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Preface to the second edition

In the 23 years between the first edition of this textbook and the present revision, the field
of general relativity has blossomed and matured. Upon its solid mathematical foundations
have grown a host of applications, some of which were not even imagined in 1985 when
the first edition appeared. The study of general relativity has therefore moved from the
periphery to the core of the education of a professional theoretical physicist, and more and
more undergraduates expect to learn at least the basics of general relativity before they
graduate.

My readers have been patient. Students have continued to use the first edition of this
book to learn about the mathematical foundations of general relativity, even though it has
become seriously out of date on applications such as the astrophysics of black holes, the
detection of gravitational waves, and the exploration of the universe. This extensively
revised second edition will, I hope, finally bring the book back into balance and give
readers a consistent and unified introduction to modern research in classical gravitation.

The first eight chapters have seen little change. Recent references for further reading
have been included, and a few sections have been expanded, but in general the geometrical
approach to the mathematical foundations of the theory seems to have stood the test of time.
By contrast, the final four chapters, which deal with general relativity in the astrophysical
arena, have been updated, expanded, and in some cases completely re-written.

In Ch. 9, on gravitational radiation, there is now an extensive discussion of detection
with interferometers such as LIGO and the planned space-based detector LISA. I have
also included a discussion of likely gravitational wave sources, and what we can expect
to learn from detections. This is a field that is rapidly changing, and the first-ever direct
detection could come at any time. Chapter 9 is intended to provide a durable framework
for understanding the implications of these detections.

In Ch. 10, the discussion of the structure of spherical stars remains robust, but I have
inserted material on real neutron stars, which we see as pulsars and which are potential
sources of detectable gravitational waves.

Chapter 11, on black holes, has also gained extensive material about the astrophysical
evidence for black holes, both for stellar-mass black holes and for the supermassive black
holes that astronomers have astonishingly discovered in the centers of most galaxies. The
discussion of the Hawking radiation has also been slightly amended.

Finally, Ch. 12 on cosmology is completely rewritten. In the first edition I essentially
ignored the cosmological constant. In this I followed the prejudice of the time, which
assumed that the expansion of the universe was slowing down, even though it had not yet
been accurately enough measured. We now believe, from a variety of mutually consistent
observations, that the expansion is accelerating. This is probably the biggest challenge to
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theoretical physics today, having an impact as great on fundamental theories of particle
physics as on cosmological questions. I have organized Ch. 12 around this perspective,
developing mathematical models of an expanding universe that include the cosmological
constant, then discussing in detail how astronomers measure the kinematics of the universe,
and finally exploring the way that the physical constituents of the universe evolved after the
Big Bang. The roles of inflation, of dark matter, and of dark energy all affect the structure
of the universe today, and even our very existence. In this chapter it is possible only to give
a brief taste of what astronomers have learned about these issues, but I hope it is enough to
encourage readers to go on to learn more.

I have included more exercises in various chapters, where it was appropriate, but I have
removed the exercise solutions from the book. They are available now on the website for
the book.

The subject of this book remains classical general relativity; apart from a brief discussion
of the Hawking radiation, there is no reference to quantization effects. While quantum
gravity is one of the most active areas of research in theoretical physics today, there is still
no clear direction to point a student who wants to learn how to quantize gravity. Perhaps
by the third edition it will be possible to include a chapter on how gravity is quantized!

I want to thank many people who have helped me with this second edition. Several have
generously supplied me with lists of misprints and errors in the first edition; I especially
want to mention Frode Appel, Robert D’Alessandro, J. A. D. Ewart, Steve Fulling, Toshi
Futamase, Ted Jacobson, Gerald Quinlan, and B. Sathyaprakash. Any remaining errors are,
of course, my own responsibility. I thank also my editors at Cambridge University Press,
Rufus Neal, Simon Capelin, and Lindsay Barnes, for their patience and encouragement.
And of course I am deeply indebted to my wife Sian for her generous patience during all
the hours, days, and weeks I spent working on this revision.



Preface to the first edition

This book has evolved from lecture notes for a full-year undergraduate course in general
relativity which I taught from 1975 to 1980, an experience which firmly convinced me
that general relativity is not significantly more difficult for undergraduates to learn than
the standard undergraduate-level treatments of electromagnetism and quantum mechanics.
The explosion of research interest in general relativity in the past 20 years, largely stimu-
lated by astronomy, has not only led to a deeper and more complete understanding of the
theory, it has also taught us simpler, more physical ways of understanding it. Relativity is
now in the mainstream of physics and astronomy, so that no theoretical physicist can be
regarded as broadly educated without some training in the subject. The formidable rep-
utation relativity acquired in its early years (Interviewer: ‘Professor Eddington, is it true
that only three people in the world understand Einstein’s theory?’ Eddington: ‘Who is the
third?’) is today perhaps the chief obstacle that prevents it being more widely taught to
theoretical physicists. The aim of this textbook is to present general relativity at a level
appropriate for undergraduates, so that the student will understand the basic physical con-
cepts and their experimental implications, will be able to solve elementary problems, and
will be well prepared for the more advanced texts on the subject.

In pursuing this aim, I have tried to satisfy two competing criteria: first, to assume a min-
imum of prerequisites; and, second, to avoid watering down the subject matter. Unlike most
introductory texts, this one does not assume that the student has already studied electro-
magnetism in its manifestly relativistic formulation, the theory of electromagnetic waves,
or fluid dynamics. The necessary fluid dynamics is developed in the relevant chapters. The
main consequence of not assuming a familiarity with electromagnetic waves is that grav-
itational waves have to be introduced slowly: the wave equation is studied from scratch.
A full list of prerequisites appears below.

The second guiding principle, that of not watering down the treatment, is very subjective
and rather more difficult to describe. I have tried to introduce differential geometry fully,
not being content to rely only on analogies with curved surfaces, but I have left out subjects
that are not essential to general relativity at this level, such as nonmetric manifold theory,
Lie derivatives, and fiber bundles.1 I have introduced the full nonlinear field equations,
not just those of linearized theory, but I solve them only in the plane and spherical cases,
quoting and examining, in addition, the Kerr solution. I study gravitational waves mainly
in the linear approximation, but go slightly beyond it to derive the energy in the waves
and the reaction effects in the wave emitter. I have tried in each topic to supply enough

1 The treatment here is therefore different in spirit from that in my book Geometrical Methods of Mathematical
Physics (Cambridge University Press 1980b), which may be used to supplement this one.
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foundation for the student to be able to go to more advanced treatments without having to
start over again at the beginning.

The first part of the book, up to Ch. 8, introduces the theory in a sequence that is typi-
cal of many treatments: a review of special relativity, development of tensor analysis and
continuum physics in special relativity, study of tensor calculus in curvilinear coordinates
in Euclidean and Minkowski spaces, geometry of curved manifolds, physics in a curved
spacetime, and finally the field equations. The remaining four chapters study a few top-
ics that I have chosen because of their importance in modern astrophysics. The chapter
on gravitational radiation is more detailed than usual at this level because the observa-
tion of gravitational waves may be one of the most significant developments in astronomy
in the next decade. The chapter on spherical stars includes, besides the usual material, a
useful family of exact compressible solutions due to Buchdahl. A long chapter on black
holes studies in some detail the physical nature of the horizon, going as far as the Kruskal
coordinates, then exploring the rotating (Kerr) black hole, and concluding with a simple
discussion of the Hawking effect, the quantum mechanical emission of radiation by black
holes. The concluding chapter on cosmology derives the homogeneous and isotropic met-
rics and briefly studies the physics of cosmological observation and evolution. There is an
appendix summarizing the linear algebra needed in the text, and another appendix contain-
ing hints and solutions for selected exercises. One subject I have decided not to give as
much prominence to, as have other texts traditionally, is experimental tests of general rel-
ativity and of alternative theories of gravity. Points of contact with experiment are treated
as they arise, but systematic discussions of tests now require whole books (Will 1981).2

Physicists today have far more confidence in the validity of general relativity than they had
a decade or two ago, and I believe that an extensive discussion of alternative theories is
therefore almost as out of place in a modern elementary text on gravity as it would be in
one on electromagnetism.

The student is assumed already to have studied: special relativity, including the Lorentz
transformation and relativistic mechanics; Euclidean vector calculus; ordinary and simple
partial differential equations; thermodynamics and hydrostatics; Newtonian gravity (sim-
ple stellar structure would be useful but not essential); and enough elementary quantum
mechanics to know what a photon is.

The notation and conventions are essentially the same as in Misner et al., Gravitation
(W. H. Freeman 1973), which may be regarded as one possible follow-on text after this one.
The physical point of view and development of the subject are also inevitably influenced
by that book, partly because Thorne was my teacher and partly because Gravitation has
become such an influential text. But because I have tried to make the subject accessible
to a much wider audience, the style and pedagogical method of the present book are very
different.

Regarding the use of the book, it is designed to be studied sequentially as a whole, in
a one-year course, but it can be shortened to accommodate a half-year course. Half-year
courses probably should aim at restricted goals. For example, it would be reasonable to aim
to teach gravitational waves and black holes in half a year to students who have already

2 The revised second edition of this classic work is Will (1993).
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studied electromagnetic waves, by carefully skipping some of Chs. 1–3 and most of Chs. 4,
7, and 10. Students with preparation in special relativity and fluid dynamics could learn
stellar structure and cosmology in half a year, provided they could go quickly through the
first four chapters and then skip Chs. 9 and 11. A graduate-level course can, of course, go
much more quickly, and it should be possible to cover the whole text in half a year.

Each chapter is followed by a set of exercises, which range from trivial ones (filling
in missing steps in the body of the text, manipulating newly introduced mathematics) to
advanced problems that considerably extend the discussion in the text. Some problems
require programmable calculators or computers. I cannot overstress the importance of
doing a selection of problems. The easy and medium-hard ones in the early chapters give
essential practice, without which the later chapters will be much less comprehensible. The
medium-hard and hard problems of the later chapters are a test of the student’s understand-
ing. It is all too common in relativity for students to find the conceptual framework so
interesting that they relegate problem solving to second place. Such a separation is false
and dangerous: a student who can’t solve problems of reasonable difficulty doesn’t really
understand the concepts of the theory either. There are generally more problems than one
would expect a student to solve; several chapters have more than 30. The teacher will
have to select them judiciously. Another rich source of problems is the Problem Book in
Relativity and Gravitation, Lightman et al. (Princeton University Press 1975).

I am indebted to many people for their help, direct and indirect, with this book. I would
like especially to thank my undergraduates at University College, Cardiff, whose enthu-
siasm for the subject and whose patience with the inadequacies of the early lecture notes
encouraged me to turn them into a book. And I am certainly grateful to Suzanne Ball, Jane
Owen, Margaret Vallender, Pranoat Priesmeyer, and Shirley Kemp for their patient typing
and retyping of the successive drafts.





1 Special relativity

1.1 Fundamenta l p r inc ip les of spec ia l re lat i v i ty (SR)
theory

The way in which special relativity is taught at an elementary undergraduate level – the
level at which the reader is assumed competent – is usually close in spirit to the way it was
first understood by physicists. This is an algebraic approach, based on the Lorentz transfor-
mation (§ 1.7 below). At this basic level, we learn how to use the Lorentz transformation to
convert between one observer’s measurements and another’s, to verify and understand such
remarkable phenomena as time dilation and Lorentz contraction, and to make elementary
calculations of the conversion of mass into energy.

This purely algebraic point of view began to change, to widen, less than four years
after Einstein proposed the theory.1 Minkowski pointed out that it is very helpful to regard
(t, x, y, z) as simply four coordinates in a four-dimensional space which we now call space-
time. This was the beginning of the geometrical point of view, which led directly to general
relativity in 1914–16. It is this geometrical point of view on special relativity which we
must study before all else.

As we shall see, special relativity can be deduced from two fundamental postulates:

(1) Principle of relativity (Galileo): No experiment can measure the absolute velocity of
an observer; the results of any experiment performed by an observer do not depend on
his speed relative to other observers who are not involved in the experiment.

(2) Universality of the speed of light (Einstein): The speed of light relative to any unac-
celerated observer is c = 3 × 108 m s−1, regardless of the motion of the light’s source
relative to the observer. Let us be quite clear about this postulate’s meaning: two differ-
ent unaccelerated observers measuring the speed of the same photon will each find it to
be moving at 3 × 108 m s−1 relative to themselves, regardless of their state of motion
relative to each other.

As noted above, the principle of relativity is not at all a modern concept; it goes back
all the way to Galileo’s hypothesis that a body in a state of uniform motion remains in that
state unless acted upon by some external agency. It is fully embodied in Newton’s second

1 Einstein’s original paper was published in 1905, while Minkowski’s discussion of the geometry of spacetime
was given in 1908. Einstein’s and Minkowski’s papers are reprinted (in English translation) in The Principle of
Relativity by A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl (Dover).
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law, which contains only accelerations, not velocities themselves. Newton’s laws are, in
fact, all invariant under the replacement

v(t) → v′(t) = v(t) − V,

where V is any constant velocity. This equation says that a velocity v(t) relative to one
observer becomes v′(t) when measured by a second observer whose velocity relative to the
first is V. This is called the Galilean law of addition of velocities.

By saying that Newton’s laws are invariant under the Galilean law of addition of veloc-
ities, we are making a statement of a sort we will often make in our study of relativity,
so it is well to start by making it very precise. Newton’s first law, that a body moves at a
constant velocity in the absence of external forces, is unaffected by the replacement above,
since if v(t) is really a constant, say v0, then the new velocity v0 − V is also a constant.
Newton’s second law

F = ma = m dv/d t,

is also unaffected, since

a′ − dv′/d t = d(v − V)/d t = dv/d t = a.

Therefore, the second law will be valid according to the measurements of both observers,
provided that we add to the Galilean transformation law the statement that F and m are
themselves invariant, i.e. the same regardless of which of the two observers measures them.
Newton’s third law, that the force exerted by one body on another is equal and opposite to
that exerted by the second on the first, is clearly unaffected by the change of observers,
again because we assume the forces to be invariant.

So there is no absolute velocity. Is there an absolute acceleration? Newton argued that
there was. Suppose, for example, that I am in a train on a perfectly smooth track,2 eating a
bowl of soup in the dining car. Then, if the train moves at constant speed, the soup remains
level, thereby offering me no information about what my speed is. But, if the train changes
its speed, then the soup climbs up one side of the bowl, and I can tell by looking at it how
large and in what direction the acceleration is.3

Therefore, it is reasonable and useful to single out a class of preferred observers: those
who are unaccelerated. They are called inertial observers, and each one has a constant
velocity with respect to any other one. These inertial observers are fundamental in spe-
cial relativity, and when we use the term ‘observer’ from now on we will mean an inertial
observer.

The postulate of the universality of the speed of light was Einstein’s great and radical
contribution to relativity. It smashes the Galilean law of addition of velocities because it
says that if v has magnitude c, then so does v′, regardless of V. The earliest direct evidence
for this postulate was the Michelson–Morely experiment, although it is not clear whether
Einstein himself was influenced by it. The counter-intuitive predictions of special relativity
all flow from this postulate, and they are amply confirmed by experiment. In fact it is
probably fair to say that special relativity has a firmer experimental basis than any other of

2 Physicists frequently have to make such idealizations, which often are far removed from common experience !
3 For Newton’s discussion of this point, see the excerpt from his Principia in Williams (1968).
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our laws of physics, since it is tested every day in all the giant particle accelerators, which
send particles nearly to the speed of light.

Although the concept of relativity is old, it is customary to refer to Einstein’s theory sim-
ply as ‘relativity’. The adjective ‘special’ is applied in order to distinguish it from Einstein’s
theory of gravitation, which acquired the name ‘general relativity’ because it permits us to
describe physics from the point of view of both accelerated and inertial observers and is
in that respect a more general form of relativity. But the real physical distinction between
these two theories is that special relativity (SR) is capable of describing physics only in
the absence of gravitational fields, while general relativity (GR) extends SR to describe
gravitation itself.4 We can only wish that an earlier generation of physicists had chosen
more appropriate names for these theories !

1.2 Defin i t ion of an iner t ia l observer in SR

It is important to realize that an ‘observer’ is in fact a huge information-gathering system,
not simply one man with binoculars. In fact, we shall remove the human element entirely
from our definition, and say that an inertial observer is simply a coordinate system for
spacetime, which makes an observation simply by recording the location (x, y, z) and time
(t) of any event. This coordinate system must satisfy the following three properties to be
called inertial:

(1) The distance between point P1 (coordinates x1, y1, z1) and point P2 (coordinates
x2, y2, z2) is independent of time.

(2) The clocks that sit at every point ticking off the time coordinate t are synchronized and
all run at the same rate.

(3) The geometry of space at any constant time t is Euclidean.

Notice that this definition does not mention whether the observer accelerates or not.
That will come later. It will turn out that only an unaccelerated observer can keep his
clocks synchronized. But we prefer to start out with this geometrical definition of an inertial
observer. It is a matter for experiment to decide whether such an observer can exist: it is not
self-evident that any of these properties must be realizable, although we would probably
expect a ‘nice’ universe to permit them! However, we will see later in the course that a
gravitational field does generally make it impossible to construct such a coordinate system,
and this is why GR is required. But let us not get ahead of the story. At the moment
we are assuming that we can construct such a coordinate system (that, if you like, the
gravitational fields around us are so weak that they do not really matter). We can envision
this coordinate system, rather fancifully, as a lattice of rigid rods filling space, with a clock
at every intersection of the rods. Some convenient system, such as a collection of GPS

4 It is easy to see that gravitational fields cause problems for SR. If an astronaut in orbit about Earth holds a
bowl of soup, does the soup climb up the side of the bowl in response to the gravitational ‘force’ that holds
the spacecraft in orbit? Two astronauts in different orbits accelerate relative to one another, but neither feels
an acceleration. Problems like this make gravity special, and we will have to wait until Ch. 5 to resolve them.
Until then, the word ‘force’ will refer to a nongravitational force.
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satellites and receivers, is used to ensure that all the clocks are synchronized. The clocks
are supposed to be very densely spaced, so that there is a clock next to every event of
interest, ready to record its time of occurrence without any delay. We shall now define how
we use this coordinate system to make observations.

An observation made by the inertial observer is the act of assigning to any event the
coordinates x, y, z of the location of its occurrence, and the time read by the clock at
(x, y, z) when the event occurred. It is not the time t on the wrist watch worn by a scientist
located at (0, 0, 0) when he first learns of the event. A visual observation is of this second
type: the eye regards as simultaneous all events it sees at the same time; an inertial observer
regards as simultaneous all events that occur at the same time as recorded by the clock
nearest them when the events occurred. This distinction is important and must be borne
in mind. Sometimes we will say ‘an observer sees . . .’ but this will only be shorthand for
‘measures’. We will never mean a visual observation unless we say so explicitly.

An inertial observer is also called an inertial reference frame, which we will often
abbreviate to ‘reference frame’ or simply ‘frame’.

1.3 New uni t s

Since the speed of light c is so fundamental, we shall from now on adopt a new system of
units for measurements in which c simply has the value 1! It is perfectly okay for slow-
moving creatures like engineers to be content with the SI units: m, s, kg. But it seems silly
in SR to use units in which the fundamental constant c has the ridiculous value 3 × 108.
The SI units evolved historically. Meters and seconds are not fundamental; they are simply
convenient for human use. What we shall now do is adopt a new unit for time, the meter.
One meter of time is the time it takes light to travel one meter. (You are probably more
familiar with an alternative approach: a year of distance – called a ‘light year’ – is the
distance light travels in one year.) The speed of light in these units is:

c = distance light travels in any given time interval

the given time interval

= 1 m

the time it takes light to travel one meter

= 1 m

1 m
= 1.

So if we consistently measure time in meters, then c is not merely 1, it is also dimension-
less! In converting from SI units to these ‘natural’ units, we can use any of the following
relations:

3 × 108 m s−1 = 1,

1 s = 3 × 108 m,

1 m = 1

3 × 108
s.
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The SI units contain many ‘derived’ units, such as joules and newtons, which are defined
in terms of the basic three: m, s, kg. By converting from s to m these units simplify consid-
erably: energy and momentum are measured in kg, acceleration in m−1, force in kg m−1,
etc. Do the exercises on this. With practice, these units will seem as natural to you as they
do to most modern theoretical physicists.

1.4 Spacet ime d iagrams

A very important part of learning the geometrical approach to SR is mastering the space-
time diagram. In the rest of this chapter we will derive SR from its postulates by using
spacetime diagrams, because they provide a very powerful guide for threading our way
among the many pitfalls SR presents to the beginner. Fig. 1.1 below shows a two-
dimensional slice of spacetime, the t − x plane, in which are illustrated the basic concepts.
A single point in this space5 is a point of fixed x and fixed t, and is called an event. A
line in the space gives a relation x = x(t), and so can represent the position of a parti-
cle at different times. This is called the particle’s world line. Its slope is related to its
velocity,

slope = d t/dx = 1/v.

Notice that a light ray (photon) always travels on a 45◦ line in this diagram.

x (m)

t
(m)

Accelerated
world line

World line of light, v = 1

World line of particle moving at
speed |v| < 1

World line with velocity v > 1

An event

�Figure 1.1 A spacetime diagram in natural units.

5 We use the word ‘space’ in a more general way than you may be used to. We do not mean a Euclidean space in
which Euclidean distances are necessarily physically meaningful. Rather, we mean just that it is a set of points
that is continuous (rather than discrete, as a lattice is). This is the first example of what we will define in Ch. 5
to be a ‘manifold’.
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We shall adopt the following notational conventions:

(1) Events will be denoted by cursive capitals, e.g. A,B,P . However, the letter O is
reserved to denote observers.

(2) The coordinates will be called (t, x, y, z). Any quadruple of numbers like
(5, −3, 2, 1016) denotes an event whose coordinates are t = 5, x = −3, y = 2,
z = 1016. Thus, we always put t first. All coordinates are measured in meters.

(3) It is often convenient to refer to the coordinates (t, x, y, z) as a whole, or to each
indifferently. That is why we give them the alternative names (x0, x1, x2, x3). These
superscripts are not exponents, but just labels, called indices. Thus (x3)2 denotes the
square of coordinate 3 (which is z), not the square of the cube of x. Generically, the
coordinates x0, x1, x2, and x3 are referred to as xα . A Greek index (e.g. α,β,μ, ν) will
be assumed to take a value from the set (0, 1, 2, 3). If α is not given a value, then xα is
any of the four coordinates.

(4) There are occasions when we want to distinguish between t on the one hand and
(x, y, z) on the other. We use Latin indices to refer to the spatial coordinates alone.
Thus a Latin index (e.g. a, b, i, j, k, l) will be assumed to take a value from the set
(1, 2, 3). If i is not given a value, then xi is any of the three spatial coordinates. Our
conventions on the use of Greek and Latin indices are by no means universally used by
physicists. Some books reverse them, using Latin for {0, 1, 2, 3} and Greek for {1, 2, 3};
others use a, b, c, . . . for one set and i, j, k for the other. Students should always check
the conventions used in the work they are reading.

1.5 Const ruc t ion of the coord inates used by
another observer

Since any observer is simply a coordinate system for spacetime, and since all observers
look at the same events (the same spacetime), it should be possible to draw the coordinate
lines of one observer on the spacetime diagram drawn by another observer. To do this we
have to make use of the postulates of SR.

Suppose an observer O uses the coordinates t, x as above, and that another observer Ō,
with coordinates t̄, x̄, is moving with velocity v in the x direction relative to O. Where do
the coordinate axes for t̄ and x̄ go in the spacetime diagram of O?

t̄ axis: This is the locus of events at constant x̄ = 0 (and ȳ = z̄ = 0, too, but we shall
ignore them here), which is the locus of the origin of Ō’s spatial coordinates. This is Ō’s
world line, and it looks like that shown in Fig. 1.2.

x̄ axis: To locate this we make a construction designed to determine the locus of events
at t̄ = 0, i.e. those that Ō measures to be simultaneous with the event t̄ = x̄ = 0.

Consider the picture in Ō’s spacetime diagram, shown in Fig. 1.3. The events on the x̄
axis all have the following property: A light ray emitted at event E from x̄ = 0 at, say, time
t̄ = −a will reach the x̄ axis at x̄ = a (we call this event P); if reflected, it will return to the
point x̄ = 0 at t̄ = +a, called event R. The x̄ axis can be defined, therefore, as the locus of
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t

x

Tangent of this
angle is υ

�Figure 1.2 The time-axis of a frame whose velocity is v.

t

x

a

a

–a

�

�Figure 1.3 Light reflected at a, as measured by Ō.

events that reflect light rays in such a manner that they return to the t̄ axis at +a if they left
it at −a, for any a. Now look at this in the spacetime diagram of O, Fig. 1.4.

We know where the t̄ axis lies, since we constructed it in Fig. 1.2. The events of emis-
sion and reception, t̄ = −a and t̄ = +a, are shown in Fig. 1.4. Since a is arbitrary, it does
not matter where along the negative t̄ axis we place event E , so no assumption need yet
be made about the calibration of the t̄ axis relative to the t axis. All that matters for the
moment is that the event R on the t̄ axis must be as far from the origin as event E . Having
drawn them in Fig. 1.4, we next draw in the same light beam as before, emitted from E ,
and traveling on a 45◦ line in this diagram. The reflected light beam must arrive at R,
so it is the 45◦ line with negative slope through R. The intersection of these two light
beams must be the event of reflection P . This establishes the location of P in our dia-
gram. The line joining it with the origin – the dashed line – must be the x̄ axis: it does
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�Figure 1.4 The reflection in Fig. 1.3, as measured O.
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�Figure 1.5 Spacetime diagrams of O (left) and Ō (right).

not coincide with the x axis. If you compare this diagram with the previous one, you
will see why: in both diagrams light moves on a 45◦ line, while the t and t̄ axes change
slope from one diagram to the other. This is the embodiment of the second fundamental
postulate of SR: that the light beam in question has speed c = 1 (and hence slope = 1)
with respect to every observer. When we apply this to these geometrical constructions we
immediately find that the events simultaneous to Ō (the line t̄ = 0, his x axis) are not simul-
taneous to O (are not parallel to the line t = 0, the x axis). This failure of simultaneity is
inescapable.

The following diagrams (Fig. 1.5) represent the same physical situation. The one on the
left is the spacetime diagram O, in which Ō moves to the right. The one on the right is
drawn from the point of view of Ō, in which O moves to the left. The four angles are all
equal to arc tan |v|, where |v| is the relative speed of O and Ō.
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1.6 Invar iance of the inte rva l

We have, of course, not quite finished the construction of Ō’s coordinates. We have the
position of his axes but not the length scale along them. We shall find this scale by proving
what is probably the most important theorem of SR, the invariance of the interval.

Consider two events on the world line of the same light beam, such as E and P
in Fig. 1.4. The differences (�t, �x, �y, �z) between the coordinates of E and P in
some frame O satisfy the relation (�x)2 + (�y)2 + (�z)2 − (�t)2 = 0, since the speed
of light is 1. But by the universality of the speed of light, the coordinate differences
between the same two events in the coordinates of Ō(�t̄, �x̄, �ȳ, �z̄) also satisfy
(�x̄)2 + (�ȳ)2 + (�z̄)2 − (�t̄)2 = 0. We shall define the interval between any two events
(not necessarily on the same light beam’s world line) that are separated by coordinate
increments (�t, �x, �y, �z) to be6

�s2 = −(�t)2 + (�x)2 + (�y)2 + (�z)2. (1.1)

It follows that if �s2 = 0 for two events using their coordinates in O, then �s̄2 = 0 for
the same two events using their coordinates in Ō. What does this imply about the relation
between the coordinates of the two frames? To answer this question, we shall assume that
the relation between the coordinates of O and Ō is linear and that we choose their origins
to coincide (i.e. that the events t̄ = x̄ = ȳ = z̄ = 0 and t = x = y = z = 0 are the same).
Then in the expression for �s̄2,

�s̄2 = −(�t̄)2 + (�x̄)2 + (�ȳ)2 + (�z̄)2,

the numbers (�t̄, �x̄, �ȳ, �z̄) are linear combinations of their unbarred counterparts,
which means that �s̄2 is a quadratic function of the unbarred coordinate increments. We
can therefore write

�s̄2 =
3∑
α=0

3∑
β=0

Mαβ (�xα)(�xβ ) (1.2)

for some numbers {Mαβ ; α, β = 0, . . . , 3}, which may be functions of v, the relative
velocity of the two frames. Note that we can suppose that Mαβ = Mβα for all α and β,
since only the sum Mαβ + Mβα ever appears in Eq. (1.2) when α �= β. Now we again
suppose that �s2 = 0, so that from Eq. (1.1) we have

�t = �r, �r = [(�x)2 + (�y)2 + (�z)2]1/2.

6 The student to whom this is new should probably regard the notation �s2 as a single symbol, not as the square
of a quantity �s. Since �s2 can be either positive or negative, it is not convenient to take its square root. Some
authors do, however, call�s2 the ‘squared interval’, reserving the name ‘interval’ for�s = √

(�s2). Note also
that the notation �s2 never means �(s2).
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(We have supposed �t > 0 for convenience.) Putting this into Eq. (1.2) gives

�s̄2 = M00(�r)2 + 2

(
3∑

i=1

M0i�xi

)
�r

+
3∑

i=1

3∑
j=1

Mij�xi�xj. (1.3)

But we have already observed that �s̄2 must vanish if �s2 does, and this must be true for
arbitrary {�xi, i = 1, 2, 3}. It is easy to show (see Exer. 8, § 1.14) that this implies

M0i = 0 i = 1, 2, 3 (1.4a)

and

Mij = −(M00)δij (i, j = 1, 2, 3), (1.4b)

where δij is the Kronecker delta, defined by

δij =
{

1 if i = j,

0 if i �= j.
(1.4c)

From this and Eq. (1.2) we conclude that

�s̄2 = M00[(�t)2 − (�x)2 − (�y)2 − (�z)2].

If we define a function

φ(v) = −M00,

then we have proved the following theorem: The universality of the speed of light implies
that the intervals �s2 and �s̄2 between any two events as computed by different observers
satisfy the relation

�s̄2 = φ(v)�s2. (1.5)

We shall now show that, in fact, φ(v) = 1, which is the statement that the interval is
independent of the observer. The proof of this has two parts. The first part shows that φ(v)
depends only on |v|. Consider a rod which is oriented perpendicular to the velocity v of Ō
relative to O. Suppose the rod is at rest in O, lying on the y axis. In the spacetime diagram
of O (Fig. 1.6), the world lines of its ends are drawn and the region between shaded. It is
easy to see that the square of its length is just the interval between the two events A and B
that are simultaneous in O (at t = 0) and occur at the ends of the rod. This is because, for
these events, (�x)AB = (�z)AB = (�t)AB = 0. Now comes the key point of the first part
of the proof: the events A and B are simultaneous as measured by Ō as well. The reason
is most easily seen by the construction shown in Fig. 1.7, which is the same spacetime
diagram as Fig. 1.6, but in which the world line of a clock in Ō is drawn. This line is
perpendicular to the y axis and parallel to the t − x plane, i.e. parallel to the t̄ axis shown
in Fig. 1.5(a).

Suppose this clock emits light rays at event P which reach events A and B. (Not every
clock can do this, so we have chosen the one clock in Ō which passes through the y axis
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�Figure 1.6 A rod at rest in O, lying on the y-axis.
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Clock in �

�Figure 1.7 A clock of Ō’s frame, moving in the x-direction in O’s frame.

at t = 0 and can send out such light rays.) The light rays reflect from A and B, and we can
see from the geometry (if you can allow for the perspective in the diagram) that they arrive
back at Ō’s clock at the same event L. Therefore, from Ō’s point of view, the two events
occur at the same time. (This is the same construction we used to determine the x̄ axis.) But
if A and B are simultaneous in Ō, then the interval between them in Ō is also the square
of their length in Ō. The result is:

(length of rod in Ō)2 = φ(v)(length of rod in O)2.

On the other hand, the length of the rod cannot depend on the direction of the velocity,
because the rod is perpendicular to it and there are no preferred directions of motion (the
principle of relativity). Hence the first part of the proof concludes that

φ(v) = φ(|v|). (1.6)
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The second step of the proof is easier. It uses the principle of relativity to show that
φ(|v|) = 1. Consider three frames, O, Ō, and

�O. Frame Ō moves with speed v in, say, the
x direction relative to O. Frame

�O moves with speed v in the negative x direction relative
to Ō. It is clear that

�O is in fact identical to O, but for the sake of clarity we shall keep
separate notation for the moment. We have, from Eqs. (1.5) and (1.6),

�
�s2 = φ(v)�s̄2

�s̄2 = φ(v)�s2

}
⇒ �

�s2 = [φ(v)]2�s2.

But since O and
�O are identical, �

�s2 and �s2 are equal. It follows that

φ(v) = ±1.

We must choose the plus sign, since in the first part of this proof the square of the length
of a rod must be positive. We have, therefore, proved the fundamental theorem that the
interval between any two events is the same when calculated by any inertial observer:

�s̄2 = �s2. (1.7)

Notice that from the first part of this proof we can also conclude now that the length of a
rod oriented perpendicular to the relative velocity of two frames is the same when measured
by either frame. It is also worth reiterating that the construction in Fig. 1.7 proved a related
result, that two events which are simultaneous in one frame are simultaneous in any frame
moving in a direction perpendicular to their separation relative to the first frame.

Because �s2 is a property only of the two events and not of the observer, it can be used
to classify the relation between the events. If�s2 is positive (so that the spatial increments
dominate �t), the events are said to be spacelike separated. If �s2 is negative, the events
are said to be timelike separated. If �s2 is zero (so the events are on the same light path),
the events are said to be lightlike or null separated.

t

x

y

�Figure 1.8 The light cone of an event. The z-dimension is suppressed.
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The events that are lightlike separated from any particular event A, lie on a cone whose
apex is A. This cone is illustrated in Fig. 1.8. This is called the light cone of A. All events
within the light cone are timelike separated from A; all events outside it are spacelike
separated. Therefore, all events inside the cone can be reached from A on a world line
which everywhere moves in a timelike direction. Since we will see later that nothing
can move faster than light, all world lines of physical objects move in a timelike direc-
tion. Therefore, events inside the light cone are reachable from A by a physical object,
whereas those outside are not. For this reason, the events inside the ‘future’ or ‘forward’
light cone are sometimes called the absolute future of the apex; those within the ‘past’ or
‘backward’ light cone are called the absolute past; and those outside are called the abso-
lute elsewhere. The events on the cone are therefore the boundary of the absolute past

Galileo:

Einstein:

Two events:

t

t

t

Future of event �

Past of event �

Past of �

‘Elsewhere’
of  � ‘Elsewhere’

of �

Future
of �

Common
future

Future
of �

Future
of �

Past of �

Past of �

x

x

x

‘Now’ for
event �

‘Now’ is only
� itself

�

�

�

�

Common past

�Figure 1.9 Old and new concepts of spacetime
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and future. Thus, although ‘time’ and ‘space’ can in some sense be transformed into one
another in SR, it is important to realize that we can still talk about ‘future’ and ‘past’ in
an invariant manner. To Galileo and Newton the past was everything ‘earlier’ than now;
all of spacetime was the union of the past and the future, whose boundary was ‘now’. In
SR, the past is only everything inside the past light cone, and spacetime has three invari-
ant divisions: SR adds the notion of ‘elsewhere’. What is more, although all observers
agree on what constitutes the past, future, and elsewhere of a given event (because the
interval is invariant), each different event has a different past and future; no two events
have identical pasts and futures, even though they can overlap. These ideas are illustrated
in Fig. 1.9.

1.7 Invar iant hyperbo lae

We can now calibrate the axes of Ō’s coordinates in the spacetime diagram of O, Fig. 1.5.
We restrict ourselves to the t − x plane. Consider a curve with the equation

−t2 + x2 = a2,

where a is a real constant. This is a hyperbola in the spacetime diagram of O, and it
passes through all events whose interval from the origin is a2. By the invariance of the
interval, these same events have interval a2 from the origin in Ō, so they also lie on the
curve −t̄2 + x̄2 = a2. This is a hyperbola spacelike separated from the origin. Similarly,
the events on the curve

−t2 + x2 = −b2

all have timelike interval −b2 from the origin, and also lie on the curve −t̄2 + x̄2 = −b2.
These hyperbolae are drawn in Fig. 1.10. They are all asymptotic to the lines with slope
±1, which are of course the light paths through the origin. In a three-dimensional diagram
(in which we add the y axis, as in Fig. 1.8), hyperbolae of revolution would be asymptotic
to the light cone.

We can now calibrate the axes of Ō. In Fig. 1.11 the axes of O and Ō are drawn, along
with an invariant hyperbola of timelike interval −1 from the origin. Event A is on the t
axis, so has x = 0. Since the hyperbola has the equation

−t2 + x2 = −1,

it follows that event A has t = 1. Similarly, event B lies on the t̄ axis, so has x̄ = 0. Since
the hyperbola also has the equation

−t̄2 + x̄2 = −1,

it follows that event B has t̄ = 1. We have, therefore, used the hyperbolae to calibrate the t̄
axis. In the same way, the invariant hyperbola

−t2 + x2 = 4
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�Figure 1.11 Using the hyperbolae through events A and E to calibrate the x̄ and t̄ axes.

shows that event E has coordinates t = 0, x = 2 and that event F has coordinates t̄ = 0,
x̄ = 2. This kind of hyperbola calibrates the spatial axes of Ō.

Notice that event B looks to be ‘further’ from the origin than A. This again shows
the inappropriateness of using geometrical intuition based upon Euclidean geometry. Here
the important physical quantity is the interval −(�t)2 + (�x)2, not the Euclidean distance
(�t)2 + (�x)2. The student of relativity has to learn to use �s2 as the physical measure of
‘distance’ in spacetime, and he has to adapt his intuition accordingly. This is not, of course,
in conflict with everyday experience. Everyday experience asserts that ‘space’ (e.g. the
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section of spacetime with t = 0) is Euclidean. For events that have �t = 0 (simultaneous
to observer O), the interval is

�s2 = (�x)2 + (�y)2 + (�z)2.

This is just their Euclidean distance. The new feature of SR is that time can (and must)
be brought into the computation of distance. It is not possible to define ‘space’ uniquely
since different observers identify different sets of events to be simultaneous (Fig. 1.5). But
there is still a distinction between space and time, since temporal increments enter �s2

with the opposite sign from spatial ones.

t

x

x

t

x

t

� �

(b)

(a)

�
�

�Figure 1.12 (a) A line of simultaneity in O is tangent to the hyperbola at P. (b) The same tangency as seen
by Ō.
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In order to use the hyperbolae to derive the effects of time dilation and Lorentz contrac-
tion, as we do in the next section, we must point out a simple but important property of the
tangent to the hyperbolae.

In Fig. 1.12(a) we have drawn a hyperbola and its tangent at x = 0, which is obviously
a line of simultaneity t = const. In Fig. 1.12(b) we have drawn the same curves from the
point of view of observer Ō who moves to the left relative to O. The event P has been
shifted to the right: it could be shifted anywhere on the hyperbola by choosing the Lorentz
transformation properly. The lesson of Fig. 1.12(b) is that the tangent to a hyperbola at any
event P is a line of simultaneity of the Lorentz frame whose time axis joins P to the origin.
If this frame has velocity v, the tangent has slope v.

1.8 Par t i cu la r l y impor tant resu l t s

Time dilat ion

From Fig. 1.11 and the calculation following it, we deduce that when a clock moving on the
t̄ axis reaches B it has a reading of t̄ = 1, but that event B has coordinate t = 1/

√
(1 − v2)

in O. So to O it appears to run slowly:

(�t)measured in O = (�t̄ ) measured in Ō√
(1 − v2)

. (1.8)

Notice that �t̄ is the time actually measured by a single clock, which moves on a world
line from the origin to B, while �t is the difference in the readings of two clocks at rest
in O; one on a world line through the origin and one on a world line through B. We shall
return to this observation later. For now, we define the proper time between events B and
the origin to be the time ticked off by a clock which actually passes through both events. It
is a directly measurable quantity, and it is closely related to the interval. Let the clock be
at rest in frame Ō, so that the proper time �τ is the same as the coordinate time �t̄. Then,
since the clock is at rest in Ō, we have �x̄ = �ȳ = �z̄ = 0, so

�s2 = −�t̄2 = −�τ 2. (1.9)

The proper time is just the square root of the negative of the interval. By expressing the
interval in terms of O’s coordinates we get

�τ = [(�t)2 − (�x)2 − (�y)2 − (�z)2]1/2

= �t
√

(1 − v2). (1.10)

This is the time dilation all over again.
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�Figure 1.13 The proper length of AC is the length of the rod in its rest frame, while that of AB is its length
in O.

Lorentz contract ion

In Fig. 1.13 we show the world path of a rod at rest in Ō. Its length in Ō is the square
root of �s2

AC , while its length in O is the square root of �s2
AB. If event C has coordinates

t̄ = 0, x̄ = l, then by the identical calculation from before it has x coordinate in O
xC = l/

√
(1 − v2),

and since the x̄ axis is the line t = vx, we have

tC = vl/
√

(1 − v2).

The line BC has slope (relative to the t-axis)

�x/�t = v,

and so we have
xC − xB
tC − tB

= v,

and we want to know xB when tB = 0. Thus,

xB = xC − vtC

= l√
(1 − v2)

− v2l√
(1 − v2)

= l
√

(1 − v2). (1.11)

This is the Lorentz contraction.

Conventions

The interval �s2 is one of the most important mathematical concepts of SR but there
is no universal agreement on its definition: many authors define �s2 = (�t)2 − (�x)2 −
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(�y)2 − (�z)2. This overall sign is a matter of convention (like the use of Latin and Greek
indices we referred to earlier), since invariance of �s2 implies invariance of −�s2. The
physical result of importance is just this invariance, which arises from the difference in
sign between the (�t)2 and [(�x)2 + (�y)2 + (�z)2] parts. As with other conventions,
students should ensure they know which sign is being used: it affects all sorts of formulae,
for example Eq. (1.9).

Fai lure of relat ivity?

Newcomers to SR, and others who don’t understand it well enough, often worry at this
point that the theory is inconsistent. We began by assuming the principle of relativity, which
asserts that all observers are equivalent. Now we have shown that if Ō moves relative to O,
the clocks of Ō will be measured by O to be running more slowly than those of O. So isn’t
it therefore the case that Ō will measure O’s clocks to be running faster than his own? If
so, this violates the principle of relativity, since we could as easily have begun with Ō and
deduced that O’s clocks run more slowly than Ō’s.

This is what is known as a ‘paradox’, but like all ‘paradoxes’ in SR, this comes from
not having reasoned correctly. We will now demonstrate, using spacetime diagrams, that
Ō measures O’s clocks to be running more slowly. Clearly, we could simply draw the
spacetime diagram from Ō’s point of view, and the result would follow. But it is more
instructive to stay in O’s spacetime diagram.

Different observers will agree on the outcome of certain kinds of experiments. For exam-
ple, if A flips a coin, every observer will agree on the result. Similarly, if two clocks are
right next to each other, all observers will agree which is reading an earlier time than the
other. But the question of the rate at which clocks run can only be settled by comparing
the same two clocks on two different occasions, and if the clocks are moving relative to
one another, then they can be next to each other on only one of these occasions. On the
other occasion they must be compared over some distance, and different observers may
draw different conclusions. The reason for this is that they actually perform different and
inequivalent experiments. In the following analysis, we will see that each observer uses two
of his own clocks and one of the other’s. This asymmetry in the ‘design’ of the experiment
gives the asymmetric result.

Let us analyze O’s measurement first, in Fig. 1.14. This consists of comparing the read-
ing on a single clock of Ō (which travels from A to B) with two clocks of his own: the
first is the clock at the origin, which reads Ō’s clock at event A; and the second is the
clock which is at F at t = 0 and coincides with Ō’s clock at B. This second clock of O
moves parallel to the first one, on the vertical dashed line. What O says is that both clocks
at A read t = 0, while at B the clock of Ō reads t̄ = 1, while that of O reads a later time,
t = (1 − v2)−1/2. Clearly, Ō agrees with this, as he is just as capable of looking at clock
dials as O is. But for O to claim that Ō’s clock is running slowly, he must be sure that
his own two clocks are synchronized, for otherwise there is no particular significance in
observing that at B the clock of Ō lags behind that of O. Now, from O’s point of view, his
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�Figure 1.14 The proper length of AB is the time ticked by a clock at rest in Ō, while that of AC is the time it
takes to do so as measured by O.

clocks are synchronized, and the measurement and its conclusion are valid. Indeed, they
are the only conclusions he can properly make.

But Ō need not accept them, because to him O’s clocks are not synchronized. The dotted
line through B is the locus of events that Ō regards as simultaneous to B. Event E is on this
line, and is the tick of O’s first clock, which Ō measures to be simultaneous with event B.
A simple calculation shows this to be at t = (1 − v2)1/2, earlier than O’s other clock at B,
which is reading (1 − v2)−1/2. So Ō can reject O’s measurement since the clocks involved
aren’t synchronized. Moreover, if Ō studies O’s first clock, he concludes that it ticks from
t = 0 to t = (1 − v2)1/2 (i.e. from A to B) in the time it takes his own clock to tick from
t̄ = 0 to t̄ = 1 (i.e. from A to B). So he regards O’s clocks as running more slowly than
his own.

It follows that the principle of relativity is not contradicted: each observer measures the
other’s clock to be running slowly. The reason they seem to disagree is that they measure
different things. Observer O compares the interval from A to B with that from A to C. The
other observer compares that from A to B with that from A to E . All observers agree on
the values of the intervals involved. What they disagree on is which pair to use in order to
decide on the rate at which a clock is running. This disagreement arises directly from the
fact that the observers do not agree on which events are simultaneous. And, to reiterate a
point that needs to be understood, simultaneity (clock synchronization) is at the heart of
clock comparisons: O uses two of his clocks to ‘time’ the rate of Ō’s one clock, whereas
Ō uses two of his own clocks to time one clock of O.

Is this disagreement worrisome? It should not be, but it should make the student very
cautious. The fact that different observers disagree on clock rates or simultaneity just means
that such concepts are not invariant: they are coordinate dependent. It does not prevent any
given observer from using such concepts consistently himself. For example, O can say that
A and F are simultaneous, and he is correct in the sense that they have the same value of the
coordinate t. For him this is a useful thing to know, as it helps locate the events in spacetime.
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Any single observer can make consistent observations using concepts that are valid for
him but that may not transfer to other observers. All the so-called paradoxes of relativity
involve, not the inconsistency of a single observer’s deductions, but the inconsistency of
assuming that certain concepts are independent of the observer when they are in fact very
observer dependent.

Two more points should be made before we turn to the calculation of the Lorentz trans-
formation. The first is that we have not had to define a ‘clock’, so our statements apply
to any good timepiece: atomic clocks, wrist watches, circadian rhythm, or the half-life of
the decay of an elementary particle. Truly, all time is ‘slowed’ by these effects. Put more
properly, since time dilation is a consequence of the failure of simultaneity, it has nothing
to do with the physical construction of the clock and it is certainly not noticeable to an
observer who looks only at his own clocks. Observer Ō sees all his clocks running at the
same rate as each other and as his psychological awareness of time, so all these processes
run more slowly as measured by O. This leads to the twin ‘paradox’, which we discuss
later.

The second point is that these effects are not optical illusions, since our observers exer-
cise as much care as possible in performing their experiments. Beginning students often
convince themselves that the problem arises in the finite transmission speed of signals, but
this is incorrect. Observers define ‘now’ as described in § 1.5 for observer Ō, and this is
the most reasonable way to do it. The problem is that two different observers each define
‘now’ in the most reasonable way, but they don’t agree. This is an inescapable consequence
of the universality of the speed of light.

1.9 The Lorentz t rans fo rmat ion

We shall now make our reasoning less dependent on geometrical logic by studying the
algebra of SR: the Lorentz transformation, which expresses the coordinates of Ō in terms
of those of O. Without losing generality, we orient our axes so that Ō moves with speed
v on the positive x axis relative to O. We know that lengths perpendicular to the x axis
are the same when measured by O or Ō. The most general linear transformation we need
consider, then, is

t̄ = αt + βx ȳ = y,

x̄ = γ t + σx z̄ = z,

where α, β, γ , and σ depend only on v.
From our construction in § 1.5 (Fig. 1.4) it is clear that the t̄ and x̄ axes have the

equations:

t̄ axis (x̄ = 0) : vt − x = 0,

x̄ axis (t̄ = 0) : vx − t = 0.

