes has been described in the
previous chapter. Our present task is to describe the equilibrium structure
of a star of a given composition (this chapter) and to find whether the
equilibrium is stable (next chapter). The (static) structure of a star is
obtained from the solution of the set of differential equations known as the
stellar structure equations, formulated in terms of either of the previously
encountered space variables, r or m:

(5.1)

(5.2)

(5.3)
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(5.4)

where the first is the hydrostatic-equilibrium equation, the second is the
continuity equation, the third is the radiative-transfer equation (provided
radiative diffusion constitutes the only means of energy transfer) and the
fourth is the thermal-equilibrium equation, supplemented by the relations

(5.5)

(5.6)

(5.7)

Integration of these differential equations provides the profiles of four
functions throughout the star: T, ρ, m (or r) and F, from which any other
function of interest may be derived. Four boundary conditions (integration
constants) have to be supplied. The three straightforward ones are at m = 0,
r = 0 and F = 0; at m = M (or at r = R), P = 0. A more complicated
condition relates the emitted radiation L = F (R) – or, equivalently, the
effective temperature – to the temperature obtained at some depth below
the surface. Although this set of equations is simpler by far than the set of
evolution equations derived in Chapter 2, it does not lend itself to simple,
analytic solutions. The reason is threefold: first, the equations are highly
nonlinear, particularly in view of the power-law relations (5.5) to (5.7);
secondly, they are coupled and have to be solved simultaneously; thirdly,
they constitute a two-point boundary value problem, which requires
iterations for its solution. And yet, a great deal of our understanding of
stellar structure dates back to the early decades of the twentieth century,
when fast computers were not only unavailable, but inconceivable.
Eddington’s book, which we have already mentioned, saw light in 1926;
Subramanyan Chandrasekhar’s book An Introduction to the Study of
Stellar Structure, a cornerstone in the study of stars, was first published in
1939.

Exercise 5.1:  Derive the behaviour of m(r), P (r), F (r) and T (r) near the centre of a star by
Taylor expansion for given composition and physical properties at r = 0: ρc, Pc and Tc.

In what follows we shall see that insight into the structure of stars may
be gained both by analysing the equations, without actually solving them,
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and by seeking simple solutions based on additional simplifying
assumptions.

5.2  What is a simple stellar model?

A fundamental principle that enables a simple solution of the structure
equations is finding a property that changes moderately enough from the
stellar centre to the surface to allow us to regard it as uniform (independent
of r or m). At first sight, this demand appears rather strange, keeping in
mind that the temperature, for example, is expected to change throughout a
star by more than three orders of magnitude (according to simple
estimates) and the pressure by more than eleven! However, properties can
be found that do not change significantly with radial distance. Many
models, for example, assume the composition to be uniform. Is such an
assumption justified? It would be for a star which is thoroughly mixed by
convection (a process that we shall address shortly), or for a star composed
mainly of elements heavier than hydrogen, where the gas pressure is
dominated by electrons and hence depends on µe, which is very nearly 2
regardless of the detailed abundances. A homogeneous composition is also
typical of young stars, since the initial stellar composition is uniform.

Another principle that enables an analytic investigation of the behaviour
of stars is the representation of a star by its two extreme points – the centre
and the surface (the surface is, of course, not a point in the strict sense of
the word, but all points on the surface are identical by the spherical
symmetry assumption). The hidden implication is that properties change
monotonically between these two points. This is certainly correct for the
pressure, from Equation (5.1), and also for the temperature, by Equation
(5.3), since from Equation (5.4), F ≥ 0. The latter condition is not
necessarily correct in the case of strong neutrino emission, which may turn
the net q negative and may eventually lead to a temperature inversion. But
we shall disregard such complications.

As a further simplification, we may represent a star by only one of the
extreme points; the centre, for example. Assuming that both P and T
decrease outward (and so must ρ, otherwise we would encounter the
unstable situation in which heavy material lies on top of light material,
resulting in a turnover), the centre of a star is the hottest and densest place.
There, therefore, the nuclear reactions are fastest and since nuclear
processes dictate the evolutionary pace, the centre would be the most
evolved part of the star. We should be able to learn a great deal about the
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evolution of a star by considering its central point alone. This will be the
subject of Chapter 7. The surface of the star (the global stellar
characteristics) is important from an entirely different point of view – it is
the only ‘point’ whose model-derived properties can be directly compared
with observations. In some cases, global quantities and relations between
them may be obtained, as we shall see in Chapter 7, without solving the set
of structure equations.

For now, we shall consider several simple models based on the principle
of a uniform property.

5.3  Polytropic models

The first pair of stellar structure equations, (5.1)–(5.2), is linked to the
second pair, (5.3)–(5.4), by the dependence of pressure on temperature. If
the pressure were only a function of density (and composition, of course),
the first pair would be independent and could be solved separately,
meaning that the hydrostatic configuration would be independent of the
flow of heat through it. Analytic solutions of this form are now more than
a century old.

Multiplying Equation (5.1) by r2/ρ and differentiating with respect to r
we have

(5.8)

Substituting Equation (5.2) on the right-hand side, we obtain

(5.9)

We now consider equations of state of the form

(5.10)

where K and γ are constants, known as polytropic equations of state. It is
customary to define the corresponding polytropic index, denoted by n, as
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(5.11)

Thus the equation of state of a completely degenerate electron gas is
polytropic, with an index of 1.5 (γ = 5/3) in the nonrelativistic case and 3
(γ = 4/3) in the extreme relativistic limit. An ideal gas, too, may be
described by a polytropic equation of state under certain conditions; we
shall encounter such cases later on. Substituting Equations (5.10)–(5.11)
into (5.9), we obtain a second-order differential equation:

(5.12)

The solution ρ(r) for 0 ≤ r ≤ R, called a polytrope, requires two boundary
conditions. These are ρ = 0 at the surface (r = R), which follows from P
(R) = 0, and dρ/dr = 0 at the centre (r = 0), since hydrostatic equilibrium
implies dP /dr = 0 there (see Section 2.3). Hence a polytrope is uniquely
defined by three parameters: K, n and R, and it enables the calculation of
additional quantities as functions of radius, such as the pressure, the mass
or the gravitational acceleration.

It is convenient to define a dimensionless variable θ in the range 0 ≤ θ ≤
1 by

(5.13)

to obtain Equation (5.12) in a simpler form,

(5.14)

Obviously, the coefficient in square brackets on the left-hand side of
Equation (5.14) is a constant having the dimension of length squared,

(5.15)
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which can be used in order to replace r by a dimensionless variable ξ,

(5.16)

Substituting Equation (5.16) into Equation (5.14), we now obtain the well-
known Lane-Emden equation of index n,

(5.17)

subject to the boundary conditions: θ = 1 and dθ/dξ = 0 at ξ = 0. Equation
(5.17) can be integrated starting at ξ = 0; for n < 5, the solutions θ(ξ) are
found to decrease monotonically and have a zero at a finite value ξ = ξ1,
which corresponds to the stellar radius,

(5.18)

Examples of solutions (ρ/ρc as a function of r/R), for n = 1.5 and n = 3, are
given in Figure 5.1. As shown, the structure of a polytrope depends only
on n. A polytrope of index 3 describes a star in which the mass is strongly
concentrated at the centre, whereas a polytrope of index 1.5 describes a
more even mass distribution.
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Figure 5.1  Normalized polytropes for n = 1.5 and n = 3.

The total mass M of a polytropic star is given by

(5.19)

From Equation (5.17) we have

(5.20)

Exercise 5.2:  Solve the Lane-Emden equation analytically for (a) n = 0 and (b) n = 1 and find
ξ1 and M(R) in each case.

In later discussions we shall often resort to general relations between
stellar properties resulting from a polytropic equation of state. These
follow easily from Equation (5.20). Eliminating α between Equations
(5.18) and (5.20), we obtain a linear relation between the central density
and the average density ,

(5.21)

which is generally valid. Only the constant Dn derives from the solution of
Equation (5.17) and depends on the value of n;

(5.22)

Values of Dn for various n can be found in Table 5.1.

Table 5.1 Polytropic constants
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Using Equation (5.20) again, but now eliminating ρc with the aid of
Equation (5.15) and substituting α from Equation (5.18), we obtain a
relation between the stellar mass and radius, which may be expressed in
terms of two constants, Mn and Rn, in the form

(5.23)

The values of the constants  and Rn = ξ1 vary with
the polytropic index n in the range from 1 to 10, as listed in Table 5.1. We
note that n = 3 is a special case: the mass becomes independent of radius
and is uniquely determined by K,

(5.24)

Thus for a given K, there is only one possible value for the mass of a star
that will satisfy hydrostatic equilibrium. Another special case is n = 1, for
which the radius is independent of mass and is uniquely determined by K:

(5.25)

Between these limiting values of n, 1 < n < 3, we have from Equation
(5.23)
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(5.26)

meaning that the radius decreases with increasing mass: the more massive
the star, the smaller (and hence denser) it becomes.

A final important relation is obtained between the central pressure and
the central density by substituting K from the mass-radius relation (5.23) in
Equation (5.10),  whence

(5.27)

Eliminating R between Equations (5.27) and (5.21), and assembling all n-
dependent coefficients into one constant Bn, reduces Equation (5.27) to

(5.28)

The remarkable property of this relation is that it depends on the polytropic
equation of state only through the value of Bn, which, as we see from Table
5.1, varies very slowly with n. It therefore constitutes an almost universal
relation, and as such it will be used in Chapter 7. Note that expression
(5.28) for Pc is consistent with the upper limit derived in Exercise 2.2
(Section 2.3).

Exercise 5.3:  For a given mass M and central pressure Pc, which polytrope yields a bigger
star: that of index 1.5 or that of index 3?

Exercise 5.4:  Capella is a binary star discovered in 1899, with a known orbital period, which
enables the determination of the mass and radius of the brighter component: M = 8.3 × 1030 kg
and R = 9.55 × 109 m. Assuming that the star can be described by a polytrope of index 3, find
the central pressure and the central density. Check whether the central pressure satisfies
inequality (2.18).

5.4  The Chandrasekhar mass

Stars that are so dense as to be dominated by the degeneracy pressure of
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the electrons (discussed in Chapter 3) would be accurately described by a
polytrope of index n = 1.5, with K = K1 of Equation (3.35). We know from
observations that such compact stars exist – they are the white dwarfs
mentioned in Chapter 1, which have masses comparable to the Sun’s, and
radii not much larger than the Earth’s. Their average density is thus higher
than 108 kg m−3 (105 g cm−3), about five orders of magnitude higher than
the average density of the Sun. We might learn some more about these
stars by investigating the properties of this particular polytrope. From
Equation (5.23), the relation between mass and radius becomes

(5.29)

The density, therefore, increases as the square of the mass,

(5.30)

Imagine now a series of such degenerate gaseous spheres with higher and
higher masses. The radii will decrease along the series and the density will
increase in proportion to M2. Eventually, the density will become so high
that the degenerate electron gas will turn to be relativistic, departing from
the simple n = 1.5 polytrope. As the density increases (the radius tending
to zero), the correct equation of state will approach the form (3.38), still a
polytrope, but of index n = 3, with K = K2. We have seen, however, that in
such a case there is only one possible solution for M, uniquely determined
by K. Hence our series of degenerate gaseous spheres in hydrostatic
equilibrium ends at this limiting mass. The existence of an upper limit to
the mass of degenerate stars was first found by Chandrasekhar in 1931 and
hence the upper limit bears his name, MCh. About half a century later, this
work earned Chandrasekhar the 1983 Nobel Prize for Physics, which he
shared with Fowler (for their contributions to the understanding of stellar
evolution).

Substituting K2 in Equation (5.24), we have

(5.31)

Inserting the values of constants, we obtain
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(5.32)

which yields for µe = 2 a limiting mass of 1.46M . The mass-radius
relation for white dwarfs is shown in Figure 5.2 for µe = 2 (He, C, O, . . . ).
For µe = 2.15 (Fe), the limiting mass is 1.26M . In conclusion, hydrogen-
poor compact stars, where the pressure is supplied predominantly by the
degenerate electron gas, can have masses only up to the critical mass of
1.46M . Indeed, no white dwarf is known with a mass exceeding this
value.

Figure 5.2  The mass-radius relation for white dwarfs (µe = 2).

Exercise 5.5:  Calculate the critical mass using relation (5.28) between central pressure and
central density; show that the numerical coefficient in Equation (5.31) is equivalent to 

5.5  The Eddington luminosity

So far we have dealt with the first two of the structure equations. We shall
now add the third, thus taking into account the temperature and the
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radiation pressure. Substituting the radiation pressure  in
Equation (5.3) and dividing Equation (5.3) by Equation (5.1), we obtain

(5.33)

The result of this manipulation will be the derivation of an upper limit for
the stellar luminosity. Since P = Pgas + Prad, and both Pgas and Prad
decrease outward (provided q ≥ 0), it follows that sgn[dPrad]=sgn[dPgas]
and we obviously have dPrad/dP < 1, implying

(5.34)

This inequality may be violated either in the case of a very large heat flux,
which may result from intense nuclear burning, or in the case of a very
high opacity, as encountered at the ionization temperatures of hydrogen or
helium. In such cases Equations (5.1) and (5.3) cannot simultaneously
hold, and if we require hydrostatic equilibrium, then heat transport must be
described by a different equation; that is, it must occur by a means other
than radiative diffusion, which has become inefficient. We know from
everyday experience that near a strong heat source, such as a stove,
convective motions develop in the surrounding air, which carry the heat
efficiently and distribute it throughout the room. If the stove is not very
hot, it spreads heat by thermal radiation alone. The same phenomenon
occurs in stars – on appropriately larger scales. Stars transfer energy by
radiation alone under moderate conditions, in which case they are said to
be in radiative equilibrium and inequality (5.34) is satisfied, or by
convection, under more severe conditions, when the rate of heat generation
becomes too rapid for radiation to carry, or when ionization interferes too
much with the radiative transfer. It may also happen that some regions of a
star are in radiative equilibrium and others are not; the former are called
radiative regions or zones, and the latter, convective ones.

Exercise 5.6:  Find the expression for the gas pressure gradient, assuming radiative
equilibrium, and its relation to inequality (5.34).

Near the centre of a star, Equation (5.4) and F (0) = 0 yield F /m → qc as
m → 0, where qc = q(m = 0); hence inequality (5.34) imposes a universal
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upper limit on the central energy generation rate that can be
accommodated by radiative energy transfer:

(5.35)

The surface layer of a star is always radiative; applying inequality (5.34)
for m = M, we have

(5.36)

Violation of this condition then implies violation of hydrostatic
equilibrium: mass motions arise leading to a stellar wind. As pointed out
by Eddington, the right-hand side of inequality (5.36) represents a critical
luminosity Lcrit that cannot be surpassed; it is, therefore, also known as the
Eddington luminosity LEdd:

(5.37)

where the opacity is expressed relative to the electron-scattering opacity
κes, which is a constant (see Equation (3.64)). To summarize, radiative
equilibrium requires

To show the possible implications of this result, we may indulge in
some speculation. If we assume κ ≈ κes to be a reasonable approximation,
LEdd becomes uniquely determined by M. We have seen in Chapter 1 that
for a certain type of stars, those of the main sequence, a correlation exists
between the luminosity and the mass. If the outer layers of such stars are in
hydrostatic and radiative equilibrium, restriction (5.36) combined with the
mass-luminosity relation imposes an upper limit on the mass of main-
sequence stars. We should then expect the main sequence to have an upper
end.
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5.6  The standard model

After this brief digression, we proceed to derive the so-called standard
model, which is due to Eddington and is therefore also known as
Eddington’s model.

We define a function η by

(5.38)

and insert it into Equation (5.33), which becomes

(5.39)

At the surface, η = 1, and for stars that burn nuclear fuel mostly in a
(small) central core, thus maintaining an almost constant flux outside the
core, η increases inward, as m decreases. The opacity, on the other hand,
usually increases from the centre outward. If, from the centre outward, the
increase in κ is approximately compensated by the decrease in η, we may
take their product to be constant. This is the uniform property of the
Eddington model (a controversial assumption, which has been subject to
severe criticism over the years). With

(5.40)

where κs is the surface opacity, we have by integrating Equation (5.39)

(5.41)

since the total pressure and the radiation pressure tend to zero at the
surface. Thus the constancy of κη implies a constant ratio of radiation
pressure to total pressure throughout the star; in other words, a constant β
(see Equation (3.12)). We also obtain

(5.42)
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meaning that the luminosity approaches the limiting value as the radiation
pressure becomes dominant (β → 0). Assuming the gas pressure to be
given by the ideal gas law, Equation (3.28), we have

(5.43)

Combining the extreme left and extreme right expressions, we get

(5.44)

and the equation of state may be written as

(5.45)

Since K is a constant, we have obtained a polytropic equation of state of
index 3, which implies a unique relation between K and M, Equation
(5.24) derived in the previous section. Rearranging terms and inserting the
values of constants, we obtain

(5.46)

a fourth order equation for β(µ2M), known as the Eddington quartic
equation, whose solution is given in Figure 5.3. The quartic equation is
valid for a hypothetically wide range of masses. We note, however, that
only for a rather restricted range does β differ significantly from unity
(pure gas pressure) or from zero (pure radiation pressure) and this range
more or less coincides with the range of stellar masses, as derived from
observations. In Eddington’s own words:

We can imagine a physicist on a cloud-bound planet who has never heard tell of the stars
calculating the ratio of radiation pressure to gas pressure for a series of globes of gas of various
sizes, starting, say, with a globe of mass 10 gm., then 100 gm., 1000 gm., and so on, so that his
nth globe contains 10n gm. [. . .] Regarded as a tussle between matter and aether (gas pressure
and radiation pressure) the contest is overwhelmingly one-sided except between Nos. 33–35,
where we may expect something interesting to happen.
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What ‘happens’ is the stars.
We draw aside the veil of cloud beneath which our physicist has been working and let him

look up at the sky. There he will find a thousand million globes of gas nearly all of mass
between his 33rd and 35th globes – that is to say, between  and 50 times the sun’s mass.

Sir Arthur S. Eddington: The Internal Constitution of the Stars, 1926

Figure 5.3  Solution of the Eddington quartic equation.

Exercise 5.7:  The quartic equation may be written in terms of a mass M  that is a combination
of natural constants. (a) Find the expression for this mass and calculate it. (b) Express the
Chandrasekhar mass in terms of M .

What can one learn about the evolution of stars based on this simple
model?

1.  For stars of given composition (fixed µ), β decreases as M increases,
meaning that radiation pressure becomes particularly important in
massive stars.

2.  Inserting Equation (5.42) into (5.46), we obtain

(5.47)
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This is close to a power-law relation between the luminosity and the
mass, similar to that obtained from observations of main-sequence
stars. In fact, the mass-luminosity relation derived by Eddington was
at the time a theoretical prediction, to be confirmed only later by
observations. Differences in composition, and hence in the value of µ,
may explain the observed scatter of points in the (M, L) relation.

3.  For a given M and changing µ – as along the evolutionary course of a
star – β decreases with increasing µ. Since nuclear reactions cause a
gradual increase in µ, we should expect radiation pressure to play an
increasingly greater role, as a star gets older. With it, by Equation
(5.42), the luminosity should approach its limiting value. Could this
mean that a star should lose (eject) some of its mass in its late stages
of evolution, compensating for the rise in µ, so as to prevent β from
dropping too low? We may consider this a first hint to the existence
of stellar winds, which should intensify as the luminosity approaches
LEdd.

We have formulated these conclusions very cautiously, for they derive
from such a simple model. So formulated, they are acceptable and they
provide important and easy to understand clues to the complex structure
and evolution of stars.

Historical Note: The theoretical mass-luminosity relation (5.47) has two parameters: the mean
molecular weight and the opacity. Assuming one of them, one may derive the other by comparing
the relation with its observational counterpart. Eddington started by assuming stars to be made of
iron (or terrestrial material), which implied a value of µ slightly in excess of 2, considering the
highly ionized state of stellar interiors. This led to the estimate of an ‘astronomical opacity
coefficient’, which exceeded by about a factor of 10 the ‘theoretical opacity coefficient’ that had
been calculated following the Kramers theory. Although he was aware that including a considerable
proportion of hydrogen in the chemical composition of stars would resolve the discrepancy, this
solution seemed improbable at first, both to him and to others, and the alternative of seeking a
correction to the opacity coefficient was pursued for a time. However, around 1930 it became
established that in the atmospheres of the Sun, and the stars in general, hydrogen amounts to about
half the mass (see Section 1.3). The possibility of hydrogen floating to the surface of the star was
discarded; Eddington had already shown that diffusion in stars should proceed negligibly slowly.
Thus, in 1932, the prevalence of hydrogen in stellar interiors was finally recognized by Eddington,
and independently advocated by Bengt Strömgren, on the basis of the mass-luminosity relation.

5.7  The point-source model
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Models presented so far have considered the first three structure equations.
This chapter would not be complete without mentioning another group of
relatively simple models, which take account of the fourth equation,
Equation (5.4), and assume a power law for the opacity in the form (5.6).
If the nuclear-energy source of a star is confined to a very small central
region, it may be considered a point-source, so that q = 0 for r > 0. In this
case, the equation of thermal equilibrium implies a constant energy flow
(energy per unit time) throughout the star. Thus

(5.48)

constitutes the basic assumption of the point-source models. Such models
were first investigated by Thomas Cowling, in 1930, and hence they are
also known as Cowling models. It is reasonable to assume a homogeneous
composition for point-source models. Expressing the opacity in terms of ρ
and T as in Equation (3.63), κ = κ0ρaTb, the set of equations to be solved
reduces to

(5.49)

(5.50)

(5.51)

together with an equation of state for the gas, say  This
is by no means a very simple or transparent model, but Equations (5.49)–
(5.51) can be integrated numerically for a given opacity law. A somewhat
simpler and more elegant version of the point-source model may be
obtained if one further assumes the opacity to be constant (a = b = 0).
Equations (5.49) and (5.50) may then be written as

(5.52)

(5.53)
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and dividing them (as we did to obtain Equation (5.33)), we get

(5.54)

We now differentiate Equation (5.54) to obtain

(5.55)

Inserting Equations (5.53) on the left-hand side and (5.51) on the right-
hand side, and rearranging terms, we finally have

(5.56)

We may express ρ in terms of Pgas and Prad as follows:

(5.57)

and cast Equation (5.53) in the form

(5.58)

Thus the original set of four equations has been reduced to a pair of
differential equations, (5.56) and (5.58), in three variables: Pgas, r and Prad
(as the independent one). With the introduction of appropriate
dimensionless variables – x for Prad, y for Pgas and z for r−1 – the equations
to be solved become

(5.59)

The solutions y(x) and z(x) may be inverted to obtain Pgas(r) and Prad(r),
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and with them the temperature and density variation throughout the star.
Even the solution of this pair of equations is far from being straightforward
(a detailed analysis may be found in Chandrasekhar’s book, An
introduction to the study of stellar structure, 1939). It is interesting to note
that the point-source model yields a mass-luminosity relation whose slope,
on logarithmic scales, is much less steep for large masses than for small
ones, which is in qualitative agreement with observations (Figure 1.6). A
tendency toward a steeper slope for low mass stars is exhibited by the
relation resulting from the standard model (Equation (5.47)) as well. (The
domain of very low-mass stars of Figure 1.6, where the slope changes
again, is not relevant here, for these stars cannot be treated by the
equations considered, as we shall see later.)

Note: We stress the mass-luminosity relation in particular, because of the primary role it played
at the early stage of the stellar-evolution theory, when a great deal of confusion regarding the
nuclear reactions responsible for energy generation still prevailed:

Our discussion has been based on the relation generally called the mass-luminosity-relation. [. .
. ] The relation however contains several unknowns, and without certain assumptions with
regard to some of them no definite results can be reached. So far it is the only relation between
the unknowns in question, which it has been possible to establish. When our knowledge of the
energy-generation in the stars advances so that one more relation can be established, we shall
probably be able to give definite answers to the questions raised by the discussion.

Bengt Strömgren: On the Interpretation of the Hertzsprung-Russell-Diagram in Zeitschrift
für Astrophysik, 1933

and, a few years later,

The researches of the last two decades into the constitution of the stars have resulted in
considerable advance in the understanding of the physical processes in stellar interiors. The
chief success of the investigations is the establishing of a mass-luminosity relation. This
relation has been obtained without reference to the actual nuclear reactions that are the source
of stellar energy, merely from consideration of the mechanical and thermodynamical
equilibrium of the star. It follows therefore that exact knowledge of the rate of generation of
subatomic energy cannot overthrow the mass-luminosity relation, but may serve only to place
some restriction on the range of magnitude [luminosity] corresponding to a given mass.

Fred Hoyle and Raymond A. Lyttleton: The Evolution of the Stars in Proceedings of the
Cambridge Philosophical Society, 1939

When nuclear energy generation in stars finally became understood, Cowling wrote in
retrospection:

With the advent of this new physical information, complete data for constructing stellar models
were for the first time available; it was like supplying the fourth leg of a chair which so far had
had only one back leg.

Thomas G. Cowling: The Development of the Theory of Stellar Structure in Quarterly
Journal of the Royal Astronomical Society, 1966
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Models such as those briefly mentioned here were developed more than
70 years ago, long before computers became available. Since the advent of
computers they became rather obsolete, for the relatively simple
computation involved ceased to be a real advantage. They have been
described here mainly for one purpose: to demonstrate how complicated is
the solution of the apparently simple set of structure equations, even under
the most extreme simplifying assumptions that are still (barely) consistent
with physical reality.
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6

The stability of stars

In the previous chapter we have dealt with models of the stellar structure
under conditions of thermal and hydrostatic equilibrium. But in order to
accomplish our first task toward understanding the process of stellar
evolution – the investigation of equilibrium configurations – we must test
the equilibrium configurations for stability. The difference between stable
and unstable equilibrium is illustrated in Figure 6.1 by two balls: one on
top of a dome and the other at the bottom of a bowl. Obviously, the former
is in an unstable equilibrium state, while the latter is in a stable one. The
way to prove (or test) this statement is also obvious and it is generally
applicable; it involves a small perturbation of the equilibrium state.
Imagine the ball to be slightly perturbed from its position, resulting in a
slight imbalance of the forces acting on it. In the first case, this would
cause the ball to slide down, running away from its original position. In the
second case, on the other hand, the perturbation will lead to small
oscillations around the equilibrium position, which friction will eventually
dampen, the ball thus returning to its original point. The small imbalance
led to the restoration of equilibrium by opposing the tendency of the
perturbation. Thus a stable equilibrium may be maintained indefinitely,
while an unstable one must end in a runaway, for random small
perturbations are always to be expected in realistic physical systems.

Figure 6.1  Illustration of stable (left) and unstable (right) equilibrium states.

As stars preserve their properties for very long periods of time, we may
guess that their state of equilibrium is stable. But is it always? What is the
mechanism that renders it stable? Is this mechanism always operating? If
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not, what are the conditions required for it to operate? We shall presently
address these questions for each of the two types of equilibrium of stellar
configurations: thermal and hydrostatic.

6.1  Secular thermal stability

The total energy of a star in hydrostatic equilibrium is given by the sum of
the internal energy U and the gravitational potential energy Ω, as we have
seen in Chapter 2. These are related by the virial theorem, Equation (2.23):

In the case of an ideal gas with negligible radiation pressure, we have by
Equation (3.44)

(6.1)

and consequently,

(6.2)

For an ideal gas and a nonnegligible radiation pressure, we have from
Equations (3.28), (3.40), (3.44) and (3.47)

Applying the virial theorem, we obtain

(6.3)

where Ugas is the total internal energy of the gas and Urad is the total
radiation energy, whence

(6.4)
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The effect of radiation is to reduce the gravitational attraction; Ω + Urad
may thus be regarded as an effective gravitational potential energy. In both
cases the star heats up upon contraction (| Ω | increases and with it Ugas
and hence the average temperature) and cools upon expansion.

We have also seen that the rate of change of the energy is given by the
difference between the rate of nuclear energy production and the rate of
emission of radiation:

(6.5)

A state of thermal equilibrium is obtained when these terms are in balance,
Lnuc = L, and hence the energy is constant  Suppose now that a
small perturbation causes a slight imbalance, so that Lnuc exceeds L. By
Equation (6.5), the total energy will increase  and since E is
negative, it means that its absolute value will become smaller. Therefore,
by Equation (6.2) or (6.4), the average temperature will decrease. At the
same time the star will expand, the average density thus decreasing. As a
result, the (average) rate of nuclear reactions, which is proportional to
positive powers of ρ and T, will slow down and Lnuc will drop. The
perturbation will be reversed and thermal equilibrium will eventually be
restored. This thermostat, provided by the virial theorem, is the stabilizing
mechanism by which stars are capable of maintaining thermal equilibrium
for such long times. Stars are said to be in a state of secular stability.

6.2  Cases of thermal instability

The crucial link in the chain of arguments leading to the conclusion of
secular stability was the dependence of the internal energy of the star on
temperature, more precisely, the negative heat capacity of stars. Only if a
change in internal energy involves a change in temperature that, in turn,
affects the energy supply, is the thermal stability secured.

Thermal instability of degenerate gases
We have seen that when the pressure is due mainly to the degenerate
electron gas, it is insensitive to temperature. The same applies to the
internal energy of the gas (as shown in Section 3.5), and hence although
Equation (6.2) still holds (for a nonrelativistic gas), a decrease in internal
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energy – resulting from a perturbation Lnuc > L – will lead to expansion,
but it will not entail a drop in temperature. Since nuclear energy
production is far more sensitive to temperature than to density, the nuclear
energy output will not diminish. Instead of a restoration of thermal
equilibrium, a runaway from equilibrium will ensue: the temperature will
continue to rise due to the enhanced nuclear energy release, this will cause
the nuclear energy generation to escalate, and so forth. Such an instability
is called a thermonuclear runaway. It is encountered whenever nuclear
reactions ignite in a degenerate gas, and it may result in an explosion. A
catastrophic outcome may, however, be avoided: the gas may, eventually,
become sufficiently hot and diluted to behave as an ideal gas, for which
the stabilizing mechanism operates. We say in this case that the
degeneracy has been lifted. An entire class of stellar outbursts, known as
novae, that we shall encounter in Chapter 11, constitute well known
examples of such thermonuclear runaways, which develop into explosions
on the surfaces of white dwarfs and are subsequently quenched.

The secular instability caused by temperature-sensitive nuclear reactions
in degenerate matter was first studied by Tsung-Dao Lee (in 1950) and
Leon Mestel (in 1952). In 1958 Evry Schatzman proposed that unstable
burning on the surfaces of white dwarfs may lead to recurrent ejection of
gaseous shells. This avant-garde suggestion, then barely supported by
observations, became in time the very model of nova outbursts (see
Chapter 11).

To better understand the application of the stability criterion, consider a
star which burns nuclear fuel at its centre. In hydrostatic equilibrium, the
central pressure and density are related by

(6.6)

(see Equation (5.28)). The pressure, density and temperature are linked by
the equation of state, which may be written in general form as

(6.7)

where a and b are positive coefficients. Combining Equations (6.6) and
(6.7), we obtain
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(6.8)

So long as a < 4/3, sgn[dρc /ρc] = sgn[dTc /Tc], and hence contraction
(caused by energy loss) is accompanied by heating, while expansion
(caused by energy gain) is accompanied by cooling, as required for
stability. This is the case for ideal gases, where a = b = 1. For degenerate
material, on the other hand, a  4/3 and 0 < b  1. Thus dρc/ρc and dTc/Tc
have opposite signs. This means that expansion, which would result from
an increase in internal energy, would be accompanied by a (small) rise in
temperature, that in turn would lead to a further enhancement of Lnuc. Such
a situation is obviously unstable. But since the temperature rises as the gas
expands, the gas may gradually become ideal (in terms of the coefficients
a and b, the former decreasing and the latter increasing), in which case
stability will be restored. We note, in passing, that, generalizing Equation
(6.8), a degenerate star that loses energy is expected to contract and cool,
unlike an ideal gas one.

The thin shell instability
Consider a thin shell of mass Δm, temperature T, and density ρ within a
star of radius R, between a fixed inner boundary r0 and an outer boundary
r, so that its thickness is ℓ = r − r0  R. Assume nuclear reactions to take
place in this shell. If the shell is in thermal equilibrium, the rate of nuclear
energy generation is equal to the net rate of heat flowing out of the shell
(see Equation (5.4)). If the rate of energy generation exceeds the rate of
heat flow, the shell will expand, thus pushing outward the layers above it.
Lifting of these layers will result in a diminished pressure. In hydrostatic
equilibrium, the pressure within the shell, determined by the weight of the
layers above it, varies as r−4 (see Equation (5.1)); hence

(6.9)

The shell’s mass is given by  and therefore the density
varies with the shell’s thickness as
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(6.10)

Substituting dr/r from Equation (6.9), we obtain a relation between the
changes in density and pressure of the form

(6.11)

To obtain the resulting change in temperature, we use the equation of state
in the general form (6.7), leading to

(6.12)

For thermal stability we require the expansion of the shell to result in a
drop in temperature, or, since b > 0,

(6.13)

Obviously, for a sufficiently thin shell (ℓ /r → 0) the stability condition
would eventually be violated. If the shell is too thin, its temperature
increases upon expansion (even if the gas within it is an ideal gas), and this
may lead to a runaway. Thus with respect to nuclear energy generation, a
thin shell behaves much in the same way as a degenerate gas. The thermal
instability of thin shells was first pointed out by Martin Schwarzschild and
Richard Härm in 1965.

Before we leave the subject of thermal stability (or lack thereof) a word
of caution would be in order. In all our foregoing discussions we have
neglected the possibility that a change in temperature might affect not only
the energy generation rate, but also the heat flux. Thus an increase in
temperature, resulting from Lnuc < L, may not only lead to a higher Lnuc,
but also to a higher L, and the outcome Lnuc > L – interpreted as thermal
stability – might not be guaranteed. Similarly, if a surplus of heat in a thin
shell causes the temperature to rise, in spite of the shell’s expansion, this
might enhance the rate of heat flow out of the shell so as to prevent a
runaway, even if the rate of nuclear energy generation increases. As it
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happens, the heat flux is far less sensitive to temperature than is the rate of
nuclear energy generation. Hence, generally, changes in L or dF /dm may
safely be neglected compared with changes in Lnuc or q that are due to a
temperature perturbation, and our foregoing arguments remain valid.

6.3  Dynamical stability

Dynamical stability is related to motions of mass parcels in the star, that is,
to macroscopic motions; on the microscopic scale, the gas particles are
always in random, local motion. In hydrostatic equilibrium, no
macroscopic motions occur; more precisely, they occur imperceptibly
slowly. In order to test the stability of this equilibrium, we have to
consider the response to small perturbations of the balance between the
gravitational attraction and the outward force exerted by the pressure
gradient. Since we deal with a spherically symmetric configuration, we
shall consider radial perturbations: compression or expansion. The basic
question is whether a temporary contraction will result in expansion
toward the original state or in further contraction, escalating in a runaway.

A rigorous treatment of dynamical perturbations within a star is far from
simple. But in order to illustrate the basic principles involved, a highly
simplified example should suffice. Consider a gaseous sphere of mass M,
in hydrostatic equilibrium. The pressure at any point r(m) is equal to the
weight per unit area of the layers between m and M, as obtained by
integrating the equation of hydrostatic equilibrium (5.1) and taking P
(M) = 0:

(6.14)

The density at r(m) is given by Equation (5.2):

(6.15)

Consider now a small, uniform, radial compression, so that the new radii
are everywhere obtained from the original ones by a small perturbation:

(6.16)
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If ε  1, the binomial approximation

(6.17)

can be used. The new densities will be

(6.18)

Assuming furthermore the contraction to be adiabatic (and neglecting
radiation pressure), we find that the new gas pressure will relate to the
initial one as  where γa is the adiabatic exponent (introduced in
Section 3.6):

(6.19)

Similarly, by Equation (6.14), the new hydrostatic pressure will relate to
the initial one as

(6.20)

It is to be expected that after this perturbation the gaseous sphere will no
longer be in hydrostatic equilibrium, that is,  The condition
required for restoring equilibrium is in our case

(6.21)

so as to cause the sphere to expand back to its original state. Substituting
Equations (6.19) and (6.20) into Equation (6.21), we thus require

(6.22)

Hence the condition for stable hydrostatic equilibrium, or in other words,
the condition for dynamical stability is
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(6.23)

The same result obtains in the case of expansion, when ε < 0 and condition
(6.21) is reversed.

It can be shown rigorously that a star in which γa > 4/3 everywhere is
dynamically stable (and neutrally stable, if γa = 4/3 everywhere). The case
in which γa < 4/3 somewhere requires further examination. Global
dynamical instability is obtained if the integral  over
the entire star is negative. Thus, if γa < 4/3 in a sufficiently large core,
where P /ρ is high, the star will become unstable. If, however, γa < 4/3 in
the outer layers, where P /ρ is small, the star as a whole need not become
unstable.

Exercise 6.1:  The equation of state for solid, self-gravitating bodies, such as planets, must
allow a finite density at the surface, where the pressure vanishes. Neglecting effects of
temperature, which are generally small, such equations of state are usually cast in the form

where K is a constant, ρ0 is the surface density and γ1 > γ2. Pass to normalized, dimensionless
variables y = P /Pc and x = ρ/ρc, where Pc and ρc denote central pressure and density,
respectively, and show that

(a)  Dynamical stability requires that either γ1, γ2 > 4/3, or γ1, γ2 < 4/3;
(b)  In the latter case, the allowed ratio of central to surface density is limited.

6.4  Cases of dynamical instability

The question we have to ask is, ‘What are the stellar configurations that
may lead to violation of the stability criterion, that is, to γa ≤ 4/3?’ We
have already encountered such cases in Section 3.5.

Relativistic-degenerate electron gas
For a relativistic-degenerate electron gas, γa tends to 4/3. The instability
expected in the limit γa = 4/3 results in this case in the Chandrasekhar
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limiting mass (derived in Section 5.4): the degeneracy pressure can sustain
the gravitational attraction only if the stellar mass is smaller than this limit.
For a higher mass, contraction will end in collapse.

Dominant radiation pressure
The second case for which γa tends to 4/3 (as shown in Section 3.6) is that
of a dominant radiation pressure, or in terms of the parameter β –
introduced in Section 3.1 – β → 0. In the limit β = 1 (ideal gas without
radiation), γa = 5/3, and hence an ideal gas would be dynamically stable
under its own gravitational field. As β decreases, γa decreases as well,
tending to 4/3 in the limit β = 0 (pure photon gas). Another way of
showing that a radiation pressure dominated gas tends to be dynamically
unstable is by using the virial theorem. For pure radiation P /ρ = urad / 3
and hence by Equation (2.23)

(6.24)

meaning that the total energy of a star E = Ω + U vanishes; that is, the star
becomes unbound. We see, therefore, that the consequences of dynamical
instability may differ.

Exercise 6.2:  Show that for an adiabatic process, stable hydrostatic equilibrium corresponds
to a minimum state of the total energy (E = U + Ω).

Ionization-type processes
Dynamical instability, or γa ≤ 4/3, is also prone to occur in any system of
particles in which the number of particles is not conserved, but changes
with changing physical conditions. Ionization (Section 3.6) provides a
typical example: a single atom may produce two particles, an ion and an
electron, by absorbing the right amount of energy from a collision with
another particle or with a photon. At the same time the reverse reaction –
recombination – occurs, which tends to diminish the number of particles.
When the system is compressed, recombination is enhanced, whereas if the
volume is increased, ionization is favoured. Therefore, the number of
particles changes in inverse proportion to the density (Le Chatelier’s
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principle). The following simple argument is meant to provide an intuitive
explanation to the effect of this property on the value of γa. Consider two
systems of particles of volume V and pressure P : in one the number of
particles N is conserved, in the other it may change due to ionization-type
reactions. We assume an ideal gas and recall that the pressure is
proportional to the number of particles (regardless of their nature) and
inversely proportional to the volume. Suppose now that the volume is
slightly compressed to V′ < V . In the first system the pressure would
obviously increase, since N/V′ > N/V . In the second system, however, N
would change as well, say, to N′ < N. Hence the new ratio N′ /V′ would be
smaller than in the first system, N′ /V′ < N/V . Consequently, the pressure
would increase to a lesser extent, meaning that the dependence of the
pressure on volume (and hence, density) is weaker in the second system.
This should translate into a smaller value of γa, possibly smaller than 4/3.
For a pure, singly ionized gas, for example, according to Equation (3.60),
γa < 4/3 between 5% and 95% ionization (for χ/kT ≈ 10). Hence in a cool
atmosphere, only an almost entirely neutral or a completely ionized gas
would be dynamically stable.

Exercise 6.3:  Show that there is a critical temperature above which partially ionized hydrogen
will always be dynamically stable, and find this temperature.

Since in stellar interiors temperatures are sufficiently high to ensure
total ionization – at least for the major components, hydrogen and helium
– ionization in itself is of no great consequence regarding the global
stability of stars, for γa < 4/3 only in restricted zones, where P /ρ is small.
We have encountered, however, two other ionization-type processes,
which occur at high temperatures: iron photodisintegration (Section 4.10)
and pair production (Section 4.9). We shall see in the next chapter that
both these processes drastically affect the course of stellar evolution.

6.5  Convection

We have seen in Section 5.5 that the radiative energy flux through a star in
hydrostatic equilibrium is limited by the requirement

135



which may be violated in cases of intense nuclear burning, when F = ∫ qdm
becomes exceedingly high, or when the opacity is very high. By Equation
(5.3), a high flux or a high opacity leads to a steep temperature gradient.
However, the temperature gradient may only increase up to a limit beyond
which convection occurs, involving cyclic macroscopic mass motion (but
not a net mass flux) that carries the bulk of the energy flux. When the total
flux satisfies Equation (5.4), (convective) thermal equilibrium is achieved.
Thus convection may be regarded as a type of dynamical instability,
although it does not have disruptive consequences. In fact, in spite of being
a dynamic process, convection affects the structure of a star only as an
effective heat carrier and as a mixing mechanism. The condition for the
onset of convection (or the limiting temperature gradient) is determined by
a simple criterion, as was shown by Karl Schwarzschild in 1906.

The Schwarzschild criterion for stability against convection derives
from the following argument: Consider a mass element Δm at some point
within a star, as shown in Figure 6.2. Denoting this point by 1, let the local
values of density and pressure at 1 be ρ1 and P1, respectively. Suppose the
element moves a small distance outward in the radial direction to point 2,
where the density is ρ2 and the pressure is P2. Since the pressure in a star
decreases outward, P2 < P1; that is, the surrounding pressure at point 2
will be lower than the pressure within the mass element. The element will
therefore expand until the internal and external pressures are in balance. In
view of the great difference between dynamical and thermal timescales, it
is reasonable to assume that no heat exchange with the environment occurs
while the mass element expands. Hence the element undergoes an
adiabatic change leading to a final density ρ∗, which is not necessarily
equal to the density of its surroundings. If ρ∗ > ρ2, the mass element will
descend back toward its initial position. We regard such a situation as
stable, for any mass motion that may accidentally arise will be damped. If,
on the other hand, ρ∗ < ρ2, the element will continue its upward motion (by
the Archimedes buoyancy law). In this case, the system is unstable against
convection; that is, convective motion is prone to develop. The extent of
the convectively unstable region may be found by applying the same
criterion for increasingly more distant points. It is possible that a star be
fully convective, all the way from the centre to the photosphere.
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Figure 6.2  Illustration of Schwarzschild’s criterion for stability against convection by a mass
element dm moving radially from point 1 to point 2 within a star.

To obtain a mathematical formulation of the convective stability
condition, we resort to the (ρ, P) diagram of Figure 6.3, where the starting
point 1 – (ρ1, P1) – is marked. As shown in Section 3.6, the dependence of
pressure on density in an adiabatic process is given by  The
curve labelled A represents the adiabatic (P, ρ) relation passing through
point 1, obtained from the physical characteristics of the gas at that point.
The curves labelled S and S′ represent hypothetical stellar configurations:
possible variations of the pressure with density in the star in the
neighbourhood of point 1. The slope of S is steeper and that of S′ is
shallower than the slope of A. The horizontal line P = P2 intersects each of
the curves A, S and S′ : the intersection with A corresponds to the density
ρ∗ within the mass element, while the intersections with S and S′
correspond to the density of the surroundings in each case. If the stellar
configuration is described by S, then ρ2 > ρ∗, meaning instability, whereas
if S′ describes the stellar configuration,  indicating stability
against convection. In conclusion, the condition for stability is

(6.25)
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and multiplying both sides by ρ/P, we have

(6.26)

It is noteworthy that the general validity of this simple criterion was not
proved by rigorous mathematical methods until six decades after it came
into use, in 1967, by Shmuel Kaniel and Attay Kovetz.

Figure 6.3  Schematic density-pressure diagram, leading to the mathematical formulation of
Schwarzschild’s criterion for stability against convection.

For an ideal gas and negligible radiation pressure, the pressure is
proportional both to temperature and to density, whence

(6.27)

for a given composition. Combining Equations (6.27) and (6.26), we
obtain the condition for convective stability in the form

(6.28)
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which may also be written as

(6.29)

recalling that the temperature and the pressure gradients are negative. We
have thus obtained the upper limit for the magnitude of the temperature
gradient allowed before convection sets in.

6.6  Cases of convective instability

The criterion for convective stability that we have just derived is very
general; it may be equally applied to stellar interiors and, for example, to
the Earth’s atmosphere. But can we be more specific about the conditions
that may lead to convective instability in stars? In particular, how is
restriction (5.34) connected to the criterion of convective stability?

We have seen in Section 3.6 that during ionization the adiabatic
exponent is lowered. Therefore, in regions of the star where the gas is
partially ionized, the condition for convective stability is more difficult to
satisfy. At the same time these regions may become dynamically unstable,
if γa < 4/3.

Condition (6.28) may be generalized to include the effect of radiation
pressure, in which case γa = γa(β), but the adiabatic exponents that appear
in conditions (6.26) and (6.28) become different functions of β. Both
adiabatic exponents tend to 5/3 for β → 1 and to 4/3 for β → 0.

Exercise 6.4:  Following the procedure of Section 3.6, derive the adiabatic exponents in
conditions (6.26) and (6.28) for an ideal gas and radiation, as functions of β. Calculate their
values for β = 0,  and 1.

If we now use the radiative diffusion equation (5.3) for the temperature
gradient and the hydrostatic equation (5.1) for the pressure gradient, we
obtain the condition for convective stability (6.29) in the form

(6.30)
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This is similar to condition (5.34), which imposed an upper limit on the
product κF, above which radiative equilibrium could no longer hold. We
note that condition (6.30) is stronger, since the term in square brackets on
the right-hand side is smaller than unity. Therefore convection arises
before the upper limit for κF (condition (5.34)) is reached. The two
conditions converge as β tends to zero.

In the case of ionization, the high opacity and low adiabatic exponent
combine to induce convection. This effect is particularly important in the
outer regions of stars, where temperatures are sufficiently low for helium
and hydrogen to be only partially ionized. In stellar interiors, especially in
zones of high temperature where the opacity is constant, the dominant
factor that may induce convection is a high energy flux. Such a flux is
expected to result from intense nuclear burning. Assuming that the nuclear
energy generation rate may be expressed as a power law of the form (5.7),
q = q0 ρmT n with n  m, it should be possible to translate the condition on
the intensity of nuclear burning into a limiting value for n. This is by no
means a simple task; it cannot be accomplished analytically but requires
solution of the stellar structure equations. The question of a limiting value
for n has already been addressed in the 1930s; for example, using
relatively simple models (more elaborate variants of the models described
in Chapter 5), Cowling obtained the following conditions: for a constant
opacity, no convectively stable configuration is possible if n exceeds a
number lying between 3 and 4, while for a Kramers opacity law (Section
3.7), no such solution is possible for n in excess of about 8. In the early
1950s the problem was pursued and elaborated by Roger Tayler, with
similar results. Generally, a high temperature sensitivity of the energy
generation rate is bound to trigger convection.

Condition (6.30) indicates that convection is more likely to occur when
besides κF being high, β is not too far from unity, meaning that gas
pressure is dominant. We have seen in Section 5.6 that, based on the
simple standard model, β is strongly related to the stellar mass, increasing
with decreasing M. Hence, we should not be surprised to find that
convection is dominant in low-mass stars burning nuclear fuel. When low-
mass stars are sufficiently cold and dense for degeneracy pressure to
dominate, stability against convection is regained. This is for two reasons:
first, degenerate matter is highly conductive; that is, its effective opacity is
very low, and second, no stable nuclear burning is possible under
degenerate conditions (Section 6.2 above), implying that such stars must
be inert. In conclusion, we should not expect convection to develop in the
interiors of white dwarfs.
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Convective energy transport – the mixing-length method
When convective energy transport takes place, Equation (5.3) is no longer
valid in the sense that the flux appearing on the right-hand side is the
radiation flux, which now differs from the total flux F (of Equation (5.4)),
amounting to only a small, unknown fraction of F . Hence Equation (5.3)
must be supplemented or replaced by another one that takes account of
convection. Since convective motions are clearly not entirely radial, there
are only approximate ways of estimating the convective flux for spherical,
one-dimensional stellar models. The most commonly adopted method was
first proposed by Ludwig Biermann in the 1930s, based on the concept of
mixing-length, which had been introduced by Ludwig Prandtl a few years
earlier, as the distance traversed by a mass element while conserving its
properties, before it blends with its surroundings. The arguments for
estimating the convective flux constitute what is known as the mixing-
length theory of convection, an approximate method for calculating
convective transfer by an appropriate parametrization. Since the mixing
length, which we shall denote by ℓc, cannot be determined from first
principles, it is taken as a free, adjustable parameter.

In the case of convective transfer, the energy is transmitted by turbulent
mass motions. Consider a rising mass element at a radial distance r (mass
m), where the temperature is T and the density ρ. The basic assumption is
that the mass element travels a distance ℓc adiabatically, at some velocity
vc, until it reaches pressure equilibrium with its surroundings and releases
its surplus heat. We now estimate the differences (δ) between properties of
the element and those of its surroundings at the equilibrium stage: first,
δP = 0. Next, the temperature surplus is given by the difference between
the change in temperature that has occurred in the surroundings over the
small distance ℓc and the corresponding adiabatic change that has occurred
within the mass element itself,

(6.31)

where

(6.32)
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Using a similar form for the temperature gradient within the star, we have

(6.33)

where the term P /(dP /dr) on the right-hand side, with a minus sign, is the
pressure scale-height, which constitutes the characteristic local lengh-
scale. Measuring the mixing length in units of this length scale, a
dimensionless parameter α is defined, known as the mixing-length
parameter,

(6.34)

which is the sole parameter of the model, typically a small number.
Finally, from Equation (6.27), the density deficit is related to the
temperature surplus by |δρ/ρ| = |δT /T |.

The mass element releases heat at constant pressure, hence the amount
of heat released per unit mass is cPδT, where cP is the heat capacity, a
function of temperature and density, and ρcPδT is the heat released per unit
volume. Multiplying by the velocity, we obtain the average rate of heating
per unit area, or the convective heat flux

(6.35)

The convective velocity may be estimated by  where g′ is the
acceleration, which, by the Archimedes buoyancy principle, is the local
gravitational acceleration g, reduced by the factor |δρ/ρ|. Hence

(6.36)

where we have used Equation (6.34) to eliminate gℓc. We note that 
is the thermal speed (which is of the order of the sound speed). Sometimes
half this velocity is assumed, but this is unimportant, since the uncertain
factor may be lumped into the free parameter α.
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Combining Equations (6.35), (6.36), (6.33) and (6.34), we obtain

(6.37)

The total energy transported per unit time F is the sum of the radiative
part, given by Equation (3.68), and the convective part 4πR2Hc. Thus in a
convective zone, Equation (5.3) that relates the temperature gradient to the
energy flux is replaced by a more complicated one.

Adiabaticity
We shall now show that within convective zones in stellar interiors the
departure from adiabaticity is very small. To obtain an order of magnitude
estimate for the superadiabaticity δT /T, we replace Hc by L/R2, ρ by M/R3,
cPT by U/M, and P /ρ by GM/R, and take α = 1 in Equation (6.37), which
yields, with Equation (6.33),

(6.38)

We recognize the first term of the product on the right-hand side as the
reciprocal of the thermal (Kelvin-Helmholtz) timescale (Equation (2.60)),
of the order of 1015 s, and the second, as the dynamical timescale
(Equation (2.56)), of the order of 103 s. In conclusion

(6.39)

which clearly shows that in a convective zone the temperature gradient
must be very nearly adiabatic (γ ≈ γa). Thus, instead of Equation (5.3), the
temperature gradient may be replaced by the adiabatic one in deep
convective zones, to a very good approximation. This approximation is not
valid close to the stellar surface, where P /ρ  GM/R. We note, however,
that assuming an adiabatic temperature gradient leaves F undetermined
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throughout the convective zone. It is precisely the tiny extent of
superadiabaticity that determines the rate of convective energy transport.
This is reminiscent of the fact that it is the slight departure from
homogeneity in the radiation field that drives the radiative energy transport
in stellar interiors (see Appendix A).

Exercise 6.5:  Assuming that a star of uniform κ (opacity) and β has a convective core, and no
nuclear energy generation outside the core, show that the mass fraction of this core is given by 

The assumption of adiabaticity leads to a polytropic equation of state.
Now, since dynamical stability requires γa > 4/3, and since γa is at most
5/3, a star in hydrostatic equilibrium must satisfy

(6.40)

which means that if the configuration of a star is to be approximately
described by a polytrope, the index n may only vary between 1.5 and 3.

6.7  Conclusion

To summarize the question of stability of equilibrium in a star (whether
radiative or convective) raised at the beginning of this chapter, let us say
that stability depends on the ability of the gas – particles and photons – at
any given point to sustain the weight of the overlying layers by means of
the pressure it exerts, so as to maintain exact balance despite possible
perturbations. To this end, the pressure must depend strongly enough both
on temperature and on density. Sensitivity to temperature is required in
order to prevent thermonuclear runaways, and to density – so as to avoid
collapse. There are additional cases of instability in stars, essentially
resulting from violation of this principle, but since they occur in the course
of evolution when special interior configurations develop, we shall deal
with them as they arise.
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7

The evolution of stars – a schematic picture

Having answered the two basic questions posed at the end of Chapter 2,
our present task is to combine the knowledge acquired so far into a general
picture of the evolution of stars. We recall that the timescale of stellar
evolution is set by the (slow) rate of consumption of the nuclear fuel. Now,
the rate of nuclear burning increases with density and rises steeply with
temperature, and the structure equations of a star show that both the
temperature and the density decrease from the centre outward. We may
therefore conclude that the evolution of a star will be led by the central
region (the stellar core), with the outer parts lagging behind it. Changes in
composition first occur in the core, and as the core is gradually depleted of
each nuclear fuel, the evolution of the star progresses.

Thus insight may be gained into the evolutionary course of a star by
considering the changes that occur at its centre. To obtain a simplified
picture of stellar evolution, we shall characterize a star by its central
conditions and follow the change of these conditions with time. We have
seen that besides the composition, the temperature and density are the only
properties required in order to determine any other physical quantity. If we
denote the central temperature by Tc and the central density by ρc, the state
of a star is defined at any given time t by a pair of values: Tc(t) and ρc(t).
Consider now a diagram whose axes are temperature and density. The pair
[Tc(t), ρc(t)] corresponds to a point in such a diagram, and the evolution of
a star is therefore described by a series of points, [Tc(t1), ρc(t1)], [Tc(t2),
ρc(t2)], [Tc(t3), ρc(t3)], [Tc(t4), ρc(t4)], . . . , for times t1 < t2 < t3 < t4, . . . ,
which forms a parametric line [Tc(t), ρc(t)]. Since the only property that
distinguishes the evolutionary track of a star from that of any other star of
the same composition is its mass, we may expect to obtain different lines
in the (T, ρ) plane for different masses.

Note: A study of the late stages of stellar evolution, based on homogeneous and isentropic
(uniform entropy or adiabatic structure) models, was performed by Gideon Rakavy and Giora
Shaviv in 1968. The progress in time was simulated by decreasing the entropy s, and thus
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parametric lines [Tc(s), ρc(s)] were obtained for different values of the stellar mass. A beautiful
general picture of the end states of stars emerged, for which a qualitative explanation (and, in a
sense, validation) was offered a year later by Kovetz. The following discussion, which will
eventually lead to a more comprehensive picture arising from very simple arguments, was inspired
by these works.

All the processes that are bound to occur in a star have characteristic
temperature and density ranges, and hence different combinations of
temperature and density will determine the prevailing state of the stellar
material and the dominant physical processes that should be expected to
occur. Thus the (T, ρ) plane may be divided into zones, representing
different physical states or processes. Our first step will be to get
acquainted with the terrain through which the evolution paths of the stellar
centre are winding; the second step will be to identify the track
corresponding to each stellar mass; finally, by following each track
through this terrain, we shall be able to trace the chain of processes that
make up the evolution of a star.

7.1  Characterization of the (log T, log ρ) plane

The (T, ρ) plane will be divided into zones dominated by different
equations of state and different nuclear processes. Of particular interest
will be those regions where the conditions are bound to lead to dynamical
instability. As the ranges of density and temperature typical of stellar
interiors span many orders of magnitude, logarithmic scales will be used
for both.

Zones of the equation of state
The following arguments are based on the material of Chapter 3 and lead
to Figure 7.1. The most common state of the ionized stellar gas is that of
an ideal gas for both components: ions and electrons. Hence the common
equation of state is of the form

(7.1)

where K0 is a constant (see Equation (3.28)). At high densities and
relatively low temperatures, the electrons become degenerate, and since
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their contribution to the pressure is dominant, the equation of state may
then be approximated by

(7.2)

(see Equation (3.35)), which replaces Equation (7.1). The transition from
one state to the other is, of course, gradual with the change in density and
temperature, but an approximate boundary may be traced in the (log T, log
ρ) plane on one side of which the effect of degeneracy is clearly important,
while on the other side an ideal-gas law prevails. This boundary may be
defined by the requirement that the pressure obtained from Equation (7.1)
be equal to that obtained from Equation (7.2),

(7.3)

which is a straight line with a slope of 1.5, as shown in Figure 7.1. The
electron-degeneracy zone, labelled II in Figure 7.1, where

lies above (to the left of) this line. The ideal-gas zone, labelled I, lies
below it.
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Figure 7.1  Mapping of the temperature-density diagram according to the equation of state.

Note that the transition refers to the total pressure of the stellar gas
meant to represent two different states of evolution, not just to the electron
pressure (in the degenerate case, the contribution of the ion pressure is
negligible), since we are interested in the behaviour of a star, rather than
that of an hypothetical electron gas. Thus the constants also involve
different compositions.

For still higher densities, when relativistic effects play an important role,
the equation of state changes to the form

(7.4)

(see Equation (3.38)). The boundary between the ideal-gas zone and the
relativistic-degeneracy zone may be obtained, as before, from the
requirement
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which defines a straight line

(7.5)

with a slope of 3. Thus the boundary between the ideal-gas zone and the
electron-degeneracy zone changes slope, becoming steeper as the density
increases.

Within the electron-degeneracy region, the transition from
nonrelativistic to relativistic degeneracy occurs when the rise in pressure
with increasing density becomes constrained by the limiting velocity c.
Hence relativistic degeneracy should be considered when

or

(7.6)

that is, above a high density level (a horizontal line in the (log T, log ρ)
plane). This is roughly indicated in Figure 7.1, where the relativistic-
degeneracy zone is labelled III.

In zone I radiation pressure has been neglected. Its contribution to the
total pressure becomes important, however, at high temperatures and low
densities (the lower right corner of the diagram) and should be added to
that of the gas. Eventually, radiation pressure would become dominant,
with the equation of state changing to

(7.7)

(see Equation (3.40)). Taking the gas pressure to be negligible for, say,
Prad = 10Pgas, we obtain an approximate boundary for the zone of
dominance of radiation pressure (labelled IV in Figure 7.1) in the form

(7.8)

again a straight line of slope 3 (with a constant different from that in
Equation (7.5), of course).
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Zones of nuclear burning
The following arguments are based on the material of Chapter 4. A nuclear
burning process of any kind becomes important in a star whenever the rate
of energy release by this process constitutes a significant fraction of the
rate at which energy is radiated away, that is, of the stellar luminosity.
Although stellar luminosities vary within a wide range, the variation in the
conditions prevailing in burning zones is quite restricted, due to the high
sensitivity of nuclear reaction rates to temperature. Hence a narrow
threshold may be defined for each nuclear process that takes place in stars.
On one side of the threshold the rate of nuclear burning may be assumed
negligible, and on the other side, considerable. The threshold for each
process constitutes a line in the (log T, log ρ) plane, defined by the
requirement that the rate of nuclear energy generation q exceed a certain
prescribed limit qmin, say, 0.1 J kg−1 s−1 (103 erg g−1 s−1). Since for each
process, q may be approximated by a power law of the form

(7.9)

the threshold given by q = qmin is

(7.10)

The exoergic transformation of hydrogen into the iron group elements
comprises five major stages: hydrogen burning into helium either by the p
− p chain or by the CNO cycle, helium burning into carbon by the 3α
reaction, carbon burning, oxygen burning and silicon burning. The five
corresponding thresholds are plotted in Figure 7.2.
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Figure 7.2  Mapping of the temperature-density diagram according to nuclear processes.

In most of the cases m = 1 and n  1, and hence the (negative) slope in
Equation (7.10) is so steep that the thresholds are almost vertical lines.
Strictly, the threshold defined by Equation (7.10) should be a straight line;
in reality, the values of the powers in Equation (7.9) change slightly for
different temperature ranges; this is the reason why the lines in Figure 7.2
are not perfectly straight. For hydrogen burning, the slope is milder at low
temperatures, corresponding to the p − p chain (n ≈ 4), and becomes
steeper at higher temperatures, where the CNO cycle (n ≈ 16) becomes
dominant.

Nucleosynthesis by energy releasing fusion of lighter elements into
heavier ones ends with iron. Iron nuclei heated to very high temperatures
are disintegrated by energetic photons into helium nuclei. This energy
absorbing process reaches equilibrium (called, as in the case of silicon
burning, nuclear statistical equilibrium), with the relative abundance of
iron to helium nuclei determined by the values of temperature and density.
A threshold may be defined for the process of iron photodisintegration, as
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a strip in the (log T, log ρ) plane, by the requirement that the number of
helium and iron nuclei be approximately equal. This threshold is shown in
Figure 7.2.

Zones of instability
The following arguments are based on the material of Chapter 6. The
condition of dynamical stability is γa > 4/3 (Section 6.3). We thus expect
stellar configurations to become dynamically unstable in those regions of
the (log T, log ρ) plane where γa is reduced to 4/3 or less. Such regions are
the far extremes of the relativistic-degeneracy zone III and of the
radiation-pressure-dominated zone IV, where γa tends asymptotically to
4/3. Another is the iron-photodisintegration zone, where γa < 4/3. As we
are dealing with the centre of stars, restricted regions of instability caused
by the ionization of hydrogen and helium lie outside the ranges of
temperature and density that we consider. Pair production, which is an
‘ionization’-type process as well, defines an additional unstable zone, with
γa < 4/3, as shown in Figure 7.3. With all these unstable zones marked, the
stable part of the (log T, log ρ) plane becomes completely bounded on two
sides: at high densities and at high temperatures. Hence severe constraints
are imposed on the possible evolutionary tracks of stars. We finally recall
that nuclear burning is thermally unstable in degenerate gases, whether
relativistic or not. Hence the nuclear burning thresholds of Figure 7.2 have
been discontinued after crossing the boundary into the degeneracy zone II.
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Figure 7.3 Outline of the stable and unstable zones in the temperature-density diagram.

7.2  The evolutionary path of the central point of a star in the
(log T, log ρ) plane

Having become acquainted with the (log T, log ρ) plane, the question we
now ask is whether the centre of a star of given mass M may assume any
combination of temperature and density values, that is, may be found
anywhere in this plane, or whether these values are in some way
constrained by M. We now regard the (log T, log ρ) plane as a (log Tc, log
ρc) plane, referring to the stellar centre. Assuming a polytropic
configuration (Equation (5.10)) for a star in hydrostatic equilibrium, the
central density is related to the central pressure by Equation (5.28),

(7.11)
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This relation is only weakly dependent on the polytropic index n,
especially for stable configurations, for which n varies between 1.5 and 3
(see Section 6.6), and the coefficient Bn, between 0.157 and 0.206 (see
Table 5.1), and it is independent of K. It is valid whether K is determined
by processes on the microscopic scale, such as electron degeneracy
(Section 3.3), or on the macroscopic scale, such as convection (Section
6.6). Although a star in hydrostatic equilibrium is not a perfect polytrope
(even if its composition is homogeneous), relation (7.11) provides a good
approximation to hydrostatic equilibrium for any configuration. Note that
simply by dimensional analysis of the hydrostatic equation, the central
pressure must be proportional to 

In addition, the central pressure is related to the central density and
temper-ature by the equation of state. Within the different zones of the (log
Tc, log ρc) plane we have different equations of state. Combining each of
them with Equation (7.11), we may eliminate Pc, to obtain a relation
between ρc and Tc.

Consider a star of mass M, whose central point is found in the ideal gas
zone I, where Equation (7.1) holds. The relation between Tc and ρc in this
case is of the form

(7.12)

meaning that for a star of given mass, the central density varies as the
central temperature cubed. For stars of different masses but the same
central temperature, the central density decreases as the mass squared
increases. On logarithmic scales, relation (7.12) becomes a straight line
with a slope of 3. Thus different masses define different parallel lines,
which intersect the temperature axis at intervals proportional to log M. The
lines corresponding to M = 0.1, 1, 10 and 100M  are plotted in Figure 7.4;
these masses being successive powers of 10M , the intervals between the
lines are equal.
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Figure 7.4  Relation of central density to central temperature for stars of different masses within
the stable ideal gas and degenerate gas zones.

If at the centre of a star the electrons are strongly but nonrelativistically
degenerate, the central point is found in zone II and Equation (7.2) holds.
Substituting Pc from Equation (7.11) with n = 1.5, we obtain

(7.13)

which replaces the ideal gas relation (7.12). Here ρc is independent of Tc,
and the corresponding line in the (log Tc, log ρc) plane is horizontal at a
height that increases with mass M, as plotted in Figure 7.4. Strictly, from
Equation (7.13) the central density should vary as the mass squared, but
relativistic effects increase the power. Zones I and II are the only stable
regions in the (log T, log ρ) plane and hence we need not consider the
others.
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For relatively low masses, relations (7.12) and (7.13) will merge at the
boundary between zones I and II, as shown by the dashed segments in
Figure 7.4, resulting in a continuous bending-path characteristic of each
mass. We have seen in Section 5.4 that the density of degenerate stars
tends to infinity as the stellar mass approaches the critical Chandrasekhar
limit MCh – the highest mass that can be sustained in hydrostatic
equilibrium by electron-degeneracy pressure. Thus the paths
corresponding to increasing masses will bend at higher and higher density
values in the (log Tc, log ρc) plane, deeper into the region of relativistic
degeneracy. It is easy to see that the limiting case will be represented by a
straight line, which will also mark the division between paths that bend
into the degeneracy zone II and those which remain in zone I. We recall
that the boundary between the ideal-gas zone and the degenerate-electron-
gas zone, close to its relativistic part, has a slope of 3. Since the (log Tc,
log ρc) curves in the ideal-gas zone have a slope of 3 as well, there exists a
value of M that coincides with the relativistic-degeneracy boundary. This
mass is MCh, which was obtained by equating the right-hand sides of
Equations (7.4) and (7.11), while the boundary between zones I and III
was obtained by equating the right-hand sides of Equations (7.11) and
(7.1). Hence the boundary between zones I and III merges with the path
corresponding to MCh in the (log Tc, log ρc) plane.

In conclusion, a star of fixed mass has its own distinct track in the (log
Tc, log ρc) plane, which we shall refer to in the following text as ΨM. There
are two characteristic shapes of ΨM: straight lines for M > MCh and knee-
shaped ones for M < MCh. In general terms, we may understand the
relationship between tracks corresponding to different masses as follows.
With increasing stellar mass, the gravitational pull toward the centre
becomes stronger. Hence a higher pressure is required to counterbalance
gravity. This may be achieved in an ideal gas by a higher density or a
higher temperature. A higher density implies, however, smaller distances
between material particles, which further enhance the gravitational field.
In fact, since the hydrostatic pressure is proportional to a higher power of
the density than is the gas pressure (4/3 as compared to 1), a higher density
would only worsen the imbalance. Thus a lower density or a higher
temperature are required for equilibrium, if the stellar mass is increased. In
the case of a degenerate electron gas, the temperature plays a far less
important role. But now the hydrostatic pressure is proportional to a lower
power of the density than is the gas pressure (4/3 as compared to ~5/3), so

156



that a higher density is needed for equilibrium in a more massive star.
The question we now have to answer is, ‘Where does the evolutionary

course of a star lead the central point along a track?’

7.3  The evolution of a star, as viewed from its centre

Combining Figures 7.1 to 7.4 into one picture, we obtain a full, albeit
schematic, view of stellar evolution, as shown in Figure 7.5. We may now
choose a mass M, identify its path (marked in Figure 7.5 by the value of
M), and follow the journey of the (log Tc, log ρc) point along it, to discover
what it encounters on its way. Stars form in gaseous clouds, where
densities and temperatures are much lower than those prevailing in stellar
interiors; therefore, the starting point is on the lower part of the path. At
the beginning, a star radiates energy without an internal energy source,
which means that it contracts and heats up (as we have seen in Chapter 2
and again in Chapter 6). Hence in the (log Tc, log ρc) plane the central
point ascends along ΨM – which we recall to be a straight line of slope 3 –
toward higher temperatures and densities. Eventually, it will cross the first
nuclear burning threshold. At this point in the evolution of a star hydrogen
is ignited at the centre and the star adjusts into thermal equilibrium with
Lnuc and L in balance. The journey of the central point along ΨM comes to
a very long pause. We note that for low masses ΨM crosses the threshold
on the upper part, corresponding to the p − p chain, whereas for high
masses the threshold is crossed on the lower part, corresponding to the
CNO cycle. We should therefore expect stars to burn hydrogen by
different processes according to their masses.
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Figure 7.5  Schematic illustration of the evolution of stars according to their central temperature-
density tracks.

It was shown in the previous section that the boundary between the
ideal-gas zone and the radiation-pressure-instability zone has a slope of 3
(regardless of the criterion adopted for its definition), the same as the
slopes of the ΨM curves. Hence as the mass increases, ΨM inevitably
approaches this boundary. This means that in massive stars radiation
pressure becomes progressively more important and eventually dominates
gas pressure. Since a star dominated by radiation pressure is dynamically
unstable (becoming unbound), an upper limit thus emerges for the stellar
mass, roughly near (or somewhat above) 100M , as marked by the curve 

 in Figure 7.5.
A lower limit for the stellar mass range may also be inferred from the

(log Tc, log ρc) diagram. The hydrogen-burning threshold does not extend
to temperatures below a few times 106 K (see Figure 7.2). The highest
value of M for which ΨM still touches this threshold, before bending into
the degeneracypressure zone, may be regarded as the lower stellar mass
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limit, marked  in Figure 7.5. Objects of mass below this limit will
never ignite hydrogen nor any other nuclear fuel; they will first contract
and heat up and will then contract more slowly while cooling off. Such
objects do not fit into our definition of stars (see Chapter 1). Based on
Figure 7.5, the lower mass limit for a star is somewhat below 0.1M .

When the hydrogen supply in the stellar core is finally exhausted, the
star loses energy again, and the core contracts and heats up. The central
point resumes its climb up the ΨM path. For low mass stars, ΨM will soon
cross the degeneracypressure boundary and bend to the left into a
horizontal line. The pressure exerted by the degenerate electron gas has
become sufficient for counteracting gravity. The contraction slows down
and the star cools while radiating the accumulated thermal energy, tending
to a constant density (and radius), determined by M. The higher the mass,
the higher will be the final density and the lower the final radius.

For higher M, ΨM will cross the next nuclear burning threshold. Helium
now ignites in the core and another phase of thermal equilibrium is
established, marking the beginning of another pause in the journey of the
central point. We note that among the ΨM paths that cross the helium
burning threshold, those corresponding to low masses do so very close to
the degeneracy boundary. We may expect to encounter some form of
thermonuclear instability in stars of such mass.

The story repeats itself after the exhaustion of helium: the lower-mass
stars among those which have burnt helium contract, develop electron-
degenerate cores, and start cooling. Contraction stops when the final
density (and radius) is reached, as determined by the mass M. We have
thus identified two classes of compact, cooling stars: one including stars of
very low mass, made predominantly of helium, and another including
more massive stars composed (at least partly) of helium-burning products,
carbon and oxygen.

The dividing line between stars that eventually become degenerate and
cool off as compact objects and those which remain in the ideal gas state
due to their high temperatures, even when reaching high densities,
corresponds, as we have seen, to . In principle, for M = MCh
contraction may go on indefinitely on the borderline of dynamical
stability. However,  crosses the carbon-burning threshold very near
the degeneracy zone. This indicates that carbon ignites in a highly
degenerate material. Nuclear burning is thermally unstable under such
circumstances (see Section 6.2), and should result in a thermonuclear
runaway – or carbon detonation – that is bound to have cataclysmic
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consequences. Such a fate is, however, only hypothetical for the single
isolated stars of fixed mass that we are considering, since the probability
of a star’s having been born with a mass of (or almost) MCh is negligibly
small. In reality, stellar collapse due to carbon detonation is prone to occur
as a result of mass exchange in a close binary system.

For M above the critical value of ~1.46M , the central point will
continue its journey up ΨM, stopping temporarily when a nuclear burning
threshold is crossed. Note that all ΨM paths with M > MCh terminate at the
unstable iron-photodisintegration boundary. Thus massive stars undergo
contraction and heating phases alternating with thermal-equilibrium
burning of heavier and heavier nuclear fuels until their cores consist of
iron. Further heating of the iron inevitably leads to its photodisintegration,
which is a highly unstable process. We therefore expect the life of these
stars to end in a catastrophe!

For very large M, the ΨM paths enter the pair-production-instability zone
before crossing the burning thresholds of heavy elements. Thus very
massive stars are expected to be extremely short-lived, developing pair-
production instability that should result in a catastrophic event at early
stages of their lives. In conclusion, two main types of catastrophic events
are expected to terminate the lives of relatively massive stars: carbon
detonation and iron photodisintegration (and, possibly, a third – caused by
pair production). We may note, in passing, that the paths leading to carbon
detonation and iron photodisintegration meet at the upper right corner of
the (log Tc, log ρc) diagram (since collapse caused by the latter implies an
almost vertical ascent of ΨM within the instability strip). Thus the
outcomes of the two different types of instability should have a great deal
in common. We shall return to this speculative point later on.

To summarize, stellar masses are confined to a range spanning about
three orders of magnitude, between Mmin ~ 0.1M  and Mmax ~ 100M . All
stars undergo hydrogen burning at their centres and since hydrogen is the
most potent of the nuclear fuels, we expect central hydrogen burning to be
the most common and long-lived state of stars in general. Evolution
following hydrogen exhaustion proceeds differently for stars of different
masses. Those under the critical mass MCh ~ 1.46M  contract and cool off
either after the completion of hydrogen burning or after the completion of
helium burning. In stars near the critical mass, carbon detonation leads to
thermonuclear instability that should end in collapse. Stars above the
critical mass undergo all the nuclear burning processes, ending with iron
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synthesis. Subsequent heating of the iron core develops into a highly
unstable state, expected to end in a catastrophic collapse or explosion (or
both). Stars of very high mass may reach dynamical instability sooner, due
to pair production.

How does this picture relate to the realm of observed stars? The most
common among observed stars are the main-sequence ones, mentioned in
Chapter 1. May we deduce that these are stars burning hydrogen in their
cores? To prove this inference, we have to show that for hydrogen-burning
stars a correlation exists between luminosity and effective temperature, of
the kind that defines the main sequence in the H–R diagram. This will be
done in the next section. The identification of the compact cooling stars,
corresponding to the horizontal part of ΨM tracks, with the observed white
dwarfs is quite straightforward. It will be pursued in more detail in Chapter
9. Indeed, according to observations, one distinguishes between two types
of white dwarfs: low-mass ones and more massive ones; also, the two
types differ in composition, although the connection between the observed
surface composition and that of the interior is debatable. Where do red
giants fit into this picture? May we guess that they should be associated
with that phase of evolution following hydrogen exhaustion, when the core
contracts toward the next core burning episode? This puzzling question
will be addressed shortly (Section 7.5).

Finally, observed stellar explosions – supernovae – are of two distinct
types, termed Type I and Type II, with possible subdivisions (Type Ia, Ib,
etc.). One may be tempted, even at this early stage in our understanding of
stellar evolution, to associate one type with carbon detonation and the
other with iron photodisintegration. By analysing in more detail the
properties of each, observationally as well as theoretically, we shall show
in Chapter 10 that this, indeed, is the case.

7.4  The theory of the main sequence

Observationally, the main sequence is defined by an empirical relation
between the luminosity and the effective temperature of a group of stars
called, accordingly, main-sequence stars. This relation has the form

(7.14)

where the slope α is shallower at the lower end (low L) and becomes
steeper at large L. Another property of main-sequence stars is an apparent
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correlation between mass and luminosity, also in the form of a power law;

(7.15)

(see Figure (1.6) in Chapter 1). Our hypothesis based on theory is that
main-sequence stars are those stars that burn hydrogen in their cores, their
centres lying along the hydrogen-burning threshold in Figure 7.5, where
the paths ΨM intersect this threshold. We therefore have to prove that for
such stars a correlation of the type (7.14) exists and an additional one
between mass and luminosity, like correlation (7.15).

Consider stars that have begun burning hydrogen at the centre and are in
thermal and hydrostatic equilibrium. We may take their composition to be
uniform throughout, equal to the initial composition that we have already
assumed to be shared by all stars (see Chapter 1). Provided they are in
radiative equilibrium, their structure is described by Equations (5.1)–(5.7).
With the further assumptions of (a) negligible radiation pressure, and (b)
an analytic opacity law (for the sake of simplicity, we shall adopt a
constant opacity), these equations become

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

to be solved for r(m), P (m), ρ(m), T (m) and F (m) in the range 0 ≤ m ≤ M,
for any value of the mass M, which is the only free parameter. Is it
possible to learn something about the characteristics of these solutions
without actually solving this complicated set of nonlinear differential
equations? As in other cases of complex physical systems, a great deal
may be learned from the dimensional analysis of the equations.
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First, we define a dimensionless variable x, the fractional mass:

(7.21)

The functions r(m), P (m), ρ(m), T (m) and F (m) may then be replaced by
dimensionless functions of x – f1(x), f2(x) and so forth – by the following
definitions:

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

where the starred coefficients have the dimensions of the original
functions, respectively.

Next, by substituting relations (7.21) to (7.23) into Equation (7.16), we
obtain

(7.27)

In a physical equation the dimensions on the two sides must match, and
hence in (7.27), where x, f1 and f2 are dimensionless, P  must be
proportional to  Adopting (without loss of generality) a
proportionality constant of unity, we may separate Equation (7.27) into

(7.28)

and repeating the procedure for Equation (7.17), then Equations (7.20),
(7.18) and (7.19),
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(7.29)

(7.30)

(7.31)

(7.32)

On the left of Equations (7.28)–(7.32) we have a set of nonlinear
differential equations, now independent of M, for the variable functions
f1−5 that have been defined in the range 0 ≤ x ≤ 1 by Equations (7.22)–
(7.26). The dimensional coefficients that appear on the right-hand side of
Equations (7.22)–(7.26) are obtained as functions of the stellar mass M by
solving the set of algebraic equations on the right of Equations (7.28)–
(7.32). Combining the solutions of the differential equations and the
algebraic equations, we may obtain from Equations (7.22)–(7.26) the
profiles of any physical characteristic (temperature, density, pressure, etc.)
for any value of M. The important conclusion is that the shape of the
profiles as a function of the fractional mass is the same in all stars, the
profiles differing only by a constant factor determined by the mass. This
similarity property is called homology.

By solving only the simple set of relations between the starred
quantities, we may therefore derive the dependence of physical properties
on the stellar mass, without actually solving the differential equations.
Substituting Equations (7.28) and (7.29) into Equation (7.30), we obtain

(7.33)
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and inserting this relation, in turn, into Equation (7.31), we have

(7.34)

Thus fluxes at a given fractional mass in stars of different masses relate as
the cube of the mass ratio. For example, the radiative flux across a
spherical surface enclosing, say, half the total mass will be a thousand
times larger in a star of 10M  than in a star of 1M . The same applies to
any other value of x. In particular, the surface (x = 1) flux, or the
luminosity, will be proportional to the mass cubed,

(7.35)

This is the desired relation between luminosity and mass, to be compared
with that derived observationally for main-sequence stars (see below). We
recall that a similar relation emerged from the simple standard model
discussed in Chapter 5. If we retain the dependence on µ as well, then
relation (7.34) implies L ∝ M3µ4. Combining Equations (7.34) and (7.32)
and substituting Equations (7.28)–(7.30) yields the dependence of R  on
the mass M in the form

(7.36)

which relates radii corresponding to a given fractional mass in stars of
different masses. This holds, in particular, for x = 1, that is, for the stellar
radius R. Hence, for a large n, such as n ≈ 16 corresponding to CNO-cycle
hydrogen burning, the radius will be almost proportional to the mass. For
n = 4 that approximates hydrogen burning by the p − p chain, the
dependence is weaker, R ∝ M3/7. We note that in all cases the radius
increases with increasing mass, in contrast to compact, degenerate stars
(white dwarfs), where the radius is inversely proportional to some power
of the mass. The power in relation (7.36) is always smaller than unity
(tending to 1, in principle, as n → ∞). Inserting relation (7.36) into
Equation (7.29), we obtain the variation of density with mass M:

(7.37)
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Since n > 3, the density decreases with increasing stellar mass. Thus stars
of low mass are denser than massive stars at any x, again in contrast to
degenerate stars. That this holds for the stellar centre (x = 0) is obvious
from Figure 7.4.

Exercise 7.1:  Derive the dependence of the pressure P  and of the temperature T  on M (a) in
general form; (b) for n = 4 and n = 16.

We are now ready for the crucial test of our hypothesis that Equations
(7.16)–(7.20) may be taken to describe main-sequence stars. In the relation
between luminosity and effective temperature  (Equation
(1.3)) the radius R may be eliminated, using relations (7.35) and (7.36), to
obtain

(7.38)

Taking logarithms on both sides, we have for n = 4

(7.39)

while for n = 16

(7.40)

These are the calculated slopes for the lower part (low L and M) and for
the upper part (high L and M) of the main sequence in the (log Teff, log L)
diagram, shallow on the lower part and much steeper on the upper part, as
those derived observationally.

Other characteristics of the main sequence are also readily explained.
The nuclear energy reservoir of a star is, obviously, proportional to its
mass. In thermal equilibrium the rate of consumption of the nuclear fuel is
equal to the rate of energy release L. Hence the duration of the main
sequence (hydrogen-burning) stage, τMS should roughly satisfy

(7.41)

where we have used relation (7.35). The larger the stellar mass, the shorter
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the time spent by the star on the main sequence (burning hydrogen). This
explains why in an ensemble of stars born at the same time, the more
massive among them leave the main sequence earlier. With the passage of
time, the main sequence of this ensemble becomes gradually shorter, as
stars that are less and less massive leave it. This is the reason for the
different extent (or upper end) of main sequences corresponding to stellar
clusters of different ages, as we have encountered in Chapter 1.

We have concluded on the basis of the schematic picture of stellar
evolution (Figure 7.5) that there should be a minimal mass for stars
capable of igniting hydrogen. We may now attempt to calculate it more
accurately. According to Equation (7.33) and relation (7.36), the
temperature within stars of different masses varies as M/R  ∝ M4/(n+3),
that is, as M to a positive power. This holds, in particular, for the central
temperature (the highest temperature within a main sequence star), which
thus decreases with decreasing M,

(7.42)

where we have substituted n = 4, appropriate to low stellar masses (low
temperatures). The lowest temperature required for hydrogen burning into
helium is Tmin ≈ 4 × 106 K, applying to the p − p chain. We know that the
Sun is a main sequence star burning hydrogen predominantly via the p − p
chain, from its location in the H–R diagram and from detailed studies of its
interior. We may therefore calibrate relation (7.42):

(7.43)

The condition for hydrogen ignition

may thus be translated into a condition on the mass

(7.44)

yielding Mmin ≈ 0.1M  for the estimated Tc,  ≈ 1.5 × 107 K. The
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luminosity corresponding to this mass may be calculated from relation
(7.35) after calibrating it with the aid of L  and M ,

(7.45)

thus defining the lower end of the main sequence.

Exercise 7.2:  Calculate the effective temperature corresponding to the lower end of the main
sequence.

Exercise 7.3:  Using the condition L ≤ LEdd (with LEdd given by Equation (5.37)), derive an
upper limit for the mass and the luminosity of main sequence stars. Estimate the effective
temperature at the upper end of the main sequence.

Exercise 7.4:  Find the relation between L and M and the slope of the main sequence,
assuming an opacity law κ = κ0ρT −7/2 (the Kramers opacity law) and n = 4.

We now return briefly to the mass-luminosity relation (7.35). Generally,
the power depends on the adopted opacity law as well as on n, although for
the constant opacity we have assumed – appropriate for electron scattering,
which dominates at high temperatures – the power of 3 is independent of
n. For the Kramers opacity law, appropriate for relatively low
temperatures, the power is  (Exercise 7.4), which is close to 5 for n
≥ 4. As we have seen that the temperature scales with the mass, this
explains the changing slope of the observed mass-luminosity relation
(Figure 1.6) from ~5 on the lower part to 3 on the upper part. The slopes of
the main sequence, as derived earlier, would also change to some extent
for a different opacity law, but the upper part would still remain much
steeper than the lower one.

In conclusion, we have succeeded in explaining most features of the
observed main sequence. Furthermore, if we take into account that the
initial composition is not strictly the same for all stars, we also understand
why the main sequence is a strip rather than a line. The hypothesis that
main-sequence stars are those stars that burn hydrogen in a relatively small
core has thus turned into the theory of the main sequence. Strictly, the
theory applies to the zero-age main sequence, when the composition is
truly homogeneous. And we should bear in mind that it ignores
convection. But why can the simple and quite general procedure employed
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be applied only to hydrogen burning? The reason why it cannot be applied
to other types of stars (other stages of evolution) is that the crucial
homogeneity assumption – both of composition and of physical state – is
no longer valid at advanced evolutionary stages.

Exercise 7.5:  Repeat the dimensional analysis using the Kramers opacity law and n = 4, but
taking into account the dependence of temperature on the mean molecular weight µ. Derive the
scaling laws of stellar properties on the main sequence with respect to µ as well as M.

7.5  Outline of the structure of stars in late evolutionary
stages

The same basic diagram that was used to describe the evolution of stars
may also serve to describe the structure of a star at a given evolutionary
stage. Consider a star of mass M: for any given point m within it we have
the value of the local temperature T (m) and the value of the local density
ρ(m), which define a point in the (log T, log ρ) plane. Joining the points
corresponding to different values of m between 0 and M, we obtain a
parametric line that traces the structure of the star in the (log T, log ρ)
plane. One end of the line – the central point – lies on the ΨM curve; the
other – the surface – is characterized by a temperature considerably below
106 K and by a very low density. Hence structure lines run across the (log
T, log ρ) plane toward the lower left corner. The exact shape of these lines
may be complicated (only polytropes would be described by straight lines
on logarithmic scales) and may change with time – as the central point
moves along ΨM. Nevertheless, they will invariably lead (more or less)
monotonically from the central point toward low temperatures and
densities.

An example is given, schematically, in Figure 7.6 for a star of 10M  by
a series of structure lines labelled A, B, C, . . . with origins at a
chronological series of points (labelled O) lying along the evolutionary
track Ψ10 of Figure 7.5. These lines may be taken to roughly represent the
evolving structure of the star. We recognize line A as outlining the main-
sequence structure. The next line, B, describes the star at a later stage,
when hydrogen has been depleted in the core. We note that the conditions
for hydrogen burning are now fulfilled at some point outside the core,
where A intersects the hydrogen-burning threshold. Thus hydrogen
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burning continues in a shell outside the helium core. The relatively cool
region beyond the burning shell constitutes a chemically homogeneous
envelope. The core itself, now devoid of energy sources, is contracting and
heating up.

Figure 7.6  Schematic illustration of the stellar configuration in different evolutionary phases for
a 10M  star (A, B, C, D, E) and a white dwarf (WD).

Regarding this particular evolutionary phase, Martin Schwarzschild
wrote in his book:

. . . It would thus clearly be safer if we stopped our discussion of stellar evolution here and
waited for the results from the big computers, which we may expect in the nearest future. But
for those whose curiosity is stronger than their wish for safety we shall go on – fully aware of
the risk.

Martin Schwarzschild: Structure and Evolution of the Stars, 1958

So we, too, shall take the risk and go on, the results of numerical
calculations awaiting us in Chapter 9.

Assuming the contraction of the core to occur quasi-statically, on a
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timescale which is much longer than the dynamical timescale, the virial
theorem may be assumed to hold. Provided the amount of energy gained
(or lost) during this phase is negligible with respect to the total stellar
energy (that is, thermal equilibrium is maintained), the latter may be
assumed to remain constant. As discussed in Section 2.8, under such
circumstances the gravitational potential energy and the thermal energy are
each conserved. Consequently, contraction of the core must be
accompanied by expansion of the envelope, so as to conserve the
gravitational potential energy. At the same time, heating of the core must
result in cooling of the envelope, for the thermal energy to be conserved.
In particular, the surface (effective) temperature drops, the blackbody
radiation thus shifting to the red. The star assumes the appearance of a red
giant (RG).

In order to get a rough idea of the amount of expansion that might take
place, we may do a very simple exercise: consider two equal mass
elements Δm1 and Δm2 at a distance r0 from the centre of a star and regard
m(r0) as a point mass. Suppose that one element moves toward the centre,
to a distance r1, and the other outward, to a distance r2, so that the
gravitational energy of the system is conserved. It is easily verified that the
distances measured in units of  and  are related
by  We find that when one element moves inward
~10% of r0  the other moves outward by about the same
amount  When the inward displacement is 20% 
however, the outward one is more than 30%  and the
difference increases, r2 tending to infinity as r1 approaches half the original
distance. This exercise should not be taken too literally: the gravitational
energy is conserved globally, not by separate mass elements; the motion
occurs within the mass of the star and not outside it, and so forth.
Nevertheless, the general conclusion that it was meant to emphasize – that
a moderate amount of core contraction may entail a significant expansion
of the envelope – is true.