The equations of the axes imply, respectively:

γ /σ = −v,β/α = −v,
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which gives the transformation

t̄ = α(t − vx),

x̄ = σ (x − vt).

Fig. 1.4 gives us one other bit of information: events (t̄ = 0, x̄ = a) and (t̄ = a, x̄ = 0) are
connected by a light ray. This can easily be shown to imply that α = σ . Therefore we have,
just from the geometry:

t̄ = α(t − vx),

x̄ = α(x − vt).

Now we use the invariance of the interval:

−(�t̄)2 + (�x̄)2 = −(�t)2 + (�x)2.

This gives, after some straightforward algebra,

α = ±1/
√

(1 − v2).

We must select the + sign so that when v = 0 we get an identity rather than an inversion
of the coordinates. The complete Lorentz transformation is, therefore,

t̄ = t√
(1 − v2)

− vx√
(1 − v2)

,

x̄ = −vt√
(1 − v2)

+ x√
(1 − v2)

,

ȳ = y,

z̄ = z.

(1.12)

This is called a boost of velocity v in the x direction.
This gives the simplest form of the relation between the coordinates of Ō and O. For this

form to apply, the spatial coordinates must be oriented in a particular way: Ō must move
with speed v in the positive x direction as seen by O, and the axes of Ō must be parallel to
the corresponding ones in O. Spatial rotations of the axes relative to one another produce
more complicated sets of equations than Eq. (1.12), but we will be able to get away with
Eq. (1.12).

1.10 The ve loc i ty - compos i t ion law

The Lorentz transformation contains all the information we need to derive the standard
formulae, such as those for time dilation and Lorentz contraction. As an example of its use
we will generalize the Galilean law of addition of velocities (§ 1.1).
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Suppose a particle has speed W in the x̄ direction of Ō, i.e. �x̄/�t̄ = W. In another
frame O, its velocity will be W ′ = �x/�t, and we can deduce�x and�t from the Lorentz
transformation. If Ō moves with velocity v with respect to O, then Eq. (1.12) implies

�x = (�x̄ + v�t̄)/(1 − v2)1/2

and

�t = (�t̄ + v�x̄)/(1 − v2)1/2.

Then we have

W ′ = �x

�t
= (�x̄ + v�t̄)/(1 − v2)1/2

(�t̄ + v�x̄)/(1 − v2)1/2

= �x̄/�t̄ + v

1 + v�x̄/�t̄
= W + v

1 + Wv
. (1.13)

This is the Einstein law of composition of velocities. The important point is that |W ′| never
exceeds 1 if |W| and |v| are both smaller than one. To see this, set W ′ = 1. Then Eq. (1.13)
implies

(1 − v)(1 − W) = 0,

that is that either v or W must also equal 1. Therefore, two ‘subluminal’ velocities produce
another subluminal one. Moreover, if W = 1, then W ′ = 1 independently of v: this is the
universality of the speed of light. What is more, if |W| 	 1 and |v| 	 1, then, to first order,
Eq. (1.13) gives

W ′ = W + v.

This is the Galilean law of velocity addition, which we know to be valid for small velocities.
This was true for our previous formulae in § 1.8: the relativistic ‘corrections’ to the Galilean
expressions are of order v2, and so are negligible for small v.

1.11 Paradoxes and phys i ca l in tu i t ion

Elementary introductions to SR often try to illustrate the physical differences between
Galilean relativity and SR by posing certain problems called ‘paradoxes’. The commonest
ones include the ‘twin paradox’, the ‘pole-in-the-barn paradox’, and the ‘space-war para-
dox’. The idea is to pose these problems in language that makes predictions of SR seem
inconsistent or paradoxical, and then to resolve them by showing that a careful application
of the fundamental principles of SR leads to no inconsistencies at all: the paradoxes are
apparent, not real, and result invariably from mixing Galilean concepts with modern ones.
Unfortunately, the careless student (or the attentive student of a careless teacher) often
comes away with the idea that SR does in fact lead to paradoxes. This is pure nonsense.
Students should realize that all ‘paradoxes’ are really mathematically ill-posed problems,
that SR is a perfectly consistent picture of spacetime, which has been experimentally veri-
fied countless times in situations where gravitational effects can be neglected, and that SR
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‘Its top speed is 186 mph – that’s 1/3 600 000 the speed of light.’

�Figure 1.15 The speed of light is rather far from our usual experience! (With kind permission of S. Harris.)

forms the framework in which every modern physicist must construct his theories. (For the
student who really wants to study a paradox in depth, see ‘The twin “paradox” dissected’
in this chapter.)

Psychologically, the reason that newcomers to SR have trouble and perhaps give ‘para-
doxes’ more weight than they deserve is that we have so little direct experience with
velocities comparable to that of light (see Fig. 1.15). The only remedy is to solve problems
in SR and to study carefully its ‘counter-intuitive’ predictions. One of the best methods for
developing a modern intuition is to be completely familiar with the geometrical picture of
SR: Minkowski space, the effect of Lorentz transformations on axes, and the ‘pictures’ of
such things as time dilation and Lorentz contraction. This geometrical picture should be in
the back of your mind as we go on from here to study vector and tensor calculus; we shall
bring it to the front again when we study GR.

1.12 Fur ther read ing

There are many good introductions to SR, but a very readable one which has guided our
own treatment and is far more detailed is Taylor and Wheeler (1966). Another widely
admired elementary treatment is Mermin (1989). Another classic is French (1968). For
treatments that take a more thoughtful look at the fundamentals of the theory, consult
Arzeliès (1966), Bohm (2008), Dixon (1978), or Geroch (1978). Paradoxes are discussed
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in some detail by Arzeliès (1966), Marder (1971), and Terletskii (1968). For a scientific
biography of Einstein, see Pais (1982).

Our interest in SR in this text is primarily because it is a simple special case of GR
in which it is possible to develop the mathematics we shall later need. But SR is itself
the underpinning of all the other fundamental theories of physics, such as electromag-
netism and quantum theory, and as such it rewards much more study than we shall give it.
See the classic discussions in Synge (1965), Schrödinger (1950), and Møller (1972), and
more modern treatments in Rindler (1991), Schwarz and Schwarz (2004), and Woodhouse
(2003).

The original papers on SR may be found in Kilmister (1970).

1.13 Append ix : The twin ‘paradox ’ d i ssec ted

The problem

Diana leaves her twin Artemis behind on Earth and travels in her rocket for 2.2 × 108 s
(≈ 7 yr) of her time at 24/25 = 0.96 the speed of light. She then instantaneously reverses
her direction (fearlessly braving those gs) and returns to Earth in the same manner. Who is
older at the reunion of the twins? A spacetime diagram can be very helpful.

Brief solut ion

Refer to Fig. 1.16 on the next page. Diana travels out on line PB. In her frame, Artemis’
event A is simultaneous with event B, so Artemis is indeed ageing slowly. But, as soon as
Diana turns around, she changes inertial reference frames: now she regards B as simulta-
neous with Artemis’ event C! Effectively, Diana sees Artemis age incredibly quickly for
a moment. This one spurt more than makes up for the slowness Diana observed all along.
Numerically, Artemis ages 50 years for Diana’s 14.

Ful ler discussion

For readers who are unsatisfied with the statement ‘Diana sees Artemis age incredibly
quickly for a moment’, or who wonder what physics lies underneath such a statement,
we will discuss this in more detail, bearing in mind that the statement ‘Diana sees’ really
means ‘Diana observes’, using the rods, clocks, and data bank that every good relativistic
observer has.

Diana might make her measurements in the following way. Blasting off from Earth, she
leaps on to an inertial frame called Ō rushing away from the Earth at v = 0.96. As soon
as she gets settled in this new frame, she orders all clocks synchronized with hers, which
read t̄ = 0 upon leaving Earth. She further places a graduate student on every one of her
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�Figure 1.16 The idealized twin ‘paradox’ in the spacetime diagram of the stay-at-home twin.

clocks and orders each of them who rides a clock that passes Earth to note the time on
Earth’s clock at the event of passage. After traveling seven years by her own watch, she
leaps off inertial frame Ō and grabs hold of another one

�O that is flying toward Earth at
v = 0.96 (measured in Earth’s frame, of course). When she settles into this frame, she again
distributes her graduate students on the clocks and orders all clocks to be synchronized with
hers, which read

�
t = 7 yr at the changeover. (All clocks were already synchronized with

each other – she just adjusts only their zero of time.) She further orders that every graduate
student who passes Earth from

�
t = 7 yr until she gets there herself should record the time

of passage and the reading of Earth’s clocks at that event.
Diana finally arrives home after ageing 14 years. Knowing a little about time dilation,

she expects Artemis to have aged much less, but to her surprise Artemis is a white-haired
grandmother, a full 50 years older! Diana keeps her surprise to herself and runs over to
the computer room to check out the data. She reads the dispatches from the graduate stu-
dents riding the clocks of the outgoing frame. Sure enough, Artemis seems to have aged
very slowly by their reports. At Diana’s time t̄ = 7yr, the graduate student passing Earth
recorded that Earth’s clocks read only slightly less than two years of elapsed time. But
then Diana checks the information from her graduate students riding the clocks of the
ingoing frame. She finds that at her time

�
t = 7 yr, the graduate student reported a reading

of Earth’s clocks at more than 48 years of elapsed time! How could one student see Earth
to be at t = 2 yr, and another student, at the same time, see it at t = 48 yr? Diana leaves the
computer room muttering about the declining standards of undergraduate education today.

We know the mistake Diana made, however. Her two messengers did not pass Earth
at the same time. Their clocks read the same amount, but they encountered Earth at the
very different events A and C. Diana should have asked the first frame students to continue
recording information until they saw the second frame’s

�
t = 7 yr student pass Earth. What
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�Figure 1.17 Diana’s change of frame is analogous to a rotation of coordinates in Euclidean geometry.

does it matter, after all, that they would have sent her dispatches dated t̄ = 171 yr? Time is
only a coordinate. We must be sure to catch all the events.

What Diana really did was use a bad coordinate system. By demanding information
only before t̄ = 7 yr in the outgoing frame and only after

�
t = 7 yr in the ingoing frame,

she left the whole interior of the triangle ABC out of her coordinate patches (Fig. 1.17(a)).
Small wonder that a lot happened that she did not discover! Had she allowed the first
frame’s students to gather data until t̄ = 171 yr, she could have covered the interior of that
triangle.

We can devise an analogy with rotations in the plane (Fig. 1.17(b)). Consider trying
to measure the length of the curve ABCD, but being forced to rotate coordinates in the
middle of the measurement, say after you have measured from A to B in the x − y system.
If you then rotate to x̄ − ȳ, you must resume the measuring at B again, which might be at a
coordinate ȳ = −5, whereas originally B had coordinate y = 2. If you were to measure the
curve’s length starting at whatever point had ȳ = 2 (same ȳ as the y value you ended at in
the other frame), you would begin at C and get much too short a length for the curve.

Now, nobody would make that error in measurements in a plane. But lots of people
would if they were confronted by the twin paradox. This comes from our refusal to see time
as simply a coordinate. We are used to thinking of a universal time, the same everywhere to
everyone regardless of their motion. But it is not the same to everyone, and we must treat
it as a coordinate, and make sure that our coordinates cover all of spacetime.

Coordinates that do not cover all of spacetime have caused a lot of problems in GR.
When we study gravitational collapse and black holes we will see that the usual coordinates
for the spacetime outside the black hole do not reach inside the black hole. For this reason,
a particle falling into a black hole takes infinite coordinate time to go a finite distance. This
is purely the fault of the coordinates: the particle falls in a finite proper time, into a region
not covered by the ‘outside’ coordinates. A coordinate system that covers both inside and
outside satisfactorily was not discovered until the mid-1950s.
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1.14 Exerc i ses

1 Convert the following to units in which c = 1, expressing everything in terms of m
and kg:
(a) Worked example: 10 J. In SI units, 10 J = 10 kg m2 s−2. Since c = 1, we have

1 s = 3 × 108 m, and so 1 s−2 = (9 × 1016)−1 m−2. Therefore we get 10 J =
10 kg m2(9 × 1016)−1 m−2 = 1.1 × 10−16 kg. Alternatively, treat c as a conver-
sion factor:

1 = 3 × 108 m s−1,

1 = (3 × 108)−1 m−1 s,

10 J = 10 kg m2 s−2 = 10 kg m2 s−2 × (1)2

= 10 kg m2 s−2 × (3 × 108)−2 s2 m−2

= 1.1 × 10−16 kg.

You are allowed to multiply or divide by as many factors of c as are necessary to
cancel out the seconds.

(b) The power output of 100 W.
(c) Planck’s reduced constant, � = 1.05 × 10−34 J s. (Note the definition of � in terms

of Planck’s constant h: � = h/2π .)
(d) Velocity of a car, v = 30 m s−1.
(e) Momentum of a car, 3 × 104 kg m s−1.
(f) Pressure of one atmosphere = 105 N m−2.
(g) Density of water, 103 kg m−3.
(h) Luminosity flux 106 J s−1 cm−2.

2 Convert the following from natural units (c = 1) to SI units:
(a) A velocity v = 10−2.
(b) Pressure 1019 kg m−3.
(c) Time t = 1018 m.
(d) Energy density u = 1 kg m−3.
(e) Acceleration 10 m−1.

3 Draw the t and x axes of the spacetime coordinates of an observer O and then draw:
(a) The world line of O’s clock at x = 1 m.
(b) The world line of a particle moving with velocity dx/dt = 0.1, and which is at

x = 0.5 m when t = 0.
(c) The t̄ and x̄ axes of an observer Ō who moves with velocity v = 0.5 in the positive

x direction relative to O and whose origin (x̄ = t̄ = 0) coincides with that of O.
(d) The locus of events whose interval �s2 from the origin is −1 m2.
(e) The locus of events whose interval �s2 from the origin is +1 m2.
(f) The calibration ticks at one meter intervals along the x̄ and t̄ axes.
(g) The locus of events whose interval �s2 from the origin is 0.
(h) The locus of events, all of which occur at the time t = 2 m (simultaneous as seen

by O).
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(i) The locus of events, all of which occur at the time t̄ = 2 m (simultaneous as seen
by Ō).

(j) The event which occurs at t̄ = 0 and x̄ = 0.5 m.
(k) The locus of events x̄ = 1 m.
(l) The world line of a photon which is emitted from the event t = −1 m, x = 0, trav-

els in the negative x direction, is reflected when it encounters a mirror located at
x̄ = −1 m, and is absorbed when it encounters a detector located at x = 0.75 m.

4 Write out all the terms of the following sums, substituting the coordinate names
(t, x, y, z) for (x0, x1, x2, x3):
(a)

∑3
α=0 Vα�xα , where {Vα ,α = 0, . . . , 3} is a collection of four arbitrary numbers.

(b)
∑3

i=1(�xi)2.
5 (a) Use the spacetime diagram of an observer O to describe the following experiment

performed by O. Two bursts of particles of speed v = 0.5 are emitted from x = 0
at t = −2 m, one traveling in the positive x direction and the other in the negative
x direction. These encounter detectors located at x = ±2 m. After a delay of 0.5 m
of time, the detectors send signals back to x = 0 at speed v = 0.75.

(b) The signals arrive back at x = 0 at the same event. (Make sure your spacetime dia-
gram shows this!) From this the experimenter concludes that the particle detectors
did indeed send out their signals simultaneously, since he knows they are equal
distances from x = 0. Explain why this conclusion is valid.

(c) A second observer Ō moves with speed v = 0.75 in the negative x direction rel-
ative to O. Draw the spacetime diagram of Ō and in it depict the experiment
performed by O. Does Ō conclude that particle detectors sent out their signals
simultaneously? If not, which signal was sent first?

(d) Compute the interval �s2 between the events at which the detectors emitted their
signals, using both the coordinates of O and those of Ō.

6 Show that Eq. (1.2) contains only Mαβ + Mβα when α �= β, not Mαβ and Mβα

independently. Argue that this enables us to set Mαβ = Mβα without loss of generality.
7 In the discussion leading up to Eq. (1.2), assume that the coordinates of Ō are given as

the following linear combinations of those of O:

t̄ = αt + βx,

x̄ = μt + vx,

ȳ = ay,

z̄ = bz,

where α,β,μ, ν, a, and b may be functions of the velocity v of Ō relative to O, but
they do not depend on the coordinates. Find the numbers {Mαβ ,α, b = 0, . . . , 3} of
Eq. (1.2) in terms of α,β,μ, ν, a, and b.

8 (a) Derive Eq. (1.3) from Eq. (1.2), for general {Mαβ ,α,β = 0, . . . , 3}.
(b) Since �s̄2 = 0 in Eq. (1.3) for any {�xi}, replace �xi by −�xi in Eq. (1.3) and

subtract the resulting equation from Eq. (1.3) to establish that M0i = 0 for i =
1, 2, 3.
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(c) Use Eq. (1.3) with �s̄2 = 0 to establish Eq. (1.4b). (Hint: �x,�y, and �z are
arbitrary.)

9 Explain why the line PQ in Fig. 1.7 is drawn in the manner described in the text.
10 For the pairs of events whose coordinates (t, x, y, z) in some frame are given below,

classify their separations as timelike, spacelike, or null.
(a) (0, 0, 0, 0) and (−1,1, 0, 0),
(b) (1, 1, −1, 0) and (−1, 1, 0, 2),
(c) (6, 0, 1, 0) and (5, 0, 1, 0),
(d) (−1, 1, −1, 1) and (4, 1, −1, 6).

11 Show that the hyperbolae −t2 + x2 = a2 and −t2 + x2 = −b2 are asymptotic to the
lines t = ±x, regardless of a and b.

12 (a) Use the fact that the tangent to the hyperbola DB in Fig. 1.14 is the line of simul-
taneity for Ō to show that the time interval AE is shorter than the time recorded
on Ō’s clock as it moved from A to B.

(b) Calculate that

(�s2)AC = (1 − v2)(�s2)AB.

(c) Use (b) to show that Ō regards O’s clocks to be running slowly, at just the ‘right’
rate.

13 The half-life of the elementary particle called the pi meson (or pion) is 2.5 × 10−8 s
when the pion is at rest relative to the observer measuring its decay time. Show, by the
principle of relativity, that pions moving at speed v = 0.999 must have a half-life of
5.6 × 10−7 s, as measured by an observer at rest.

14 Suppose that the velocity v of Ō relative to O is small, |v| 	 1. Show that the time
dilation, Lorentz contraction, and velocity-addition formulae can be approximated by,
respectively:
(a) �t ≈ (1 + 1

2v
2)�t̄,

(b) �x ≈ (1 − 1
2v

2)�x̄,
(c) w′ ≈ w + v − wv(w + v) (with |w| 	 1 as well).
What are the relative errors in these approximations when |v| = w = 0.1?

15 Suppose that the velocity v of Ō relative to O is nearly that of light, |v| = 1 − ε,
0 < ε 	 1. Show that the same formulae of Exer. 14 become
(a) �t ≈ �t̄/

√
(2ε),

(b) �x ≈ �x̄/
√

(2ε),
(c) w′ ≈ 1 − ε(1 − w)/(1 + w).

What are the relative errors on these approximations when ε = 0.1 and w = 0.9?
16 Use the Lorentz transformation, Eq. (1.12), to derive (a) the time dilation, and (b)

the Lorentz contraction formulae. Do this by identifying the pairs of events where
the separations (in time or space) are to be compared, and then using the Lorentz
transformation to accomplish the algebra that the invariant hyperbolae had been used
for in the text.

17 A lightweight pole 20 m long lies on the ground next to a barn 15 m long. An Olympic
athlete picks up the pole, carries it far away, and runs with it toward the end of the barn
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at a speed 0.8 c. His friend remains at rest, standing by the door of the barn. Attempt
all parts of this question, even if you can’t answer some.
(a) How long does the friend measure the pole to be, as it approaches the barn?
(b) The barn door is initially open and, immediately after the runner and pole are

entirely inside the barn, the friend shuts the door. How long after the door is shut
does the front of the pole hit the other end of the barn, as measured by the friend?
Compute the interval between the events of shutting the door and hitting the wall.
Is it spacelike, timelike, or null?

(c) In the reference frame of the runner, what is the length of the barn and the pole?
(d) Does the runner believe that the pole is entirely inside the barn when its front hits

the end of the barn? Can you explain why?
(e) After the collision, the pole and runner come to rest relative to the barn. From the

friend’s point of view, the 20 m pole is now inside a 15 m barn, since the barn door
was shut before the pole stopped. How is this possible? Alternatively, from the
runner’s point of view, the collision should have stopped the pole before the door
closed, so the door could not be closed at all. Was or was not the door closed with
the pole inside?

(f) Draw a spacetime diagram from the friend’s point of view and use it to illustrate
and justify all your conclusions.

18 (a) The Einstein velocity-addition law, Eq. (1.13), has a simpler form if we introduce
the concept of the velocity parameter u, defined by the equation

v = tanh u.

Notice that for −∞< u<∞, the velocity is confined to the
acceptable limits −1 < v < 1. Show that if

v = tanh u

and

w = tanh U,

then Eq. (1.13) implies

w′ = tanh(u + U).

This means that velocity parameters add linearly.
(b) Use this to solve the following problem. A star measures a second star to be moving

away at speed v = 0.9 c. The second star measures a third to be receding in the
same direction at 0.9 c. Similarly, the third measures a fourth, and so on, up to
some large number N of stars. What is the velocity of the Nth star relative to the
first? Give an exact answer and an approximation useful for large N.

19 (a) Using the velocity parameter introduced in Exer. 18, show that the Lorentz
transformation equations, Eq. (1.12), can be put in the form

t̄ = t cosh u − x sinh u, ȳ = y,

x̄ = −t sinh u + x cosh u, z̄ = z.
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(b) Use the identity cosh2 u − sinh2 u = 1 to demonstrate the invariance of the
interval from these equations.

(c) Draw as many parallels as you can between the geometry of spacetime and ordi-
nary two-dimensional Euclidean geometry, where the coordinate transformation
analogous to the Lorentz transformation is

x̄ = x cos θ + y sin θ ,

ȳ = −x sin θ + y cos θ .

What is the analog of the interval? Of the invariant hyperbolae?
20 Write the Lorentz transformation equations in matrix form.
21 (a) Show that if two events are timelike separated, there is a Lorentz frame in which

they occur at the same point, i.e. at the same spatial coordinate values.
(b) Similarly, show that if two events are spacelike separated, there is a Lorentz frame

in which they are simultaneous.



2 Vector analysis in special relativity

2.1 Defin i t ion of a vec to r

For the moment we will use the notion of a vector that we carry over from Euclidean
geometry, that a vector is something whose components transform as do the coordinates
under a coordinate transformation. Later on we shall define vectors in a more satisfactory
manner.

The typical vector is the displacement vector, which points from one event to another
and has components equal to the coordinate differences:

��x →
O

(�t,�x,�y,�z). (2.1)

In this line we have introduced several new notations: an arrow over a symbol denotes
a vector (so that �x is a vector having nothing particular to do with the coordinate x), the
arrow after ��x means ‘has components’, and the O underneath it means ‘in the frame O’;
the components will always be in the order t, x, y, z (equivalently, indices in the order 0,
1, 2, 3). The notation →O is used in order to emphasize the distinction between the vector
and its components. The vector ��x is an arrow between two events, while the collection
of components is a set of four coordinate-dependent numbers. We shall always emphasize
the notion of a vector (and, later, any tensor) as a geometrical object: something which can
be defined and (sometimes) visualized without referring to a specific coordinate system.
Another important notation is

��x →
O

{�xα}, (2.2)

where by {�xα} we mean all of �x0, �x1, �x2, �x3. If we ask for this vector’s
components in another coordinate system, say the frame Ō, we write

��x →̄
O

{�xᾱ}.

That is, we put a bar over the index to denote the new coordinates. The vector ��x is
the same, and no new notation is needed for it when the frame is changed. Only the
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components of it change.1 What are the new components �xᾱ? We get them from the
Lorentz transformation:

�x0̄ = �x0

√
(1 − v2)

− v�x1

√
(1 − v2)

, etc.

Since this is a linear transformation, it can be written

�x0̄ =
3∑

β=0

�0̄
β�xβ ,

where {�0̄
β} are four numbers, one for each value of β. In this case

�0̄
0 = 1/

√
(1 − v2), �0̄

1 = −v/√(1 − v2),

�0̄
2 = �0̄

3 = 0.

A similar equation holds for �x1̄, and so in general we write

�xᾱ =
3∑

β=0

�ᾱβ�xβ , for arbitrary ᾱ. (2.3)

Now {�ᾱβ} is a collection of 16 numbers, which constitutes the Lorentz transformation
matrix. The reason we have written one index up and the other down will become clear
when we study differential geometry. For now, it enables us to introduce the final bit of
notation, the Einstein summation convention: whenever an expression contains one index
as a superscript and the same index as a subscript, a summation is implied over all values
that index can take. That is,

AαBα and TγEγα

are shorthand for the summations

3∑
α=0

AαBα and
3∑

γ=0

TγEγα ,

while

AαBβ , TγEβα , and AβAβ

do not represent sums on any index. The Lorentz transformation, Eq. (2.3), can now be
abbreviated to

�xᾱ = �ᾱβ�xβ , (2.4)

saving some messy writing.

1 This is what some books on linear algebra call a ‘passive’ transformation: the coordinates change, but the vector
does not.
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Notice that Eq. (2.4) is identically equal to

�xᾱ = �ᾱγ�xγ .

Since the repeated index (β in one case, γ in the other) merely denotes a summation from
0 to 3, it doesn’t matter what letter is used. Such a summed index is called a dummy index,
and relabeling a dummy index (as we have done, replacing β by γ ) is often a useful tool
in tensor algebra. There is only one thing we should not replace the dummy index β with:
a Latin index. The reason is that Latin indices can (by our convention) only take the values
1, 2, 3, whereas β must be able to equal zero as well. Thus, the expressions

�ᾱβ�xβ and �ᾱ i�xi

are not the same; in fact we have

�ᾱβ�xβ = �ᾱ0�x0 +�ᾱ i�xi. (2.5)

Eq. (2.4) is really four different equations, one for each value that ᾱ can assume. An
index like ᾱ, on which no sum is performed, is called a free index. Whenever an equation
is written down with one or more free indices, it is valid if and only if it is true for all
possible values the free indices can assume. As with a dummy index, the name given to a
free index is largely arbitrary. Thus, Eq. (2.4) can be rewritten as

�xγ̄ = �γ̄ β�xβ .

This is equivalent to Eq. (2.4) because γ̄ can assume the same four values that ᾱ could
assume. If a free index is renamed, it must be renamed everywhere. For example, the
following modification of Eq. (2.4),

�xγ̄ = �ᾱβ�xβ ,

makes no sense and should never be written. The difference between these last two expres-
sions is that the first guarantees that, whatever value γ̄ assumes, both �xγ̄ on the left and
�γ̄ β on the right will have the same free index. The second expression does not link the
indices in this way, so it is not equivalent to Eq. (2.4).

The general vector 2 is defined by a collection of numbers (its components in some
frame, say O)

�A →
O

(A0, A1, A2, A3) = {Aα}, (2.6)

and by the rule that its components in a frame Ō are

Aᾱ = �ᾱβ Aβ . (2.7)

2 Such a vector, with four components, is sometimes called a four-vector to distinguish it from the three-
component vectors we are used to in elementary physics, which we shall call three-vectors. Unless we say
otherwise, a ‘vector’ is always a four-vector. We denote four-vectors by arrows, e.g. �A, and three-vectors by
boldface, e.g. A.
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That is, its components transform the same way the coordinates do. Remember that a vector
can be defined by giving four numbers (e.g. (108, −10−16, 5.8368,π )) in some frame; then
its components in all other frames are uniquely determined. Vectors in spacetime obey the
usual rules: if �A and �B are vectors and μ is a number, then �A + �B and μ�A are also vectors,
with components

�A + �B →
O

(A0 + B0, A1 + B1, A2 + B2, A3 + B3),

μ�A →
O

(μA0,μA1,μA2,μA3).

⎫⎬
⎭ (2.8)

Thus, vectors add by the usual parallelogram rule. Notice that we can give any four num-
bers to make a vector, except that if the numbers are not dimensionless, they must all have
the same dimensions, since under a transformation they will be added together.

2.2 Vec to r a lgebra

Basis vectors

In any frame O there are four special vectors, defined by giving their components:

�e0 →
O

(1, 0, 0, 0),

�e1 →
O

(0, 1, 0, 0),

�e2 →
O

(0, 0, 1, 0),

�e3 →
O

(0, 0, 0, 1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.9)

These definitions define the basis vectors of the frame O. Similarly, Ō has basis vectors

�e0̄ →̄
O

(1, 0, 0, 0), etc.

Generally, �e0̄ �= �e0, since they are defined in different frames. The reader should verify that
the definition of the basis vectors is equivalent to

(�eα)β = δα
β . (2.10)

That is, the β component of �eα is the Kronocker delta: 1 if β = α and 0 if β �= α.
Any vector can be expressed in terms of the basis vectors. If

�A →
O

(A0, A1, A2, A3),

then

�A = A0�e0 + A1�e1 + A2�e2 + A3�e3,

�A = Aα�eα . (2.11)
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In the last line we use the summation convention (remember always to write the index on �e
as a subscript in order to employ the convention in this manner). The meaning of Eq. (2.11)
is that �A is the linear sum of four vectors A0�e0, A1�e1, etc.

Transformation of basis vectors

The discussion leading up to Eq. (2.11) could have been applied to any frame, so it is
equally true in Ō:

�A = Aᾱ�eᾱ .

This says that �A is also the sum of the four vectors A0̄�e0̄, A1̄�e1̄, etc. These are not the same
four vectors as in Eq. (2.11), since they are parallel to the basis vectors of Ō and not of
O, but they add up to the same vector �A. It is important to understand that the expressions
Aα�eα and Aᾱ�eᾱ are not obtained from one another merely by relabeling dummy indices.
Barred and unbarred indices cannot be interchanged, since they have different meanings.
Thus, {Aᾱ} is a different set of numbers from {Aα}, just as the set of vectors {�eᾱ} is different
from {�eα}. But, by definition, the two sums are the same:

Aα�eα = Aᾱ�eᾱ , (2.12)

and this has an important consequence: from it we deduce the transformation law for the
basis vectors, i.e. the relation between {�eα} and {�eᾱ}. Using Eq. (2.7) for Aᾱ , we write
Eq. (2.12) as

�ᾱβAβ�eᾱ = Aα�eα .

On the left we have two sums. Since they are finite sums their order doesn’t matter. Since
the numbers �ᾱβ and Aβ are just numbers, their order doesn’t matter, and we can write

Aβ�ᾱβ�eᾱ = Aα�eα .

Now we use the fact that β and ᾱ are dummy indices: we change β to α and ᾱ to β̄,

Aα�β̄α�eβ̄ = Aα�eα .

This equation must be true for all sets {Aα}, since �A is an arbitrary vector. Writing it as

Aα(�β̄α�eβ̄ − �eα) = 0

we deduce

�β̄α�eβ̄ − �eα = 0 for every value of α,

or

�eα = �β̄α�eβ̄ . (2.13)
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This gives the law by which basis vectors change. It is not a component transformation: it
gives the basis {�eα} of O as a linear sum over the basis {�eᾱ} of Ō. Comparing this to the
law for components, Eq. (2.7),

Aβ̄ = �β̄αAα ,

we see that it is different indeed.
The above discussion introduced many new techniques, so study it carefully. Notice

that the omission of the summation signs keeps things neat. Notice also that a step of key
importance was relabeling the dummy indices: this allowed us to isolated the arbitrary Aα

from the rest of the things in the equation.

An example

Let Ō move with velocity v in the x direction relative to O. Then the matrix [�β̄α] is

(�β̄α) =

⎛
⎜⎜⎝

γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

where we use the standard notation

γ := 1/
√

(1 − v2).

Then, if �A →
O

(5, 0, 0, 2), we find its components in Ō by

A0̄ = �0̄
0A0 +�0̄

1A1 + · · ·
= γ · 5 + (−vγ ) · 0 + 0 · 0 + 0 · 2

= 5γ .

Similarly,

A1̄ = −5vγ ,

A2̄ = 0,

A3̄ = 2.

Therefore, �A →̄
O

(5γ , −5vγ , 0, 2).

The basis vectors are expressible as

�eα = �β̄α�eβ̄
or

�e0 = �0̄
0�e0̄ +�1̄

0�e1̄ + · · ·
= γ �e0̄ − vγ �e1̄.
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Similarly,

�e1 = −vγ �e0̄ + γ �e1̄,

�e2 = �e2̄,

�e3 = �e3̄.

This gives O’s basis in terms of Ō’s, so let us draw the picture (Fig. 2.1) in Ō’s frame: This
transformation is of course exactly what is needed to keep the basis vectors pointing along
the axes of their respective frames. Compare this with Fig. 1.5(b).

Inverse transformations

The only thing the Lorentz transformation �β̄α depends on is the relative velocity of the
two frames. Let us for the moment show this explicitly by writing

�β̄α = �β̄α(v).

Then

�eα = �β̄α(v)�eβ̄ . (2.14)

If the basis of O is obtained from that of Ō by the transformation with velocity v, then the
reverse must be true if we use −v. Thus we must have

�eμ̄ = �νμ̄(−v)�eν . (2.15)

In this equation I have used μ̄ and ν as indices to avoid confusion with the previous
formula. The bars still refer, of course, to the frame Ō. The matrix [�νμ̄] is exactly the

matrix [�β̄α] except with v changed to −v. The bars on the indices only serve to indicate
the names of the observers involved: they affect the entries in the matrix [�] only in that
the matrix is always constructed using the velocity of the upper-index frame relative to the

t

e0
→ e0

→

t

x

x

e1
→

e1
→

�Figure 2.1 Basis vectors of O and Ō as drawn by Ō.
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lower-index frame. This is made explicit in Eqs. (2.14) and (2.15). Since v is the velocity
of Ō (the upper-index frame in Eq. (2.14)) relative to O, then −v is the velocity of O (the
upper-index frame in Eq. (2.15)) relative to Ō. Exer. 11, § 2.9, will help you understand
this point.

We can rewrite the last expression as

�eβ̄ = �νβ̄ (−v)�eν .

Here we have just changed μ̄ to β̄. This doesn’t change anything: it is still the same four
equations, one for each value of β̄. In this form we can put it into the expression for �eα ,
Eq. (2.14):

�eα = �β̄α(v)�eβ̄ = �β̄α(v)�νβ̄ (−v)�eν . (2.16)

In this equation only the basis of O appears. It must therefore be an identity for all v. On
the right there are two sums, one on β̄ and one on ν. If we imagine performing the β̄ sum
first, then the right is a sum over the basis {�eν} in which each basis vector �eν has coefficient∑

β̄

�β̄α(v)�νβ̄ (−v). (2.17)

Imagine evaluating Eq. (2.16) for some fixed value of the index α. If the right side of
Eq. (2.16) is equal to the left, the coefficient of �eα on the right must be 1 and all other
coefficients must vanish. The mathematical way of saying this is

�β̄α(v)�νβ̄ (−v) = δνα ,

where δνα is the Kronecker delta again. This would imply

�eα = δνα�eν ,

which is an identity.
Let us change the order of multiplication above and write down the key formula

�νβ̄ (−v)�β̄α(v) = δνα . (2.18)

This expresses the fact that the matrix [�νβ̄ (−v)] is the inverse of [�β̄α(v)], because the

sum on β̄ is exactly the operation we perform when we multiply two matrices. The matrix
(δνα) is, of course, the identity matrix.

The expression for the change of a vector’s components,

Aβ̄ = �β̄α(v)Aα ,

also has its inverse. Let us multiply both sides by �νβ̄ (−v) and sum on β̄. We get

�νβ̄ (−v)Aβ̄ = �νβ̄ (−v)�β̄α(v)Aα

= δναAα

= Aν .
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This says that the components of �A in O are obtained from those in Ō by the transformation
with −v, which is, of course, correct.

The operations we have performed should be familiar to you in concept from vector
algebra in Euclidean space. The new element we have introduced here is the index notation,
which will be a permanent and powerful tool in the rest of the book. Make sure that you
understand the geometrical meaning of all our results as well as their algebraic justification.

2.3 The four-ve loc i ty

A particularly important vector is the four-velocity of a world line. In the three-geometry
of Galileo, the velocity was a vector tangent to a particle’s path. In our four-geometry we
define the four-velocity �U to be a vector tangent to the world line of the particle, and of
such a length that it stretches one unit of time in that particle’s frame. For a uniformly
moving particle, let us look at this definition in the inertial frame in which it is at rest. Then
the four-velocity points parallel to the time axis and is one unit of time long. That is, it is
identical with �e0 of that frame. Thus we could also use as our definition of the four-velocity
of a uniformly moving particle that it is the vector �e0 in its inertial rest frame. The word
‘velocity’ is justified by the fact that the spatial components of �U are closely related to the
particle’s ordinary velocity v, which is called the three-velocity. This will be demonstrated
in the example below, Eq. (2.21).

An accelerated particle has no inertial frame in which it is always at rest. However, there
is an inertial frame which momentarily has the same velocity as the particle, but which
a moment later is of course no longer comoving with it. This frame is the momentarily
comoving reference frame (MCRF), and is an important concept. (Actually, there are an
infinity of MCRFs for a given accelerated particle at a given event; they all have the same
velocity, but their spatial axes are obtained from one another by rotations. This ambiguity

t

x

e0
→ →

e1
→

= U

�

�Figure 2.2 The four-velocity and MCRF basis vectors of the world line at A
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will usually not be important.) The four-velocity of an accelerated particle is defined as the
�e0 basis vector of its MCRF at that event. This vector is tangent to the (curved) world line
of the particle. In Fig. 2.2 the particle at event A has MCRF Ō, the basis vectors of which
are shown. The vector �e0̄ is identical to �U there.

2.4 The four-momentum

The four-momentum �p is defined as

�p = m �U, (2.19)

where m is the rest mass of the particle, which is its mass as measured in its rest frame. In
some frame O it has components conventionally denoted by

�p →
O

(E, p1, p2, p3). (2.20)

We call p0 the energy E of the particle in the frame O. The other components are its spatial
momentum pi.

An example

A particle of rest mass m moves with velocity v in the x direction of frame O. What are
the components of the four-velocity and four-momentum? Its rest frame Ō has time basis
vector �e0̄, so, by definition of �p and �U, we have

�U = �e0̄, �p = m �U,

Uα = �αβ̄ (�e0̄)β̄ = �α 0̄, pα = m�α 0̄. (2.21)

Therefore we have

U0 = (1 − v2)−1/2, p0 = m(1 − v2)−1/2,

U1 = v(1 − v2)−1/2, p1 = mv(1 − v2)−1/2,

U2 = 0, p2 = 0,

U3 = 0, p3 = 0.

For small v, the spatial components of �U are (v, 0, 0), which justifies calling it the four-
velocity, while the spatial components of �p are (mv, 0, 0), justifying its name. For small v,
the energy is

E := p0 = m(1 − v2)−1/2  m + 1
2 mv2.

This is the rest-mass energy plus the Galilean kinetic energy.



43 2.4 The four-momentum
�

Conservation of four-momentum

The interactions of particles in Galilean physics are governed by the laws of conserva-
tion of energy and of momentum. Since the components of �p reduce in the nonrelativistic
limit to the familiar Galilean energy and momentum, it is natural to postulate that the
correct relativistic law is that the four-vector �p is conserved. That is, if several particles
interact, then

�p :=
∑
all

particles
(i)

�p(i), (2.22)

where �p(i) is the ith particle’s momentum, is the same before and after each interaction.
This law has the status of an extra postulate, since it is only one of many where the

nonrelativistic limit is correct. However, like the two fundamental postulates of SR, this
one is amply verified by experiment. Not the least of its new predictions is that the energy
conservation law must include rest mass: rest mass can be decreased and the difference
turned into kinetic energy and hence into heat. This happens every day in nuclear power
stations.

There is an important point glossed over in the above statement of the conservation
of four-momentum. What is meant by ‘before’ and ‘after’ a collision? Suppose there are
two collisions, involving different particles, which occur at spacelike separated events, as
below. When adding up the total four-momentum, should we take them as they are on the
line of constant time t or on the line of constant t̄? As measured by O, event A in Fig. 2.3
occurs before t = 0 and B after, so the total momentum at t = 0 is the sum of the momenta
after A and before B. On the other hand, to Ō they both occur before t̄ = 0 and so the
total momentum at t̄ = 0 is the sum of the momenta after A and after B. There is even a

t

x

t

x

�

�

�Figure 2.3 When several collisions are involved, the individual four-momentum vectors contributing to the
total four-momentum at any particular time may depend upon the frame, but the total
four-momentum is the same four-vector in all frames; its components transform from frame to
frame by the Lorentz transformation.
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frame in which B is earlier than A and the adding-up may be the reverse of O’s. There is
really no problem here, though. Since each collision conserves momentum, the sum of the
momenta before A is the same as that after A, and likewise for B. So every inertial observer
will get the same total four-momentum vector �p. (Its components will still be different in
different frames, but it will be the same vector.) This is an important point: any observer
can define his line of constant time (this is actually a three-space of constant time, which is
called a hypersurface of constant time in the four-dimensional spacetime), at that time add
up all the momenta, and get the same vector as any other observer does. It is important to
understand this, because such conservation laws will appear again.

Center of momentum (CM) frame

The center of momentum frame is the inertial frame where the total momentum vanishes:∑
i

�p(i) −→
CM

(ETOTAL, 0, 0, 0). (2.23)

As with MCRFs, any other frame at rest relative to a CM frame is also a CM frame.

2.5 Sca la r p roduc t

Magnitude of a vector

By analogy with the interval we define

�A2 = −(A0)2 + (A1)2 + (A2)2 + (A3)2 (2.24)

to be the magnitude of the vector �A. Because we defined the components to transform under
a Lorentz transformation in the same manner as (�t,�x,�y,�z), we are guaranteed that

− (A0)2 + (A1)2 + (A2)2 + (A3)2 = −(A0̄)2 + (A1̄)2 + (A2̄)2 + (A3̄)2. (2.25)

The magnitude so defined is a frame-independent number, i.e. a scalar under Lorentz
transformations.

This magnitude doesn’t have to be positive, of course. As with intervals we adopt the
following names: if �A2 is positive, �A is a spacelike vector; if zero, a null vector; and if
negative, a timelike vector. Thus, spatially pointing vectors have positive magnitude, as is
usual in Euclidean space. It is particularly important to understand that a null vector is not a
zero vector. That is, a null vector has �A2 = 0, but not all Aα vanish; a zero vector is defined
as one, where all of the components vanish. Only in a space where �A2 is positive-definite
does �A2 = 0 require Aα = 0 for all α.
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Scalar product of two vectors

We define the scalar product of �A and �B to be

�A · �B = −A0B0 + A1B1 + A2B2 + A3B3 (2.26)

in some frame O. We now prove that this is the same number in all other frames. We note
first that �A · �A is just �A2, which we know is invariant. Therefore (�A + �B) · (�A + �B), which
is the magnitude of �A + �B, is also invariant. But from Eqs. (2.24) and (2.26) it follows that

(�A + �B) · (�A + �B) = �A2 + �B2 + 2�A · �B.

Since the left-hand side is the same in all frames, as are first two terms on the right, then
the last term on the right must be as well. This proves the frame invariance of the scalar
product.

Two vectors �A and �B are said to be orthogonal if �A · �B = 0. The minus sign in the def-
inition of the scalar product means that two vectors orthogonal to one another are not
necessarily at right angles in the spacetime diagram (see examples below). An extreme
example is the null vector, which is orthogonal to itself ! Such a phenomenon is not
encountered in spaces where the scalar product is positive-definite.

Example

The basis vectors of a frame O satisfy:

�e0 · �e0 = −1,

�e1 · �e1 = �e2 · �e2 = �e3 · �e3 = +1,

�eα · �eβ = 0 if α �= β.

They thus make up a tetrad of mutually orthogonal vectors: an orthonormal tetrad,
which means orthogonal and normalized to unit magnitude. (A timelike vector has ‘unit
magnitude’ if its magnitude is −1.) The relations above can be summarized as

�eα · �eβ = ηαβ , (2.27)

where ηαβ is similar to a Kronecker delta in that it is zero when α �= β, but it differs in
that η00 = −1, while η11 = η22 = η33 = +1. We will see later that ηαβ is in fact of central
importance: it is the metric tensor. But for now we treat it as a generalized Kronecker delta.

Example

The basis vectors of Ō also satisfy

�eᾱ · �eβ̄ = ηᾱβ̄ ,
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t

e0
→

x

e1
→

�Figure 2.4 The basis vectors of Ō are not ‘perpendicular’ (in the Euclidean sense) when drawn in O, but
they are orthogonal with respect to the dot product of Minkowski spacetime.

so that, in particular, �e0̄ · �e1̄ = 0. Look at this in the spacetime diagram of O, Fig. 2.4: The
two vectors certainly are not perpendicular in the picture. Nevertheless, their scalar product
is zero. The rule is that two vectors are orthogonal if they make equal angles with the 45◦
line representing the path of a light ray. Thus, a vector tangent to the light ray is orthogonal
to itself. This is just another way in which SR cannot be ‘visualized’ in terms of notions
we have developed in Euclidean space.

Example

The four-velocity �U of a particle is just the time basis vector of its MCRF, so from
Eq. (2.27) we have

�U · �U = −1. (2.28)

2.6 App l i cat ions

Four-velocity and accelerat ion as derivatives

Suppose a particle makes an infinitesimal displacement d�x, whose components in O are
(dt, dx, dy, dz). The magnitude of this displacement is, by Eq. (2.24), just −dt2 + dx2 +
dy2 + dz2. Comparing this with Eq. (1.1), we see that this is just the interval, ds2:

ds2 = d�x · d�x. (2.29)

Since the world line is timelike, this is negative. This led us (Eq. (1.9)) to define the proper
time dτ by

(dτ )2 = −d�x · d�x. (2.30)
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Now consider the vector d�x/dτ , where dτ is the square root of Eq. (2.30) (Fig. 2.5). This
vector is tangent to the world line since it is a multiple of d�x. Its magnitude is

d�x
dτ

· d�x
dτ

= d�x · d�x
(dτ )2

= −1.

It is therefore a timelike vector of unit magnitude tangent to the world line. In an MCRF,

d�x −→
MCRF
dτ = dt

(dt, 0, 0, 0).

so that
d�x
dτ

−→
MCRF

(1, 0, 0, 0)

or
d�x
dτ

= (�e0)MCRF.

This was the definition of the four-velocity. So we have the useful expression

�U = d�x/dτ . (2.31)

Moreover, let us examine

d �U
dτ

= d2�x
dτ 2

,

which is some sort of four-acceleration. First we differentiate Eq. (2.28) and use Eq. (2.26):

d

dτ
( �U · �U) = 2 �U · d �U

dτ
.

But since �U · �U = −1 is a constant we have

�U · d �U
dτ

= 0.

t

d x
→

x

�Figure 2.5 The infinitesimal displacement vector d�x tangent to a world line.
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Since, in the MCRF, �U has only a zero component, this orthogonality means that

d �U
dτ

−→
MCRF

(0, a1, a2, a3).

This vector is defined as the acceleration four-vector �a:

�a = d �U
dτ

, �U · �a = 0. (2.32)

Exer. 19, § 2.9, justifies the name ‘acceleration’.

Energy and momentum

Consider a particle whose momentum is �p. Then

�p · �p = m2 �U · �U = −m2. (2.33)

But

�p · �p = −E2 + (p1)2 + (p2)2 + (p3)2.

Therefore,

E2 = m2 +
3∑

i=1

(pi)2. (2.34)

This is the familiar expression for the total energy of a particle.
Suppose an observer Ō moves with four-velocity �Uobs not necessarily equal to the

particle’s four-velocity. Then

�p · �Uobs = �p · �e0̄,

where �e0̄ is the basis vector of the frame of the observer. In that frame the four-momentum
has components

�p →̄
O

(Ē, p1̄, p2̄, p3̄).

Therefore, we obtain, from Eq. (2.26),

− �p · �Uobs = Ē. (2.35)

This is an important equation. It says that the energy of the particle relative to the observer,
Ē, can be computed by anyone in any frame by taking the scalar product �p · �Uobs. This is
called a ‘frame-invariant’ expression for the energy relative to the observer. It is almost
always helpful in calculations to use such expressions.
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2.7 Photons

No four-velocity

Photons move on null lines, so, for a photon path,

d�x · d�x = 0. (2.36)

Therefore dτ is zero and Eq. (2.31) shows that the four-velocity cannot be defined. Another
way of saying the same thing is to note that there is no frame in which light is at rest (the
second postulate of SR), so there is no MCRF for a photon. Thus, no �e0 in any frame will
be tangent to a photon’s world line.

Note carefully that it is still possible to find vectors tangent to a photon’s path (which,
being a straight line, has the same tangent everywhere): d�x is one. The problem is finding
a tangent of unit magnitude, since they all have vanishing magnitude.

Four-momentum

The four-momentum of a particle is not a unit vector. Instead, it is a vector where the
components in some frame give the particle energy and momentum relative to that frame.
If a photon carries energy E in some frame, then in that frame p0 = E. If it moves in the x
direction, then py = pz = 0, and in order for the four-momentum to be parallel to its world
line (hence be null) we must have px = E. This ensures that

�p · �p = −E2 + E2 = 0. (2.37)

So we conclude that photons have spatial momentum equal to their energy.
We know from quantum mechanics that a photon has energy

E = hν, (2.38)

where ν is its frequency and h is Planck’s constant, h = 6.6256 × 10−34 J s.
This relation and the Lorentz transformation of the four-momentum immediately give

us the Doppler-shift formula for photons. Suppose, for instance, that in frame O a photon
has frequency v and moves in the x direction. Then, in Ō, which has velocity v in the x
direction relative to O, the photon’s energy is

Ē = E/
√

(1 − v2) − pxv/
√

(1 − v2)

= hν/
√

(1 − v2) − hνv/
√

(1 − v2).

Setting this equal to hν̄ gives ν̄, the frequency in Ō:

ν̄/ν = (1 − v)/
√

(1 − v2) = √
[(1 − v)/(1 + v)]. (2.39)

This is generalized in Exer. 25, § 2.9.
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Zero rest-mass part ic les

The rest mass of a photon must be zero, since

m2 = −�p · �p = 0. (2.40)

Any particle whose four-momentum is null must have rest mass zero, and conversely. The
only known zero rest-mass particle is the photon. Neutrinos are very light, but not massless.
(Sometimes the ‘graviton’ is added to this list, since gravitational waves also travel at the
speed of light, as we shall see later. But ‘photon’ and ‘graviton’ are concepts that come
from quantum mechanics, and there is as yet no satisfactory quantized theory of gravity, so
that ‘graviton’ is not really a well-defined notion yet.) The idea that only particles with zero
rest mass can travel at the speed of light is reinforced by the fact that no particle of finite
rest mass can be accelerated to the speed of light, since then its energy would be infinite.
Put another way, a particle traveling at the speed of light (in, say, the x direction) has
p1/p0 = 1, while a particle of rest mass m moving in the x direction has, from the equation
�p · �p = −m2, p1/p0 = [1 − m2/(p0)2]1/2, which is always less than one, no matter how
much energy the particle is given. Although it may seem to get close to the speed of light,
there is an important distinction: the particle with m �= 0 always has an MCRF, a Lorentz
frame in which it is at rest, the velocity v of which is p1/p0 relative to the old frame. A
photon has no rest frame.

2.8 Fur ther read ing

We have only scratched the surface of relativistic kinematics and particle dynamics. These
are particularly important in particle physics, which in turn provides the most stringent
tests of SR. See Hagedorn (1963) or Wiedemann (2007).

2.9 Exerc i ses

1 Given the numbers {A0 = 5, A1 = 0, A2 = −1, A3 = −6}, {B0 = 0, B1 = −2, B2 = 4,
B3 = 0}, {C00 = 1, C01 = 0, C02 = 2, C03 = 3, C30 = −1, C10 = 5, C11 = −2, C12 =
−2, C13 = 0, C21 = 5, C22 = 2, C23 = −2, C20 = 4, C31 = −1, C32 = −3, C33 = 0},
find:
(a) AαBα; (b) AαCαβ for all β; (c) AγCγ σ for all σ ; (d) AνCμν for all μ; (e) AαBβ for
all α,β; (f) AiBi; (g) AjBk for all j, k.

2 Identify the free and dummy indices in the following equations and change them into
equivalent expressions with different indices. How many different equations does each
expression represent?
(a) AαBα = 5; (b) Aμ̄ = �μ̄νAν ; (c) TαμλAμCλγ = Dγα; (d) Rμν − 1

2 gμνR = Gμν .
3 Prove Eq. (2.5).
4 Given the vectors �A →O (5, −1, 0, 1) and �B →O (−2, 1, 1, −6), find the components

in O of (a) −6�A; (b) 3�A + �B; (c) −6�A + 3�B.
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5 A collection of vectors {�a, �b, �c, �d} is said to be linearly independent if no linear
combination of them is zero except the trivial one, 0�a + 0�b + 0�c + 0�d = 0.
(a) Show that the basis vectors in Eq. (2.9) are linearly independent.
(b) Is the following set linearly independent? {�a, �b, �c, 5�a + 3�b − 2�c}.

6 In the t − x spacetime diagram of O, draw the basis vectors �e0 and �e1. Draw the cor-
responding basis vectors of the frame Ō that moves with speed 0.6 in the positive x
direction relative to O. Draw the corresponding basis vectors of

�O a frame that moves
with speed 0.6 in the positive x direction relative to Ō.

7 (a) Verify Eq. (2.10) for all α,β.
(b) Prove Eq. (2.11) from Eq. (2.9).

8 (a) Prove that the zero vector (0, 0, 0, 0) has these same components in all reference
frames.

(b) Use (a) to prove that if two vectors have equal components in one frame, they have
equal components in all frames.

9 Prove, by writing out all the terms, that

3∑
ᾱ=0

⎛
⎝ 3∑
β=0

�ᾱβAβ�eᾱ
⎞
⎠ =

3∑
β=0

(
3∑
ᾱ=0

�ᾱβAβ�eᾱ
)

.

Since the order of summation doesn’t matter, we are justified in using the Einstein
summation convention to write simply �ᾱβAβ�eᾱ , which doesn’t specify the order of
summation.

10 Prove Eq. (2.13) from the equation Aα(�β̄α�eβ̄ − �eα) = 0 by making specific choices

for the components of the arbitrary vector �A.
11 Let �ᾱβ be the matrix of the Lorentz transformation from O to Ō, given in Eq. (1.12).

Let �A be an arbitrary vector with components (A0, A1, A2, A3) in frame O.
(a) Write down the matrix of �νμ̄(−v).
(b) Find Aᾱ for all ᾱ.
(c) Verify Eq. (2.18) by performing the indicated sum for all values of ν and α.
(d) Write down the Lorentz transformation matrix from Ō to O, justifying each entry.
(e) Use (d) to find Aβ from Aᾱ . How is this related to Eq. (2.18)?
(f) Verify, in the same manner as (c), that

�νβ̄ (v)�ᾱν(−v) = δᾱβ̄ .

(g) Establish that

�eα = δνα�eν
and

Aβ̄ = δβ̄ μ̄Aμ̄.

12 Given �A →O (0, −2, 3, 5), find:
(a) the components of �A in Ō, which moves at speed 0.8 relative to O in the positive

x direction;
(b) the components of �A in

�O, which moves at speed 0.6 relative to Ō in the positive
x direction;

(c) the magnitude of �A from its components in O;
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(d) the magnitude of �A from its components in Ō.
13 Let Ō move with velocity v relative to O, and let

�O move with velocity v′ relative to Ō.
(a) Show that the Lorentz transformation from O to

�O is

�
�
α
μ = �

�
α
γ̄ (v′)�γ̄ μ(v). (2.41)

(b) Show that Eq. (2.41) is just the matrix product of the matrices of the individual
Lorentz transformations.

(c) Let v = 0.6�ex, v′ = 0.8�eȳ. Find �
�
α
μ for all μ and

�
α.

(d) Verify that the transformation found in (c) is indeed a Lorentz transformation by
showing explicitly that �

�s2 = �s2 for any (�t,�x,�y,�z).
(e) Compute

�
�
α
γ̄ (v)�γ̄ μ(v′)

for v and v′, as given in (c), and show that the result does not equal that of (c). Interpret
this physically.

14 The following matrix gives a Lorentz transformation from O to Ō:⎛
⎜⎜⎝

1.25 0 0 .75
0 1 0 0
0 0 1 0

.75 0 0 1.25

⎞
⎟⎟⎠ .

(a) What is the velocity (speed and direction) of Ō relative to O?
(b) What is the inverse matrix to the given one?
(c) Find the components in O of a vector �A →̄

O
(1, 2, 0, 0).

15 (a) Compute the four-velocity components in O of a particle whose speed in O is v in
the positive x direction, by using the Lorentz transformation from the rest frame of
the particle.

(b) Generalize this result to find the four-velocity components when the particle has
arbitrary velocity v, with |v| < 1.

(c) Use your result in (b) to express v in terms of the components {Uα}.
(d) Find the three-velocity v of a particle whose four-velocity components are (2, 1,

1, 1).
16 Derive the Einstein velocity-addition formula by performing a Lorentz transformation

with velocity v on the four-velocity of a particle whose speed in the original frame
was W.

17 (a) Prove that any timelike vector �U for which U0 > 0 and �U · �U = −1 is the
four-velocity of some world line.

(b) Use this to prove that for any timelike vector �V there is a Lorentz frame in which
�V has zero spatial components.

18 (a) Show that the sum of any two orthogonal spacelike vectors is spacelike.
(b) Show that a timelike vector and a null vector cannot be orthogonal.

19 A body is said to be uniformly accelerated if its acceleration four-vector �a has constant
spatial direction and magnitude, say �a · �a = α2 � 0.
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(a) Show that this implies that �a always has the same components in the body’s MCRF,
and that these components are what one would call ‘acceleration’ in Galilean terms.
(This would be the physical situation for a rocket whose engine always gave the
same acceleration.)

(b) Suppose a body is uniformly accelerated with α = 10 m s−2 (about the accelera-
tion of gravity on Earth). If the body starts from rest, find its speed after time t. (Be
sure to use the correct units.) How far has it traveled in this time? How long does
it take to reach v = 0.999?

(c) Find the elapsed proper time for the body in (b), as a function of t. (Integrate dτ
along its world line.) How much proper time has elapsed by the time its speed is
v = 0.999? How much would a person accelerated as in (b) age on a trip from
Earth to the center of our Galaxy, a distance of about 2 × 1020 m?

20 The world line of a particle is described by the equations

x(t) = at + b sinωt, y(t) = b cosωt,

z(t) = 0, |bω| < 1,

in some inertial frame. Describe the motion and compute the components of the
particle’s four-velocity and four-acceleration.

21 The world line of a particle is described by the parametric equations in some Lorentz
frame

t(λ) = a sinh

(
λ

a

)
, x(λ) = a cosh

(
λ

a

)
,

where λ is the parameter and a is a constant. Describe the motion and compute the
particle’s four-velocity and acceleration components. Show that λ is proper time along
the world line and that the acceleration is uniform. Interpret a.

22 (a) Find the energy, rest mass, and three-velocity v of a particle whose four-momentum
has the components (4, 1, 1, 0) kg.

(b) The collision of two particles of four-momenta

�p1 →
O

(3, −1, 0, 0) kg, �p2 →
O

(2, 1, 1, 0) kg

results in the destruction of the two particles and the production of three new ones, two
of which have four-momenta

�p3 →
O

(1, 1, 0, 0) kg, �p4 →
O

(1, − 1
2 , 0, 0) kg.

Find the four-momentum, energy, rest mass, and three-velocity of the third particle
produced. Find the CM frame’s three-velocity.

23 A particle of rest mass m has three-velocity v. Find its energy correct to terms of
order |v|4. At what speed |v| does the absolute value of 0(|v|4) term equal 1

2 of the
kinetic-energy term 1

2 m|v|2?
24 Prove that conservation of four-momentum forbids a reaction in which an electron and

positron annihilate and produce a single photon (γ -ray). Prove that the production of
two photons is not forbidden.
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25 (a) Let frame Ō move with speed v in the x-direction relative to O. Let a photon have
frequency ν in O and move at an angle θ with respect to O’s x axis. Show that its
frequency in Ō is

ν̄/ν = (1 − v cos θ )/
√

(1 − v2). (2.42)

(b) Even when the motion of the photon is perpendicular to the x axis (θ = π/2) there
is a frequency shift. This is called the transverse Doppler shift, and arises because
of the time dilation. At what angle θ does the photon have to move so that there is
no Doppler shift between O and Ō?

(c) Use Eqs. (2.35) and (2.38) to calculate Eq. (2.42).
26 Calculate the energy that is required to accelerate a particle of rest mass m �= 0 from

speed v to speed v + δv (δv 	 v), to first order in δv. Show that it would take an
infinite amount of energy to accelerate the particle to the speed of light.

27 Two identical bodies of mass 10 kg are at rest at the same temperature. One of them
is heated by the addition of 100 J of heat. Both are then subjected to the same force.
Which accelerates faster, and by how much?

28 Let �A →O (5, 1, −1, 0), �B →O (−2, 3, 1, 6), �C →O (2, −2, 0, 0). Let Ō be a frame
moving at speed v = 0.6 in the positive x direction relative to O, with its spatial axes
oriented parallel to O’s.
(a) Find the components of �A, �B, and �C in Ō.
(b) Form the dot products �A · �B, �B · �C, �A · �C, and �C · �C using the components in Ō.

Verify the frame independence of these numbers.
(c) Classify �A, �B, and �C as timelike, spacelike, or null.

29 Prove, using the component expressions, Eqs. (2.24) and (2.26), that

d

dτ
( �U · �U) = 2 �U · d �U

dτ
.

30 The four-velocity of a rocket ship is �U →O (2, 1, 1, 1). It encounters a high-velocity
cosmic ray whose momentum is �P →O (300, 299, 0, 0) × 10−27 kg. Compute the
energy of the cosmic ray as measured by the rocket ship’s passengers, using each of
the two following methods.
(a) Find the Lorentz transformations from O to the MCRF of the rocket ship, and use

it to transform the components of �P.
(b) Use Eq. (2.35).
(c) Which method is quicker? Why?

31 A photon of frequency ν is reflected without change of frequency from a mirror, with
an angle of incidence θ . Calculate the momentum transferred to the mirror. What
momentum would be transferred if the photon were absorbed rather than reflected?

32 Let a particle of charge e and rest mass m, initially at rest in the laboratory, scatter
a photon of initial frequency νi. This is called Compton scattering. Suppose the scat-
tered photon comes off at an angle θ from the incident direction. Use conservation of
four-momentum to deduce that the photon’s final frequency νf is given by
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1

νf
= 1

νi
+ h

(
1 − cos θ

m

)
. (2.43)

33 Space is filled with cosmic rays (high-energy protons) and the cosmic microwave back-
ground radiation. These can Compton scatter off one another. Suppose a photon of
energy hν = 2 × 10−4 eV scatters off a proton of energy 109mP = 1018 eV, energies
measured in the Sun’s rest frame. Use Eq. (2.43) in the proton’s initial rest frame to
calculate the maximum final energy the photon can have in the solar rest frame after
the scattering. What energy range is this (X-ray, visible, etc.)?

34 Show that, if �A, �B, and �C are any vectors and α and β any real numbers,

(α�A) · �B = α(�A · �B),

�A · (β �B) = β(�A · �B),

�A · (�B + �C) = �A · �B + �A · �C,

(�A + �B) · �C = �A · �C + �B · �C.

35 Show that the vectors {�eβ̄} obtained from {�eα} by Eq. (2.15) satisfy �eᾱ · �eβ̄ = ηᾱβ̄ for

all ᾱ, β̄.
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3.1 The met r i c tensor

Consider the representation of two vectors �A and �B on the basis {�eα} of some frame O:

�A = Aα�eα , �B = Bβ�eβ .

Their scalar product is

�A · �B = (Aα�eα) · (Bβ�eβ ).

(Note the importance of using different indices α and β to distinguish the first summation
from the second.) Following Exer. 34, § 2.9, we can rewrite this as

�A · �B = AαBβ (�eα · �eβ ),

which, by Eq. (2.27), is

�A · �B = AαBβηαβ . (3.1)

This is a frame-invariant way of writing

−A0B0 + A1B1 + A2B2 + A3B3.

The numbers ηαβ are called ‘components of the metric tensor’. We will justify this name
later. Right now we observe that they essentially give a ‘rule’ for associating with two
vectors �A and �B a single number, which we call their scalar product. The rule is that the
number is the double sum AαBβηαβ . Such a rule is at the heart of the meaning of ‘tensor’,
as we now discuss.

3.2 Defin i t ion of tensor s

We make the following definition of a tensor:

A tensor of type
(0
N
)

is a function of N vectors into the real numbers, which is linear in each of its N
arguments.
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Let us see what this definition means. For the moment, we will just accept the notation
(0

N

)
;

its justification will come later in this chapter. The rule for the scalar product, Eq. (3.1),
satisfies our definition of a

(0
2

)
tensor. It is a rule which takes two vectors, �A and �B, and

produces a single real number �A · �B. To say that it is linear in its arguments means what is
proved in Exer. 34, § 2.9. Linearity on the first argument means

(α�A) · �B = α(�A · �B),
and

(�A + �B) · �C = �A · �C + �B · �C,

⎫⎬
⎭ (3.2)

while linearity on the second argument means

�A · (β �B) = β(�A · �B),

�A · (�B + �C) = �A · �B + �A · �C.

This definition of linearity is of central importance for tensor algebra, and the student
should study it carefully.

To give concreteness to this notion of the dot product being a tensor, we introduce a
name and notation for it. We let g be the metric tensor and write, by definition,

g(�A, �B) := �A · �B. (3.3)

Then we regard g( , ) as a function which can take two arguments, and which is linear
in that

g(α�A + β �B, �C) = α g(�A, �C) + β g(�B, �C), (3.4)

and similarly for the second argument. The value of g on two arguments, denoted by
g(�A, �B), is their dot product, a real number.

Notice that the definition of a tensor does not mention components of the vectors. A
tensor must be a rule which gives the same real number independently of the reference
frame in which the vectors’ components are calculated. We showed in the previous chapter
that Eq. (3.1) satisfies this requirement. This enables us to regard a tensor as a function of
the vectors themselves rather than of their components, and this can sometimes be helpful
conceptually.

Notice that an ordinary function of position, f (t, x, y, z), is a real-valued function of no
vectors at all. It is therefore classified as a

(0
0

)
tensor.

Aside on the usage of the term ‘funct ion’

The most familiar notion of a function is expressed in the equation

y = f (x),

where y and x are real numbers. But this can be written more precisely as: f is a ‘rule’
(called a mapping) which associates a real number (symbolically called y, above) with
another real number, which is the argument of f (symbolically called x, above). The func-
tion itself is not f (x), since f (x) is y, which is a real number called the ‘value’ of the
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function. The function itself is f , which we can write as f ( ) in order to show that it has
one argument. In algebra this seems like hair-splitting since we unconsciously think of x
and y as two things at once: they are, on the one hand, specific real numbers and, on the
other hand, names for general and arbitrary real numbers. In tensor calculus we will make
this distinction explicit: �A and �B are specific vectors, �A · �B is a specific real number, and g
is the name of the function that associates �A · �B with �A and �B.

Components of a tensor

Just like a vector, a tensor has components. They are defined as:

The components in a frame O of a tensor of type
(0
N
)

are the values of the function when its arguments
are the basis vectors {�eα} of the frame O.

Thus we have the notion of components as frame-dependent numbers (frame-dependent
because the basis refers to a specific frame). For the metric tensor, this gives the
components as

g(�eα , �eβ ) = �eα · �eβ = ηαβ . (3.5)

So the matrix ηαβ that we introduced before is to be thought of as an array of the compo-
nents of g on the basis. In another basis, the components could be different. We will have
many more examples of this later. First we study a particularly important class of tensors.

3.3 The
(0

1

)
tensor s : one - fo rms

A tensor of the type
(0

1

)
is called a covector, a covariant vector, or a one-form. Often these

names are used interchangeably, even in a single text-book or reference.

General propert ies

Let an arbitrary one-form be called p̃. (We adopt the notation that ˜ above a symbol denotes
a one-form, just as � above a symbol denotes a vector.) Then p̃, supplied with one vector
argument, gives a real number: p̃(�A) is a real number. Suppose q̃ is another one-form. Then
we can define

s̃ = p̃ + q̃,
r̃ = αp̃,

}
(3.6a)
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to be the one-forms that take the following values for an argument �A:

s̃(�A) = p̃(�A) + �q(�A),
r̃(Ã) = α�p(�A).

}
(3.6b)

With these rules, the set of all one-forms satisfies the axioms for a vector space, which
accounts for their other names. This space is called the ‘dual vector space’ to distinguish it
from the space of all vectors such as �A.

When discussing vectors we relied heavily on components and their transformations.
Let us look at those of p̃. The components of p̃ are called pα:

pα := p̃(�eα). (3.7)

Any component with a single lower index is, by convention, the component of a one-form;
an upper index denotes the component of a vector. In terms of components, p̃(�A) is

p̃(�A) = p̃(Aα�eα)

= Aα p̃(�eα),

p̃(�A) = Aαpα . (3.8)

The second step follows from the linearity which is the heart of the definition we gave of a
tensor. So the real number p̃(�A) is easily found to be the sum A0p0 + A1p1 + A2p2 + A3p3.
Notice that all terms have plus signs: this operation is called contraction of �A and p̃, and
is more fundamental in tensor analysis than the scalar product because it can be performed
between any one-form and vector without reference to other tensors. We have seen that
two vectors cannot make a scalar (their dot product) without the help of a third tensor, the
metric.

The components of p̃ on a basis {�eβ̄} are

pβ̄ := p̃(�eβ̄ ) = p̃(�αβ̄�eα)

= �αβ̄ p̃(�eα) = �αβ̄pα . (3.9)

Comparing this with

�eβ̄ = �αβ̄ �eα ,

we see that components of one-forms transform in exactly the same manner as basis vectors
and in the opposite manner to components of vectors. By ‘opposite’, we mean using the
inverse transformation. This use of the inverse guarantees that Aαpα is frame independent
for any vector �A and one-form p̃. This is such an important observation that we shall prove
it explicitly:

Aᾱpᾱ = (�ᾱβAβ )(�μᾱpμ), (3.10a)

= �μᾱ�
ᾱ
βAβpμ, (3.10b)

= δμβAβpμ, (3.10c)

= Aβpβ . (3.10d)



60 Tensor analysis in special relativity
�

(This is the same way in which the vector Aα�eα is kept frame independent.) This inverse
transformation gives rise to the word ‘dual’ in ‘dual vector space’. The property of trans-
forming with basis vectors gives rise to the co in ‘covariant vector’ and its shorter form
‘covector’. Since components of ordinary vectors transform oppositely to basis vectors (in
order to keep Aβ�eβ frame independent), they are often called ‘contravariant’ vectors. Most
of these names are old-fashioned; ‘vectors’ and ‘dual vectors’ or ‘one-forms’ are the mod-
ern names. The reason that ‘co’ and ‘contra’ have been abandoned is that they mix up
two very different things: the transformation of a basis is the expression of new vectors in
terms of old ones; the transformation of components is the expression of the same object in
terms of the new basis. It is important for the student to be sure of these distinctions before
proceeding further.

Basis one-forms

Since the set of all one-forms is a vector space, we can use any set of four linearly inde-
pendent one-forms as a basis. (As with any vector space, one-forms are said to be linearly
independent if no nontrivial linear combination equals the zero one-form. The zero one-
form is the one whose value on any vector is zero.) However, in the previous section we
have already used the basis vectors {�eα} to define the components of a one-form. This sug-
gests that we should be able to use the basis vectors to define an associated one-form basis
{ω̃α ,α = 0, . . . , 3}, which we shall call the basis dual to {�eα}, upon which a one-form has
the components defined above. That is, we want a set {ω̃α} such that

p̃ = pαω̃
α . (3.11)

(Notice that using a raised index on ω̃α permits the summation convention to operate.) The
{ω̃α} are four distinct one-forms, just as the {�eα} are four distinct vectors. This equation
must imply Eq. (3.8) for any vector �A and one-form p̃:

p̃(�A) = pαAα .

But from Eq. (3.11) we get

p̃(�A) = pαω̃
α(�A)

= pαω̃
α(Aβ�eβ )

= pαAβω̃α(�eβ ).

(Notice the use of β as an index in the second line, in order to distinguish its summation
from the one on α.) Now, this final line can only equal pαAα for all Aβ and pα if

ω̃α(�eβ ) = δαβ . (3.12)

Comparing with Eq. (3.7), we see that this equation gives the βth component of the
αth basis one-form. It therefore defines the αth basis one-form. We can write out these
components as
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ω̃0 →
O

(1, 0, 0, 0),

ω̃1 →
O

(0, 1, 0, 0),

ω̃2 →
O

(0, 0, 1, 0),

ω̃3 →
O

(0, 0, 0, 1).

It is important to understand two points here. One is that Eq. (3.12) defines the basis
{ω̃α} in terms of the basis {�eβ}. The vector basis induces a unique and convenient one-
form basis. This is not the only possible one-form basis, but it is so useful to have the
relationship, Eq. (3.12), between the bases that we will always use it. The relationship,
Eq. (3.12), is between the two bases, not between individual pairs, such as ω̃0 and �e0.
That is, if we change �e0, while leaving �e1, �e2, and �e3 unchanged, then in general this
induces changes not only in ω̃0 but also in ω̃1, ω̃2, and ω̃3. The second point to under-
stand is that, although we can describe both vectors and one-forms by giving a set of four
components, their geometrical significance is very different. The student should not lose
sight of the fact that the components tell only part of the story. The basis contains the
rest of the information. That is, a set of numbers (0, 2, −1, 5) alone does not define any-
thing; to make it into something, we must say whether these are components on a vector
basis or a one-form basis and, indeed, which of the infinite number of possible bases is
being used.

It remains to determine how {ω̃α} transforms under a change of basis. That is, each frame
has its own unique set {ω̃α}; how are those of two frames related? The derivation here is
analogous to that for the basis vectors. It leads to the only equation we can write down with
the indices in their correct positions:

ω̃ᾱ = �ᾱβω̃
β . (3.13)

This is the same as for components of a vector, and opposite that for components of a
one-form.

Picture of a one-form

For vectors we usually imagine an arrow if we need a picture. It is helpful to have an
image of a one-form as well. First of all, it is not an arrow. Its picture must reflect the
fact that it maps vectors into real numbers. A vector itself does not automatically map
another vector into a real number. To do this it needs a metric tensor to define the scalar
product. With a different metric, the same two vectors will produce a different scalar prod-
uct. So two vectors by themselves don’t give a number. We need a picture of a one-form
which doesn’t depend on any other tensors having been defined. The one generally used
by mathematicians is shown in Fig. 3.1. The one-form consists of a series of surfaces. The
‘magnitude’ of it is given by the spacing between the surfaces: the larger the spacing the
smaller the magnitude. In this picture, the number produced when a one-form acts on a
vector is the number of surfaces that the arrow of the vector pierces. So the closer their
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(a) (b) (c)

�Figure 3.1 (a) The picture of one-form complementary to that of a vector as an arrow. (b) The value of a
one-form on a given vector is the number of surfaces the arrow pierces. (c) The value of a smaller
one-form on the same vector is a smaller number of surfaces. The larger the one-form, the more
‘intense’ the slicing of space in its picture.

spacing, the larger the number (compare (b) and (c) in Fig. 3.1). In a four-dimensional
space, the surfaces are three-dimensional. The one-form doesn’t define a unique direction,
since it is not a vector. Rather, it defines a way of ‘slicing’ the space. In order to justify this
picture we shall look at a particular one-form, the gradient.

Gradient of a funct ion is a one-form

Consider a scalar field φ(�x) defined at every event �x. The world line of some particle (or
person) encounters a value of φ at each on it (see Fig. 3.2), and this value changes from
event to event. If we label (parametrize) each point on the curve by the value of proper
time τ along it (i.e. the reading of a clock moving on the line), then we can express the
coordinates of events on the curve as functions of τ :

[t = t(τ ), x = x(τ ), y = y(τ ), z = z(τ )].

The four-velocity has components

�U →
(

d t

dτ
,

d x

dτ
, . . .

)
.

Since φ is a function of t, x, y, and z, it is implicitly a function of τ on the curve:

φ(τ ) = φ[t(τ ), x(τ ), y(τ ), z(τ )],

and its rate of change on the curve is
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t

x
τ = 0

τ = 1

τ = 2 →
U

φ(τ) = φ[t(τ), x(τ), y(τ), z(τ)]

�Figure 3.2 A world line parametrized by proper time τ , and the values φ(τ ) of the scalar field φ(t, x, y, z)
along it.

dφ

dτ
= ∂φ

∂t

dt

dτ
+ ∂φ

∂x

dx

dτ
+ ∂φ

∂y

dy

dτ
+ ∂φ

∂z

dz

dτ

= ∂φ

∂t
Ut + ∂φ

∂x
Ux + ∂φ

∂y
Uy + ∂φ

∂z
Uz. (3.14)

It is clear from this that in the last equation we have devised a means of producing from
the vector �U the number dφ/dτ that represents the rate of change of φ on a curve on which
�U is the tangent. This number dφ/dτ is clearly a linear function of �U, so we have defined
a one-form.

By comparison with Eq. (3.8), we see that this one-form has components
(∂φ/∂t, ∂φ/∂x, ∂φ/∂y, ∂φ/∂z). This one-form is called the gradient of φ, denoted by d̃φ:

d̃φ →
O

(
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (3.15)

It is clear that the gradient fits our definition of a one-form. We will see later how it
comes about that the gradient is usually introduced in three-dimensional vector calculus
as a vector.

The gradient enables us to justify our picture of a one-form. In Fig. 3.3 we have drawn
part of a topographical map, showing contours of equal elevation. If h is the elevation, then
the gradient d̃h is clearly largest in an area such as A, where the lines are closest together,
and smallest near B, where the lines are spaced far apart. Moreover, suppose we wanted
to know how much elevation a walk between two points would involve. We would lay out
on the map a line (vector ��x) between the points. Then the number of contours the line
crossed would give the change in elevation. For example, line 1 crosses 1 1

2 contours, while
2 crosses two contours. Line 3 starts near 2 but goes in a different direction, winding up
only 1

2 contour higher. But these numbers are just �h, which is the contraction of d̃h with
��x : �h = ∑

i(∂h/∂xi)�xi or the value of d̃h on ��x (see Eq. (3.8)).
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�Figure 3.3 A topographical map illustrates the gradient one-form (local contours of constant elevation). The
change of height along any trip (arrow) is the number of contours crossed by the arrow.

V
→

ω

�Figure 3.4 The value ω̃(�V) is 2.5.

Therefore, a one-form is represented by a series of surfaces (Fig. 3.4), and its contraction
with a vector �V is the number of surfaces �V crosses. The closer the surfaces, the larger
ω̃. Properly, just as a vector is straight, the one-form’s surfaces are straight and parallel.
This is because we deal with one-forms at a point, not over an extended region: ‘tangent’
one-forms, in the same sense as tangent vectors.

These pictures show why we in general cannot call a gradient a vector. We would like to
identify the vector gradient as that vector pointing ‘up’ the slope, i.e. in such a way that it
crosses the greatest number of contours per unit length. The key phrase is ‘per unit length’.
If there is a metric, a measure of distance in the space, then a vector can be associated with
a gradient. But the metric must intervene here in order to produce a vector. Geometrically,
on its own, the gradient is a one-form.

Let us be sure that Eq. (3.15) is a consistent definition. How do the components
transform? For a one-form we must have

(d̃φ)ᾱ = �βᾱ(d̃φ)β . (3.16)

But we know how to transform partial derivatives:

∂φ

∂xᾱ
= ∂φ

∂xβ
∂xβ

∂xᾱ
,
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which means

(d̃φ)ᾱ = ∂xβ

∂xᾱ
(d̃φ)β . (3.17)

Are Eqs. (3.16) and (3.17) consistent? The answer, of course, is yes. The reason: since

xβ = �βᾱ xᾱ ,

and since �βᾱ are just constants, then

∂xβ/∂xᾱ = �βᾱ . (3.18)

This identity is fundamental. Components of the gradient transform according to the
inverse of the components of vectors. So the gradient is the ‘archetypal’ one-form.

Notation for derivatives

From now on we shall employ the usual subscripted notation to indicate derivatives:

∂φ

∂x
:= φ,x

and, more generally,

∂φ

∂xα
:= φ,α . (3.19)

Note that the index α appears as a superscript in the denominator of the left-hand side of
Eq. (3.19) and as a subscript on the right-hand side. As we have seen, this placement of
indices is consistent with the transformation properties of the expression.

In particular, we have

xα ,β ≡ δαβ ,

which we can compare with Eq. (3.12) to conclude that

d̃xα := ω̃α . (3.20)

This is a useful result, that the basis one-form is just d̃xα . We can use it to write, for any
function f ,

d̃f = ∂f

∂xα
d̃xα .

This looks very much like the physicist’s ‘sloppy-calculus’ way of writing differentials or
infinitesimals. The notation d̃ has been chosen partly to suggest this comparison, but this
choice makes it doubly important for the student to avoid confusion on this point. The
object d̃f is a tensor, not a small increment in f ; it can have a small (‘infinitesimal’) value
if it is contracted with a small vector.
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Normal one-forms

Like the gradient, the concept of a normal vector – a vector orthogonal to a surface – is
one which is more naturally replaced by that of a normal one-form. For a normal vector to
be defined we need to have a scalar product: the normal vector must be orthogonal to all
vectors tangent to the surface. This can be defined only by using the metric tensor. But a
normal one-form can be defined without reference to the metric. A one-form is said to be
normal to a surface if its value is zero on every vector tangent to the surface. If the surface
is closed and divides spacetime into an ‘inside’ and ‘outside’, a normal is said to be an
outward normal one-form if it is a normal one-form and its value on vectors which point
outwards from the surface is positive. In Exer. 13, § 3.10, we prove that d̃f is normal to
surfaces of constant f .

3.4 The
(0

2

)
tensor s

Tensors of type
(0

2

)
have two vector arguments. We have encountered the metric tensor

already, but the simplest of this type is the product of two one-forms, formed according
to the following rule: if p̃ and q̃ are one-forms, then p̃ ⊗ q̃ is the

(0
2

)
tensor which, when

supplied with vectors �A and �B as arguments, produces the number p̃(�A) q̃(�B), i.e. just the
product of the numbers produced by the

(0
1

)
tensors. The symbol ⊗ is called an ‘outer

product sign’ and is a formal notation to show how the
(0

2

)
tensor is formed from the one-

forms. Notice that ⊗ is not commutative: p̃ ⊗ q̃ and q̃ ⊗ p̃ are different tensors. The first
gives the value p̃(�A) q̃(�B), the second the value q̃(�A) p̃(�B).

Components

The most general
(0

2

)
tensor is not a simple outer product, but it can always be represented

as a sum of such tensors. To see this we must first consider the components of an arbitrary(0
2

)
tensor f:

fαβ := f(�eα , �eβ ). (3.21)

Since each index can have four values, there are 16 components, and they can be thought
of as being arrayed in a matrix. The value of f on arbitrary vectors is

f(�A, �B) = f(Aα�eα , Bβ�eβ )

= AαBβ f(�eα , ēβ )

= AαBβ fαβ . (3.22)

(Again notice that two different dummy indices are used to keep the different summations
distinct.) Can we form a basis for these tensors? That is, can we define a set of 16

(0
2

)
tensors ω̃αβ such that, analogous to Eq. (3.11),
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f = fαβω̃
αβ? (3.23)

For this to be the case we would have to have

fμν = f(�eμ, �eν) = fαβω̃
αβ (�eμ, �eν)

and this would imply, as before, that

ω̃αβ (�eμ, �eν) = δαμδ
β
ν . (3.24)

But δαμ is (by Eq. (3.12)) the value of ω̃α on �eμ, and analogously for δβν . Therefore, ω̃αβ

is a tensor the value of which is just the product of the values of two basis one-forms,
and we therefore conclude

ω̃αβ = ω̃α ⊗ ω̃β . (3.25)

So the tensors ω̃α ⊗ ω̃β are a basis for all
(0

2

)
tensors, and we can write

f = fαβω̃
α ⊗ ω̃β . (3.26)

This is one way in which a general
(0

2

)
tensor is a sum over simple outer-product tensors.

Symmetries

A
(0

2

)
tensor takes two arguments, and their order is important, as we have seen. The behav-

ior of the value of a tensor under an interchange of its arguments is an important property
of it. A tensor f is called symmetric if

f(�A, �B) = f(�B, �A) ∀�A, �B. (3.27)

Setting �A = �eα and �B = �eβ , this implies of its components that

fαβ = fβα . (3.28)

This is the same as the condition that the matrix array of the elements is symmetric. An
arbitrary

(0
2

)
tensor h can define a new symmetric h(s) by the rule

h(s)(�A, �B) = 1
2 h(�A, �B) + 1

2 h(�B, �A). (3.29)

Make sure you understand that h(s) satisfies Eq. (3.27) above. For the components this
implies

h(s)αβ = 1
2 (hαβ + hβα). (3.30)

This is such an important mathematical property that a special notation is used for it:

h(αβ) := 1
2 (hαβ + hβα). (3.31)
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Therefore, the numbers h(αβ) are the components of the symmetric tensor formed from h.
Similarly, a tensor f is called antisymmetric if

f(�A, �B) = −f(�B, �A), ∀�A, �B, (3.32)

fαβ = −fβα . (3.33)

An antisymmetric
(0

2

)
tensor can always be formed as

h(A)(�A, �B) = 1
2 h(�A, �B) − 1

2 h(�B, �A),

h(A)αβ = 1
2 (hαβ − hβα).

The notation here is to use square brackets on the indices:

h[αβ] = 1
2 (hαβ − hβα). (3.34)

Notice that

hαβ = 1
2 (hαβ + hβα) + 1

2 (hαβ − hβα)

= h(αβ) + h[αβ]. (3.35)

So any
(0

2

)
tensor can be split uniquely into its symmetric and antisymmetric parts.

The metric tensor g is symmetric, as can be deduced from Eq. (2.26):

g(�A, �B) = g(�B, �A). (3.36)

3.5 Met r i c as a mapp ing of vec to r s into one - fo rms

We now introduce what we shall later see is the fundamental role of the metric in differen-
tial geometry, to act as a mapping between vectors and one-forms. To see how this works,
consider g and a single vector �V . Since g requires two vectorial arguments, the expression
g(�V , ) still lacks one: when another one is supplied, it becomes a number. Therefore, g(�V , )
considered as a function of vectors (which are to fill in the empty ‘slot’ in it) is a linear
function of vectors producing real numbers: a one-form. We call it Ṽ:

g(�V , ) := Ṽ( ), (3.37)

where blanks inside parentheses are a way of indicating that a vector argument is to be
supplied. Then Ṽ is the one-form that evaluates on a vector �A to �V · �A:

Ṽ(�A) := g(�V , �A) = �V · �A. (3.38)

Note that since g is symmetric, we also can write

g( , �V) := Ṽ( ).
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What are the components of Ṽ? They are

Vα := Ṽ(�eα) = �V · �eα = �eα · �V
= �eα · (Vβ�eβ )

= (�eα · �eβ )Vβ

Vα = ηαβVβ . (3.39)

It is important to notice here that we distinguish the components Vα of �V from the compo-
nents Vβ of Ṽ only by the position of the index: on a vector it is up; on a one-form, down.
Then, from Eq. (3.39), we have as a special case

V0 = Vβηβ0 = V0η00 + V1η 10 + . . .

= V0(−1) + 0 + 0 + 0

= −V0, (3.40)

V1 = Vβηβ1 = V0η01 + V1η 11 + . . .

= +V1, (3.41)

etc. This may be summarized as:

if �V → (a, b, c, d),

then Ṽ → (−a, b, c, d). (3.42)

The components of Ṽ are obtained from those of �V by changing the sign of the time com-
ponent. (Since this depended upon the components ηαβ , in situations we encounter later,
where the metric has more complicated components, this rule of correspondence between
Ṽ and �V will also be more complicated.)

The inverse: going from Ã to �A

Does the metric also provide a way of finding a vector �A that is related to a given one-form
Ã? The answer is yes. Consider Eq. (3.39). It says that {Vα} is obtained by multiplying {Vβ}
by a matrix (ηαβ ). If this matrix has an inverse, then we could use it to obtain {Vβ} from
{Vα}. This inverse exists if and only if (ηαβ ) has nonvanishing determinant. But since (ηαβ )
is a diagonal matrix with entries (−1, 1, 1, 1), its determinant is simply −1. An inverse does
exist, and we call its components ηαβ . Then, given {Aβ} we can find {Aα}:

Aα := ηαβAβ . (3.43)
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The use of the inverse guarantees that the two sets of components satisfy Eq. (3.39):

Aβ = ηβαAα .

So the mapping provided by g between vectors and one-forms is one-to-one and invertible.
In particular, with d̃φ we can associate a vector �dφ, which is the one usually associated

with the gradient. We can see that this vector is orthogonal to surfaces of constant φ as
follows: its inner product with a vector in a surface of constant φ is, by this mapping,
identical with the value of the one-form d̃φ on that vector. This, in turn, must be zero since
d̃φ(�V) is the rate of change of φ along �V , which in this case is zero since �V is taken to be
in a surface of constant φ.

It is important to know what {ηαβ} is. You can easily verify that

η00 = −1, η0i = 0, ηij = δij, (3.44)

so that (ηαβ ) is identical to (ηαβ ). Thus, to go from a one-form to a vector, simply change
the sign of the time component.

Why dist inguish one-forms from vectors?

In Euclidean space, in Cartesian coordinates the metric is just {δij}, so the components of
one-forms and vectors are the same. Therefore no distinction is ever made in elementary
vector algebra. But in SR the components differ (by that one change in sign). Therefore,
whereas the gradient has components

d̃φ →
(
∂φ

∂t
,
∂φ

∂x
, . . .

)
,

the associated vector normal to surfaces of constant φ has components

d̃φ →
(

−∂φ
∂t

,
∂φ

∂x
, . . .

)
. (3.45)

Had we simply tried to define the ‘vector gradient’ of a function as the vector with these
components, without first discussing one-forms, the reader would have been justified in
being more than a little skeptical. The non-Euclidean metric of SR forces us to be aware of
the basic distinction between one-forms and vectors: it can’t be swept under the rug.

As we remarked earlier, vectors and one-forms are dual to one another. Such dual spaces
are important and are found elsewhere in mathematical physics. The simplest example is
the space of column vectors in matrix algebra⎛

⎝ a
b...

⎞
⎠ ,

whose dual space is the space of row vectors (a b · · · ). Notice that the product

(a b . . .)

⎛
⎝ p

q
...

⎞
⎠ = ap + bq + . . . (3.46)
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is a real number, so that a row vector can be considered to be a one-form on column vec-
tors. The operation of finding an element of one space from one of the others is called the
‘adjoint’ and is 1–1 and invertible. A less trivial example arises in quantum mechanics.
A wave-function (probability amplitude that is a solution to Schrödinger’s equation) is a
complex scalar field ψ(�x), and is drawn from the Hilbert space of all such functions. This
Hilbert space is a vector space, since its elements (functions) satisfy the axioms of a vec-
tor space. What is the dual space of one-forms? The crucial hint is that the inner product
of any two functions φ(�x) and ψ(�x) is not

∫
φ(�x)ψ(�x) d3x, but, rather, is

∫
φ∗(�x)ψ(�x) d3x,

the asterisk denoting complex conjugation. The function φ∗(�x) acts like a one-form whose
value on ψ(�x) is its integral with it (analogous to the sum in Eq. (3.8)). The operation
of complex conjugation acts like our metric tensor, transforming a vector φ(�x) (in the
Hilbert space) into a one-form φ∗(�x). The fact that φ∗(�x) is also a function in the Hilbert
space is, at this level, a distraction. (It is equivalent to saying that members of the set
(1, −1, 0, 0) can be components of either a vector or a one-form.) The important point
is that in the integral

∫
φ∗(�x)ψ(�x) d3x, the function φ∗(�x) is acting as a one-form, pro-

ducing a (complex) number from the vector ψ(�x). This dualism is most clearly brought
out in the Dirac ‘bra’ and ‘ket’ notation. Elements of the space of all states of the sys-
tem are called | 〉 (with identifying labels written inside), while the elements of the dual
(adjoint with complex conjugate) space are called 〈 |. Two ‘vectors’ |1〉 and |2〉 don’t
form a number, but a vector and a dual vector |1〉 and 〈2| do: 〈2|1〉 is the name of this
number.

In such ways the concept of a dual vector space arises very frequently in advanced
mathematical physics.

Magnitudes and scalar products of one-forms

A one-form p̃ is defined to have the same magnitude as its associated vector �p. Thus
we write

p̃2 = �p2 = ηαβpαpβ . (3.47)

This would seem to involve finding {pα} from {pα} before using Eq. (3.47), but we can
easily get around this. We use Eq. (3.43) for both pα and pβ in Eq. (3.47):

p̃2 = ηαβ (ηαμpμ)(ηβνpν). (3.48)

(Notice that each independent summation uses a different dummy index.) But since ηαβ
and ηβν are inverse matrices to each other, the sum on β collapses:

ηαβη
βν = δνα . (3.49)

Using this in Eq. (3.48) gives

p̃2 = ηαμpμpα . (3.50)
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Thus, the inverse metric tensor can be used directly to find the magnitude of p̃ from its
components. We can use Eq. (3.44) to write this explicitly as

p̃2 = −(p0)2 + (p1)2 + (p2)2 + (p3)2. (3.51)

This is the same rule, in fact, as Eq. (2.24) for vectors. By its definition, this is frame
invariant. One-forms are timelike, spacelike, or null, as their associated vectors are.

As with vectors, we can now define an inner product of one-forms. This is

p̃ · q̃ := 1
2

[
(p̃ + q̃)2 − p̃2 − q̃2

]
. (3.52)

Its expression in terms of components is, not surprisingly,

p̃ · q̃ = −p0q0 + p1q1 + p2q2 + p3q3. (3.53)

Normal vectors and unit normal one-forms

A vector is said to be normal to a surface if its associated one-form is a normal one-
form. Eq. (3.38) shows that this definition is equivalent to the usual one that the vector be
orthogonal to all tangent vectors. A normal vector or one-form is said to be a unit normal
if its magnitude is ±1. (We can’t demand that it be +1, since timelike vectors will have
negative magnitudes. All we can do is to multiply the vector or form by an overall factor
to scale its magnitude to ±1.) Note that null normals cannot be unit normals.

A three-dimensional surface is said to be timelike, spacelike, or null according to which
of these classes its normal falls into. (Exer. 12, § 3.10, proves that this definition is self-
consistent.) In Exer. 21, § 3.10, we explore the following curious properties normal vectors
have on account of our metric. An outward normal vector is the vector associated with
an outward normal one-form, as defined earlier. This ensures that its scalar product with
any vector which points outwards is positive. If the surface is spacelike, the outward nor-
mal vector points outwards. If the surface is timelike, however, the outward normal vector
points inwards. And if the surface is null, the outward vector is tangent to the surface!
These peculiarities simply reinforce the view that it is more natural to regard the normal as
a one-form, where the metric doesn’t enter the definition.

3.6 F ina l l y :
(M

N

)
tensor s

Vector as a funct ion of one-forms

The dualism discussed above is in fact complete. Although we defined one-forms as func-
tions of vectors, we can now see that vectors can perfectly well be regarded as linear
functions that map one-forms into real numbers. Given a vector �V , once we supply a
one-form we get a real number:
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N
)
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�V(p̃) ≡ p̃(�V) ≡ pαVα ≡ 〈p̃, �V〉. (3.54)

In this way we dethrone vectors from their special position as things ‘acted on’ by tensors,
and regard them as tensors themselves, specifically as linear functions of single one-forms
into real numbers. The last notation on Eq. (3.54) is new, and emphasizes the equal status
of the two objects.

(M
0

)
tensors

Generalizing this, we define:

An
(M

0
)

tensor is a linear function of M one-forms into the real numbers.

All our previous discussions of
(0

N

)
tensors apply here. A simple

(2
0

)
tensor is �V ⊗ �W,

which, when supplied with two arguments p̃ and q̃, gives the number �V(p̃) �W(q̃) :=
p̃(�V)q̃( �W) = VαpαWβqβ . So �V ⊗ �W has components VαWβ . A basis for

(2
0

)
tensors is

�eα ⊗ �eβ . The components of an
(M

0

)
tensor are its values when the basis one-form ω̃α

are its arguments. Notice that
(M

0

)
tensors have components all of whose indices are

superscripts.