If the total energy does not remain constant as assumed, but rather
increases (Lnuc > L on the average), then it is easy to see that the effect of
envelope expansion upon core contraction will be all the more
considerable. Therefore the giant dimensions that red giants may reach
should not surprise us. We note, however, that if the total energy of the
star decreases while the core contracts (Lnuc < L), we cannot draw any
definite conclusion: the envelope may then either expand, or remain
unchanged, or even contract too, depending on the difference between the
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energy drop resulting from core contraction and the overall energy drop
(Lnuc − L). Only detailed stellar-evolution computations can provide the
answer as to the departure from thermal equilibrium (its trend and extent).
But provided Lnuc ≥ L, we may safely claim that a star with a contracting
core should evolve into a red giant.

Note: The first detailed calculations of evolving inhomogeneous stellar models, carried out by
Allan Sandage and Martin Schwarzschild in 1952, indeed showed this effect. The models consisted
of a contracting core and an envelope, separated by a hydrogen burning shell. It was found that ‘. . .
as the cores contract, the envelopes greatly expand. Thus from the initial configuration, which is
near the main sequence, the stars evolve rapidly to the right in the H–R diagram . . . .’

It is interesting to note that these calculations were done during the brief period of time between
Salpeter’s solution for the 3α process and Hoyle’s prediction of its resonant character (see Section
4.5). Thus, at the time, the estimated threshold temperature for helium ignition was ~2 × 108 K.
Sandage and Schwarzschild found, to their disappointment, that while the cores contract and heat up
toward helium ignition, the envelopes expand way beyond the observed red giant branch. They
concluded, or rather speculated, that when the central temperature reaches 1.1 × 108 K, ‘. . . a
physical process not included in the present computations should start to play an essential role. . .’,
so as to halt the contraction of cores and expansion of envelopes. This could have been a second,
independent argument for postulating a resonant energy level in the carbon nucleus. Indeed, this
level reduces the threshold temperature for the 3α process to about 108 K!

When the helium-ignition temperature is finally reached at the centre,
core contraction stops. The structure of the star is described by line C in
Figure 7.6. Two energy sources are now exploited: the main one, helium
burning in the core, and a secondary one, hydrogen burning in a shell
around it. When helium is exhausted in the core, another phase of core
contraction and envelope expansion sets in. Since the core is now more
condensed, envelope expansion is even more pronounced, turning the star
into a supergiant. The structure of the star at this point is described by line
D in Figure 7.6: outside the carbon-oxygen core resulting from helium
burning, we find two burning shells, where D intersects the helium burning
threshold and the hydrogen burning threshold, respectively. The
composition of the star is stratified: enveloping the carbon-oxygen core is
a helium layer, with the helium burning shell between them. The outer
boundary of the helium layer is defined by the hydrogen-burning shell,
which separates the helium layer from the hydrogen-rich envelope. The
hydrogen-burning shell feeds fresh fuel to the helium-burning one, and so
both advance outward. The process is quite complicated in detail, as we
shall see in Chapter 9 (where symbols HB – horizontal branch – and AGB
– asymptotic giant branch – will be explained).

Finally, when all the nuclear processes are over in the stellar core, the
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structure of the star, line E in Figure 7.6, is layered like an onion, each
layer having a different composition, with lighter elements lying above
heavier ones. The supergiant (SG) is now a supernova progenitor. The
spectacular albeit brief remainder of its evolutionary course will be
discussed in Chapter 10.

A similar chain of arguments may be applied to stars of other masses.

7.6  Shortcomings of the simple stellar evolution picture

It is noteworthy that the very first rough sketch of the global evolution of
stars was outlined by Bethe in 1939(!); this is how Bethe ended his treatise
on energy production in stars, which paved the way to the modern theory
of stellar evolution:

. . . It is very interesting to ask what will happen to a star when its hydrogen is almost
exhausted. Then, obviously, the energy production can no longer keep pace with the
requirements of equilibrium so that the star will begin to contract. Gravitational attraction will
then supply a large part of the energy. The contraction will continue until a new equilibrium is
reached. For ‘light’ stars of mass less than 6µ−2 sun masses, the electron gas in the star will
become degenerate and a white-dwarf will result. In the white dwarf state, the necessary
energy production is extremely small so that such a star will have an almost unlimited life. . . .

For heavy stars, it seems that the contraction can only stop when a neutron core is formed.
The difficulties encountered with such a core may not be insuperable in our case because most
of the hydrogen has already been transformed into heavier and more stable elements so that the
energy evolution at the surface of the core will be by gravitation rather than by nuclear
reactions. However, these questions obviously require much further investigation.

Hans A. Bethe: Physical Review, 1939

In the present chapter, we have built a frame for the theme of stellar
evolution and we have outlined a more elaborate sketch (along the same
basic lines!), but the picture is still far from being complete. In order to fill
in the details, we shall have to rely on numerical computations of stellar
evolution – the computational laboratories of stars. This will be the subject
of Chapter 9, but in order to assess the authenticity of our sketch, the
results of complex numerical calculations for the evolution of stars of
various masses, as they appear in the (log Tc, log ρc) plane, are shown in
Figure 7.7. The general trend is remarkably similar to that of Figure 7.5
obtained on the basis of simple arguments. Leaving aside the deviations
associated with the ignition of a nuclear fuel (in particular the expected
explosive helium ignition at the centre of the 1M  star), we may be
surprised to discover that stars as massive as 8M , and perhaps up to 10M

, end their lives as white dwarfs. We have expected this to happen only
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below MCh!

Figure 7.7  Relation of central density to central temperature obtained from complex numerical
calculations of the evolution of stars of various masses, as marked (adapted from A. Kovetz, O.
Yaron and D. Prialnik (2009), Mon. Not. Roy. Astron. Soc., 395).

This points out the fallacy of our assumption concerning the
conservation of the stellar mass during evolution. We should have
suspected this assumption to be wrong, especially for massive stars, from
the conclusions of the standard model (Section 5.6). Observational
considerations, too, suggest that mass loss must occur. Several low-mass
white dwarfs in the solar neighbourhood, with accurately determined
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masses (0.4M  or less) are long known. If stars conserved their masses, it
would follow that the Galaxy is old enough for stars of 0.4M  or less to
have evolved off the main sequence. We should then expect to encounter
at least some star clusters with main sequences ending at luminosities
below that corresponding to a mass of 0.4M , but no such clusters are
known. In fact, the main sequences of all known clusters extend to
considerably higher luminosities (corresponding to masses above 0.7M ),
indicating a younger age. It would be very difficult to explain why all star
clusters should be much younger than the Galaxy within which they reside.
It is far more natural to assume that the Galaxy is about as old as its oldest
clusters, which forces us to conclude that stars lose mass, particularly after
leaving the main sequence.

. . . We are forced to accept the short time scales for most clusters and look for processes by
which a massive evolved star is able to lose a large fraction of its mass, so it can settle down
into a cooling white dwarf; thus, we link the problem of the origin of white dwarfs with that of
the ultimate fate of stars well above the Chandrasekhar limit.

Leon Mestel: The Theory of White Dwarfs, 1965

Nowadays, when modern telescopes are able to detect white dwarfs in
dense globular clusters, this argument is even stronger: the white dwarfs
have lower masses than main-sequence stars of the same cluster.

As it turns out, stars lose a significant fraction of their masses by a
stellar wind, such as that emanating from the Sun, only much more
substantially in the case of massive stars, where radiation pressure is
considerable. Hence the evolutionary paths ΨM in Figure 7.5, should have
increasingly steeper slopes, as the initial mass M increases. This means
that stars initially more massive than MCh may become white dwarfs, their
paths shifting quickly toward paths corresponding to lower and lower
masses, the evolutionary course being very similar to that described earlier
for a mass of about 1M . Therefore the general picture remains valid,
except that the dividing mass between stars that will end up as white
dwarfs and stars that will become supernovae is, in reality, higher than
1.46M . To determine how high, a model of mass loss is required. This
will be the subject of the next chapter.

Exercise 7.6:  Consider the hypothetical evolution of a star of initial mass M0. The star’s core
grows in mass as a result of nuclear burning. The nuclear processes release an amount of
energy Q per gram of burnt material. The star loses mass (by means of a stellar wind) at a rate
proportional to its constant luminosity L:  = −αL. (a) Find the mass of the core as a function
of time, Mc(t), assuming that Mc(0) = 0. (b) Find the mass of the envelope as a function of
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time, Me(t), noting that Me(0) = M0. (c) What is the core mass when the envelope mass
vanishes? (d) Calculate the upper limit of M0, for which the star will become a white dwarf,
given Q = 5 × 1014 J kg−1 (from turning solar composition into carbon and oxygen) and
α = 10−14 kg J−1.

Another process that has been neglected is neutrino emission in dense
cores, which has a marked cooling effect. As the rise in temperature
between late burning stages is impeded by neutrino cooling, the slopes of
the ΨM curves should become somewhat steeper than 3. However, this
effect does not alter any of our conclusions.

The main shortcomings of the simple picture are (a) the total lack of
time spans for the different processes and (b) the ignorance of the outward
appearance of the star at each stage. Both factors render a comparison with
observations impossible (statistically as well as individually). Since our
main purpose is to reproduce as accurately as possible the observed stellar
characteristics – not only their trends – we must resort to detailed stellar
models. Having acquired a basic understanding of the principles involved,
we may expect a smooth sail through the ocean of evolutionary
computations that we shall reach in Chapter 9.
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8

Mass loss from stars

8.1  Observational evidence of mass loss

It is an acknowledged fact that stars lose mass. In addition to the outflow
of photons, there usually is an outflow of material particles. But unlike the
flow of radiation, which is supplied by energy generation in the interior,
the flow of mass is not replenished. As a result, the stellar mass decreases
at a rate that is usually measured in solar masses per year and denoted by 

, where the negative sign is omitted. Shedding of mass may take two
forms: a sudden ejection of a mass shell, usually following an explosion,
or a continuous flow, usually referred to as a wind. We shall deal with
explosive mass ejection in Chapter 10, and devote the present discussion to
stellar winds.

Indirect evidence for mass loss was brought in the previous chapter and
theoretical indication for its probable occurrence was mentioned in
Chapter 5. There is, however, direct observational evidence for continuous
rapid expansion of the outer layers of stars beyond the stellar photosphere
that marks the outer edge, and into the interstellar medium. The most
common is exhibited by a characteristic shape of spectral lines, known as
P-Cygni lines, named after the star P Cygni – one of the brightest in our
Galaxy, discovered in 1600 as a new star (see upcoming Chapters 10 and
11) – where they are prominent. A P-Cygni line profile consists of a blue-
shifted absorption component and a red-shifted emission component.

To understand this peculiar profile, imagine a spherically symmetric
outflow from a star. Assume the star emits radiation at some wavelength λ0
(at rest). This radiation is scattered by the outflowing gas and since the gas
velocities with respect to an observer range from −v to +v, where v is the
expansion velocity, the emission line will appear symmetrically broadened
– red-shifted and blue-shifted – on both sides of λ0, as a result of the
Doppler effect. The region along the line of sight of the star, where the gas
velocity is positive (directed toward the observer) will scatter the radiation
out, while the star is occulting the region where velocities are negative.
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This will result in depletion of only blue-shifted radiation, that is, blue-
shifted absorption superposed on the broadened emission. Examples of P-
Cygni lines are shown in Figure 8.1, where a portion of the line spectrum
of the star P Cygni is shown; the typical profiles are apparent for three
lines.

Figure 8.1  Line spectrum of P Cygni, where P-Cygni profiles are apparent.

In a complicated way, the analysis of the detailed shape of a P-Cygni
line and its intensity enables the derivation of the gas density, as well as its
velocity and radial distance from the star. As we shall show below, these
lead to the estimation of the mass-loss rate. Mass-loss rate estimates are
also possible based on other kinds of spectral lines. We shall refrain from
spectral-line analysis here, and only mention the significant result that
measured mass-loss rates vary over a very wide range of values: from
~10−14 to ~10−4 M  yr−1, depending on stellar mass and evolutionary
stage.

178



8.2  The mass loss equations

The outward flow of mass is generated in the outermost layers of the star,
usually referred to as the stellar atmosphere, while the bulk of the star
maintains hydrostatic equilibrium and retains its size. This is beautifully
apparent, for example, during a full solar eclipse, when the disc of the Sun
is occulted and the corona becomes visible, as shown in Figure 8.2. Thus
at the base of the wind region the velocity must be vanishingly small.

Figure 8.2  Total solar eclipse of August 11, 1999. (Photograph by Fred Espenak).

Consider mass outflow in the outer layers of a star of mass M, under the
assumption that the mass of these layers is negligible compared with the
total mass of the star. The basic assumption of spherical symmetry
introduced in Chapter 1 still holds, hence the flow is radial. The mass
enclosed in a sphere of radius r can no longer serve as space variable,
since it is allowed to flow, and the conservation laws applied to fixed mass
elements in Chapter 2 will have to be adapted to mass flow. In this case, it
is sometimes convenient to adopt the volume V enclosed in a sphere of
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radius r as the independent space variable. The equations of mass,
momentum and energy conservation that we derived in Chapter 2 now
have to be reformulated.

Mass conservation – the equation of continuity
Consider a small volume element dV between radii r and r + dr, or
volumes V and V + dV (dV = 4πr2dr), over which physical properties may
be taken as uniform. The mass contained in this volume is ρdV . Over a
small period of time δt, the change in mass will be δ(ρdV ) = dVδρ. This
change will be caused by mass flowing into and out of the volume
element. Let  be the amount of mass that crosses a spherical surface of
radius r per unit time. Then  where v is the flow velocity,
taking the positive direction outward. Thus

(8.1)

and passing to the limit δt → 0 and dV → 0, we obtain the equation of
mass conservation, also known as the continuity equation

(8.2)

where the second term on the left-hand side is, in fact, the divergence of
the mass flux, (1/r2)∂(r2ρv)/∂r.

In what follows we shall consider steady flows, where the local density
remains constant in time. Thus

(8.3)

which implies that  is constant, that is, does not change with radial
distance, and is thus equal everywhere to the amount of mass lost by the
star per unit time,

(8.4)

Momentum conservation – Euler’s equation
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Conservation of momentum, as derived from Newton’s second law (see
Section 2.3), requires the calculation of the rate of change of the velocity
of a given mass element (the Lagrangian derivative). Since now mass
elements are no longer fixed in space, whereas the temporal derivative has
to be expressed in terms of quantities at a given point in space (the
Eulerian derivative), the rate of change of a property f of a moving mass
element is given by

(8.5)

Used for the velocity v, it leads to Euler’s equation (first obtained by
Leonhard Euler in 1755),

(8.6)

For steady flows all properties are constant in time at any given point
(radial distance), although they may change with r, thus ∂f/∂t = 0 for any
function f . In particular, ∂v/∂t = 0 and hence

(8.7)

Energy conservation
The change in internal energy is given by the first law of thermodynamics,
Equation (2.6) derived in Section 2.2 and involves temporal derivatives for
a fixed mass. Using again relation (8.5), assuming that there is no nuclear
energy generation within the volume and recalling that F is the heat
flowing per unit time across a spherical surface of radius r, we obtain the
equation of energy conservation in the form

For a steady flow, the first and third terms on the left-hand side vanish and
hence
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(8.8)

Multiplying Equation (8.7) by v and adding Equations (8.7) and (8.8),
which will now have the same dimension, we obtain

(8.9)

Noting that

and multiplying Equation (8.9) by 4πr2ρ, we finally obtain

(8.10)

Since  is constant, Equation (8.10) may be integrated to
yield

(8.11)

and F may be expressed using the radiative-transfer equation (5.3),
assuming there is no convective flux in these layers.
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The full set of equations
It is reasonable to assume that the gas is ideal and the composition
homogeneous in the outer layers of a star, and hence, using Equations
(3.44), (3.47) and (5.3), we may substitute

(8.12)

(8.13)

In summary, the full set of equations to be solved for v(r), ρ(r), T (r) and F
(r) is

(8.14)

(8.15)

(8.16)

(8.17)

Besides the two constants, two more conditions, or boundary values, are
required for the integration of the two differential equations. We note that
the gravity term in the momentum equation is diminished by a factor equal
to the radiation flux divided by the Eddington limiting flux. We should
mention that besides the gravitational force and the force exerted by the
radiation pressure, there may be other forces impeding or driving the mass
flow, such as friction, proportional to the velocity, or acceleration caused
by photons in a particular line or band that are not part of the continuum
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(black body) radiation.

Historical Note: The concept of corpuscular radiation, or particles streaming out of the Sun, was
proposed by Ludwig Biermann in a paper published in 1951, to explain the well-known fact that,
whether a comet moves towards or away from the Sun, its tail always points in the antisolar
direction. A few years later, Eugene Parker pursued this idea and developed the first model of what
he termed the solar wind. It may be interesting to note that the novel idea met with strong
opposition, so much so that the paper submitted by Parker to the Astrophysical Journal in 1958,
was rejected by two reviewers. It took the intervention of the editor, Chandrasekhar, whom we have
already encountered, to get it published. It is also noteworthy that this model was not entirely new.
It is true that the model considers only positive velocities describing outward flows. However, the
equations depend on v2 and the same treatment and solutions would apply to inward flows
corresponding to negative velocities. Indeed, Hermann Bondi, studying the problem of spherical
accretion of mass by a star, arrived at the same equations and solutions in 1951, but was apparently
unaware of their implication to the newly postulated effect of mass ejection.

It will not come as a surprise that there is no simple solution for the set
of Equations (8.14)–(8.17). We may go one step further, however. It is
easily seen that the mass-conservation equation (8.14) may be written as

(8.18)

and for an ideal gas, the derivative of the gas pressure as

(8.19)

Eliminating  between these equations and substituting the resulting
expression for  in the momentum equation (8.15), we obtain

(8.20)

This equation has a singularity, that is, dv/dr is undefined when the flow
velocity v is equal to the isothermal sound speed of the gas
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(8.21)

Since at the point where v = vs, the left-hand side of Equation (8.20)
vanishes, and since obviously v ≠ 0 there, the term in square brackets on
the right-hand side must vanish as well. This condition serves to determine
the point rc, where v = vs, known as the critical point, which in our case
defines a spherical surface of radius rc.

Exercise 8.1:  Assuming the temperature to be uniform in the flow region (denoted by T0),
find the critical radius rc. Find the relation between the sound speed and the escape velocity at
rc.

8.3  Solutions to the wind equations – the isothermal case

In order to gain some insight into the properties of stellar winds, avoiding
at the same time numerical complications, we now consider the simplest
form of the wind equations for which the solutions can be relatively easily
described. The conclusions will be qualitatively valid for more
complicated cases.

We assume a uniform temperature for an outer region of a star starting
at a radius r0, thus describing an isothermal stellar wind. In this case,
strictly, the radiation flux vanishes, by Equation (8.17). For an ideal gas,

and we may express T in terms of vs. The set of wind equations (8.14)–
(8.17) reduces to

(8.22)

(8.23)

to be solved for v(r) and ρ(r), where
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(8.24)

is the point at which the right-hand side of Equation (8.23) vanishes.
Equation (8.23) is independent of the other equation of the set and may be
solved for v(r) given a boundary condition, say, v(r0) = v0. The full
solution requires an additional constant, say, ρ(r0) = ρ0. We shall now
show that this solution is unique, that is, there is only one value of v0, or
equivalently, , for which a physical solution exists.

It is convenient to define dimensionless variables

(8.25)

in terms of which Equation (8.23) becomes

(8.26)

The family of solutions is determined by the initial values of y; the various
classes of solutions are shown in Figure 8.3. We assume that the outer
layer of the star, where the mass flow occurs (or the wind is generated), is
tightly bound to the star, which means that at the base r0 of this region vesc 

 vs  v0 and therefore r0 < rc. Hence we start the integration of
Equation (8.26) at some x < 1 and y < 1. The derivative dy/dx is thus
positive, and y increases. If y reaches unity before x does, then x(y) has a
maximum at y = 1 and thus y(x) is a multi-valued function – shown in
region 2 of Figure 8.3 – which is unphysical. Equally unphysical are the
solutions in region 4 of the figure. If, on the other hand, x reaches unity
before y does, then y(x) has a maximum at x = 1, which means that the
velocity will reach a maximum value and decrease thereafter, as shown by
the solutions in region 1 of Figure 8.3. For this to be physically possible,
an inward directed pressure must be exerted on the flowing mass, which
may be shown to surpass the interstellar gas pressure by many orders of
magnitude. Hence this solution is unphysical as well. Solutions appearing
in Figure 8.3 that correspond to infinitely large velocities at the base of the
wind, as those of region 3, are in conflict with the requirement of
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vanishing velocities there. The only viable solution, therefore, is that for
which v0 is such that x and y, starting at low values, reach unity
simultaneously, which means that v(r) passes through the point (rc, vs).
Thus the wind is transonic: subsonic below rc and supersonic above it.

Figure 8.3  The normalized isothermal wind solutions. The circle marks the sonic point. The
unique viable solution is highlighted in bold.

Integrating Equation (8.26) and applying this condition, we obtain the
unique solution for v(r) as the root of

(8.27)

which defines the only acceptable velocity at the base r0 of the isothermal-
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flow region for a given temperature of this region and a given stellar mass.
With it, the mass-loss rate is obtained as  The
resulting density profile is

(8.28)

and since v(r) increases with r, the density decreases with radial distance
more steeply than r−2.

In this simple example, the energy conservation requirement (8.16) was
discarded, being replaced by the condition T(r) = constant, and F = 0 was
obtained from Equation (8.17). Alternatively, we may discard Equation
(8.17) and obtain the heat flux as the solution of Equation (8.16), which
may be written as

or, in differential form, as

(8.29)

At the base of the flow, vesc  v0 and the term in brackets is negative. This
means that in order to maintain an isothermal wind, energy must be
pumped into the flow along the way. As r increases, v increases while vesc
decreases, hence this term will monotonically increase (and will eventually
become positive). Thus F ≠ 0, and if, as expected, F = −f (T )dT /dr, where
f is some function of T, the isothermal case is not realistic, unless a driving
force operates that pushes the wind by doing work on it. Nevertheless,
detailed numerical and analytical studies of the wind problem show that it
is not so far from reality.

Exercise 8.2:  A polytropic wind is defined by the assumption

where K is a constant. Hence
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(a) Show that the solution to the wind velocity equation has the same form as that obtained for an
isothermal wind, with the isothermal sound speed replaced by

(b) Show that for γ = 5/3, one obtains F = constant, which means that the flow is adiabatic.

8.4  Mass loss estimates

Based on the isothermal wind solution developed in the previous section
we may attempt to evaluate the resulting mass-loss rates. Our free
variables are the stellar mass and the uniform temperature in the wind
region. At a given stage of evolution, the stellar mass determines the stellar
radius as well. On the main sequence, for example, relationship (7.36) may
be adopted, normalized by the solar values. For a red giant, an order of
magnitude estimate for the radius may be obtained using Equation (1.3),
where we may take the Eddington critical luminosity (5.37) as an estimate
for L, and – the radiation peaking in the red part of the black body
spectrum – we may use Wien’s law (1.4) to obtain an estimate for the
effective temperature, say, 4000 K.

With known M, R and T, the sound speed vs is known and the critical
radius rc may be calculated by Equation (8.24). We thus have the solution
v(r) by denormalizing the dimensionless relation y(x), the solution of
Equation (8.27). Since  is constant, it may be evaluated at
any point of the flow. To do so, however, we need to know the density at
that point.

In Section 3.7 we have encountered the concept of optical depth and its
relation to the stellar radius, the radius of the photosphere, where most of
the stellar radiation is emitted into space. Thus, the relation

used as the definition of the photospheric radius R, will supply ρ(R). The
density profile is given by Equation (8.28) in the form ρ = Cr−s, where C is
a constant, and 2 < s < 3 for the supersonic region (for most of the
subsonic region, 2 < s < 4). The opacity κ is a function of temperature and
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density, given generally by a power law of the form (3.63) and since the
temperature is constant and known, κ becomes a function of density only.
We thus obtain

(8.30)

where a = b = 0 for electron scattering, and a = 1, b = −7/2 for the Kramers
opacity law (3.65). The integral in Equation (8.30) may be performed to
yield

(up to a factor of order unity), from which ρ(R) is derived for given T . The
velocity at R is given by  for x = R/rc and thus  may be
evaluated at R.

Examples of such simple evaluations are shown in Figure 8.4 for several
stellar configurations: a main-sequence star of solar mass, a much more
massive main-sequence star, and a red giant of solar mass. We note that
the actual measured values of the solar wind, 

 and T ≈ 1.5 × 106 K, are not very far from
the curve of possible solutions, considering the very wide range of
variation of stellar mass-loss rates. The significant result is that during its
lifetime as a main-sequence star, the sun should lose an insignificant
amount of material particles, amounting to less than a thousandth of its
mass. In fact, the wind mass-loss rate during the main-sequence stage is
lower than the rate of mass loss due to conversion of mass into the energy
radiated away by the Sun, L c−2 = 6.7 × 10−14M yr−1.
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Figure 8.4  Estimated mass-loss rates for isothermal winds. Note the point corresponding to the
measured values of the solar wind.

Exercise 8.3:  Estimate the rate of mass loss from the Sun, if at Earth the measured velocity of
the solar wind is ~400 km s−1 and the proton density in the wind is roughly 7 particles per cm3.
Assume spherical symmetry for the wind expansion away from the Sun.

This is not the case for much more massive stars. For them, not only is
the wind rate orders of magnitude higher than the rate of conversion of
mass into radiated energy, but during the time spent on the main sequence,
the star is bound to lose a significant fraction of its mass. For the example
of Figure 8.4, the time spent by a 30 M  star on the main sequence is
shorter than the Sun’s by a factor of 302, according to relation (7.41), but
the mass-loss rate is higher by a factor ~107. Thus the total mass lost
during the main-sequence phase will be 104 times higher, hence of the
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order of solar masses. Similarly, a red giant – including the future Sun – is
bound to lose an appreciable amount of mass during the red-giant stage,
even if this stage of evolution lasts only a few thermal timescales.

Our evaluations are extremely crude, and the simple solutions obtained
may mislead us into underestimating the problem. Although the multiple
solution classes, the uniqueness of the viable wind solution and the
transonic property of the velocity variation with distance are common to a
much wider and less restrictive range of conditions, the mass-loss problem
is far from being solved. Complex cases and solutions are treated in books
devoted solely to stellar winds in general and the solar wind in particular;
they are beyond the scope of this text.

8.5  Empirical solutions

The simple cases that we have addressed have avoided the radiation flow.
We have found that energy must be continually supplied in order to
maintain or accelerate the wind out of the gravitational potential well of
the star. This is the crux of the problem.

Equation (8.15) shows that the velocity would easily increase with
distance, were the second term on the right-hand side vanishingly small.
This term vanishes when the radiation flux approaches the Eddington
limiting flux, that is, when the radiation pressure becomes dominant, or β
→ 0 in Equation (5.42). Thus, although the stellar-wind phenomenon is
not yet fully solved theoretically, it is well recognized that mass loss is
driven by the increasingly dominant radiation pressure, as the stellar
luminosity approaches the Eddington limit. The importance of radiation
pressure for the ejection of matter by novae was first acknowledged by
William McCrea, as early as 1937 in the context of nova outbursts, which
we shall encounter in Chapter 11. The idea was later pursued in a vast
number of analytical and numerical studies of steady winds. However, it is
not always necessary for the bulk luminosity to approach critical value and
thus disrupt hydrostatic equilibrium (see Section 5.5). Radiation pressure
is capable of accelerating material out of the stellar gravitational potential
well, even for an overall state of hydrostatic equilibrium, because material
particles vary widely in their ability to absorb radiation. While the
interaction of a particle with a gravitational field depends solely on the
particle’s mass, its interaction with a radiation field depends on its
composition, structure, size and density, as well as on the radiation
wavelength. Thus, if in the outer layers of a star there are such particles
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that are exceptionally absorbent at the leading wavelength of the photons –
as determined by the temperature – then for these particles the radiation
pressure might just overcome gravity. In other words, the high opacity
rather than the photon flux would cause κF /4πcGM in Equation (8.15) to
reach or exceed unity. The result would be an outward acceleration leading
to a mass outflow of such particles, and others entrained by them.

By a heuristic argument, at a mass-loss rate  driven by radiation
pressure, the mass  ejected during a time interval δt acquires escape
velocity by absorbing a fraction, say ϕ′, of the momentum carried by the
radiation (L/c)δt. Consequently,

and substituting  and ϕ = ϕ′/2, we may write

(8.31)

Thus the mass-loss rate must have the dimension of LR/GM and this is the
key to empirical formulae used to express . The transfer of momentum
from the radiation field to mass may be very complicated, involving
turbulence, shock waves or acoustic energy. The dimensionless coefficient
in parentheses is difficult to calculate theoretically, but it may be obtained
from the observed global properties of stars whose mass-loss rates can be
measured. We shall return to this point in the next chapter, where we
consider numerical stellar models in the light of observations.

Exercise 8.4:  (a) Estimate the mass-loss timescale, τm−l, and compare it with the thermal
timescale of a star. (b) Show that the rate of energy supply required for mass loss at a rate 
is a very small fraction of L. (c) Find the relation between the mass-loss timescale and the
nuclear timescale of the star and show that, usually, τm−l < τnuc.

Exercise 8.5:  Assuming that the mass-loss rate may be parametrized as in Equation (8.31): 
 show that for main-sequence stars  and evaluate α.
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9

The evolution of stars – a detailed picture

This chapter differs from previous ones by being descriptive rather than
analytical. An account will be given of the evolution of stars as it emerges
from full-scale numerical calculations – solutions of the set of equations
(2.54), with accurate equations of state, opacity coefficients and nuclear
reaction rates. Such numerical studies of stellar evolution date back to the
early 1960s, when the first computer codes for this task were developed.
The first to program the evolution of stellar models on an electronic
computer were Brian Haselgrove and Hoyle in 1956. They adopted a
method of direct numerical integration of the equations and fitting to outer
boundary conditions. A much better suited numerical procedure for the
two-boundary value nature of the stellar structure equations (essentially a
relaxation method) was soon proposed by Louis Henyey; it is often
referred to as the Henyey method and it has been adopted by most stellar-
evolution codes to this day. Among the numerous calculations performed
by many astrophysicists all over the world since the early 1960s, the lion’s
share belongs to Icko Iben Jr. The detailed results of such computations
cannot always be anticipated on the basis of fundamental principles, and
simple, intuitive explanations cannot always be offered. We must accept
the fact that, being highly nonlinear, the evolution equations may be
expected to have quite complicated solutions.

As the complete solutions of the evolution equations provide, in
particular, the observable surface properties of stars, we shall focus in this
chapter, more than we have previously done, on the comparison of
theoretical results with observations. The ultimate test to the stellar-
evolution theory is the understanding of the H–R diagram in all its aspects
(described briefly in Chapter 1). We thus expect to find stars in the H–R
diagram where theoretical models predict them to be. Moreover, the basic
statistical principle mentioned in Chapter 1 should apply: the longer an
evolutionary phase of an individual star, the larger the number of stars to
be observed in that particular phase. A detailed comparison between
theoretical predictions and observations is thus possible for long
evolutionary phases, such as core-hydrogen burning and, to a lesser extent,
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core-helium burning. Proceeding to advanced evolutionary stages, neutrino
emission from the dense, hot cores of massive stars, acting as an efficient
energy-removing agent, accelerates the rate of evolution by requiring an
enhanced rate of nuclear energy supply. Hence the weak nuclear fuel (from
carbon to iron, the amount of energy release per unit mass of burnt
material is relatively small) is quickly consumed. Consequently, the
probability of detecting stars during these brief evolutionary phases is low.
Cooling, following the completion of nuclear burning in relatively low-
mass stars, is again a slow process, but cooling stars – white dwarfs –
become gradually fainter and more difficult to detect.

9.1  The Hayashi zone and the pre-main-sequence phase

Chapter 7 dealt with the evolution of stars by following the path of the
stellar centre in the (log T, log ρ) plane. The present chapter, focusing on
the stellar surface, follows evolutionary tracks in the (log Teff, log L) plane,
the theorists’ H–R diagram. In the (log T, log ρ) plane we found zones of
instability, which have constrained the evolutionary paths of stars. We
shall now show that the (log Teff, log L) plane has its own ‘forbidden
zone’. It is known as the Hayashi forbidden zone and its boundary as the
Hayashi track, after Chushiro Hayashi, who was the first to point out and
study this type of instability in the early 1960s. The forbidden zone’s
boundary is determined by the hypothetical evolution of a fully convective
star.

Consider a fully convective star of mass M, where convection reaches
out to the stellar photosphere. In Section 6.6 we showed that in a
convective zone the temperature gradient is very closely adiabatic. On the
one hand, even a slight superadiabaticity gives rise to high heat fluxes
which reduce the temperature gradient. On the other hand, subadiabaticity
quenches convection and reduces the heat flux; as a result, the temperature
gradient steepens. Therefore, if convection persists, the temperature
gradient remains very close to the adiabatic. Neglecting the mass and
thickness of the photosphere with respect to the stellar mass M and radius
R, we may adopt a very simple description for the interior of a fully
convective star as a polytrope of index n = (γa − 1)−1,

(9.1)
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(see Section 5.3). The coefficient K is related to M and R by Equation
(5.23):

(9.2)

the constant Cn depending on n,  We have one free

parameter, the value of R, which will be determined by joining the fully
convective interior to the radiative photosphere at the boundary r = R. The
ability of the photosphere to radiate the energy flux crossing this boundary
will depend on the change in density, temperature and pressure across it.
Hydrostatic equilibrium requires

(9.3)

and integrating from R, where the pressure is PR, to the point where the
pressure vanishes, or, for simplicity, to infinity, we obtain

(9.4)

The temperature at R is the effective temperature of the star, satisfying 
 The optical depth of the photosphere is of the order of

unity (see Section 3.7), the exact value depending on the type of solution
of the radiative transfer equation. Thus 
where  is the opacity averaged over the photosphere. Taking  to be the
opacity at R and expressing it as a power law in density ρR and temperature
Teff of the form (3.63), we have, as a crude approximation,

(9.5)

Combining Equations (9.4) and (9.5) we obtain

(9.6)
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A further relation among pressure, density and temperature at R is
provided by the equation of state, for which we adopt the simplest case of
an ideal gas and negligible radiation pressure, Equation (3.28), 

 We thus arrive at a set of four equations, all in the
form of products of powers of physical quantities, which are easily solved
when turned into linear logarithmic equations:

(9.7)

(9.8)

(9.9)

(9.10)

By eliminating log R, log ρR and log PR, we obtain a relation between log
L, log Teff and log M, in the form

(9.11)

(9.12)

which traces a line in the (log Teff, log L) diagram, the Hayashi track, for
each value of M. These tracks play a similar role to that of the ΨM tracks in
the (log T, log ρ) plane, but they cannot be taken to represent evolutionary
paths, as their ΨM counterparts, because the assumptions on which they
were derived are not generally valid. They represent asymptotes to
evolutionary paths, as we shall show shortly.
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To simplify the discussion, we assume a = 1, which is a reasonable
approximation. The power b, however, may assume a wide range of
values, mostly positive (as seen from Figure 3.3), because photospheric
temperatures are relatively low. The coefficients (9.12) thus reduce to

(9.13)

In addition, we recall that the polytropic index is constrained by dynamical
stability to n < 3 (Section 6.3), and hence overall 1.5 ≤ n < 3. The first
conclusion to be drawn from Equations (9.11) and (9.13) is that the slope
of the Hayashi track is extremely steep. For b = 4 and n = 1.5, typical of
low temperatures, we obtain A = 20 – an almost vertical line.
Consequently, tracks corresponding to different stellar masses are close to
each other, with larger values of M shifting the lines always to the left.
This is because sgn[B] = −sgn[A], and hence for A > 0 a higher M lowers
the line, while for A < 0, a higher M raises it. (We recall that in the H–R
diagram, the effective temperature increases leftward.) We further note
that the slope changes sign for n > 2. Thus, for example, the slope will be
differently inclined for a photosphere of atomic hydrogen (n = 1.5) and
one of molecular hydrogen (n = 2.5). Accurate calculations of convective
stellar models show that the Hayashi track corresponding to a given M
changes slope, bending slightly to the left at low L and shifting to the right
at large L.

In order to understand the significance of Hayashi tracks, we
characterize a star by a unique value , obtained by averaging 
over the entire star. Similarly,  denotes the average adiabatic exponent.
For a fully convective star, we obviously have  If the star has
radiative zones, then in some regions γ < γa, and hence  The
corresponding average polytropic index n for such stars satisfies n > na,
where na is taken to denote the adiabatic polytropic index that defines the
Hayashi track. Therefore,  or n < na, can only arise from
superadiabaticity, which is unstable and hence ‘forbidden’. Now, consider
a star of mass M and luminosity L, whose configuration can be described,
as above, by a polytrope overlaid by a photosphere. How would its
effective temperature change with the polytropic index n? To answer this
question, we have to reconstruct Equations (9.7)–(9.10), taking account of
the dependence of the constants (on the right-hand sides) on the polytropic
index, in order to obtain the function log Teff(n). When this tedious task is
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accomplished, the result is d log Teff/dn > 0. Consequently, the forbidden
zone corresponding to n < na lies to the right of the Hayashi tracks in the
H–R diagram.

The role of Hayashi tracks and forbidden zone is best illustrated by the
premain-sequence evolution of stars. The very beginning of a star’s life is
marked by a rapid collapse of an unstable gaseous cloud. The initiation of
such a collapse being a galactic, rather than a stellar process, will be
discussed in Chapter 12. At first, the material is transparent, but as it
condenses and its temperature rises, it eventually becomes opaque. The
interior is now shielded and the boundary layer from which radiation
escapes defines a discernible object which will become a star. This occurs
at densities of about 10−10–10−9 kg m−3 and temperatures of a few hundred
degrees Kelvin. Under such conditions hydrogen is in molecular (H2)
form. The gas is too cold to resist the gravitational force and contraction
proceeds, essentially as radial free fall, on the dynamical timescale (of the
order of  Equation (2.57)). We note that this timescale is
considerably longer than that typical of mature stars, densities being so
much lower. The rising gas temperature becomes, eventually, high enough
for dissociation of the hydrogen molecules to take place, then for
ionization of the hydrogen atoms and, finally, for ionization of the helium
atoms. All these processes absorb a vast amount of energy, which is
supplied by the gravitational energy released in contraction. The gas
temperature is now prevented from further increase, much in the same way
as the temperature of boiling water remains constant, although energy is
continually supplied to it to keep it boiling. Thus free fall continues
throughout these stages. When ionization of hydrogen and helium is
almost complete, the gas temperature increases again due to the release of
gravitational energy. There comes a time when it generates sufficient
pressure to oppose the gravitational pull and a state of hydrostatic
equilibrium is established. The gaseous condensation has now become a
protostar.

A rough estimate of protostellar characteristics may be obtained by
assuming that all the gravitational energy released in collapse to the
protostellar radius Rps practically from infinity, αGM2/Rps, was absorbed in
dissociation of molecular hydrogen and ionization of hydrogen and
helium, although in reality a fraction was emitted as radiation. Denoting by
χH2 the dissociation potential of H2 (4.5 eV), by χH the ionization potential
of hydrogen (13.6 eV) and by χHe the total ionization potential of helium
(79 eV = 24.6 eV + 54.4 eV), we have
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(9.14)

and taking Y ≈ 1 − X and  we obtain

(9.15)

The protostar being in hydrostatic equilibrium, an average internal
temperature may be estimated from the virial theorem, as in Section 2.4
(Equation (2.29)). Using approximation (9.15) with X ≈ 0.7, we obtain

(9.16)

independent of the stellar mass. At this temperature the opacity is still very
high (see Figure 3.3), the flow of radiation is hindered, and hence the
protostar is fully convective. This is the starting point of the Hayashi
evolutionary phase. In the (log Teff, log L) diagram the star descends along
its Hayashi track at almost constant effective temperature, its radius
decreasing steadily and its luminosity decreasing, roughly as R2. In time,
as the internal temperature continues to rise, ionization is completed and
the opacity drops. The convective zone recedes from the centre and the
star moves away from the Hayashi track toward higher effective
temperatures. The increasing core temperatures cause nuclear reactions to
start, slowly at first, far from thermal equilibrium, but gaining in intensity.
This causes the stellar luminosity to reverse its trend and start rising. The
evolution toward thermal equilibrium is complicated by the gradual
ignition of different reactions of the hydrogen-burning chains. This is
illustrated in Figure 9.1 by the winding paths traced by stars of various
masses in the (log Teff, log L) diagram, obtained from detailed
evolutionary calculations. The corresponding time intervals are listed in
Table 9.1.
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Figure 9.1  Evolutionary paths in the H–R diagram for stars of different initial mass (as marked)
during the pre-main-sequence phase. The shade of segments is indicative of the time spent in
each phase, ranging from less than 103 yr (light) to more than 107 yr (dark), as given in Table 9.1
(adapted from I. Iben Jr. (1965), Astrophys. J., 141).

Table 9.1  Evolutionary lifetimes (years)
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Note: powers of 10 are given in parentheses.

The relevant timescale throughout the protostellar stages is the relatively
short Kelvin-Helmholtz (thermal) timescale given by Equation (2.59).
Stars in the pre-main-sequence evolutionary phase are hard to detect not
only because they are scarce, this phase being relatively short, but also
because they are still shrouded in the remains of the cloud out of which
they were formed. The less massive among them, which evolve more
slowly, appear as highly variable mass ejecting objects, known as T Tauri
stars. They are surrounded by circumstellar discs, probable sites of planet
formation, which are estimated to dissipate on timescales of up to 107 yr.
An example of jets of material ejected by a young star hidden in a nebula
of gas and dust is shown in Figure 9.2.
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Figure 9.2  Jet of gas, one-half ly long, ejected by a young star, bursting out of a dark cloud of
gas and dust that hides the star (photograph by J. Morse (STScI), with NASA’s Hubble Space
Telescope).

Only on the main sequence will the evolutionary timescale finally shift
to the nuclear one and will stars become numerous. Contraction toward the
main sequence takes up less than 1% of a star’s life; in contrast, the star
will spend about 80% of its life as a main-sequence star. For example, a
star of 1M  spends 3 × 107 yr contracting prior to hydrogen ignition, in
contrast to the 1010 yr it spends burning hydrogen in the core. For initially
more massive stars the timescales shrink significantly: thus for a 9M  star
the contraction phase takes only about 105 yr, and the main-sequence
phase 2 × 107 yr.

9.2  The main-sequence phase
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All stars undergo the main-sequence phase, characterized by core-
hydrogen burning. The major product is helium, but other important
isotopes are synthesized during the main-sequence phase as well, such as
nitrogen, resulting from proton capture on carbon nuclei in the stellar core,
and the rarer isotopes 3He and 13C, produced in cooler regions, outside the
core. In the course of this long phase there is ample time for the stellar
configuration to achieve both hydrostatic and thermal equilibrium and
‘forget’ its former structure and evolutionary phases. Thus the main
sequence may be regarded as the starting point of stellar evolution;
fortunately so, for the earlier stages of evolution are less well understood,
partly perhaps because the guidance provided by observations is restricted
by the short duration of these phases.

The nuclear energy generated in the hydrogen-burning core is
transported outward by radiation or by convection. In low-mass stars (M 
0.3M ) the main means of energy transfer is convection, these stars being
fully convective (except for the photosphere, of course), as we have
anticipated in Section 6.6. In the H–R diagram they are found in the region
where the Hayashi track meets the main sequence. More massive stars
have smaller and smaller outer convective zones; in the Sun, for example,
the convective zone extends over only about 2% of the solar mass below
the photosphere. Stars more massive than the Sun, which burn hydrogen
predominantly by the temperature-sensitive CNO cycle, develop
convective cores, while the envelopes are in radiative equilibrium. The
main sequence emerging from complex stellar-model calculations is
shown in Figure 9.3, with masses marked along it. The extent of
convective zones is shown in Figure 9.4.
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Figure 9.3  Correlation between luminosity and effective temperature obtained from model
calculations of hydrogen-burning stars of solar composition and various masses and the resulting
main sequence in the H–R diagram (adapted from R. Kippenhahn and A. Weigert (1990), Stellar
Structure and Evolution, Springer-Verlag).

Figure 9.4  The extent of convective zones (shaded areas) in main-sequence star models as a
function of the stellar mass (adapted from R. Kippenhahn and A. Weigert (1990), Stellar
Structure and Evolution, Springer-Verlag).

It is important to stress that the composition throughout a convective
zone is uniform, as a result of continual mixing, even if the nuclear
reaction rates are not. As a result, hydrogen-burning products migrate to
cooler regions of the star, where they could not have been found otherwise.
And there they remain, even when the central convective zone shrinks or
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disappears altogether. Later on, when the stellar envelope will, eventually,
become convective, its inner boundary overlapping the outer boundary of
the formerly convective core, hydrogen-burning products will make their
way to the surface of the star, where they can be observed in the spectrum.
This effect of consecutive, overlapping convecting zones, leading to the
dredge-up of processed material to the surface, enables us to infer the
occurrence of nuclear burning processes in the shielded stellar cores. Thus
the detection in spectra of evolved stars of heavy elements and isotopic
ratios that are different from those of young stars constitutes another
crucial test, as well as guide, to the theory of stellar evolution. Although
there is ample observational evidence that indirectly validates the theory of
nuclear energy generation in stellar interiors, great efforts are devoted to
testing it directly. Experiments aiming to test the very hydrogen-burning
process taking place in the core of the Sun will be described in the next
section.