(M
N

)
tensors

The final generalization is:

An
(M

N
)

tensor is a linear function of M one-forms and N vectors into the real numbers.

For instance, if R is a
(1

1

)
tensor, then it requires a one-form p̃ and a vector �A to give a

number R(p̃; �A). It has components R(ω̃α; �eβ ) := Rαβ . In general, the components of a(M
N

)
tensor will have M indices up and N down. In a new frame,

Rᾱ β̄ = R(ω̃�α; �eβ̄ )

= R(�ᾱμω̃
μ;�νβ̄�eν)

= �ᾱμ�
ν
β̄Rμν . (3.55)

So the transformation of components is simple: each index transforms by bringing in a �
whose indices are arranged in the only way permitted by the summation convention. Some
old names that are still in current use are: upper indices are called ‘contravariant’ (because
they transform contrary to basis vectors) and lower ones ‘covariant’. An

(M
N

)
tensor is said

to be ‘M-times contravariant and N-times covariant’.
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Circular reasoning?

At this point the student might worry that all of tensor algebra has become circular: one-
forms were defined in terms of vectors, but now we have defined vectors in terms of
one-forms. This ‘duality’ is at the heart of the theory, but is not circularity. It means
we can do as physicists do, which is to identify the vectors with displacements ��x
and things like it (such as �p and �v) and then generate all

(M
N

)
tensors by the rules of

tensor algebra; these tensors inherit a physical meaning from the original meaning we
gave vectors. But we could equally well have associated one-forms with some physi-
cal objects (gradients, for example) and recovered the whole algebra from that starting
point. The power of the mathematics is that it doesn’t need (or want) to say what the
original vectors or one-forms are. It simply gives rules for manipulating them. The asso-
ciation of, say, �p with a vector is at the interface between physics and mathematics: it is
how we make a mathematical model of the physical world. A geometer does the same.
He adds to the notion of these abstract tensor spaces the idea of what a vector in a
curved space is. The modern geometer’s idea of a vector is something we shall learn
about when we come to curved spaces. For now we will get some practice with tensors
in physical situations, where we stick with our (admittedly imprecise) notion of vectors
‘like’ ��x.

3.7 Index ‘ ra i s ing ’ and ‘ lower ing ’

In the same way that the metric maps a vector �V into a one-form Ṽ , it maps an
(N

M

)
tensor

into an
(N−1

M+1

)
tensor. Similarly, the inverse maps an

(N
M

)
tensor into an

(N+1
M−1

)
tensor. Nor-

mally, these are given the same name, and are distinguished only by the positions of their
indices. Suppose Tαβγ are the components of a

(2
1

)
tensor. Then

Tαβγ := ηβμTαμγ (3.56)

are the components of a
(1

2

)
tensor (obtained by mapping the second one-form argument of

Tαβγ into a vector), and

Tα
β
γ := ηαμTμβγ (3.57)

are the components of another (inequivalent)
(1

2

)
tensor (mapping on the first index), while

Tαβγ := ηγμTαβμ (3.58)

are the components of a
(3

0

)
tensor. These operations are, naturally enough, called index

‘raising’ and ‘lowering’. Whenever we speak of raising or lowering an index we mean
this map generated by the metric. The rule in SR is simple: when raising or lowering a
‘0’ index, the sign of the component changes; when raising or lowering a ‘1’ or ‘2’ or ‘3’
index (in general, an ‘i’ index) the component is unchanged.
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Mixed components of metr ic

The numbers {ηαβ} are the components of the metric, and {ηαβ} those of its inverse. Sup-
pose we raise an index of ηαβ using the inverse. Then we get the ‘mixed’ components of
the metric,

ηαβ ≡ ηαμημβ . (3.59)

But on the right we have just the matrix product of two matrices that are the inverse of
each other (readers who aren’t sure of this should verify the following equation by direct
calculation), so it is the unit identity matrix. Since one index is up and one down, it is the
Kronecker delta, written as

ηαβ ≡ δαβ . (3.60)

By raising the other index we merely obtain an identity, ηαβ = ηαβ . So we can regard ηαβ

as the components of the
(2

0

)
tensor, which is mapped from the

(0
2

)
tensor g by g−1. So, for

g, its ‘contravariant’ components equal the elements of the matrix inverse of the matrix of
its ‘covariant’ components. It is the only tensor for which this is true.

Metric and nonmetric vector algebras

It is of some interest to ask why the metric is the one that generates the correspondence
between one-forms and vectors. Why not some other

(0
2

)
tensor that has an inverse? We’ll

explore that idea in stages.
First, why a correspondence at all? Suppose we had a ‘nonmetric’ vector algebra, com-

plete with all the dual spaces and
(M

N

)
tensors. Why make a correspondence between

one-forms and vectors? The answer is that sometimes we do and sometimes we don’t.
Without one, the inner product of two vectors is undefined, since numbers are produced
only when one-forms act on vectors and vice-versa. In physics, scalar products are use-
ful, so we need a metric. But there are some vector spaces in mathematical physics where
metrics are not important. An example is phase space of classical and quantum mechanics.

Second, why the metric and not another tensor? If a metric were not defined but another
symmetric tensor did the mapping, a mathematician would just call the other tensor the
metric. That is, he would define it as the one generating a mapping. To a mathematician,
the metric is an added bit of structure in the vector algebra. Different spaces in math-
ematics can have different metric structures. A Riemannian space is characterized by a
metric that gives positive-definite magnitudes of vectors. One like ours, with indefinite
sign, is called pseudo-Riemannian. We can even define a ‘metric’ that is antisymmetric:
a two-dimensional space called spinor space has such a metric, and it turns out to be of
fundamental importance in physics. But its structure is outside the scope of this book. The
point here is that we don’t have SR if we just discuss vectors and tensors. We get SR when
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we say that we have a metric with components ηαβ . If we assigned other components, we
might get other spaces, in particular the curved spacetime of GR.

3.8 D i f fe rent iat ion of tensor s

A function f is a
(0

0

)
tensor, and its gradient d̃f is a

(0
1

)
tensor. Differentiation of a function

produces a tensor of one higher (covariant) rank. We shall now see that this applies as well
to differentiation of tensors of any rank.

Consider a
(1

1

)
tensor T whose components {Tαβ} are functions of position. We can

write T as

T = Tαβω̃
β ⊗ �eα . (3.61)

Suppose, as we did for functions, that we move along a world line with parameter τ , proper
time. The rate of change of T,

dT
dτ

= lim
�τ→0

T(τ +�τ ) − T(τ )

�τ
, (3.62)

is not hard to calculate. Since the basis one-forms and vectors are the same everywhere
(i.e. ω̃α(τ +�τ ) = ω̃α(τ )), it follows that

dT
dτ

=
(

dTαβ
dτ

)
ω̃β ⊗ �eα , (3.63)

where dTαβ/dτ is the ordinary derivative of the function Tαβ along the world line:

dTαβ/dτ = Tαβ,γ Uγ . (3.64)

Now, the object dT/dτ is a
(1

1

)
tensor, since in Eq. (3.62) it is defined to be just the

difference between two such tensors. From Eqs. (3.63) and (3.64) we have, for any
vector �U,

dT/dτ = (Tαβ,γ ω̃
β ⊗ �eα) Uγ , (3.65)

from which we can deduce that

∇T := (Tαβ,γ ω̃
β ⊗ ω̃γ ⊗ �eα) (3.66)

is a
(1

2

)
tensor. This tensor is called the gradient of T.

We use the notation ∇T rather than d̃T because the latter notation is usually reserved by
mathematicians for something else. We also have a convenient notation for Eq. (3.65):

dT/dτ = ∇�UT, (3.67)

∇�UT → {
Tαβ,γUγ

}
. (3.68)

This derivation made use of the fact that the basis vectors (and therefore the basis one-
forms) were constant everywhere. We will find that we can’t assume this in the curved
spacetime of GR, and taking this into account will be our entry point into the theory !
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3.9 Fur ther read ing

Our approach to tensor analysis stresses the geometrical nature of tensors rather than the
transformation properties of their components. Students who wish amplification of some
of the points here can consult the early chapters of Misner et al. (1973) or Schutz (1980b).
See also Bishop and Goldberg (1981).

Most introductions to tensors for physicists outside relativity confine themselves to
‘Cartesian’ tensors, i.e. to tensor components in three-dimensional Cartesian coordinates.
See, for example, Bourne and Kendall (1991) or the chapter in Mathews and Walker (1965).

A very complete reference for tensor analysis in the older style based upon coordinate
transformations is Schouten (1990). See also Yano (1955). Books which develop that point
of view for tensors in relativity include Adler et al. (1975), Landau and Lifshitz (1962),
and Stephani (2004).

3.10 Exerc i ses

1 (a) Given an arbitrary set of numbers {Mαβ ;α = 0, . . . , 3;β = 0, . . . , 3} and two arbi-
trary sets of vector components {Aμ,μ = 0, . . . , 3} and {Bν , ν = 0, . . . , 3}, show
that the two expressions

MαβAαBβ :=
3∑
α=0

3∑
β=0

MαβAαBβ

and
3∑
α=0

MααAαBα

are not equivalent.
(b) Show that

AαBβηαβ = −A0B0 + A1B1 + A2B2 + A3B3.

2 Prove that the set of all one-forms is a vector space.
3 (a) Prove, by writing out all the terms, the validity of the following

p̃(Aα�eα) = Aα p̃(�eα).

(b) Let the components of p̃ be (−1, 1, 2, 0), those of �A be (2, 1, 0, −1) and those of �B
be (0, 2, 0, 0). Find (i) p̃(�A); (ii) p̃(�B); (iii) p̃(�A − 3�B); (iv) p̃(�A) − 3p̃(�B).

4 Given the following vectors in O:

�A →
O

(2, 1, 1, 0), �B →
O

(1, 2, 0, 0), �C →
O

(0, 0, 1, 1), �D →
O

(−3, 2, 0, 0),

(a) show that they are linearly independent;
(b) find the components of p̃ if
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p̃(�A) = 1, p̃(�B) = −1, p̃(�C) = −1, p̃( �D) = 0;

(c) find the value of p̃(�E) for

�E →
O

(1, 1, 0, 0);

(d) determine whether the one-forms p̃, q̃, r̃, and s̃ are linearly independent if q̃(�A) =
q̃(�B) = 0, q̃(�C) = 1, q̃( �D) = −1, r̃(�A) = 2, r̃(�B) = r̃(�C) = r̃( �D) = 0, s̃(�A) =
−1, s̃(�B) = −1, s̃(�C) = s̃( �D) = 0.

5 Justify each step leading from Eqs. (3.10a) to (3.10d).
6 Consider the basis {�eα} of a frame O and the basis (λ̃0, λ̃1, λ̃2, λ̃3) for the space of

one-forms, where we have

λ̃0 →
O

(1, 1, 0, 0),

λ̃1 →
O

(1, −1, 0, 0),

λ̃2 →
O

(0, 0, 1, −1),

λ̃3 →
O

(0, 0, 1, 1).

Note that {λ̃β} is not the basis dual to {�eα}.
(a) Show that p̃ �= p̃(�eα)λ̃α for arbitrary p̃.
(b) Let p̃ →O (1, 1, 1, 1). Find numbers lα such that

p̃ = lαλ̃
α .

These are the components of p̃ on {λ̃α}, which is to say that they are the values of p̃ on
the elements of the vector basis dual to {λ̃α}.

7 Prove Eq. (3.13).
8 Draw the basis one-forms d̃t and d̃x of a frame O.
9 Fig. 3.5 shows curves of equal temperature T (isotherms) of a metal plate. At the points
P and Q as shown, estimate the components of the gradient d̃T . (Hint: the components
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�Figure 3.5 Isotherms of an irregularly heated plate.
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are the contractions with the basis vectors, which can be estimated by counting the
number of isotherms crossed by the vectors.)

10 (a) Given a frame O whose coordinates are {xα}, show that

∂xα/∂xβ = δαβ .

(b) For any two frames, we have, Eq. (3.18):

∂xβ/∂xᾱ = �βᾱ .

Show that (a) and the chain rule imply

�βᾱ�
ᾱ
μ = δβμ.

This is the inverse property again.
11 Use the notation ∂φ/∂xα = φ,α to re-write Eqs. (3.14), (3.15), and (3.18).
12 Let S be the two-dimensional plane x = 0 in three-dimensional Euclidean space. Let

ñ �= 0 be a normal one-form to S.
(a) Show that if �V is a vector which is not tangent to S, then ñ(�V) �= 0.
(b) Show that if ñ(�V) > 0, then ñ( �W) > 0 for any �W, which points toward the same

side of S as �V does (i.e. any �W whose x components has the same sign as Vx).
(c) Show that any normal to S is a multiple of ñ.
(d) Generalize these statements to an arbitrary three-dimensional surface in four-

dimensional spacetime.
13 Prove, by geometric or algebraic arguments, that d̃f is normal to surfaces of constant f .
14 Let p̃ →O (1, 1, 0, 0) and q̃ →O (−1, 0, 1, 0) be two one-forms. Prove, by trying two

vectors �A and �B as arguments, that p̃ ⊗ q̃ �= q̃ ⊗ p̃. Then find the components of p̃ ⊗ q̃.
15 Supply the reasoning leading from Eq. (3.23) to Eq. (3.24).
16 (a) Prove that h(s) defined by

h(s)(�A, �B) = 1
2 h(�A, �B) + 1

2 h(�B, �A) (3.69)

is an symmetric tensor.
(b) Prove that h(A) defined by

h(A)(�A, �B) = 1
2 h(�A, �B) − 1

2 h(�B, �A) (3.70)

is an antisymmetric tensor.
(c) Find the components of the symmetric and antisymmetric parts of p̃ ⊗ q̃ defined in

Exer. 14.
(d) Prove that if h is an antisymmetric

(0
2

)
tensor,

h(�A, �A) = 0

for any vector �A.
(e) Find the number of independent components h(s) and h(A) have.

17 (a) Suppose that h is a
(0

2

)
tensor with the property that, for any two vectors �A and �B

(where �B �= 0)

h( , �A) = αh( , �B),
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where α is a number which may depend on �A and �B. Show that there exist one-
forms p̃ and q̃ such that

h = p̃ ⊗ q̃.

(b) Suppose T is a
(1

1

)
tensor, ω̃ a one-form, �v a vector, and T(ω̃; �v) the value of T on

ω̃ and �v. Prove that T( ; �v) is a vector and T(ω̃; ) is a one-form, i.e. that a
(1

1

)
tensor provides a map of vectors to vectors and one-forms to one-forms.

18 (a) Find the one-forms mapped by the metric tensor from the vectors

�A →O (1, 0, −1, 0), �B→O(0, 1, 1, 0), �C→O(−1, 0, −1, 0),

�D→O(0, 0, 1, 1).

(b) Find the vectors mapped by the inverse of the metric tensor from
the one-form p̃ →O (3, 0, −1, −1), q̃ →O (1, −1, 1, 1), r̃ →O (0, −5, −1, 0),
s̃ →O (−2, 1, 0, 0).

19 (a) Prove that the matrix {ηαβ} is inverse to {ηαβ} by performing the matrix multipli-
cation.

(b) Derive Eq. (3.53).
20 In Euclidean three-space in Cartesian coordinates, we don’t normally distinguish

between vectors and one-forms, because their components transform identically. Prove
this in two steps.
(a) Show that

Aᾱ = �ᾱβAβ

and

Pβ̄ = �αβ̄Pα

are the same transformation if the matrix {�ᾱβ} equals the transpose of its inverse.
Such a matrix is said to be orthogonal.

(b) The metric of such a space has components {δij, i, j = 1, . . . , 3}. Prove that a
transformation from one Cartesian coordinate system to another must obey

δij = �k
ī�

l
j̄δkl

and that this implies {�k
ī} is an orthogonal matrix. See Exer. 32 for the analog of this

in SR.
21 (a) Let a region of the t − x plane be bounded by the lines t = 0, t = 1, x = 0, x = 1.

Within the t − x plane, find the unit outward normal one-forms and their associated
vectors for each of the boundary lines.

(b) Let another region be bounded by the straight lines joining the events whose coor-
dinates are (1, 0), (1, 1), and (2, 1). Find an outward normal for the null boundary
and find its associated vector.

22 Suppose that instead of defining vectors first, we had begun by defining one-forms,
aided by pictures like Fig. 3.4. Then we could have introduced vectors as linear real-
valued functions of one-forms, and defined vector algebra by the analogs of Eqs. (3.6a)
and (3.6b) (i.e. by exchanging arrows for tildes). Prove that, so defined, vectors form a
vector space. This is another example of the duality between vectors and one-forms.
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23 (a) Prove that the set of all
(M

N

)
tensors for fixed M, N forms a vector space. (You must

define addition of such tensors and their multiplication by numbers.)
(b) Prove that a basis for this space is the set

{�eα ⊗ �eβ ⊗ · · · ⊗ �eγ︸ ︷︷ ︸
M vectors

⊗ ω̃μ ⊗ ω̃ν ⊗ · · · ⊗ ω̃λ︸ ︷︷ ︸
N one-forms

}.

(You will have to define the outer product of more than two one-forms.)
24 (a) Given the components of a

(2
0

)
tensor Mαβ as the matrix⎛

⎜⎜⎝
0 1 0 0
1 −1 0 2
2 0 0 1
1 0 −2 0

⎞
⎟⎟⎠ ,

find:
(i) the components of the symmetric tensor M(αβ) and the antisymmetric tensor

M[αβ];
(ii) the components of Mα

β ;
(iii) the components of Mα

β ;
(iv) the components of Mαβ .

(b) For the
(1

1

)
tensor whose components are Mα

β , does it make sense to speak of its
symmetric and antisymmetric parts? If so, define them. If not, say why.

(c) Raise an index of the metric tensor to prove

ηαβ = δαβ .

25 Show that if A is a
(2

0

)
tensor and B a

(0
2

)
tensor, then

AαβBαβ

is frame invariant, i.e. a scalar.
26 Suppose A is an antisymmetric

(2
0

)
tensor, B a symmetric

(0
2

)
tensor, C an arbitrary

(0
2

)
tensor, and D an arbitrary

(2
0

)
tensor. Prove:

(a) AαβBαβ = 0;
(b) AαβCαβ = AαβC[αβ];
(c) BαβDαβ = BαβD(αβ).

27 (a) Suppose A is an antisymmetric
(2

0

)
tensor. Show that {Aαβ}, obtained by lowering

indices by using the metric tensor, are components of an antisymmetric
(0

2

)
tensor.

(b) Suppose Vα = Wα . Prove that Vα = Wα .
28 Deduce Eq. (3.66) from Eq. (3.65).
29 Prove that tensor differentiation obeys the Leibniz (product) rule:

∇(A ⊗ B) = (∇A) ⊗ B + A ⊗ ∇B.

30 In some frame O, the vector fields �U and �D have the components:

�U → (1 + t2, t2,
√

2 t, 0),

�D → (x, 5 tx,
√

2 t, 0),
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and the scalar ρ has the value

ρ = x2 + t2 − y2.

(a) Find �U · �U, �U · �D, �D · �D. Is �U suitable as a four-velocity field? Is �D?
(b) Find the spatial velocity υ of a particle whose four-velocity is �U, for arbitrary t.

What happens to it in the limits t → 0, t → ∞?
(c) Find Uα for all α.
(d) Find Uα

,β for all α,β.
(e) Show that UαUα

,β = 0 for all β. Show that UαUα,β = 0 for all β.
(f) Find Dβ ,β .
(g) Find (UαDβ ),β for all α.
(h) Find Uα(UαDβ ),β and compare with (f) above. Why are the two answers similar?
(i) Find ρ,α for all α. Find ρ ,α for all α. (Recall that ρ ,α := ηαβρ,β .) What are the

numbers {ρ ,α} the components of?
(j) Find ∇�Uρ, ∇�U �D, ∇�Dρ, ∇�D �U.

31 Consider a timelike unit four-vector �U, and the tensor P whose components are
given by

Pμν = ημν + UμUν .

(a) Show that P is a projection operator that projects an arbitrary vector �V into one
orthogonal to �U. That is, show that the vector �V⊥ whose components are

Vα⊥ = PαβVβ = (ηαβ + UαUβ )Vβ

is
(i) orthogonal to �U,

and
(ii) unaffected by P:

Vα⊥⊥ := PαβVβ⊥ = Vα⊥.

(b) Show that for an arbitrary non-null vector �q, the tensor that projects orthogonally
to it has components

ημν − qμqν/(q
αqα).

How does this fail for null vectors? How does this relate to the definition of P?
(c) Show that P defined above is the metric tensor for vectors perpendicular to �U:

P(�V⊥, �W⊥) = g(�V⊥, �W⊥)

= �V⊥ · �W⊥.

32 (a) From the definition fαβ = f(�eα , �eβ ) for the components of a
(0

2

)
tensor, prove that

the transformation law is

fᾱβ̄ = �μᾱ�
ν
β̄ fμν

and that the matrix version of this is

(f̄ ) = (�)T (f )(�),

where (�) is the matrix with components �μᾱ .
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(b) Since our definition of a Lorentz frame led us to deduce that the metric tensor has
components ηαβ , this must be true in all Lorentz frames. We are thus led to a more
general definition of a Lorentz transformation as one whose matrix �μᾱ satisfies

ηᾱβ̄ = �μᾱ�
ν
β̄ημν . (3.71)

Prove that the matrix for a boost of velocity υ �ex satisfies this, so that this new
definition includes our older one.

(c) Suppose (�) and (L) are two matrices which satisfy Eq. (3.71), i.e. (η) =
(�)T (η)(�) and similarly for (L). Prove that (�)(L) is also the matrix of a Lorentz
transformation.

33 The result of Exer. 32c establishes that Lorentz transformations form a group, repre-
sented by multiplication of their matrices. This is called the Lorentz group, denoted by
L(4) or 0(1,3).
(a) Find the matrices of the identity element of the Lorentz group and of the element

inverse to that whose matrix is implicit in Eq. (1.12).
(b) Prove that the determinant of any matrix representing a Lorentz transformation

is ±1.
(c) Prove that those elements whose matrices have determinant +1 form a subgroup,

while those with −1 do not.
(d) The three-dimensional orthogonal group O(3) is the analogous group for the metric

of three-dimensional Euclidean space. In Exer. 20b, we saw that it was represented
by the orthogonal matrices. Show that the orthogonal matrices do form a group,
and then show that 0(3) is (isomorphic to) a subgroup of L(4).

34 Consider the coordinates u = t − x, v = t + x in Minkowski space.
(a) Define �eu to be the vector connecting the events with coordinates {u = 1,

v = 0, y = 0, z = 0} and {u = 0, v = 0, y = 0, z = 0}, and analogously for �eν .
Show that �eu = (�et − �ex)/2, �ev = (�et + �ex)/2, and draw �eu and �ev in a spacetime
diagram of the t − x plane.

(b) Show that {�eu , �ev , �ey, �ez} are a basis for vectors in Minkowski space.
(c) Find the components of the metric tensor on this basis.
(d) Show that �eu and �ev are null and not orthogonal. (They are called a null basis for

the t − x plane.)
(e) Compute the four one-forms d̃u, d̃v, g(�eu , ), g(�ev , ) in terms of d̃t and d̃x.



4 Perfect fluids in special relativity

4.1 F lu ids

In many interesting situations in astrophysical GR, the source of the gravitational field can
be taken to be a perfect fluid as a first approximation. In general, a ‘fluid’ is a special kind
of continuum. A continuum is a collection of particles so numerous that the dynamics of
individual particles cannot be followed, leaving only a description of the collection in terms
of ‘average’ or ‘bulk’ quantities: number of particles per unit volume, density of energy,
density of momentum, pressure, temperature, etc. The behavior of a lake of water, and
the gravitational field it generates, does not depend upon where any one particular water
molecule happens to be: it depends only on the average properties of huge collections of
molecules.

Nevertheless, these properties can vary from point to point in the lake: the pressure is
larger at the bottom than at the top, and the temperature may vary as well. The atmo-
sphere, another fluid, has a density that varies with position. This raises the question of
how large a collection of particles to average over: it must clearly be large enough so that
the individual particles don’t matter, but it must be small enough so that it is relatively
homogeneous: the average velocity, kinetic energy, and interparticle spacing must be the
same everywhere in the collection. Such a collection is called an ‘element’. This is a some-
what imprecise but useful term for a large collection of particles that may be regarded as
having a single value for such quantities as density, average velocity, and temperature. If
such a collection doesn’t exist (e.g. a very rarified gas), then the continuum approximation
breaks down.

The continuum approximation assigns to each element a value of density, temperature,
etc. Since the elements are regarded as ‘small’, this approximation is expressed mathemat-
ically by assigning to each point a value of density, temperature, etc. So a continuum is
defined by various fields, having values at each point and at each time.

So far, this notion of a continuum embraces rocks as well as gases. A fluid is a continuum
that ‘flows’: this definition is not very precise, and so the division between solids and fluids
is not very well defined. Most solids will flow under high enough pressure. What makes
a substance rigid? After some thought we should be able to see that rigidity comes from
forces parallel to the interface between two elements. Two adjacent elements can push and
pull on each other, but the continuum won’t be rigid unless they can also prevent each other
from sliding along their common boundary. A fluid is characterized by the weakness of
such antislipping forces compared to the direct push–pull force, which is called pressure.



85 4.2 Dust : the number–flux vector �N
�

A perfect fluid is defined as one in which all antislipping forces are zero, and the only
force between neighboring fluid elements is pressure. We will soon see how to make this
mathematically precise.

4.2 Dust : the number– f lux vec to r �N

We will introduce the relativistic description of a fluid with the simplest one: ‘dust’ is
defined to be a collection of particles, all of which are at rest in some one Lorentz frame.
It isn’t very clear how this usage of the term ‘dust’ evolved from the other meaning as
that substance which is at rest on the windowsill, but it has become a standard usage in
relativity.

The number density n

The simplest question we can ask about these particles is: How many are there per unit
volume? In their rest frame, this is merely an exercise in counting the particles and dividing
by the volume they occupy. By doing this in many small regions we could come up with
different numbers at different points, since the particles may be distributed more densely
in one area than in another. We define this number density to be n:

n := number density in the MCRF of the element. (4.1)

What is the number density in a frame Ō in which the particles are not at rest? They
will all have the same velocity v in Ō. If we look at the same particles as we counted
up in the rest frame, then there are clearly the same number of particles, but they do not
occupy the same volume. Suppose they were originally in a rectangular solid of dimension
�x �y �z. The Lorentz contraction will reduce this to�x �y �z

√
(1 − v2), since lengths

in the direction of motion contract but lengths perpendicular do not (Fig. 4.1). Because of
this, the number of particles per unit volume is [

√
(1 − v2)]−1 times what it was in the

rest frame:

n√
(1 − v2)

=
{

number density in frame in
which particles have velocity υ

}
. (4.2)

The flux across a surface

When particles move, another question of interest is, ‘how many’ of them are moving in a
certain direction? This is made precise by the definition of flux: the flux of particles across
a surface is the number crossing a unit area of that surface in a unit time. This clearly
depends on the inertial reference frame (‘area’ and ‘time’ are frame-dependent concepts)
and on the orientation of the surface (a surface parallel to the velocity of the particles
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�Figure 4.1 The Lorentz contraction causes the density of particles to depend upon the frame in which it is
measured.
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�Figure 4.2 Simple illustration of the transformation of flux: if particles move only in the x-direction, then all
those within a distance v�t̄ of the surface S will cross S in the time �t̄

won’t be crossed by any of them). In the rest frame of the dust the flux is zero, since all
particles are at rest. In the frame Ō, suppose the particles all move with velocity v in the x̄
direction, and let us for simplicity consider a surface S perpendicular to x̄ (Fig. 4.2). The
rectangular volume outlined by a dashed line clearly contains all and only those particles
that will cross the area �A of S in the time �t̄. It has volume v�t̄ �A, and contains
[n/

√
(1 − v2)]v�t̄ �A particles, since in this frame the number density is n/

√
(1 − v2).

The number crossing per unit time and per unit area is the flux across surfaces of constant x̄:

(flux)x̄ = nv√
(1 − v2)

.

Suppose, more generally, that the particles had a y component of velocity in Ō as well.
Then the dashed line in Fig. 4.3 encloses all and only those particles that cross �A in S in
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ΔA = Δy Δz

υx Δ t

y

x

�

�Figure 4.3 The general situation for flux: only the x-component of the velocity carries particles across a
surface of constant x.

the time�t̄. This is a ‘parallelepiped’, whose volume is the area of its base times its height.
But its height – its extent in the x direction – is just vx̄�t̄. Therefore we get

(flux)x̄ = nvx̄

√
(1 − v2)

. (4.3)

The number–flux four-vector �N

Consider the vector �N defined by

�N = n �U, (4.4)

where �U is the four-velocity of the particles. In a frame Ō in which the particles have a
velocity (vx, vy, vz), we have

�U→̄
O

(
1√

(1 − v2)
,

vx

√
(1 − v2)

,
vy

√
(1 − v2)

,
vz

√
(1 − v2)

)
.

It follows that

�N→̄
O

(
n√

(1 − v2)
,

nvx

√
(1 − v2)

,
nvy

√
(1 − v2)

,
nvz

√
(1 − v2)

)
. (4.5)

Thus, in any frame, the time component of �N is the number density and the spatial com-
ponents are the fluxes across surfaces of the various coordinates. This is a very important
conceptual result. In Galilean physics, number density was a scalar, the same in all frames
(no Lorentz contraction), while flux was quite another thing: a three-vector that was frame
dependent, since the velocities of particles are a frame-dependent notion. Our relativistic
approach has unified these two notions into a single, frame-independent four-vector. This
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is progress in our thinking, of the most fundamental sort: the union of apparently disparate
notions into a single coherent one.

It is worth reemphasizing the sense in which we use the word ‘frame-independent’.
The vector �N is a geometrical object whose existence is independent of any frame; as a
tensor, its action on a one-form to give a number is independent of any frame. Its com-
ponents do of course depend on the frame. Since prerelativity physicists regarded the
flux as a three-vector, they had to settle for it as a frame-dependent vector, in the fol-
lowing sense. As a three-vector it was independent of the orientation of the spatial axes
in the same sense that four-vectors are independent of all frames; but the flux three-
vector is different in frames that move relative to one another, since the velocity of the
particles is different in different frames. To the old physicists, a flux vector had to be
defined relative to some inertial frame. To a relativist, there is only one four-vector,
and the frame dependence of the older way of looking at things came from concen-
trating only on a set of three of the four components of �N. This unification of the
Galilean frame-independent number density and frame-dependent flux into a single frame-
independent four-vector �N is similar to the unification of ‘energy’ and ‘momentum’ into
four-momentum.

One final note: it is clear that

�N · �N = −n2, n = (−�N · �N)1/2. (4.6)

Thus, n is a scalar. In the same way that ‘rest mass’ is a scalar, even though energy and
‘inertial mass’ are frame dependent, here we have that n is a scalar, the ‘rest density’, even
though number density is frame dependent. We will always define n to be a scalar number
equal to the number density in the MCRF. We will make similar definitions for pres-
sure, temperature, and other quantities characteristic of the fluid. These will be discussed
later.

4.3 One - fo rms and sur faces

Number density as a timelike flux

We can complete the above discussion of the unity of number density and flux by realizing
that number density can be regarded as a timelike flux. To see this, let us look at the flux
across x surfaces again, this time in a spacetime diagram, in which we plot only t̄ and x̄
(Fig. 4.4). The surface S perpendicular to x̄ has the world line shown. At any time t̄ it is
just one point, since we are suppressing both ȳ and z̄. The world lines of those particles
that go through S in the time �t̄ are also shown. The flux is the number of world lines
that cross S in the interval �t̄ = 1. Really, since it is a two-dimensional surface, its ‘world
path’ is three-dimensional, of which we have drawn only a section. The flux is the number
of world lines that cross a unit ‘volume’ of this three-surface: by volume we of course
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�Figure 4.4 Fig. 4.2 in a spacetime diagram, with the ȳ direction suppressed.

Particles

x



Δx

t

�Figure 4.5 Number density as a flux across surfaces t̄ = const.

mean a cube of unit side, �t̄ = 1,�ȳ = 1,�z̄ = 1. So we can define a flux as the number
of world lines crossing a unit three-volume. There is no reason we cannot now define this
three-volume to be an ordinary spatial volume �x̄ = 1,�ȳ = 1,�z̄ = 1, taken at some
particular time t̄. This is shown in Fig. 4.5. Now the flux is the number crossing in the
interval �x̄ = 1 (since ȳ and z̄ are suppressed). But this is just the number ‘contained’ in
the unit volume at the given time: the number density. So the ‘timelike’ flux is the number
density.

A one-form defines a surface

The way we described surfaces above was somewhat clumsy. To push our invariant picture
further we need a somewhat more satisfactory mathematical representation of the surface
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that these world lines are crossing. This representation is given by one-forms. In general, a
surface is defined as the solution to some equation

φ(t, x, y, z) = const.

The gradient of the function φ, d̃φ, is a normal one-form. In some sense, d̃φ defines the
surface φ = const., since it uniquely determines the directions normal to that surface.
However, any multiple of d̃φ also defines the same surface, so it is customary to use the
unit-normal one-form when the surface is not null:

ñ := d̃φ/|d̃φ|, (4.7)

where

|d̃φ| is the magnitude of d̃φ :

|d̃φ| = | ηαβ φ,α φ,β |1/2. (4.8)

(Do not confuse ñ with n, the number density in the MCRF: they are completely different,
given, by historical accident, the same letter.)

As in three-dimensional vector calculus (e.g. Gauss’ law), we define the ‘surface ele-
ment’ as the unit normal times an area element in the surface. In this case, a volume element
in a three-space whose coordinates are xα , xβ , and xγ (for some particular values of α,β,
and γ , all distinct) can be represented by

ñ dxα dxβ dxγ , (4.9)

and a unit volume (dxα = dxβ = dxγ = 1) is just ñ. (These dxs are the infinitesimals that
we integrate over, not the gradients.)

The flux across the surface

Recall from Gauss’ law in three dimensions that the flux across a surface of, say, the electric
field is just E · n, the dot product of E with the unit normal. The situation here is exactly
the same: the flux (of particles) across a surface of constant φ is 〈ñ, �N〉. To see this, let φ
be a coordinate, say x̄. Then a surface of constant x̄ has normal d̃x̄, which is a unit normal
already since d̃x̄ →Ō (0, 1, 0, 0). Then 〈d̃x̄, �N〉 = Nα(d̃x̄)α = Nx̄, which is what we have
already seen is the flux across x̄ surfaces. Clearly, had we chosen φ = t̄, then we would
have wound up with N 0̄, the number density, or flux across a surface of constant t̄.

This is one of the first concrete physical examples of our definition of a vector as a
function of one-forms into real numbers. Given the vector �N, we can calculate the flux
across a surface by finding the unit-normal one-form for that surface, and contracting it
with �N. We have, moreover, expressed everything frame invariantly and in a manner that
separates the property of the system of particles �N from the property of the surface ñ. All
of this will have many parallels in § 4.4 below.
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Representation of a frame by a one-form

Before going on to discuss other properties of fluids, we should mention a useful fact. An
inertial frame, which up to now has been defined by its four-velocity, can be defined also
by a one-form, namely that associated with its four-velocity g( �U, ). This has components

Uα = ηαβ Uβ

or, in this frame,

U0 = −1, Ui = 0.

This is clearly also equal to −d̃t̄ (since their components are equal). So we could equally
well define a frame by giving d̃t. This has a nice picture: d̃t is to be pictured as a set of
surfaces of constant t, the surfaces of simultaneity. These clearly do define the frame, up to
spatial rotations, which we usually ignore. In fact, in some sense d̃t is a more natural way
to define the frame than �U. For instance, the energy of a particle whose four-momentum
is �p is

E = 〈d̃t, �p 〉 = p0. (4.10)

There is none of the awkward minus sign that we get in Eq. (2.35)

E = −�p · �U.

4.4 Dust aga in : the st ress–energy tensor

So far we have only discussed how many dust particles there are. But they also have energy
and momentum, and it will turn out that their energy and momentum are the source of the
gravitational field in GR. So we must now ask how to represent them in a frame-invariant
manner. We will assume for simplicity that all the dust particles have the same rest mass m.

Energy density

In the MCRF, the energy of each particle is just m, and the number per unit volume is n.
Therefore the energy per unit volume is mn. We denote this in general by ρ:

ρ := energy density in the MCRF. (4.11)

Thus ρ is a scalar just as n is (and m is). In our case of dust,

ρ = nm (dust). (4.12)

In more general fluids, where there is random motion of particles and hence kinetic energy
of motion, even in an average rest frame, Eq. (4.12) will not be valid.
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In the frame Ō we again have that the number density is n/
√

(1 − v2), but now the
energy of each particle is m/

√
(1 − v2), since it is moving. Therefore the energy density is

mn/
√

(1 − v2):

ρ

1 − v2
=
{

energy density in a frame in
which particles have velocity v

}
. (4.13)

This transformation involves two factors of (1 − v2)−1/2 = �0̄
0, because both volume and

energy transform. It is impossible, therefore, to represent energy density as some compo-
nent of a vector. It is, in fact, a component of a

(2
0

)
tensor. This is most easily seen from

the point of view of our definition of a tensor. To define energy requires a one-form, in
order to select the zero component of the four-vector of energy and momentum; to define
a density also requires a one-form, since density is a flux across a constant-time surface.
Similarly, an energy flux also requires two one-forms: one to define ‘energy’ and the other
to define the surface. We can also speak of momentum density: again a one-form defines
which component of momentum, and another one-form defines density. By analogy there
is also momentum flux: the rate at which momentum crosses some surface. All these things
require two one-forms. So there is a tensor T, called the stress–energy tensor, which has
all these numbers as values when supplied with the appropriate one-forms as arguments.

Stress–energy tensor

The most convenient definition of the stress–energy tensor is in terms of its components in
some (arbitrary) frame:

T(d̃xα , d̃xβ ) = Tαβ :=
{

flux of α momentum across
a surface of constant xβ

}
. (4.14)

(By α momentum we mean, of course, the α component of four-momentum: pα :=
〈d̃xα , �p〉.) That this is truly a tensor is proved in Exer. 5, § 4.10.

Let us see how this definition fits in with our discussion above. Consider T00. This is
defined as the flux of zero momentum (energy) across a surface t = constant. This is just
the energy density:

T00 = energy density. (4.15)

Similarly, T0i is the flux of energy across a surface xi = const:

T0i = energy flux across xi surface. (4.16)

Then Ti0 is the flux of i momentum across a surface t = const: the density of i momentum,

Ti0 = i momentum density. (4.17)

Finally, Tij is the j flux of i momentum:

Tij = flux of i momentum across j surface. (4.18)
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For any particular system, giving the components of T in some frame defines it com-
pletely. For dust, the components of T in the MCRF are particularly easy. There is no
motion of the particles, so all i momenta are zero and all spatial fluxes are zero. Therefore

(T00)MCRF = ρ = mn,

(T0i)MCRF = (Ti0)MCRF = (Tij)MCRF = 0.

It is easy to see that the tensor �p ⊗ �N has exactly these components in the MCRF, where
�p = m �U is the four-momentum of a particle. Therefore we have

Dust : T = �p ⊗ �N = mn �U ⊗ �U = ρ �U ⊗ �U. (4.19)

From this we can conclude

Tαβ = T(ω̃α , ω̃β )

= ρ �U(ω̃α) �U(ω̃β )

= ρUαUβ . (4.20)

In the frame Ō, where

�U →
(

1√
(1 − v2)

,
vx

√
(1 − v2)

, . . .

)
,

we therefore have

T 0̄0̄ = ρU0̄U0̄ = ρ/(1 − v2),

T 0̄ī = ρU0̄Uī = ρvi/(1 − v2),

Tī0̄ = ρUīU0̄ = ρvi(1 − v2),

Tīj̄ = ρUīUj̄ = ρvivj/(1 − v2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.21)

These are exactly what we would calculate, from first principles, for energy density, energy
flux, momentum density, and momentum flux respectively. (We did the calculation for
energy density above.) Notice one important point: Tαβ = Tβα; that is, T is symmetric.
This will turn out to be true in general, not just for dust.

4.5 Genera l f lu ids

Until now we have dealt with the simplest possible collection of particles. To generalize
this to real fluids, we have to take account of the facts that (i) besides the bulk motions
of the fluid, each particle has some random velocity; and (ii) there may be various forces
between particles that contribute potential energies to the total.
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Table 4.1 Macroscopic quantities for single-component fluids

Symbol Name Definition

�U Four-velocity of fluid
element

Four-velocity of MCRF

n Number density Number of particles per unit volume in MCRF
�N Flux vector �N := n �U
ρ energy density Density of total mass energy (rest mass, random

kinetic, chemical, . . .)
� Internal energy per particle � := (ρ/n) − m ⇒ ρ = n(m +�) Thus � is a

general name for all energies other than the rest
mass.

ρ0 Rest-mass density ρ0 := mn.
Since m is a constant, this is the ‘energy’
associated with the rest mass only. Thus,
ρ = ρ0 + n�.

T Temperature Usual thermodynamic definition in MCRF (see
below).

p Pressure Usual fluid-dynamical notion in MCRF. More
about this later.

S Specific entropy Entropy per particle (see below).

Definit ion of macroscopic quantit ies

The concept of a fluid element was discussed in § 4.1. For each fluid element, we go to
the frame in which it is at rest (its total spatial momentum is zero). This is its MCRF. This
frame is truly momentarily comoving: since fluid elements can be accelerated, a moment
later a different inertial frame will be the MCRF. Moreover, two different fluid elements
may be moving relative to one another, so that they would not have the same MCRFs.
Thus, the MCRF is specific to a single fluid element, and which frame is the MCRF is
a function of position and time. All scalar quantities associated with a fluid element in
relativity (such as number density, energy density, and temperature) are defined to be their
values in the MCRF. Thus we make the definitions displayed in Table 4.1. We confine our
attention to fluids that consist of only one component, one kind of particle, so that (for
example) interpenetrating flows are not possible.

First law of thermodynamics

This law is simply a statement of conservation of energy. In the MCRF, we imagine that
the fluid element is able to exchange energy with its surroundings in only two ways: by
heat conduction (absorbing an amount of heat�Q) and by work (doing an amount of work
p�V , where V is the three-volume of the element). If we let E be the total energy of the
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element, then since� Q is energy gained and p� V is energy lost, we can write (assuming
small changes)

�E = �Q − p�V ,
or

�Q = �E + p�V .

⎫⎬
⎭ (4.22)

Now, if the element contains a total of N particles, and if this number doesn’t change (i.e.
no creation or destruction of particles), we can write

V = N

n
, �V = − N

n2
�n. (4.23)

Moreover, we also have (from the definition of ρ)

E = ρV = ρN/n,

�E = ρ�V + V�ρ.

These two results imply

�Q = N

n
�ρ − N(ρ + p)

�n

n2
.

If we write q := Q/N, which is the heat absorbed per particle, we obtain

n �q = �ρ − ρ + p

n
�n. (4.24)

Now suppose that the changes are ‘infinitesimal’. It can be shown in general that a fluid’s
state can be given by two parameters: for instance, ρ and T or ρ and n. Everything else is
a function of, say, ρ and n. That means that the right-hand side of Eq. (4.24),

dρ − (ρ + p)dn/n,

depends only on ρ and n. The general theory of first-order differential equations shows
that this always possesses an integrating factor: that is, there exist two functions A and B,
functions only of ρ and n, such that

dρ − (ρ + p)dn/n ≡ A dB

is an identity for all ρ and n. It is customary in thermodynamics to define temperature to
be A/n and specific entropy to be B:

dρ − (ρ + p) dn/n = nT dS, (4.25)

or, in other words,

� q = T � S. (4.26)

The heat absorbed by a fluid element is proportional to its increase in entropy.
We have thus introduced T and S as convenient mathematical definitions. A full treat-

ment would show that T is the thing normally meant by temperature, and that S is the thing
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used in the second law of thermodynamics, which says that the total entropy in any sys-
tem must increase. We’ll have nothing to say about the second law. Entropy appears here
only because it is an integral of the first law, which is merely conservation of energy. In
particular, we shall use both Eqs. (4.25) and (4.26) later.

The general stress–energy tensor

The definition of Tαβ in Eq. (4.14) is perfectly general. Let us in particular look at it in the
MCRF, where there is no bulk flow of the fluid element, and no spatial momentum in the
particles. Then in the MCRF we have:

(1) T00 = energy density = ρ.
(2) T0i = energy flux. Although there is no motion in the MCRF, energy may be

transmitted by heat conduction. So T0i is basically a heat-conduction term in the
MCRF.

(3) Ti0 = momentum density. Again the particles themselves have no net momentum
in the MCRF, but if heat is being conducted, then the moving energy will have an
associated momentum. We’ll argue below that Ti0 ≡ T0i.

(4) Tij = momentum flux. This is an interesting and important term. The next section gives
a thorough discussion of it. It is called the stress.

The spatial components of T , T ij

By definition, Tij is the flux of i momentum across the j surface. Consider (Fig. 4.6) two
adjacent fluid elements, represented as cubes, having the common interface S. In general,
they exert forces on each other. Shown in the diagram is the force F exerted by A on B (B
of course exerts an equal and opposite force on A). Since force equals the rate of change
of momentum (by Newton’s law, which is valid here, since we are in the MCRF where

y

x

z

A B

F



�Figure 4.6 The force F exerted by element A on its neighbor B may be in any direction depending on
properties of the medium and any external forces.
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velocities are zero), A is pouring momentum into B at the rate F per unit time. Of course,
B may or may not acquire a new velocity as a result of this new momentum it acquires;
this depends upon how much momentum is put into B by its other neighbors. Obviously
B’s motion is the resultant of all the forces. Nevertheless, each force adds momentum to B.
There is therefore a flow of momentum across S from A to B at the rate F. If S has area A,
then the flux of momentum across S is F/A. If S is a surface of constant xj, then Tij for
fluid element A is Fi/A.

This is a brief illustration of the meaning of Tij: it represents forces between adjacent
fluid elements. As mentioned before, these forces need not be perpendicular to the surfaces
between the elements (i.e. viscosity or other kinds of rigidity give forces parallel to the
interface). But if the forces are perpendicular to the interfaces, then Tij will be zero unless
i = j. (Think this through – we’ll use it shortly.)

Symmetry of Tαβ in MCRF

We now prove that T is a symmetric tensor. We need only prove that its components are
symmetric in one frame; that implies that for any r̃, q̃, T(r̃, q̃) = T(q̃, r̃), which implies the
symmetry of its components in any other frame. The easiest frame is the MCRF.

(a) Symmetry of Tij. Consider Fig. 4.7 in which we have drawn a fluid element as a cube
of side l. The force it exerts on a neighbor across surface (1) (a surface x = const.) is
Fi

1 = Tixl2, where the factor l2 gives the area of the face. Here, i runs over 1, 2, and 3, since
F is not necessarily perpendicular to the surface. Similarly, the force it exerts on a neighbor
across (2) is Fi

2 = Tiyl2. (We shall take the limit l → 0, so bear in mind that the element is
small.) The element also exerts a force on its neighbor toward the −x direction, which we
call Fi

3. Similarly, there is Fi
4 on the face looking in the negative y direction. The forces on

the fluid element are, respectively, −Fi
1, −Fi

2, etc. The first point is that Fi
3 ≈ −Fi

1 in order
that the sum of the forces on the element should vanish when l → 0 (otherwise the tiny
mass obtained as l → 0 would have an infinite acceleration). The next point is to compute

y

x

z
4

1
2

3

l

l

l

�Figure 4.7 A fluid element.
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torques about the z axis through the center of the fluid element. (Since forces on the top and
bottom of the cube don’t contribute to this, we haven’t considered them.) For the torque
calculation it is convenient to place the origin of coordinates at the center of the cube. The
torque due to −F1 is −(r × F1)z = −xFy

1 = − 1
2 lTyxl2, where we have approximated the

force as acting at the center of the face, where r → (l/2, 0, 0) (note particularly that y = 0
there). The torque due to −F3 is the same, − 1

2 l3Tyx. The torque due to −F2 is −(r ×
F2)z = +yFx

2 = 1
2 lTxyl2. Similarly, the torque due to −F4 is the same, 1

2 l3Txy. Therefore,
the total torque is

τz = l3(Txy − Tyx). (4.27)

The moment of inertia of the element about the z axis is proportional to its mass times
l2, or

I = αρl5,

where α is some numerical constant and ρ is the density (whether of total energy or rest
mass doesn’t matter in this argument). Therefore the angular acceleration is

θ̈ = τ

I
= Txy − Tyx

αρl2
. (4.28)

Since α is a number and ρ is independent of the size of the element, as are Txy and Tyx,
this will go to infinity as l → 0 unless

Txy = Tyx.