One of the salient features of stellar evolution is mass loss. As we have
seen in the previous chapter, stars lose mass at all evolutionary stages,
including the main sequence, and the rates of mass loss vary over a very
wide range. On the lower main sequence the mass-loss rate is so slow as to
have no discernible effect on the stellar mass. As shown in Section 8.4, the
solar wind, for example, removes mass from the Sun at a rate of a few
~10−14M  yr−1, which will amount to less than 1/1000 of the Sun’s mass at
the completion of its main-sequence phase. As we go from low-mass to
massive stars, the wind becomes more intense. As a result, although the
main-sequence lifespan decreases rapidly with increasing stellar mass, the
evolution pace of massive stars, which shed a considerable fraction of their
mass by the wind, slows down compared with the evolutionary rate of
these stars had they conserved their mass. To illustrate this effect we
define a parameter α by

We have seen in Chapter 7 that evolutionary timescales are determined by
the stellar mass, as they are inversely proportional to the square (or a
higher power) of the mass. Solar models are calibrated by requiring them
to reproduce the solar radius and luminosity at the present age of the Sun,
which is independently known from geologically based estimates of the
age of the Earth. This calibration is used for computing the main-sequence
phase of stars over a wide range of masses. The main-sequence lifetimes
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of stars within the initial mass range 0.1M  ≤ M ≤ 25M  are listed in
Table 9.2 and are marked onto the main sequence in Figure 9.5, along with
the corresponding stellar masses. The values of α are listed in the third
column of Table 9.2: |α| is not constant; for relatively large M, it decreases
with increasing M. We note the large span of main-sequence ages: at the
lower end of the main sequence they exceed by far the age of the universe;
by contrast, at the upper end, they become shorter than the thermal
timescale of the Sun.

Table 9.2  Main-sequence lifetimes

Figure 9.5  The main-sequence lifespan for stars of different masses marked along the main
sequence in the H–R diagram (see Figure 9.3), which may be used to determine stellar-cluster

207



ages according to the main-sequence ‘turnoff point’.

Consider now a stellar cluster, which is, essentially, a large group of
stars born at the same time, more or less. The age of the cluster will show
on its H–R diagram as the upper end of the main sequence, or the turnoff
point: stars within the cluster, with masses corresponding to main-
sequence lifetimes shorter than the cluster’s age, would have already left
the main sequence toward the red giant branch. In other words, such stars
would have consumed the hydrogen supply of their cores, the cores
contracting toward the next burning stage (or toward becoming white
dwarfs). Clearly, stars with main-sequence lifetimes longer than the
cluster’s age will still dwell on the main sequence of the H–R diagram. We
are thus provided with a reliable tool (a clock) for measuring the age of
star clusters, as illustrated in Figure 9.5, where superimposed on the clock
are the H–R diagrams of different clusters. The oldest cluster provides a
lower limit to the age of the galaxy within which it resides and to the age
of the universe itself.

Note: The main sequence of stellar clusters serves not only as a time instrument but also as an
instrument for distance determination. The H–R diagram obtained directly from observations has
the measured apparent brightness, defined by Equation (1.1), instead of the luminosity as ordinate.
Since, on the logarithmic scale, this translates into a uniform vertical shift of magnitude log(4πd2),
matching such a diagram with the calibrated one enables the determination of the shift, and hence of
the distance to the cluster. As the lower main sequence is the most populated region of the H–R
diagram of any cluster, the matching procedure relies mainly on the main sequence and thus this
method of distance determination (which, in reality, is complicated by such factors as metallicity
and interstellar absorption, Chapter 12) is called main-sequence fitting.

Stars of all masses partake in the main-sequence phase, but subsequent
evolution differs for stars of different masses. In what follows we shall
distinguish between stars whose main-sequence lifespan exceeds the
present age of the universe (according to latest estimates, ~1.4 × 1010 yr)
and stars that could have evolved off the main sequence, were they born
early enough. Stellar models yield the upper mass limit for stars that are
still on the main sequence (even if they are as old as the universe) at 0.7M

. Due to their low surface temperature and thus reddish colour, these stars
are also known as red dwarfs. Stars of mass M > 0.7M  may be divided in
turn into two subgroups according to their mass: those with initial masses
below 9–10M , and the rest, with the former ending their lives as white
dwarfs (after shedding a considerable fraction of the initial mass) and the
latter undergoing supernova explosions. The former fall into low-mass
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stars (0.7  M  2M ) and intermediate-mass stars (2  M  9–10M ),
and the latter (>10M ) are known as massive stars. The distinction
between low-mass and intermediate-mass stars is based on the way of
helium ignition in the core, that is, whether or not it occurs under
degenerate conditions.

We now make a short digression from the course of stellar evolution to
address the crucial issue of solar neutrinos.

9.3  Solar neutrinos

Since the mean free path of photons in stars is barely 1 cm, stellar cores,
where nuclear reactions take place, cannot be directly observed. We infer
the occurrence of nuclear reactions from the fact that stars shine and that
their luminosities are well predicted by the theory of stellar evolution
based on nuclear energy generation, and also from the variety of surface
abundances and isotopic ratios. However, a direct test of the theory would
be possible by devising means of capturing neutrinos that are expelled in
nuclear reactions. For them, the mean free path exceeds stellar dimensions
by about ten orders of magnitude. But if matter is so utterly transparent to
these elusive particles, how can we expect to capture them? It turns out
that a tiny fraction of the immense neutrino flux from the Sun (the nearest
source) that sweeps the Earth can be captured by very ingenious
experimental devices.

The energy generation process put to the test is thus the fusion of four
protons into a helium nucleus, emitting two positrons and two neutrinos,
and liberating thermal energy

where Q ≈ 25 MeV after subtracting the average energy removed by the
neutrinos. The number of neutrinos emanating from the Sun per second
can be easily derived: 2L /Q ≈ 2 × 1038 s−1. In the Sun, hydrogen burning
proceeds mainly through the p − p reaction chain (described in Section
4.3), which is, in fact, the most common energy-generating process in
stars. The chain, as we know, has three branches, involving three neutrino-
emitting reactions. Due to the branching ratios of the p − p chain, the
neutrinos emitted in each case have widely different fluxes, and also
different energies, as given in Table 9.3. The branching ratios are directly
related to the core-temperature profile in the Sun (and vary from star to
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star). Now, the probability of absorption of a neutrino – small as it may be
– increases with increasing energy; hence the easiest to detect would be the
8B neutrinos, which have the highest energies.

Table 9.3  Properties of solar neutrinos

Exercise 9.1: Using the data of Table 9.3, calculate the following: (a) the branching ratios of
the p − p chain; (b) the neutrino luminosity of the Sun; and (c) the range of neutrino emission
(particles per second) that would be expected, if the branching ratios of the p − p chain were
not known.

Indeed, the 8B neutrinos were the main target of the first neutrino
experiment, started in the early 1960s by Raymond Davis with the support
of John Bahcall on the theoretical side. The experiment was turned on in
1967 and ran continuously for almost thirty years. The basic principle is
the capability of 37Cl (a rare chlorine isotope), to absorb a high-energy
neutrino and produce 37Ar, a radioactive isotope of argon,

which subsequently decays, having a half-life of 35 days. Eventually, if the
chlorine is exposed for a sufficiently long time, equilibrium is achieved
between the production and destruction of argon. The equilibrium
abundance of 37Ar isotopes can be used to derive the flux of highly
energetic neutrinos. As the threshold energy of the reaction is 0.8 MeV,
these are mostly 8B neutrinos; only a small fraction (~1/6) may result from
7Be. To grasp how formidable this experiment was, we should mention
that it involved a huge tank containing about 600 tons of C2Cl4 fluid (an
ordinary cleaning fluid) placed in the abandoned 1500 m-deep Homestake
gold mine in South Dakota, shown in Figure 9.6. (The experiment had to
be conducted deep underground in order to avoid background noise caused
by cosmic ray particles.) The equilibrium abundance of argon atoms was
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no more than a few tens among the ~2 × 1030 chlorine atoms in the tank!
Nevertheless, the radioactive argon atoms could be extracted and, by
means of a Geiger counter, counted. The inferred neutrino flux being about
a factor of 2 to 3 lower than predicted by solar models for the same energy
range constituted what has been known for many years as ‘the solar
neutrino problem’.

Figure 9.6 The Homestake-mine experiment (a) (photograph by courtesy of the Brookhaven
National Laboratory) and the SNO detector (b) (photograph by courtesy of Ernest Orlando
Lawrence Berkeley National Laboratory).

The persisting puzzle prompted further investigation, always on a grand
scale, as demanded by the difficulty of neutrino detection. Thus other
experiments aiming at the 8B neutrinos followed: the Kamiokande II in the
mid 1980’s, and its successor, the Super Kamiokande, about ten years
later, and still operating. The latter consists of a big tank – 40 m in
diameter and 40 m high – containing 50 000 m3 of very pure water, of
which about half is used for the experiment itself, with the other half
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surrounding and shielding it. The tank is placed in the Kamioka Mozumi
mine in Japan, at a depth of more than 1000 m. Its walls are lined with
some 11 000 very sensitive light detectors – photomultiplier tubes –
capable of detecting single photons. (The earlier version used a smaller
amount of water and yielded somewhat less accurate results.) The
experiment is based on neutrino-electron scattering reactions,

which produce electrons moving with a speed that surpasses the speed of
light in water (but is less than the speed of light in vacuum). Such
electrons radiate energy, known as Cherenkov radiation, an effect that
resembles a shock wave produced by an aircraft moving at supersonic
speed. This radiation hits the detectors on the tank walls. The threshold
energy of this experiment is close to 7 MeV, and hence it is only sensitive
to the more energetic among 8B neutrinos. The number of events per day is
less than 20. In principle, if one knows the neutrino flux detected by the
Kamiokande experiment, one can predict from the energy distribution of
the 8B neutrinos the flux that should be detected by Davis’s chlorine
experiment. This was found to be higher than the flux actually detected,
which further complicated ‘the solar neutrino problem’.

The remarkable achievement of the Kamiokande experiments is to have
established that the detected neutrinos do indeed come from the Sun. The
observed directions of the scattered electrons, which recoil in the direction
of the scattering neutrinos, are found to trace out accurately the position of
the Sun in the sky.

The disadvantage of both the chlorine and the water-Cherenkov
experiments was that they tested a rather insignificant branch of the p − p
chain. The bulk of solar neutrinos are the low energy ones produced by the
fusion of two protons into deuterium. As it turns out, such neutrinos can
interact with gallium

the threshold energy being only 0.23 MeV, to produce radioactive
germanium, which has a half-life of 11.4 days and decays back to gallium.
Two experiments based on this reaction were soon designed: one named
SAGE – a Russian (formerly Soviet)-American collaboration – in an
underground excavation in the Caucasus region of Russia, and another
named GALLEX – a primarily European collaboration – in an
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underground laboratory in Gran Sasso, Italy. Both operated between 1990
and 2006. SAGE used 60 tons of metallic gallium (more than the amount
produced worldwide in a year!); GALLEX used half this amount in an
aqueous solution. Similar to the method used in the chlorine experiment,
the way of detecting the neutrinos was to collect and count the radioactive
atoms in the target. More than half the neutrinos detected in these
experiments came from the p + p reaction, providing for the first time
unambiguous confirmation of hydrogen fusion at the centre of the Sun.
The comparison with theoretical predictions was significantly improved.
The experimental results now came within ~65% of the solar model
predictions, and the discrepancy diminished as more data accumulated and
more refined effects were included in these models (such as diffusion,
improved methods of dealing with convection, better opacities).

This was the situation close to the turn of the millennium: solar
neutrinos had been observed in five different experiments, with the
expected energies and roughly, but not quite, the expected fluxes.
Moreover, it was unequivocally confirmed that their source was the Sun.
We might safely claim that the main goal of the neutrino-detection
experiments – the validation of the theory concerning the nuclear engine
that powers the Sun and stars – had been attained. But the discrepancy
between detected and predicted neutrino fluxes, even if smaller than at the
onset of the Davis experiment, was still nagging. The quest for a solution
thus continued.

The solution to the solar neutrino problem and with it, strong indication
for ‘new physics’, was soon to be found, provided by new experiments,
even more sophisticated and sensitive than those just described. The first
experiment of this kind, named SNO (for Sudbury Neutrino Observatory),
was designed to detect solar neutrinos through their interaction with
deuterium nuclei and electrons present in salt heavy water, based again on
Cherenkov radiation. The spherical detector, shown in Figure 9.6, was
placed 2000 m below ground in the Creighton Mine located in Ontario,
Canada, and filled with 1000 tons of salt heavy water. It was surrounded
by clean water that served as shield and by almost 10 000 photomultiplier
tubes. The special advantage of this experiment was its sensitivity to
different kinds of neutrinos, as besides the common electron neutrino,
there are two more types associated with two other kinds of leptons, the
muon and the tau. In 2001–2002 it provided the first evidence of
transitions between the different kinds (neutrino oscillations), which not
only paved the way to the solution of the solar neutrino problem, but also
indicated that neutrinos have mass, and placed constraints on its
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magnitude. Very briefly, while the earlier experiments were sensitive to
electron neutrinos only – the kind that is released in the nuclear reactions
of the p − p chain – a fraction of these neutrinos decayed to other types
before reaching the detectors and thus escaped detection, which explains
the apparent deficiency in the neutrino flux. For these transitions to be
possible, neutrinos must possess mass.

The SNO experiment was terminated in 2006 and soon after that, in
May of 2007, another experiment was launched at the same underground
laboratory in Gran Sasso that had housed the GALLEX experiment. It is
called BOREXINO and its goal is to measure the 7Be neutrinos from the
Sun not targeted in the other experiments, which makes it a low-energy
experiment (see Table 9.3). The detector core is a transparent spherical
vessel 8.5 m in diameter, filled with 300 tons of a liquid scintillator and
surrounded by 1000 tons of a high-purity buffer liquid. The
photomultipliers are supported by a stainless steel sphere, which also
separates the inner part of the detector from the external shielding,
provided by 2400 tons of pure water.

Several other neutrino experiments are currently operating, among them
the KamLAND in Kamioka, and MINOS – at the Fermilab of the
University of Chicago; still others are being designed and planned. But
they are now drifting away from the ‘solar neutrino problem’, heading
towards new particle-physics theories, imposed by the neutrino mass.

Note: The 30-years long Homestake Experiment earned Raymond Davis the Nobel Prize for
physics for 2002, which he shared with Masatoshi Koshiba, who worked on the Kamiokande and
Super-Kamiokande experiments, and with Riccardo Giacconi. The prize was awarded for
pioneering contributions to astrophysics, Davis and Koshiba for the detection of cosmic neutrinos,
and Giacconi for having led to the discovery of cosmic X-ray sources. Davis was almost 88 years
old at the time, making him the oldest ever recipient of a Nobel Prize. His collaborator on the solar
neutrino experiment, John Bahcall, was awarded the Dan David prize for cosmology and astronomy
the next year, and summed up the extraordinary achievement of the persistent and unrelenting effort
devoted to the neutrino experiments with the words: ‘I am amazed that flashes of light in a mine,
the temperature of the Sun, and the properties of neutrinos can be linked in such a beautiful way.’

9.4  The red giant phase

As the main-sequence phase advances, a hydrogen-depleted core grows
gradually in mass. Hydrogen burning proceeds in a shell surrounding the
core, which separates it from the envelope. Since the core is now devoid of
energy sources, the heat flow through it falls to zero (from Equation (5.4),
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F = ∫ q dm → 0) and with it the temperature gradient decreases (Equation
(5.3)). Thus, as the burning shell moves outward, the core becomes
isothermal while its mass increases. We shall now show that an isothermal
core of ideal gas cannot have an arbitrarily large mass: given the stellar
mass M, an upper limit exists for the core mass Mc, beyond which the
pressure within the core is incapable of sustaining the weight of the
overlying envelope. Mario Schönberg and Chandrasekhar were the first to
point out and derive the limiting mass from model calculations in 1942,
and this type of dynamical instability is therefore known as the Schönberg-
Chandrasekhar instability. It can be easily understood on the basis of the
virial theorem (Section 2.4) – as McCrea showed 15 years later, although
in a completely different context (McCrea was studying star formation by
gravitational collapse).

Denoting the core radius by Rc, its volume by Vc, the mean molecular
weight within it by µc, and the temperature by Tc, we have from Equation
(2.24)

(9.17)

where Ps is the pressure at the core’s boundary. Now, for an ideal
isothermal gas,

(9.18)

Substituting relation (9.18) and  into Equation (9.17), we
obtain

(9.19)

For a given core mass, the pressure at the core boundary increases with the
core radius from Ps = 0 at

(9.20)
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to a maximum value Ps,max at

(9.21)

obtained by setting dPs/dRc = 0. A core of radius Rc < R0 would collapse
under its own gravity, without any external pressure. For a core of radius
Rc > R1, the pressure at its boundary would be smaller than Ps,max. Thus
the maximal pressure that can be attained at the core boundary as a
function of the core mass is

(9.22)

This pressure, exerted by the gas within the core, must balance the
pressure Penv exerted by the envelope. To estimate the latter, we may
assume the core to be a point mass (Rc  R) and make use of inequality
(2.18) obtained in Section 2.3: Penv > GM2/8πR4. Obviously, if Ps,max <
GM2/8πR4, no equilibrium configuration would be possible. Hence the
stability condition for an isothermal core is

(9.23)

Still regarding the core as a point mass, we may use homology relation
(7.33) of Section 7.4, with µenv denoting the mean molecular weight of the
envelope,

to eliminate Tc and R in condition (9.23). The stability condition thus
becomes

(9.24)
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Schönberg and Chandrasekhar arrived at this result with the dimensionless
constant of 0.37. Assuming a solar composition for the envelope and a
mostly helium composition for the core, we have by Equations (3.29),
(3.26) and (3.18) µenv  0.6 and µc  1, leading to Mc/M  0.13. When
the mass of the hydrogen-depleted core reaches this limit, the core starts
contracting rapidly.

Main-sequence stars more massive than about 2M  have homogeneous
convective cores surpassing the critical limit, as shown in Figure 9.4. Once
hydrogen is exhausted in such a core, energy generation subsides,
convection is quenched, and the core becomes isothermal. Since its mass is
already greater than the Schönberg-Chandrasekhar limit, the dynamically
unstable core starts collapsing. In time, it acquires the temperature gradient
necessary for balancing gravity. The temperature gradient causes loss of
heat and hence core contraction and the increase in temperature that goes
with it continue, but on a thermal (Kelvin-Helmholtz) timescale.

When hydrogen burning in the core ceases, thermal equilibrium is
destroyed and for a brief period of time the stellar energy decreases (L >
Lnuc). However, as hydrogen burning shifts from the core to a shell
surrounding it, and as the temperature in this shell rises with the rising core
temperature, the nuclear energy generation rate soon increases again. But
since hydrogen is burnt by the CNO cycle, whose rate varies as a very high
power of the temperature (see Section 4.4), the energy-production rate is
accelerated beyond thermal equilibrium and during most of the core-
contraction phase the stellar energy increases (Lnuc > L). This is illustrated
in Figure 9.7(a), where the change with time of the total energy of a 7M
star model is plotted, beginning at the end of the main sequence and
ending on the red giant branch. Core contraction is thus necessarily
accompanied by expansion of the envelope (see Section 7.5), as illustrated
in Figure 9.7(b), and the star becomes a red giant, moving to the right in
the H–R diagram, as shown in Figure 9.7(d). Overall, the transition from a
main-sequence to a red-giant configuration is characteristically of short
duration, and hence the probability of detecting stars undergoing this
transition is vanishingly small. This is the reason for the conspicuous gap
between the main sequence and the red giant branch in the H–R diagram,
known as the Hertzsprung gap.
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Figure 9.7  Evolution of an intermediate-mass star (7M ) during the crossing of the Hertzsprung
gap: (a) total energy as a function of time (the time is arbitrarily set to zero at the onset of core
contraction); (b) central density and average density (3M/4πR3) as a function of time; (c):
evolutionary track in the H–R diagram (where lines of equal radius are marked); (d): changing of
central temperature with effective temperature.

Note: The question ‘How does a star become a red giant?’ constitutes a long-standing puzzle. But
the puzzle is connected not so much with the physics of red giants as with our perception of
understanding a phenomenon. We may claim to understand a physical process in the following
cases: (a) if we can lay down the physical principles governing it; (b) if we can write down the
equations describing it and solve them; (c) if we can explain the process in simple terms, step by
step. Of course, if all three conditions are fulfilled, the process may be considered well understood.
But in fact, condition (b) alone suffices. This is the case with red giants: all numerical computations
of the evolutionary phase following hydrogen exhaustion in the core obtain red giant configurations
as solutions of the stellar-evolution equations. Moreover, the simple explanation offered in Section
7.5 points out the virial theorem as the basic principle involved, given the contraction of the core –
thus satisfying condition (a). Nevertheless, we feel uncomfortable in accepting these solutions so
long as condition (c) is not satisfied. We would like to be able to identify the precise mechanism
that drives a star to become a red giant. However, this last condition is not always considered
imperative for understanding a physical process. For example, we understand and explain the
outcome of a collision of two rigid balls on a smooth surface in terms of conservation of momentum
and energy, without bothering about the exact manner in which momentum is transferred from one
ball to another during their brief contact. And yet we still worry about red giants . . .
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As the helium core grows in mass by hydrogen burning in the shell
outside it, it continues to contract, liberating gravitational energy.
Consequently, the temperatures in the core and shell go on rising (see
Figure 9.7(d)), accelerating further the rate of hydrogen burning and core
growth. Finally, thermal equilibrium is restored and the luminosity, which
is proportional to the rate of core growth, increases. The need to transfer
an increasing energy flux on the one hand, and the increasing opacity of
the cool envelope on the other hand, cause the envelope to become
convectively unstable. Hence red giants develop convective envelopes,
extending from just outside the hydrogen-burning shell all the way to the
surface. The base of the convective envelopes reaches layers where
nuclear processes have taken place earlier and thus hydrogen-burning
ashes make their way to the surface. This is the first occurrence of ‘dredge-
up’ (explained in Section 9.2) that is observationally detected. In the (log
Teff, log L) plane these stars are said to climb up the slanted red giant
branch (very close to their Hayashi tracks) toward higher luminosities and
slightly lower effective temperatures. The red giant branch in the H–R
diagram roughly coincides with the boundary of the Hayashi forbidden
zone. Eventually, the core temperature becomes sufficiently high for
helium to ignite.

The Schönberg-Chandrasekhar instability applies, however, only to
ideal gases. A cold and dense gas, in which the degenerate electrons
supply most of the pressure, is capable of building up a sufficient
degeneracy pressure to support the weight of the envelope, even in a
relatively massive core. The appropriate conditions for electron
degeneracy,

using Equation (3.35), are found to develop in the helium cores of stars
with masses below about 2M . The core-contraction phase of these stars is
slow and gradual. The temperature rises throughout the contracting core
and the burning shell outside it. As a result, the nuclear energy generation
rate increases and, with it, the stellar luminosity. At the same time, the
envelope expands and the temperature decreases throughout it, as well as
at the stellar surface. The star assumes gradually the appearance of a red
giant. Indeed, the ascent toward the red giant branch is clearly seen at the
lower part of the main sequence, in particular in H–R diagrams of old
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globular clusters. However, these low-mass stars, evolving quietly toward
higher core temperatures, are bound to encounter a different type of
instability. Heating of the core as a result of contraction is impeded by
neutrino emission, which acts as an energy sink. Hence the core material
becomes strongly degenerate before helium burning sets in. We have seen
in Section 6.2 that nuclear burning in degenerate material is thermally
unstable, leading to a runaway. Thus in these relatively low-mass stars,
when the temperature finally reaches the helium-ignition threshold, helium
ignites in an explosion, known as the helium flash. This occurs when the
core mass has grown to about 0.5M , regardless of the total stellar mass.
During a few seconds, the temperature rises steeply at almost constant
density, the local nuclear power reaching 1011L  (roughly, the luminosity
of an entire galaxy). Nevertheless, an outsider would not be aware of the
intense central explosion, which is almost entirely quenched by the
energy-absorbing stellar envelope. Thus, there is no apparent clue in the
H–R diagram to the helium flash. Soon, the core temperature becomes
sufficiently high for the degeneracy to be lifted, the core expands, and
helium burning becomes stable.

A fraction of the red giants, however, do not attain helium ignition. This
is due to the effect of mass loss that characterizes red giants. During the
red-giant phase, when the stellar envelope is considerably less bound
gravitationally than in the main-sequence phase, the stellar wind
intensifies. Hence low-mass red giants lose their small envelopes before
the core has a chance to reach sufficiently high temperatures for helium
ignition. The degenerate helium cores continue their contraction, leaving
the red giant branch to become helium white dwarfs.

Exercise 9.2:  Assume a star of mass M and radius R has a core of mass M1 and radius R1. Let
the density distribution be given by

where ρc is the central density and ρ1 = ρ(R1). Find the dependence of the ratio R/R1 on x1 ≡ ρc/
ρ1 and y1 ≡ M/M1. Calculate the ratio for x1 = 10 and y1 = 7.5 (consistent with
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condition(9.24)).

9.5  Helium burning in the core

The phase of stable helium burning in the stellar core is significantly
shorter than the main-sequence phase of core hydrogen burning. The
reason is twofold: first, the fusion of helium – into carbon and oxygen –
supplies only about one tenth of the energy per unit mass supplied by
hydrogen fusion (as we have seen in Chapter 4), and secondly, the stellar
luminosity is higher by more than an order of magnitude compared with
the main-sequence luminosity of the same star. In fact, helium burning
would have been still shorter, were it not for the additional energy source
provided by hydrogen burning in the shell outside the core.

In low-mass stars (0.7–2M ), which undergo the helium flash, the
subsequent rapid expansion of the core has an effect on the star’s structure
similar to the contraction of the core at the end of the main sequence, only
in reverse. As the core expands and cools, the envelope contracts and its
temperature rises to some extent. As a result of core expansion and
cooling, the temperature in the hydrogen-burning shell decreases and the
nuclear energy supply diminishes. This, combined with the diminished
stellar radius, cause the luminosity to drop and the star is said to descend
from the red giant branch. Since the effective temperature has increased,
the star moves to the left in the H–R diagram. The locus of low-mass core-
helium-burning stars in the H–R diagram forms the horizontal branch, a
roughly horizontal strip stretching between the main sequence and the red
giant branch, corresponding to luminosities of the order of 50–100L .
There they dwell for about 108 yr. All these stars have equally massive
cores at the end of the red-giant phase; hence their different positions
along the horizontal branch must be determined by another factor. For
stars of similar Z (heavy element content), this factor is found to be the
envelope mass, a function of the initial stellar mass and the rate of mass
loss up to this stage, itself possibly a function of the rotation rate of the
star. The highest envelope masses are found at the red (low effective
temperature) end of the branch, where the hydrogen shell contributes most
of the energy and the convective envelope’s structure is similar to that of
red giants. Proceeding toward the blue end, we find smaller envelope
masses and weaker hydrogen-burning shells. The envelopes are now
radiative rather than convective. Stars in this region of the horizontal
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branch are found to go through a phase of dynamical instability in their
envelopes, in the regions of hydrogen and helium ionization (see Section
6.4). This instability manifests itself by pulsations, causing a cyclic
variability of the luminosity with periods of a few hours. Such pulsating
stars on the horizontal branch are indeed observed; they are known as RR
Lyrae variables. At the blue end of the branch the hydrogen-rich envelopes
are small – in both mass and radius – and inert.

Intermediate-mass stars (2–10M ) ignite helium quietly when the
central temperature reaches 108 K. Subsequently the rate of energy supply
by the helium-burning core steadily increases, while the rate of energy
supply by the hydrogen-burning shell decreases. As the temperature in the
burning shell at the base of the envelope drops, the envelope cools too and,
eventually, it starts contracting; this occurs when the contributions from
the two energy sources become roughly equal. At this point the stars leave
the red giant branch in the H–R diagram by looping toward higher
effective temperatures, the higher the mass, the more extended the loop.
As luminosity increases with mass, these stars form a helium main
sequence, with a slope similar to that of the (hydrogen) main sequence, but
closer to the red giant branch. In fact, observationally, the helium main
sequence is hardly discernible from the thick red giant branch.
Intermediate-mass helium-burning stars, too, go through a phase of
envelope instability resulting in pulsations, but the pulsation periods are
longer, ranging from days to several months. Such pulsating luminous
stars are known as Cepheid variables, or simply Cepheids. Their
importance to astronomy warrants another digression from the pursuit of
stellar evolution.

It turns out that a well-defined correlation exists between the (average)
luminosity of a Cepheid star LCeph and its pulsation period PCeph, as shown
in Figure 9.8. The correlation emerges from observations of Cepheids with
well-known distances, for which accurate luminosities can be derived, and
thus LCeph(PCeph) is established. Imagine now that a pulsating star is
detected in a distant cluster of stars or a distant galaxy, with a period Pobs
characteristic of Cepheids. If the star is identified as a Cepheid (based also
on its spectral characteristics), its apparent brightness Iobs and its pulsation
period can be used to derive its distance d, which is also the distance to the
cluster or galaxy within which it resides
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(9.25)

Cepheids constitute what are called in astronomy standard candles – and
are the most accurate and reliable among them. The period-luminosity
relationship was first discovered in 1912 by Henrietta Swan Leavitt, for
the Cepheids in the nearby galaxy called the Small Magellanic Cloud (or
SMC), and these stars immediately rose to fame. A year after the
discovery, the period-luminosity relation had already been used by
Hertzsprung and other famous astronomers to determine distances to
galaxies.

Figure 9.8 The period-luminosity correlation for Cepheids derived from observations (from A.
Sandage and G. A. Tammann (1968), Astrophys. J. 151).

Note: Within our own Galaxy the relative brightness of stars in a given volume is largely affected
by their different distances. Stars of a distant galaxy, however, are all equally distant from an
observer on Earth, because the distance to a galaxy is far larger than its size. Consequently the ratio
of apparent brightnesses is equal to the ratio of intrinsic luminosities for these stars. Hence
statistical analyses are far more reliable for stars in the nearby galaxies, such as the Magellanic
Clouds.

Due to its high temperature sensitivity, helium burning occurs in a
convective core (as does hydrogen burning by means of the CNO cycle).
This is the inner part of the larger helium core, which grows as a result of
hydrogen burning in the shell surrounding it. So long as the inner core is
convective, its composition is constantly mixed and turns gradually from
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helium to carbon and oxygen, although helium burning, which varies with
temperature as ~T 40, is confined to its very centre. When the inner
convective core becomes depleted of helium and hence burning within it
subsides, convection is quenched as well. The star consists of a carbon-
oxygen core, surrounded by a helium layer – remnant of the original
helium core – which, in turn, is separated from the hydrogen-rich envelope
by the hydrogen-burning shell. Helium burning continues in a shell at the
C-O core boundary. Evolutionary paths in the H–R diagram up to helium
burning in a shell are traced in Figure 9.9 for stars of different masses, and
the characteristic time intervals are listed in Table 9.4. A comparison
between theory and observations is made possible by varying the shade of
the paths in Figure 9.9 in proportion to the length of time spent – and
hence to the number of stars expected to be observed – in each phase.
Among core-helium-burning stars, those observed are predominantly the
low-mass ones populating the horizontal branch.
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Figure 9.9  Evolutionary paths in the H–R diagram for stars of different initial masses (as
marked) up to the stage of helium burning in a shell. The shade of the segments is indicative of
the time spent in each phase, ranging from less than 105 yr (light) to more than 109 yr (dark), as
given in Table 9.4. The different phases, indicated by numbers, are: 1–2, main sequence; 2–3,
overall contraction; 3–5, hydrogen burning in thick shell; 5–6, shell narrowing; 6–7, red giant
branch; 7–10, core-helium burning; 8–9, envelope contraction (adapted from I. Iben Jr. (1967),
Ann. Rev. Astron. Astrophys., 5).

Table 9.4  Evolutionary lifetimes (years)
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Note: powers of 10 are given in parentheses.

9.6  Thermal pulses and the asymptotic giant branch

The carbon-oxygen core’s evolutionary course and its consequences are
similar to the helium core’s. Devoid of energy sources, the core contracts
and heats up; as a result, the envelope expands and cools, and convection
sets in again throughout it. As the inner boundary of the convective
envelope overlaps the earlier outer boundary of the now extinguished
hydrogen-burning shell, processed material, mainly helium and nitrogen, is
once more dredged up and mixed into the envelope. The signature of these
elements appears in the star’s spectrum, again bearing witness to the
processes taking place in its deep interior. The expanding star becomes
redder and resumes its climb on the giant branch in the H–R diagram,
which has been interrupted by the core-helium-burning episode. This part
of the giant branch, populated by stars with C-O cores, is called the
asymptotic giant branch (AGB); it is an extension of the red giant branch
toward higher luminosities and lower effective temperatures at the
boundary of the Hayashi forbidden zone. Hence stars in this phase of
evolution (known as AGB stars) are even bigger than the former red giants
– they are now becoming supergiants. Cooling of the layers above the C-O
core extinguishes the hydrogen-burning shell temporarily; it will reignite
later on, after envelope expansion will come to a halt. Contraction of the
core raises the density up to the point when electrons become degenerate,
and since degenerate matter is an efficient heat conductor, the core
becomes isothermal. An illustration of the internal evolution of a 6M  star
from the main sequence up to the onset of the asymptotic giant phase is
given in Figure 9.10: changing burning zones, convective zones and
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boundaries between regions of different composition are marked. The
remarkably different evolutionary timescales are particularly noteworthy.

Figure 9.10  Evolution of the interior structure of a 6M  model star from the main sequence to
the AGB phase. Dark areas indicate nuclear burning and shaded ones, convective zones (adapted
from D. Prialnik and G. Shaviv (1980), Astron. Astrophys., 88). Note the occasional changes in
timescale.

There are three outstanding characteristics for AGB stars:

1.  Nuclear burning takes place in two shells – a thermally-unstable
configuration – leading to a long series of thermal pulses.

2.  The luminosity is uniquely determined by the core mass,
independently of the total mass of the star.

3.  A strong stellar wind develops as a result of the high radiation
pressure in the envelope, the star thus losing a significant fraction of
its mass.

We shall now address each characteristic in more detail. The two burning
shells that supply energy during the asymptotic giant phase are separated
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by a helium layer. The external shell, at the bottom of the hydrogen-rich
envelope, burns hydrogen, thus increasing the helium layer’s mass. The
internal shell, on top the C-O core, burns helium, thus eating into the
helium layer and building up the C-O core. In principle, a steady state
could be achieved, with the two burning fronts advancing outward at the
same rate. However, the great differences between the two nuclear burning
processes do not allow such a steady state to develop. As it happens, the
two shells do not supply energy concomitantly, but in turn, in a cyclic
process, and the mass of the helium layer separating them changes
periodically.

During most of the cycle’s duration hydrogen is burnt in the external
shell, while the inner shell is extinct. As a result, the helium layer
separating the shells grows in mass. With no energy supply, this layer
contracts and heats up until the temperature at its base becomes
sufficiently high for helium to ignite. Helium burning in this thin shell is
thermally unstable, as explained in Section 6.2; it resembles the helium
flash that takes place in the electron-degenerate cores of low-mass stars at
the tip of the giant branch. At the peak of the short-lived flash the nuclear
energy generation rate reaches 108L . The energy is absorbed by the
overlying layers, which expand and cool. As these layers contain the
hydrogen-burning shell, the rate of hydrogen burning quickly declines.
During an ensuing short period of time, the helium-burning front advances
through the helium shell, turning helium into carbon and oxygen, until it
catches up with the now extinct hydrogen shell.

The high temperatures attained in the helium-burning shell lead to a
chain of reactions that produces neutrons. Capture of these neutrons by
traces of heavy elements that are present in the shell leads to the creation
of trans-iron isotopes by the s-process explained in Section 4.8.

The proximity of the hot helium-burning front causes the hydrogen to
reignite. Due to its lesser sensitivity to temperature, hydrogen burning in a
shell is stable. The temperature and density adjust into thermal
equilibrium. At the same time, helium burning is quenched as a result of
the relatively low temperature now prevailing in the hydrogen-burning
shell and its vicinity. Thus a new cycle begins. The evolution throughout a
thermal-pulse cycle, known also as a shell flash, is shown schematically in
Figure 9.11. Particularly noteworthy is the dredge-up of processed material
into the convective envelope by the moving inner boundary of the
convective zone.

228



Figure 9.11  Sketch of the progress of a thermal-pulse cycle through its different stages (not in
scale). Hydrogen is burning during stages a and d, while helium is burning during stages b and c.
When, in stage c, the outer convective zone extends inward beyond the helium-burning shell’s
boundary, hydrogen- and helium-burning products are mixed into the envelope and dredged up to
the surface. Stage a′ is the same as a, except that the carbon-oxygen core has grown at the
expense of the envelope.

Although thermal pulses entail periodic changes of the stellar
luminosity, these cannot be observed because the periods vary between
hundreds to thousands of years. The lasting result of each cycle is the
growth of the carbon-oxygen core. This brings us to the second
characteristic of AGB stars.

Evolutionary calculations show that the luminosity of an AGB star with
a core mass Mc > 0.5 M  (recalling that the star is now well past the onset
of helium burning) is quite accurately represented by the following
relation:

(9.26)

regardless of the stellar mass, as was first pointed out by Bohdan
Paczyński in 1971. We note that this luminosity is of the order of the
Eddington luminosity L/L  = 3.2 × 104M/M  (see Section 5.5). Thus stars
of the same core mass are found at the same height on the asymptotic giant
branch in the H–R diagram, regardless of their envelope mass. Stars reach
the asymptotic giant branch at different points, depending on the mass of
the core at the end of the central helium-burning stage. They climb up the
branch, as the core continues to grow during the thermal-pulses stage. At
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the same time the envelope mass decreases, not only at the expense of core
growth, but mainly because of mass loss at the surface. Hence the point at
which a star leaves the asymptotic giant branch is determined by the mass
of the envelope at the end of core-helium burning and by the intensity of
the stellar wind. This brings us to the third characteristic of AGB stars.

The outer layers of giant and supergiant stars are sufficiently cool for
atoms to coalesce into molecules and molecules into tiny dust particles. It
is these particles that are accelerated by the radiation pressure that drives
the stellar wind (see Section 8.5). However, the nature of such particles
and the interactions involved are extremely difficult to calculate and the
resulting mass-loss rate difficult to assess. At this point, the stellar
evolution theory has to rely on observations in order to continue its pursuit
of the changing structure of stars. Observations of red giants and
supergiants reveal that these stars lose mass at rates ranging from 10−9 to
10−4 M  per year. Mass loss is generally classified into two types of
winds:

1.  A stellar wind that may be described by an empirical formula due to
Dieter Reimers, linking the stellar mass, radius and luminosity, by a
relation of the form (8.31), the constant being determined from
observations over a wide range of stellar parameters:

(9.27)

Typical wind rates are of the order of 10−6 M  yr−1, which for
characteristic M, L and R values, imply ϕ ~ 1 in Equation (8.31), that
is, a high efficiency in momentum transfer.

2.  A superwind, essentially a stronger wind, leading to a concentration
of the stellar ejecta in an observable shell surrounding the central star.

9.7  The superwind and the planetary nebula phase

The existence of the superwind is imposed by two different and
independent observations: first, the high density within the observed shells
formed by the stellar ejecta (a slow wind would have given rise to more
diffuse shells), and secondly, the relative paucity of very bright stars on the
asymptotic giant branch of H–R diagrams of statistically significant stellar
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samples.
The inference of a strong wind based on the second observation is not

straightforward, but it can be understood in terms of simple arguments.
The number of stars expected to reside on the asymptotic giant branch in
the H–R diagram is proportional to the time spent by stars in the double-
shell-burning evolutionary phase. An upper limit to this time span may be
obtained by considering only the evolution of the core. Essentially, AGB
stars turn hydrogen into carbon and oxygen, growing C-O cores at the
expense of envelope material. If Q is the amount of nuclear energy
released in the process per unit mass, roughly 5 × 1014 J kg−1, thermal
equilibrium implies

(9.28)

where L is the luminosity averaged over a thermal-pulse cycle.
Substituting L/L  from Equation (9.26), we obtain

(9.29)

At the beginning of the asymptotic giant phase the core has some mass
Mc,0 (>0.5M ). Assuming that as a result of contraction the electrons
become degenerate, the maximal mass the core could reach is the
Chandrasekhar mass MCh. Integrating between Mc = Mc,0 and Mc = MCh,
we obtain an upper limit to the duration of the asymptotic giant phase,

(9.30)

Evolutionary calculations show that a relation exists between the initial
core mass and the initial mass of the star M0, of the form

(9.31)

where a and b are constants. Hence τAGB is, essentially, a function of the
initial stellar mass. Therefore, if the distribution of initial stellar masses is
known, the number of stars on the asymptotic giant branch can be
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computed for any given population of stars. As it turns out, the expected
number of AGB stars exceeds by far the actual number of observed AGB
stars, with the discrepancy being as large as a factor of 10. This means that
stars are prevented by some process from completing their sojourn on the
asymptotic giant branch, while losing mass at the moderate rate dictated by
Reimers’s formula. This process is the superwind, which consumes the
envelope mass before the core has grown to its maximal possible size. In
fact, mass loss must be so intense as to allow the core to grow by only
about 0.1M  while the entire envelope is ejected. It should be mentioned
that, in addition to the indirect indications, the hypothesis of a superwind is
confirmed by observations of stars which eject mass at rates of the order of
10−4M  yr−1. In some AGB stars, those believed to descend from
relatively low-mass progenitors, the high mass-loss rate is associated with
a pulsation instability in the envelope, similar to that of RR Lyrae stars and
Cepheids that we have encountered earlier. These stars, known as Miras,
or long-period variables, pulsate with periods of the order of a year.

As a consequence of the superwind, stars of initial mass in the range 1M
< M < 9M  shed their envelopes and are left with C-O cores of mass

between 0.6M  and 1.1M , a higher final core mass corresponding to a
higher initial total mass. These cores will subsequently develop into white
dwarfs. Since, as we shall see shortly, low-mass stars are far more
numerous than massive ones, we expect most white dwarfs to have masses
near 0.6M . This conclusion is verified by observations. Thus white
dwarfs originating from AGB stars have masses considerably smaller than
the Chandrasekhar critical mass, and hence, although degenerate, these
stars are in no danger of a catastrophic denouement (contrary to some early
theories). But they do undergo a short episode of particular brilliance
before fading into cooling, inert white dwarfs.

The cores of stars at the end of the asymptotic giant phase are
surrounded by an extended shell, a more or less spherical nebula formed
by the ejected material. The inner part of this shell – resulting from the
superwind – is relatively dense. When mass loss finally ceases, the core,
freed from the burden of a massive envelope, expands slightly and as a
result, the small envelope remnant contracts. This causes a distinct
separation, a void, between the star and its ejecta. Subsequently, as the
central star contracts, the effective temperature rises considerably. When it
reaches ~30 000 K, the radiated photons become energetic enough to
ionize the atoms in the nebula and cause them to shine by fluorescence
(the same mechanism that is responsible for fluorescent lamps). A shining
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nebula of this kind is called a planetary nebula; it appears as a bright
circular ring surrounding a point-source of light, although many appear
twisted or elongated. An example is given in Figure 9.12.

Figure 9.12  (a) The Helix nebula, the nearest (450 ly away) and largest observed planetary
nebula (copyright Anglo-Australian Observatory; photograph by D. Malin). (b) detail of the
Helix nebula captured by NASA’s Hubble Space Telescope, showing knots of gas. Each gaseous
head is at least twice the size of our solar system and each tail stretches to about 1000 AU
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(photograph by C. R. O’Dell, Rice University).

Historical note: Despite the name, planetary nebulae have nothing to do with planets. The first
planetary nebula ever detected was the Dumbbell Nebula, which was discovered by Charles Messier
in 1764. The comparison to a fading planet followed, about 15 years later, with the discovery of the
second such object, the famous Ring Nebula by Antoine Darquier. It was Sir Frederick William
Herschel who eventually coined the name ‘planetary nebula’ for these objects in his classification of
nebulae in the 1780s, because he found them to resemble the planet Uranus that he had newly
discovered, although earlier he and others thought them to be unresolved clusters of objects. A few
years later, Herschel found a planetary nebula with a very bright central star; thus he became
convinced that planetary nebulae were nebulous material (gas or dust) associated with a central star.
Recently, however, and quite ironically, it has been suggested that the peculiar shapes of some of
these nebulae may be due to the presence of giant planets orbiting the central star and interfering
with the flow of material it emanates. So planetary nebulae may have something to do with planets
after all!

Although the ring around the central star may appear like a disc, if this
were the case, then obviously, at least some planetary nebulae should have
appeared flattened, due to the inclination of the disc with respect to the line
of sight to the observer. The fact that all planetary nebulae appear almost
circular indicates that what we see is the projection of a spherical shell. As
the line of sight through the nebula is much longer near the edges than at
the centre, the material appears opaque toward the edge and transparent at
the centre, making it possible to see the hot central star, as illustrated in
Figure 9.13. This explains the ring shape. The central source is called the
planetary nebula nucleus.

Figure 9.13 Sketch of a planetary nebula and its nucleus (PNN).
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The path that planetary nebulae trace in the H–R diagram is a
horseshoeshaped track, first leftward, toward higher surface temperatures,
meaning that the nucleus preserves its luminosity during the transition, and
then downward and to the right. The energy is provided by nuclear burning
in the thin shell still left on top of the C-O core. When the mass of this
shell decreases below a critical size, of the order of 10−3–10−4M , the shell
can no longer maintain the high temperature required for nuclear burning.
The energy source becomes extinct, the luminosity of the central star drops
and its ionizing power diminishes. At the same time, the nebula, which
expands at a rate of a few 10 km s−1, grows in size and gradually disperses.
Thus a planetary nebula fades away and disappears after some 104–105 yr.
We now turn to the evolution of the remnant central star into a cool white
dwarf.