Thus, since it is obviously not true that fluid elements are whirling around inside fluids,
smaller ones whirling ever faster, we have that the stresses are always symmetric:

Tij = Tji. (4.29)

Since we made no use of any property of the substance, this is true of solids as well as
fluids. It is true in Newtonian theory as well as in relativity; in Newtonian theory Tij are
the components of a three-dimensional

(2
0

)
tensor called the stress tensor. It is familiar to

any materials engineer; and it contributes its name to its relativistic generalization T.

(b) Equality of momentum density and energy flux. This is much easier to demonstrate.
The energy flux is the density of energy times the speed it flows at. But since energy and
mass are the same, this is the density of mass times the speed it is moving at; in other
words, the density of momentum. Therefore T0i = Ti0.

Conservation of energy–momentum

Since T represents the energy and momentum content of the fluid, there must be some
way of using it to express the law of conservation of energy and momentum. In fact it is
reasonably easy. In Fig. 4.8 we see a cubical fluid element, seen only in cross-section (z
direction suppressed). Energy can flow in across all sides. The rate of flow across face (4)
is l2T0x(x = 0), and across (2) is −l2T0x(x = a); the second term has a minus sign, since
T0x represents energy flowing in the positive x direction, which is out of the volume across
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�Figure 4.8 A section z = const. of a cubical fluid element.

face (2). Similarly, energy flowing in the y direction is l2T0y(y = 0) − l2T0y(y = l). The
sum of these rates must be the rate of increase in the energy inside, ∂(T00l3)/∂t (statement
of conservation of energy). Therefore we have

∂

∂t
l3T00 = l2

[
T0x(x = 0) − T0x(x = l) + T0y(y = 0)

−Toy(y = l) + T0z(z = 0) − T0z(z = l)
]

. (4.30)

Dividing by l3 and taking the limit l → 0 gives

∂

∂t
T00 = − ∂

∂x
T0x − ∂

∂y
T0y − ∂

∂z
T0z. (4.31)

[In deriving this we use the definition of the derivative

lim
l→0

T0x(x = 0) − T0x(x = l)

l
≡ − ∂

∂x
T0x.

]
(4.32)

Eq. (4.31) can be written as

T00
,0 + T0x

,x + T0y
,y + T0z

,z = 0

or

T0α
,α = 0. (4.33)

This is the statement of the law of conservation of energy.
Similarly, momentum is conserved. The same mathematics applies, with the index ‘0’

changed to whatever spatial index corresponds to the component of momentum whose
conservation is being considered. The general conservation law is, then,

Tαβ ,β = 0. (4.34)

This applies to any material in SR. Notice it is just a four-dimensional divergence. Its
relation to Gauss’ theorem, which gives an integral form of the conservation law, will be
discussed later.
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Conservation of part ic les

It may also happen that, during any flow of the fluid, the number of particles in a fluid
element will change, but of course the total number of particles in the fluid will not change.
In particular, in Fig. 4.8 the rate of change of the number of particles in a fluid element
will be due only to loss or gain across the boundaries, i.e. to net fluxes out or in. This
conservation law is derivable in the same way as Eq. (4.34) was. We can then write that

∂

∂t
N0 = − ∂

∂x
Nx − ∂

∂y
Ny − ∂

∂z
Nz

or

Nα ,α = (nUα),α = 0. (4.35)

We will confine ourselves to discussing only fluids that obey this conservation law. This
is hardly any restriction, since n can, if necessary, always be taken to be the density of
baryons.

‘Baryon’, for those not familiar with high-energy physics, is a general name applied to
the more massive particles in physics. The two commonest are the neutron and proton.
All others are too unstable to be important in everyday physics – but when they decay they
form protons and neutrons, thus conserving the total number of baryons without conserving
rest mass or particle identity. Although theoretical physics suggests that baryons may not
always be conserved – for instance, so-called ‘grand unified theories’ of the strong, weak,
and electromagnetic interactions may predict a finite lifetime for the proton, and collapse to
and subsequent evaporation of a black hole (see Ch. 11) will not conserve baryon number –
no such phenomena have yet been observed and, in any case, are unlikely to be important
in most situations.

4.6 Per fec t f lu ids

Finally, we come to the type of fluid which is our principal subject of interest. A perfect
fluid in relativity is defined as a fluid that has no viscosity and no heat conduction in the
MCRF. It is a generalization of the ‘ideal gas’ of ordinary thermodynamics. It is, next to
dust, the simplest kind of fluid to deal with. The two restrictions in its definition simplify
enormously the stress–energy tensor, as we now see.

No heat conduction

From the definition of T, we see that this immediately implies that, in the MCRF, T0i =
Ti0 = 0. Energy can flow only if particles flow. Recall that in our discussion of the first
law of thermodynamics we showed that if the number of particles was conserved, then
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the specific entropy was related to heat flow by Eq. (4.26). This means that in a perfect
fluid, if Eq. (4.35) for conservation of particles is obeyed, then we should also have that S
is a constant in time during the flow of the fluid. We shall see how this comes out of the
conservation laws in a moment.

No viscosity

Viscosity is a force parallel to the interface between particles. Its absence means that the
forces should always be perpendicular to the interface, i.e. that Tij should be zero unless
i = j. This means that Tij should be a diagonal matrix. Moreover, it must be diagonal in all
MCRF frames, since ‘no viscosity’ is a statement independent of the spatial axes. The only
matrix diagonal in all frames is a multiple of the identity: all its diagonal terms are equal.
Thus, an x surface will have across it only a force in the x direction, and similarly for y
and z; these forces-per-unit-area are all equal, and are called the pressure, p. So we have
Tij = pδij. From six possible quantities (the number of independent elements in the 3 × 3
symmetric matrix Tij) the zero-viscosity assumption has reduced the number of functions
to one, the pressure.

Form of T

In the MCRF, T has the components we have just deduced:

(Tαβ ) =

⎛
⎜⎜⎝
ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ . (4.36)

It is not hard to show that in the MCRF

Tαβ = (ρ + p)UαUβ + pηαβ . (4.37)

For instance, if α = β = 0, then U0 = 1, η00 = −1, and Tαβ = (ρ + p) − p = ρ, as in
Eq. (4.36). By trying all possible α and β you can verify that Eq. (4.37) gives Eq. (4.36).
But Eq. (4.37) is a frame-invariant formula in the sense that it uniquely implies

T = (ρ + p) �U ⊗ �U + pg−1. (4.38)

This is the stress–energy tensor of a perfect fluid.

Aside on the meaning of pressure

A comparison of Eq. (4.38) with Eq. (4.19) shows that ‘dust’ is the special case of a
pressure-free perfect fluid. This means that a perfect fluid can be pressure free only if its
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particles have no random motion at all. Pressure arises in the random velocities of the par-
ticles. Even a gas so dilute as to be virtually collisionless has pressure. This is because
pressure is the flux of momentum; whether this comes from forces or from particles
crossing a boundary is immaterial.

The conservation laws

Eq. (4.34) gives us

Tαβ ,β = [
(ρ + p)UαUβ + pηαβ

]
,β = 0. (4.39)

This gives us our first real practice with tensor calculus. There are four equations in
Eq. (4.39), one for each α. First, let us also assume

(nUβ ),β = 0 (4.40)

and write the first term in Eq. (4.39) as

[
(ρ + p)UαUβ

]
,β =

[
ρ + p

n
UαnUβ

]
,β

= nUβ

(
ρ + p

n
Uα

)
,β

. (4.41)

Moreover, ηαβ is a constant matrix, so ηαβ ,γ = 0. This also implies, by the way, that

Uα
,βUα = 0. (4.42)

The proof of Eq. (4.42) is

UαUα = −1 ⇒ (UαUα),β = 0 (4.43)

or

(UαUγ ηαγ ),β = (UαUγ ),βηαγ = 2Uα
,βUγ ηαγ . (4.44)

The last step follows from the symmetry of ηαβ , which means that Uα
,βUγ ηαγ =

UαUγ
,βηαγ . Finally, the last expression in Eq. (4.44) converts to

2Uα
,βUα,

which is zero by Eq. (4.43). This proves Eq. (4.42). We can make use of Eq. (4.42) in the
following way. The original equation now reads, after use of Eq. (4.41),

nUβ

(
ρ + p

n
Uα

)
,β

+ p,βη
αβ = 0. (4.45)

From the four equations here, we can obtain a particularly useful one. Multiply by Uα and
sum on α. This gives the time component of Eq. (4.45) in the MCRF:

nUβUα

(
ρ + p

n
Uα

)
,β

+ p,βη
αβUα = 0. (4.46)
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The last term is just

p,βUβ ,

which we know to be the derivative of p along the world line of the fluid element, dp/dτ .
The first term gives zero when the β derivative operates on Uα (by Eq. 4.42), so we obtain
(using Uα Uα = −1)

Uβ

[
−n

(
ρ + p

n

)
,β

+ p,β

]
= 0. (4.47)

A little algebra converts this to

− Uβ

[
ρ,β − ρ + p

n
n,β

]
= 0. (4.48)

Written another way,
dρ

dτ
− ρ + p

n

dn

dτ
= 0. (4.49)

This is to be compared with Eq. (4.25). It means

UαS,α = dS

dτ
= 0. (4.50)

Thus, the flow of a particle-conserving perfect fluid conserves specific entropy. This is
called adiabatic. Because entropy is constant in a fluid element as it flows, we shall not
normally need to consider it. Nevertheless, it is important to remember that the law of con-
servation of energy in thermodynamics is embodied in the component of the conservation
equations, Eq. (4.39), parallel to Uα .

The remaining three components of Eq. (4.39) are derivable in the following way. We
write, again, Eq. (4.45):

nUβ

(
ρ + p

n
Uα

)
,β

+ p,βη
αβ = 0

and go to the MCRF, where Ui = 0 but Ui
,β �= 0. In the MCRF, the zero component of this

equation is the same as its contraction with Uα , which we have just examined. So we only
need the i components:

nUβ

(
ρ + p

n
Ui
)

,β
+ p,βη

iβ = 0. (4.51)

Since Ui = 0, the β derivative of (ρ + p)/n contributes nothing, and we get

(ρ + p)Ui
,βUβ = p,βη

iβ = 0. (4.52)

Lowering the index i makes this easier to read (and changes nothing). Since ηi
β = δi

β

we get

(ρ + p)Ui,βUβ + p,i = 0. (4.53)
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Finally, we recall that Ui,βUβ is the definition of the four-acceleration ai:

(ρ + p)ai + p,i = 0. (4.54)

Those familiar with nonrelativistic fluid dynamics will recognize this as the generaliza-
tion of

ρa + ∇p = 0, (4.55)

where

a = v̇ + (v · ∇)v. (4.56)

The only difference is the use of (ρ + p) instead of ρ. In relativity, (ρ + p) plays the role
of ‘inertial mass density’, in that, from Eq. (4.54), the larger (ρ + p), the harder it is to
accelerate the object. Eq. (4.54) is essentially F = ma, with −p,i being the force per unit
volume on a fluid element. Roughly speaking, p is the force a fluid element exerts on its
neighbor, so −p is the force on the element. But the neighbor on the opposite side of the
element is pushing the other way, so only if there is a change in p across the fluid element
will there be a net force causing it to accelerate. That is why −∇p gives the force.

4.7 Impor tance fo r genera l re lat i v i ty

General relativity is a relativistic theory of gravity. We weren’t able to plunge into it imme-
diately because we lacked a good enough understanding of tensors, of fluids in SR, and of
curved spaces. We have yet to study curvature (that comes next), but at this point we can
look ahead and discern the vague outlines of the theory we shall study.

The first comment is on the supreme importance of T in GR. Newton’s theory has as
a source of the field the density ρ. This was understood to be the mass density, and so is
closest to our ρ0. But a theory that uses rest mass only as its source would be peculiar
from a relativistic viewpoint, since rest mass and energy are interconvertible. In fact, we
can show that such a theory would violate some very high-precision experiments (to be
discussed later). So the source of the field should be all energies, the density of total mass
energy T00. But to have as the source of the field only one component of a tensor would
give a noninvariant theory of gravity: we would need to choose a preferred frame in order
to calculate T00. Therefore Einstein guessed that the source of the field ought to be T:
all stresses and pressures and momenta must also act as sources. Combining this with his
insight into curved spaces led him to GR.

The second comment is about pressure, which plays a more fundamental role in GR
than in Newtonian theory: first, because it is a source of the field; and, second, because
of its appearance in the (ρ + p) term in Eq. (4.54). Consider a dense star, whose strong
gravitational field requires a large pressure gradient. How large is measured by the accel-
eration the fluid element would have, ai, in the absence of pressure. Given the field, and
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hence given ai, the required pressure gradient is just that which would cause the opposite
acceleration without gravity:

−ai = p,i

ρ + p
.

This gives the pressure gradient p,i. Since (ρ + p) is greater than ρ, the gradient must be
larger in relativity than in Newtonian theory. Moreover, since all components of T are
sources of the gravitational field, this larger pressure adds to the gravitational field, caus-
ing even larger pressures (compared to Newtonian stars) to be required to hold the star
up. For stars where p 	 ρ (see below), this doesn’t make much difference. But when p
becomes comparable to ρ, we find that increasing the pressure is self-defeating: no pres-
sure gradient will hold the star up, and gravitational collapse must occur. This description,
of course, glosses over much detailed calculation, but it shows that even by studying flu-
ids in SR we can begin to appreciate some of the fundamental changes GR brings to
gravitation.

Let us just remind ourselves of the relative sizes of p and ρ. We saw in Exer. 1, § 1.14,
that p 	 ρ in ordinary situations. In fact, we only get p ≈ ρ for very dense material
(neutron star) or material so hot that the particles move at close to the speed of light
(a ‘relativistic’ gas).

4.8 Gauss ’ law

Our final topic on fluids is the integral form of the conservation laws, which are expressed
in differential form in Eqs. (4.34) and (4.35). As in three-dimensional vector calculus, the
conversion of a volume integral of a divergence into a surface integral is called Gauss’ law.
The proof of the theorem is exactly the same as in three dimensions, so we shall not derive
it in detail:

∫
Vα ,α d4x =

∮
Vαnα d3 S, (4.57)

where ñ is the unit-normal one-form discussed in § 4.3, and d3 S denotes the three-volume
of the three-dimensional hypersurface bounding the four-dimensional volume of integra-
tion. The sense of the normal is that it is outward pointing, of course, just as in three
dimensions. In Fig. 4.9 a simple volume is drawn, in order to illustrate the meaning of
Eq. (4.57). The volume is bounded by four pairs of hypersurfaces, for constant t, x, y, and
z; only two pairs are shown, since we can only draw two dimensions easily. The normal
on the t2 surface is d̃ t. The normal on the t1 surface is −d̃ t, since ‘outward’ is clearly
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�Figure 4.9 The boundary of a region of spacetime.

backwards in time. The normal on x2 is d̃x, and on x1 is −d̃x. So the surface integral in
Eq. (4.57) is ∫

t2
V0 dx dy dz +

∫
t1

(−V0) dx dy dz

+
∫

x2

Vxdt dy dz +
∫

x1

(−Vx) dt dy dz

+ similar terms for the other surfaces in the boundary.

We can rewrite this as ∫ [
V0(t2) − V0(t1)

]
dx dy dz

+
∫ [

Vx(x2) − Vx(x1)
]

dt dy dz + · · · . (4.58)

If we let �V be �N, then Nα ,α = 0 means that the above expression vanishes, which has the
interpretation that change in the number of particles in the three-volume (first integral)
is due to the flux across its boundaries (second and subsequent terms). If we are talking
about energy conservation, we replace Nα with T0α , and use T0α

,α = 0. Then, obviously, a
similar interpretation of Eq. (4.58) applies. Gauss’ law gives an integral version of energy
conservation.

4.9 Fur ther read ing

Continuum mechanics and conservation laws are treated in most texts on GR, such as Mis-
ner et al. (1973). Students whose background in thermodynamics or fluid mechanics is
weak are referred to the classic works of Fermi (1956) and Landau and Lifshitz (1959)
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respectively. Apart from Exer. 25, § 4.10 below, we do not study much about electro-
magnetism, but it has a stress–energy tensor and illustrates conservation laws particularly
clearly. See Landau and Lifshitz (1962) or Jackson (1975). Relativistic fluids with dissipa-
tion present their own difficulties, which reward close study. See Israel and Stewart (1980).
Another model for continuum systems is the collisionless gas; see Andréasson (2005) for
a description of how to treat such systems in GR.

4.10 Exerc i ses

1 Comment on whether the continuum approximation is likely to apply to the following
physical systems: (a) planetary motions in the solar system; (b) lava flow from a vol-
cano; (c) traffic on a major road at rush hour; (d) traffic at an intersection controlled by
stop signs for each incoming road; (e) plasma dynamics.

2 Flux across a surface of constant x is often loosely called ‘flux in the x direction’. Use
your understanding of vectors and one-forms to argue that this is an inappropriate way
of referring to a flux.

3 (a) Describe how the Galilean concept of momentum is frame dependent in a manner
in which the relativistic concept is not.

(b) How is this possible, since the relativistic definition is nearly the same as the
Galilean one for small velocities? (Define a Galilean four-momentum vector.)

4 Show that the number density of dust measured by an arbitrary observer whose four-
velocity is �Uobs is −�N · �Uobs.

5 Complete the proof that Eq. (4.14) defines a tensor by arguing that it must be linear in
both its arguments.

6 Establish Eq. (4.19) from the preceding equations.
7 Derive Eq. (4.21).
8 (a) Argue that Eqs. (4.25) and (4.26) can be written as relations among one-forms, i.e.

d̃ρ − (ρ + p)d̃n/n = nT d̃S = n�̃q.

(b) Show that the one-form �̃q is not a gradient, i.e. is not d̃q for any function q.
9 Show that Eq. (4.34), when α is any spatial index, is just Newton’s second law.

10 Take the limit of Eq. (4.35) for |v| 	 1 to get

∂n/∂t + ∂(nvi)/∂xi = 0.

11 (a) Show that the matrix δij is unchanged when transformed by a rotation of the spatial
axes.

(b) Show that any matrix which has this property is a multiple of δij.
12 Derive Eq. (4.37) from Eq. (4.36).
13 Supply the reasoning in Eq. (4.44).
14 Argue that Eq. (4.46) is the time component of Eq. (4.45) in the MCRF.
15 Derive Eq. (4.48) from Eq. (4.47).
16 In the MCRF, Ui = 0. Why can’t we assume Ui

,β = 0?
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17 We have defined aμ = Uμ
,βUβ . Go to the nonrelativistic limit (small velocity) and

show that

ai = v̇i + (v · ∇)vi = Dvi/Dt,

where the operator D/Dt is the usual ‘total’ or ‘advective’ time derivative of fluid
dynamics.

18 Sharpen the discussion at the end of § 4.6 by showing that −∇p is actually the net force
per unit volume on the fluid element in the MCRF.

19 Show that Eq. (4.58) can be used to prove Gauss’ law, Eq. (4.57).
20 (a) Show that if particles are not conserved but are generated locally at a rate ε particles

per unit volume per unit time in the MCRF, then the conservation law, Eq. (4.35),
becomes

Nα ,α = ε.

(b) Generalize (a) to show that if the energy and momentum of a body are not con-
served (e.g. because it interacts with other systems), then there is a nonzero
relativistic force four-vector Fα defined by

Tαβ ,β = Fα .

Interpret the components of Fα in the MCRF.
21 In an inertial frame O calculate the components of the stress–energy tensors of the

following systems:
(a) A group of particles all moving with the same velocity v = βex, as seen in O.

Let the rest-mass density of these particles be ρ0, as measured in their comoving
frame. Assume a sufficiently high density of particles to enable treating them as a
continuum.

(b) A ring of N similar particles of mass m rotating counter-clockwise in the x − y
plane about the origin of O, at a radius a from this point, with an angular veloc-
ity ω. The ring is a torus of circular cross-section of radius δa 	 a, within which
the particles are uniformly distributed with a high enough density for the contin-
uum approximation to apply. Do not include the stress–energy of whatever forces
keep them in orbit. (Part of the calculation will relate ρ0 of part (a) to N, a,ω,
and δa.)

(c) Two such rings of particles, one rotating clockwise and the other counter-
clockwise, at the same radius a. The particles do not collide or interact in any way.

22 Many physical systems may be idealized as collections of noncolliding particles (for
example, black-body radiation, rarified plasmas, galaxies, and globular clusters). By
assuming that such a system has a random distribution of velocities at every point, with
no bias in any direction in the MCRF, prove that the stress–energy tensor is that of a
perfect fluid. If all particles have the same speed υ and mass m, express p and ρ as
functions of m,υ, and n. Show that a photon gas has p = 1

3ρ.
23 Use the identity Tμν ,ν = 0 to prove the following results for a bounded system (i.e. a

system for which Tμν = 0 outside a bounded region of space):
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(a) ∂
∂t

∫
T0α d3x = 0 (conservation of energy and momentum).

(b) ∂2

∂t2
∫

T00xixj d3x = 2
∫

Tij d3x (tensor virial theorem).

(c) ∂2

∂t2
∫

T00(xixi)2 d3x = 4
∫

Ti
ixjxj d3x + 8

∫
Tijxixj d3x.

24 Astronomical observations of the brightness of objects are measurements of the flux of
radiation T0i from the object at Earth. This problem calculates how that flux depends
on the relative velocity of the object and Earth.
(a) Show that, in the rest frame O of a star of constant luminosity L (total energy

radiated per second), the stress–energy tensor of the radiation from the star at the
event (t, x, 0, 0) has components T00 = T0x = Tx0 = Txx = L/(4πx2). The star sits
at the origin.

(b) Let �X be the null vector that separates the events of emission and reception of the
radiation. Show that �X →O(x, x, 0, 0) for radiation observed at the event (x, x, 0, 0).
Show that the stress–energy tensor of (a) has the frame-invariant form

T = L

4π

�X⊗ �X
( �Us · �X)4

,

where �Us is the star’s four-velocity, �Us →O(1, 0, 0, 0).
(c) Let the Earth-bound observer Ō, traveling with speed υ away from the star in

the x direction, measure the same radiation, again with the star on the x̄ axis. Let
�X → (R, R, 0, 0) and find R as a function of x. Express T 0̄x̄ in terms of R. Explain
why R and T 0̄x̄ depend as they do on υ.

25 Electromagnetism in SR. (This exercise is suitable only for students who have already
encountered Maxwell’s equations in some form.) Maxwell’s equations for the electric
and magnetic fields in vacuum, E and B, in three-vector notation are

∇ × B − ∂

∂t
E = 4πJ,

∇ × E + ∂

∂t
B = 0, (4.59)

∇ · E = 4πρ,

∇ · B = 0,

in units where μ0 = ε0 = c = 1. (Here ρ is the density of electric charge and J the
current density.)
(a) An antisymmetric

(2
0

)
tensor F can be defined on spacetime by the equations

F0i = Ei(i = 1, 2, 3), Fxy = Bz, Fyz = Bx, Fzx = By. Find from this definition all
other components Fμν in this frame and write them down in a matrix.

(b) A rotation by an angle θ about the z axis is one kind of Lorentz transformation,
with the matrix

�β
′
α =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎠ .
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Show that the new components of F,

Fα
′β ′ = �α

′
μ�

β ′
νFμν ,

define new electric and magnetic three-vector components (by the rule given in
(a)) that are just the same as the components of the old E and B in the rotated
three-space. (This shows that a spatial rotation of F makes a spatial rotation of
E and B.)

(c) Define the current four-vector �J by J0 = ρ, Ji = (�J)i, and show that two of
Maxwell’s equations are just

Fμν ,ν = 4πJμ. (4.60)

(d) Show that the other two of Maxwell’s equations are

Fμν,λ + Fνλ,μ + Fλμ,ν = 0. (4.61)

Note that there are only four independent equations here. That is, choose one index
value, say zero. Then the three other values (1, 2, 3) can be assigned to μ, ν, λ in
any order, producing the same equation (up to an overall sign) each time. Try it and
see: it follows from antisymmetry of Fμν .

(e) We have now expressed Maxwell’s equations in tensor form. Show that conserva-
tion of charge, Jμ,μ = 0 (recall the similar Eq. (4.35) for the number–flux vector
�N), is implied by Eq. (4.60) above. (Hint: use antisymmetry of Fμν .)

(f) The charge density in any frame is J0. Therefore the total charge in spacetime
is Q = ∫

J0 dx dy dz, where the integral extends over an entire hypersurface t =
const. Defining d̃t = ñ, a unit normal for this hyper-surface, show that

Q =
∫

Jαnα dx dy dz. (4.62)

(g) Use Gauss’ law and Eq. (4.60) to show that the total charge enclosed within any
closed two-surface S in the hypersurface t = const. can be determined by doing an
integral over S itself:

Q =
∮
S

F0ini dS =
∮
S

E · n dS,

where n is the unit normal to S in the hypersurface (not the same as ñ in part (f)
above).

(h) Perform a Lorentz transformation on Fμν to a frame Ō moving with velocity υ
in the x direction relative to the frame used in (a) above. In this frame define a
three-vector Ē with components Ēi = F0̄ī, and similarly for B̄ in analogy with (a).
In this way discover how E and B behave under a Lorentz transformation: they get
mixed together! Thus, E and B themselves are not Lorentz invariant, but are merely
components of F, called the Faraday tensor, which is the invariant description of
electromagnetic fields in relativity. If you think carefully, you will see that on phys-
ical grounds they cannot be invariant. In particular, the magnetic field is created by
moving charges; but a charge moving in one frame may be at rest in another, so a
magnetic field which exists in one frame may not exist in another. What is the same
in all frames is the Faraday tensor: only its components get transformed.



5 Preface to curvature

5.1 On the re lat ion of g rav i tat ion to curvatu re

Until now we have discussed only SR. In SR, forces have played a background role,
and we have never introduced gravitation explicitly as a possible force. One ingredient
of SR is the existence of inertial frames that fill all of spacetime: all of spacetime can
be described by a single frame, all of whose coordinate points are always at rest rela-
tive to the origin, and all of whose clocks run at the same rate relative to the origin’s
clock. From the fundamental postulates we were led to the idea of the interval �s2, which
gives an invariant geometrical meaning to certain physical statements. For example, a time-
like interval between two events is the time elapsed on a clock which passes through the
two events; a spacelike interval is the length of a rod that joins two events in a frame
in which they are simultaneous. The mathematical function that calculates the interval is
the metric, and so the metric of SR is defined physically by lengths of rods and readings
of clocks. This is the power of SR and one reason for the elegance and compactness of
tensor notation in it (for instance the replacement of ‘number density’ and ‘flux’ by �N).
On a piece of paper on which had been plotted all the events and world lines of inter-
est in some coordinate system, it would always be possible to define any metric by just
giving its components gαβ as some arbitrarily chosen set of functions of the coordinates.
But this arbitrary metric would be useless in doing physical calculations. The usefulness
of ηαβ is its close relation to experiment, and our derivation of it drew heavily on the
experiments.

This closeness to experiment is, of course, a test. Since ηαβ makes certain predictions
about rods and clocks, we can ask for their verification. In particular, is it possible to
construct a frame in which the clocks all run at the same rate? This is a crucial question,
and we shall show that in a nonuniform gravitational field the answer, experimentally, is no.
In this sense, gravitational fields are incompatible with global SR: the ability to construct
a global inertial frame. We shall see that in small regions of spacetime – regions small
enough that nonuniformities of the gravitational forces are too small to measure – we can
always construct a ‘local’ SR frame. In this sense, we shall have to build local SR into a
more general theory. The first step is the proof that clocks don’t all run at the same rate in
a gravitational field.
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The gravitat ional redshift experiment

Let us first imagine performing an idealized experiment, first suggested by Einstein. (i) Let
a tower of height h be constructed on the surface of Earth, as in Fig. 5.1. Begin with a
particle of rest mass m at the top of the tower. (ii) The particle is dropped and falls freely
with acceleration g. It reaches the ground with velocity v = (2gh)1/2, so its total energy E,
as measured by an experimenter on the ground, is m + 1

2 mv2 + 0(v4) = m + mgh + 0(v4).
(iii) The experimenter on the ground has some magical method of changing all this energy
into a single photon of the same energy, which he directs upwards. (Such a process does not
violate conservation laws, since Earth absorbs the photon’s momentum but not its energy,
just as it does for a bouncing rubber ball. The student skeptical of ‘magic’ should show
how the argument proceeds if only a fraction ε of the energy is converted into a photon.)
(iv) Upon its arrival at the top of the tower with energy E′, the photon is again magically
changed into a particle of rest mass m′ = E′. It must be that m′ = m; otherwise, perpetual
motion could result by the gain in energy obtained by operating such an experiment. So we
are led by our abhorrence of the injustice of perpetual motion to predict that E′ = m or, for
the photon,

E′

E
= hν′

hν
= m

m + mgh + 0(v4)
= 1 − gh + 0(v4). (5.1)

We predict that a photon climbing in Earth’s gravitational field will lose energy (not
surprisingly) and will consequently be redshifted.

Although our thought experiment is too idealized to be practical, it is possible to measure
the redshift predicted by Eq. (5.1) directly. This was first done by Pound and Rebka (1960)
and improved by Pound and Snider (1965). The experiment used the Mössbauer effect to

h

m
γ

�Figure 5.1 A mass m is dropped from a tower of height h. The total mass at the bottom is converted into
energy and returned to the top as a photon. Perpetual motion will be performed unless the
photon loses as much energy in climbing as the mass gained in falling. Light is therefore
redshifted as it climbs in a gravitational field.
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obtain great precision in the measurement of the difference ν′ − ν produced in a photon
climbing a distance h = 22.5 m. Eq. (5.1) was verified to approximately 1% precision.

With improvements in technology between 1960 and 1990, the gravitational redshift
moved from being a small exotic correction to becoming an effect that is central to society:
the GPS navigation system incorporates vital corrections for the redshift, in the absence of
which it would not remain accurate for more than a few minutes. The system uses a network
of high-precision atomic clocks in orbiting satellites, and navigation by an apparatus on
Earth is accomplished by reading the time-stamps on signals received from five or more
satellites. But, as we shall see below, the gravitational redshift implies that time itself runs
slightly faster at the higher altitude than it does on the Earth. If this were not compensated
for, the ground receiver would soon get wrong time-stamps. The successful operation of
GPS can be taken to be a very accurate verification of the redshift. See Ashby (2003) for a
full discussion of relativity and the GPS system.

This experimental verification of the redshift is comforting from the point of view of
energy conservation. But it is the death-blow to our chances of finding a simple, special-
relativistic theory of gravity, as we shall now show.

Nonexistence of a Lorentz frame at rest on Earth

If SR is to be valid in a gravitational field, it is a natural first guess to assume that the
‘laboratory’ frame at rest on Earth is a Lorentz frame. The following argument, due orig-
inally to Schild (1967), easily shows this assumption to be false. In Fig. 5.2 we draw a
spacetime diagram in this hypothetical frame, in which the one spatial dimension plotted
is the vertical one. Consider light as a wave, and look at two successive ‘crests’ of the
wave as they move upward in the Pound–Rebka–Snider experiment. The top and bottom
of the tower have vertical world lines in this diagram, since they are at rest. Light is shown
moving on a wiggly line, and it is purposely drawn curved in some arbitrary way. This is
to allow for the possibility that gravity may act on light in an unknown way, deflecting

z

t

Bottom Top

First
 crest

Second crest

Δ tbot

Δ tbot

�Figure 5.2 In a time-independent gravitational field, two successive ‘crests’ of an electromagnetic wave
must travel identical paths. Because of the redshift (Eq. (5.1)) the time between them at the top
is larger than at the bottom. An observer at the top therefore ‘sees’ a clock at the bottom running
slowly.
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it from a null path. But no matter how light is affected by gravity the effect must be the
same on both wave crests, since the gravitational field does not change from one time to
another. Therefore the two crests’ paths are congruent, and we conclude from the hypo-
thetical Minkowski geometry that �ttop = �tbottom. On the other hand, the time between
two crests is simply the reciprocal of the measured frequency �t = 1/ν. Since the Pound–
Rebka–Snider experiment establishes that νbottom > νtop, we know that �ttop > �tbottom.
The conclusion from Minkowski geometry is wrong, and the reference frame at rest on
Earth is not a Lorentz frame.

Is this the end, then, of SR? Not quite. We have shown that the Lorentz frame at rest on
Earth is not inertial. We have not shown that there are no inertial frames. In fact there are
certain frames which are inertial in a restricted sense, and in the next paragraph we shall
use another physical argument to find them.

The principle of equivalence

One important property of an inertial frame is that a particle at rest in it stays at rest if no
forces act on it. In order to use this, we must have an idea of what a force is. Ordinarily,
gravity is regarded as a force. But, as Galileo demonstrated in his famous experiment at the
Leaning Tower of Pisa, gravity is distinguished from all other forces in a remarkable way:
all bodies given the same initial velocity follow the same trajectory in a gravitational field,
regardless of their internal composition. With all other forces, some bodies are affected
and others are not: electromagnetism affects charged particles but not neutral ones, and the
trajectory of a charged particle depends on the ratio of its charge to its mass, which is not
the same for all particles. Similarly, the other two basic forces in physics – the so-called
‘strong’ and ‘weak’ interactions – affect different particles differently. With all these forces,
it would always be possible to define experimentally the trajectory of a particle unaffected
by the force, i.e. a particle that remained at rest in an inertial frame. But, with gravity, this
does not work. Attempting to define an inertial frame at rest on Earth, then, is vacuous,
since no free particle (not even a photon) could possibly be a physical ‘marker’ for it.

But there is a frame in which particles do keep a uniform velocity. This is a frame which
falls freely in the gravitational field. Since this frame accelerates at the same rate as free
particles do (at least the low-velocity particles to which Newtonian gravitational physics
applies), it follows that all such particles will maintain a uniform velocity relative to this
frame. This frame is at least a candidate for an inertial frame. In the next section we will
show that photons are not redshifted in this frame, which makes it an even better candidate.
Einstein built GR by taking the hypothesis that these frames are inertial.

The argument we have just made, that freely falling frames are inertial, will perhaps be
more familiar to the student if it is turned around. Consider, in empty space free of grav-
ity, a uniformly accelerating rocket ship. From the point of view of an observer inside, it
appears that there is a gravitational field in the rocket: objects dropped accelerate toward the
rear of the ship, all with the same acceleration, independent of their internal composition.1

1 This has been tested experimentally to extremely high precision in the so-called Eötvös experiment. See Dicke
(1964).
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Moreover, an object held stationary relative to the ship has ‘weight’ equal to the force
required to keep it accelerating with the ship. Just as in ‘real’ gravity, this force is pro-
portional to the mass of the object. A true inertial frame is one which falls freely toward
the rear of the ship, at the same acceleration as particles. From this it can be seen that
uniform gravitational fields are equivalent to frames that accelerate uniformly relative to
inertial frames. This is the principle of equivalence between gravity and acceleration, and
is a cornerstone of Einstein’s theory. Although Galileo and Newton would have used differ-
ent words to describe it, the equivalence principle is one of the foundations of Newtonian
gravity.

In more modern terminology, what we have described is called the weak equivalence
principle, ‘weak’ because it refers to the way bodies behave only when influenced by
gravity. Einstein realized that, in order to create a full theory of gravity, he had to extend this
to include the other laws of physics. What we now call the Einstein equivalence principle
says that we can discover how all the other forces of nature behave in a gravitational field
by postulating that the differential equations that describe the laws of physics have the
same local form in a freely falling inertial frame as they do in SR, i.e. when there are
no gravitational fields. We shall use this stronger form of the principle of equivalence
in Ch. 7.

Before we return to the proof that freely falling frames are inertial, even for photons,
we must make two important observations. The first is that our arguments are valid only
locally – since the gravitational field of Earth is not uniform, particles some distance away
do not remain at uniform velocity in a particular freely falling frame. We shall discuss
this in some detail below. The second point is that there are of course an infinity of freely
falling frames at any point. They differ in their velocities and in the orientation of their
spatial axes, but they all accelerate relative to Earth at the same rate.

The redshift experiment again

Let us now take a different point of view on the Pound–Rebka–Snider experiment. Let us
view it in a freely falling frame, which we have seen has at least some of the characteristics
of an inertial frame. Let us take the particular frame that is at rest when the photon begins
its upward journey and falls freely after that. Since the photon moves a distance h, it takes
time�t = h to arrive at the top. In this time, the frame has acquired velocity gh downward
relative to the experimental apparatus. So the photon’s frequency relative to the freely
falling frame can be obtained by the redshift formula

ν(freely falling)

ν′(apparatus at top)
= 1 + gh√

(1 − g2h2)
= 1 + gh + 0(v4). (5.2)

From Eq. (5.1) we see that if we neglect terms of higher order (as we did to derive
Eq. (5.1)), then we get ν(photon emitted at bottom) = ν(in freely falling frame when pho-
ton arrives at top). So there is no redshift in a freely falling frame. This gives us a sound
basis for postulating that the freely falling frame is an inertial frame.
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Local inert ial frames

The above discussion suggests that the gravitational redshift experiment really does not
render SR and gravity incompatible. Perhaps we simply have to realize that the frame at
rest on Earth is not inertial and the freely falling one – in which there is no redshift and
so Fig. 5.2 leads to no contradiction – is the true inertial frame. Unfortunately, this doesn’t
completely save SR, for the simple reason that the freely falling frames on different sides
of Earth fall in different directions: there is no single global frame which is everywhere
freely falling in Earth’s gravitational field and which is still rigid, in that the distances
between its coordinate points are constant in time. It is still impossible to construct a global
inertial frame, and so the most we can salvage is a local inertial frame, which we now
describe.

Consider a freely falling frame in Earth’s gravitational field. An inertial frame in SR
fills all of spacetime, but this freely falling frame would not be inertial if it were extended
too far horizontally, because then it would not be falling vertically. In Fig. 5.3 the frame is
freely falling at B, but at A and C the motion is not along the trajectory of a test particle.
Moreover, since the acceleration of gravity changes with height, the frame cannot remain
inertial if extended over too large a vertical distance; if it were falling with particles at
one height, it would not be at another. Finally, the frame can have only a limited extent in
time as well, since, as it falls, both the above limitations become more severe due to the
frame’s approaching closer to Earth. All of these limitations are due to nonuniformities in
the gravitational field. Insofar as nonuniformities can be neglected, the freely falling frame
can be regarded as inertial. Any gravitational field can be regarded as uniform over a small
enough region of space and time, and so we can always set up local inertial frames. They
are analogous to the MCRFs of fluids: in this case the frame is inertial in only a small
region for a small time. How small depends on (a) the strength of the nonuniformities of
the gravitational field, and (b) the sensitivity of whatever experiment is being used to detect
noninertial properties of the frame. Since any nonuniformity is, in principle, detectable, a
frame can only be regarded mathematically as inertial in a vanishingly small region. But
for current technology, the freely falling frames near the surface of Earth can be regarded

A

B

C

Earth

�Figure 5.3 A rigid frame cannot fall freely in the Earth’s field and still remain rigid.
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as inertial to a high accuracy. We will be more quantitative in a later chapter. For now, we
just emphasize the mathematical notion that any theory of gravity must admit local inertial
frames: frames that, at a point, are inertial frames of SR.

Tidal forces

Nonuniformities in gravitational fields are called tidal forces, since they are the ones that
raise tides. (If Earth were in a uniform gravitational field, it would fall freely and have
no tides. Tides bulge due to the difference of the Moon’s and Sun’s gravitational fields
across the diameter of Earth.) We have seen that these tidal forces prevent the construction
of global inertial frames. It is therefore these forces that are regarded as the fundamental
manifestation of gravity in GR.

The role of curvature

The world lines of free particles have been our probe of the possibility of constructing
inertial frames. In SR, two such world lines which begin parallel to each other remain
parallel, no matter how far they are extended. This is exactly the property that straight lines
have in Euclidean geometry. It is natural, therefore, to discuss the geometry of spacetime
as defined by the world lines of free particles. In these terms, Minkowski space is a flat
space, because it obeys Euclid’s parallelism axiom. It is not a Euclidean space, however,
since its metric is different: photons travel on straight world lines of zero proper length. So
SR has a flat, nonEuclidean geometry.

Now, in a nonuniform gravitational field, the world lines of two nearby particles which
begin parallel do not generally remain parallel. Gravitational spacetime is therefore not flat.
In Euclidean geometry, when we drop the parallelism axiom, we get a curved space. For
example, the surface of a sphere is curved. Locally straight lines on a sphere extend to great
circles, and two great circles always intersect. Nevertheless, sufficiently near to any point,
we can pretend that the geometry is flat: the map of a town can be represented on a flat sheet
of paper without significant distortion, while a similar attempt for the whole globe fails
completely. The sphere is thus locally flat. This is true for all so-called Riemannian2 spaces:
they all are locally flat, but the locally straight lines (called geodesics) do not usually remain
parallel.

Einstein’s important advance was to see the similarity between Riemannian spaces
and gravitational physics. He identified the trajectories of freely falling particles with the
geodesics of a curved geometry: they are locally straight since spacetime admits local iner-
tial frames in which those trajectories are straight lines, but globally they do not remain
parallel.

2 B. Riemann (1826–66) was the first to publish a detailed study of the consequences of dropping Euclid’s
parallelism axiom.
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We shall follow Einstein and look for a theory of gravity that uses a curved spacetime
to represent the effects of gravity on particles’ trajectories. To do this we shall clearly
have to study the mathematics of curvature. The simplest introduction is actually to study
curvilinear coordinate systems in a flat space, where our intuition is soundest. We shall
see that this will develop nearly all the mathematical concepts we need, and the step to a
curved space will be simple. So for the rest of this chapter we will study the Euclidean
plane: no more SR (for the time being!) and no more indefinite inner products. What we
are after in this chapter is parallelism, not metrics. This approach has the added bonus of
giving a more sensible derivation to such often-mysterious formulae as the expression for
∇2 in polar coordinates!

5.2 Tensor a lgebra in po la r coord inates

Consider the Euclidean plane. The usual coordinates are x and y. Sometimes polar
coordinates {r, θ} are convenient:

r = (x2 + y2)1/2, x = r cos θ ,

θ = arctan(y/x), y = r sin θ .

}
(5.3)

Small increments �r and �θ are produced by �x and �y according to

�r = x
r�x + y

r�y = cos θ�x + sin θ�y,

�θ = − y
r2�x + x

r2�y = − 1
r sin θ�x + 1

r cos θ�y,

⎫⎬
⎭ (5.4)

which are valid to first order.
It is also possible to use other coordinate systems. Let us denote a general coordinate

system by ξ and η:

ξ = ξ (x, y), �ξ = ∂ξ
∂x�x + ∂ξ

∂y�y,

η = η(x, y), �η = ∂η
∂x�x + ∂η

∂y�y.

⎫⎪⎬
⎪⎭ (5.5)

In order for (ξ , η) to be good coordinates, it is necessary that any two distinct points
(x1, y1) and (x2, y2) be assigned different pairs (ξ1, η1) and (ξ2, η2), by Eq. (5.5). For
instance, the definitions ξ = x, η = 1 would not give good coordinates, since the distinct
points (x = 1, y = 2) and (x = 1, y = 3) both have (ξ = 1, η = 1). Mathematically, this
requires that if �ξ = �η = 0 in Eq. (5.5), then the points must be the same, or �x =
�y = 0. This will be true if the determinant of Eq. (5.5) is nonzero,

det

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
�= 0. (5.6)

This determinant is called the Jacobian of the coordinate transformation, Eq. (5.5). If the
Jacobian vanishes at a point, the transformation is said to be singular there.
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Vectors and one-forms

The old way of defining a vector is to say that it transforms under an arbitrary coordinate
transformation in the way that the displacement transforms. That is, a vector

→
�r can be

represented3 as a displacement (�x,�y), or in polar coordinates (�r,�θ ), or in general
(�ξ ,�η). Then it is clear that for small (�x,�y) we have (from Eq. (5.5))⎛

⎝�ξ
�η

⎞
⎠ =

⎛
⎝∂ξ/∂x ∂ξ/∂y

∂η/∂x ∂η/∂y

⎞
⎠
⎛
⎝�x

�y

⎞
⎠ . (5.7)

By defining the matrix of transformation

(�α
′
β ) =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
, (5.8)

we can write the transformation for an arbitrary �V in the same manner as in SR

Vα
′ = �α

′
βVβ , (5.9)

where unprimed indices refer to (x, y) and primed to (ξ , η), and where indices can only
take the values 1 and 2. A vector can be defined as something whose components transform
according to Eq. (5.9). There is a more sophisticated and natural way, however. This is the
modern way, which we now introduce.

Consider a scalar field φ. Given coordinates (ξ , η) it is always possible to form the
derivatives ∂φ/∂ξ and ∂φ/∂η. We define the one-form d̃φ to be the geometrical object
whose components are

d̃φ → (∂φ/∂ξ , ∂φ/∂η) (5.10)

in the (ξ , η) coordinate system. This is a general definition of an infinity of one-forms, each
formed from a different scalar field. The transformation of components is automatic from
the chain rule for partial derivatives:

∂φ

∂ξ
= ∂x

∂ξ

∂φ

∂x
+ ∂y

∂ξ

∂φ

∂y
, (5.11)

and similarly for ∂φ/∂η. The most convenient way to write this in matrix notation is as a
transformation on row-vectors,

(∂φ/∂ξ ∂φ/∂η) = (∂φ/∂x ∂φ/∂y)
(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
, (5.12)

because then the transformation matrix for one-forms is defined by analogy with Eq. (5.8)
as a set of derivatives of the (x, y)-coordinates by the (ξ , η)-coordinates:

(�αβ ′ ) =
(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
. (5.13)

3 We shall denote Euclidean vectors by arrows, and we shall use Greek letters for indices (numbered 1 and 2) to
denote the fact that the sum is over all possible (i.e. both) values.
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Using this matrix the component-sum version of the transformation in Eq. (5.12) is

(d̃φ)β ′ = �αβ ′ (d̃φ)α . (5.14)

Note that the summation in this equation is on the first index of the transformation matrix,
as we expect when a row-vector pre-multiplies a matrix.

It is interesting that in SR we did not have to worry about row-vectors, because the
simple Lorentz transformation matrices we used were symmetric. But if we want to go
beyond even the simplest situations, we need to see that one-form components are ele-
ments of row-vectors. However, matrix notation becomes awkward when we go beyond
tensors with two indices. In GR we need to deal with tensors with four indices, and some-
times even five. As a result, we will normally express transformation equations in their
algebraic form, as in Eq. (5.14); students will not see much matrix notation later in this
book.

What we have seen in this section is that, in the modern view, the foundation of tensor
algebra is the definition of a one-form. This is more natural than the old way, in which
a single vector (�x,�y) was defined and others were obtained by analogy. Here a whole
class of one-forms is defined in terms of derivatives, and the transformation properties of
one-forms follow automatically.

Now a vector is defined as a linear function of one-forms into real numbers. The impli-
cations of this will be explored in the next paragraph. First we just note that all this is the
same as we had in SR, so that vectors do in fact obey the transformation law, Eq. (5.9). It is
of interest to see explicitly that (�α

′
β ) and (�αβ ′ ) are inverses of each other. The product

of the matrices is (
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)

=
(
∂ξ
∂x
∂x
∂ξ

+ ∂ξ
∂y
∂y
∂ξ

∂ξ
∂x
∂x
∂η

+ ∂ξ
∂y
∂y
∂η

∂η
∂x
∂x
∂ξ

+ ∂η
∂y
∂y
∂ξ

∂η
∂x
∂x
∂η

+ ∂η
∂y
∂y
∂η

)
. (5.15)

By the chain rule this matrix is(
∂ξ/∂ξ ∂ξ/∂η

∂η/∂ξ ∂η/∂η

)
=
(

1 0
0 1

)
, (5.16)

where the equality follows from the definition of a partial derivative.

Curves and vectors

The usual notion of a curve is of a connected series of points in the plane. This we shall
call a path, and reserve the word curve for a parametrized path. That is, we shall follow
modern mathematical terminology and define a curve as a mapping of an interval of the
real line into a path in the plane. What this means is that a curve is a path with a real number
associated with each point on the path. This number is called the parameter s. Each point
has coordinates which may then be expressed as a function of s:
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Curve :{ξ = f (s), η = g(s), a � s � b} (5.17)

defines a curve in the plane. If we were to change the parameter (but not the points) to
s′ = s′(s), which is a function of the old s, then we would have

{ξ = f ′(s′), η = g′(s′), a′ � s′ � b′}, (5.18)

where f ′ and g′ are new functions, and where a′ = s′(a), b′ = s′(b). This is, mathematically,
a new curve, even though its image (the points of the plane that it passes through) is the
same. So there is an infinite number of curves having the same path.

The derivative of a scalar field φ along the curve is dφ/ds. This depends on s, so by
changing the parameter we change the derivative. We can write this as

dφ/ds = 〈d̃φ, �V〉, (5.19)

where �V is the vector whose components are (dξ/ds, dη/ds). This vector depends only on
the curve, while d̃φ depends only on φ. Therefore �V is a vector characteristic of the curve,
called the tangent vector. (It clearly lies tangent to curve: see Fig. 5.4.) So a vector may be
regarded as a thing which produces dφ/ds, given φ. This leads to the most modern view,
that the tangent vector to the curve should be called d/ds. Some relativity texts occasionally
use this notation. For our purposes, however, we shall just let �V be the tangent vector whose
components are (dξ/ds, dη/ds). Notice that a path in the plane has, at any point, an infinity
of tangents, all of them parallel but differing in length. These are to be regarded as vectors
tangent to different curves, curves that have different parametrizations in a neighborhood of
that point. A curve has a unique tangent, since the path and parameter are given. Moreover,
even curves that have identical tangents at a point may not be identical elsewhere. From the
Taylor expansion ξ (s + 1) ≈ ξ (s) + dξ/ds, we see that �V(s) stretches approximately from
s to s + 1 along the curve.

Now, it is clear that under a coordinate transformation s does not change (its definition
had nothing to do with coordinates) but the components of �V will, since by the chain rule(

dξ/ds
dη/ds

)
=
(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)(
dx/ds
dy/ds

)
. (5.20)

This is the same transformation law as we had for vectors earlier, Eq. (5.7).

s = 8

s = 7
s = 6

s = 5 s = 4 s = 3 s = 2
s = 1

V
→

V
→

�Figure 5.4 A curve, its parametrization, and its tangent vector.
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To sum up, the modern view is that a vector is a tangent to some curve, and is the
function that gives dφ/ds when it takes d̃φ as an argument. Having said this, we are now
in a position to do polar coordinates more thoroughly.

Polar coordinate basis one-forms and vectors

The bases of the coordinates are clearly

�eα′ = �βα′ �eβ ,

or

�er = �x
r�ex +�y

r�ey (5.21)

= ∂x

∂r
�ex + ∂y

∂r
�ey

= cos θ �ex + sin θ �ey, (5.22)

and, similarly,

�eθ = ∂x

∂θ
�ex + ∂y

∂θ
�ey

= −r sin θ �ex + r cos θ�ey. (5.23)

Notice in this that we have used, among others,

�x
r = ∂x

∂r
. (5.24)

Similarly, to transform the other way we would need

�r
x = ∂r

∂x
. (5.25)

The transformation matrices are exceedingly simple: just keeping track of which index is
up and which is down gives the right derivative to use.

The basis one-forms are, analogously,

d̃θ = ∂θ

∂x
d̃x + ∂θ

∂y
d̃y,

= −1

r
sin θ d̃x + 1

r
cos θ d̃y. (5.26)

(Notice the similarity to ordinary calculus, Eq. (5.4).) Similarly, we find

d̃r = cos θ d̃x + sin θ d̃y. (5.27)

We can draw pictures of the bases at various points (Fig. 5.5). Drawing the basis vectors
is no problem. Drawing the basis one-forms is most easily done by drawing surfaces of
constant r and θ for d̃r and d̃θ . These surfaces have different orientations in different places.

There is a point of great importance to note here: the bases change from point to point.
For the vectors, the basis vectors at A in Fig. 5.5 are not parallel to those at C. This is
because they point in the direction of increasing coordinate, which changes from point to
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A
B

C

eθ
→

eθ

dθ

→

eθ
→

er
→

er
→ er

→
dθ

dr

dr

�Figure 5.5 Basis vectors and one-forms for polar coordinates.

point. Moreover, the lengths of the bases are not constant. For example, from Eq. (5.23)
we find

|�eθ |2 == �eθ · �eθ = r2 sin2 θ + r2 cos2 θ = r2, (5.28a)

so that �eθ increases in magnitude as we get further from the origin. The reason is that
the basis vector �eθ , having components (0,1) with respect to r and θ , has essentially a θ
displacement of one unit, i.e. one radian. It must be longer to do this at large radii than at
small. So we do not have a unit basis. It is easy to verify that

|�er| = 1, |d̃r| = 1, |d̃θ | = r−1. (5.28b)

Again, |d̃θ | gets larger (more intense) near r = 0 because a given vector can span a larger
range of θ near the origin than farther away.

Metric tensor

The dot products above were all calculated by knowing the metric in Cartesian coordi-
nates x, y:

�ex · �ex = �ey · �ey = 1, �ex · �ey = 0;

or, put in tensor notation,

g(�eα , �eβ ) = δαβ in Cartesian coordinates. (5.29)

What are the components of g in polar coordinates? Simply

gα′β ′ = g(�eα′ , �eβ ′ ) = �eα′ · �eβ ′ (5.30)

or, by Eq. (5.28),

grr = 1, gθθ = r2, (5.31a)

and, from Eqs. (5.22) and (5.23),

grθ = 0. (5.31b)

So we can write the components of g as

(gαβ )polar =
(

1 0
0 r2

)
, (5.32)
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A convenient way of displaying the components of g and at the same time showing
the coordinates is the line element, which is the magnitude of an arbitrary ‘infinitesimal’
displacement d�l:

d�l · d�l = ds2 = |dr �er + dθ�eθ |2
= dr2 + r2dθ2. (5.33)

Do not confuse dr and dθ here with the basis one-forms d̃r and d̃θ . The things in this
equation are components of d�l in polar coordinates, and ‘d’ simply means ‘infinitesimal�’.

There is another way of deriving Eq. (5.33) which is instructive. Recall Eq. (3.26) in
which a general

(0
2

)
tensor is written as a sum over basis

(0
2

)
tensors d̃xα ⊗ d̃xβ . For the

metric this is

g = gαβ d̃xα ⊗ d̃xβ = d̃r ⊗ d̃r + r2d̃θ ⊗ d̃θ .

Although this has a superficial resemblance to Eq. (5.33), it is different: it is an oper-
ator which, when supplied with the vector d�l, the components of which are dr and dθ ,
gives Eq. (5.33). Unfortunately, the two expressions resemble each other rather too closely
because of the confusing way notation has evolved in this subject. Most texts and research
papers still use the ‘old-fashioned’ form in Eq. (5.33) for displaying the components of the
metric, and we follow the same practice.

The metric has an inverse: (
1 0
0 r2

)−1

=
(

1 0
0 r−2

)
. (5.34)

So we have grr = 1, grθ = 0, gθθ = 1/r2. This enables us to make the mapping between
one-forms and vectors. For instance, if φ is a scalar field and d̃φ is its gradient, then the
vector �dφ has components

(�dφ)α = gαβφ,β , (5.35)

or

(�dφ)r = grβφ,β = grrφ,r + grθφ,θ

= ∂φ/∂r; (5.36a)

(�dφ)θ = gθrφ,r + gθθφ,θ

= 1

r2

∂φ

∂θ
. (5.36b)

So, while (φ,r, φ,θ ) are components of a one-form, the vector gradient has components
(φ,r, φ,θ /r2). Even though we are in Euclidean space, vectors generally have different com-
ponents from their associated one-forms. Cartesian coordinates are the only coordinates in
which the components are the same.
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5.3 Tensor ca l cu lus in po la r coord inates

The fact that the basis vectors of polar coordinates are not constant everywhere, leads
to some problems when we try to differentiate vectors. For instance, consider the simple
vector �ex, which is a constant vector field, the same at any point. In polar coordinates
it has components �ex → (�r

x,�θ x) = (cos θ , −r−1 sin θ ). These are clearly not constant,
even though �ex is. The reason is that they are components on a nonconstant basis. If
we were to differentiate them with respect to, say, θ , we would most certainly not get
∂�ex/∂θ , which must be identically zero. So, from this example, we see that differentiat-
ing the components of a vector does not necessarily give the derivative of the vector. We
must also differentiate the nonconstant basis vectors. This is the key to the understand-
ing of curved coordinates and, indeed, of curved spaces. We shall now make these ideas
systematic.

Derivatives of basis vectors

Since �ex and �ey are constant vector fields, we easily find that

∂

∂r
�er = ∂

∂r
(cos θ �ex + sin θ �ey) = 0, (5.37a)

∂

∂θ
�er = ∂

∂θ
(cos θ�ex + sin θ �ey)

= − sin θ �ex + cos θ�ey = 1

r
�eθ . (5.37b)

These have a simple geometrical picture, shown in Fig. 5.6. At two nearby points, A and
B, �er must point directly away from the origin, and so in slightly different directions. The
derivative of �er with respect to θ is just the difference between �er at A and B divided by�θ .

x

y

A
B

Δθ

�Figure 5.6 Change in �er, when θ changes by �θ .
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The difference in this case is clearly a vector parallel to �eθ , which then makes Eq. (5.37b)
reasonable.

Similarly,
∂

∂r
�eθ = ∂

∂r
(−r sin θ �ex + r cos θ �ey)

= − sin θ�ex + cos θ �ey = 1

r
�eθ , (5.38a)

∂

∂θ
�eθ = −r cos θ �ex − r sin θ �ey = −r �er. (5.38b)

The student is encouraged to draw a picture similar to Fig. 5.6 to explain these formulas.

Derivatives of general vectors

Let us go back to the derivative of �ex. Since

�ex = cos θ �er − 1

r
sin θ �eθ , (5.39)

we have
∂

∂θ
�ex = ∂

∂θ
(cos θ ) �er + cos θ

∂

∂θ
(�er)

− ∂

∂θ

(
1

r
sin θ

)
�eθ − 1

r
sin θ

∂

∂θ
(�eθ ) (5.40)

= − sin θ �er + cos θ

(
1

r
�eθ
)

− 1

r
cos θ �eθ − 1

r
sin θ (−r �er). (5.41)

To get this we used Eqs. (5.37) and (5.38). Simplifying gives

∂

∂θ
�ex = 0, (5.42)

just as we should have. Now, in Eq. (5.40) the first and third terms come from differen-
tiating the components of �ex on the polar coordinate basis; the other two terms are the
derivatives of the polar basis vectors themselves, and are necessary for cancelling out the
derivatives of the components.

A general vector �V has components (Vr, Vθ ) on the polar basis. Its derivative, by analogy
with Eq. (5.40), is

∂ �V
∂r

= ∂

∂r
(Vr �er + Vθ �eθ )

= ∂Vr

∂r
�er + Vr ∂�er

∂r
+ ∂Vθ

∂r
�eθ + Vθ

∂�eθ
∂r

,

and similarly for ∂ �V/∂θ . Written in index notation, this becomes

∂ �V
∂r

= ∂

∂r
(Vα �eα) = ∂Vα

∂r
�eα + Vα

∂�eα
∂r

.

(Here α runs of course over r and θ .)
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This shows explicitly that the derivative of �V is more than just the derivative of
its components Vα . Now, since r is just one coordinate, we can generalize the above
equation to

∂ �V
∂xβ

= ∂Vα

∂xβ
�eα + Vα

∂�eα
∂xβ

, (5.43)

where, now, xβ can be either r or θ for β = 1 or 2.

The Christoffel symbols

The final term in Eq. (5.43) is obviously of great importance. Since ∂�eα/∂xβ is itself a
vector, it can be written as a linear combination of the basis vectors; we introduce the
symbol �μαβ to denote the coefficients in this combination:

∂�eα
∂xβ

= �μαβ �eμ. (5.44)

The interpretation of �μαβ is that it is the μth component of ∂�eα/∂xβ . It needs three
indices: one (α) gives the basis vector being differentiated; the second (β) gives the
coordinate with respect to which it is being differentiated; and the third (μ) denotes the
component of the resulting derivative vector. These things, �μαβ , are so useful that they
have been given a name: the Christoffel symbols. The question of whether or not they are
components of tensors we postpone until much later.

We have of course already calculated them for polar coordinates. From Eqs. (5.37) and
(5.38) we find

(1) ∂�er/∂r = 0 ⇒ �μrr = 0 for all μ,

(2) ∂�er/∂θ = 1
r �eθ ⇒ �r

rθ = 0, �θ rθ = 1
r ,

(3) ∂�eθ /∂r = 1
r �eθ ⇒ �r

θr = 0, �θ θr = 1
r ,

(4) ∂�eθ /∂θ = −r �er ⇒ �r
θθ = −r, �θ θθ = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.45)

In the definition, Eq. (5.44), all indices must refer to the same coordinate system. Thus,
although we computed the derivatives of �er and �eθ by using the constancy of �ex and �ey,
the Cartesian bases do not in the end make any appearance in Eq. (5.45). The Christoffel
symbols’ importance is that they enable us to express these derivatives without using any
other coordinates than polar.

The covariant derivat ive

Using the definition of the Christoffel symbols, Eq. (5.44), the derivative in Eq. (5.43)
becomes

∂ �V
∂xβ

= ∂Vα

∂xβ
�eα + Vα�μαβ �eμ. (5.46)

In the last term there are two sums, on α and μ. Relabeling the dummy indices will help
here: we change μ to α and α to μ and get
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∂ �V
∂xβ

= ∂Vα

∂xβ
�eα + Vμ�αμβ �eα . (5.47)

The reason for the relabeling was that, now, �eα can be factored out of both terms:

∂ �V
∂xβ

=
(
∂Vα

∂xβ
+ Vμ�αμβ

)
�eα . (5.48)

So the vector field ∂ �V/∂xβ has components

∂Vα/∂xβ + Vμ�αμβ . (5.49)

Recall our original notation for the partial derivative, ∂Vα/∂xβ = Vα,β . We keep this
notation and define a new symbol:

Vα ;β := Vα ,β + Vμ�αμβ . (5.50)

Then, with this shorthand semicolon notation, we have

∂ �V/∂xβ = Vα ;β �eα , (5.51)

a very compact way of writing Eq. (5.48).
Now ∂ �V/∂xβ is a vector field if we regard β as a given fixed number. But there are two

values that β can have, and so we can also regard ∂ �V/∂xβ as being associated with a
(1

1

)
tensor field which maps the vector �eβ into the vector ∂ �V/∂xβ , as in Exer. 17, § 3.10. This
tensor field is called the covariant derivative of �V , denoted, naturally enough, as ∇ �V . Then
its components are

(∇ �V)αβ = (∇β �V)α = Vα ;β . (5.52)

On a Cartesian basis the components are just Vα ,β . On the curvilinear basis, however, the
derivatives of the basis vectors must be taken into account, and we get that Vα ;β are the
components of ∇ �V in whatever coordinate system the Christoffel symbols in Eq. (5.50)
refer to. The significance of this statement should not be underrated, as it is the foundation
of all our later work. There is a single

(1
1

)
tensor called ∇ �V . In Cartesian coordinates its

components are ∂Vα/∂xβ . In general coordinates {xμ′ } its components are called Vα
′
;β ′

and can be obtained in either of two equivalent ways: (i) compute them directly in {xμ′ }
using Eq. (5.50) and a knowledge of what the �α

′
μ′β ′ coefficients are in these coordinates;

or (ii) obtain them by the usual tensor transformation laws from Cartesian to {xμ′ }.
What is the covariant derivative of a scalar? The covariant derivative differs from the

partial derivative with respect to the coordinates only because the basis vectors change.
But a scalar does not depend on the basis vectors, so its covariant derivative is the same as
its partial derivative, which is its gradient:

∇αf = ∂f /∂xα; ∇f = d̃f . (5.53)
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Divergence and Laplacian

Before doing any more theory, let us link this up with things we have seen before. In
Cartesian coordinates the divergence of a vector Vα is Vα ,α . This is the scalar obtained
by contracting Vα ,β on its two indices. Since contraction is a frame-invariant operation,
the divergence of �V can be calculated in other coordinates {xμ′ } also by contracting the
components of ∇ �V on their two indices. This results in a scalar with the value Vα

′
;α′ . It is

important to realize that this is the same number as Vα ,α in Cartesian coordinates:

Vα ,α ≡ Vβ
′
;β ′ , (5.54)

where unprimed indices refer to Cartesian coordinates and primed refer to the arbitrary
system.

For polar coordinates (dropping primes for convenience here)

Vα ;α = ∂Vα

∂xα
+ �αμαVμ.

Now, from Eq. (5.45) we can calculate

�αrα = �r
rr + �θ rθ = 1/r,

�αθα = �r
θr + �θ θθ = 0.

}
(5.55)

Therefore we have

Vα ;α = ∂Vr

∂r
+ ∂Vθ

∂θ
+ 1

r
Vr,

= 1

r

∂

∂r
(rVr) + ∂

∂θ
Vθ . (5.56)

This may be a familiar formula to the student. What is probably more familiar is the Lapla-
cian, which is the divergence of the gradient. But we only have the divergence of vectors,
and the gradient is a one-form. Therefore we must first convert the one-form to a vector.
Thus, given a scalar φ, we have the vector gradient (see Eq. (5.53) and the last part of § 5.2
above) with components (φ,r,φ,θ /r2). Using these as the components of the vector in the
divergence formula, Eq. (5.56) gives

∇ · ∇φ := ∇2φ = 1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
. (5.57)

This is the Laplacian in plane polar coordinates. It is, of course, identically equal to

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
. (5.58)

Derivatives of one-forms and tensors of higher types

Since a scalar φ depends on no basis vectors, its derivative d̃φ is the same as its covariant
derivative ∇φ. We shall almost always use the symbol ∇φ. To compute the derivative of a
one-form (which as for a vector won’t be simply the derivatives of its components), we use
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the property that a one-form and a vector give a scalar. Thus, if p̃ is a one-form and �V is an
arbitrary vector, then for fixed β, ∇β p̃ is also a one-form, ∇β �V is a vector, and 〈p̃, �V〉 ≡ φ

is a scalar. In any (arbitrary) coordinate system this scalar is just

φ = pαVα . (5.59)

Therefore ∇βφ is, by the product rule for derivatives,

∇βφ = φ,β = ∂pα
∂xβ

Vα + pα
∂Vα

∂xβ
. (5.60)

But we can use Eq. (5.50) to replace ∂Vα/∂xβ in favor of Vα ;β , which are the components
of ∇β �V:

∇βφ = ∂pα
∂xβ

Vα + pα Vα ;β − pαVμ�αμβ . (5.61)

Rearranging terms, and relabeling dummy indices in the term that contains the Christoffel
symbol, gives

∇βφ =
(
∂pα
∂xβ

− pμ�
μ
αβ

)
Vα + pαVα ;β . (5.62)

Now, every term in this equation except the one in parentheses is known to be the compo-
nent of a tensor, for an arbitrary vector field �V . Therefore, since multiplication and addition
of components always gives new tensors, it must be true that the term in parentheses is also
the component of a tensor. This is, of course, the covariant derivative of p̃:

(∇β p̃)α := (∇p̃)αβ := pα;β = pα,β − pμ�
μ
αβ . (5.63)

Then Eq. (5.62) reads

∇β (pαVα) = pα;βVα + pαVα ;β . (5.64)

Thus covariant differentiation obeys the same sort of product rule as Eq. (5.60). It must
do this, since in Cartesian coordinates ∇ is just partial differentiation of components, so
Eq. (5.64) reduces to Eq. (5.60).

Let us compare the two formulae we have, Eq. (5.50) and Eq. (5.63):

Vα ;β = Vα ,β + Vμ�αμβ ,

pα;β = pα,β − pμ�
μ
αβ .

There are certain similarities and certain differences. If we remember that the derivative
index β is the last one on �, then the other indices are the only ones they can be without
raising and lowering with the metric. The only thing to watch is the sign difference. It may
help to remember that �αμβ was related to derivatives of the basis vectors, for then it is
reasonable that −�μαβ be related to derivatives of the basis one-forms. The change in sign
means that the basis one-forms change ‘oppositely’ to basis vectors, which makes sense
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when we remember that the contraction 〈ω̃α , �eβ〉 = δαβ is a constant, and its derivative
must be zero.

The same procedure that led to Eq. (5.63) would lead to the following:

∇βTμν = Tμν,β − Tαν�
α
μβ − Tμα�

α
νβ ; (5.64)

∇βAμν = Aμν ,β + Aαν�μαβ + Aμα�ναβ ; (5.65)

∇βBμν = Bμν,β + Bαν�
μ
αβ − Bμα�

α
νβ . (5.66)

Inspect these closely: they are very systematic. Simply throw in one � term for each index;
a raised index is treated like a vector and a lowered one like a one-form. The geometrical
meaning of Eq. (5.64) is that ∇βTμν is a component of the

(0
3

)
tensor ∇T, where T is a

(0
2

)
tensor. Similarly, in Eq. (5.65), A is a

(2
0

)
tensor and ∇A is a

(2
1

)
tensor with components

∇βAμν .

5.4 Chr i s tof fe l symbol s and the met r i c

The formalism developed above has not used any properties of the metric tensor to derive
covariant derivatives. But the metric must be involved somehow, because it can convert
a vector into a one-form, and so it must have something to say about the relationship
between their derivatives. In particular, in Cartesian coordinates the components of the
one-form and its related vector are equal, and since ∇ is just differentiation of components,
the components of the covariant derivatives of the one-form and vector must be equal.
This means that if �V is an arbitrary vector and Ṽ = g(�V , ) is its related one-form, then in
Cartesian coordinates

∇β Ṽ = g(∇β �V , ). (5.67)

But Eq. (5.67) is a tensor equation, so it must be valid in all coordinates. We conclude that

Vα;β = gαμVμ;β , (5.68)

which is the component representation of Eq. (5.67).
If the above argument in words wasn’t satisfactory, let us go through it again in equa-

tions. Let unprimed indices α,β, γ , · · · denote Cartesian coordinates and primed indices
α′,β ′, γ ′, · · · denote arbitrary coordinates.

We begin with the statement

Vα′ = gα′μ′Vμ
′
, (5.69)

valid in any coordinate system. But in Cartesian coordinates

gαμ = δαμ, Vα = Vα .
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Now, also in Cartesian coordinates, the Christoffel symbols vanish, so

Vα;β = Vα,β and Vα ;β = Vα ,β .

Therefore we conclude

Vα;β = Vα ;β

in Cartesian coordinates only. To convert this into an equation valid in all coordinate
systems, we note that in Cartesian coordinates

Vα ;β = gαμVμ;β ,

so that again in Cartesian coordinates we have

Vα;β = gαμVμ;β .

But now this equation is a tensor equation, so its validity in one coordinate system implies
its validity in all. This is just Eq. (5.68) again:

Vα′;β ′ = gα′μ′Vμ
′
;β ′ (5.70)

This result has far-reaching implications. If we take the β ′ covariant derivative of
Eq. (5.69), we find

Vα′;β ′ = gα′μ′;β ′ Vμ
′ + gα′μ′ Vμ

′
;β ′ .

Comparison of this with Eq. (5.70) shows (since �V is an arbitrary vector) that we must have

gα′μ′;β ′ ≡ 0 (5.71)

in all coordinate systems. This is a consequence of Eq. (5.67). In Cartesian coordinates

gαμ;β ≡ gαμ,β = δαμ,β ≡ 0

is a trivial identity. However, in other coordinates it is not obvious, so we shall work it out
as a check on the consistency of our formalism.

Using Eq. (5.64) gives (now unprimed indices are general)

gαβ;μ = gαβ,μ − �ναμgνβ − �νβμgαν . (5.72)

In polar coordinates let us work out a few examples. Let α = r,β = r,μ = r:

grr;r = grr,r − �ν rrgνr − �ν rrgrν .

Since grr,r = 0 and �ν rr = 0 for all ν, this is trivially zero. Not so trivial is α = θ ,
β = θ ,μ = r:

gθθ ;r = gθθ ,r − �νθrgνθ − �νθrgθν .

With gθθ = r2,�θ θr = 1/r and �r
θr = 0, this becomes

gθθ ;r = (r2),r − 1

r
(r2) − 1

r
(r2) = 0.
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So it works, almost magically. But it is important to realize that it is not magic: it fol-
lows directly from the facts that gαβ,μ = 0 in Cartesian coordinates and that gαβ;μ are the
components of the same tensor ∇g in arbitrary coordinates.

Perhaps it is useful to pause here to get some perspective on what we have just done.
We introduced covariant differentiation in arbitrary coordinates by using our understand-
ing of parallelism in Euclidean space. We then showed that the metric of Euclidean
space is covariantly constant: Eq. (5.71). When we go on to curved (Riemannian)
spaces we will have to discuss parallelism much more carefully, but Eq. (5.71) will
still be true, and therefore so will all its consequences, such as those we now go on to
describe.

Calculat ing the Christoffel symbols from the metric

The vanishing of Eq. (5.72) leads to an extremely important result. We see that Eq. (5.72)
can be used to determine gαβ,μ in terms of �μαβ . It turns out that the reverse is also true,
that �μαβ can be expressed in terms of gαβ,μ. This gives an easy way to derive the Christof-
fel symbols. To show this we first prove a result of some importance in its own right: in
any coordinate system �μαβ ≡ �μβα . To prove this symmetry consider an arbitrary scalar
field φ. Its first derivative ∇φ is a one-form with components φ,β . Its second covariant
derivative ∇∇φ has components φ,β;α and is a

(0
2

)
tensor. In Cartesian coordinates these

components are

φ,β,α := ∂

∂xα
∂

∂xβ
φ

and we see that they are symmetric in α and β, since partial derivatives commute. But if a
tensor is symmetric in one basis it is symmetric in all bases. Therefore

φ,β;α = φ,α;β (5.73)

in any basis. Using the definition, Eq. (5.63) gives

φ,β,α − φ,μ�
μ
βα = φ,α,β − φ,μ�

μ
αβ

in any coordinate system. But again we have

φ,α,β = φ,β,α

in any coordinates, which leaves

�μαβφ,μ = �μβαφ,μ

for arbitrary φ. This proves the assertion

�μαβ = �μβα in any coordinate system. (5.74)
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We use this to invert Eq. (5.72) by some advanced index gymnastics. We write three
versions of Eq. (5.72) with different permutations of indices:

gαβ,μ = �ναμgνβ + �νβμgαν ,

gαμ,β = �ναβgνμ + �νμβgαν ,

−gβμ,α = −�νβαgνμ − �νμαgβν .

We add these up and group terms, using the symmetry of g, gβν = gνβ :

gαβ,μ + gαμ,β − gβμ,α

= (�ναμ − �νμα)gνβ + (�ναβ − �νβα)gνμ + (�νβμ + �νμβ )gαν .

In this equation the first two terms on the right vanish by the symmetry of �, Eq. (5.74),
and we get

gαβ,μ + gαμ,β − gβμ,α = 2gαν�
ν
βμ.

We are almost there. Dividing by 2, multiplying by gαγ (with summation implied on α)
and using

gαγ gαν ≡ δγ ν

gives

1

2
gαγ (gαβ,μ + gαμ,β − gβμ,α) = �γ βμ. (5.75)

This is the expression of the Christoffel symbols in terms of the partial derivatives of the
components of g. In polar coordinates, for example,

�θ rθ = 1
2 gαθ (gαr,θ + gαθ ,r − grθ ,α).

Since grθ = 0 and gθθ = r−2, we have

�θ rθ = 1

2r2
(gθr,θ + gθθ ,r − grθ ,θ )

= 1

2r2
gθθ ,r = 1

2r2
(r2), r = 1

r
.

This is the same value for �θ rθ , as we derived earlier. This method of computing �αβμ is
so useful that it is well worth committing Eq. (5.75) to memory. It will be exactly the same
in curved spaces.

The tensorial nature of 	α
βμ

Since �eα is a vector, ∇�eα is a
(1

1

)
tensor whose components are �μαβ . Here α is fixed and

μ and β are the component indices: changing α changes the tensor ∇�eα , while changing
μ or β changes only the component under discussion. So it is possible to regard μ and
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β as component indices and α as a label giving the particular tensor referred to. There is
one such tensor for each basis vector �eα . However, this is not terribly useful, since under
a change of coordinates the basis changes and the important quantities in the new sys-
tem are the new tensors ∇�eβ ′ which are obtained from the old ones ∇�eα in a complicated
way: they are different tensors, not just different components of the same tensor. So the set
�μαβ in one frame is not obtained by a simple tensor transformation from the set �μ

′
α′β ′

of another frame. The easiest example of this is Cartesian coordinates, where �αβμ ≡ 0,
while they are not zero in other frames. So in many books it is said that �μαβ are not
components of tensors. As we have seen, this is not strictly true: �μαβ are the (μ,β) com-
ponents of a set of

(1
1

)
tensors ∇�eα . But there is no single

(1
2

)
tensor whose components

are �μαβ , so expressions like �μαβVα are not components of a single tensor, either. The
combination

Vβ ,α + Vμ�βμα

is a component of a single tensor ∇ �V .

5.5 Noncoord inate bases

In this whole discussion we have generally assumed that the non-Cartesian basis vectors
were generated by a coordinate transformation from (x, y) to some (ξ , η). However, as we
shall show below, not every field of basis vectors can be obtained in this way, and we
shall have to look carefully at our results to see which need modification (few actually do).
We will almost never use non-coordinate bases in our work in this course, but they are
frequently encountered in the standard references on curved coordinates in flat space, so
we should pause to take a brief look at them now.

Polar coordinate basis

The basis vectors for our polar coordinate system were defined by

�eα′ = �βα′ �eβ ,

where primed indices refer to polar coordinates and unprimed to Cartesian. Moreover,
we had

�βα′ = ∂xβ/∂xα
′
,

where we regard the Cartesian coordinates {xβ} as functions of the polar coordinates {xα′ }.
We found that

�eα′ · �eβ ′ ≡ gα′β ′ �= δα′β ′ ,

i.e. that these basis vectors are not unit vectors.
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Polar unit basis

Often it is convenient to work with unit vectors. A simple set of unit vectors derived from
the polar coordinate basis is:

�er̂ = �er, �e
θ̂

= 1

r
�eθ , (5.76)

with a corresponding unit one-form basis

ω̃r̂ = d̃r, ω̃θ̂ = rd̃θ . (5.77)

The student should verify that

�eα̂ · �e
β̂

≡ g
α̂β̂

= δ
α̂β̂

,

ω̃α̂ · ω̃β̂ ≡ gα̂β̂ = δα̂β̂

}
(5.78)

so these constitute orthonormal bases for the vectors and one-forms. Our notation, which
is fairly standard, is to use a ‘caret’ or ‘hat’, ˆ, above an index to denote an orthornormal
basis. Now, the question arises, do there exist coordinates (ξ , η) such that

�er̂ = �eξ = ∂x

∂ξ
�ex + ∂y

∂ξ
�ey (5.79a)

and

�e
θ̂

= �eη = ∂x

∂η
�ex + ∂y

∂η
�ey? (5.79b)

If so, then {�er̂, �e
θ̂
} are the basis for the coordinates (ξ , η) and so can be called a coordinate

basis; if such (ξ , η) can be shown not to exist, then these vectors are a noncoordinate basis.
The question is actually more easily answered if we look at the basis one-forms. Thus, we
seek (ξ , η) such that

ω̃r̂ = d̃ξ = ∂ξ/∂x d̃x + ∂ξ/∂y d̃y,

ω̃θ̂ = d̃η = ∂η/∂x d̃x + ∂η/∂y d̃y.

⎫⎬
⎭ (5.80)

Since we know ω̃r̂ and ω̃θ̂ in terms of d̃r and d̃θ , we have, from Eqs. (5.26) and (5.27),

ω̃r̂ = d̃r = cos θ d̃x + sin θ d̃y,

ω̃θ̂ = r d̃θ = − sin θ d̃x + cos θ d̃y.

}
(5.81)

(The orthonormality of ω̃r̂ and ω̃θ̂ are obvious here.) Thus if (ξ , η) exist, we have

∂η

∂x
= − sin θ ,

∂η

∂y
= cos θ . (5.82)

If this were true, then the mixed derivatives would be equal:

∂

∂y

∂η

∂x
= ∂

∂x

∂η

∂y
. (5.83)

This would imply
∂

∂y
(− sin θ ) = ∂

∂x
(cos θ ) (5.84)
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or
∂

∂y

(
y√

(x2 + y2)

)
+ ∂

∂x

(
x√

(x2 + y2)

)
= 0.

This is certainly not true. Therefore ξ and η do not exist: we have a noncoordinate basis.
(If this manner of proof is surprising, try it on d̃r and d̃θ themselves.)

In textbooks that deal with vector calculus in curvilinear coordinates, almost all use the
unit orthonormal basis rather than the coordinate basis. Thus, for polar coordinates, if a
vector has components in the coordinate basis PC,

�V −→
PC

(a, b) = {Vα′ }, (5.85)

then it has components in the orthonormal basis PO

�V −→
PO

(a, rb) = {V α̂}. (5.86)

So if, for example, the books calculate the divergence of the vector, they obtain, instead of
our Eq. (5.56),

∇ · V = 1

r

∂

∂r
(r Vr̂) + 1

r

∂

∂θ
V θ̂ . (5.87)

The difference between Eqs. (5.56) and (5.87) is purely a matter of the basis for �V .

General remarks on noncoordinate bases

The principal differences between coordinate and noncoordinate bases arise from the fol-
lowing. Consider an arbitrary scalar field φ and the number d̃φ(�eμ), where �eμ is a basis
vector of some arbitrary basis. We have used the notation

d̃φ(�eμ) = φ,μ. (5.88)

Now, if �eμ is a member of a coordinate basis, then d̃φ(�eμ) = ∂φ/∂xμ and we have, as
defined in an earlier chapter,

φ,μ = ∂φ

∂xμ
: coordinate basis. (5.89)

But if no coordinates exist for {�eμ}, then Eq. (5.89) must fail. For example, if we let
Eq. (5.88) define φ,μ̂, then we have

φ,θ̂ = 1

r

∂φ

∂θ
. (5.90)

In general, we get

∇α̂φ ≡ φ,α̂ = �βα̂∇βφ = �βα̂
∂φ

∂xβ
(5.91)

for any coordinate system {xβ} and noncoordinate basis {�eα̂}. It is thus convenient to con-
tinue with the notation, Eq. (5.88), and to make the rule that φ,μ = ∂φ/∂xμ only in a
coordinate basis.
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The Christoffel symbols may be defined just as before

∇
β̂
�eα̂ = �μ̂

α̂β̂
�eμ̂, (5.92)

but now

∇
β̂

= �α
β̂

∂

∂xα
, (5.93)

where {xα} is any coordinate system and {�e
β̂
} any basis (coordinate or not). Now, however,

we cannot prove that �μ̂
α̂β̂

= �μ̂
β̂α̂

, since that proof used φ,α̂,β̂ = φ,β̂,α̂ , which was true
in a coordinate basis (partial derivatives commute) but is not true otherwise. Hence, also,
Eq. (5.75) for �μαβ in terms of gαβ,γ applies only in a coordinate basis. More general
expressions are worked out in Exer. 20, § 5.8.

What is the general reason for the nonexistence of coordinates for a basis? If {ω̃ᾱ} is a
coordinate one-form basis, then its relation to another one {d̃xα} is

ω̃ᾱ = �ᾱβ d̃xβ = ∂xᾱ

∂xβ
dxβ . (5.94)

The key point is that �ᾱβ , which is generally a function of position, must actually be the
partial derivative ∂xᾱ/∂xβ everywhere. Thus we have

∂

∂xγ
�ᾱβ = ∂2xᾱ

∂xγ ∂xβ
= ∂2xᾱ

∂xβ∂xγ
= ∂

∂xβ
�ᾱγ . (5.95)

These ‘integrability conditions’ must be satisfied by all the elements �ᾱβ in order for ω̃ᾱ

to be a coordinate basis. Clearly, we can always choose a transformation matrix for which
this fails, thereby generating a noncoordinate basis.

Noncoordinate bases in this book

We shall not have occasion to use such bases very often. Mainly, it is important to under-
stand that they exist, that not every basis is derivable from a coordinate system. The algebra
of coordinate bases is simpler in almost every respect. We may ask why the standard treat-
ments of curvilinear coordinates in vector calculus, then, stick to orthonormal bases. The
reason is that in such a basis in Euclidean space, the metric has components δαβ , so the
form of the dot product and the equality of vector and one-form components carry over
directly from Cartesian coordinates (which have the only orthonormal coordinate basis!).
In order to gain the simplicity of coordinate bases for vector and tensor calculus, we have
to spend time learning the difference between vectors and one-forms!

5.6 Look ing ahead

The work we have done in this chapter has developed almost all the notation and concepts
we will need in our study of curved spaces and spacetimes. It is particularly important that
the student understands §§ 5.2–5.4 because the mathematics of curvature will be developed
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by analogy with the development here. What we have to add to all this is a discussion of
parallelism, of how to measure the extent to which the Euclidean parallelism axiom fails.
This measure is the famous Riemann tensor.

5.7 Fur ther read ing

The Eötvös and Pound–Rebka–Snider experiments, and other experimental fundamentals
underpinning GR, are discussed by Dicke (1964), Misner et al. (1973), Shapiro (1980),
and Will (1993, 2006). See Hoffmann (1983) for a less mathematical discussion of the
motivation for introducing curvature. For an up-to-date review of the GPS system’s use of
relativity, see Ashby (2003).

The mathematics of curvilinear coordinates is developed from a variety of points of view
in: Abraham and Marsden (1978), Lovelock and Rund (1990), and Schutz (1980b).

5.8 Exerc i ses

1 Repeat the argument that led to Eq. (5.1) under more realistic assumptions: suppose a
fraction ε of the kinetic energy of the mass at the bottom can be converted into a photon
and sent back up, the remaining energy staying at ground level in a useful form. Devise
a perpetual motion engine if Eq. (5.1) is violated.

2 Explain why a uniform external gravitational field would raise no tides on Earth.
3 (a) Show that the coordinate transformation (x, y) → (ξ , η) with ξ = x and η = 1

violates Eq. (5.6).
(b) Are the following coordinate transformations good ones? Compute the Jacobian and

list any points at which the transformations fail.
(i) ξ = (x2 + y2)1/2, η = arctan(y/x);

(ii) ξ = ln x, η = y;

(iii) ξ = arctan(y/x), η = (x2 + y2)−1/2.
4 A curve is defined by {x = f (λ), y = g(λ), 0 � λ � 1}. Show that the tangent vector

(dx/dλ, dy/dλ) does actually lie tangent to the curve.
5 Sketch the following curves. Which have the same paths? Find also their tangent vectors

where the parameter equals zero.
(a) x = sin λ, y = cos λ; (b) x = cos(2π t2), y = sin(2π t2 + π ); (c) x = s, y = s + 4;

(d) x = s2, y = −(s − 2)(s + 2); (e) x = μ, y = 1.
6 Justify the pictures in Fig. 5.5.
7 Calculate all elements of the transformation matrices �α

′
β and �μν′ for the trans-

formation from Cartesian (x, y) – the unprimed indices – to polar (r, θ ) – the primed
indices.
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8 (a) (Uses the result of Exer. 7.) Let f = x2 + y2 + 2xy, and in Cartesian coordinates
�V → (x2 + 3y, y2 + 3x), �W → (1, 1). Compute f as a function of r and θ , and find
the components of �V and �W on the polar basis, expressing them as functions of r
and θ .

(b) Find the components of d̃f in Cartesian coordinates and obtain them in polars
(i) by direct calculation in polars, and (ii) by transforming components from
Cartesian.

(c) (i) Use the metric tensor in polar coordinates to find the polar components of the
one-forms Ṽ and W̃ associated with �V and �W. (ii) Obtain the polar components of
Ṽ and W̃ by transformation of their Cartesian components.

9 Draw a diagram similar to Fig. 5.6 to explain Eq. (5.38).
10 Prove that ∇ �V , defined in Eq. (5.52), is a

(1
1

)
tensor.

11 (Uses the result of Exers. 7 and 8.) For the vector field �V whose Cartesian compo-
nents are (x2 + 3y, y2 + 3x), compute: (a) Vα ,β in Cartesian; (b) the transformation
�μ

′
α�

β
ν′Vα ,β to polars; (c) the components Vμ

′
;ν′ directly in polars using the

Christoffel symbols, Eq. (5.45), in Eq. (5.50); (d) the divergence Vα ,α using your results
in (a); (e) the divergence Vμ

′
;μ′ using your results in either (b) or (c); (f) the divergence

Vμ
′
;μ′ using Eq. (5.56) directly.

12 For the one-form field p̃ whose Cartesian components are (x2 + 3y, y2 + 3x), com-
pute: (a) pα,β in Cartesian; (b) the transformation �αμ′�βν′ pα,β to polars; (c) the
components pμ′;ν′ directly in polars using the Christoffel symbols, Eq. (5.45), in
Eq. (5.63).

13 For those who have done both Exers. 11 and 12, show in polars that gμ′α′Vα
′
;ν′ = pμ′;ν′ .

14 For the tensor whose polar components are (Arr = r2, Arθ = r sin θ , Aθr = r cos θ ,
Aθθ = tan θ ), compute Eq. (5.65) in polars for all possible indices.

15 For the vector whose polar components are (Vr = 1, Vθ = 0), compute in polars
all components of the second covariant derivative Vα ;μ;ν . (Hint: to find the second
derivative, treat the first derivative Vα ;μ as any

(1
1

)
tensor: Eq. (5.66).)

16 Fill in all the missing steps leading from Eq. (5.74) to Eq. (5.75).
17 Discover how each expression Vβ ,α and Vμ�βμα separately transforms under a change

of coordinates (for �βμα , begin with Eq. (5.44)). Show that neither is the standard tensor
law, but that their sum does obey the standard law.

18 Verify Eq. (5.78).
19 Verify that the calculation from Eq. (5.81) to Eq. (5.84), when repeated for d̃r and d̃θ ,

shows them to be a coordinate basis.
20 For a noncoordinate basis {�eμ}, define ∇�eμ �eν − ∇�eν �eμ := cαμν�eα and use this in place

of Eq. (5.74) to generalize Eq. (5.75).
21 Consider the x − t plane of an inertial observer in SR. A certain uniformly accelerated

observer wishes to set up an orthonormal coordinate system. By Exer. 21, § 2.9, his
world line is

t(λ) = a sinh λ, x(λ) = a cosh λ, (5.96)

where a is a constant and aλ is his proper time (clock time on his wrist watch).
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(a) Show that the spacelike line described by Eq. (5.96) with a as the variable parameter
and λ fixed is orthogonal to his world line where they intersect. Changing λ in
Eq. (5.96) then generates a family of such lines.

(b) Show that Eq. (5.96) defines a transformation from coordinates (t, x) to coordi-
nates (λ, a), which form an orthogonal coordinate system. Draw these coordinates
and show that they cover only one half of the original t − x plane. Show that the
coordinates are bad on the lines |x| = |t|, so they really cover two disjoint quadrants.

(c) Find the metric tensor and all the Christoffel symbols in this coordinate system.
This observer will do a perfectly good job, provided that he always uses Christoffel
symbols appropriately and sticks to events in his quadrant. In this sense, SR admits
accelerated observers. The right-hand quadrant in these coordinates is sometimes
called Rindler space, and the boundary lines x = ±t bear some resemblance to the
black-hole horizons we will study later.

22 Show that if Uα∇αVβ = Wβ , then Uα∇αVβ = Wβ .



6 Curved manifolds

6.1 D i f fe rent iab le mani fo lds and tensor s

The mathematical concept of a curved space begins (but does not end) with the idea of a
manifold. A manifold is essentially a continuous space which looks locally like Euclidean
space. To the concept of a manifold is added the idea of curvature itself. The introduction
of curvature into a manifold will be the subject of subsequent sections. First we study the
idea of a manifold, which we can regard as just a fancy word for ‘space’.

Manifolds

The surface of a sphere is a manifold. So is any m-dimensional ‘hyperplane’ in an n-
dimensional Euclidean space (m � n). More abstractly, the set of all rigid rotations of
Cartesian coordinates in three-dimensional Euclidean space will be shown below to be
a manifold. Basically, a manifold is any set that can be continuously parametrized. The
number of independent parameters is the dimension of the manifold, and the parameters
themselves are the coordinates of the manifold. Consider the examples just mentioned.
The surface of a sphere is ‘parametrized’ by two coordinates θ and φ. The m-dimensional
‘hyperplane’ has m Cartesian coordinates, and the set of all rotations can be parametrized
by the three ‘Euler angles’, which in effect give the direction of the axis of rotation (two
parameters for this) and the amount of rotation (one parameter). So the set of rotations is a
manifold: each point is a particular rotation, and the coordinates are the three parameters. It
is a three-dimensional manifold. Mathematically, the association of points with the values
of their parameters can be thought of as a mapping of points of a manifold into points of the
Euclidean space of the correct dimension. This is the meaning of the fact that a manifold
looks locally like Euclidean space: it is ‘smooth’ and has a certain number of dimensions.
It must be stressed that the large-scale topology of a manifold may be very different from
Euclidean space: the surface of a torus is not Euclidean, even topologically. But locally the
correspondence is good: a small patch of the surface of a torus can be mapped 1–1 into the
plane tangent to it. This is the way to think of a manifold: it is a space with coordinates,
that locally looks Euclidean but that globally can warp, bend, and do almost anything (as
long as it stays continuous).
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Differential structure

We shall really only consider ‘differentiable manifolds’. These are spaces that are con-
tinuous and differentiable. Roughly, this means that in the neighborhood of each point
in the manifold it is possible to define a smooth map to Euclidean space that preserves
derivatives of scalar functions at that point. The surface of a sphere is differentiable
everywhere. That of a cone is differentiable except at its apex. Nearly all manifolds
of use in physics are differentiable almost everywhere. The curved spacetimes of GR
certainly are.

The assumption of differentiability immediately means that we can define one-forms
and vectors. That is, in a certain coordinate system on the manifold, the members of the set
{φ,α} are the components of the one-form d̃φ; and any set of the form {aφ,α + bψ,α}, where
a and b are functions, is also a one-form field. Similarly, every curve (with parameter, say,
λ) has a tangent vector �V defined as the linear function that takes the one-form d̃φ into the
derivative of φ along the curve, dφ/dλ:

〈d̃φ, �V〉 = �V(d̃φ) = ∇�Vφ = dφ/dλ. (6.1)

Any linear combination of vectors is also a vector. Using the vectors and one-forms so
defined, we can build up the whole set of tensors of type

(M
N

)
, just as we did in SR. Since

we have not yet picked out any
(0

2

)
tensor to serve as the metric, there is not yet any

correspondence between forms and vectors. Everything else, however, is exactly as we had
in SR and in polar coordinates. All of this comes only from differentiability, so the set of
all tensors is said to be part of the ‘differential structure’ of the manifold. We will not have
much occasion to use that term.

Review

It is useful here to review the fundamentals of tensor algebra. We can summarize the
following rules.

(1) A tensor field defines a tensor at every point.
(2) Vectors and one-forms are linear operators on each other, producing real numbers. The

linearity means:

〈 p̃, a�V + b �W〉 = a〈 p̃, �V〉 + b〈 p̃, �W〉,
〈a p̃ + bq̃, �V〉 = a〈 p̃, �V〉 + b〈q̃, �V〉,

where a and b are any scalar fields.
(3) Tensors are similarly linear operators on one-forms and vectors, producing real

numbers.
(4) If two tensors of the same type have equal components in a given basis, they have

equal components in all bases and are said to be identical (or equal, or the same). Only
tensors of the same type can be equal. In particular, if a tensor’s components are all
zero in one basis, they are zero in all, and the tensor is said to be zero.
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(5) A number of manipulations of components of tensor fields are called ‘permissible
tensor operations’ because they produce components of new tensors:

(i) Multiplication by a scalar field produces components of a new tensor of the
same type.

(ii) Addition of components of two tensors of the same type gives components of a
new tensor of the same type. (In particular, only tensors of the same type can be
added.)