9.8  White dwarfs: the final state of nonmassive stars

Most white dwarfs – compact stars of high surface temperature – descend
from AGB stars, which develop C-O electron-degenerate cores. As we
have seen, these stars lose mass by a strong stellar wind, while undergoing
thermal pulses caused by the alternate burning of hydrogen and helium in
thin shells. The end of mass loss, brought about by the dissipation of the
entire envelope, occurs at a random phase of a thermal pulse. If it occurs
during the hydrogen-burning phase, the star will be left with a thin coating
of hydrogen-rich material, a vestige of the lost envelope. If it occurs during
helium burning, which takes place at the bottom of a helium layer, the
outer envelope will be composed predominantly of helium. Since helium
burning takes up only a small fraction of the pulse cycle, the probability of
a star ending the asymptotic-giant stage with a helium, rather than a
hydrogen-rich, envelope is proportionally smaller.

Soon after the end of mass loss, nuclear burning comes to an end as
well. During the intervening, short-lived planetary-nebula phase, the final
stage of nuclear burning supplies the energy that lights up the ejecta of the
former AGB star. The planetary nebula nucleus – the degenerate core of
the former AGB star, with the remnant thin envelope – becomes a white
dwarf. We should therefore expect to encounter two types of white dwarf
spectra: a prevalent one, showing hydrogen lines, and a rarer type, with no
evidence of hydrogen. Indeed, observations confirm this expectation:
about 25% of white dwarfs have no hydrogen lines in their spectra.
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Another source of white dwarfs is low-mass stars in a narrow initial-
mass range: 0.7  M  1M . These stars do not reach high enough
temperatures to ignite helium, simply because they do not grow
sufficiently massive helium cores. Following the main-sequence phase,
they turn into red giants and lose most of their envelopes, while the cores
grow – by shell-hydrogen burning – to only 0.4M  or less. Skipping the
core-helium-burning phase, the asymptotic-giant phase and the planetary-
nebula phase, these low-mass stars become even lower-mass white dwarfs,
composed mainly of helium. Indeed, the mass distribution of white dwarfs
derived from observations shows two peaks. The main peak, to which
most white dwarfs belong, corresponds to an average mass of ~0.6M . The
secondary, smaller, peak is found between 0.2M  and 0.4M , confirming
the prediction of two distinct sources of white dwarfs.

How do white dwarfs evolve, as they must, since they radiate? This
question was considered by Mestel in 1952. The structure of stars in the
white dwarf stage is characterized by two basic properties:

1.  The internal pressure is supplied predominantly by degenerate
electrons.

2.  The internal energy source responsible for the radiation emitted at the
surface is the thermal energy stored by the ions (as the heat capacity
of a degenerate electron gas is negligible). The star has no nuclear
energy sources. If it had, nuclear burning would have been unstable
(as seen in Section 6.2), and something would have happened to
either stop it or disrupt the star.

Note: In fact, as a white dwarf cools, it does contract slightly, releasing some gravitational
energy. At the same time, however, the higher density raises the internal energy of the degenerate
electrons (for which u ∝ ρ2/3 – see Sections 3.3 and 3.5) and also the electrostatic potential energy.
Mestel and Malvin Ruderman showed (in 1967) that, to first order, the release of gravitational
energy compensates for the rise in degeneracy and electrostatic energy. Thus they vindicated the
long-standing assumption that the energy source of white dwarfs is the thermal energy of the ions,
as if the white dwarf were rigid.

A degenerate electron gas behaves much like a metal, conducting heat very
efficiently. Since, by Equation (5.3), a very low opacity value implies a
very small temperature gradient, the internal temperature of a white dwarf
is very nearly uniform. The white dwarf structure – a homogeneous,
isothermal gas, with negligible radiation pressure and no nuclear reactions
– appears simple enough to be described by analytical models with
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reasonable accuracy. (Elaborate numerical models are nevertheless
required for supplying the finer structural details.)

A simple model for the evolution of a white dwarf is obtained following
Mestel. A typical white dwarf may be described by an isothermal electron-
degenerate core comprising most of the star’s mass M. As the density
decreases (tending to zero) toward the surface, an outer layer exists,
however, where the electrons cease to be degenerate and behave as an
ideal gas. Across this surface layer the temperature drops as well and
radiative equilibrium may be assumed, with the temperature gradient
determining the luminosity. The configuration bears similarity to that of a
fully convective star, discussed in Section 9.1: there, too, the luminosity
was determined by the conditions prevailing in a thin, radiative outer layer
(the photosphere). Obviously, the transition from a degenerate state to an
ideal-gas state is gradual, but, for simplicity, we shall assume a sharp
transition across a surface boundary between the degenerate core and the
ideal-gas outer layer, defined as the point where the physical conditions
are such that equal values result for the ideal-gas pressure and for the
degenerate-gas pressure. Let the radius of this boundary be rb, as shown in
Figure 9.14. For r < rb the temperature is constant and equal to the central
value Tc. For r > rb the luminosity is constant; in addition, m(r > rb) ≈ M.
The structure equations for the outer layer reduce, therefore, to

(9.32)

(9.33)

The first is derived from Equation (5.1) with m = M, and the second is
derived from Equation (5.3) with F = L. For the opacity we shall assume a
power-law dependence on temperature and density, the Kramers opacity
law (3.65),

(9.34)

where ρ has been replaced by P, using the ideal-gas equation of state
(3.28). Substituting Equation (9.34) into Equation (9.33) and dividing
Equation (9.32) by Equation (9.33), we obtain a relation between the
pressure and the temperature of the form
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(9.35)

Integrating from the surface, where P = T = 0, inward, we have

(9.36)

This relation, which may be applied to the outer fringe (atmosphere) of
stars in general, is known as the radiative zero solution.

Figure 9.14  Sketch of the configuration of a cooling white dwarf.

Reverting to the density by means of the ideal-gas equation of state, a
relation is obtained between the density and the temperature

(9.37)

which holds down to rb. Since the ions constitute an ideal gas on both
sides of rb, it follows that rb is the point where the ideal-electron pressure,
Equation (3.27), and the degenerate-electron pressure, Equation (3.34), are
the same. This leads to a second relation between density and temperature
at rb:

(9.38)
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Clearly, we must have Tb = Tc in order to prevent a jump in temperature,
which would result in an infinite heat flux. Eliminating ρ between
Equations (9.37) and (9.38), we finally obtain

(9.39)

which relates the luminosity emitted at the surface to the core temperature
of the white dwarf. Inserting the values of constants in Equation (9.39) for
a typical white-dwarf composition (say, half carbon and half oxygen), we
have

(9.40)

or

(9.41)

Exercise 9.3: (a) Show that the temperature profile throughout the outer layer of a white dwarf
of mass M and radius R is given by

(9.42)

(b) Show that the layer’s thickness ℓ ≡ R − rb  R.
(c) Calculate the relative change in thickness, ℓ1/ℓ2, for a drop in luminosity from L1 = 10−2L
to L2 = 10−4L  (neglecting the small change in R).

As we have already mentioned, the energy source of a white dwarf is the
thermal energy of the ions in the isothermal core (the outer layer’s
contribution being negligible):

(9.43)
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Hence the rate of energy emission L must equal the rate of thermal-energy
depletion:

(9.44)

where we have used the Tc(L) relation (9.39). It is easily shown that this
implies

(9.45)

which means that the rate of change of the luminosity (or, equivalently, the
cooling rate) decreases sharply with decreasing temperature. Thus the
evolutionary pace of a white dwarf slows down gradually, and a white
dwarf of low mass evolves more slowly than a massive one. To estimate
the time it would take a white dwarf of mass M to cool from an initial
temperature  (and corresponding luminosity L′) to a temperature Tc
(luminosity L), we integrate Equation (9.44),

(9.46)

If  then by Equation (9.39),  and the time
required for a white dwarf to cool to a temperature Tc (from a much higher
temperature) or decline to a luminosity L (from a much higher luminosity)
is given by

(9.47)

For example, about 2 × 109 yr would be required for the luminosity of a
1M  white dwarf to drop to 10−4L . For comparison, only ~107 yr would
bring the luminosity down to 0.1L  from, say, the typical planetary nebula
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luminosity, of the order of 104L .
In reality, when a white dwarf reaches very low temperatures

(luminosities), the cooling rate no longer follows the simple relation
(9.44). This is because the ion gas ceases to be perfect; Coulomb
interactions increase in importance until, eventually, they become
dominant. As the ratio C/kT (discussed in Section 3.1) approaches and
then surpasses unity, the ion gas crystallizes into a periodic lattice. At first,
the corresponding heat capacity per ion increases due to the additional
vibrational degrees of freedom (from  to 3k). However, below a critical
temperature (the Debye temperature), typically a few million degrees
Kelvin, the heat capacity falls rapidly with temperature, following a T3

law. This means that for a given amount of radiated energy, the drop in
temperature is far larger than in the free-gas regime. Thus the cooling of
white dwarfs is accelerated considerably. If τcool ∝ Lα, then α = −5/7
(Equation (9.47)) holds down to ~10−3L , with α increasing to small
positive values below ~ 10−4L . The number density of observed white
dwarfs as function of their luminosity – shown in Figure 9.15 – bears
witness to this effect.

Figure 9.15  White-dwarf luminosity function: number density of white dwarfs within a
logarithmic luminosity interval corresponding to a factor of 102/5 ≈ 2.5 against luminosity (data
from D. E. Winget et al. (1987), Astrophys. J., 315).

The density distribution of a white dwarf, quite accurately described by
an n = 1.5 polytrope for M  1.2M  (see Section 5.4), remains almost
constant during the long cooling phase and hence so does the radius R.
Therefore, the cooling track in the H–R diagram is essentially a
R = constant (straight) line
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(9.48)

the effective temperature decreasing with the luminosity (and almost
linearly with the core temperature). Since R = R(M), the evolution of white
dwarfs of different masses corresponds to a strip in the H–R diagram, as
shown in Figure 9.16. The lower part of this strip should be much more
heavily populated than the upper part because of the rapidly decreasing
cooling rate. White dwarfs spend far more time at low luminosities than at
high ones. These conclusions are confirmed by observations.
Unfortunately, however, as white dwarfs grow still fainter, they also
become more difficult to detect (and, besides, their number per luminosity
interval drops due to the rapid cooling). In the end they will turn into
practically invisible black dwarfs.

Figure 9.16  White dwarfs in the H–R diagram. Lines of constant radius (mass) are marked (data
from M. A. Sweeney (1976), Astron. & Astrophys., 49).

9.9  The evolution of massive stars

The evolution of massive stars (M0 > 10M ) has the following general
characteristics:

1.  The electrons in their cores do not become degenerate until the final
burning stages, when the core consists of iron.

2.  Mass loss plays an important role along the entire course of
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evolution, including the main-sequence phase (since the mass-loss
rate of these stars is still uncertain, this is also the reason for the
poorer understanding of their evolution).

3.  The luminosity, which is already close to the Eddington critical limit
on the main sequence, remains almost constant, in spite of internal
changes. The evolutionary track in the H–R diagram is therefore
horizontal, shifting back and forth between low and high effective
temperatures. Such transitions are slow during episodes of nuclear
burning in the core and rapid during intervening phases, when the
core contracts and heats up, while the envelope expands.

Stars of initial mass exceeding 30M  have so powerful stellar winds as to
result in mass-loss timescales M/  shorter than main-sequence timescales
MQ/L. Consequently, their main-sequence evolutionary paths converge
toward that of a 30M  star. In particular, the extent of the helium core at
the end of the main-sequence phase is similar, and hence so are the
ensuing evolutionary stages. The intense mass loss that occurs during the
main-sequence phase leads to configurations composed mainly of helium,
with hydrogen-poor envelopes (X ≈ 0.1) or no hydrogen at all. Such stars –
luminous, depleted of hydrogen, and losing mass at a high rate – are
indeed observed, being known as Wolf-Rayet stars. They have relatively
low average masses, between 5 and 10M , and are considered as the bare
cores of stars initially more massive than 30M . There are different types
of Wolf-Rayet stars, distinguished according to their surface composition.
Element abundances in the sequence of types correspond to a progression
in peeling off of the outer layers of evolving massive stars; thus, some
show the undiluted burning products of the CNO cycle – helium and
nitrogen, while others show the products of 3α and other helium-burning
reactions, mostly carbon and oxygen. A well-known example of vigorous
mass loss is provided by the peculiar star Eta Carinae, shown in panel (a)
of Figure 9.17. The nebula is considerably enriched in nitrogen, and
generally the observed abundances are consistent with those obtained from
model calculations for the supergiant phase of an initial 120M  star
evolving with mass loss. A recent image of mass ejection by a typical
Wolf-Rayet star is shown in panel (b) of the figure.
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Figure 9.17  Mass ejection by massive stars captured by NASA’s Hubble Space Telescope. (a)
Eta Carinae, one of the brightest and most massive mass-losing stars. Its luminosity is estimated
at about 5 × 106L , and its present mass at roughly 100M . Two lobes of ejected stellar material
are located very near the star, moving outward at a velocity of ~600 km s−1 (photograph by J.
Morse, University of Colorado). (b) a massive, hot Wolf-Rayet star embedded in the nebula
created by its intense wind. The blobs result from instabilities in the wind which make it clumpy.
The expansion velocity is about 40 km s−1 and the nebula is estimated to be no older than 104 yr
(photograph by Y. Grosdidier, University of Montreal and Observatoire de Strasbourg; A.
Moffat, University of Montreal; G. Joncas, Laval University; and A. Acker, Observatoire de
Strasbourg).

In all massive stars, helium burning in the core is succeeded by carbon
burning. At this stage the core temperature is so high as to cause
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significant energy losses due to neutrino emission. Thus the nuclear energy
source has to compensate for these losses, as well as supply the high
luminosity radiated at the surface. As fusion of heavy elements releases far
less energy per unit mass of burnt material than fusion of light elements
(see Chapter 4), nuclear fuels are very rapidly consumed. All the major
burning stages pass in rapid succession, until an inner core made of iron
group elements is formed. Surrounding this core are shells of different
compositions – silicon, oxygen, neon, carbon, helium – and, finally, the
envelope, which for M0 < 30M  retains most of the original composition
and contains most of the stellar mass. The inevitable contraction of the
iron core will lead the star toward collapse in a supernova explosion. The
structure of a massive star and its schematic configuration in the
supernova-progenitor stage are shown in Figures 9.18 and 9.19. The final
stages of evolution will be described in the next chapter.

Figure 9.18  Composition profiles in the inner 8M  of a 25M  star prior to supernova collapse.
Burning shells are marked (adapted from S. E. Woosley & T. A. Weaver (1986), Ann. Rev.
Astron. Astrophys., 24).

245



Figure 9.19  Schematic structure of a supernova progenitor star.

9.10  The H–R diagram – Epilogue

We have come to the end of our discussion on the H–R diagram and its
theoretical counterpart, the (log Teff, log L) diagram, thus completing the
task that we set out to accomplish at the end of Chapter 1. The success of
the stellar evolution theory in explaining the many different, often
puzzling, characteristics of stars, as exhibited by the H–R diagram, is
remarkable: it explains the prevalence of main-sequence stars, the main-
sequence turnoff point in star clusters, the red giant, the supergiant, and the
horizontal branches, the planetary nebula and the white-dwarf regions, the
gap between the main sequence and the giant branch and many other,
subtler properties of stars. To conclude this discussion, we show two more
figures. In Figure 9.20 full evolutionary tracks in the H–R diagram are
given for a low-mass star, an intermediate-mass star and a massive star.
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Figure 9.20  Evolutionary tracks of 1M , 5M  and 25M  star models in the H–R diagram.
Thick segments of the line denote long, nuclear-burning evolutionary phases. The turnoff points
from the AGB are determined empirically (from I. Iben Jr. (1985), Q. J. Roy. Astron. Soc., 26).

Finally, crowning the stellar evolution theory, Figure 9.21 presents the
evolving H–R diagram of a hypothetical star cluster, based on evolutionary
calculations of a large number of star models of different masses.
Disregarding the number of stars, the various populations are hardly
distinguishable from those of actual H–R diagrams of stellar clusters of
different ages, as shown in Chapter 1.
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Figure 9.21  Evolutionary calculations for stars of different masses forming a hypothetical
cluster result in an evolving H–R diagram, shown at four ages. The number of stars and their
mass distribution is arbitrary. The dashed lines are lines of constant radius. The dotted lines mark
the main-sequence slopes. We note that at 107 years (a), the low-mass stars are not yet settled on
the main sequence, while the very massive ones have already left it: the open triangles show the
main sequence of massive stars at a much earlier epoch, 105 years. The Hertzsprung gap is
conspicuous at 108 years (b) resembling the Hyades-cluster H–R diagram shown in Figure 1.5.
By contrast, the continuously-populated track toward the red giant branch is clearly seen at later
epochs (c and d), when low-mass stars leave the main sequence.
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Nevertheless, the picture of stellar evolution is not yet complete,
although it is far more elaborate, detailed, and clear than the rough sketch
traced in Chapter 7. On close inspection, there are still fuzzy spots,
especially where mass loss or convection are concerned. Eddington ended
his famous 1926 book with the following: ‘. . . but it is reasonable to hope
that in a not too distant future we shall be competent to understand so
simple a thing as a star.’

We now do understand a great deal about stars; in particular, we
understand that they are not all that simple.
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10

Exotic stars: supernovae, pulsars and black holes

Stars of the types considered in this chapter differ from those discussed so
far, inasmuch as, for various reasons, they do not (or cannot) appear on the
H–R diagram. As before, we shall rely on stellar evolution calculations to
describe them. Whenever possible, we shall confront the results and
predictions of the theory with observations, either directly or based on
statistical considerations. We shall find that, as we approach the frontiers
of modern astrophysics, theory and observation go more closely hand in
hand.

10.1  What is a supernova?

We should start by making acquaintance with the astronomical concept of
a supernova, as we did with main-sequence stars, red giants and white
dwarfs in Chapter 1. Stars undergoing a tremendous explosion (sudden
brightening), during which their luminosity becomes comparable to that of
an entire galaxy (some 1011 stars!), are called supernovae. Historically,
nova was the name used for an apparently new star; eventually it turned
out to be a misnomer, novae being (faint) stars that brighten suddenly by
many orders of magnitude. So are supernovae, but on a much larger scale.
Not until the 1930s were supernovae recognized as a separate class of
objects within novae in general. They were so called by Fritz Zwicky, after
Edwin Hubble had estimated the distance to the Andromeda galaxy (with
the aid of Cepheids) and had thus been able to appreciate the unequalled
luminosity of the nova discovered in that galaxy in 1885, amounting to
about one sixth of the luminosity of the galaxy itself.

Since supernova outbursts last for very short periods of time (several
months to a few years), the chances of detecting them are small, even if an
appreciable fraction of stars go through this stage. Thus in a large stellar
population, such as a galaxy, supernova explosions are detected once in a
few decades. Fortunately, they become bright enough to be observable at
very large, cosmic distances, and hence hundreds of such events have been
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recorded and studied. An example is given in Figure 10.1, where a
supernova in outburst outshines the galaxy within which it resides by
about a factor of 100. The most famous supernovae are those which
occurred and were observed in our own Galaxy – the historical
supernovae, listed in Table 10.1. These, however, represent only a fraction
of all supernova explosions that must have occurred in our Galaxy, say, in
the last millennium, because most regions of our Galaxy are obscured by
its radiation-absorbing central bulge. (It is much easier to detect lights
turning on in a neighbouring building than in one’s own.)

Figure 10.1  Supernova in the galaxy IC4182. At maximum brightness (a), it completely
obscures the galaxy; 5 years later (c), it becomes too faint to observe and the parent galaxy
appears in the picture. (Mt. Wilson 100-in. telescope photographs from the Hale Observatories).

Table 10.1  Historical supernovae
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Historical Note: The close occurrence of the supernovae of 1572 and 1604 led to a philosophical
revolution, by shattering the Aristotelian conception of the universe, which had prevailed for almost
two millennia. Aristotle’s universe consisted of a set of concentric spheres, with the Earth at the
centre. Each of the planets known at the time revolved in its own sphere, while the outermost sphere
contained the fixed stars. The lowest sphere contained the Moon and marked the boundary between
the imperfect, changeable world below it and the perfect and eternal universe above. This is the
reason why comets, of unpredictable and transient apparition, were considered atmospheric
phenomena. The supernova of 1572 was intensively observed and studied by the Danish astronomer
Tycho Brahe, who devoted a book (De Nova Stella) to the new star. He paid particular attention to
its distance and concluded that it must reside within the fixed stars, far above the Moon, showing
that changes could take place in what had been considered the immutable universe. But he chose to
explain the new star as an immutable object that had so far been concealed from the human eye. It
took one more (soon to follow) supernova, another great astronomer – Johannes Kepler, Tycho’s
former assistant – and one more publication (bearing a similar title, De Stella Nova) to overthrow
the conception of the immutability of the heavens. Kepler observed the 1604 supernova and
concluded that, like Tycho’s supernova, it, too, was among the fixed stars. Aristotle’s model had
failed again and was soon to be abandoned, although reluctantly at first, in favour of the Copernican
heliocentric theory and Kepler’s famous laws of planetary motion.

The nebulae ejected in supernova explosions, the so-called supernova
remnants, survive for much longer periods of time and are regarded as
some of the most spectacular astronomical objects. Expansion velocities
being very high, up to 10 000 km s−1 (0.03c!), these nebulae extend quite
rapidly to remarkable dimensions and remain visible for thousands of
years, even when they become so dilute as to be almost transparent. The
Crab nebula, a remnant of the 1054 supernova, is shown in Figure 10.2. A
much more diluted, older supernova remnant is shown in Figure 10.3.
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Figure 10.2  Crab nebula: the expanding remnant of the supernova that exploded in 1054 (from
plates taken in 1956 with the Hale 5-m telescope, copyright D. Malin & J. Pasachoff, Caltech).
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Figure 10.3  Remnant of a supernova (N132D) that exploded some 3000 years ago in the Large
Magellanic Cloud. The progenitor star, which was located slightly below and left of centre in the
image, is estimated to have had a mass of 25M  (photograph by J. A. Morse, Space Telescope
Science Institute, taken with NASA’s Hubble Space Telescope).

According to the stellar evolution theory that we have outlined in
Chapter 7, a catastrophic end to the life of a star is bound to arise from two
types of quite different circumstances, which lead to a state of dynamical
instability. One is the collapse of the iron cores of massive stars. The other
is the collapse of white dwarfs that have reached the Chandrasekhar
limiting mass. As we have seen in the previous chapter, the masses of
degenerate cores of intermediate-mass stars, which turn eventually into
white dwarfs, are considerably lower than the critical mass. Hence single
stars are spared the catastrophic fate of collapse. This fate awaits, however,
white dwarfs evolving in binary systems, which may interact with their
companion stars and reach MCh.

Indeed, supernova explosions are classified into two types according to
their observed properties: the so-called Type I and Type II supernovae. The
main distinguishing characteristic is the presence of hydrogen lines in the
spectrum of the latter and their absence in the former. Each type has its
own characteristic light curve, although a wide variety of deviations from
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the general shape is detected, resulting from individual properties, and
subclasses have been defined (which we shall ignore). Type II supernovae
are not observed in old stellar populations (such as elliptical galaxies), but
mostly in the gas and dust rich arms of spiral galaxies, where star
formation is going on and young stars are abundant. Type I supernovae, by
contrast, are found in all types of galaxies.

It is the Type II supernovae that are associated with the collapse of the
iron cores of massive stars. These stars have large hydrogen-rich
envelopes; hence the evidence of hydrogen in the spectrum. As massive
stars evolve much more rapidly than low mass stars, old stellar
populations, where no star formation occurs, have outgrown the Type II
supernova stage. Type I supernovae – more precisely, the predominant
Type Ia subclass members – are those believed to arise from the collapse
of white dwarfs that have reached the limiting Chandrasekhar mass,
presumably by accretion or coalescence. Since in a given stellar population
white dwarfs form at all times, there is nothing to prevent the occurrence
of Type Ia supernovae in old populations as in young.

10.2  Iron-disintegration supernovae: Type II – the fate of
massive stars

To summarize Section 9.9, stars of initial mass exceeding ~10M  undergo
all the major burning stages, ending with a growing iron core surrounded
by layers of different compositions. These are separated by burning fronts,
which turn the lighter nuclear species of the overlying layer into the
heavier species of the underlying one. Anticipating the imminent collapse,
we have called such stars supernova progenitors.

At the beginning, the iron core contracts – as all inert stellar cores do –
simply because no nuclear burning is taking place and, eventually, the
electrons become a degenerate gas. When the degenerate core’s mass
surpasses the Chandrasekhar limit (which, for iron, is somewhat lower
than 1.46M ), the degenerate electron pressure is incapable of opposing
self-gravity and the core goes on contracting rapidly. Two types of
instability soon develop. First, electron capture by the heavy nuclei
deprives the core of its main pressure source and thus accelerates the
infall. Secondly, due to the high degeneracy of the gas – and hence its low
sensitivity to temperature – the temperature rises unrestrained. In time, it
becomes sufficiently high for the photodisintegration of iron nuclei (see

255



Section 4.10):

This reaction is highly endothermic, absorbing ~2 MeV per nucleon (just
as the reverse transition of helium into iron releases ~2 MeV per nucleon).
The loss of energy is so severe as to turn the collapse into an almost free
fall. The continued contraction is followed by a further rise in temperature.
The pressure increases too, but not sufficiently to arrest the process (γa <
4/3). The infall continues until the photons become energetic enough to
break the helium nuclei into protons and neutrons. As this reaction entails
an even greater energy absorption, about 6 MeV per nucleon, the core
contracts still further. Eventually, the density becomes high enough for the
free protons to capture the free electrons and turn into neutrons. Not only
does this process absorb energy, but it also reduces the number of
particles. Hence the pressure drops and core collapse continues. Finally,
the neutron gas, which is in many ways similar to an electron gas, becomes
degenerate. This occurs at a density of about 1018 kg m−3 (1015 g cm−3)
and generates sufficient pressure to halt the collapse. A neutron core is
thus created, of a density similar to that of an atomic nucleus – one single
huge nucleus, about 40 km in diameter. It was Hoyle who, as early as
1946, suggested the instability associated with the photodisintegration of
iron to be the triggering mechanism for supernova explosions.

Exercise 10.1: Assuming a (free-fall) collapsing core to maintain a uniform density (this is
called homologous contraction), show that the solution of the equation of motion tends to |v|
∝ r.

Exercise 10.2: Show that the free-fall collapse of a stellar core (of uniform initial density) is
homologous.

What happens to the outer layers of the star during and following the
few hundred milliseconds of core collapse? To answer this question, we
consider the energy budget of the star. Clearly, the energy source of a
supernova explosion is gravitational: the collapse of a core of mass
Mc(~1.5M ) from an initial white dwarf radius Rc ~0.01R  to the final
radius Rnc ~20 km (  Rc) of the neutron core releases an amount of
gravitational energy of the order of
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(10.1)

The energy absorbed in nuclear processes amounts to

(10.2)

about one tenth of ΔEgrav. There remains ample energy for ejecting all the
material outside the core, for imparting to it enormous velocities, and for
producing the huge luminosities observed. The radiated energy may be
estimated by assuming a typical luminosity LSN of 1037 J s−1 (3 × 1010L )
for a typical period τSN of one year:

(10.3)

Although this is an overestimate, it is still only a few percent of the
released energy. A similar amount would be required for the ejection of
the (for the most part) loosely bound envelope,

(10.4)

assuming a total stellar mass M ~ 10M , and a comparable amount would
suffice for supplying the high expansion velocities of the ejecta:

(10.5)

adopting vexp ~10 000 km s−1, as derived from observations.
Two questions immediately arise: first, if such a small fraction of the

released energy is sufficient for powering a supernova explosion, where
does the bulk of the energy go? Second – the question that has puzzled
astrophysicists for decades – what is the mechanism that deposits the
required energy in the envelope? The answers to these questions are linked
and involve one of the major factors affecting the entire supernova process
that we have yet to mention. These are the neutrinos, which take part in

257



any weak interaction so that the lepton number be conserved (see Section
2.6).

As the iron core turns, essentially, into a neutron core, all the protons
that have been locked up in the iron nuclei undergo a weak interaction.
Hence as many as 1057 neutrinos are released, which can easily remove
~1046 J of energy, given that their masses are very small (see Section 9.3),
so that they move with velocities very close to the speed of light. The
second question is then merely how to transfer a small fraction of the
neutrino energy to the envelope surrounding the collapsing core. Keeping
in mind that matter is normally highly transparent to neutrinos, this has
proved to be a very puzzling question. Given, however, the enormous
neutrino flux and the unusually high densities involved, it turns out that a
nonnegligible neutrino opacity builds up. Some of the neutrino energy is
absorbed by the envelope layers that bounce off the stiffened neutron core
and are thus precipitated outward. The release of gravitational energy as
the primary energy source in supernova explosions as well as the transfer
of energy to the envelope by neutrinos were first proposed and studied by
Stirling Colgate and Richard White in 1966. Recent numerical simulations
– which include extensive, often multi-dimensional calculations performed
on the most efficient computers – are quite successfully accounting for the
observed characteristics of supernova explosions.

The flare-up of the supernova begins when the shock wave propagating
from the collapsed core boundary breaks out through the surface of the
hydrogen-rich envelope. At first, the temperature is so high that most of
the energy is radiated in the UV, but very soon the envelope expands and
the temperature drops sufficiently for the object to become visible. A
typical light curve of a Type II supernova, where calculated models are
superimposed on observational data points, is shown in Figure 10.4.
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Figure 10.4  Light curves resulting from calculated models of a 15 M  supernova compared
with observations of SN1969I. The models differ in magnitude of the explosion energy: 1.3 ×
1051 erg (solid line) and 3.3 × 1051 erg (dashed line) (adapted from T. A. Weaver and S. E.
Woosley (1980), Ann. NY Acad. Sci. 336).

A unique opportunity to test the core-collapse-neutrino-generating
theory was provided by the supernova that exploded in February of 1987
(known as SN1987A) in the Large Magellanic Cloud (LMC), a nearby
galaxy, about 170 000 light-years away. A few of the neutrinos produced
by that supernova (170 000 years ago) – to be exact, 20 out of an estimated
1013 per m2 – were intercepted by the neutrino detecting devices
Kamiokande (described in Section 9.3) and a similar one, named IMB,
located in a 1570-m deep salt mine in Ohio. The first detections of the two
widely separated devices were simultaneous to within the accuracy of time
determination and the entire neutrino capture event lasted about 12 s. It is
noteworthy that since the detectors are located in the Northern
Hemisphere, the neutrinos from the LMC traversed the Earth before hitting
the detectors from below. All this occurred several hours before the
supernova became visible, as the theory would have it, for some time must
elapse following the collapse until the envelope expands enough to
produce the typical supernova luminosity. Besides providing the first
detected neutrinos associated with core collapse, SN1987A was unique in
another, quite different sense: it was the first (and so far only) supernova
whose progenitor had been identified and its location in the H–R diagram
established (log Teff = 4.11–4.20, log L = 5.04). A mass of ~18M  was
inferred (having probably evolved from a star of initial mass somewhat
above 20M ), in good agreement with the outburst and postoutburst
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characteristics. The supernova near maximum brightness is shown in
Figure 10.5; superimposed is the negative of the progenitor star. All other
supernovae we have known were either too distant or too old for their
progenitors to have been distinguishable.

Figure 10.5  (a) SN1987A in the LMC, before and after outburst. (b) SN1987A in the LMC
photographed in March 1987, about a month after discovery. Overlaid on the picture is the
negative image taken a few years before. The image of the supernova progenitor is confused with
two other stars in the same line of sight and thus appears noncircular (copyright Anglo-Australian
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Observatory; photographs by D. Malin).

10.3  Nucleosynthesis during Type II supernova explosions

Perhaps the most important and long-lasting outcome of supernova
explosions is the production of heavy elements (heavier than helium) and
their dispersion throughout the interstellar medium. These elements are
produced both during the stages preceding the explosion, in the layers
surrounding the iron core, and during the explosion itself, as a result of the
shock wave that sweeps the mantle. Most of the shock-wave energy turns
into heat, which raises the temperature to peak values attaining 5 × 109 K;
at such high temperatures nuclear statistical equilibrium is achieved (see
Section 4.7) on a timescale of seconds (the dynamical timescale). The
main product is 56Ni, rather than iron, which is obtained at lower
temperatures, when nuclear reactions are slower. The reason is that the
nuclear fuel has  and since time is too short for β decays to
occur and change the ratio of protons to neutrons, the product must also
have  as 56Ni does, whereas for 56Fe,  As the
shock wave moves out, it loses energy and its temperature declines. When
the temperature falls below ~2 ×109 K, which occurs when the wave has
reached the neon-oxygen layer, explosive nucleosynthesis ceases. Thus
elements heavier than magnesium are produced during the supernova
explosion, while lighter elements are produced during the stages preceding
it.

Typical values for the estimated ejected mass, as well as other
characteristic masses of supernova models, are given in Table 10.2. The
supernova ejecta mix with the pre-existing interstellar clouds made
predominantly of primordial hydrogen and helium and thus determine the
evolving galactic (cosmic) abundances of the elements. We shall return to
this point in Chapter 12. We only note for now that the agreement between
the calculated ejecta abundance pattern and the solar system abundance
pattern is striking, all the more so when one considers the span of seven
orders of magnitude among the different species.

Table 10.2  Characteristic masses of supernova models (in M )
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The production of 56Ni, which is radioactive with a half-life of 6.1 days,
has a marked effect on the supernova light curve and can therefore be
verified by observations. The product of 56Ni decay is 56Co, itself
radioactive with a half-life of 77.1 days, decaying into 56Fe. These β
decays release the energy (3.0 × 1012 J kg−1 for 56Ni and 6.4 × 1012 J kg−1

for 56Co) that powers the supernova light curve after the initial decline
from maximum. As the rate of decay and energy release decline
exponentially on the appropriate timescales, it can be compared with the
rate of decline of the light curve. A perfect match is obtained, as shown in
Figure 10.6 for SN1987A. If the distance to the supernova is known, as it
is in the case of SN1987A, the amount of 56Ni produced can be inferred
(0.075M  for SN1987A).

Figure 10.6  Light curve of SN1987A. Points correspond to observational data obtained at the
Cerro Tololo Inter-American Observatory (CTIO) and the South African Astronomical
Observatory (SAAO). The dashed line is obtained from a model assuming decay of 0.075M  of
56Ni and later, 56Co (from D. Arnett et al. (1989), Ann. Rev. Astron. Astrophys., 27).

Exercise 10.3:  Derive the expression for the light curve L(t) of a supernova powered by the
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decay of 56Ni and 56Co, assuming that 1M  of 56Ni was initially expelled in the explosion.

A rather recent observation that bears direct witness to ongoing
nucleosynthesis and to the continual dispersion of nuclear ashes
throughout the Galaxy is the detection of 26Al – a radioactive isotope with
a half-life of 7.2 × 105 yr – in the interstellar medium. Nuclei, like atoms,
have their distinct spectra, due to their discrete energy levels, only the
energies involved are more than three orders of magnitude higher. Excited
nuclei, like excited atoms, emit photons whose energies, corresponding to
the differences between nuclear energy levels, are measured in MeV,
rather than eV (or keV), as in the case of atoms. The radioactive
aluminium isotope is produced by nuclear reactions at high temperatures in
an excited state. Its subsequent decay to 26Mg releases a characteristic 1.8
MeV photon, appearing as a line in the γ-ray spectrum. This line was
detected by several satellites equipped with a variety of γ-ray detectors:
COMPTEL (COMPton TELescope on board the Compton Gamma Ray
Observatory) launched in 1991, RHESSI (Ramaty High Energy Solar
Spectroscopic Imager) and INTEGRAL (INTErnational Gamma Ray
Astrophysics Laboratory), both launched in 2002, to name only a few. The
detection of this line indicates that 26Al has been produced in quite
significant amounts no earlier than 106 yr ago, a very short time on the
stellar evolution scale. Moreover, traces of the daughter product have been
detected in meteorites. This means that the same process of
nucleosynthesis and heavy element dispersion was taking place at the time
when the solar system formed, 4.6×109 yr ago.

10.4  Supernova progenies: neutron stars – pulsars

With the expulsion of the envelope in a supernova explosion, the neutron
core becomes a neutron star. The existence of such exotic objects as
neutron stars was first postulated by Lev Landau, as early as 1932 (more
precisely, Landau mentioned the possible formation of ‘one gigantic
nucleus’, when atomic nuclei come in close contact in stars exceeding the
critical mass). Their resulting from supernovae was soon suggested by
Walter Baade and Fritz Zwicky, in 1934, and the first physical model was
offered by Robert Oppenheimer and George Volkoff in 1939. The
governing equation of state is similar to that appropriate to a degenerate
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electron gas, a n = 1.5 polytrope (see Section 5.4) leading to a relation
between mass and radius R ∝ M−1/3, so long as relativistic effects are
negligible. For example, a 1.5M  neutron star would have a 15-km radius.
Thus, whereas a white dwarf is similar in size to the Earth, the diameter of
a neutron star is no bigger than that of a large city. As in the case of
degenerate electrons, the relativistic limit of the equation of state for the
degenerate neutron gas imposes an upper limit on the neutron star’s mass
(equivalent to the Chandrasekhar limiting mass for white dwarfs derived in
Section 5.4). Above this critical mass, a neutron star would not be able to
generate enough pressure for balancing self-gravity and collapse would
ensue. In the case of neutrons, however, this limiting mass is far more
difficult to estimate. The value of 5.83M  that would result from Equation
(5.32), by taking µn = 1 for neutrons, rather than µe = 2 for electrons, is
incorrect for two reasons. First, in a relativistic neutron gas the kinetic
energy of the particles is comparable to the rest-mass energy, and hence
the Newtonian gravitational theory is no longer valid and Einstein’s
General Theory of Relativity (1915) must be used instead. Secondly, the
gas is imperfect and particles can no longer be considered free
(noninteracting) at the high neutron star densities. Interparticle distances
are of the order of the strong force range. Hence nuclear forces have to be
taken into account and the equation of state becomes more difficult to
calculate. Although the first correction lowers the upper limit to about
0.7M , the second correction raises it. Thus, depending on the equation of
state used, the upper limit to the neutron star mass is estimated to lie
between 2M  and 3M . Fortunately, this limit does not impose serious
constraints, since the iron cores of massive stars do not appear to exceed
2M  by much (see Table 10.2). And yet, in principle at least, a third end
state would be possible for extremely massive stars – the collapse of a too
massive (neutron) core into a black hole.

In all cases considered so far, the different types of astronomical objects
had been observed long before they were understood. Such are main-
sequence stars, red giants, white dwarfs, planetary nebulae, different types
of variable stars, novae, supernovae — many misnomers bearing witness
to that. Neutron stars, on the other hand, first emerged as theoretical,
hypothetical objects. Then, in 1967, an important discovery was made,
quite accidentally. Jocelyn Bell Burnell, a doctoral student working under
the supervision of Anthony Hewish at a new radio telescope in Cambridge,
detected variable radio sources of extremely high and very regular
frequencies, the first such source having a period of barely more than 1 s.
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They were called pulsars, short for pulsating stars, and by analysing the
pulses more closely, it was very soon realized that pulsars must be very
compact galactic objects, smaller and denser than white dwarfs. To stress
the impact of this discovery, we note that the 1974 Nobel Prize for Physics
was awarded to Hewish for ‘his decisive role in the discovery of pulsars’
(the prize was shared with Martin Ryle, for pioneering work in radio
astronomy). Although the explanation for these strange objects was soon
to follow, it was not soon enough to prevent another misnomer. Pulsars are
not pulsating stars, but rather – as suggested by Thomas Gold in 1968 –
rotating neutron stars that formed in supernova explosions.

The association of pulsars with supernovae – suggested by Hoyle as
soon as pulsars were made known – became widely accepted with the
discovery, still in 1968, of the famous Crab Pulsar, with a period of only
0.033 s, at the centre of the nebula bearing the same name, which had
already been identified as the remnant of the 1054 supernova. Another
supernova remnant pulsar is the Vela Pulsar, with a frequency of 0.089 s,
discovered soon afterwards within the dispersed nebula of a supernova that
occurred some 10 000 years ago.

Having identified pulsars as the neutron star survivors of supernova
explosions, we now turn to the pulsar mechanism. This invokes two main
factors: rotation and a magnetic field, both having been tremendously
intensified in the course of the supernova core collapse. Taking into
account that all stars rotate, even if very slowly and insignificantly, we
may estimate the expected rotation rate of a neutron star by applying the
law of angular momentum conservation to the collapsing core. Since the
collapsing core is weakly coupled to the envelope, the transfer of angular
momentum between them (if any) is negligible. We know that the Sun
rotates with a period of 27 days. Let us assume this period  to be typical
of a 1R  object of mass similar to the Sun’s, such as the presupernova core
of mass Mc. The corresponding angular momentum is of the order of

(10.6)

If the angular momentum is conserved while the core turns into a neutron
star of radius Rns  20 km, the rotation period of the neutron star will be
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(10.7)

of the same order as the pulse period of the fastest pulsars.
But rotation alone is not sufficient for sending out pulsed radiation; a

beam would be required that would be periodically directed toward the
observer, similarly to a lighthouse beam. Here the magnetic field, which
has been enhanced by the collapse up to 108 T – nine orders of magnitude
higher than the Sun’s and more than four orders of magnitude higher than
a white dwarf’s – comes into play. Charged particles are accelerated by a
magnetic field, and accelerated charged particles emit radiation. Radiation
of this kind, characteristic of strong magnetic fields, such as those
produced in particle accelerators called synchrotrons, is accordingly called
synchrotron radiation. It is mainly produced by electrons and it is
strongest along the direction of the magnetic poles, where the magnetic
field lines are most concentrated. Thus the radiation emitted by the neutron
star comes from two radiating cones around the poles of the magnetic
(dipole) axis, as shown in Figure 10.7. If the rotation axis and the magnetic
field axis were to coincide, the neutron star, visible to observers lying
within the radiation cones, would have appeared as a constant source.
There is no reason, however, for the axes to be aligned – on Earth, for
example, they are not. If they are not, we have our rotating beam that
sweeps the sky at the frequency of the stellar spin. It should be noted that,
since pulsars radiate in a preferred direction, we miss many such objects,
even if they are close by.
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Figure 10.7  Sketch of the lighthouse model for pulsars.

What is the energy source of pulsars? The perhaps surprising answer is
kinetic energy – the kinetic energy of rotation, amounting initially to

(10.8)

to use the values of the former example. This energy, whose source is the
gravitational energy of collapse, should have been added, in fact, to the
energy budget of the supernova – Equation (10.5) above – but would not
have changed any of the conclusions. Indeed, now that over a thousand
pulsars have been detected in our Galaxy, and the oldest have been
observed for a relatively long period of time, it has been established that
the pulsars’ periods increase with time (as Gold had predicted), implying
that the spinning rate slows down. The rate of rotational energy loss 
derived from the observed slow-down of the spinning rate, 

 exceeds by many orders of magnitude the rate of
emission of pulsed radiation (a factor of ~107 for the Crab pulsar), so most
of the energy is emitted by a different mechanism. In simple terms, the
rapidly changing magnetic field of a spinning magnetic dipole with
unaligned spin and dipole axes generates a strong electric field and emits
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electromagnetic radiation at the spin frequency, known as magnetic dipole
radiation.

The magnetic-dipole-radiation mechanism for pulsars helps to solve a
long-standing enigma related to the very source of energy that powers the
Crab nebula and, in particular, to that part of the radiation emitted by the
nebula which is due to relativistic electrons. Although such electrons were
produced in the supernova explosion, they should have radiated away their
energy a long time ago. Moreover, an initial magnetic field that might have
permeated the supernova ejecta, and could have accelerated these
electrons, should have weakened considerably with the expansion of the
nebula. As it turns out, for the Crab pulsar,  very close
to the power required to explain the radiation and expansion of the Crab
nebula. If the rotation slowdown is due to emission of magnetic dipole
radiation, the relativistic electrons are a by-product of the huge electric
field associated with the rapidly changing magnetic field of the spinning
pulsar. The pulsar radiation and the transfer of energy from the pulsar to
the nebula are not yet well understood, but, quite remarkably, John
Archibald Wheeler and Franco Pacini had suggested that the Crab nebula
might be powered by the magnetic dipole radiation of a rotating neutron
star a short time before pulsars were discovered.

From the known number of pulsars and their estimated lifetimes it is
possible to derive an average rate of pulsar formation: this turns out to be
about one every few decades, very close to the rate of supernova
explosions. This observation provides an indirect, but independent,
corroboration for the association of pulsars with supernovae.

Finally, as their energy source wears out (after some 105–106 yr),
pulsars, too, are destined to go into oblivion.

10.5  Carbon-detonation supernovae: Type Ia

Type Ia supernovae are by far the brightest standard candles, or distance
indicators, and thus play an important role in cosmology. The typical
correlation that serves for distance determination in this case is an
empirical relationship between the peak luminosity and the light-curve
width. Type Ia supernovae have been instrumental in the relatively recent
revolutionary discovery of the acceleration in the expansion of the
Universe. And yet, the circumstances that lead to a Type Ia supernova
explosion are still controversial and subject to investigation, both
observational and theoretical.
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As we have already mentioned in Section 10.1, there is general
agreement that the explosion is induced by a thermonuclear runaway in a
carbon-oxygen white dwarf whose mass has exceeded the Chandrasekhar
mass. The reasons for such a configuration to explode are twofold: first,
dynamical instability, caused by the inability of the degeneracy pressure to
balance gravitational attraction (see Section 6.4); second, thermal
instability of degenerate matter, caused by the insensitivity of the
degeneracy pressure to temperature (see Section 6.2). The former leads to
rapid contraction and to ignition of carbon in an electron-degenerate core –
carbon detonation. Nuclear burning raises the temperature but not the
pressure and hence the temperature keeps rising, escalating into runaway.
The very high temperature causes carbon and oxygen to turn into iron-
peak elements on a dynamical time scale throughout a large fraction of the
white dwarf. The resulting enormous nuclear power blows off the entire
star.

As explained in Section 10.3, the main product of the explosive
nucleosynthesis is 56Ni, which has the same ratio of neutrons to protons as
carbon and oxygen (the nuclear fuel), since there is no time for β-decays to
occur. Later on, 56Ni decays to 56Co, and finally 56Co to stable 56Fe, and
these decays are reflected in the light curve of supernovae of both types.
The effect is more conspicuousin the light curves of Type I supernovae,
where a much larger fraction of the mass, almost the entire progenitor star,
turns into 56Ni. The decay of 56Ni and 56Co dominates the light curve in
this case. A composite Type I supernova light curve is shown in Figure
10.8, illustrating the striking uniformity of these giganticexplosions.

Figure 10.8  Composite light curve of 38 Type I supernovae (superimposed so that the maxima
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coincide) (from R. Barbon et al. (1973), Astron. Astrophys. 25).

The energy that powers the Type Ia supernova explosion is thus nuclear,
in contrast to the Type II case, where the energy source is gravitational
contraction. The amount may be easily estimated: the mass excess per
nucleon in the progenitor, assuming equal mass fractions of carbon and
oxygen, is −0.1480 MeV while the mass excess of 56Ni is −0.9625
MeV/nucleon. Hence 0.8145 MeV are released per nucleon and the
number of nucleons is MCh/mH ≈ 1.75 × 1057, which yields a total energy
of ~2.3 ×1044 J. Most of this energy goes to the disruption of the white
dwarf, whose binding energy is of the same order.

So far the process is well understood. What is still uncertain is the
evolution that produces the Chandrasekhar-mass white dwarfs, which
necessarily involves stellar interaction, since single white dwarfs are
produced with lower masses. We shall address this problem in the next
chapter.

10.6  Pair-production supernovae and black holes – the fate
of very massive stars

Stars of mass M  60M  (or M  80M , according to some estimates)
encounter a different type of instability in their evolutionary course. The
brief hydrogen-burning phase is followed, as usual, by helium burning.
Helium burning in these stars produces mostly oxygen (due to the high
core temperatures attained) and hence oxygen rather than carbon
constitutes the next nuclear fuel. Oxygen ignites in a core exceeding 30M
at a temperature of ~2 ×109 K. At this temperature the photon energy is
sufficiently high for spontaneous electron-positron pair creation (see
Section 4.9). Pair production, much as ionization or photodisintegration,
reduces the adiabatic exponent below the stability limit of 4/3, leading to a
dynamical instability, as discussed in Section 6.4. The core (or part of it) –
whose mass exceeds the limiting neutron star mass – collapses and a black
hole is formed on a dynamical timescale.

The description of a black hole, in fact the very concept of such an
object, is entirely based on the theory of general relativity, which is
beyond the scope of this text. Suffice it to say that even simple arguments
indicate that something odd must occur when the radius of a star of given
mass becomes so small that the escape velocity approaches the speed of
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light. This limiting radius, known as the Schwarzschild radius (after Karl
Schwarzschild), is given by

(10.9)

With remarkable foresight, Laplace pointed out the difficulty in 1796 (in
his ‘Exposition du système du monde’), about a century after Newton’s
classical theory of gravitation, but also about a century before Einstein’s
relativistic one. (In fact, Laplace was anticipated by John Michell, a less
well known English geologist and clergyman, who expressed similar ideas
in a letter to Henry Cavendish in 1784.) Classical mechanics cannot
account for such an enormous gravitational field as obtains at r ≤ RSch to
prevent photons from escaping it, since photons are massless, but lacking
more advanced knowledge, this is the intuitive explanation for the
blackness of a black hole.

While the core collapses, the outer layers of the star are ejected as in a
supernova explosion. Whether the explosion resembles a Type I or a Type
II supernova or whether it is different from both is uncertain. The results of
evolutionary calculations depend on as yet undetermined parameters, such
as the mass-loss rate during early evolution. It is unclear, for example,
whether such a star would lose all, or only part of, its hydrogen-rich
envelope prior to explosion. Nor can we rely on observations to guide us,
for, as we shall see shortly, very massive stars are rarely born, and
moreover, they are extremely short-lived, aging and dying, as it were,
almost as soon as they are born. The remnant black hole, as the name
indicates, would be elusive to observation as well. We have come to an
impasse: we can never be certain of an explanation to a phenomenon that
we do not see, even if we can explain why we do not see it. A theory
which cannot be tested or confirmed by observation seems unworthy of
pursuit.

And yet, a candidate for the pair-production driven supernova was
discovered a few years ago, the first so far! Dubbed SN2006gy, it is the
brightest supernova known to date, about a hundred times more luminous
at its peak than the brightest Type II supernovae, as shown in Figure 10.9.
It occurred in a very distant galaxy, about 240 million light-years away,
and hence about 240 million years ago. The progenitor is believed to have
been a very massive star, its mass exceeding 100M , and perhaps close to
the upper mass limit of stars. The high luminosity may have resulted from
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the decay of 50–100 times more 56Ni than a regular supernova, about 10M
. Interestingly, the presumed structure of its progenitor bears similarity to

the star Eta Carinae of our own Galaxy. This discovery casts doubts on the
hypothesis that the demise of a very massive star must be associated with
the creation of a black hole. Nevertheless, in some cases there is
compelling evidence for the presence of black holes (of stellar mass),
inferred from phenomena related to the strong gravitational fields these
objects generate around them and the resulting interaction with their
surroundings. This brings us to the subject of the next chapter.

Figure 10.9  Light curve of supernova SN2006gy, compared with typical light curves of Type II
and Type Ia supernovae and with SN 1987A. (Adapted from NASA/CXC/UC Berkeley/N. Smith
et al.)
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11

Interacting binary stars

11.1  What is a binary star?

As it turns out, the majority of stars are members of binary systems, or
even multiple systems. The term binary in the stellar context was coined in
1802 by William Herschel only a few years after he introduced the term
planetary nebula, as mentioned in Section 9.7. The first telescopic
discovery of a double star, Mizar, is attributed to Giambattista Riccioli in
1650, just 41 years after Galileo’s first telescope. Other stellar pairs were
found by the mid-eighteenth century, but little effort was devoted at the
time to their study.

A binary system consists of two stars revolving around their common
centre of mass, as shown in Figure 11.1, and is defined by three
parameters: the masses of its member stars and the distance d between
their centres. The distance is not necessarily constant in time; it may vary
periodically or change secularly. The masses, too, may change in the
course of time. So perhaps a better characterization should be: initial
masses and separation, and current age. Each parameter spans a wide
range of values and their combinations are innumerable. In most cases,
however, the members are so far apart that their individual structures and
evolutionary courses are barely affected; they are thus no different from
single stars, except that their dynamics as point masses is more
complicated.
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Figure 11.1  Orbits of two masses about their common centre of mass, for an elliptic orbit of
eccentricity 0.8 and for a circular orbit. The mass ratio is 2 in both cases, with the massive star
labelled 1 and the less massive one labelled 2.

Binary stars are born together as a bound system; in principle, a star
may capture another, in the presence of a third body, into a bound
(negative energy) state, but the chances for that to happen are small even
in a dense star cluster. Born at the same time and having different masses,
binaries may be expected to consist of stars in widely different
evolutionary stages, since evolutionary time scales – as we have learned –
depend strongly on stellar mass. Interactions may thus result in a wealth of
phenomena. For binary stars to be interacting, their mutual distance must
be relatively small, when measured in units of the larger of their radii.
How small the distance may be, what form the interaction takes, and to
what consequences, are the questions that will interest us in this chapter.

Orbital motion
Consider a system of two stars of masses M1 and M2, isolated in space. In
the absence of external forces, the centre of mass of the system is at rest,

274



and we may adopt it as reference point. The stars may be considered point
masses moving with respect to the centre of mass under their mutual
gravitational forces, which are equal in magnitude and opposite in
direction, according to Newton’s third law. Let d1 and d2 be the distances
of M1 and M2, respectively, from the centre of mass. The distance between
the masses d is then

(11.1)

where all three vectors d1(t), d2(t) and d(t) are colinear, their magnitudes
satisfying the relations:

(11.2)

The equations of motion for the two stars are

(11.3)

and combining them, we obtain

(11.4)

The well-known solution d(t) of this equation is periodic, described by an
ellipse, if we discard the possibility of unbound states, where stars would
move away from each other on hyperbolic or parabolic trajectories. Thus
the distance between the stars traces an ellipse in the orbital plane, the stars
moving apart and coming closer together periodically in time. This means
that each star moves in an elliptic orbit with respect to the other. An
elliptic orbit is defined by two parameters: the semi-major axis a and the
eccentricity e, and in polar coordinates the equation that describes it is

(11.5)

where θ is the angle between the vector d and the major axis with the
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origin at a focal point. It may be easily shown that not only the mutual
distance, but also the trajectory of each one of the stars in a rest frame of
reference traces an elliptic orbit, each around the common centre of mass.
The periods of revolution are obviously the same. This is shown in the
upper part of Figure 11.1.

Exercise 11.1:  Show that in the rest frame of reference, the equation of motion of each
member of a binary system has the form (11.4), whose solution is an elliptic orbit, with the
centre of mass at a focal point. Show further that the ellipses have the same eccentricity.

The simplest form of an ellipse is a circle, an ellipse of zero eccentricity,
where the focal points and the centre coincide, the distance between the
stars is constant in time, d(t) = a, and so are the velocities of each. Most
binaries that are close enough to be interacting have circular orbits. This
property is of particular importance, for it enables the determination of the
masses of the binary members, providing the only way of measuring stellar
masses.

Observational classification
Only seldom are both members of a binary system visible; in such cases
the system is known as a visual binary, the most famous example of which
is Sirius, consisting of a main-sequence star and a white dwarf. When only
one member is observed, which is usually the case, evidence for the
existence of a companion is provided in one or more of the following
manifestations (signs):

1.  Astrometric binary: the star is wobbling periodically with respect to a
fixed point, the result of the projected orbital motion on the celestial
sphere perpendicular to the line of sight.

2.  Spectroscopic binary: the spectral lines of the star show a periodic
variation of their Doppler shift, blue-ward and red-ward alternate, as
the revolving star moves towards and away from the observer.

3.  Eclipsing binary: the star’s luminosity varies periodically, as a result
of eclipses of one star by the other. For this to be possible the
inclination of the orbital plane with respect to the line of sight must
be small: the angle between the normal to the plane and the direction
of the observer, close to 90 degrees.
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Exercise 11.2:  Consider a system of two stars that revolve about their centre of mass in
circular orbits, for which it is possible to separate the spectral lines of the two components (a
spectroscopic binary system). As a result of the Doppler effect, the lines shift periodically
about a mean to shorter and longer wavelengths, as each star moves toward or away from the
observer. From these shifts it is possible to determine the orbital period  and the velocity
components along the line of sight, vo,1 and vo,2, respectively. Denoting the angle of
inclination of the orbital plane with respect to the observer by i, find the masses of the two
stars, M1 and M2, in terms of the observables and sin i.

11.2  The general effects of stellar binarity

Generally, the structure of each member of a binary system may be
affected in two different ways: the star may be irradiated by its
companion’s luminosity, or distorted by its gravitational field. The
resulting effect is complicated to calculate accurately, mainly due to the
lack of symmetry; nevertheless, we shall try to obtain rough estimates.

Consider irradiation of a star by another’s luminosity: the additional
energy will be absorbed in a thin outer layer, which will cause the effective
temperature to rise, so that the surplus is re-emitted together with the
energy flux flowing from within. The radiation energy absorbed by the
irradiated star is given by the flux emanating from the radiating star at a
distance d, given by L2/4πd2 multiplied by the cross-section of the former, 

 Denoting the intrinsic luminosity of the first star by L1 and assuming
the radius of this star to remain unchanged, its total luminosity is

(11.6)

and the resulting effective temperature is

(11.7)

where Teff,1 would be the effective temperature of the star, if undisturbed.
Usually, the correction term on the right-hand side of Equation (11.7) will
be small.

To get an estimate of the length-scale affected by the incoming
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radiation, we use the same principle that has led to timescale estimates in
Section 2.8: we divide the quantity that is bound to change by the process
– in our case, the temperature – by its rate of change with distance within
the star (its gradient), irrespective of sign. Adopting m as space variable
and using Equation (5.3), we have for the absorbing mass scale that we
denote by χ,

(11.8)

As a rough approximation, near the stellar surface we may substitute on
the right-hand side: F ≈ L, T ≈ Teff, r ≈ R1. With a = 4σ/c and 

 Equation (11.8) reduces to

(11.9)

Normalizing χ by the stellar mass  we obtain

(11.10)

where ρ is the density near the surface of the star, which is orders of
magnitude lower than the average density, while κρR1 is a crude
approximation for the photospheric optical depth, hence of order unity.
Thus the outer layer of the star where most of the incoming radiation is
absorbed has negligible mass in comparison with the stellar mass, the bulk
of which remains unaffected. It is worth noting that whenever heat
diffusion is involved, the thickness of the zone that absorbs most of the
inflowing heat is known as the skin depth. A negligible mass does not
necessarily imply a negligible thickness – since the density in the outer
layers of a star may be very low – but even an extended skin of negligible
mass will not affect the stellar interior and its evolution.

To get an idea about the extent of distortion caused by the presence of a
companion star, imagine two stars, 1 and 2, of masses M1 and M2,
respectively, separated by a distance d measured between their centres.
The gravitational force per unit mass exerted by star 2 on star 1 as point
masses is GM2/d2. The force per unit mass exerted by star 2 on a small
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mass element at a distance r from the centre of star 1 along the line of
centres is GM2/(d − r)2. The difference between the two is the force that
will distort the spherical shape of the star, known as tidal force, which
pulls the mass element outwards, toward the companion star,

(11.11)

where we have assumed r/d ≤ R1/d  1 and used the binomial
approximation. An order of magnitude estimate for the tidal pressure along
the line of centres, obtained by integrating ftide(r)ρ(r)dr, yields

(11.12)

This pressure is opposed by the hydrostatic pressure, which increases
steeply with depth. By Equation (5.1), at the bottom of a surface layer of
mass χ, we have

(11.13)

Hence the mass χ of the outer zone that is bound to be affected by tidal
forces may be roughly estimated by requiring Ptide ~ Ph, which yields

(11.14)

usually a small fraction of the total stellar mass.
Thus, irradiation and tidal distortion, which act on a star at a distance,

have relatively small effect. The main effect of stellar interaction becomes
apparent when the stars come into direct contact by transferring material
between them, or even sharing material. Observational indication for the
possibility of mass transfer between stars was provided by the Algol
paradox: an Algol binary is a binary system where the lower-mass
member is a giant, while the more massive one is still on the main
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sequence (Fig. 11.2). This contradicts what we have learned so far: that the
more massive a star, the sooner it leaves the main-sequence phase,
evolving rapidly towards its final state.

Figure 11.2  Light curve of Algol-type (see below) eclipsing binary stars. Data was obtained by
the International Gamma-Ray Astrophysical Laboratory (INTEGRAL) (from J. M. Mas-Hesse et
al. (2003), Astronomy and Astrophysics, 411).

Historical Note: Many thousands of Algol binaries are now known. The prototype of Algol stars
is the star itself called Algol (or β Persei). Algol was first recorded as a variable star in 1667 by
Geminiano Montanari. Only more than a hundred years later was a mechanism proposed for the
variability of this star by a young deaf-mute amateur astronomer, John Goodricke, who was the first
to establish the periodic nature of these variations. He published his findings in the Royal Society’s
Philosophical Transactions in 1783, suggesting that the periodic variability was caused by a dark
large body passing in front of the star (or else that the star itself had a darker spot that was
periodically turned toward the Earth) and was awarded the Copley Medal for his report. Another
hundred years later, in 1881, Edward Pickering presented evidence that Algol was indeed an
eclipsing binary. This was confirmed a few years later, in 1889, when Hermann Carl Vogel found
periodic Doppler shifts in the spectrum of Algol, inferring variations in the radial velocity of this
binary system. Thus Algol became not only the first detected eclipsing binary, but also one of the
first known spectroscopic binaries.

As we shall see shortly, the solution to the Algol puzzle is found in the
change of mass of the binary members in the course of evolution, with the
initially massive star losing and the low-mass star gaining mass.

Having already encountered the outcome of mass loss in the evolution
of single stars, we should not be surprised to find that the opposite effect
of mass accretion has its own significant consequences. We start by
devoting some thought to a simple scenario where a star is embedded in a
medium of low-density material rather than a void, as we have so far
assumed, disregarding for now the source of this material. Obviously, the
star will accrete some of the surrounding material and we may assume
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spherically symmetric accretion.
When a star of mass M and radius R accretes an amount of mass δm

coming from infinity, its (negative) gravitational potential energy
decreases by an amount

If the material is accreted over a time interval δt, the average rate of
gravitational energy release  is proportional to the
average accretion rate, 

(11.15)

If the star is to maintain thermal equilibrium, this energy surplus must be
radiated away. Thus an accretion luminosity may be defined in relation to
the accretion process:

(11.16)

Obviously, the larger the gravitational field of a star, the larger would be
its accretion luminosity. Thus, for example, if a star of 1M  were to double
its mass, say, during 1010 yr (comparable to the age of the universe), it
should accrete at an average rate  A main-sequence
star, would thus produce a luminosity of 
entirely negligible compared with the natural luminosity of such a star. For
a white dwarf, the resulting luminosity would be about a hundred times
higher, a few tenths L , significantly higher than the typical luminosity of
white dwarfs. For a neutron star, it would reach 100L, while for a black
hole (assuming the accretion radius to be RSch) it would approach 1000L .

The accretion rate is limited by the requirement that the resulting
luminosity be lower than the Eddington critical luminosity. Otherwise, the
radiation pressure exerted on the infalling material would push it back and
prevent it from accumulating. We recall that the luminosity approaches the
critical limit as the radiation pressure becomes dominant, and the binding
energy of the star tends to zero. The requirement Lacc < LEdd leads,
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according to Equation (5.37), to

(11.17)

which for electron scattering opacity translates into

(11.18)

We note that the upper limit of the accretion rate depends solely on the
stellar radius, regardless of the mass.

In conclusion, even a moderate accretion rate (far below the upper limit)
may induce the three types of compact stars to emit a significant
luminosity. What kind of radiation would we expect in such instances? In
order to maintain thermal equilibrium by emitting the surplus gravitational
energy, a star must adjust its surface temperature. The gravitational energy
of the infalling matter is absorbed by a surface boundary layer, which
acquires a temperature Tb and re-emits the energy as blackbody radiation.
Since compact objects are stiff, the radius is barely affected. Hence Tb can
be estimated by

(11.19)

An upper limit is obtained by substituting the critical value of  (11.18)
on the right-hand side, which provides a reasonable estimate in view of the
weak dependence of Tb on  (a power of 1/4). For a white dwarf we
obtain Tb ≈ 106 K, for a neutron star, Tb ≈ 1.5 × 107 K, and for a black
hole, Tb  3 × 107 K. These would appear as bright UV, X-ray, and even γ
-ray sources. Indeed, such sources are quite abundant in our Galaxy (and
beyond), as satellite-mounted modern detectors reveal.

Thus extinct compact stars, which would otherwise escape observation,
may be rejuvenated by accretion. In fact, accretion leads to a wide variety
of fascinating phenomena – an entire zoo of exotic objects – but the simple
principles of stellar evolution that we have encountered remain the same
and can be applied to explain the evolution of binary stars, as they have
explained the more straightforward evolution of single ones. In order to
understand these complex phenomena, we must first consider more
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carefully the mechanism of mass exchange between stars.

11.3  The mechanics of mass transfer between stars

A single star, viewed as an isolated point mass, generates a spherically
symmetric gravitational field that may be described by spherical
equipotential surfaces centered on it. The meaning of such a surface is that
a test particle may move on it freely, without requiring additional energy
(or work done on it by an external force), nor releasing energy. Moving
from one equipotential surface to another, on the other hand, entails either
energy gain or energy loss: the former in order to move away from the star
(rise to a higher potential value), the latter for moving closer to it
(dropping to a lower potential state).

When a binary star, viewed as two point masses isolated in space, is
involved, the equipotential surfaces – retaining their meaning – adopt more
complicated geometrical shapes. Very close to each star, that is, at
distances which are small compared with the separation between the stars,
as well as at very large distances by the same standard, we may expect the
equipotential surfaces to be almost spherical: closed, separate surfaces
around each star in the former case, and one surface corresponding to a
point mass equal to the sum of masses, in the latter. These extreme cases
are, however, not ‘interesting’; of interest is the intermediate domain. In
particular, we may already guess that in the transition from two separate
equipotential surfaces to a single one, a critical point – a case of special
significance – will arise. It is this case and its consequences that we now
wish to pursue.

Consider stars labelled 1 and 2 as point masses M1 and M2, respectively,
where M1 ≥ M2, revolving in circular orbits around their common centre of
mass at constant angular velocity ω. It is easy to see from Equation (11.4)
that the angular velocity is

(11.20)

where a is the (constant) distance between the stars (symbol d is reserved
for a periodically changing separation; a, for a fixed one). Since 

 where  is the rotation period, Equation (11.20) expresses
Kepler’s third law, which states P2 ∝ a3. The axis of rotation is
perpendicular to the line of centres.
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In a Cartesian coordinate system (x, y, z) co-moving with the stars with
the origin at star 1, the masses are located at (0, 0, 0) and (a, 0, 0),
respectively, and the centre of mass at (xCM, 0, 0), where xCM = M2a/(M1 +
M2). The gravitational potential experienced by a test particle at any point
in space will be given by

(11.21)

where the first two terms are the gravitational potentials of the point
masses, while the third is the rotational potential resulting from the
fictitious centrifugal force in the rotating system. Defining a new
parameter q as the mass ratio q ≡ M2/M1, and measuring distances in units
of a, we may normalize the potential:

(11.22)

where

(11.23)

Thus the normalizing coefficient, which depends on all three independent
parameters of any binary system, is a scaling factor, while the normalized
potential depends solely on one parameter, the mass ratio q. Equipotential
surfaces generated by Φ′ = C – where C is a constant – are known as
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Roche equipotentials, after the French mathematician of the nineteenth
century, Edouard Albert Roche, who was the first to study this problem of
celestial mechanics.

If C is large, the equipotential surfaces will be closed, separate,
elongated spheroids around each point mass; the larger C, the more
spherical the surfaces. With decreasing value of C, the closed surfaces
become more distorted, especially towards the centre of mass, along the
line of centres. Eventually, for a critical value of C, the surfaces
surrounding each point mass will touch at one point on the line of centres,
creating a dumb-bell shaped configuration, known as the Roche limit
surface. The point of contact is known as the inner Lagrangian point L1,
and the volumes enclosed by the limit equipotential surface are known as
Roche lobes . The significance of these lobes is that they delimit the
volume within which material is gravitationally bound to only one of the
stars. For q = 1, the lobes are identical in size and shape; as q diminishes,
the lobe around the more massive component, of mass M1, expands, while
that of the less massive one, of mass M2, shrinks. For still smaller values
of C, the lobes open up into one continuous surface, with a narrow neck
close to L1. As C decreases further, the surface becomes more and more
spherical around the two stars.

The region of interest for stellar interactions is that within the Roche
lobes. The reason is that, although the formalism of Roche equipotentials
is strictly valid only when point masses are involved, its application may
be extended – at least approximately – to more realistic cases, where the
stars occupy some volume within their respective lobes. To make things
simpler, a Roche radius rL is defined as the radius of a sphere that has the
same volume as the respective Roche lobe. A very good approximation for
the Roche radius was provided by Peter Eggleton in the form

(11.24)

corresponding to the lobe of M2, while for that of M1, q must be replaced
by q−1. A less accurate but more versatile approximation is

(11.25)
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which yields for the ratio of Roche lobe radii: rL,2/rL,1 ≈ q1/3.
The crucial question now is whether or not one or both binary members

overflow their respective Roche lobes. The answer to this question serves
to distinguish among different classes of close binaries, as proposed by
Zdenek Kopal about half a century ago:

1.  Detached binary: the radii of both stars are smaller than their
respective Roche radii, thus the stellar photospheres lie within their
Roche lobes.

2.  Semidetached binary: the radius of one of the stars exceeds its
corresponding Roche lobe. Material may thus pass from the Roche-
lobe-filling star to its companion.

3.  Contact binary: the radii of both stars are larger than the respective
Roche lobes. A common envelope thus forms, surrounding the Roche
limit surface, with both stars buried in it and hidden from individual
view.

It is the semidetached binary that leads to stellar interaction and opens up a
realm of phenomena related to mass transfer between stars, and therefore
we shall pursue this case further.

11.4  Conservative mass transfer

The simplest case of mass transfer between stars is the conservative one,
where both the mass and the angular momentum of the system are
conserved. Considering the case of circular orbits, the total angular
momentum of a binary system is given by

(11.26)

where the first two terms relate to the orbital motion, and the last two
relate to stellar spin. The spin angular momenta I1,2ω1,2 usually constitute
small corrections, since stars are centrally condensed and hence have small
moments of inertia I1,2. We shall therefore neglect them in our following
discussion. Using Equations (11.2), we may substitute
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(11.27)

to obtain

(11.28)

Substituting ω(a) from Equation (11.20), we obtain

(11.29)

Conservative mass transfer implies

(11.30)

meaning that all the mass lost by one binary member is gained by the
other, and

(11.31)

Combining Equations (11.30) and (11.31), we have

(11.32)

The conclusion is that the separation between the stars – and with it, the
period of revolution – changes at a rate which is proportional to the mass-
transfer rate. Whether it increases or decreases is determined by the
direction of mass transfer: from M2 to M1 or vice versa. If it is the massive
star that loses mass to its companion, then  hence  and
thus the orbital size of the system shrinks. This is bound to enhance the
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rate of mass transfer, which in turn will bring the stars still closer together.
The process may escalate into runaway. It is this process that accounts for
the reversal of the initial mass ratio in a binary system, which solves the
Algol paradox; for massive stars evolve faster than low-mass ones, and
hence they are the first to expand and eventually overflow their Roche
lobes and transfer mass to their less massive companions. This unstable
state will only cease when the mass ratio is reversed.

If, on the other hand, it is the less massive star that fills its Roche lobe
and transfers mass to its companion, the distance between the stars will
increase. At the same time, the ratio of Roche lobe radii will decrease with
decreasing q, so it may still be possible for the mass-losing star to fill its
Roche lobe. In this case, a stable state of mass transfer may result. As it
turns out, this configuration of slow and stable mass accretion onto the
massive and more compact binary component gives rise to a wide range of
eruptive phenomena, lumped together under the general name of
cataclysmic variables.

Exercise 11.3:  Consider a binary system in circular orbit, with M2 < M1, where 
and  (a) Find the condition q must satisfy for the Roche lobe of M2 to shrink.
(b) Assuming the donor star to expand slightly upon losing mass, find the condition q must
satisfy to ensure Roche-lobe overflow (use a relation of the form R ∝ M−1/n for the mass-
radius dependence).

11.5  Accretion discs

With cataclysmic variables in mind, consider a binary system where the
massive member is a compact star, say, a white dwarf that accretes
material from its companion, say, a low-mass main-sequence star. As
customary for such systems, we shall refer to the massive, mass-accreting
component as primary, and to the less massive, mass-losing one as
secondary. The critical point of the configuration, as we have seen, is the
contact point L1 of the Roche lobes.

What is the meaning of the inner Lagrangian point L1? As it lies at the
intersection between surfaces that belong either to one star or to the other,
a test particle at this point belongs to both or to none. This means that the
compounded forces acting on it by the two stars must exactly provide the
centripetal force required for rotation around the centre of mass, so that the
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particle will remain in equilibrium. Clearly, L1 will be more distant from
M1 (the origin at the larger mass star) than the centre of mass located at

(11.33)

for the force exerted by M1 on a test particle at xCM exceeds the force
exerted by M2, unless, of course, the masses are equal. This excess will
supply the required centripetal force towards the axis of rotation that
passes through the centre of mass, when the particle is removed from xCM.
Hence, to reach equilibrium, the test particle can only be moved towards x
> xCM. Thus, xL1

 ≥ xCM. Since on the line of centres in the co-moving
frame y = z = 0, the value of xL1

 is obtained as the solution of the equation

(11.34)

which is equivalent to the condition dΦ (x, 0, 0)/dx = 0, corresponding to
extremum points of the potential. Using the same normalization as for Φ′,
we obtain after some algebra

(11.35)

where distances are now measured in units of a, so that the equation is
dimensionless. For q = 1, the only real root of Equation (11.35) is 

 As the mass ratio decreases, q → 0, we get xCM → 0,
while xL1 → 1.

At L1, the potential Φ has a maximum, located between the gravitational
potential wells of the two stars. Another way of interpreting the inner
Lagrangian point is to imagine a test particle delicately balanced at the
potential top, and prone to fall into either of the wells at the smallest
perturbation. Two additional maxima – solutions of Equation (11.35) for 0
< q < 1 – exist, L2 on the far side of M2 and L3 on the far side of M1, in
both cases the forces of the two stars acting in the same direction towards
xCM. Through these points a test particle may fall into the binary system or
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else altogether escape from it.
The projection of several Roche equipotentials on the orbital plane

(z = 0) is shown in Figure 11.3, where all three Lagrangian points are
marked. The closed Roche lobes can be clearly seen. The complicated
multi-valued function gives one an idea about the even more complex
structure of the equipotential in three-dimensional space. One should bear
in mind, however, that this elegant-looking geometry is based on greatly
simplified physical assumptions and hence not all of it is relevant to real
systems.

Figure 11.3  Projection of Roche equipotentials on the orbital plane (z = 0) for mass ratio q = 0.6.
The centres of the stars, the centre of mass (CM) and Lagrangian points L1, L2 and L3 are marked
along the line of centres.

The mass passing through L1 from the Roche lobe of the secondary to
that of the primary cannot just fall directly onto the primary. Consider a
test particle at L1 that has just acquired a small velocity in the direction of
M1. This would be of the order of the thermal velocity typical of the
temperature in the atmosphere of the secondary star, and hence small
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compared with its rotational velocity. Nevertheless, it will be sufficient for
displacing it from the unstable equilibrium position at L1. But the particle
cannot fall directly onto the primary star, for it possess angular
momentum, as it revolves around the centre of mass of the system (xL1 >
xCM). Actually, viewed from M1, the particle is seen as moving almost
perpendicular to the direction of L1. The trajectory of the particle is
complicated to compute, but it will eventually settle into a nearly
Keplerian orbit around the primary. This will be the fate of all particles
passing through L1 towards the primary, and since the initial velocity that
causes the fall towards M1 is small, it will have little effect on the
trajectories, which will thus be almost identical. The ring of material that
will form around the primary star in the orbital plane of the binary system
will slowly evolve into a disc, as particles will lose angular momentum
due to friction and will spiral in towards the primary. Eventually, they will
accumulate on the equator of the compact star, and the strong gravitational
field will spread them evenly over the entire surface. This disc, typical of
accretion in binary systems, is known as an accretion disc.

An estimate of the radial extension of the disc rd may be obtained on the
following somewhat simplifying assumptions: (a) within the primary’s
Roche lobe the effect of the secondary may be neglected, and (b) the
angular momentum is conserved, that is, the specific angular momentum at
L1 is equal to that of the Keplerian orbit around M1, both taken with
respect to an axis passing through the centre of M1 perpendicularly to the
orbital plane in a stationary (nonrotating) frame of reference. The specific
angular momentum at L1 with respect to M1 is

(11.36)

We shall further assume that xL1 ~ a − rL,2 and adopt the relatively simple
approximation (11.25) for rL,2, to obtain after some algebra

(11.37)
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A particle in circular orbit around the primary at a distance rd from its
centre has velocity  and hence specific angular momentum

(11.38)

The equality j1 = j2 thus yields

(11.39)

and relative to the primary’s Roche radius, rL,1 = 0.5a/(1 + q), using again
approximation (11.25),

(11.40)

which varies between 0.8 for q = 0.1 to 0.65 for q = 0.9. Thus, allowing for
the approximations employed, the conclusion is that the accretion disc
stretches to a significant distance within the primary’s Roche radius, and is
only weakly dependent upon the binary mass ratio. The large area of the
disc enables it to radiate a significant luminosity.

Observational evidence for the existence of an accretion disc in an
interacting binary system is also provided by the area where the stream of
particles from the donor impinges on the rim of the disc at supersonic
speeds (speeds that surpass the thermal velocity), resulting in shock-
heating. (We have encountered a similar phenomenon of shock-heating,
albeit on different scale, in supernova explosions.) This area, known as the
hot spot may radiate copious amounts of energy, often more than the
energy emitted by both stars and the accretion disc combined.

11.6  Cataclysmic phenomena: Nova outbursts

Sustained mass transfer at relatively low rates in close semidetached
binary systems gives rise to periodic outbursts of enhanced luminosity
separated by periods of quiescence. These variable systems are known
collectively as cataclysmic variables, although the processes involved,
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their timescales and luminosity amplitudes, differ considerably. Of all
these cataclysmic variables, novae are the earliest discovered, the best
known and the most spectacular. We therefore choose them to illustrate the
salient points of the cataclysmic process, which will crown and conclude
our brief discussion of interacting binary stars.

A nova, short for nova stella (new star) is a star that brightens suddenly
several hundred- to a million-fold, remains bright for a few days to several
months and then returns to its former, low luminosity, as shown in Figure
11.4.
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Figure 11.4  Examples of nova light curves for different novae that evolve on somewhat different
timescales. Axes are arbitrary, with markings at intervals of 10 days on the abscissa, and 0.4 log
L on the ordinate. (Adapted from C. Payne-Gaposhkin (1957), The Galactic Novae, Amsterdam:
North Holland Publishing, and D. B. McLaughlin (1960), Stellar Atmospheres, University of
Chicago Press.)

Historical Note:  In ancient times, novae were classed with the guest stars, which also included
supernovae, as well as comets, all transient objects. Early observations of such objects were made
mostly in the Far East – China, Japan and Korea – where professional astronomers (astrologers, in
fact) were employed by rulers to constantly watch the sky for signs of impending dangers.
Meanwhile, ancient and even medieval Europe showed little interest in these temporary stars, which
were in marked conflict with the dominant Aristotelian concept of a perfect, immutable celestial
sphere that we have already encountered in the previous chapter. Detailed records from China go
back to about 200 BC; in Korea and Japan, regular observations began around AD 800. While
comets were quite early suspected and then recognized as being a separate class of objects, the
distinction of novae from supernovae was made, as we know, only in the 1930s, when it was
realized that the two differed in maximal brightness by about six orders of magnitude. Around the
turn of the twentieth century, the number of nova discoveries rose considerably, and then settled at
an average of ~4 galactic novae per year.

By the early 1960s ample observational evidence had accumulated, mainly through the work of
Robert Kraft, indicating that novae were invariably members of close binary systems. The nova
companion was found to be a low-mass main-sequence star. Observations of novae after eruption,
and in a few cases, prior to eruption, showed them to be hot compact stars. Mass estimates, albeit
scarce and uncertain, suggested that the erupting stars were white dwarfs. This led to the hypothesis
that the red-dwarf companion is extended enough to fill its Roche-lobe and allow mass transfer to
the hotter star through the inner Lagrangian point. Indeed, in some cases, a rapidly rotating
accretion disc was detected around the hot star.

Thus, novae appear to be hot white-dwarf members of close binary systems, which accrete matter
from a cool red-dwarf companion. This sets the scene for the theory that explains the outburst
mechanism, its many distinctive features and its consequences.

Considering the galactic rate of nova outbursts on the one hand and the
restrictive requirements for a system to undergo a nova outburst on the
other, one arrives at the inevitable conclusion that nova outbursts must
recur in the same system a great many times, as was realized already in the
late 1930s. Most of the time, however, is spent in quiescence, while the
white dwarf accretes mass from its companion. As a result, old novae are
difficult to detect; the oldest nova that has been recovered was discovered
in 1670 in the constellation Vulpecula. Although the eruption is recurrent,
for most novae the time elapsed between outbursts is thousands to tens of
thousands of years, and hence only one outburst is recorded. These are
often referred to as classical novae, to be distinguished from recurrent
novae that erupt at intervals of tens of years, so that a number of such
outbursts have been recorded for each. Nova outbursts are accompanied by
mass ejection and the formation of nova shells, which slowly disperse into
the interstellar medium. Although the term nova refers to the variable star
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that undergoes temporary explosive eruptions, it is sometimes used to
designate the outburst itself (as in the case of supernovae, Chapter 10).

The outburst mechanism
The material gradually accumulating on the white dwarf’s surface
becomes compressed and the electrons at the bottom of the accreted
envelope become degenerate. At the same time the temperature at the
bottom of the hydrogen-rich envelope rises. When it reaches ~2 ×107 K,
hydrogen is ignited in a thin shell by the CNO nuclear reaction cycle. The
energy released raises the temperature further, but since the degeneracy
pressure is insensitive to temperature, no expansion and cooling results
and the temperature keeps rising exponentially, boosting the nuclear
reaction rates in a runaway process, as explained in Section 6.2. However,
above about 108 K, the CNO cycle rate is limited by the decay rates of β+

unstable nuclei, which are temperature independent, as we have mentioned
in Section 4.4. In addition, the temperature becomes sufficiently high for
the degeneracy to be lifted, turning the gas into an ideal one. The runaway
is thus quenched: the shell expands, while the burning temperature starts
dropping after having reached a few 108 K. Following ignition, a
convective region forms just above the thin shell source and extends
towards the surface. Convection mixes the β+ unstable nuclei throughout
the envelope and brings fresh CNO nuclei into the burning shell, until the
unstable isotopes prevail over the extent of the envelope. Energy
generation continues, supplied by the decay of the β+ unstable nuclei. Heat
absorption now results in rapid expansion and cooling of the accreted
envelope.

During the runaway, the white dwarf’s luminosity rises until it attains –
or even surpasses briefly – the Eddington critical luminosity (given by
expression (5.37)). When the luminosity reaches maximum, the star’s
radius is still relatively small and its surface still hot; hence it radiates
mostly in the UV or even extreme UV. The rapid expansion of the
envelope proceeds now at constant, close to critical, luminosity.
Hydrostatic equilibrium cannot be achieved; instead, mass is driven out by
radiation pressure in an optically thick wind, as we have already
encountered in Chapter 8.

Maximum luminosity in the visible part of the spectrum is obtained
when the maximal photospheric radius is reached, of order 100R ,
corresponding to effective temperatures of several thousand Kelvin.
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Thereafter, when the envelope becomes highly diluted, and the opacity
drops, the photosphere recedes through the expanding mass; its radius
decreases, while the effective temperature rises.

When most of the envelope has been ejected, mass loss comes to an end.
The small remnant shell on the white dwarf’s surface contracts and then
starts cooling slowly. Hydrogen burning continues until almost all of the
hydrogen in the remnant shell has turned into helium. Then nuclear
burning ceases and the white dwarf returns to its preoutburst state. The
decline takes roughly one to several years and the white dwarf remains
almost unaffected by the outburst that has taken place. Accretion resumes
towards the next outburst and a new nova cycle begins.

Exercise 11.4:  In the long run, a white dwarf that undergoes repeated nova outbursts loses
mass. Assuming a constant average rate of mass loss, show that the central density of the white
dwarf will increase at first and then steadily decrease. To this purpose, use Equation (B.37)
derived in Appendix B, which gives the second approximation to the electron-degeneracy
pressure that includes a temperature-dependent term.

General characteristics
Despite the complexity of nova outbursts, some simple relations between
the basic properties that characterize the development of such outbursts
may be obtained from simple considerations. We have seen in Section 6.2
that nuclear burning in a degenerate electron gas is bound to trigger a
thermonuclear runaway, once a nuclear fuel is ignited. Therefore, the
temperature must exceed the ignition threshold Tign. As the temperature
decreases outwards, ignition will start at the deepest point where hydrogen
is present, that is, at the bottom of the accreted layer of mass Δm (or
slightly deeper, if some mixing has taken place between accreted material
and white dwarf material), at some radius rb. Denoting Tb = T (rb), we thus
require:

(11.41)

We may express the condition of electron degeneracy by demanding that
ideal and degenerate electron gas pressures be comparable,
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(11.42)

which yields (ρ/µe)b in terms of Tb. Setting Tb = Tign, we obtain from the
equation of state an estimate for the critical pressure above which a
thermonuclear runaway is bound to develop,

(11.43)

Since the accreted material is hydrogen-rich, and since strong temperature
dependence of the burning process will accelerate the runaway, the
ignition temperature is expected to be that of the CNO cycle (see Section
4.4), roughly 1.5 × 107 K. This yields Pcrit ≈ 2 × 1017 N m−2 (2 × 1018 dyn
cm−2).

We may now estimate the amount of material above rb required to
balance this pressure hydrostatically. Assuming its thickness to be
negligible, that is, assuming rb ~ R, we have

(11.44)

For a white dwarf the radius and mass are correlated, as we have seen in
Section 5.4. With the simple relation (5.29), R ∝ M−1/3, Equation (11.44)
leads to

(11.45)

Thus massive white dwarfs require considerably smaller accreted
envelopes in order to erupt. This conclusion has further consequences. The
outburst recurrence time is given by  and, as the mass
accretion rate  is independent of M, outbursts are more frequent on
massive white dwarfs than on low-mass ones. In addition, since the
companion’s mass is another independent parameter, massive white
dwarfs undergo, on average, a larger number of outbursts than low-mass
ones. Consequently, the probability of discovering novae with massive
progenitors is higher, although they are not necessarily more numerous, as
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was believed at one time.
The luminosity at outburst is close to LEdd, which is proportional to M

(see Equation (5.37)). In quiescence, the luminosity is that of accretion
Lacc, given by Equation (11.16). We may thus estimate the amplitude of
the outburst, that we define as the ratio of peak relative to quiescence
luminosity, A ≡ log(LEdd/Lacc),

(11.46)

which yields, roughly, the observed range of 3 to 6 orders of magnitude.

Note:  Novae are extremely luminous at optical wavelengths, brighter than Cepheids and
surpassed only by supernovae, and they are about a hundred times more frequent than supernovae.
They are therefore easy to detect in external galaxies. In particular, the constant luminosity
maintained during part of the outburst can be used as a standard candle. Perhaps the best known
property of nova outbursts is the apparent correlation between the maximum magnitude attained at
outburst and the rate of decline, a relationship that was already pointed out by Fritz Zwicky in 1936,
and was first calibrated by Dean McLaughlin in 1945. Since then, great effort has been devoted to
the absolute calibration of this relation, which is considered a reliable distance indicator, along with
Cepheids and supernovae.

The ejected mass mej may be estimated by assuming that it is supported
against gravity at the star’s surface – at the extended radius R – by the
radiation pressure  (see Equation (3.40)). Thus,
mejg = 4πR2Prad, where g is the gravitational acceleration at the surface.
Substituting the effective temperature for T and the Eddington luminosity
for L,

(11.47)

leads to

(11.48)

The range obtained – between ~10−5 to a few 10−4M  – overlaps with that
resulting from the independent estimate (11.45) and agrees with masses
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determined observationally. We note that the expression for mej is similar
to (11.10), which is not surprising, for in both cases the mass scale of
interaction between matter and radiation is considered.

The energy required to power a nova outburst may be estimated as
follows: the radiated energy is roughly the Eddington luminosity
multiplied by the duration of an outburst, typically several weeks, which
yields ~5 ×1037 J; and the kinetic energy of the expanding shell is ~2.5
×1037 J, assuming a shell mass of 10−4M  and an average velocity of 500
km s−1. But both are negligible compared with the energy required to
remove the shell from the deep gravitational potential well of the white
dwarf, which is of order 1039 J. This energy is supplied by nuclear burning
of only a small fraction, about 5%, of the accreted hydrogen-rich envelope
mass.

Exercise 11.5:  Consider explosive hydrogen burning at the bottom of a thin hydrogen-rich
layer on the surface of a white dwarf that leads to the expulsion of this layer. (a) For a white
dwarf of mass M = M , which has a radius R ≈ 0.01R , calculate the fraction f of the layer’s
mass that has to be transformed into helium in order to supply the energy necessary for
expulsion, assuming the layer to be of solar composition. (b) Derive the dependence of f on M
for M < MCh.

The problem of Type Ia supernova progenitors
For a long time it was thought that essentially the same configuration that
leads to nova outbursts – a close binary system, where a white dwarf
accretes mass from its companion – may result in accumulation of
sufficient mass for the white dwarf to approach, eventually, MCh. The
problem is that nova outbursts occur on the way and then the white-dwarf
mass may still grow only if the mass accreted between outbursts is larger
than the mass ejected at outburst.

Observations as well as theoretical studies point, however, to the
opposite: the mass of a white dwarf that undergoes nova outbursts is
gradually eroded. The observational evidence is provided by the
composition of nova shells, which is enriched, sometimes strongly, in
heavy elements that are typical of white dwarfs (C, O, Ne, Mg) and the
mass donor cannot supply these elements. Nor could these peculiar
abundances be produced during the nova eruption, for the energy required
to power it is readily supplied by burning a tiny fraction of the accreted
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mass (see Exercise 11.5). Indeed, theory shows – by numerical
evolutionary calculations – that temperatures are not high enough to
produce elements heavier than helium. There only remains the possibility
that some of the white dwarf material gets mixed with the accreted mass
and is subsequently ejected. Theory further shows that diffusion of
elements, convection, turbulent mixing or a combination of these
mechanisms, do indeed result in mixing of white dwarf and accreted
material, which is blown away at outburst. Thus the conclusion as to the
decrease of the white-dwarf mass stands on two firm legs. It may still be
possible that under special circumstances the white dwarf will manage to
retain part of the accreted mass, so this scenario has not yet been entirely
abandoned.