(iii) Multiplication of components of two tensors of arbitrary type gives components
of a new tensor of the sum of the types, the outer product of the two tensors.

(iv) Covariant differentiation (to be discussed later) of the components of a tensor of
type

(N
M

)
gives components of a tensor of type

( N
M+1

)
.

(v) Contraction on a pair of indices of the components of a tensor of type
(N

M

)
pro-

duces components of a tensor of type
(N−1

M−1

)
. (Contraction is only defined between

an upper and lower index.)
(6) If an equation is formed using components of tensors combined only by the permissible

tensor operations, and if the equation is true in one basis, then it is true in any other.
This is a very useful result. It comes from the fact that the equation (from (5) above) is
simply an equality between components of two tensors of the same type, which (from
(4)) is then true in any system.

6.2 R iemann ian mani fo lds

So far we have not introduced a metric on to the manifold. Indeed, on certain manifolds a
metric would be unnecessary or inconvenient for whichever problem is being considered.
But in our case the metric is absolutely fundamental, since it will carry the information
about the rates at which clocks run and the distances between points, just as it does in
SR. A differentiable manifold on which a symmetric

(0
2

)
tensor field g has been singled

out to act as the metric at each point is called a Riemannian manifold. (Strictly speak-
ing, only if the metric is positive-definite – that is, g(�V , �V) > 0 for all �V �= 0 – is it
called Riemannian; indefinite metrics, like SR and GR, are called pseudo-Riemannian.
This is a distinction that we won’t bother to make.) It is important to understand that
in picking out a metric we ‘add’ structure to the manifold; we shall see that the met-
ric completely defines the curvature of the manifold. Thus, by our choosing one metric
g the manifold gets a certain curvature (perhaps that of a sphere), while a different g′
would give it a different curvature (perhaps an ellipsoid of revolution). The differen-
tiable manifold itself is ‘primitive’: an amorphous collection of points, arranged locally
like the points of Euclidean space, but not having any distance relation or shape spec-
ified. Giving the metric g gives it a specific shape, as we shall see. From now on we
shall study Riemannian manifolds, on which a metric g is assumed to be defined at
every point.

(For completeness we should remark that it is in fact possible to define the notion of
curvature on a manifold without introducing a metric (so-called ‘affine’ manifolds). Some
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texts actually approach the subject this way. But since the metric is essential in GR, we
shall simply study those manifolds whose curvature is defined by a metric.)

The metric and local flatness

The metric, of course, provides a mapping between vectors and one-forms at every point.
Thus, given a vector field �V(P) (which notation means that �V depends on the posi-
tion P , where P is any point), there is a unique one-form field Ṽ(P) = g(�V(P), ).
The mapping must be invertible, so that associated with Ṽ(P) there is a unique �V(P).
The components of g are called gαβ ; the components of the inverse matrix are called
gαβ . The metric permits raising and lowering of indices in the same way as in SR,
which means

Vα = gαβVβ .

In general, {gαβ} will be complicated functions of position, so it will not be true that there
would be a simple relation between, say, V0 and V0 in an arbitrary coordinate system.

Since we wish to study general curved manifolds, we have to allow any coordinate
system. In SR we only studied Lorentz (inertial) frames because they were simple. But
because gravity prevents such frames from being global, we shall have to allow all
coordinates, and hence all coordinate transformations, that are nonsingular. (Nonsingu-
lar means, as in § 5.2, that the matrix of the transformation, �α

′
β ≡ ∂xα

′
/∂xβ , has an

inverse.) Now, the matrix (gαβ ) is a symmetric matrix by definition. It is a well-known
theorem of matrix algebra (see Exer. 3, § 6.9) that a transformation matrix can always
be found that will make any symmetric matrix into a diagonal matrix with each entry
on the main diagonal either +1, −1, or zero. The number of +1 entries equals the
number of positive eigenvalues of (gαβ ), while the number of −1 entries is the number
of negative eigenvalues. So if we choose g originally to have three positive eigenval-
ues and one negative, then we can always find a �α

′
β to make the metric components

become

(gα′β ′ ) =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ≡ (ηαβ ). (6.2)

From now on we will use ηαβ to denote only the matrix in Eq. (6.2), which is of course the
metric of SR.

There are two remarks that must be made here. The first is that Eq. (6.2) is only possi-
ble if we choose (gαβ ) from among the matrices that have three positive and one negative
eigenvalues. The sum of the diagonal elements in Eq. (6.2) is called the signature of the
metric. For SR and GR it is +2. Thus, the fact that we have previously deduced from phys-
ical arguments that we can always construct a local inertial frame at any event, finds its
mathematical representation in Eq. (6.2), that the metric can be transformed into ηαβ at



146 Curved manifolds
�

that point. This in turn implies that the metric has to have signature +2 if it is to describe
a spacetime with gravity.

The second remark is that the matrix �α
′
β that produces Eq. (6.2) at every point may

not be a coordinate transformation. That is, the set {ω̃α′ = �α
′
β d̃xβ} may not be a coor-

dinate basis. By our earlier discussion of noncoordinate bases, it would be a coordinate
transformation only if Eq. (5.95) holds:

∂�α
′
β

∂xγ
= ∂�α

′
γ

∂xβ
.

In a general gravitational field this will be impossible, because otherwise it would imply
the existence of coordinates for which Eq. (6.2) is true everywhere: a global Lorentz frame.
However, having found a basis at a particular point P for which Eq. (6.2) is true, it is
possible to find coordinates such that, in the neighborhood of P , Eq. (6.2) is ‘nearly’ true.
This is embodied in the following theorem, whose (rather long) proof is at the end of this
section. Choose any point P of the manifold. A coordinate system {xα} can be found whose
origin is at P and in which:

gαβ (xμ) = ηαβ + 0[(xμ)2]. (6.3)

That is, the metric near P is approximately that of SR, differences being of second order in
the coordinates. From now on we shall refer to such coordinate systems as ‘local Lorentz
frames’ or ‘local inertial frames’. Eq. (6.3) can be rephrased in a somewhat more precise
way as:

gαβ (P) = ηαβ for all α,β; (6.4)

∂

∂xγ
gαβ (P) = 0 for all α,β, γ ; (6.5)

but generally

∂2

∂xγ ∂xμ
gαβ (P) �= 0

for at least some values of α,β, γ , and μ if the manifold is not exactly flat.
The existence of local Lorentz frames is merely the statement that any curved space has

a flat space ‘tangent’ to it at any point. Recall that straight lines in flat spacetime are the
world lines of free particles; the absence of first-derivative terms (Eq. (6.5)) in the metric
of a curved spacetime will mean that free particles are moving on lines that are locally
straight in this coordinate system. This makes such coordinates very useful for us, since the
equations of physics will be nearly as simple in them as in flat spacetime, and if constructed
by the rules of § 6.1 will be valid in any coordinate system. The proof of this theorem is at
the end of this section, and is worth studying.
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Lengths and volumes

The metric of course gives a way to define lengths of curves. Let d�x be a small vector
displacement on some curve. Then d�x has squared length ds2 = gαβ dxα dxβ . (Recall that
we call this the line element of the metric.) If we take the absolute value of this and take its
square root, we get a measure of length: dl ≡ |gαβ dxα dxβ |1/2. Then integrating it gives

l =
∫

along
curve

|gαβ dxα dxβ |1/2 (6.6)

=
∫ λ1

λ0

∣∣∣∣gαβ dxα

dλ

dxβ

dλ

∣∣∣∣
1/2

dλ, (6.7)

where λ is the parameter of the curve (whose endpoints are λ0 and λ1). But since the
tangent vector �V has components Vα = dxα/dλ, we finally have:

l =
∫ λ1

λ0

| �V · �V|1/2 dλ (6.8)

as the length of the arbitrary curve.
The computation of volumes is very important for integration in spacetime. Here, we

mean by ‘volume’ the four-dimensional volume element we used for integrations in Gauss’
law in § 4.4. Let us go to a local Lorentz frame, where we know that a small four-
dimensional region has four-volume dx0 dx1 dx2 dx3, where {xα} are the coordinates which
at this point give the nearly Lorentz metric, Eq. (6.3). In any other coordinate system {xα′ }
it is a well-known result of the calculus of several variables that:

dx0 dx1 dx2 dx3 = ∂(x0, x1, x2, x3)

∂(x0′ , x1′ , x2′ , x3′ )
dx0′

dx1′
dx2′

dx3′
, (6.9)

where the factor ∂( )/∂( ) is the Jacobian of the transformation from {xα′ } to {xα}, as
defined in § 5.2:

∂(x0, x1, x2, x3)

∂(x0′ , x1′ , x2′ , x3′ )
= det

⎛
⎜⎝
∂x0/∂x0′

∂x0/∂x1′ · · ·
∂x1/∂x0′

...

⎞
⎟⎠

= det(�αβ ′ ). (6.10)

This would be a rather tedious way to calculate the Jacobian, but there is an easier way
using the metric. In matrix terminology, the transformation of the metric components is

(g) = (�)(η)(�)T , (6.11)

where (g) is the matrix of gαβ , (η) of ηαβ , etc., and where ‘T’ denotes transpose. It follows
that the determinants satisfy

det (g) = det (�) det (η) det (�T ). (6.12)
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But for any matrix

det (�) = det (�T ), (6.13)

and we can easily see from Eq. (6.2) that

det (η) = −1. (6.14)

Therefore, we get

det (g) = −[det (�)]2. (6.15)

Now we introduce the notation

g := det (gα′β ′ ), (6.16)

which enables us to conclude from Eq. (6.15) that

det (�αβ ′ ) = (−g)1/2. (6.17)

Thus, from Eq. (6.9) we get

dx0 dx1 dx2 dx3 = [−det (gα′β ′ )]1/2dx0′
dx1′

dx2′
dx3′

= (−g)1/2dx0′
dx1′

dx2′
dx3′

. (6.18)

This is a very useful result. It is also conceptually an important result because it is the first
example of a kind of argument we will frequently employ, an argument that uses locally
flat coordinates to generalize our flat-space concepts to analogous ones in curved space. In
this case we began with dx0 dx1 dx2 dx3 = d4x in a locally flat coordinate system. We argue
that this volume element at P must be the volume physically measured by rods and clocks,
since the space is the same as Minkowski space in this small region. We then find that the
value of this expression in arbitrary coordinates {xμ′ } is Eq. (6.18), (−g)1/2 d4x′, which is
thus the expression for the true volume in a curved space at any point in any coordinates.
We call this the proper volume element.

It should not be surprising that the metric comes into it, of course, since the metric
measures lengths. We only need remember that in any coordinates the square root of the
negative of the determinant of (gαβ ) is the thing to multiply by d4x to get the true, or proper,
volume element.

Perhaps it would be helpful to quote an example from three dimensions. Here proper
volume is (g)1/2, since the metric is positive-definite (Eq. (6.14) would have a + sign). In
spherical coordinates the line element is dl2 = dr2 + r2dθ2 + r2 sin2 θ dφ2, so the metric is

(gij) =
⎛
⎝ 1 0 0

0 r2 0
0 0 r2 sin2 θ

⎞
⎠ . (6.19)

Its determinant is r4 sin2 θ , so (g)1/2 d3x′ is

r2 sin θ dr dθ dφ, (6.20)

which we know is the correct volume element in these coordinates.
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Proof of the local-flatness theorem

Let {xα} be an arbitrary given coordinate system and {xα′ } the one which is desired: it
reduces to the inertial system at a certain fixed point P . (A point in this four-dimensional
manifold is, of course, an event.) Then there is some relation

xα = xα(xμ
′
), (6.21)

�αμ′ = ∂xα/∂xμ
′
. (6.22)

Expanding �αμ′ in a Taylor series about P (whose coordinates are xμ
′

0 ) gives the
transformation at an arbitrary point �x near P:

�αμ′ (�x) = �αμ′ (P) + (xγ
′ − xγ

′
0 )
∂�αμ′

∂xγ ′ (P)

+ 1

2
(xγ

′ − xγ
′

0 )(xλ
′ − xλ

′
0 )
∂2�αμ′

∂xλ′
∂xγ ′ (P) + · · · ,

= �αμ′ |P + (xγ
′ − xγ

′
0 )

∂2xα

∂xγ ′
∂xμ′

∣∣∣∣P
+ 1

2
(xγ

′ − xγ
′

0 )(xλ
′ − xλ

′
0 )

∂3xα

∂xλ′
∂xγ ′

∂xμ′

∣∣∣∣P + · · · . (6.23)

Expanding the metric in the same way gives

gαβ (�x) = gαβ |P + (xγ
′ − xγ

′
0 )

∂gαβ
∂xγ ′

∣∣∣∣P
+ 1

2
(xγ

′ − xγ
′

0 )(xλ
′ − xλ

′
0 )

∂2gαβ
∂xλ′

∂xγ ′

∣∣∣∣∣P + · · · . (6.24)

We put these into the transformation,

gu′ν′ = �αμ′�βν′gαβ , (6.25)

to obtain

gμ′ν′ (�x) =�αμ′ |P�βν′ |Pgαβ |P
+ (xγ

′ − xγ
′

0 )[�αμ′ |P�βν′ |Pgαβ,γ ′ |P
+�αμ′ |Pgαβ |P∂2xβ/∂xγ

′
∂xν

′ |P
+�βν′ |Pgαβ |P∂2xα/∂xγ

′
∂xμ

′ |P ]

+ 1

2
(xγ

′ − xγ
′

0 )(xλ
′ − xλ

′
0 )[· · · ]. (6.26)

Now, we do not know the transformation, Eq. (6.21), but we can define it by its Taylor
expansion. Let us count the number of free variables we have for this purpose. The matrix
�αμ′ |P has 16 numbers, all of which are freely specifiable. The array {∂2xα/∂xγ

′
∂xμ

′ |P }
has 4 × 10 = 40 free numbers (not 4 × 4 × 4, since it is symmetric in γ ′ and μ′).
The array {∂3xα/∂xλ

′
∂xγ

′
∂xμ

′ |P } has 4 × 20 = 80 free variables, since symmetry on all



150 Curved manifolds
�

rearrangements of λ′, γ ′ and μ′ gives only 20 independent arrangements (the general
expression for three indices is n(n + 1)(n + 2)/3!, where n is the number of values each
index can take, four in our case). On the other hand, gαβ |P , gαβ,γ ′ |P and gαβ,γ ′μ′ |P are all
given initially. They have, respectively, 10, 10 × 4 = 40, and 10 × 10 = 100 independent
numbers for a fully general metric. The first question is, can we satisfy Eq. (6.4),

gμ′ν′ |P = ημ′ν′? (6.27)

This can be written as

ημ′ν′ = �αμ′ |P�βν′ |Pgαβ |P . (6.28)

By symmetry, these are ten equations, which for general matrices are independent. To
satisfy them we have 16 free values in�αμ′ |P . The equations can indeed, therefore, be sat-
isfied, leaving six elements of�αμ′ |P unspecified. These six correspond to the six degrees
of freedom in the Lorentz transformations that preserve the form of the metric ημ′ν′ . That
is, we can boost by a velocity v (three free parameters) or rotate by an angle θ around a
direction defined by two other angles. These add up to six degrees of freedom in �αμ′ |P
that leave the local inertial frame inertial.

The next question is, can we choose the 40 free numbers ∂�αμ′/∂xγ
′ |P in Eq. (6.26) in

such a way as to satisfy the 40 independent equations, Eq. (6.5),

gα′β ′,μ′ |P = 0? (6.29)

Since 40 equals 40, the answer is yes, just barely. Given the matrix �αμ′ |P , there is one
and only one way to arrange the coordinates near P such that�αμ′,γ ′ |P has the right values
to make gα′β ′,μ′ |P = 0. So there is no extra freedom other than that with which to make
local Lorentz transformations.

The final question is, can we make this work at higher order? Can we find 80 numbers
�αμ′,γ ′λ′ |P which can make the 100 numbers gα′β ′,μ′λ′ |P = 0? The answer, since 80 <
100, is no. There are, in the general metric, 20 ‘degrees of freedom’ among the second
derivatives gα′β ′,μ′λ′ |P . Since 100 − 80 = 20, there will be in general 20 components that
cannot be made to vanish.

Therefore we see that a general metric is characterized at any point P not so much by its
value at P (which can always be made to be ηαβ ), nor by its first derivatives there (which
can be made zero), but by the 20 second derivatives there which in general cannot be made
to vanish. These 20 numbers will be seen to be the independent components of a tensor
which represents the curvature; this we shall show later. In a flat space, of course, all 20
vanish. In a general space they do not.

6.3 Covar iant d i f fe rent iat ion

We now look at the subject of differentiation. By definition, the derivative of a vector field
involves the difference between vectors at two different points (in the limit as the points
come together). In a curved space the notion of the difference between vectors at different
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points must be handled with care, since in between the points the space is curved and the
idea that vectors at the two points might point in the ‘same’ direction is fuzzy. However, the
local flatness of the Riemannian manifold helps us out. We only need to compare vectors
in the limit as they get infinitesimally close together, and we know that we can construct
a coordinate system at any point which is as close to being flat as we would like in this
same limit. So in a small region the manifold looks flat, and it is then natural to say that the
derivative of a vector whose components are constant in this coordinate system is zero at
that point. In particular, we say that the derivatives of the basis vectors of a locally inertial
coordinate system are zero at P .

Let us emphasize that this is a definition of the covariant derivative. For us, its justifica-
tion is in the physics: the local inertial frame is a frame in which everything is locally like
SR, and in SR the derivatives of these basis vectors are zero. This definition immediately
leads to the fact that in these coordinates at this point, the covariant derivative of a vector
has components given by the partial derivatives of the components (that is, the Christoffel
symbols vanish):

Vα :β = Vα .β atP in this frame. (6.30)

This is of course also true for any other tensor, including the metric:

gαβ;γ = gαβ,γ = 0 atP .

(The second equality is just Eq. (6.5).) Now, the equation gαβ;γ = 0 is true in one frame
(the locally inertial one), and is a valid tensor equation; therefore it is true in any basis:

gαβ:γ = 0 in any basis. (6.31)

This is a very important result, and comes directly from our definition of the covariant
derivative. Recalling § 5.4, we see that if we have �μαβ = �μβα , then Eq. (6.31) leads to
Eq. (5.75) for any metric:

�αμν = 1

2
gαβ (gβμ,ν + gβν,μ − gμν,β ). (6.32)

It is left to Exer. 5, § 6.9, to demonstrate, by repeating the flat-space argument now in
the locally inertial frame, that �μβα is indeed symmetric in any coordinate system, so that
Eq. (6.32) is correct in any coordinates. We assumed at the start that at P in a locally inertial
frame, �αμν = 0. But, importantly, the derivatives of �αμν at P in this frame are not all
zero generally, since they involve gαβ,γμ. This means that even though coordinates can be
found in which �αμν = 0 at a point, these symbols do not generally vanish elsewhere. This
differs from flat space, where a coordinate system exists in which �αμν = 0 everywhere.
So we can see that at any given point, the difference between a general manifold and a flat
one manifests itself in the derivatives of the Christoffel symbols.
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Eq. (6.32) means that, given gαβ , we can calculate �αμν everywhere. We can therefore
calculate all covariant derivatives, given g. To review the formulas:

Vα ;β = Vα ,β + �αμβVμ, (6.33)

Pα;β = Pα,β − �μαβPμ, (6.34)

Tαβ ;γ = Tαβ ,γ + �αμγ Tμβ + �βμγ Tαμ. (6.35)

Divergence formula

Quite often we deal with the divergence of vectors. Given an arbitrary vector field Vα , its
divergence is defined by Eq. (5.53),

Vα ;α = Vα ,α + �αμαVμ. (6.36)

This formula involves a sum in the Christoffel symbol, which, from Eq. (6.32), is

�αμα = 1

2
gαβ (gβμ,α + gβα,μ − gμα,β )

= 1

2
gαβ (gβμ,α − gμα,β ) + 1

2
gαβgαβ,μ. (6.37)

This has had its terms rearranged to simplify it: notice that the term in parentheses is
antisymmetric in α and β, while it is contracted on α and β with gαβ , which is symmetric.
The first term therefore vanishes (see Exer. 26(a), § 3.10) and we find

�αμα = 1

2
gαβgαβ,μ. (6.38)

Since (gαβ ) is the inverse matrix of (gαβ ), it can be shown (see Exer. 7, § 6.9) that the
derivative of the determinant g of the matrix (gαβ ) is

g,μ = ggαβgβα,μ. (6.39)

Using this in Eq. (6.38), we find

�αμα = (
√ − g),μ/

√ − g. (6.40)

Then we can write the divergence, Eq. (6.36), as

Vα ;α = Vα ,α + 1√ − g
Vα(

√ − g),α (6.41)
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or

Vα ;α = 1√ − g
(
√ − gVα),α . (6.42)

This is a very much easier formula to use than Eq. (6.36). It is also important for Gauss’
law, where we integrate the divergence over a volume (using, of course, the proper volume
element): ∫

Vα ;α
√ − g d4x =

∫
(
√ − gVα),α d4x. (6.43)

Since the final term involves simple partial derivatives, the mathematics of Gauss’ law
applies to it, just as in SR (§ 4.8):∫

(
√ − gVα),α d4x =

∮
Vαnα

√ − g d3S. (6.44)

This means

∫
Vα ;α

√ − g d4x =
∮

Vαnα
√ − g d3S. (6.45)

So Gauss’ law does apply on a curved manifold, in the form given by Eq. (6.45). We
need to integrate the divergence over proper volume and to use the proper surface element,
nα

√ − g d3S, in the surface integral.

6.4 Para l le l - t ranspor t , geodes i c s , and curvatu re

Until now, we have used the local-flatness theorem to develop as much mathematics on
curved manifolds as possible without considering the curvature explicitly. Indeed, we have
yet to give a precise mathematical definition of curvature. It is important to distinguish
two different kinds of curvature: intrinsic and extrinsic. Consider, for example, a cylinder.
Since a cylinder is round in one direction, we think of it as curved. This is its extrinsic
curvature: the curvature it has in relation to the flat three-dimensional space it is part of.
On the other hand, a cylinder can be made by rolling a flat piece of paper without tearing
or crumpling it, so the intrinsic geometry is that of the original paper: it is flat. This means
that the distance in the surface of the cylinder between any two points is the same as it was
in the original paper; parallel lines remain parallel when continued; in fact, all of Euclid’s
axioms hold for the surface of a cylinder. A two-dimensional ‘ant’ confined to that surface
would decide it was flat; only its global topology is funny, in that going in a certain direc-
tion in a straight line brings him back to where he started. The intrinsic geometry of an
n-dimensional manifold considers only the relationships between its points on paths that
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remain in the manifold (for the cylinder, in the two-dimensional surface). The extrinsic cur-
vature of the cylinder comes from considering it as a surface in a space of higher dimension,
and asking about the curvature of lines that stay in the surface compared with ‘straight’
lines that go off it. So extrinsic curvature relies on the notion of a higher-dimensional
space. In this book, when we talk about the curvature of spacetime, we talk about its
intrinsic curvature, since it is clear that all world lines are confined to remain in space-
time. Whether or not there is a higher-dimensional space in which our four-dimensional
space is an open question that is becoming more and more a subject of discussion within
the framework of string theory. The only thing of interest in GR is the intrinsic geometry of
spacetime.

The cylinder, as we have just seen, is intrinsically flat; a sphere, on the other hand, has an
intrinsically curved surface. To see this, consider Fig. 6.1, in which two neighboring lines
begin at A and B perpendicular to the equator, and hence are parallel. When continued as
locally straight lines they follow the arc of great circles, and the two lines meet at the pole
P. Parallel lines, when continued, do not remain parallel, so the space is not flat.

There is an even more striking illustration of the curvature of the sphere. Consider, first,
flat space. In Fig. 6.2 a closed path in flat space is drawn, and, starting at A, at each point
a vector is drawn parallel to the one at the previous point. This construction is carried
around the loop from A to B to C and back to A. The vector finally drawn at A is, of course,
parallel to the original one. A completely different thing happens on a sphere! Consider
the path shown in Fig. 6.3. Remember, we are drawing the vector as it is seen to a two-
dimensional ant on the sphere, so it must always be tangent to the sphere. Aside from that,
each vector is drawn as parallel as possible to the previous one. In this loop, A and C are
on the equator 90◦ apart, and B is at the pole. Each arc is the arc of a great circle, and
each is 90◦ long. At A we choose the vector parallel to the equator. As we move up toward
B, each new vector is therefore drawn perpendicular to the arc AB. When we get to B,

P

BA

�Figure 6.1 A spherical triangle APB.

A

C

B

�Figure 6.2 A ‘triangle’ made of curved lines in flat space.
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B

C

A

�Figure 6.3 Parallel transport around a spherical triangle.

V
→

V
→

U
→

U
→

�Figure 6.4 Parallel transport of �V along �U.

the vectors are tangent to BC. So, going from B to C, we keep drawing tangents to BC.
These are perpendicular to the equator at C, and so from C to A the new vectors remain
perpendicular to the equator. Thus the vector field has rotated 90◦ in this construction!
Despite the fact that each vector is drawn parallel to its neighbor, the closed loop has caused
a discrepancy. Since this doesn’t happen in flat space, it must be an effect of the sphere’s
curvature.

This result has radical implications: on a curved manifold it simply isn’t possible to
define globally parallel vector fields. We can still define local parallelism, for instance how
to move a vector from one point to another, keeping it parallel and of the same length. But
the result of such ‘parallel transport’ from point A to point B depends on the path taken.
We therefore cannot assert that a vector at A is or is not parallel to (or the same as) a certain
vector at B.

Paral lel-transport

The construction we have just made on the sphere is called parallel-transport. Suppose a
vector field �V is defined on the sphere, and we examine how it changes along a curve, as
in Fig. 6.4. If the vectors �V at infinitesimally close points of the curve are parallel and of
equal length, then �V is said to be parallel-transported along the curve. It is easy to write
down an equation for this. If �U = d�x/dλ is the tangent to the curve (λ being the parameter



156 Curved manifolds
�

along it; �U is not necessarily normalized), then in a locally inertial coordinate system at a
point P the components of �V must be constant along the curve at P:

dVα

dλ
= 0 atP . (6.46)

This can be written as:

dVα

dλ
= UβVα ,β = UβVα ;β = 0 atP . (6.47)

The first equality is the definition of the derivative of a function (in this case Vα) along the
curve; the second equality comes from the fact that �αμν = 0 at P in these coordinates.
But the third equality is a frame-invariant expression and holds in any basis, so it can be
taken as a frame-invariant definition of the parallel-transport of �V along �U:

UβVα ;β = 0 ⇔ d

dλ
�V = ∇Ū

�V = 0. (6.48)

The last step uses the notation for the derivative along �U introduced in Eq. (3.67).

Geodesics

The most important curves in flat space are straight lines. One of Euclid’s axioms is that
two straight lines that are initially parallel remain parallel when extended. What does he
mean by ‘extended’? He doesnít mean ‘continued in such a way that the distance between
them remains constant’, because even then they could both bend. What he means is that
each line keeps going in the direction it has been going in. More precisely, the tangent to
the curve at one point is parallel to the tangent at the previous point. In fact, a straight line
in Euclidean space is the only curve that parallel-transports its own tangent vector! In a
curved space, we can also draw lines that are ‘as nearly straight as possible’ by demanding
parallel-transport of the tangent vector. These are called geodesics:

{ �Uis tangent to a geodesic} ⇔ ∇Ū
�U = 0. (6.49)

(Note that in a locally inertial system these lines are straight.) In component notation:

UβUα
;β = UβUα

,β + �αμβUμUβ = 0. (6.50)

Now, if we let λ be the parameter of the curve, then Uα = dxα/dλ and Uβ∂/∂xβ = d/dλ:

d

dλ

(
dxα

dλ

)
+ �αμβ

dxμ

dλ

dxβ

dλ
= 0. (6.51)
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Since the Christoffel symbols �αμβ are known functions of the coordinates {xα}, this is
a nonlinear (quasi-linear), second-order differential equation for xα(λ). It has a unique
solution when initial conditions at λ = λ0 are given: xα0 = xα (λ0) and Uα

0 = (dxα/dλ)λ0 .
So, by giving an initial position (xα0 ) and an initial direction (Uα

0 ), we get a unique
geodesic.

Recall that if we change parameter, we change, mathematically speaking, the curve
(though not the points it passes through). Now, if λ is a parameter of a geodesic (so that
Eq. (6.51) is satisfied), and if we define a new parameter

φ = aλ+ b, (6.52)

where a and b are constants (not depending on position on the curve), then φ is also a
parameter in which Eq. (6.51) is satisfied:

d2xα

dφ2
+ �αμβ

dxμ

dφ

dxβ

dφ
= 0.

Generally speaking, only linear transformations of λ like Eq. (6.52) will give new param-
eters in which the geodesic equation is satisfied. A parameter like λ and φ above is called
an affine parameter. A curve having the same path as a geodesic but parametrized by a
nonaffine parameter is, strictly speaking, not a geodesic curve.

A geodesic is also a curve of extremal length between any two points: its length is
unchanged to first order in small changes in the curve. The student is urged to prove this
by using Eq. (6.7), finding the Euler–Lagrange equations for it to be an extremal for fixed
λ0 and λ1, and showing that these reduce to Eq. (6.51) when Eq. (6.32) is used. This is a
very instructive exercise. We can also show that proper distance along the geodesic is itself
an affine parameter (see Exers. 13–15, § 6.9).

6.5 The curvatu re tensor

At last we are in a position to give a mathematical description of the intrinsic curvature
of a manifold. We go back to the curious example of the parallel-transport of a vector
around a closed loop, and take it as our definition of curvature. Let us imagine in our
manifold a very small closed loop (Fig. 6.5) whose four sides are the coordinate lines

A

D

B

C

x2
 = b + δb

x1
 = a + δa

x2
 = b

x1
 = a

�Figure 6.5 Small section of a coordinate grid.
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x1 = a, x1 = a + δa, x2 = b, and x2 = b + δb. A vector �V defined at A is parallel-
transported to B. The parallel-transport law ∇�e1

�V = 0 has the component form

∂Vα

∂x1
= −�αμ1Vμ. (6.53)

Integrating this from A to B gives

Vα(B) = Vα(A) +
∫ B

A

∂Vα

∂x1
dx1

= Vα(A) −
∫

x2=b
�αμ1Vμdx1,

(6.54)

where the notation ‘x2 = b’ under the integral denotes the path AB. Similar transport from
B to C to D gives

Vα(C) = Vα(B) −
∫

x1=a+δa
�αμ2Vμ dx2, (6.55)

Vα(D) = Vα(C) +
∫

x2=b+δb
�αμ1Vμ dx1. (6.56)

The integral in the last equation has a different sign because the direction of transport
from C to D is in the negative x1 direction. Similarly, the completion of the loop gives

Vα(Afinal) = Vα(D) +
∫

x1=a
�αμ2Vμ dx2. (6.57)

The net change in Vα(A) is a vector δVα , found by adding Eqs. (6.54)–(6.57):

δVα = Vα(Afinal) − Vα(Ainitial)

=
∫

x1=a
�αμ2Vμdx2 −

∫
x1=a+δa

�αμ2Vμdx2

+
∫

x2=b+δb
�αμ1Vμdx1 −

∫
x2=b

�αμ1Vμdx1. (6.58)

Notice that these would cancel in pairs if �αμν and Vμ were constants on the loop, as they
would be in flat space. But in curved space they are not, so if we combine the integrals over
similar integration variables and work to first order in the separation in the paths, we get to
lowest order,

δVα  −
∫ b+δb

b
δa

∂

∂x1
(�αμ2Vμ) dx2

+
∫ a+δa

a
δb

∂

∂x2
(�αμ1Vμ) dx1 (6.59)

≈ δa δb

[
− ∂

∂x1
(�αμ2Vμ) + ∂

∂x2
(�αμ1Vμ)

]
. (6.60)

This involves derivatives of Christoffel symbols and of Vα . The derivatives Vα can be
eliminated using Eq. (6.53) and its equivalent with 1 replaced by 2. Then Eq. (6.60)
becomes

δVα = δa δb
[
�αμ1,2 − �αμ2,1 + �αν2�

ν
μ1 − �αν1�

ν
μ2
]

Vμ. (6.61)
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(To obtain this, we need to relabel dummy indices in the terms quadratic in �s.) Notice
that this turns out to be just a number times Vμ, summed on μ. Now, the indices 1 and 2
appear because the path was chosen to go along those coordinates. It is antisymmetric in
1 and 2 because the change δVα would have to have the opposite sign if we went around
the loop in the opposite direction (that is, interchanging the roles of 1 and 2). If we used
general coordinate lines xσ and xλ, we would find

δVα = change in Vα due to transport, first δa �eσ , then δb �eλ,

then −δa �aσ , and finally −δb �eλ
= δa δb

[
�αμσ ,λ − �αμλ,σ + �ανλ�

ν
μσ − �ανσ�

ν
μλ

]
Vμ. (6.62)

Now, δVα depends on δa δb, the coordinate ‘area’ of the loop. So it is clear that if the
length of the loop in one direction is doubled, δVα is doubled. This means that δVα depends
linearly on δa �eσ and δb �eλ. Moreover, it certainly also depends linearly in Eq. (6.62) on
Vα itself and on ω̃α , which is the basis one-form that gives δVα from the vector δ �V . Hence
we have the following result: if we define

Rαβμν := �αβν,μ − �αβμ,ν + �ασμ�
σ
βν − �ασν�

σ
βμ, (6.63)

then Rαβμν must be components of the
(1

3

)
tensor which, when supplied with arguments

ω̃α , �V , δa �eμ, δb �eν , gives δVα , the component of the change in �V after parallel-transport
around a loop given by δa �eμ and δb �eν . This tensor is called the Riemann curvature
tensor R.1

It is useful to look at the components of R in a locally inertial frame at a point P . We
have �αμν = 0 at P , but we can find its derivative from Eq. (6.32):

�αμν,σ = 1
2 gαβ

(
gβμ,νσ + gβν,μσ − gμν,βσ

)
. (6.64)

Since second derivatives of gαβ don’t vanish, we get at P
Rαβμν = 1

2 gασ (gσβ,νμ + gσν,βμ − gβν,σμ

− gσβ,μν − gσμ,βν + gβμ,σν). (6.65)

Using the symmetry of gαβ and the fact that

gαβ,μν = gαβ,νμ, (6.66)

because partial derivatives always commute, we find at P
Rαβμν = 1

2 gσσ
(
gσν,βμ − gσμ,βν + gβμ,σν − gβν,σμ

)
. (6.67)

If we lower the index α, we get (in the locally flat coordinate system at its origin P)

1 As with other definitions we have earlier introduced, there is no universal agreement about the overall sign of
the Riemann tensor, or even on the placement of its indices. Always check the conventions of whatever book
you read.
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Rαβμν := gαλRλβμν = 1
2

(
gαν,βμ − gαμ,βν + gβμ,αν − gβν,αμ

)
. (6.68)

In this form it is easy to verify the following identities:

Rαβμν = −Rβαμν = −Rαβνμ = Rμναβ , (6.69)

Rαβμν + Rανβμ + Rαμνβ = 0. (6.70)

Thus, Rαβμν is antisymmetric on the first pair and on the second pair of indices, and
symmetric on exchange of the two pairs. Since Eqs. (6.69) and (6.70) are valid tensor
equations true in one coordinate system, they are true in all bases. (Note that an equa-
tion like Eq. (6.67) is not a valid tensor equation, since it involves partial derivatives, not
covariant ones. Therefore it is true only in the coordinate system in which it was derived.)

It can be shown (Exer. 18, § 6.9) that the various identities, Eqs. (6.69) and (6.70),
reduce the number of independent components of Rαβμν (and hence of Rαβμν) to 20, in
four dimensions. This is, not coincidentally, the same number of independent gαβ,μν that
we found at the end of § 6.2 could not be made to vanish by a coordinate transformation.
Thus Rαβμν characterizes the curvature in a tensorial way.

A flat manifold is one which has a global definition of parallelism: a vector can be moved
around parallel to itself on an arbitrary curve and will return to its starting point unchanged.
This clearly means that

Rαβμν = 0 ⇔ flat manifold. (6.71)

(Try showing that this is true in polar coordinates for the Euclidean plane.)
An important use of the curvature tensor comes when we examine the consequences of

taking two covariant derivatives of a vector field �V . We found in § 6.3 that first derivatives
were like flat-space ones, since we could find coordinates in which the metric was flat to
first order. But second derivatives are a different story:

∇α∇βVμ = ∇α(Vμ;β )

= (Vμ;β ),α + �μσαVσ ;β − �σ βαVμ;σ . (6.72)

In locally inertial coordinates whose origin is at P , all the �s are zero, but their partial
derivatives are not. Therefore we have at P

∇α∇βVμ = Vμ,βα + �μνβ,αVν . (6.73)

Bear in mind that this expression is valid only in this specially chosen coordinates system,
and that is true also for Eqs. (6.74) through (6.76) below. These coordinates make the
computation easier: consider now Eq. (6.73) with α and β exchanged:

∇β∇αVμ = Vμ,αβ + �μνα,βVν . (6.74)



161 6.5 The curvature tensor
�

If we subtract these, we get the commutator of the covariant derivative operators ∇α and
∇β , written in the same notation as we would employ in quantum mechanics:

[∇α , ∇β ]Vμ :=∇α∇βVμ − ∇β∇αVμ

= (
�μνβ,α − �μνα,β

)
Vν . (6.75)

The terms involving the second derivatives of Vμ drop out here, since

Vμ,αβ = Vμ,βα . (6.76)

[Let us pause to recall that Vμ,α is the partial derivative of the component Vμ, so by the
laws of partial differentiation the partial derivatives must commute. On the other hand,
∇αVμ is a component of the tensor ∇ �V , and ∇α∇βVμ is a component of ∇∇ �V: there is no
reason (from differential calculus) why it must be symmetric on α and β. We have proved,
by showing that Eq. (6.75) is nonzero, that the double covariant derivative generally is not
symmetric.] Now, in this frame (where �μαβ = 0 at P), we can compare Eq. (6.75) with
Eq. (6.63) and see that at P

[∇α , ∇β ]Vμ = RμναβVν . (6.77)

Now, this is a valid tensor equation, so it is true in any coordinate system: the Riemann
tensor gives the commutator of covariant derivatives. We can drop the restriction to locally
inertial coordinates: they were simply a convenient way of arriving at a general tensor
expression for the commutator. What this means is that in curved spaces, we must be
careful to know the order in which covariant derivatives are taken: they do not commute.
This can be extended to tensors of higher rank. For example, a

(1
1

)
tensor has

[∇α , ∇β ]Fμν = RμσαβFσ ν + Rν
σ
αβFμσ . (6.78)

That is, each index gets a Riemann tensor on it, and each one comes in with a + sign. (They
must all have the same sign because raising and lowering indices with g is unaffected by
∇α , since ∇g = 0.)

Eq. (6.77) is closely related to our original derivation of the Riemann tensor from
parallel-transport around loops, because the parallel-transport problem can be thought of
as computing, first the change of �V in one direction, and then in another, followed by
subtracting changes in the reverse order: this is what commuting covariant derivatives
also does.

Geodesic deviat ion

We have often mentioned that in a curved space, parallel lines when extended do not remain
parallel. This can now be formulated mathematically in terms of the Riemann tensor. Con-
sider two geodesics (with tangents �V and �V ′) that begin parallel and near each other,
as in Fig. 6.6, at points A and A′. Let the affine parameter on the geodesics be called λ.
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A′ V ′

ξ(A)

Δλ

Δλ

B ′

A
B

→ ξ(B)
→

→

V
→

�Figure 6.6 A connecting vector �ξ between two geodesics connects points of the same parameter value.

We define a ‘connecting vector’ �ξ which ‘reaches’ from one geodesic to another, con-
necting points at equal intervals in λ (i.e. A to A′, B to B′, etc.). For simplicity, let us
adopt a locally inertial coordinate system at A, in which the coordinate x0 points along the
geodesics and advances at the same rate as λ there (this is just a scaling of the coordinate).
Then because Vα = dxα/dλ, we have at A Vα = δα0 . The equation of the geodesic at A is

d2xα

dλ2

∣∣∣∣
A

= 0, (6.79)

since all Christoffel symbols vanish at A. The Christoffel symbols do not vanish at A′, so
the equation of the geodesic �V ′ at A′ is

d2xα

dλ2

∣∣∣∣
A′

+ �α00(A′) = 0, (6.80)

where again at A′ we have arranged the coordinates so that Vα = δα0 . But, since A and A′
are separated by �ξ , we have

�α00(A′) ∼= �α00,βξ
β , (6.81)

the right-hand side being evaluated at A. With Eq. (6.80) this gives

d2xα

dλ2

∣∣∣∣
A′

= −�α00,βξ
β . (6.82)

Now, the difference xα(λ, geodesic �V ′) − xα(λ, geodesic �V) is just the component ξα of the
vector �ξ . Therefore, at A, we have

d2ξα

dλ2
= d2xα

dλ2

∣∣∣∣
A′

− d2xα

dλ2

∣∣∣∣
A

= −�α00,βξ
β . (6.83)

This then gives how the components of �ξ change. But since the coordinates are to some
extent arbitrary, we want to have, not merely the second derivative of the component ξα ,
but the full second covariant derivative ∇V∇V �ξ . We can use Eq. (6.48) to obtain

∇V∇Vξ
α = ∇V (∇Vξ

α)

= d

dλ
(∇Vξ

α) = �αβ0(∇Vξ
β ). (6.84)
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Now, using �αβγ = 0 at A, we have

∇V∇Vξ
α = d

dλ

(
d

dλ
ξα + �αβ0ξ

β

)
+ 0

= d2

dλ2
ξα + �αβ0,0ξ

β (6.85)

at A. (We have also used ξβ ,0 = 0 at A, which is the condition that curves begin parallel.)
So we get

∇V∇Vξ
α = (

�αβ0,0 − �α00,β
)
ξβ

= Rα00βξ
β = RαμνβVμVνξβ , (6.86)

where the second equality follows from Eq. (6.63). The final expression is frame invariant,
and A was an arbitrary point, so we have, in any basis,

∇V∇Vξ
α = RαμνβVμVνξβ . (6.87)

Geodesics in flat space maintain their separation; those in curved spaces don’t. This is
called the equation of geodesic deviation and shows mathematically that the tidal forces of
a gravitational field (which cause trajectories of neighboring particles to diverge) can be
represented by curvature of a spacetime in which particles follow geodesics.

6.6 B ianch i ident i t ie s : R i cc i and E ins te in tensor s

Let us return to Eq. (6.63) for the Riemann tensor’s components. If we differentiate it
with respect to xλ (just the partial derivative) and evaluate the result in locally inertial
coordinates, we find

Rαβμν,λ = 1

2

(
gαν,βμλ − gαμ,βνλ + gβμ,ανλ − gβν,αμλ

)
. (6.88)

From this equation, the symmetry gαβ = gβα and the fact that partial derivatives commute,
we can show that

Rαβμν,λ + Rαβλμ,ν + Rαβνλ,μ = 0. (6.89)

Since in our coordinates �μαβ = 0 at this point, this equation is equivalent to

Rαβμν;λ + Rαβλμ;ν + Rαβνλ;μ = 0. (6.90)

But this is a tensor equation, valid in any system. It is called the Bianchi identities, and will
be very important for our work.
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The Ricci tensor

Before pursuing the consequences of the Bianchi identities, we shall need to define the
Ricci tensor Rαβ :

Rαβ := Rμσμβ = Rβα . (6.91)

It is the contraction of Rμανβ on the first and third indices. Other contractions would in
principle also be possible: on the first and second, the first and fourth, etc. But because
Rαβμν is antisymmetric on α and β and on μ and ν, all these contractions either vanish
identically or reduce to ±Rαβ . Therefore the Ricci tensor is essentially the only contraction
of the Riemann tensor. Note that Eq. (6.69) implies it is a symmetric tensor (Exer. 25, § 6.9).

Similarly, the Ricci scalar is defined as

R := gμνRμν = gμνgαβRαμβν . (6.92)

The Einstein tensor

Let us apply the Ricci contraction to the Bianchi identities, Eq. (6.90):

gαμ
[
Rαβμν;λ + Rαβλμ;ν + Rαβνλ;μ

] = 0

or

Rβν;λ + (−Rβλ;ν) + Rμβνλ;μ = 0. (6.93)

To derive this result we need two facts. First, by Eq. (6.31) we have

gαβ;μ = 0.

Since gαμ is a function only of gαβ it follows that

gαβ ;μ = 0. (6.94)

Therefore, gαμ and gβν can be taken in and out of covariant derivatives at will: index-
raising and -lowering commutes with covariant differentiation. The second fact is that

gαμRαβλμ;ν = −gαμRαβμλ;ν = −Rβλ;ν , (6.95)

accounting for the second term in Eq. (6.93). Eq. (6.93) is called the contracted Bianchi
identities. A more useful equation is obtained by contracting again on the indices β and ν:

gβν
[
Rβν;λ − Rβλ;ν + Rμβνλ;μ

] = 0

or

R;λ − Rμλ;μ + (−Rμλ;μ) = 0. (6.96)
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Again the antisymmetry of R has been used to get the correct sign in the last term. Note
that since R is a scalar, R;λ ≡ R,λ in all coordinates. Now, Eq. (6.96) can be written in
the form

(2Rμλ − δμλR);μ = 0. (6.97)

These are the twice-contracted Bianchi identities, often simply also called the Bianchi
identities. If we define the symmetric tensor

Gαβ ≡ Rαβ − 1
2 gαβR = Gβα , (6.98)

then we see that Eq. (6.97) is equivalent to

Gαβ ;β = 0. (6.99)

The tensor Gαβ is constructed only from the Riemann tensor and the metric, and is auto-
matically divergence free as an identity. It is called the Einstein tensor, since its importance
for gravity was first understood by Einstein. [In fact we shall see that the Einstein field
equations for GR are

Gαβ = 8πTαβ

(where Tαβ is the stress-energy tensor). The Bianchi identities then imply

Tαβ ;β ≡ 0,

which is the equation of local conservation of energy and momentum. But this is looking
a bit far ahead.]

6.7 Curvatu re in perspec t ive

The mathematical machinery for dealing with curvature is formidable. There are many
important equations in this chapter, but few of them need to be memorized. It is far more
important to understand their derivation and particularly their geometrical interpretation.
This interpretation is something we will build up over the next few chapters, but the mate-
rial already in hand should give the student some idea of what the mathematics means. Let
us review the important features of curved spaces.

(1) We work on Riemannian manifolds, which are smooth spaces with a metric defined
on them.

(2) The metric has signature +2, and there always exists a coordinate system in which, at
a single point, we can have
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gαβ = ηαβ ,

gαβ,γ = 0 ⇒ �αβγ = 0.

(3) The element of proper volume is

|g|1/2d4x,

where g is the determinant of the matrix of components gαβ .
(4) The covariant derivative is simply the ordinary derivative in locally inertial coordi-

nates. Because of curvature (�αβγ ,σ �= 0) these derivatives do not commute.
(5) The definition of parallel-transport is that the covariant derivative along the curve is

zero. A geodesic parallel-transports its own tangent vector. Its affine parameter can be
taken to be the proper distance itself.

(6) The Riemann tensor is the characterization of the curvature. Only if it vanishes identi-
cally is the manifold flat. It has 20 independent components (in four dimensions), and
satisfies the Bianchi identities, which are differential equations. The Riemann tensor in
a general coordinate system depends on gαβ and its first and second partial derivatives.
The Ricci tensor, Ricci scalar, and Einstein tensor are contractions of the Riemann
tensor. In particular, the Einstein tensor is symmetric and of second rank, so it has ten
independent components. They satisfy the four differential identities, Eq. (6.99).

6.8 Fur ther read ing

The theory of differentiable manifolds is introduced in a large number of books. The
following are suitable for exploring the subject further with a view toward its physical
applications, particularly outside of relativity: Abraham and Marsden (1978), Bishop and
Goldberg (1981), Hermann (1968), Isham (1999), Lovelock and Rund (1990), and Schutz
(1980b). Standard mathematical reference works include Kobayashi and Nomizu (1963,
1969), Schouten (1990), and Spivak (1979).