An alternative scenario involves merging of two carbon-oxygen white
dwarfs with a combined mass in excess of the Chandrasekhar mass, known
as the double-degenerate model. From the stellar evolution point of view,
the occurrence of white-dwarf binaries should be quite natural. The white
dwarf phase, with which stars of intermediate mass end their lives, lasts
practically indefinitely. Hence binary components of different initial
masses may reach it at different times, but will meet there eventually. Not
every white dwarf binary will end up merging, and not every merger will
have a sufficiently high mass (considering that the average white-dwarf
mass is less than half MCh), but theoretical estimates show that the merger
rate is quite high and consistent with the observed rate of Type Ia
supernovae. However, this promising scenario has its own problems, for it
seems that under certain circumstances, mergers may end up in collapse
rather than explosion.

Merging of two stars is the ultimate form of stellar interaction and thus
an appropriate place for ending this chapter, in which we have only
touched briefly upon the wealth of phenomena arising in close, interacting
binary systems.
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12

The stellar life cycle

12.1  The interstellar medium

Although to all intents and purposes a single or binary star may be
regarded as evolving isolated in empty space, not only is it a member of a
very large system of stars – a galaxy – but it is also immersed in a medium
of gas and dust, the interstellar medium. This background material (mostly
gas) amounts, in our Galaxy, to a few percent of the galactic mass, some
109M , concentrated in a very thin disc, less than 103 light-years in
thickness (we recall that 1 ly  9.5 × 1015 m), and ~105 light-years in
diameter, near the galactic midplane. Its average density is extremely
small, about one particle per cubic centimetre, corresponding to a mass
density of 10−21 kg m−3 (10−24 g cm−3); in an ordinary laboratory it would
be considered a perfect ‘vacuum’. The predominant component of galactic
gas – of which stars are formed – is hydrogen, amounting to about 70% of
the mass, either in molecular form (H2), or as neutral (atomic) gas (H I) or
else as ionized gas (H II), depending on the prevailing temperature and
density. Most of the remaining mass is made up of helium. The interstellar
material is not uniformly dispersed, but resides in clouds of gas and dust,
also known as nebulae. We have already encountered special kinds of such
nebulae: planetary nebulae, supernova remnants and nova shells. These
expanding nebulae are, however, relatively short-lived and after
dissipating into the interstellar medium, their material mixes with other,
larger ones. There are relatively dense clouds, with number densities
reaching up to a few thousand particles per cubic centimetre, and there is a
diffuse intercloud medium, where densities can be much lower than one
particle per cubic centimetre. The interstellar medium is extremely rich
and diverse, which makes its exploration all the more fascinating.

When we speak of temperature in the interstellar medium, we refer to
the kinetic temperature of the gas. The radiation that fills the medium,
emitted by the vast number of stars within it, is not in equilibrium with the
gas, as it is in the stellar interiors. Nevertheless, it is this radiation that
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determines the gas temperature. The UV photons ionize the hydrogen
atoms and the resulting free electrons collide with the ions. Although the
mean free path of particles in the interstellar medium is about 1013 m,
comparable to the diameter of the entire solar system, this amounts to only
~10−3 light-years, a minute fraction of the typical cloud dimensions of tens
to hundreds of light-years. Hence thermodynamic equilibrium is indeed
achieved for the gas, and temperature is a meaningful concept.

Partly ionized gas clouds surrounding hot stars (such as massive main-
sequence stars) may attain temperatures of the order of 104 K over regions
of tens of light-years. The extent of such a region is obtained by requiring
ionization balance: the number of absorbed ionizing photons must be equal
to the number of recombinations per unit volume per unit time. The H I
zones of the interstellar medium (identified by the detection of the famous
21-cm radio line emitted by atomic hydrogen) have temperatures of 50–
100 K. Roughly, the pressures within the different types of clouds are
comparable: it is possible that the cold clouds, which are not
gravitationally bound, are held together against their internal pressure by
the hot gas component of the interstellar medium, which exerts a counter-
pressure. Hence the densities are in inverse proportion to the temperature.
Typical number densities are ~107–108 m−3 for the cold clouds and ~105 m
−3 for the hot gas. Besides the cold and hot clouds of neutral and ionized
hydrogen, there are giant, dense, and dust-rich molecular clouds, where
temperatures can be as low as 10 K, and number densities are in the range
1–3 × 108 m−3 and more. Their masses may reach 106M  and their sizes
are of the order of 100 light-years. It is in these giant gaseous clouds that
stars are born.

12.2  Star formation

The process of star formation constitutes one of the problems at the
frontier of modern theoretical astrophysics. We shall not deal with the
complicated stages that turn a fragment of an interstellar cloud into a star,
but only address the question of the basic phenomenon of fragmentation.

Interstellar gaseous clouds are often subject to perturbations that are
due, for example, to propagating shock waves originating in a nearby
supernova explosion, or to collisions with other clouds. Consider an ideal
case of a low-density cloud of uniform temperature T, in a state of
hydrostatic equilibrium. If at some place a random perturbation will
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produce a region of higher density, the gravitational pull will increase in
that region. The gas pressure will increase as well, but not necessarily in
the amount required to maintain the hydrostatic equilibrium. The outcome
of the perturbation will depend on the dynamical stability of that region.
Our purpose is to derive the condition for stability for a region of volume
V (which, for simplicity, may be assumed spherical), containing a given
mass M. Denoting the radius (characteristic length) by R, we may use the
partial virial theorem (Equation (2.24) of Section 2.4), as we did in
Section 9.4, to obtain

(12.1)

where Ps is the pressure at the region’s boundary, exerted by the
surrounding gas, and α is a constant of the order of unity (depending on the
mass distribution within the region considered). We may assume an ideal
gas equation of state (Equation (3.28)), which yields

(12.2)

Combining Equations (12.1) and (12.2), we obtain

(12.3)

Now, both Ps and V are positive quantities, and hence, obviously, the left-
hand side of Equation (12.3) must exceed the second term on the right-
hand side, which means

Equality is obtained when the entire cloud is involved. A critical radius
(dimension) RJ may thus be defined by

(12.4)
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known as the Jeans radius, after Sir James H. Jeans, who was the first to
investigate instabilities of this kind (in 1902). It constitutes a lower limit
for the dimension of a stable region of temperature T, containing a given
mass M, within a gaseous cloud. Contraction below this limit will cause
the perturbed region to collapse: the gas pressure will be insufficient for
balancing gravity. Conversely, we may obtain an upper limit for the mass
that can be contained in hydrostatic equilibrium within a region of given
volume, the Jeans mass MJ. With ρav = M/V,

(12.5)

where n is the number of gas particles per m3.
Inserting in Equation (12.5) characteristic values of T and n for galactic

gaseous nebulae, the Jeans mass turns out to be of the order of thousands
to tens of thousands of solar masses, typical of stellar clusters rather than
individual stars. Ordinary interstellar clouds have masses below this limit
and hence they are stable. Only giant gas and dust complexes are prone to
collapse. When collapse on such a scale is triggered, the question is how
will it develop, and whether it will eventually stop. This is one of the
crucial questions of the star formation theory.

Consider a collapsing cloud: both the density and the temperature
increase and hence the value of the critical mass is expected to change. If
the Jeans mass increases (inefficient cooling), we are faced with two
possibilities: either the increase in MJ is sufficient for the stability criterion
to be satisfied, in which case the collapse will halt, or MJ is still smaller
than the cloud’s mass, in which case the collapse will continue. If, on the
other hand, MJ decreases (efficient cooling), the violation of the stability
criterion is yet more severe; it may now happen that regions within the
cloud violate the stability criterion and start collapsing, inducing
fragmentation of the cloud. The fragmentation process may go on to
smaller and smaller scales, down to the stellar mass scale. Such a
hierarchical model was first suggested by Hoyle in 1953. Which of the
possible situations will actually occur depends on the ratio between the
timescale of collapse, which is the dynamical timescale of the cloud (of the
order of ), and the cooling (thermal) timescale. Since cloud
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densities are many orders of magnitude lower than those prevailing in
stars, these timescales are comparable and hence an accurate evaluation of
the processes involved in the collapse is required. As cloud fragments
become increasingly denser and hotter, they eventually become opaque
and cooling becomes inefficient. At some point, the Jeans mass starts
increasing. Thus, depending on local conditions, a minimum Jeans mass
exists, which defines a lower limit to fragments of clouds that are bound to
contract and form stars. A schematic illustration of fragmentation is given
in Figure 12.1 and observational evidence for the process of collapse and
fragmentation is shown in Figure 12.2.

Figure 12.1  Schematic illustration of the fragmentation of a gas cloud.
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Figure 12.2  Observational evidence of fragmentation in a gaseous cloud: starbirth clouds and
gas pillars in the Eagle Nebula (M16), a star forming region 7000 ly away. The tallest pillar (left)
is about 1 ly long from base to tip. Note the small globules of denser gas buried within the pillars
(photograph by J. Hester and P. Scowen, Arizona State University, taken with NASA’s Hubble
Space Telescope).

Exercise 12.1: Estimate the minimum Jeans mass of a collapsing isothermal gas cloud of
temperature T, on the assumption that the radiation temperature is lower than the gas
temperature (since there is not sufficient time for thermodynamic equilibrium to be achieved).

A fragment of a gas cloud bound by self-gravity, which has a mass in
the stellar mass range, may be regarded as a nucleus of a future star. The
mass continues to grow by accretion of gas from the surroundings. The
gravitational energy released as material accretes is turned into thermal
energy. The increase in both density and temperature raises the opacity of
the gas. When the contracting gas becomes opaque to its own radiation, it
has reached the status of a stellar embryo, the photosphere defining the
boundary between the inside and the outside of the star in the making.
When hydrostatic equilibrium is achieved, the embryo becomes a protostar
(see Section 9.1). Eventually, the central temperature reaches the hydrogen
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ignition threshold and the protostar becomes a star, assuming its place on
the main sequence of the H–R (log Teff, log L) diagram appropriate to its
mass.

12.3  Stars, brown dwarfs and planets

The process of star formation has nothing to do with the ability of a star to
ignite hydrogen when the turbulent stages leading up to ignition are finally
over. Hence we cannot grant the protostellar cloud the prescience of
having to end up with a mass above the lower stellar mass limit of about
0.08 M . Indeed, the estimated minimum Jeans mass is about an order of
magnitude lower than the lower stellar mass limit. Therefore, smaller
objects should be expected to form by the same process that creates stars,
only to start cooling before they could ignite hydrogen. Such objects have
been observed, or their existence has been indirectly inferred from its
effect on a binary companion. They are called brown dwarfs, to be
distinguished from the common, bright white dwarfs, which will
eventually become extinct black dwarfs, and from the lower main-
sequence stars that are often referred to as red dwarfs, due to their reddish
colour, resembling that of red giants. In the H–R diagram brown dwarfs
descend the Hayashi track, but they turn away from the main sequence
toward lower effective temperatures. In the (log Tc, log ρc) diagram, they
start by contracting and heating up, as stars do, but their tracks bend into
the degeneracy zone before crossing the hydrogen burning threshold.
Subsequently, they behave much in the same way as giant planets. Planets,
however, form in a different way: they separate out of circumstellar discs
surrounding very young stars, by aggregation of larger and larger particles
and by accretion of gas.

Hence brown dwarfs constitute a transitional class of objects, between
stars and planets: they are born like stars; they evolve like planets. In fact,
they may even have a claim to stardom, since they do briefly ignite
deuterium, primordial deuterium being present in very small amounts, of
order 10−5, in the initial composition of all stars. The evolution of the
luminosity for objects in the mass range 0.0003–0.2M  resulting from
model calculations is shown in Figure 12.3. The early flat part of the
tracks, between 106 and 108 yr, is due to deuterium burning; this phase is
very short in the more massive stars, but can last as long as 108 yr in an
object of ~0.01M , at the lower mass limit for deuterium burning. After
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about 108 yr the stars among these objects reach a plateau luminosity upon
settling on the main sequence. For planets, on the other hand, the
luminosity decreases continuously. Brown dwarfs fall in between, with a
brief period of constant luminosity, followed by a steady decline.

Figure 12.3  Evolution of the luminosity of red-dwarf stars (solid curves), brown dwarfs (dashed
curves) and planets (dash-dotted curves). Brown dwarfs are here identified as those objects that
burn deuterium. Curves are labelled according to mass, the lowest three corresponding to the
mass of Jupiter, then half of Jupiter’s mass and finally the mass of Saturn (from A. Burrows et al.
(1997), Astrophys. J. 491).

Thus another distinction may be made between brown dwarfs and
planets, not according to birth, but according to whether or not they have
ever burnt nuclear fuel. Strangely enough, both definitions – although
having nothing in common – result in similar lower limits for brown dwarf
masses, 0.01 ± 0.003M . Yet a further distinction may be made according
to structure. In very low-mass stars and brown dwarfs the internal pressure
is supplied mainly by the degeneracy pressure of electrons, similarly to
white dwarfs, except that white dwarfs are much closer to complete
degeneracy and hence, in a way, simpler to model, and they are made of
elements heavier than hydrogen. We have seen that for objects dominated
by degeneracy pressure radii increase with decreasing mass (Section 5.4).
But such behaviour cannot go on indefinitely. We know, for example, that
for terrestrial planets, which are governed by much more complicated
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equations of state, radii decrease with the mass. Therefore, a mass must
exist for which the radius, as a function of mass, reaches a maximum. The
mass-radius relation for spheres of low mass based on an accurate equation
of state is shown in Figure 12.4 for different compositions.

Figure 12.4  Mass-radius relation for low-mass objects (following H. S. Zapolsky & E. E.
Salpeter, Astrophys. J. 158). Different curves correspond to different compositions, as indicated.
The locations of several planets – Earth, Jupiter, Saturn, Uranus and Neptune – are marked by the
planets’ symbols. Also marked are the locations of two white dwarfs, Sirius B (§) and 40 Eridani
B ( ) (data from D. Koester (1987), Astrophys. J., 322).

As it turns out, the mass corresponding to the maximal radius is very
close to Jupiter’s. Hence Jupiter’s mass, MJup ≈ 0.001M , may be regarded
as a borderline between two classes of objects. Indeed, brown dwarf
masses are often expressed in units of MJup, ranging from about 80MJup
down to about 10MJup (or less?).

However, none of the criteria mentioned above for distinguishing brown
dwarfs from planets can be applied observationally; they are all based on
history or internal structure. In order to identify brown dwarfs we need to
specify surface characteristics, such as spectral signatures. These are
difficult to determine because opacities at low temperatures are
complicated by the formation of molecules and dust grains. In fact, the
interest in these small and faint objects has been aroused by their kinship
to planets, which are currently at the focus of astronomical research, in the
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attempt to answer the intriguing question of extraterrestrial life. We have
yet a great deal to learn about the nature of brown dwarfs, about giant
planets, and about the formation of stars and planets, until we shall be able
to sort out and fully understand the variety of substellar objects, even
before we address the question of the origin of life. Another reason for the
increasing interest in brown dwarfs is their potential contribution to the
galactic mass budget in the form of ‘dark’ matter. For this contribution to
be significant, their number must be considerable. This brings us to the
question of the stellar mass distribution.

Note:  Dark matter is matter that we do not see (in any wavelength), but we have other
indications to presume it is there. These come mainly from the gravitational field that such matter
would generate, just as in the case of black holes. On the galactic scale, the evidence is provided by
fast-moving stars and gas clouds at the very edge of the revolving galactic disc, where Keplerian
velocities should be much smaller, if the gravitational field were due to visible matter alone. At
such velocities these stars and clouds should have long dispersed, unless pulled in by the
gravitational field of an invisible material halo. On larger scales, a similar phenomenon is observed
in clusters of galaxies, as was pointed out by Zwicky in the 1930s. The random motions of galaxies
within a cluster tend to disperse it, while the mutual gravitational pull would cause them to fall to
the centre. Thus balance is established, with the random velocities being related to the cluster’s
mass (as in the virial theorem that applies to a self-gravitating gas; Section 2.4). As it turns out, the
observed velocities (deduced from Doppler shifts) of cluster members exceed by far those that
correspond to the visible mass. In order to keep them confined to the cluster, a mass exceeding their
own by a factor of almost ten would be required. Hence the quest for ‘dark’ matter.

12.4  The initial mass function

Continual star formation results in a steady decrease in the population of
massive, luminous stars. As these stars have vanishingly short life spans
on the galactic timescale, their relative number is at each instant correlated
with the fractional amount of gas in a galaxy. Thus even if they were
created with the same probability as low-mass stars, massive stars would
have become rarer in the course of galactic evolution. All the more so, if
the probability of formation of massive stars is small relative to that of
low-mass stars, as turns out to be the case. Assuming star formation to be
independent of galactic age or location, the number of stars formed at a
given time within a given volume, with masses in the range (M, M + dM),
is solely a function of M:

(12.6)
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The so-called birth function Ф(M) was derived by Salpeter as early as
1955 and it has hardly changed since:

(12.7)

The related initial mass function ξ(M) is defined as follows: the amount of
mass locked up in stars with masses in the interval (M, M + dM), formed at
a given time within a given volume, is

(12.8)

and combining relations (12.6)–(12.8), we have

(12.9)

The semi-empirical derivation of relation (12.7) was based on
observations of main-sequence star luminosities in the solar
neighbourhood. It involved the division of the luminosity range of main-
sequence stars into intervals, counting the total number of stars with
luminosities in each interval, using the mass-luminosity relation (1.6), and,
finally, assuming that the duration of the main-sequence phase was
proportional to M/L. This assumption implies that stars leave the main
sequence as soon as they have burnt a fixed fraction of their mass, as
indicated by the stellar evolution theory. In spite of the enormous increase
in observational data since the early 1950s and the refinements of stellar
evolution theory, the conclusion remains that over a mass range spanning
more than two orders of magnitude, from ~0.3M  to ~60M , the birth
function is of the form Ф(M) ∝ M−1−γ, with γ ≈ 1.5 ± 0.3. An example
based on main-sequence stars of the galactic disc population around the
Sun is given in Figure 12.5. There are many theories that try to explain this
empirical birth function, but so far none has been generally accepted.
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Figure 12.5  The initial mass function of main-sequence stars in the solar neighbourhood. The
Salpeter slope is indicated by the straight line (data from N. C. Rana (1987), Astron. Astrophys.,
184).

We note that at the low-mass end the initial mass function deviates
considerably from the inverse power law (12.9) and becomes almost flat
and even decreasing with mass. The difficulties involved in observing the
faint low-mass stars and brown dwarfs and obtaining complete samples
make the derivation of a birth function in this range rather uncertain.
However, it is already clear that the total mass of objects with M  0.3M
can account for less than 20% of the total mass of stars with M  0.3M .
Thus the solution to the missing mass problem should probably be sought
elsewhere. We should also mention that recent observations indicate a
conspicuous change in slope for the initial mass function around the
transition mass between brown dwarfs and planets. This strengthens the
hypothesis that these two types of objects were formed by radically
different processes.

With the aid of the initial mass function, rough estimates may be
derived for the mass exchange between stars and their environment, and
for stellar distributions within a volume of the galaxy. Consider, for
example, one generation of stars formed at a given time in some part of the
galaxy. The fractional amount of mass returned to the galactic medium by
this generation of stars may be computed as follows. Let ζ be the mass
initially locked up in these stars, whose masses are in the range Mmin < M
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< Mmax. Then

(12.10)

Let  denote the fraction of initial mass that a star ejects in the course
of its evolution. As we have seen in Chapter 10, stars that end their lives in
a supernova explosion eject more than 80% of their mass. For the purpose
of a rough estimate, we may assume that stars of initial mass above MSN 
10M  return their entire mass to the galactic medium. Stars of initial mass
below MMS ≈ 0.7M  will still be in the main-sequence phase, as we have
seen in Section 9.2. These stars have lost, therefore, only a negligible
fraction of their initial mass. Stars in the intermediate range MMS < M <
MSN may be taken to have turned instantaneously into white dwarfs, since
the time elapsed between the main-sequence phase and the white-dwarf
phase is relatively short (see Sections 9.4–9.7). These stars have thus
ejected all but the remnant white dwarf’s mass (MWD ~ 0.6M ).
Consequently,

(12.11)

and the mass returned by this generation of stars to the interstellar medium
is

(12.12)

The fractional mass returned is obtained by dividing Equation (12.12)
by Equation (12.10),
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(12.13)

which amounts to ~1/3, for Mmin = 0.1M  and Mmax = 60M .

Exercise 12.2:  Test the sensitivity of the above estimate for η/ζ to the stellar mass range
assumed, by repeating the calculations for all combinations of Mmin = 0.05 and 0.2M , and
Mmax = 30 and 120M .

We may also estimate the number of white dwarfs relative to the
number of main-sequence stars in a population of stars formed at a given
time, such as a stellar cluster. All we need to know is the mass
corresponding to the upper end of the main sequence in the H–R diagram
of the cluster – the mass of the turnoff point Mtp. The number of main-
sequence stars is then given by

(12.14)

The number of white dwarfs is obtained by assuming, as before, that the
transition from the end of the main-sequence state to the white-dwarf state
is instantaneous;

(12.15)

Hence the ratio

(12.16)

which amounts to only a few percent, is a function of Mtp, or the cluster’s
age, as shown in Figure 12.6.
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Figure 12.6  Ratio of number of white dwarfs to number of main-sequence stars for a stellar
ensemble of given age, where the age is given by the mass corresponding to the main-sequence
turnoff point in the H–R diagram (see Fig. 9.5).

Exercise 12.3:  Assume the brightness of a stellar cluster to be mainly determined by the
summed luminosities of its main-sequence stars. Calculate by what factor would a cluster’s
brightness decrease, as the turnoff point of its main sequence moves down from 1.3M  to
0.85M .

A similar estimate of the number of supernovae (or, equivalently,
neutron stars) relative to that of main-sequence stars yields a lower ratio by
more than a factor of 10. We should keep in mind, however, that
supernovae would be visible only during the early evolution of the cluster,
up to about the main-sequence life span of a star of mass MSN, and if no
further star formation occurs, no stellar explosions should be seen
thereafter. Stellar statistics, which take into account both variations due to
different stellar masses and variations due to different ages, involve far
more complicated calculations and represent a separate field of study – a
very important one, considering that many of the tests of the stellar
evolution theory are of a statistical nature.

12.5  The global stellar evolution cycle

On large scales, the process of stellar evolution is a cyclic process: stars
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are born out of gaseous clouds within galaxies, and in the course of their
lives they return to the galactic medium a large fraction of the mass they
have temporarily trapped. This material blends with the interstellar matter
and contributes, in turn, to the formation of new generations of stars. This
is sketched in Figure 12.7.

Figure 12.7  Sketch of the stellar evolution cycle.

The term ‘generation of stars’ is somewhat misleading, for we have seen
that stellar lifetimes differ by as much as four orders of magnitude,
depending on the initial mass. Thus a succession of a great many
generations of massive stars may coincide with only one single generation
of low-mass stars. The different ways by which stars return material to the
interstellar medium are illustrated by the images of Figure 12.8, where the
shell ejected by a nova outburst (Section 11.6) is shown in addition to the
wind from a massive star (Section 9.9), another example of a planetary
nebula (Section 9.7), and the shell ejected by supernova SN1987A
(Section 10.3). We note the conspicuous similarity of these images, despite
the huge differences in length and time scales. The ejected material has
been processed, however, and its composition differs from the prevailing
composition of the galactic gas. Thus, later generations of stars have, at
birth, increasingly larger abundances of heavy elements (or metals). The
survivors of the entire evolution process are dense compact stars – white
dwarfs, neutron stars, and, possibly, black holes – as well as brown dwarfs
and low-mass main-sequence stars, whose main-sequence life spans
exceed the present age of the universe. In the end, when the entire gas
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reservoir will have been locked up in these small and mostly faint stars,
star formation will cease.

Figure 12.8  Illustration of mass loss by images taken with NASA’s Hubble Space Telescope: (a)
nebula (Pistol) ejected by a massive star (estimated at ~100M ) extending in radius to ~4 ly
(photograph by D. F. Figer, University of California at Los Angeles); (b) mass ejected by
SN1987A: the ring of gas, about 1.5 ly in diameter, was expelled by the progenitor star some 2 ×
104 yr before the supernova explosion. At its centre, the glowing gas ejected in the explosion
expands at a speed of 3000 km s−1 (photograph by P. Garnavich, Harvard-Smithsonian CFA); (c)
planetary nebula (Henize 1357), the youngest known so far, extending to a radius of less than 0.1
ly (photograph by M. Bobrowsky, Orbital Science Corp.); (d) mass shells ejected by nova T
Pyxidis, forming more than 2000 gaseous blobs, which extend to a diameter of about 1 ly
(photograph by M. Shara, R. Williams and D. Zurek, Space Telescope Science Institute; R.
Gilmozzi, European Southern Observatory; and D. Prialnik, Tel Aviv University).

The main evolutionary processes that take place on the galactic scale as
a result of individual stellar evolution may be summarized as follows:

1.  The amount of free gas decreases. Nebulae and gas clouds become
sparse.

2.  The galactic luminosity – made up of the individual stellar
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luminosities – declines, as the relative number of massive stars
decreases at the expense of the growing proportion of compact, faint
stars.

3.  The composition becomes enriched in heavy elements, created in
stars and returned to the galaxy by the various processes of mass
ejection.

Exercise 12.4:  Let ϒ(t) be the fractional amount of gas in the Galaxy as a function of time,
satisfying the initial condition ϒ(0) = 1. Assume the rate of decrease of free gas as a result of
star formation to be proportional to ϒ2. Find the function ϒ(t), if at present, t = tp, the gas
constitutes 0.05 of the galactic mass. At what time in the past (fraction of tp) was the mass of
free gas half the entire mass? At what time was it one tenth of the entire mass? At what future
time will the gas mass have decreased to half its present value?

As galactic material is continually enriched in heavy elements, the relative
abundance of these elements in newly formed stars increases with time
elapsed from the formation of the galaxy. Despite their relatively low birth
rate, it is the massive stars that provide the overwhelming contribution to
heavy element enrichment, first because they eject a larger fraction of their
initial mass than do low-mass stars, secondly because this fraction
constitutes a much larger amount of mass, and thirdly because the mass is
returned practically instantaneously. The contributions of stars of different
masses to interstellar helium and metal enrichment by different processes
are illustrated in Figure 12.9. These yields have to be weighted by the
initial mass function to properly derive the galactic chemical evolution.
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Figure 12.9  Relative contributions of different types of stars to the heavy element content of the
interstellar medium (adapted from C. Chiosi & A. Maeder (1986), Ann. Rev. Astron. Astrophys.,
24).

The rate of heavy element enrichment of the galactic medium has been
far from constant. Most of the enrichment occurred at early times, and the
enrichment rate has markedly decreased with time. As an illustration, we
note that the age of the Sun is about one third of the age of the Galaxy, and
its heavy element mass fraction (metallicity) Z is nearly 0.02. The
metallicity of the youngest stars is about 0.04, that of the oldest, about
0.0003. Thus Z has increased a hundredfold during the first two thirds of
the galactic lifetime and only twofold during the last third.

Although the change in initial abundance is gradual, it has become
customary to divide stars into two populations, Population I (Pop I, for
short) and Population II (Pop II), according to composition and hence to
age. The stars of Pop I are young and metal rich, those of Pop II are old
and metal poor. If we reverse the time arrow from the present backward,
into the past, we first encounter the Pop I stars and then those belonging to
Pop II. This could be taken as the rationale for ordering the populations.
Thus old Pop I stars are those stars formed in between Pop I and Pop II.
And sometimes reference to Population III stars may be found, meaning
that we have to go further down the time arrow, passing the extreme Pop II
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stars, toward the very beginning of galactic evolution. On this time arrow
Z decreases, with older populations corresponding to lower Z values.

Exercise 12.5:  Using dimensional analysis as in Section 7.4, but taking into account the effect
of heavy element abundance on the opacity law and the energy generation rate, compare Pop I
and Pop II main-sequence stars in terms of temperature, density and luminosity. Assume a
Kramers opacity law of the form κ = κ0ZρT −7/2, and an energy generation rate of the general
form q = q0ZρT n.

However, the initial classification of stars into distinct populations,
dating back to 1944, when it was introduced by Baade, was based neither
on initial composition nor on age, but on the location of stars in the galaxy.
A typical spiral galaxy, such as the Milky Way, consists of a spherical
distribution of stars, which includes the central bulge and the galactic halo,
and a flattened disc distribution, which is not uniform, but divides into
spiral arms. The disc stars made up Pop I, while the stars in the central
region of the galaxy and in the globular clusters forming the galactic halo
constituted Pop II. Location, age and composition are thus interconnected.
The galactic disc, which contains most of the free gas and dust, is still
harbouring star formation. Hence, not surprisingly, young stars are
abundant in the disc. The halo is a relic of the original distribution of
matter in the galaxy, before most of the material collapsed to form the
disc. It contains the old high-velocity stars and globular clusters that
formed before the collapse of the disc and retained their high kinetic
energy. The H–R diagrams of the different populations are consistent with
the inference of their relative ages.

But even in the youngest stars the mass fraction of heavy elements
amounts to only a few percent. On the one hand, this is too little to affect a
star’s evolution considerably, although the evolutionary paths traced by
stars of different metallicities in the H–R diagram do differ to some extent.
On the other hand, the total absolute mass of heavy elements in a star is
rather considerable; in the Sun, for example, it exceeds the mass of the
entire solar system, including planets, moons, comets, asteroids and other
star formation debris. From where we stand this cannot be considered
negligible. In fact, except for the giant planets, which contain a significant
amount of (primordial) gas, all the other bodies in the solar system are
made precisely of some of that small fraction of heavy elements present in
the protosolar nebula. And, as we recall that the source of these elements
has been nuclear burning, we come to the awesome conclusion that most
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atoms in our bodies, the atoms in the air that we breathe, and, in short, the
elements making up every object around us, have belonged to a star at
some time in the past and, in all probability, have witnessed a gigantic
stellar explosion.
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                               · · ·
And steadfast as Keats’ Eremite,
Not even stooping from its sphere,
It asks a little of us here.
It asks of us a certain height,
So when at times the mob is swayed
To carry praise or blame too far,
We may choose something like a star
To stay our eyes on and be staid.
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Appendix A

The equation of radiative transfer

Consider a small cylinder of length dℓ and cross-section dS at a distance r
from the centre of a star, with its axis in the direction θ with respect to the
radius vector. The projected length of the cylinder is thus dr = dℓ cos θ (as
shown in Figure A.1). The radiation within the cylinder obeys energy
conservation. We define the intensity of radiation I (r, θ) such that I (r,
θ)dω is the energy flux (energy per unit area per unit time) moving inside
a cone of directions defined by the solid angle dω = 2π sin θdθ around the
direction of θ. Since the radiation is composed of photons of different
frequencies and since interactions between matter and radiation depend on
frequency, we consider the monochromatic intensity Iν(r, θ) defined such
that

(A.1)

and we apply energy conservation in each frequency.

Figure A.1  Cylindrical volume element within a star; conservation of radiation energy within it
leads to the radiation transfer equation.
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The different contributions to the radiation energy during a time interval
dt are as follows:

1.  The energy entering the cylinder at the bottom is

2.  The energy leaving the cylinder at the top is

In fact, along the cylinder, the angle between the axis and the radial
direction decreases and there should be a difference dθ between the
top and the bottom. For simplicity, we neglect this difference, which
is tantamount to adopting the plane parallel approximation. (In the
general case, the same basic relations are reached as we shall obtain
here, following the same line of reasoning, but the mathematics is a
little more complicated.)

3.  The absorbed radiation within the cylinder is

We distinguish between true absorption and absorption caused by
scattering and label the opacity coefficients accordingly; thus κν = κa,ν
+ κs,ν.

4.  The emitted radiation by the mass within the cylinder is

where jν is the total radiation emitted per unit mass per unit time. We
include in this term radiation emitted by the mass within the cylinder,
jem,ν, as well as radiation scattered into the cylinder, js,ν. The latter is
obtained by integrating κs,νIν(r, θ′) over all directions θ′ from which
photons are scattered into our cylinder, assuming that the scattering
process does not change the photon frequency. This is usually a
complicated task. In the simple isotropic case, that is, when the
scattered radiation is emitted equally into equal solid angles, 

Conservation of energy requires
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and hence

(A.2)

Substituting

and dividing Equation (A.2) by dℓ dSdωdt, we obtain the radiative transfer
equation in the form

(A.3)

Note that the scattering term js,ν turns the transfer equation into a integro-
differential equation. In order to solve it, we have to evaluate jem,ν, itself a
function of Iν.

In thermodynamic equilibrium, the radiation field is given by the Planck
(blackbody) distribution

(A.4)

which is isotropic, and there is perfect balance between absorption and
emission of radiation (known as Kirchhoff’s law); we then have
Iν(r) = Bν(T ) and jem,ν = κa,ν Bν(T ). In stars, however, the radiation field is
not perfectly isotropic, and hence we have to consider the different
contributions to the emission of radiation. It was Einstein who recognized
that these must be of two kinds: spontaneous emission, determined by the
temperature, and induced (or stimulated) emission, which is caused by the
radiation field itself. The relationship between them and between emission
and absorption may be easily understood by considering a simple case of
two discrete energy levels 1 and 2, such that E2 = E1 + hν. Let n1 and n2 be
the number densities of particles in the energy states E1 and E2,
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respectively. In thermodynamic equilibrium a second condition is
satisfied: particle densities are related by Boltzmann’s formula

(A.5)

where the factors g1,2 represent the statistical weights of the energy states
(essentially, the number of states with different quantum numbers that
correspond to the same energy level). Transition of a particle from level 2
to level 1 involves the emission of a photon of energy hν; similarly, the
reverse transition occurs by absorption of such a photon, as shown
schematically in Figure A.2. The rate of spontaneous emission is
proportional to the number of particles in the high energy state n2; the rate
of induced emission, on the other hand, depends on both n2 and the
radiation field Bν(T ). Finally, the rate of absorption is proportional to the
number of particles in the low energy state n1 and to the radiation field.
Introducing the appropriate coefficients – A21 for spontaneous emission,
B21 for induced emission and B12 for absorption – and applying
Kirchhoff’s law, we obtain Einstein’s equation:

(A.6)

where we identify on the right-hand side B12n1 =κa,ν. Multiplying by (ehν/kT

−1), defining αν = 2hν3/c2 and substituting n2 from Equation (A.5), we
have

(A.7)

This equation holds for any temperature, regardless of photon frequency;
hence temperature-dependent and temperature-independent terms must
balance separately. We thus obtain the Einstein relations between the three
coefficients:

(A.8a)

(A.8b)
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(the second follows from the first and A21 = B21αν), which leave only one
independent coefficient.

Figure A.2  Schematic representation of emission and absorption in a two energy-level system.

Now comes the crucial point of the discussion: these relations must hold
whether or not the system is in thermodynamic equilibrium. This is
because they are connected to the microscopic state of the system – the
nature of individual emitters-absorbers – whereas thermodynamic
equilibrium is a macroscopic property. Individual particles are unaware, as
it were, of the general state of the system. Consequently, for any radiation
field intensity Iν the emission is given by

(A.9)

Substituting Equations (A.5) and (A.4) into Equation (A.9) yields

(A.10)

and it is easy to see that in the case of thermodynamic equilibrium this
relation reduces to jem,ν = κa,ν Bν(T ), because then Iν = Bν(T ).

Defining a reduced absorption opacity coefficient by
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(A.11)

and substituting expression (A.10) into Equation (A.3), we obtain the
transfer equation in the form

(A.12)

which can be solved for given opacity coefficients in all radiation
frequencies.

To obtain a solution, we expand Iν(r, θ) in Legendre polynomials Pn(cos
θ):

(A.13)

recalling that P0 = 1 and P1 = cos θ. Since matter and radiation are in local
thermodynamic equilibrium in stars (see Section 2.1), we know that the
first (isotropic) term in the expansion is none other than the Planck
distribution Bν(T ). Substituting it into the transfer equation (A.12) yields

We now use the recurrence relation of Legendre polynomials,

to obtain
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(A.14)

Equating coefficients of the corresponding polynomials leads to the
following series of equations:

(A.15)

assuming isotropic scattering, that is, js,ν independent of θ,

(A.16a)

(A.16b)

or, generally, for n ≥ 1:

(A.16c)

We may evaluate the ratio between successive terms of the expansion
by replacing dIν,n−1 by Iν,n−1 and dr by R (the stellar radius) in Equation
(A.16c) and neglecting factors of the order of unity. Thus to order of
magnitude, we have
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(A.17a)

(A.17b)

and, generally, for n ≥ 1,

(A.17c)

Since the deviation from isotropy is small in stellar interiors, there is some
ε < 1, such that Iν,n < εBν(T ) for all n ≥ 1. The question is how many terms
of the expansion should we retain. The following argument is due to
Eddington. In all Equations (A.17c) with n ≥ 2 the left-hand side is smaller
than εBν(T )/(κρR), neglecting factors of the order of unity. But

for average opacities κ and typical stellar densities and radii, and hence for
I ν,2 and all subsequent coefficients we have

We now repeat the argument using this result in relation (A.17c) with n ≥
3 and obtain Iν,n≥3 < 10−20εBν(T ) and again, Iν,n≥4 < 10−30εBν(T ), and so
forth. As to Iν,1, from relation (A.17a) it follows that it is of the order of
10−10Bν(T ).

Clearly, the power series (A.13) converges very rapidly,

meaning that the deviation from isotropy is indeed very small and we may
discard all but the first two terms of the expansion. (Obviously, we cannot
discard the second term as well, for that would leave us with an isotropic
radiation field with no net flux.) This approximation is called the diffusion
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approximation. The solution of the transfer equation (A.12) is thus

(A.18)

where we have eliminated Iν,1 from Equation (A.16a). Finally,

(A.19)

For the theory of stellar structure, knowing Iν(r, θ) does not suffice; we
are interested in H(r) (introduced in Section 3.7) – the total radiation flux
(in all frequencies) in the radial direction. In order to eliminate the
dependence on θ, we consider moments of the radiation intensity field I (r,
θ), which relate to the physical quantities that we have already
encountered. The flux H (r) is obviously given by

Inserting Equation (A.18) into definition (A.1) and noting that ∫ cos
θdω = 0, we have

(A.20)

The radiation pressure Prad (introduced in Section 3.4) is due to the fact
that each photon carries a momentum hν/c. Hence the radiation flux in the
θ direction across a surface element dS transfers momentum of amount I
(r, θ) cos θ/c in the radial direction, incident on an area element dS cos θ
perpendicular to it. The resulting pressure in the radial direction is
therefore given by the next moment of I (r, θ):
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leading, with Equation (A.18) and ∫ cos3 θdω = 0, to

(A.21)

Finally, differentiating Prad with respect to r,

(A.22)

and dividing Equation (A.20) by Equation (A.21), we obtain

(A.23)

where

(A.24)

is called the Rosseland mean opacity, after its originator, Svein Rosseland.
Substituting Prad from Equation (A.21), we finally obtain the diffusion
equation for radiation in the simple form:

(A.25)

It is the same as Equation (3.67), derived from simplistic arguments, but it
includes a rigorous treatment of the interaction between matter and
radiation, expressed by , which is the essence of the behaviour of stellar
matter. We note that the harmonic nature of the Rosseland mean gives
highest weight to the lowest opacities. At the same time, the weighting
factor dBν /dT becomes small at very low and very high frequencies; it
peaks at ν = 4kT /h. In the Sun, for example, the corresponding wavelength
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λ = c/ν is about 6000 Å (within the visible range) at the surface, where T ≂
6000 K, and about 2.4 Å (in the X-ray range) at the centre, where T ≈ 1.5 ×
107 K. The optimal radiative transfer efficiency would be attained if the
lowest opacities occurred at frequencies near 4kT /h. This, however, is not
necessarily the case.
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Appendix B

The equation of state for degenerate electrons

Consider the electrons in some volume of a star as constituting a gas that
satisfies the following assumptions: (a) the electrons are free, that is,
interactions are negligible both among them and between them and the
ions; (b) the distribution in space is homogeneous; (c) the distribution of
velocities is isotropic; (d) the entire system is in thermodynamic
equilibrium, which enables the calculation of all thermodynamic properties
as functions of temperature T and density ρ for a specified composition
(see Section 2.1); (e) the atoms are completely ionized, so that density and
composition determine the electron number density ne (see Equations
(3.23) and (3.24)). We are interested in the equation of state of the
electrons, that is, their contribution to the pressure as a function of T and
ne, as well as the electron contribution to the internal energy, both
quantities being required for solving the equations of evolution of the
stellar structure.

The concept of pressure implies transfer of momentum. Internal energy
of a free gas is the kinetic energy of the particles – a direct function of
momentum. In fact, according to statistical mechanics, which provides the
link between macroscopic thermodynamic properties of a system and the
microscopic state of its constituent particles, any thermodynamic quantity
may be derived from the distribution of particle momenta in the three-
dimensional momentum space. By assumptions (b) and (c), the momentum
space may be regarded as spherical; therefore, an element of space is
d3p = 4πp2dp. The distribution function f determines the number of
electrons per unit volume that have momenta in the interval (p, p + dp),
corresponding to kinetic energy values (p) in that interval, hence
regardless of direction. We denote this number by n(p),

(B.1)

Obviously, f may depend on temperature, which is one of the independent
thermodynamic properties. The other parameter, which we have denoted

334



by ψ, is meant to take account of restrictions imposed by quantum
mechanics on the distribution of momenta, and we may expect it to depend
on ne, the other independent property.

By definition, the electron number density is given by

(B.2)

The pressure exerted by the electron gas is obtained from the pressure
integral (3.4)

(B.3)

and the specific internal energy, from the energy integral (3.42),

(B.4)

where the integral ρue is the energy density. The additional relations
required in order to perform the integrals are the relativistic formulae

(B.5)

(B.6)

The distribution of electrons over the six-dimensional phase space is a
direct consequence of the Pauli exclusion principle, which states that if an
element of space 4πp2dpdV is divided into cells of volume h3, then each
cell can be occupied by at most two electrons (with opposite spins).
Particles that are subject to this restriction are called fermions and they are
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governed by the Fermi-Dirac distribution function

(B.7)

where ψ may assume any value between −∞ and +∞. We note that f has a
maximum of 2/h3, reached in the limit ψ → +∞, which expresses the Pauli
exclusion principle. In this limit, f (p) becomes a step function, which
means that electrons tend to occupy the lowest available energy
(momentum) states. The parameter ψ is thus known as the degeneracy
parameter.

Substituting the distribution function (B.7) in the expressions for the
electron-number density, electron pressure and internal-energy density
(B.2)–(B.4), we obtain

(B.8)

(B.9)

(B.10)

Thus, the general procedure for obtaining the equation of state and related
quantities, given the temperature and the electron-number density, is as
follows: first ψ is determined using equation (B.8), and then the pressure is
obtained from (B.9) by substituting (B.6) for v(p), and the specific energy
from (B.10), by substituting (B.5) for (p). Any other thermodynamic
quantity of interest may be calculated with the aid of Pe and ue. In
principle, this procedure appears simple and straightforward; in practice,
as we shall see shortly, the calculations are quite complicated, especially if
analytical expressions are sought, so as to gain some physical insight.

A general relation may already be derived between Pe and ρue, which
follows from the equality

(B.11)
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connecting the numerators in the integrands of (B.9) and (B.10). It is thus
easily verified that

(B.12)

In the non-relativistic limit, (p) = p2/2me and 
so that the left-hand side of (B.12) reduces to the form of (B.9), yielding

(B.13)

In the extreme relativistic limit (p) = pc and  so
that the left-hand side of (B.12) reduces to the form of (B.10), yielding

(B.14)

We note that these relations are independent of the value of ψ, that is,
unaffected by the degree of degeneracy.

Clearly, integrals (B.8)–(B.10) do not have simple general expressions.
Even approximations are not entirely obvious because they may be of two
distinct and independent kinds. These are related to the two different and
independent effects that determine the state of the electron gas, quantum-
mechanical and relativistic, each ranging from very weak to very strong.

Essentially, an approximation is obtained by expanding a function in
terms of a scaling dimensionless variable and therefore we would like to
have an independent variable for each effect. The natural free variables
that define our system – temperature and electron number density – are,
unfortunately, not appropriate for this task, for the strengths of both
relativistic and quantum effects usually depend on both variables. One
such dimensionless scaling parameter is ψ(T, ne), which is clearly
associated with quantum-mechanical effects. For relativistic effects we
must find a scaling parameter – that we shall denote by ξ – so that ξ → 0 in
the nonrelativistic limit v/c  1, and ξ → ∞ in the extreme relativistic
limit v → c. Obviously, it will be a function of temperature and electron
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number density, ξ = ξ(T, ne), but its definition may differ in different ψ
ranges. For example, a natural relativistic measure is kT /mec2 for scaling
energy, which is equivalent to  for scaling
momentum, but when the strength of relativistic effects depends mainly on
the electron number density (a situation that we shall shortly encounter),
this scaling is not appropriate and a different one must be sought. We shall
return to the transition between different forms of ξ later on. The parameter
space spanned by [ψ, ξ] covers all possible physical regimes.

Thus, the distribution function and the thermodynamic quantities
derived from it may be expressed in terms of ξ and ψ and asymptotic
expansions in these parameters may be obtained. The full expansions are
by no means simpler or more transparent than just evaluating integrals
(B.8)–(B.10) numerically. The limiting cases and first approximations that
may be derived in this fashion are, however, instructive.

The non-relativistic non-degenerate case: ξ  1 and −ψ  1

In the nonrelativistic limit p ≈ mev and  ≈ p2/2me. In the limit −ψ  1 (in
fact e−ψ  1 suffices) we have e /kT +|ψ|  1 for any value of  and of T, so
that the unity term may be neglected in the denominator of the Fermi-
Dirac distribution function. It is therefore natural to introduce a new
variable  for the integrals (B.8)–(B.10), and thus to
scale relativistic effects by  As mentioned above, the
first step towards obtaining Pe is using (B.8) to derive ψ. Thus, substituting
the new variable x, we may cast the integral in (B.8) in the form 

 and obtain

(B.15)

Note that the left-hand side of equation (B.15) is a very small number,
which means that we are in a regime of low density and relatively high
temperature. An extremely high temperature, however, would be
incompatible with ξ  1. Using the definition of ξ to eliminate T in (B.15),
we obtain
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(B.16)

which means that the limit ψ → −∞ and ξ → 0 strictly applies to very low
electron number densities.

Inserting (B.15) into the distribution function (B.7), we have

(B.17)

which we immediately recognize as the Maxwell-Boltzmann distribution
function for an ideal gas. The pressure is obtained by

which, after changing variables to x and substituting 
 yields

(B.18)

and it is easily verified that the energy density satisfies  as in
the general case (B.13). We have thus recovered the thermodynamics of an
ideal (nondegenerate) classical (nonrelativistic) gas, as given in Section
3.2.

The strongly-degenerate relativistic case: arbitrary ξ and ψ  1

For the ψ  1 regime (here eψ  1 suffices), it is useful to define an
energy 0 by the requirement

(B.19)

and write the distribution function (B.7) as
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which stresses the high sensitivity of this function to the sign of 
 in the exponent. The shape of the distribution function is

shown in Figure B.1.

Figure B.1  The Fermi-Dirac distribution function with respect to (p)/ 0. Increasingly steeper
curves correspond to increasing values of ψ, as marked. Alternatively, for given ψ, they
correspond to decreasing temperatures – in proportion to the reciprocals of these numbers. Thus
the deviation of the distribution function from a step-function is proportional to kT.

Thus

(B.20)

The meaning of the distribution in this limit is that all energy states up to 
0 are occupied, while all states beyond 0 are empty, a state of degeneracy.
In fact, the limit (B.20) describes the state of extreme or complete
degeneracy, that we have considered in Section 3.3.

We denote the momentum associated with 0 by p0,
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(B.21)

Parameters ψ, 0 (known as the Fermi energy) and p0 (known as the Fermi
momentum) are interchangeable as measures of degeneracy. As ψ → ∞, so
are 0 and p0. The simple limiting form of f from (B.20) – 2/h3 for p ≤ p0
and zero beyond p0 – leads to:

(B.22)

and yields p0(ne). Temperature ceases to play a role in this extreme regime.
In order to obtain the pressure and energy density, we express v(p) and 

(p) in terms of the dimensionless variable x ≡ p/mec. Since p is limited, the
relativistic scaling parameter is readily defined by

(B.23)

Replacing p by xmec in the corresponding integrals, we obtain the pressure
and energy density from

(B.24)

and

(B.25)

The integral in (B.24), which we denote by  is
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(B.26)

and the integral in (B.25), which we denote by  is

(B.27)

Retaining only the first term in each expansion series, we obtain the
expressions for electron pressure and internal energy density in the
nonrelativistic and extreme relativistic limits, as derived in Section 3.3:

(B.28)

(B.29)

What is the physical meaning of these limiting cases? Combining
definitions (B.19), (B.21) and (B.23), we obtain a relation among the
parameters that determine the regime we are considering (T, ψ and ξ) of
the form:

(B.30)

According to this relation, the nonrelativistic limit ξ → 0 together with
strong degeneracy ψ → ∞ implies T → 0. Thus, nonrelativistic complete
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degeneracy strictly applies to a system at vanishing temperature. We shall
return to this point shortly. On the other hand, as ξ increases, ψ tends to
infinity with it, regardless of temperature.

The nonrelativistic degenerate case: ξ  1 and arbitrary ψ
In the nonrelativistic limit ξ → 0, it is possible to consider analytically the
entire range of the degeneracy parameter ψ. This requires, however, the
replacement of p by  = p2/2me, as the integration variable in equations
(B.8)–(B.10) that yield ne, Pe and ρue. Accordingly,  and 

 In addition, we define functions of the form

(B.31)

which are known as Fermi-Dirac integrals. With the new integration
variable, we have

(B.32)

(B.33)

and again  It is easily verified that

(B.34)

The Fermi-Dirac integrals may be expanded in powers of ψ (or eψ) in
the limits ψ → −∞ and ψ → ∞, much as the functions of  and  in
the case considered above were expanded in powers of ξ. The derivation of
these expansions is quite complicated and we shall only give the results
here:
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(B.35)

(B.36)

Retaining only the first terms in the limit ψ → −∞, we recover the
equation of state of an ideal classical gas Pe = nekT . The opposite limit ψ
→ ∞ (while ξ → 0) we have already reached from a different direction.
Although we attain it here through a different approximation, the final
result is of course the same as (B.29), as can be easily verified. But here
we gain additional insight. It is only in the lowest approximation that the
relation between Pe and ne is independent of temperature in the strong
degeneracy limit. The second approximation, which we shall now attempt,
will give us an idea on the effect of temperature on this relation.

Using (B.32) with the strongly degenerate form of (B.35) in the lowest
approximation, we have

We now use (B.33) with the strongly degenerate form of (B.36) in the
second approximation to obtain

(B.37)

When T and ne are such that the second term in the square brackets, which
may be regarded as a temperature-dependent correction, approaches unity,
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the electron degeneracy will be lifted. We note that this criterion is similar
– up to a numerical factor of order unity – to (B.15), which estimated the
effect of degeneracy from the opposite limit, that is, when may a gas be
considered ideal. Furthermore, it can be easily verified that the ratio
between the two definitions of ξ at the extremes of the ψ range is also, not
surprisingly, of this form.

We may interpret the criterion for degeneracy, as expressed by (B.15) or
(B.37) in yet another way. The average momentum of an electron in an
ideal gas is of the order of  and hence the corresponding de
Broglie wavelength of the electron is  The average
distance between electrons is given by  Therefore, the right-
hand side of (B.15) is of the order of (d/λ)3 and the correction term in
(B.37), of the order of (d/λ)4, while the ratio between the two expressions
for ξ is d/λ. Quantum-mechanical effects become important as the
interparticle distance shrinks towards the de Broglie wavelength (d  λ).
So long as particles are much farther apart than their wavelength (d  λ),
the gas may be considered ideal.

If we express the temperature in units of 108 K, denoting it T8, and the
density in units of 109 kg m−3 (106 g cm−3), denoting it ρ9, and assume µe
≈ 2, the correction term in (B.37) is  This means that
at densities typical of dense stellar cores or white dwarfs, electrons will be
degenerate even at temperatures well in excess of 108 K, and the pressure
will barely be affected by changes in temperature.

The extreme-relativistic degenerate case: ξ  1 and arbitrary ψ
In the extreme relativistic limit ξ → ∞, we change variables again from

p to  = pc, and substitute v = c and dp = d  /c. Using again the Fermi-
Dirac integral notation, we obtain

(B.38)

(B.39)

and, of course, ρue = 3Pe. The expansion of the Fermi-Dirac integrals in
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the ψ → ∞ limit is

(B.40)

(B.41)

Retaining only the first terms in (B.40) and (B.41), eliminating ψ between
(B.38) and (B.40) and substituting the result in (B.39), we recover (B.29) –
the expression already obtained when arriving at this corner of the
parameter space from the perpendicular direction (increasing ξ at high ψ).
Repeating the procedure used for the nonrelativistic case above, we obtain
the second approximation for Pe,

(B.42)

Here, however, the correction term is 6.6 × 10−16(T8/ρ9)2/3, and thus
completely negligible for any temperature value (at which electrons still
exist – see below).

There remains the nondegenerate (or weakly degenerate) extreme-
relativistic case. In this regime, however, a complication arises, which
causes some of the basic assumptions that we made at the beginning of this
treatment to break down. The electrons can no longer be decoupled from
the radiation field and the ion sea in which they are embedded, and the
electron number density is no longer an independent parameter. The
reason is that at the high temperatures implied by ξ2 = kT /mec2  1, the
radiation field in the presence of ions creates electron-positron pairs, as
discussed in Section 4.9. Thus the number density of electrons changes as
a function of temperature, being constrained by the requirement of global
charge neutrality (the charge density of ions plus that of positrons must
equal the electron charge density). More advanced physics is required in
order to deal with these processes. Fortunately, few stars, or more
accurately, few evolutionary phases reach this regime and survive it, for it
is dynamically unstable, as explained in Section 6.4.

We have now covered all sides of the [ψ, ξ] parameter box, shown in
Figure B.2, and we have identified the overlapping corners. The middle
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part – the moderately degenerate and moderately relativistic regime –
requires more complicated numerical procedures and has no analytically
transparent results; it is thus beyond the scope of this text.

Figure B.2  Schematic representation of the [ψ, ξ] parameter space and the various
approximation domains.
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Appendix C

Solutions to all the exercises

Exercise 1.1: Consider a mass element Δm containing 10 000 hydrogen atoms and let the mass unit
be the mass of a hydrogen atom. Then

according to the data given in the text (since elements heavier than neon are neglected, a small error
is introduced). Now, by definition,

and similarly, ZC = 0.0034, ZN = 0.0010, ZO = 0.0090, and ZNe = 0.0014.

Exercise 1.2:

(a)  Substituting ρ(r) in Equation (1.5) we have

(b)  M = m(R) = 8πρcR
3/15.

(c)  By definition,  and substituting (b) for M, we obtain 

Exercise 2.1:

(a)  For a uniform density,  and
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Substituting m(r) in the hydrostatic equation (2.14) and integrating from the centre (P = Pc)
to the surface (P = 0), we have

(b)  Using ρ(r), m(r) and M(R) from Exercise 1.2, we integrate Equation (2.14) to obtain

Exercise 2.2:  If we imagine the star compressed into a sphere of uniform density ρc, the new
central pressure  must exceed Pc, since by bringing the matter closer together we increase the
gravitational attraction between its parts, that is, the force to be balanced by this pressure. The new
central pressure is obtained, as in Exercise 2.1, by integrating the hydrostatic equation (2.14), with
m = 4πr3ρc/3, up to R = (3M/4πρc)

1/3, which yields

In conclusion,  leads to

Exercise 2.3:

(a)  Inserting  and  into Equation (2.20) and
performing the integration, we obtain, after eliminating ,

whence α = 0.6.
(b) Using m(r) from Exercise 1.2 and dm = ρ(r)4πr2dr in Equation (2.20), we obtain

whence α = 0.71.

Exercise 2.4:  The rate of change of the energy, as given by Equation (2.43), is 
Assuming hydrostatic equilibrium, we have from the virial theorem  (Equation (2.44))
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with Ω = −αGM2/R (Equation (2.27)). Hence

Setting t = 0 and R = R0 at the beginning of contraction, we obtain by integration

which yields

For 

Exercise 3.1:  For a degenerate electron gas to be considered perfect, the Coulomb energy per
particle, C, must be smaller than the kinetic energy, in this case,  where p0 is given by
Equation (3.32). The average distance between electrons is  where ne is the electron

number density. Hence  and the condition is

Thus the electron number density must satisfy

Exercise 3.2:  By definition (Equations (3.11) and (3.12)), Pgas = βP and Prad = (1 − β)P, and β is
assumed constant throughout the star. The specific energy of a (non-relativistic) gas, whether ideal
or degenerate, is given by Equation (3.44),

and the specific energy of radiation is given by Equation (3.47),

Hence
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Using the virial theorem in the form (2.23), we have

Now, E = U + Ω and, substituting the relation between Ω and U, we finally obtain

which tends to zero when the radiation pressure predominates (β → 0) and to the well-known
relations E = Ω / 2 = −U, when radiation pressure is negligible (β → 1). If the change in
gravitational potential energy is ΔΩ, the change in total energy, which is the energy radiated away
(Equation (2.43)), is ΔE = (β/2)ΔΩ, while the energy that serves to heat the star is ΔU = −[(2 −
β)/2]ΔΩ. For β = 1, the amounts are equal. As β decreases, the radiated energy fraction decreases.

Exercise 3.3:  The hydrostatic equation (2.14) may be written in the form

where we have used the definition of the local gravitational acceleration, g = Gm/r2. Dividing both
sides by κρ and using the definition of optical depth dτ = −κρdr, we obtain the desired equation.
Since the mass and thickness of the photosphere are negligible compared with the stellar mass and
radius, we may assume g to be constant throughout the photosphere, gR = GM/R2. Taking for the
constant opacity its value κR at R, we may integrate the hydrostatic equation in its new form, to
obtain

The integral on the right-hand side is unity by definition; on the left-hand side, the pressure
vanishes far away from the star. Thus,

In Section 2.4 we obtained a lower limit for the central pressure of a star:  Therefore
the ratio PR /Pc is at most
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For the Sun, this means that the surface and central pressures are more than 11 orders of magnitude
apart.

Exercise 4.1:  Consider a mass element Δm of helium, half of which turns into carbon and half into
oxygen, by nuclear processes that can be expressed as 3α →12C and 4α →16O. The energy released
in the first process is Q3α = 7.275 MeV (see text), while the energy released in the second is given
by adding to it the energy released by α capture on a 12C nucleus, 7.162 MeV (see text), amounting
to Q4α = 14.437 MeV. The number of 12C nuclei produced is given by

and, similarly,

Hence the total energy released per unit mass is

Exercise 4.2:  Using the results of Exercises 1.2 and 2.1, in which the same density distribution is
assumed, we have

Combining these results, and using the equation of state for an ideal gas (3.28), we obtain the
central temperature

(Ex.1)

where µ = 0.61 for a solar composition (see Section 3.3). The assumption of nondegeneracy implies
that for the electrons, the ideal gas pressure (3.27) is higher than the degeneracy pressure (3.34),

(Ex.2)

where µe ≈ 1.17 for a solar composition (see Section 3.3). Using Equation (Ex.1), we express ρc in
terms of Tc and M,
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and insert the expression into inequality (Ex.2). We thus obtain an upper limit for Tc, given the
stellar mass M:

The desired lower limit for the stellar mass required for each nuclear burning process is obtained by
reversing this relation and substituting for Tc the appropriate threshold temperatures given in Table
4.1.

Exercise 5.1:  If we adopt r as the independent space variable, the Taylor expansion near r = 0 for
any function f (r) is

and we retain only the first nonvanishing term besides fc. For the mass m(r) we have mc = 0
(boundary condition) and from Equation (5.2) on the left

Therefore near the centre

as if the density were uniform and equal to the central value. For the pressure P (r) we have from
Equation (5.1) on the left and the result obtained for m(r)
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Therefore near the centre

For the luminosity F (r) we have Fc = 0 (boundary condition) and from Equation (5.4) on the left

Therefore near the centre

For the temperature T (r) we have from Equation (5.3) on the left and the result obtained for F (r)

Therefore near the centre

Note that these relations hold regardless of the functional dependences P (ρ, T), q(ρ, T) and κ(ρ, T).

Exercise 5.2:
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(a)  For n = 0, the Lane-Emden equation (5.17) becomes

Integrating, we obtain

where C is an integration constant. Dividing by ξ2 and integrating again, we obtain the solution

where D is a second integration constant. Since we cannot accept solutions that are singular at
the origin, we must assume C = 0, and since θ = 1 at the origin (by definition), D = 1. The
solution for n = 0 is therefore

Obviously,  and 
Substituting into Equation (5.20) and using Equation (5.18) to eliminate α, we obtain
M = 4πR3ρc/3 (and D0 = 1), which shows that a n = 0 polytrope describes a configuration of
uniform density.

(b)  For n = 1 and a variable χ defined as χ = ξθ, the Lane-Emden equation (5.17) becomes

whose general solution is

where C and δ are constants of integration. Hence

We must assume δ = 0, for otherwise the solution is singular at the origin, and since θ = 1 at
the origin, C = 1. The solution for n = 1 is therefore
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which has its first zero at ξ1 = π (and is monotonically decreasing in the interval (0, π)).
Differentiating, we obtain

We now use Equations (5.18) and (5.20) to obtain M = 4R3ρc/π (noting that D1 = π2/3,
consistent with the entry in Table 5.1).

Exercise 5.3:  For given M and Pc, we have from Equation (5.28)

For given M, we obtain the ratio of radii R(n) from Equation (5.21) and Table 5.1

and therefore

Exercise 5.4:  The central density is readily given by Equation (5.21): ρc = 1.2 × 102 kg m−3. In
order to obtain the central pressure as a function of M and R, we eliminate ρc between Equations
(5.21) and (5.28):

The term in square brackets exceeds unity for all n and hence

Thus inequality (2.18) is generally satisfied by polytropic models. For Capella, with n = 3, Pc = 6.1
× 1012 N m−2.

Exercise 5.5:  The critical mass is obtained from the relativistic-degenerate equation of state (3.36).
Hence at the stellar centre both Equations (5.28) and (3.36) are satisfied, both being of the form 

 Equating coefficients and isolating M, we obtain
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The term in square brackets reduces to 

Exercise 5.6: In radiative equilibrium, the radiation pressure gradient is obtained from Equations
(5.3) and (3.40):

(In the case of convection, this relation is still correct, provided the flux F on the right-hand side is
taken to be the radiative flux, rather than the total flux, of which the bulk is due to convection.)
Substituting into the hydrostatic equation (5.1) P = Pgas + Prad, we obtain

So long as condition (5.34) is satisfied, the gas pressure decreases outward. When it is violated, the
density is bound to increase outward, if the temperature is decreasing outward. This would lead to
instability (of the Rayleigh-Taylor type).

Exercise 5.7:

(a)  Equation (5.24) for a n = 3 polytrope may be written as

Where M3 is given in Table 5.1. Substituting K from Equation (5.45), we obtain the quartic
equation in the form

where

With a = 8π5k4/(15c3h3) and R = k/mH, we have
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(b)  The Chandrasekhar mass, given by Equation (5.31), may be expressed as

Exercise 6.1:  In terms of the dimensionless variables 0 ≤ y = P /Pc ≤ 1 and ρ0/ρc ≤ x = ρ/ρc ≤ 1, the
equation of state reads:

that is, a one-parameter equation of the form

where the dimensionless parameter α is defined by

Since P is solely a function of ρ, the adiabatic exponent is obtained by taking the derivative

(Ex.3)

It is easy to show that γa is a monotonically decreasing function of x:

therefore negative, and thus the minimum value of γa is obtained at the centre, where x = 1. Hence
the stability condition (6.23), γa > 4/3, will be satisfied everywhere, if it is satisfied for x = 1.
Substituting x = 1 in Equation (Ex.3), we obtain the condition

(a)  Since α is positive, it follows that either γ1, γ2 > 4/3 or γ1, γ2 < 4/3.
(b)  Since α < 1 and γ2 < γ1, if γ1, γ2 > 4/3, the stability condition is satisfied regardless of the

value of α. However, if γ1, γ2 < 4/3, then α must satisfy:
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which means

For example, taking γ1 = 2/3 and γ2 = 1/3, the restriction imposed is ρ0/ρc > 0.3.

Exercise 6.2:  For an adiabatic process (δQ = 0), changes in energy are due to radial perturbations
δr, or δV = 4πr2δr. An adiabatic change in the internal energy U is thus obtained by combining
Equations (2.2) and (2.3):

Since P vanishes at the surface and δV at the centre, integration by parts yields

A change in the gravitational potential energy is given by

Adding these expressions, we have

(Ex.4)

and since δr is arbitrary, it follows that the integrand vanishes with δE. This means that hydrostatic
equilibrium corresponds to an extremum (stationary point) of the total energy. Stability requires it
to be a minimum.

Note:  This property of hydrostatic equilibrium may be used in numerical calculations of stellar
models as an efficient way for obtaining a hydrostatic configuration, given arbitrary intial
conditions, as shown by Rakavy, Shaviv and Zinamon in 1967. The procedure, known as ‘quasi-
dynamic’, is to put the velocity, rather than the acceleration, proportional to the force in the
equation of motion (2.13), as if the star were embedded in an external viscous medium. Using τ to
denote the quasi-time variable, so as not to confuse it with the real time t, we have
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where k is a positive constant. Multiplying both sides by ∂r/∂τ, integrating over the mass and using
(Ex.4) obtained above, we have

Thus the total (static) energy decreases with quasi-time and hence integrating the quasi-dynamic
equation over quasi-time, will lead to a minimum of the energy, if such a minimum exists, and
therefore to a hydrostatic configuration. If a minimum does not exist, it will mean that there is no
stable hydrostatic configuration for the given entropy distribution of the model star.

Exercise 6.3: According to Equation (3.60), the adiabatic exponent for a partially ionized gas is a
function of T and x. Since the expression is symmetrical with respect to x = 0.5, it has an extremum
at this value of x for any given temperature, and it may be easily shown that this extremum is a
minimum (∂2γa/∂x2 > 0 there). We may now regard the minima as a continuous function of T :

It may be shown that γa,min(T ) decreases monotonically with increasing  The
critical lower limit for stability will thus be obtained by setting γa,min(T ) = 4/3. This results in a
quadratic equation for the variable z = χ/kT :

which has only one positive root, corresponding to T = 2.75 × 104 K. Thus only below this
temperature may partially ionized hydrogen become dynamically unstable, the lower the
temperature, the larger the range of x corresponding to γa < 4/3.

Exercise 6.4: Adiabatic processes satisfy Equation (3.48):

from which relations may be derived between any two of the thermodynamic functions P, ρ and T .
For gas and radiation we define adiabatic exponents Г1 and Г2 by

(Ex.5)

(Ex.6)
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noting that both are equal to the γa of conditions (6.26) and (6.28) in the case of gas without
radiation. Now, for an ideal gas we have from Equations (3.28), (3.44) and (3.47)

and from Equations (3.11) and (3.12),

Hence

which, substituted into the condition for adiabaticity, leads to

(Ex.7)

For the pressure we have

leading to

(Ex.8)

Eliminating dT /T between Equations (Ex.7) and (Ex.8), we obtain

Comparing this result with Equation (Ex.5), we have
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Similarly, by eliminating dρ/ρ between Equations (Ex.7) and (Ex.8) and comparing to Equation
(Ex.6), we obtain

For β = 1 (pure gas), Г1 = Г2 = 5/3; for β = 0 (pure radiation), Г1 = Г2 = 4/3; for 
Г1 = 1.43, while Г2 = 1.35.

Note:  The adiabatic exponent Г1 for matter and radiation was introduced by Eddington in 1918;
Г2, as well as a further adiabatic exponent Г3, which relates T and ρ, were later introduced by
Chandrasekhar.

Exercise 6.5: Let Mc be the mass of the convective core. The temperature gradient at its boundary
is given on the one hand by the adiabatic gradient (as in the core),

after substituting the pressure gradient from the hydrostatic equation, and on the other hand by the
radiative diffusion equation (5.3),

Continuity of dT /dr (imposed by the continuity of the radiative flux) requires equality of the right-
hand sides of these equations:

Since there are no energy sources outside the core, we may take F = L. Substituting

dividing by M, and rearranging terms, we obtain

Now, if κ is constant up to the surface, then 4πcGM/κ is the Eddington luminosity LEdd, and if β is
constant, we have from (5.42) L/LEdd = 1 − β, which yields the desired expression for the core mass
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fraction. Note that the ratio depends indirectly on M through the adiabatic exponent, which depends
on β, where β = β(M).

Exercise 7.1: Inserting relation (7.36) into Equation (7.28) on the right, we obtain

We have  for n = 4, (that is,  increases with M), whereas  for
n = 16 (that is, P decreases with increasing stellar mass).
Inserting relation (7.36) into Equation (7.33), we obtain

which yields  for n = 4 and  for n = 16. Note the weak dependence of
T  on M corresponding to stars that burn hydrogen by the CNO cycle, which means that the main
sequence of these stars may be taken to represent a line of constant central temperature.

Exercise 7.2: The effective temperature of a star of known L and R is obtained from Equation (1.3):

Using relation (7.35) for the luminosity at the lower end of the main sequence,

and relation (7.36) for the radius (calibrated to the solar radius, with n = 4),

we obtain

Substituting  and Mmin ≈ 0.1M , we have

Exercise 7.3: First, we write the condition L < 4πcGM/κs as
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Next, we calibrate relation (7.35) between luminosity and mass:

Substituting it into the previous relation, we obtain an upper limit for the mass of main-sequence
stars

assuming κs is the electron scattering opacity κes,0 (Equation (3.64)). Using the mass-luminosity
relation, we obtain the corresponding upper limit for the luminosity of main-sequence stars: L < 5.8
× 106 L . The radius of a 180M  star may be obtained from the calibrated relation (7.36), taking
n = 16, appropriate to the upper main sequence. The effective temperature results from 

 as in Exercise 7.2, which yields Teff = 3.7 × 104 K.

Exercise 7.4: Some of the relations between starred quantities (Equations (7.28), (7.29) and (7.33))
are independent of the opacity or the nuclear energy generation laws. These are

(Ex.9)

From the Kramers opacity law and n = 4 we obtain two additional relations, using Equations (7.31)
and (7.32):

(Ex.10)

(Ex.11)

Substituting relations (Ex.9), we have

which, combined, yield a relation between radius and mass in the form
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This, in turn, enables the derivation of a mass-luminosity relation, as well as a radius-luminosity
relation. With the aid of the latter, the main-sequence slope may be derived as in the text. Thus,

In conclusion, different opacity laws result in different main-sequence slopes (even assuming the
same n), 4.12 for a Kramers opacity law, as compared to 5.6 for a constant opacity (Equation
(7.39)).

Exercise 7.5: We substitute relations (Ex.9) into Equations (Ex.10) and (Ex.11) to obtain

Combined, these relations result in

Eliminating R between this relation and one of the relations for F above, we obtain a mass-
luminosity relation that includes the effect of µ,

Reversing this relation to obtain M(L, µ) and inserting the result into the relation R(M, µ), we may
derive R(L, µ), which, combined with  yields

Thus, with increasing Y at the expense of X, if a star maintains its luminosity, its effective
temperature will decrease and hence the star will move to the right in the H-R diagram.

Exercise 7.6:

(a)  Assume an amount of mass δm is burnt during a time interval δt (and added to the core). The
nuclear energy supplied is Q δm; this energy is radiated by the star at a rate L and hence Q
δm = L δt. Therefore the rate of core growth is  Since L and Q are constants,
and Mc = 0 at t = 0, we get by integration

(Ex.12)
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(b)  The envelope loses mass at its inner boundary at the same rate as the core gains mass due to
nuclear burning. It also loses mass at its outer boundary – at the mass loss rate of the star.
Thus

Integrating and using the initial condition Me = M0 at t = 0, we have

(Ex.13)

(c)  The core mass attained when the envelope mass is exhausted is obtained by setting Me(t) = 0
and eliminating t between Equations (Ex.12) and (Ex.13),

(d)  For the star to become a white dwarf this core mass must satisfy Mc < MCh, which imposes
an upper limit on the initial mass of the star:

Exercise 8.1: The equation of state for the gas is

and the constant temperature (dT /dr = 0) implies F = 0. Thus substituting v = vs in Equation (8.20),
we have

and hence

The isothermal sound speed is given by

while the escape velocity at the critical point is
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Substituting the expression above for rc, we obtain

Exercise 8.2:

(a)  For a polytropic pressure (implying vanishing radiation pressure), we have with the aid of
Equation (8.18),

and substituting it in the momentum equation, we obtain

which is the same as Equation (8.20), if vs is defined as 
(b)  With the substitution

the momentum equation (8.15)

may be integrated to yield

On the other hand, the energy equation (8.16) reads

Combining these equations, we obtain
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The term in parentheses is (3γ − 5)/2(γ − 1) and vanishes for γ = 5/3. In this case, since 
and A are constants, it follows that F = constant, which means that the flow does not absorb
nor release heat, that is, the flow is adiabatic.

Exercise 8.3:  The wind emanated by the Sun crosses any spherical surface centred on the Sun (just
as the radiation emitted by the Sun does); otherwise matter would accumulate at some place; hence 

 = constant. Conservation of mass (in spherical symmetry) requires that an amount of mass δm
crossing a spherical surface of radius r during a time interval δt equal the density at r multiplied by
the volume of this mass, δV = 4πr2δr. Since δr = vδt, where v is the (radial) velocity of the wind, we
have at any distance r

Dividing by δt, we obtain

As the contribution of electrons to the mass (density) is negligible, we may assume the wind density
to be ρ ≈ npmH, where np is the proton number density. The measurements at Earth (r = 1 AU) thus
yield  ≈ 1.3 × 109 kg s−1 ≈ 2 × 10−14M  yr−1.

Exercise 8.4:

(a)  The mass-loss timescale may be estimated by M/  (Equation (2.55)). The thermal
timescale is given by Equation (2.59), τth ≈ GM2/RL. Using Equation (8.31) for , we
obtain

Generally, vesc  c and certainly ϕvesc  c; therefore we may conclude that τm−l  τth.
(b)  The energy required for removing an amount of mass δm from the surface of a star is equal

to the gravitational binding energy of this element, δEgrav = GMδm/R and if the mass is
removed during a time interval δt, then the rate of energy supply (δEgrav/δt) is

where  was substituted from Equation (8.31). As argued in (a), 

(c)  From estimate (2.61), τnuc ≈ Mc 2/L, where  amounts to a few times 0.001. Using the
result of (a), we have

Substituting on the right-hand side  we obtain
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If vesc < 0.001c (as is mostly the case) and if ϕ is not a too small fraction (as, indeed,
observations indicate), then τm−l < τnuc.

Exercise 8.5: In Section 7.4 we have seen that, for main-sequence stars, global quantities may be
expressed as power laws of the stellar mass. These may be easily reverted to power laws of the
luminosity. Thus

A parametrization of the mass-loss rate of the form (8.31) would result in

Using the results of Section 7.4, we have α1 = 3 (relation (7.35)) and α2 = (n − 1)/ (n + 3) (relation
(7.36)), whence

We note that this is very close to a linear dependence, particularly for massive stars, which burn
hydrogen by means of the CNO cycle (n ≈ 16).

Exercise 9.1:

(a)  Assume n helium nuclei are produced in the Sun per unit time, of which n1 are produced by
the p − p I chain, n2 by the p − p II chain and n3 by the p − p III chain. Thus n = n1 + n2 + n3
and the branching ratios are ni/n (1 ≤ i ≤ 3), respectively. The neutrino fluxes intercepted at
Earth, fν,i (1 ≤ i ≤ 3) – listed in the second column of Table 9.3 – are a fraction α = (4πd2)−1

(where d = 1 AU) of those produced per unit time in the Sun. In the production of a helium
nucleus by the p − p I chain, two p − p neutrinos are emitted; by the p − p II chain, one p − p
neutrino and one 7Be neutrino, and by the p − p III chain, one p − p neutrino and one 8B
neutrino (see Section 4.3). Therefore
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Eliminating ni from these relations we obtain the branching ratios:

(b)  The average energy carried by each neutrino type, Qν,i is listed in the last column of Table
9.3. The neutrino luminosity of the Sun is given by the total neutrino energy flux at Earth,
multiplied by 4πd2:

(c)  If the branching ratios of the p − p chain were not known, then the neutrino energy lost for
each helium nucleus produced would vary between a minimum value of 2 × 0.263 MeV
(corresponding to the p − p I chain) and a maximum value of (0.263 + 7.2) MeV
(corresponding to the p − p III chain). The net energy released in the production of a helium
nucleus (that would ultimately be radiated by the Sun) would range between Qmax = 26.73 −
2 × 0.263 = 26.20 MeV and Qmin = 26.73 − 0.263 − 7.2 = 19.27 MeV. Since the luminosity
of the Sun is known, the number of helium nuclei that should be produced per unit time in
order to supply it can be calculated in each case. The number of neutrinos emitted is twice as
much. Therefore
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Exercise 9.2:  First, we integrate Equation (5.2) in order to obtain the core mass M1:

(Ex.14)

Next, we integrate Equation (5.2) in order to obtain the mass outside the core:

(Ex.15)

Dividing Equation (Ex.15) by Equation (Ex.14) and substituting x1 = ρc/ρ1 and y1 = M/M1, we have

Now, since R1 < R, we may neglect (R1/R)3 with respect to 1 in the denominator on the left-hand
side; hence exponentiating, we obtain

which yields R/R1 ≈ 3 × 104 for x1 = 10 and y1 = 7.5. Thus, if the core radius is of the order of a
white dwarf’s, R1 ~ 0.01 R , the resulting stellar radius is ~300 R , illustrating the possibility of
having a compact core and a very extended envelope.

Exercise 9.3:

(a)  In the outer layer of a white dwarf we have by Equation (9.36) P = P (T ). We may thus
write the equation of hydrostatic equilibrium (9.32) as

Using the ideal gas equation of state (appropriate to this layer), we substitute 
 to obtain

(Ex.16)

371



From Equation (9.36) we have

and hence, integrating Equation (Ex.16) and using the boundary condition T (R) = 0, we
obtain the required relation (9.42).

(b)  We may write this relation for Tc = Tb ≡ T (rb) in the form

(Ex.17)

The left-hand side represents (roughly) the ion energy per unit mass, PI/ρ. The term GM/R
on the right-hand side is, according to the virial theorem, the total energy per unit mass (or P
/ρ). Since for degenerate electrons, P ≈ Pe  PI, we must have

(c)  Since we have shown that ℓ ≡ R − rb  R, then rb ≈ R and we may write Equation (Ex.17)
as

Using relation (9.39) between L and Tc, we obtain ℓ ∝ L2/7, and hence

Exercise 10.1:  The equation of motion for free fall (a motion governed by the gravitational field
without any – or with negligible – opposition exerted by pressure) is, according to Equation (2.12),

Multiplying both sides by  we obtain

or, since m and t are independent variables,

Integrating, we have
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where −C is an integration constant (independent of time). If the collapse starts from rest, that is, 
 everywhere, then C = Gm/r(m, 0). We choose C = 0, implying collapse from a very

extended initial configuration. All solutions will converge with time to that corresponding to C = 0,
since the term Gm/r(m, t), which increases with time, will eventually become dominant. For a
uniform density,  where ρ = ρ(t), and hence

(Ex.18)

Therefore

where we have chosen the negative root, appropriate to collapse. This shows that at any given time
the velocity changes linearly with distance from the centre.

Note:  The same equation of motion applies to the universe (in the Newtonian approach) and
describes its expansion – when the positive root of Equation (Ex.18) is chosen. The resulting linear
dependence of velocity on distance – describing the relative motion of galaxies – is known as the
Hubble law, which was first discovered from observations.

Exercise 10.2:  We proceed as in Exercise 10.1 to obtain the first integral of the equation of motion,

where r ≡ r(m, t) and r0 ≡ r(m, 0). From the condition of uniform initial density, which we denote
by ρ0, we have

Substituting m in the former relation, we obtain

(Ex.19)

where we have chosen the negative root to describe the collapse. In order to solve this equation, we
introduce a new variable, x(m, t), defined by
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noting that x = 0 at t = 0. We also define a constant  It is easy to see that
Equation (Ex.19) becomes

which may be directly integrated to yield

Now, the solution x(t), or r/r0, is the same for all m, meaning that any part of the core will take the
same amount of time to contract to a given fraction of its former radial distance from the centre.
The density will thus remain uniform. It is noteworthy that the time of collapse is finite: when r(m,
t) = 0, x = π/2 and t = π/2K (which is of the order of the dynamical timescale  Hence
the solution has a singularity, the density becoming infinite at t = π/2K.

Exercise 10.3: Let N1(t) denote the number of 56Ni nuclei, initially N0 = 1M  /56mH = 2.15 × 1055,
and N2(t), the number of 56Co nuclei, initially 0. The characteristic decay time is obtained from the
half-life time by τ = t1/2/ ln 2, which yields τ1 = 8.8 days for 56Ni and τ2 = 111 days for 56Co. Using
the mass-excess table (Appendix D), we obtain energy release in the amount Q1 = 2.136 MeV for
56Ni → 56Co and Q2 = 4.564 MeV for 56Co → 56Fe . The rate of decay of 56Ni is given by 

 leading with the initial condition to N1(t) = N0e−t/τ1. The rate of change of 56Co

– by build-up from the decay of 56Ni and its own decay – is given by

leading with the corresponding initial condition to the solution

The luminosity, resulting from the decay of both 56Ni and 56Co, is given by

Substituting the expressions for the numbers of nuclei, we obtain

and inserting parameter values,
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Exercise 11.1: Using Equations (11.2), we may express d in terms of d1:

Substituting the result in the equation of motion for the first star, Equation (11.3)-left, we obtain an
equation of the form (11.4), where (M1 + M2) in the numerator is replaced by 

 The same procedure may be applied to the second star.
Since the stars and the centre of mass (focal point of the orbits) are always aligned, both stars

pass at the same time through pericentre (shortest distance from the centre) and through apocentre
(longest distance from the centre). In each case – as at every point of the stars’ orbits – their
respective distances from the centre relate as the inverse mass ratio (by Equation (11.2)-left).
Denoting by a1 and a2 the respective semi-major axes and by e1 and e2, the eccentricities, we thus
have

Equating the left-hand sides of these equations, we obtain e1 = e2.

Exercise 11.2: Let M be the total mass of the system, M = M1 + M2, and a the separation. Denoting
by a1 and a2 the distances of the two stars from the centre of mass, respectively, we have by
Equations (11.2) a = a1 + a2, a1/a = M2/M and a2/a = M1/M. Let ω be the common angular velocity
of the stars (which is constant for circular orbits); ω = 2π/ . Denoting by v1 and v2 the velocities of
the two stars, respectively, we have vo,1 = v1 sin i and vo,2 = v2 sin i. In addition,

and hence

which provides one relation between the desired masses and observables. Another relation is
obtained from the equations of motion of the two stars,

which we may add to obtain:
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(Kepler’s third law). Substituting a = a1 + a2 = v1/ω + v2/ω = (vo,1 + vo,2)/(ω sin i), we have

Exercise 11.3:

(a)  The Roche-lobe radius of M2 is given by Equation (11.25) in the form

Conservative mass transfer means that (M1 + M2) = constant, and hence taking the
logarithmic time derivative of this relation, we obtain

since  For the first term on the right-hand side we use Equation (11.32),
which reads

to obtain

Shrinkage of the Roche lobe means  which requires the term in parentheses on the
right-hand side to be negative, since  is positive. Thus the condition on the mass ratio is 

(b)  Assuming a relation between mass and radius of the form R ∝ M−1/n, we have

Clearly, if q is such that its Roche lobe shrinks (the condition found above), the star will
keep overflowing its Roche lobe while losing mass. If the Roche lobe expands, on the other
hand, then the lobe radius must increase at a slower rate than the rate of growth of the stellar
radius. If initially R2 ≈ rL, the requirement
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yields q > (5/3 − 1/n)/2 as the condition for the donor star to continue overflowing its Roche
lobe, which is less restrictive than 

Exercise 11.4:  Applying to the white-dwarf centre the equation of state for degenerate matter to
first order in temperature (B.37), we have

where

and µe ≈ 2. Substituting this expression into Equation (5.28) that gives the central pressure in
hydrostatic equilibrium with B1.5 = 0.206, we obtain a relation between ρc, Tc and M, of the form

where γ = (4π)1/30.206G. Taking the time derivative, we obtain

Since α is a very small number, deriving from the small correction to the degenerate equation of
state due to temperature, the coefficient of the density derivative on the left-hand side is positive for
(almost) any temperature and density values. The terms on the right-hand side have opposite signs,
since both dTc/dt and dM/dt are negative. Since Tc changes rapidly with time at the beginning and
very slowly thereafter (see Section 9.8), while the mass decreases at a constant rate, the left-hand
side will change sign from positive to negative at some point and thus the density will go through a
maximum. We note, however, that for a sufficiently high rate of mass loss, the second term on the
right-hand side will always dominate and the central density will decrease monotonically. On the
other hand, without mass loss, the central density will increase steadily with decreasing
temperature, tending asymptotically to the value (7.13), which depends solely on the stellar mass.

Exercise 11.5:

(a)  Assume a white dwarf of mass M and radius R(M) has an outer layer of solar composition
and of mass Δm  M (and negligible thickness). The energy required to expel this layer is
equal to the gravitational binding energy GM Δm/R(M). If Q is the energy released per unit
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mass of burnt hydrogen (from Section 4.3, Q ≈ 6 × 1014 J kg−1), and the hydrogen mass
fraction in the outer layer is X  ≈ 0.7, then the amount of hydrogen mass burnt is f ΔmX ,
satisfying

(b)  The R(M) relationship (5.29) for white dwarfs, appropriate to a nonrelativistic equation of
state, that is, for M < MCh, may be calibrated with the aid of the provided data:

Combining these results, we have

Note that for typical white dwarf masses this fraction is very small, despite the strong
gravitational field that must be overcome.

Exercise 12.1:  Consider a cloud of mass equal to the Jeans mass MJ and temperature T . According
to Equation (12.4), its radius is

(Ex.20)

The rate of gravitational energy release in collapse may be estimated by the potential gravitational
energy, of the order of  (Equation (2.27)), divided by the free-fall or dynamical time
(Equation (2.56)). Thus,

Since the radiation temperature is lower than the gas temperature T, the rate at which energy is
radiated at the cloud’s surface, or the cloud’s luminosity L, may be taken as

where  < 1. As the radiated energy is supplied by the gravitational energy released in collapse, we
have

(Ex.21)
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Substituting Equation (Ex.20) into Equation (Ex.21) yields

Since  < 1, taking  = 1 on the right-hand side provides an approximate lower limit MJ ≈ 5.6 ×
10−3 T1/4M .

Exercise 12.2:  From Equation (12.13) we have

Substituting MMS = 0.7M , MSN = 10M  and MWD = 0.6M , we obtain

which yields for Mmax = 30M :

while for Mmax = 120M :

In conclusion, the ratio η/ζ is far more sensitive to Mmin than to Mmax.

Exercise 12.3: As we have seen in Section 1.4, and again in Section 7.4, the luminosity of main-
sequence stars is a function of the stellar mass in the form of a power law, L ∝ Mν. If the cluster’s
luminosity LC is the sum of the luminosities of its main-sequence stars, which have masses in the
range Mmin ≤ M ≤ Mtp, then

The relative change in LC from LC,1, say, to LC,2, as the main-sequence turnoff point decreases from
Mtp,1 = 1.3M  to Mtp,2 = 0.85M , is given by
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Thus the cluster’s luminosity decreases by a factor of ~2, if we adopt ν = 3, and by a factor of ~5, if
ν = 5.

Exercise 12.4: The function ϒ(t) satisfies the equation

where α is a constant to be determined from the given data. Integrating and using the initial
condition ϒ(0) = 1, we have

Substituting ϒ(tp) = ϒp = 0.05, we may eliminate α to obtain

Substituting ϒ = 0.5 yields t/tp = 0.053, meaning that when the Galaxy was ~5% of its present age,
the gas content amounted to half the galactic mass. It decreased to a tenth of the galactic mass when
the Galaxy reached about half its present age. Decreasing further, it will reach half its present mass
(that is, ϒ = 0.025) when the Galaxy will be about twice its present age.

Exercise 12.5: Substituting the opacity law and the nuclear energy generation rate in Equations
(7.31) and (7.32), we obtain as in Exercise 7.4,

Using relations (Ex.9) and retaining the dependence on Z, we have

which, combined, yield the dependence of radius on mass and heavy element content in the form

Substituting this relation back into either of the relations for F above, we derive the dependence of
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the luminosity L on Z, for a given mass:

Similarly, substitution of R(Z) in relations (Ex.9) yields

Thus, for main-sequence stars of the same mass but different Z, the higher-Z star will have lower
internal temperatures and densities and a lower luminosity. Hence, it will spend a longer time as a
main-sequence star. Our conclusion is based on highly simplifying assumptions; nevertheless, it is
generally true that Pop I stars have considerably longer main-sequence lifetimes than Pop II stars.
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Appendix D

Physical and astronomical constants and
conversion factors

Table D.1  Fundamental constants

Note:  a = 4σ/c, mH = 1/NA,  Fundamental constants are from E. R. Cohen and B.
N. Taylor, (1987), Rev. Mod. Phys. 59, p. 1121; CODATA Bulletin (1986), 63 (Nov.); Physics
Today (1995), Part 2, BG9 (Aug.).

 

Table D.2  Astronomical constants
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Note:  Astronomical constants are from C. Caso et al., (1998), European Physical Journal, C3,
p.1.

 

Table D.3  Energy conversion factors

Note:  Powers of 10 are given in parentheses. The units of energy are related as follows: 1 J = 107

erg; 1 erg = 1/e eV = 1/h s−1 = 1/(hc) cm−1 = 1/k K. Energy conversion factors are from E. R.
Cohen & B. N. Taylor, Rev. Mod. Phys. 59, p.1121 (1987); CODATA Bulletin, 63 (Nov. 1986);
Physics Today, Part 2, BG9 (Aug. 1995). Values within the same column are equivalent.

 

Table D.4  Mass excesses, asterisks indicating unstable isotopes.
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Note:  Published by J. K. Tuli, National Nuclear Data Center, Brookhaven National Laboratory.
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