6.9 Exerc i ses

1 Decide if the following sets are manifolds and say why. If there are exceptional points
at which the sets are not manifolds, give them:
(a) phase space of Hamiltonian mechanics, the space of the canonical coordinates and

momenta pi and qi;
(b) the interior of a circle of unit radius in two-dimensional Euclidean space;
(c) the set of permutations of n objects;
(d) the subset of Euclidean space of two dimensions (coordinates x and y) which is a

solution to xy (x2 + y2 − 1) = 0.
2 Of the manifolds in Exer. 1, on which is it customary to use a metric, and what is that

metric? On which would a metric not normally be defined, and why?
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3 It is well known that for any symmetric matrix A (with real entries), there exists
a matrix H for which the matrix HTAH is a diagonal matrix whose entries are the
eigenvalues of A.
(a) Show that there is a matrix R such that RTHTAHR is the same matrix as HTAH

except with the eigenvalues rearranged in ascending order along the main diagonal
from top to bottom.

(b) Show that there exists a third matrix N such that NTRTHTAHRN is a diagonal
matrix whose entries on the diagonal are −1, 0, or +1.

(c) Show that if A has an inverse, none of the diagonal elements in (b) is zero.
(d) Show from (a)–(c) that there exists a transformation matrix � which produces

Eq. (6.2).
4 Prove the following results used in the proof of the local flatness theorem in § 6.2:

(a) The number of independent values of ∂2xα/∂xγ ′∂xμ′|0 is 40.
(b) The corresponding number for ∂3xα/∂xλ′∂xμ

′
∂xν

′ |0 is 80.
(c) The corresponding number for gαβ,γ ′μ′ |0 is 100.

5 (a) Prove that �μαβ = �μβα in any coordinate system in a curved Riemannian space.
(b) Use this to prove that Eq. (6.32) can be derived in the same manner as in flat space.

6 Prove that the first term in Eq. (6.37) vanishes.
7 (a) Give the definition of the determinant of a matrix A in terms of cofactors of

elements.
(b) Differentiate the determinant of an arbitrary 2 × 2 matrix and show that it satisfies

Eq. (6.39).
(c) Generalize Eq. (6.39) (by induction or otherwise) to arbitrary n × n matrices.

8 Fill in the missing algebra leading to Eqs. (6.40) and (6.42).
9 Show that Eq. (6.42) leads to Eq. (5.56). Derive the divergence formula for the metric

in Eq. (6.19).
10 A ‘straight line’ on a sphere is a great circle, and it is well known that the sum of the

interior angles of any triangle on a sphere whose sides are arcs of great circles exceeds
180◦. Show that the amount by which a vector is rotated by parallel transport around
such a triangle (as in Fig. 6.3) equals the excess of the sum of the angles over 180◦.

11 In this exercise we will determine the condition that a vector field �V can be considered
to be globally parallel on a manifold. More precisely, what guarantees that we can find
a vector field �V satisfying the equation

(∇ �V)αβ = Vα ;β = Vα ,β + �αμβVμ = 0?

(a) A necessary condition, called the integrability condition for this equation, follows
from the commuting of partial derivatives. Show that Vα ,νβ = Vα ,βν implies(

�αμβ,ν − �αμν,β
)

Vμ = (
�αμβ�

μ
σν − �αμν�

μ
σβ

)
Vσ .

(b) By relabeling indices, work this into the form(
�αμβ,ν − �αμν,β + �σ σν�

σ
μβ − �ασβ�

σ
μν

)
Vμ = 0.

This turns out to be sufficient, as well.
12 Prove that Eq. (6.52) defines a new affine parameter.
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13 (a) Show that if �A and �B are parallel-transported along a curve, then g(�A, �B) = �A · �B is
constant on the curve.

(b) Conclude from this that if a geodesic is spacelike (or timelike or null) somewhere,
it is spacelike (or timelike or null) everywhere.

14 The proper distance along a curve whose tangent is �V is given by Eq. (6.8). Show that
if the curve is a geodesic, then proper length is an affine parameter. (Use the result of
Exer. 13.)

15 Use Exers. 13 and 14 to prove that the proper length of a geodesic between two points is
unchanged to first order by small changes in the curve that do not change its endpoints.

16 (a) Derive Eqs. (6.59) and (6.60) from Eq. (6.58).
(b) Fill in the algebra needed to justify Eq. (6.61).

17 (a) Prove that Eq. (6.5) implies gαβ ,μ(P) = 0.
(b) Use this to establish Eq. (6.64).
(c) Fill in the steps needed to establish Eq. (6.68).

18 (a) Derive Eqs. (6.69) and (6.70) from Eq. (6.68).
(b) Show that Eq. (6.69) reduces the number of independent components of Rαβμν

from 4 × 4 × 4 × 4 = 256 to 6 × 7/2 = 21. (Hint: treat pairs of indices. Calculate
how many independent choices of pairs there are for the first and the second pairs
on Rαβμν.)

(c) Show that Eq. (6.70) imposes only one further relation independent of Eq. (6.69)
on the components, reducing the total of independent ones to 20.

19 Prove that Rαβμν = 0 for polar coordinates in the Euclidean plane. Use Eq. (5.45) or
equivalent results.

20 Fill in the algebra necessary to establish Eq. (6.73).
21 Consider the sentences following Eq. (6.78). Why does the argument in parentheses

not apply to the signs in

Vα ;β = Vα ,β + �αμβVμ and Vα;β = Vα,β − �μαβVμ?

22 Fill in the algebra necessary to establish Eqs. (6.84), (6.85), and (6.86).
23 Prove Eq. (6.88). (Be careful: one cannot simply differentiate Eq. (6.67) since it is valid

only at P, not in the neighborhood of P.)
24 Establish Eq. (6.89) from Eq. (6.88).
25 (a) Prove that the Ricci tensor is the only independent contraction of Rαβμν : all others

are multiples of it.
(b) Show that the Ricci tensor is symmetric.

26 Use Exer. 17(a) to prove Eq. (6.94).
27 Fill in the algebra necessary to establish Eqs. (6.95), (6.97), and (6.99).
28 (a) Derive Eq. (6.19) by using the usual coordinate transformation from Cartesian to

spherical polars.
(b) Deduce from Eq. (6.19) that the metric of the surface of a sphere of radius r

has components (gθθ = r2, gφφ = r2 sin2 θ , gθφ = 0) in the usual spherical coor-
dinates.

(c) Find the components gαβ for the sphere.
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29 In polar coordinates, calculate the Riemann curvature tensor of the sphere of unit
radius, whose metric is given in Exer. 28. (Note that in two dimensions there is only
one independent component, by the same arguments as in Exer. 18(b). So calculate
Rθφθφ and obtain all other components in terms of it.)

30 Calculate the Riemann curvature tensor of the cylinder. (Since the cylinder is flat, this
should vanish. Use whatever coordinates you like, and make sure you write down the
metric properly!)

31 Show that covariant differentiation obeys the usual product rule, e.g. (VαβWβγ );μ =
Vαβ ;μ Wβγ + VαβWβγ ;μ. (Hint: use a locally inertial frame.)

32 A four-dimensional manifold has coordinates (u, v, w, p) in which the met-
ric has components guv = gww = gpp = 1, all other independent components
vanishing.
(a) Show that the manifold is flat and the signature is +2.
(b) The result in (a) implies the manifold must be Minkowski spacetime. Find a coor-

dinate transformation to the usual coordinates (t, x, y, z). (You may find it a useful
hint to calculate �eν · �eν and �eu · �eu .)

33 A ‘three-sphere’ is the three-dimensional surface in four-dimensional Euclidean space
(coordinates x, y, z, w), given by the equation x2 + y2 + z2 + w2 = r2, where r is the
radius of the sphere.
(a) Define new coordinates (r, θ ,φ,χ ) by the equations w = r cosχ , z = r sinχ cos θ ,

x = r sinχ sin θ cosφ, y = r sinχ sin θ sinφ. Show that (θ ,φ,χ ) are coordinates
for the sphere. These generalize the familiar polar coordinates.

(b) Show that the metric of the three-sphere of radius r has components in these coor-
dinates gχχ = r2, gθθ = r2 sin2 χ , gφφ = r2 sin2 χ sin2 θ , all other components
vanishing. (Use the same method as in Exer. 28.)

34 Establish the following identities for a general metric tensor in a general coordinate
system. You may find Eqs. (6.39) and (6.40) useful.
(a) �μμν = 1

2 (ln |g|),ν ;
(b) gμν�αμν = −(gαβ

√ − g),β/
√ − g;

(c) for an antisymmetric tensor Fμν , Fμν ;ν = (
√ − g Fμν),ν/

√ − g;
(d) gαβgβμ,ν = −gαβ ,νgβμ (hint: what is gαβgβμ?);
(e) gμν ,α = −�μβαgβν − �νβαgμβ (hint: use Eq. (6.31)).

35 Compute 20 independent components of Rαβμν for a manifold with line element
ds2 = −e2� dt2 + e2� dr2 + r2(dθ2 + sin2 θ dφ2), where � and � are arbitrary func-
tions of the coordinate r alone. (First, identify the coordinates and the components gαβ ;
then compute gαβ and the Christoffel symbols. Then decide on the indices of the 20
components of Rαβμν you wish to calculate, and compute them. Remember that you
can deduce the remaining 236 components from those 20.)

36 A four-dimensional manifold has coordinates (t, x, y, z) and line element

ds2 = −(1 + 2φ) dt2 + (1 − 2φ)(dx2 + dy2 + dz2),

where |φ(t, x, y, z)| 	 1 everywhere. At any point P with coordinates (t0, x0, y0, z0),
find a coordinate transformation to a locally inertial coordinate system, to first order in
φ. At what rate does such a frame accelerate with respect to the original coordinates,
again to first order in φ?
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37 (a) ‘Proper volume’ of a two-dimensional manifold is usually called ‘proper area’.
Using the metric in Exer. 28, integrate Eq. (6.18) to find the proper area of a sphere
of radius r.

(b) Do the analogous calculation for the three-sphere of Exer. 33.
38 Integrate Eq. (6.8) to find the length of a circle of constant coordinate θ on a sphere of

radius r.
39 (a) For any two vector fields �U and �V , their Lie bracket is defined to be the vector field

[ �U, �V] with components

[ �U, �V]α = Uβ∇βVα − Vβ∇βUα . (6.100)

Show that

[ �U, �V] = −[�V , �U],

[ �U, �V]α = Uβ ∂ Vα/∂xβ − Vβ ∂Uα/∂xβ .

This is one tensor field in which partial derivatives need not be accompanied by
Christoffel symbols!

(b) Show that [ �U, �V] is a derivative operator on �V along �U, i.e. show that for any
scalar f ,

[ �U, f �V] = f [ �U, �V] + �V( �U · ∇f ). (6.101)

This is sometimes called the Lie derivative with respect to �U and is denoted by

[ �U, �V] := £ �U �V , �U · ∇f := £ �Uf . (6.102)

Then Eq. (6.101) would be written in the more conventional form of the Leibnitz
rule for the derivative operator £ �U :

£ �U(f �V) = f £ �U �V + �V£ �Uf . (6.103)

The result of (a) shows that this derivative operator may be defined without a con-
nection or metric, and is therefore very fundamental. See Schutz (1980b) for an
introduction.

(c) Calculate the components of the Lie derivative of a one-form field ω̃ from the
knowledge that, for any vector field �V , ω̃(�V) is a scalar like f above, and from the
definition that £ �Uω̃ is a one-form field:

£ �U[ω̃(�V)] = (£ �Uω̃)(�V) + ω̃(£ �U �V).

This is the analog of Eq. (6.103).
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7.1 The t rans i t ion f rom di f fe rent ia l geomet ry
to grav i ty

The essence of a physical theory expressed in mathematical form is the identification of
the mathematical concepts with certain physically measurable quantities. This must be our
first concern when we look at the relation of the concepts of geometry we have developed
to the effects of gravity in the physical world. We have already discussed this to some
extent. In particular, we have assumed that spacetime is a differentiable manifold, and we
have shown that there do not exist global inertial frames in the presence of nonuniform
gravitational fields. Behind these statements are the two identifications:

(I) Spacetime (the set of all events) is a four-dimensional manifold with a metric.
(II) The metric is measurable by rods and clocks. The distance along a rod between two

nearby points is |d�x · d�x|1/2 and the time measured by a clock that experiences two
events closely separated in time is | − d�x · d�x|1/2.

So there do not generally exist coordinates in which d�x · d�x = −(dx0)2 + (dx1)2 +
(dx2)2 + (dx3)2 everywhere. On the other hand, we have also argued that such frames do
exist locally. This clearly suggests a curved manifold, in which coordinates can be found
which make the dot product at a particular point look like it does in a Minkowski spacetime.

Therefore we make a further requirement:

(III) The metric of spacetime can be put in the Lorentz form ηαβ at any particular event
by an appropriate choice of coordinates.

Having chosen this way of representing spacetime, we must do two more things to get
a complete theory. First, we must specify how physical objects (particles, electric fields,
fluids) behave in a curved spacetime and, second, we need to say how the curvature is
generated or determined by the objects in the spacetime.

Let us consider Newtonian gravity as an example of a physical theory. For Newton,
spacetime consisted of three-dimensional Euclidean space, repeated endlessly in time.
(Mathematically, this is called R3 × R.) There was no metric on spacetime as a whole
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manifold, but the Euclidean space had its usual metric and time was measured by a
universal clock. Observers with different velocities were all equally valid: this form of rela-
tivity was built into Galilean mechanics. Therefore there was no universal standard of rest,
and different observers would have different definitions of whether two events occurring at
different times happened at the same location. But all observers would agree on simultane-
ity, on whether two events happened in the same time-slice or not. Thus the ‘separation in
time’ between two events meant the time elapsed between the two Euclidean slices con-
taining the two events. This was independent of the spatial locations of the events, so in
Newtonian gravity there was a universal notion of time: all observers, regardless of posi-
tion or motion, would agree on the elapsed time between two given events. Similarly, the
‘separation in space’ between two events meant the Euclidean distance between them. If
the events were simultaneous, occurring in the same Euclidean time-slice, then this was
simple to compute using the metric of that slice, and all observers would agree on it. If the
events happened at different times, each observer would take the location of the events in
their respective space slices and compute the Euclidean distance between them. The loca-
tions would differ for different observers, but again the distance between them would be
the same for all observers.

However, in Newtonian theory there was no way to combine the time and distance
measures: there was no invariant measure of the length of a general curve that changed
position and time as it went along. Without an invariant way of converting times to dis-
tances, this was not possible. What Einstein brought to relativity was the invariance of the
speed of light, which then permits a unification of time and space measures. Einstein’s
four-dimensional spacetime has a much simpler structure than Newton’s!

Now, within this model of spacetime, Newton gave a law for the behavior of objects
that experienced gravitational forces: F = ma, where F = −m∇φ for a given gravitational
field φ. And he also gave a law determining how φ is generated: ∇2� = 4πGρ. These
two laws are the ones we must now find analogs for in our relativistic point of view on
spacetime. The second one will be dealt with in the next chapter. In this chapter, we ask
only how a given metric affects bodies in spacetime.

We have already discussed this for the simple case of particle motion. Since we know
that the ‘acceleration’ of a particle in a gravitational field is independent of its mass, we
can go to a freely falling frame in which nearby particles have no acceleration. This is
what we have identified as a locally inertial frame. Since freely falling particles have no
acceleration in that frame, they follow straight lines, at least locally. But straight lines in a
local inertial frame are, of course, the definition of geodesics in the full curved manifold.
So we have our first postulate on the way particles are affected by the metric:

(IV) Weak Equivalence Principle: Freely falling particles move on timelike geodesics
of the spacetime.1

1 It is more common to define the WEP without reference to a curved spacetime, but just to say that all parti-
cles fall at the same rate in a gravitational field, independent of their mass and composition. But the Einstein
Equivalence Principle (Postulate IV′) is normally taken to imply that gravity can be represented by spacetime
curvature, so we shall simply start with the assumption that we have a curved spacetime.
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By ‘freely falling’ we mean particles unaffected by other forces, such as electric fields,
etc. All other known forces in physics are distinguished from gravity by the fact that there
are particles unaffected by them. So the Weak Equivalence Principle (Postulate IV) is a
powerful statement, capable of experimental test. And it has been tested, and continues
to be tested, to high accuracy. Experiments typically compare the rate of fall of objects
that are composed of different materials; current experimental limits bound the fractional
differences in acceleration to a few parts in 1013 (Will 2006). The WEP is therefore one of
the most precisely tested laws in all of physics. There are even proposals to test it up to the
level of 10−18 using satellite-borne experiments.

But the WEP refers only to particles. How are, say, fluids affected by a nonflat metric?
We need a generalization of (IV):

(IV′) Einstein Equivalence Principle: Any local physical experiment not involving
gravity will have the same result if performed in a freely falling inertial frame
as if it were performed in the flat spacetime of special relativity.

In this case ‘local’ means that the experiment does not involve fields, such as electric fields,
that may extend over large regions and therefore extend outside the domain of validity of
the local inertial frame. All of local physics is the same in a freely falling inertial frame as it
is in special relativity. Gravity introduces nothing new locally. All the effects of gravity are
felt over extended regions of spacetime. This, too, has been tested rigorously (Will 2006).

This may seem strange to someone used to blaming gravity for making it hard to climb
stairs or mountains, or even to get out of bed! But these local effects of gravity are, in
Einstein’s point of view, really the effects of our being pushed around by the Earth and
objects on it. Our ‘weight’ is caused by the solid Earth exerting forces on us that prevent us
from falling freely on a geodesic (weightlessly, through the floor). This is a very reasonable
point of view. Consider astronauts orbiting the Earth. At an altitude of some 300 km, they
are hardly any further from the center of the Earth than we are, so the strength of the
Newtonian gravitational force on them is almost the same as on us. But they are weightless,
as long as their orbit prevents them encountering the solid Earth. Once we acknowledge
that spacetime has natural curves, the geodesics, and that when we fall on them we are in
free fall and feel no gravity, then we can dispose of the Newtonian concept of a gravitational
force altogether. We are only following the natural spacetime curve.

The true measure of gravity on the Earth are its tides. These are nonlocal effects, because
they arise from the difference of the Moon’s Newtonian gravitational acceleration across
the Earth, or in other words from the geodesic deviation near the Earth. If the Earth were
permanently cloudy, an Earthling would not know about the Moon from its overall grav-
itational acceleration, since the Earth falls freely: we don’t feel the Moon locally. But
Earthlings could in principle discover the Moon even without seeing it, by observing and
understanding the tides. Tidal forces are the only measurable aspect of gravity.

Mathematically, what the Einstein Equivalence Principle means is, roughly speaking,
that if we have a local law of physics that is expressed in tensor notation in SR, then its
mathematical form should be the same in a locally inertial frame of a curved spacetime.
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This principle is often called the ‘comma-goes-to-semicolon rule’, because if a law
contains derivatives in its special-relativistic form (‘commas’), then it has these same
derivatives in the local inertial frame. To convert the law into an expression valid in
any coordinate frame, we simply make the derivatives covariant (‘semicolons’). It is an
extremely simple way to generalize the physical laws. In particular, it forbids ‘curvature
coupling’: it is conceivable that the correct form of, say, thermodynamics in a curved space-
time would involve the Riemann tensor somehow, which would vanish in SR. Postulate
(IV′) would not allow any Riemann-tensor terms in the equations.

As an example of how (IV′) translates into mathematics, we discuss fluid dynamics,
which will be our main interest in this course. The law of conservation of particles in SR
is expressed as

(n Uα),α = 0, (7.1)

where n is the density of particles in the momentarily comoving reference frame (MCRF),
and where Uα is the four-velocity of a fluid element. In a curved spacetime, at any event,
we can find a locally inertial frame comoving momentarily with the fluid element at that
event, and define n in exactly the same way. Similarly we can define �U to be the time basis
vector of that frame, just as in SR. Then, according to the Einstein equivalence principle
(see Ch. 5), the law of conservation of particles in the locally inertial frame is exactly
Eq. (7.1). But because the Christoffel symbols are zero at the given event because it is the
origin of the locally inertial frame, this is equivalent to

(n Uα);α = 0. (7.2)

This form of the law is valid in all frames and so allows us to compute the conservation law
in any frame and be sure that it is the one implied by the Einstein equivalence principle.
We have therefore generalized the law of particle conservation to a curved spacetime. We
will follow this method for other laws of physics as we need them.

Is this just a game with tensors, or is there physical content in what we have done? Is
it possible that in a curved spacetime the conservation law would actually be something
other than Eq. (7.2)? The answer is yes: consider postulating the equation

(n Uα);α = qR2, (7.3)

where R is the Ricci scalar, defined in Eq. (6.92) as the double trace of the Riemann ten-
sor, and where q is a constant. This would also reduce to Eq. (7.1) in SR, since in a flat
spacetime the Riemann tensor vanishes. But in curved spacetime, this equation predicts
something very different: curvature would either create or destroy particles, according to
the sign of the constant q. Thus, both of the previous equations are consistent with the
laws of physics in SR. The Einstein equivalence principle asserts that we should general-
ize Eq. (7.1) in the simplest possible manner, that is to Eq. (7.2). It is of course a matter
for experiment, or astronomical observation, to decide whether Eq. (7.2) or Eq. (7.3) is
correct. In this book we shall simply make the assumption that is nearly universally made,
that the Einstein equivalence principle is correct. There is no observational evidence to the
contrary.
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Similarly, the law of conservation of entropy in SR is

UαS,α = 0. (7.4)

Since there are no Christoffel symbols in the covariant derivative of a scalar like S, this law
is unchanged in a curved spacetime. Finally, conservation of four-momentum is

Tμν ,ν = 0. (7.5)

The generalization is

Tμν ;ν = 0, (7.6)

with the definition

Tμν = (ρ + p)UμUν + pgμν , (7.7)

exactly as before. (Notice that gμν is the tensor whose components in the local inertial
frame equal the flat-space metric tensor ημν .)

7.2 Phys i c s in s l ight ly cu rved spacet imes

To see the implications of (IV′) for the motion of a particle or fluid, we must know the
metric on the manifold. Since we have not yet studied the way a metric is generated, we will
at this stage have to be content with assuming a form for the metric which we shall derive
later. We will see later that for weak gravitational fields (where, in Newtonian language,
the gravitational potential energy of a particle is much less than its rest-mass energy) the
ordinary Newtonian potential φ completely determines the metric, which has the form

ds2 = −(1 + 2φ) dt2 + (1 − 2φ) (dx2 + dy2 + dz2). (7.8)

(The sign of φ is chosen negative, so that, far from a source of mass M, we have φ =
−GM/r.) Now, the condition above that the field be weak means that |mφ| 	 m, so that
|φ| 	 1. The metric, Eq. (7.8), is really only correct to first order in φ, so we shall work to
this order from now on.

Let us compute the motion of a freely falling particle. We denote its four-momentum
by �p. For all except massless particles, this is m �U, where �U = d�x/dτ . Now, by (IV), the
particle’s path is a geodesic, and we know that proper time is an affine parameter on such
a path. Therefore �U must satisfy the geodesic equation,

∇�U �U = 0. (7.9)

For convenience later, however, we note that any constant times proper time is an affine
parameter, in particular τ/m. Then d�x/d(τ/m) is also a vector satisfying the geodesic equa-
tion. This vector is just md�x/dτ = �p. So we can also write the equation of motion of the
particle as

∇�p �p = 0. (7.10)
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This equation can also be used for photons, which have a well-defined �p but no �U since
m = 0.

If the particle has a nonrelativistic velocity in the coordinates of Eq. (7.8), we can find an
approximate form for Eq. (7.10). First let us consider the zero component of the equation,
noting that the ordinary derivative along �p is m times the ordinary derivative along �U, or in
other words m d/dτ :

m
d

dτ
p0 + �0

αβpαpβ = 0. (7.11)

Because the particle has a nonrelativistic velocity we have p0 � p1 , so Eq. (7.11) is
approximately

m
d

dτ
p0 + �0

00(p0)2 = 0. (7.12)

We need to compute �0
00:

�0
00 = 1

2 g0α(gα0,0 + gα0,0 − g00,α). (7.13)

Now because [gαβ ] is diagonal, [gαβ ] is also diagonal and its elements are the reciprocals
of those of [gαβ ]. Therefore g0α is nonzero only when α = 0, so Eq. (7.13) becomes

�0
00 = 1

2 g00g00,0 = 1

2

1

−(1 + 2φ)
(−2φ),0

= φ,0 + 0(φ2). (7.14)

To lowest order in the velocity of the particle and in φ, we can replace (p0)2 in the second
term of Eq. (7.12) by m2, obtaining

d

dτ
p0 = −m

∂φ

∂τ
. (7.15)

Since p0 is the energy of the particle in this frame, this means the energy is conserved unless
the gravitational field depends on time. This result is true also in Newtonian theory. Here,
however, we must note that p0 is the energy of the particle with respect to this frame only.

The spatial components of the geodesic equation give the counterpart of the Newtonian
F = ma. They are

pαpi
,α + �i

αβpαpβ = 0, (7.16)

or, to lowest order in the velocity,

m
dpi

dτ
+ �i

00(p0)2 = 0. (7.17)

Again we have neglected pi compared to p0 in the � summation. Consistent with this we
can again put (p0)2 = m2 to a first approximation and get

dpi

dτ
= −m�i

00. (7.18)

We calculate the Christoffel symbol:

�i
00 = 1

2 giα(gα0,0 + gα0,0 − g00,α). (7.19)
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Now, since [gαβ ] is diagonal, we can write

giα = (1 − 2φ)−1δiα (7.20)

and get

�i
00 = 1

2 (1 − 2φ)−1δij(2gj0,0 − g00j), (7.21)

where we have changed α to j because δi0 is zero. Now we notice that gj0 ≡ 0 and so we get

�i
00 = − 1

2 g00,jδ
ij + 0(φ2) (7.22)

= − 1
2 (−2φ),jδ

ij. (7.23)

With this the equation of motion, Eq. (7.17), becomes

dpi/dτ = −mφ,jδ
ij. (7.24)

This is the usual equation in Newtonian theory, since the force of a gravitational field
is −m∇φ. This demonstrates that general relativity predicts the Keplerian motion of the
planets, at least so long as the higher-order effects neglected here are too small to measure.
We shall see that this is true for most planets, but not for Mercury.

Both the energy-conservation equation and the equation of motion were derived
as approximations based on two things: the metric was nearly the Minkowski metric
(|φ| 	 1), and the particle’s velocity was nonrelativistic (p0 � pi). These two limits are
just the circumstances under which Newtonian gravity is verified, so it is reassuring –
indeed, essential – that we have recovered the Newtonian equations. However, there is no
magic here. It almost had to work, given that we know that particles fall on straight lines
in freely falling frames.

We can do the same sort of calculation to verify that the Newtonian equations hold for
other systems in the appropriate limit. For instance, the student has an opportunity to do this
for the perfect fluid in Exer. 5, § 7.6. Note that the condition that the fluid be nonrelativistic
means not only that its velocity is small but also that the random velocities of its particles
be nonrelativistic, which means p 	 ρ.

This correspondence of our relativistic point of view with the older, Newtonian theory
in the appropriate limit is very important. Any new theory must make the same predictions
as the old theory in the regime in which the old theory was known to be correct. The
equivalence principle plus the form of the metric, Eq. (7.8), does this.

7.3 Curved intu i t ion

Although in the appropriate limit our curved-spacetime picture of gravity predicts the same
things as Newtonian theory predicts, it is very different from Newton’s theory in concept.
We must therefore work gradually toward an understanding of its new point of view.
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The first difference is the absence of a preferred frame. In Newtonian physics and in
SR, inertial frames are preferred. Since ‘velocity’ cannot be measured locally but ‘acceler-
ation’ can be, both theories single out special classes of coordinate systems for spacetime
in which particles which have no physical acceleration (i.e. d �U/dτ = 0) also have no coor-
dinate acceleration (d2xi/dt2 = 0). In our new picture, there is no coordinate system which
is inertial everywhere, i.e. in which d2xi/dt2 = 0 for every particle for which d �U/dτ = 0.
Therefore we have to allow all coordinates on an equal footing. By using the Christoffel
symbols we correct coordinate-dependent quantities like d2xi/dt2 to obtain coordinate-
independent quantities like d �U/dτ . Therefore, we need not, and in fact we should not,
develop coordinate-dependent ways of thinking.

A second difference concerns energy and momentum. In Newtonian physics, SR, and
our geometrical gravity theory, each particle has a definite energy and momentum, whose
values depend on the frame they are evaluated in. In the latter two theories, energy and
momentum are components of a single four-vector �p. In SR, the total four-momentum
of a system is the sum of the four-momenta of all the particles,

∑
i �p(i). But in a curved

spacetime, we cannot add up vectors that are defined at different points, because we do not
know how: two vectors can only be said to be parallel if they are compared at the same
point, and the value of a vector at a point to which it has been parallel-transported depends
on the curve along which it was moved. So there is no invariant way of adding up all the �ps,
and so if a system has definable four-momentum, it is not just the simple thing it was in SR.

It turns out that for any system whose spatial extent is bounded (i.e. an isolated system),
a total energy and momentum can be defined, in a manner which we will discuss later. One
way to see that the total mass energy of a system should not be the sum of the energies
of the particles is that this neglects what in Newtonian language is called its gravitational
self-energy, a negative quantity which is the work we gain by assembling the system from
isolated particles at infinity. This energy, if it is to be included, cannot be assigned to any
particular particle but resides in the geometry itself. The notion of gravitational potential
energy, however, is itself not well defined in the new picture: it must in some sense repre-
sent the difference between the sum of the energies of the particles and the total mass of
the system, but since the sum of the energies of the particles is not well defined, neither
is the gravitational potential energy. Only the total energy–momentum of a system is, in
general, definable, in addition to the four-momentum of individual particles.

7.4 Conserved quant i t ie s

The previous discussion of energy may make us wonder what we can say about conserved
quantities associated with a particle or system. For a particle, we must realize that gravity,
in the old viewpoint, is a ‘force’, so that a particle’s kinetic energy and momentum need
not be conserved under its action. In our new viewpoint, then, we cannot expect to find
a coordinate system in which the components of �p are constants along the trajectory of a
particle. There is one notable exception to this, and it is important enough to look at in
detail.
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The geodesic equation can be written for the ‘lowered’ components of �p as follows

pαpβ;α = 0, (7.25)

or

pαpβ,α − �γ βαpαpγ = 0,

or

m
dpβ
dτ

= �γ βαpαpγ . (7.26)

Now, the right-hand side turns out to be simple

�γ αβpαpγ = 1

2
gγ ν(gνβ,α + gνα,β − gαβ,ν)pαpγ

= 1

2
(gνβ,α + gνα,β − gαβ,ν)gγ νpγ pα

= 1

2
(gνβ,α + gνα,β − gαβ,ν)pνpα . (7.27)

The product pνpα is symmetric on ν and α, while the first and third terms inside paren-
theses are, together, antisymmetric on ν and α. Therefore they cancel, leaving only the
middle term

�γ βαpαpγ = 1

2
gνα,βpνpα . (7.28)

The geodesic equation can thus, in complete generality, be written

m
dpβ
dτ

= 1

2
gνα,βpνpα . (7.29)

We therefore have the following important result: if all the components gαν are independent
of xβ for some fixed index β, then pβ is a constant along any particle’s trajectory.

For instance, suppose we have a stationary (i.e. time-independent) gravitational field.
Then a coordinate system can be found in which the metric components are time indepen-
dent, and in that system p0 is conserved. Therefore p0 (or, really, −p0) is usually called the
‘energy’ of the particle, without the qualification ‘in this frame’. Notice that coordinates
can also be found in which the same metric has time-dependent components: any time-
dependent coordinate transformation from the ‘nice’ system will do this. In fact, most
freely falling locally inertial systems are like this, since a freely falling particle sees a grav-
itational field that varies with its position, and therefore with time in its coordinate system.
The frame in which the metric components are stationary is special, and is the usual ‘lab-
oratory frame’ on Earth. Therefore p0 in this frame is related to the usual energy defined
in the lab, and includes the particle’s gravitational potential energy, as we shall now show.
Consider the equation

�p · �p = −m2 = gαβpαpβ

= −(1 + 2φ)(p0)2 + (1 − 2φ)[(px)2 + (py)2 + (pz)2], (7.30)
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where we have used the metric, Eq. (7.8). This can be solved to give

(p0)2 = [m2 + (1 − 2φ)(p2)](1 + 2φ)−1, (7.31)

where, for shorthand, we denote by p2 the sum (px)2 + (py)2 + (pz)2. Keeping within the
approximation |φ| 	 1, |p| 	 m, we can simplify this to

(p0)2
≈ m2(1 − 2φ + p2/m2)

or

p0
≈ m(1 − φ + p2/2m2). (7.32)

Now we lower the index and get

p0 = g0αpα = g00p0 = −(1 + 2φ)p0, (7.33)

− p0 ≈ m(1 + φ + p2/2m2) = m + mφ + p2/2m. (7.34)

The first term is the rest mass of the particle. The second and third are the Newtonian
pieces of its energy: gravitational potential energy and kinetic energy. This means that
the constancy of p0 along a particle’s trajectory generalizes the Newtonian concept of a
conserved energy.

Notice that a general gravitational field will not be stationary in any frame,2 so no
conserved energy can be defined.

In a similar manner, if a metric is axially symmetric, then coordinates can be found in
which gαβ is independent of the angle ψ around the axis. Then pψ will be conserved. This
is the particle’s angular momentum. In the nonrelativistic limit we have

pψ = gψψpψ ≈ gψψm dψ/dt ≈ mgψψ�, (7.35)

where � is the angular velocity of the particle. Now, for a nearly flat metric we have

gψψ = �eψ · �eψ ≈ r2 (7.36)

in cylindrical coordinates (r,ψ , z) so that the conserved quantity is

pψ ≈ mr2�. (7.37)

This is the usual Newtonian definition of angular momentum.
So much for conservation laws of particle motion. Similar considerations apply to fluids,

since they are just large collections of particles. But the situation with regard to the total
mass and momentum of a self-gravitating system is more complicated. It turns out that an
isolated system’s mass and momentum are conserved, but we must postpone any discussion
of this until we see how they are defined.

2 It is easy to see that there is generally no coordinate system which makes a given metric time independent. The
metric has ten independent components (same as a 4 × 4 symmetric matrix), while a change of coordinates
enables us to introduce only four degrees of freedom to change the components (these are the four functions
xᾱ(xμ)). It is a special metric indeed if all ten components can be made time independent this way.
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7.5 Fur ther read ing

The question of how curvature and physics fit together is discussed in more detail by
Geroch (1978). Conserved quantities are discussed in detail in any of the advanced texts.
The material in this chapter is preparation for the theory of quantum fields in a fixed curved
spacetime. See Birrell and Davies (1984) and Wald (1994). This in turn leads to one of the
most active areas of gravitation research today, the quantization of general relativity. While
we will not treat this area in this book, readers in work that approaches this subject from
the starting point of classical general relativity (as contrasted with approaching it from the
starting point of string theory) may wish to look at Rovelli (2004) Bojowald (2005), and
Thiemann (2007).

7.6 Exerc i ses

1 If Eq. (7.3) were the correct generalization of Eq. (7.1) to a curved spacetime, how
would you interpret it? What would happen to the number of particles in a comoving
volume of the fluid, as time evolves? In principle, can we distinguish experimentally
between Eqs. (7.2) and (7.3)?

2 To first order in φ, compute gαβ for Eq. (7.8).
3 Calculate all the Christoffel symbols for the metric given by Eq. (7.8), to first order in
φ. Assume φ is a general function of t, x, y, and z.

4 Verify that the results, Eqs. (7.15) and (7.24), depended only on g00: the form of gxx

doesn’t affect them, as long as it is 1 + 0(φ).
5 (a) For a perfect fluid, verify that the spatial components of Eq. (7.6) in the Newtonian

limit reduce to

υ ,t + (υ · ∇)υ + ∇p/ρ + ∇φ = 0 (7.38)

for the metric, Eq. (7.8). This is known as Euler’s equation for nonrelativistic fluid
flow in a gravitational field. You will need to use Eq. (7.2) to get this result.

(b) Examine the time-component of Eq. (7.6) under the same assumptions, and
interpret each term.

(c) Eq. (7.38) implies that a static fluid (ν = 0) in a static Newtonian gravitational field
obeys the equation of hydrostatic equilibrium

∇p + ρ∇φ = 0. (7.39)

A metric tensor is said to be static if there exist coordinates in which �e0 is timelike,
gi0 = 0, and gαβ,0 = 0. Deduce from Eq. (7.6) that a static fluid (Ui = 0, p,0 = 0,
etc.) obeys the relativistic equation of hydrostatic equilibrium

p,i + (ρ + p)
[

1
2 ln(−g00)

]
,i

= 0. (7.40)



182 Physics in a curved spacetime
�

(d) This suggests that, at least for static situations, there is a close relation between g00

and − exp(2φ), where φ is the Newtonian potential for a similar physical situation.
Show that Eq. (7.8) and Exer. 4 are consistent with this.

6 Deduce Eq. (7.25) from Eq. (7.10).
7 Consider the following four different metrics, as given by their line elements:

(i) ds2 = −dt2 + dx2 + dy2 + dz2;
(ii) ds2 = −(1 − 2M/r) dt2 + (1 − 2M/r)−1 dr2 + r2(dθ2 + sin2 θ dφ2), where

M is a constant;
(iii)

ds2 = − �− a2 sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dt dφ

+ (r2 + a2)2 − a2� sin2 θ

ρ2
sin2 θ dφ2 + ρ2

�
dr2 + ρ2 dθ2,

where M and a are constants and we have introduced the shorthand notation
� = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ ;

(iv) ds2 = −dt2 + R2(t)
[
(1 − kr2)−1dr2 + r2(dθ2 + sin2 θ dφ2)

]
, where k is a

constant and R(t) is an arbitrary function of t alone.
The first one should be familiar by now. We shall encounter the other three

in later chapters. Their names are, respectively, the Schwarzschild, Kerr, and
Robertson–Walker metrics.

(a) For each metric find as many conserved components ρα of a freely falling particle’s
four momentum as possible.

(b) Use the result of Exer. 28, § 6.9 to put (i) in the form

(i′) ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2).

From this, argue that (ii) and (iv) are spherically symmetric. Does this increase the
number of conserved components pα?

(c) It can be shown that for (i′) and (ii)–(iv), a geodesic that begins with θ = π/2
and pθ = 0 – i.e. one which begins tangent to the equatorial plane – always has
θ = π/2 and pθ = 0. For cases (i′), (ii), and (iii), use the equation �p · �p = −m2

to solve for pr in terms of m, other conserved quantities, and known functions of
position.

(d) For (iv), spherical symmetry implies that if a geodesic begins with pθ = pφ = 0,
these remain zero. Use this to show from Eq. (7.29) that when k = 0, pr is a
conserved quantity.

8 Suppose that in some coordinate system the components of the metric gαβ are
independent of some coordinate xμ.
(a) Show that the conservation law Tνμ;ν = 0 for any stress–energy tensor becomes

1√ − g
(
√ − gTνμ),ν = 0. (7.41)

(b) Suppose that in these coordinates Tαβ �= 0 only in some bounded region of each
spacelike hypersurface x0 = const. Show that Eq. (7.41) implies
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x0=const.
Tνμ

√ − g nν d3x

is independent of x0, if nν is the unit normal to the hypersurface. This is the
generalization to continua of the conservation law stated after Eq. (7.29).

(c) Consider flat Minkowski space in a global inertial frame with spherical polar
coordinates (t, r, θ ,φ). Show from (b) that

J =
∫

t=const.
T0
φr2 sin θ dr dθ dφ (7.42)

is independent of t. This is the total angular momentum of the system.
(d) Express the integral in (c) in terms of the components of Tαβ on the Cartesian basis

(t, x, y, z), showing that

J =
∫

(xTy0 − yTx0)dx dy dz. (7.43)

This is the continuum version of the nonrelativistic expression (r × p)z for a
particle’s angular momentum about the z axis.

9 (a) Find the components of the Riemann tensor Rαβμν for the metric, Eq. (7.8), to first
order in φ.

(b) Show that the equation of geodesic deviation, Eq. (6.87), implies (to lowest order
in φ and velocities)

d2ξ i

dt2
= −φ,ijξ

j. (7.44)

(c) Interpret this equation when the geodesics are world lines of freely falling particles
which begin from rest at nearby points in a Newtonian gravitational field.

10 (a) Show that if a vector field ξα satisfies Killing’s equation

∇αξβ + ∇βξα = 0, (7.45)

then along a geodesic, pαξα = const. This is a coordinate-invariant way of charac-
terizing the conservation law we deduced from Eq. (7.29). We only have to know
whether a metric admits Killing fields.

(b) Find ten Killing fields of Minkowski spacetime.
(c) Show that if �ξ and �η are Killing fields, then so is α�ξ + β �η for constant α and β.
(d) Show that Lorentz transformations of the fields in (b) simply produce linear

combinations as in (c).
(e) If you did Exer. 7, use the results of Exer. 7(a) to find Killing vectors of metrics

(ii)–(iv).



8 The Einstein field equations

8.1 Purpose and jus t i f i cat ion of the fie ld equat ions

Having decided upon a description of gravity and its action on matter that is based on the
idea of a curved manifold with a metric, we must now complete the theory by postulating
a law which shows how the sources of the gravitational field determine the metric. The
Newtonian analog is

∇2φ = 4πGρ, (8.1)

where ρ is the density of mass. Its solution for a point particle of mass m is (see
Exer. 1, § 8.6).

φ = −Gm

r
, (8.2)

which is dimensionless in units where c = 1.
The source of the gravitational field in Newton’s theory is the mass density. In our rela-

tivistic theory of gravity the source must be related to this, but it must be a relativistically
meaningful concept, which ‘mass’ alone is not. An obvious relativistic generalization is the
total energy, including rest mass. In the MCRF of a fluid element, we have denoted the den-
sity of total energy by ρ in Ch. 4. So we might be tempted to use this ρ as the source of the
relativistic gravitational field. This would not be very satisfactory, however, because ρ is
the energy density as measured by only one observer, the MCRF. Other observers measure
the energy density to be the component T00 in their own reference frames. If we were to
use ρ as the source of the field, we would be saying that one class of observers is pre-
ferred above all others, namely those for whom ρ is the energy density. This point of view
is at variance with the approach we adopted in the previous chapter, where we stressed
that we must allow all coordinate systems on an equal footing. So we shall reject ρ as the
source and instead insist that the generalization of Newton’s mass density should be T00.
But again, if T00 alone were the source, we would have to specify a frame in which T00

was evaluated. An invariant theory can avoid introducing preferred coordinate systems by
using the whole of the stress–energy tensor T as the source of the gravitational field. The
generalization of Eq. (8.1) to relativity would then have the form

O(g) = kT, (8.3)

where k is a constant (as yet undetermined) and O is a differential operator on the metric
tensor g, which we have already seen in Eq. (7.8) is the generalization of φ. There will thus
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be ten differential equations, one for each independent component of Eq. (8.3), in place
of the single one, Eq. (8.1). (Recall that T is symmetric, so it has only ten independent
components, not 16.)

By analogy with Eq. (8.1), we should look for a second-order differential operator O that
produces a tensor of rank

(2
0

)
, since in Eq. (8.3) it is equated to the

(2
0

)
tensor T. In other

words, {Oαβ} must be the components of a
(2

0

)
tensor and must be combinations of gμν,λσ ,

gμν,λ, and gμν . It is clear from Ch. 6 that the Ricci tensor Rαβ satisfies these conditions. In
fact, any tensor of the form

Oαβ = Rαβ + μgαβR +�gαβ (8.4)

satisfies these conditions, if μ and � are constants. To determine μ we use a property of
Tαβ , which we have not yet used, namely that the Einstein equivalence principle demands
local conservation of energy and momentum (Eq. (7.6))

Tαβ ;β = 0.

This equation must be true for any metric tensor. Then Eq. (8.3) implies that

Oαβ ;β = 0, (8.5)

which again must be true for any metric tensor. Since gαβ ;μ = 0, we now find, from
Eq. (8.4)

(Rαβ + μgαβR);β = 0. (8.6)

By comparing this with Eq. (6.98), we see that we must have μ = − 1
2 if Eq. (8.6)

is to be an identity for arbitrary gαβ . So we are led by this chain of argument to the
equation

Gαβ +�gαβ = kTαβ , (8.7)

with undetermined constants � and k. In index-free form, this is

G +�g = kT. (8.8)

These are called the field equations of GR, or Einstein’s field equations. We shall see
below that we can determine the constant k by demanding that Newton’s gravitational field
equation comes out right, but that � remains arbitrary.

But first let us summarize where we have got to. We have been led to Eq. (8.7) by
asking for equations that (i) resemble but generalize Eq. (8.1), (ii) introduce no preferred
coordinate system, and (iii) guarantee local conservation of energy–momentum for any
metric tensor. Eq. (8.7) is not the only equation which satisfies (i)–(iii). Many alternatives
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have been proposed, beginning even before Einstein arrived at equations like Eq. (8.7).
In recent years, when technology has made it possible to test Einstein’s equations fairly
precisely, even in the weak gravity of the solar system, many new alternative theories
have been proposed. Some have even been designed to agree with Einstein’s predictions
at the precision of foreseeable solar-system experiments, differing only for much stronger
fields. GR’s competitors are, however, invariably more complicated than Einstein’s equa-
tions themselves, and on simply aesthetic grounds are unlikely to attract much attention
from physicists unless Einstein’s equations are eventually found to conflict with some
experiment. A number of the competing theories and the increasingly accurate experi-
mental tests which have been used to eliminate them since the 1960s are discussed in
Misner et al. (1973), Will (1993), and Will (2006). (We will study two classical tests in
Ch. 11.) Einstein’s equations have stood up extremely well to these tests, so we will not
discuss any alternative theories in this book. In this we are in the good company of the
Nobel-Prize-winning astrophysicist S. Chandrasekhar (1980):

The element of controversy and doubt, that have continued to shroud the general theory of relativity
to this day, derives precisely from this fact, namely that in the formulation of his theory Einstein
incorporates aesthetic criteria; and every critic feels that he is entitled to his own differing aesthetic
and philosophic criteria. Let me simpy say that I do not share these doubts; and I shall leave it
at that.

Although Einstein’s theory is essentially unchallenged at the moment, there are still
reasons for expecting that it is not the last word, and therefore for continuing to probe
it experimentally. Einstein’s theory is, of course, not a quantum theory, and strong the-
oretical efforts are currently being made to formulate a consistent quantum theory of
gravity. We expect that, at some level of experimental precision, there will be measur-
able quantum corrections to the theory, which might for example come in the form of extra
fields coupled to the metric. The source of such a field might violate the Einstein equiv-
alence principle. The field itself might carry an additional form of gravitational waves.
In principle, any of the predictions of general relativity might be violated in some such
theory. Precision experiments on gravitation could some day provide the essential clue
needed to guide the theoretical development of a quantum theory of gravity. However,
interesting as they might be, such considerations are outside the scope of this intro-
duction. For the purposes of this book, we will not consider alternative theories any
further.

Geometrized units

We have not determined the value of the constant k in Eq. (8.7), which plays the same role
as 4πG in Eq. (8.1). Before discussing it below we will establish a more convenient set of
units, namely those in which G = 1. Just as in SR where we found it convenient to choose
units in which the fundamental constant c was set to unity, so in studies of gravity it is
more natural to work in units where G has the value unity. A convenient conversion factor
from SI units to these geometrized units (where c = G = 1) is
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Table 8.1 Comparison of SI and geometrized values of fundamental constants

Constant SI value Geometrized value

c 2.998 × 108 ms−1 1
G 6.674 × 10−11 m3 kg−1 s−2 1
� 1.055 × 10−34 kg m2 s−1 2.612 × 10−70 m2

me 9.109 × 10−31 kg 6.764 × 10−58 m
mp 1.673 × 10−27 kg 1.242 × 10−54 m
M⊙ 1.988 × 1030 kg 1.476 × 103 m

M⊕ 5.972 × 1024 kg 4.434 × 10−3 m

L⊙ 3.84 × 1026 kg m2 s−3 1.06 × 10−26

Notes: The symbols me and mp stand respectively for the rest masses of the electron and proton;
M⊙ and M⊕ denote, respectively, the masses of the Sun and Earth; and L⊙ is the Sun’s lumi-
nosity (the SI unit is equivalent to joules per second). Values are rounded to at most four figures
even when known more accurately. Data from Yao (2006).

1 = G/c2 = 7.425 × 10−28m kg−1. (8.9)

We shall use this to eliminate kg as a unit, measuring mass in meters. We list in Table 8.1
the values of certain useful constants in SI and geometrized units. Exer. 2, § 8.6, should
help the student to become accustomed to these units.

An illustration of the fundamental nature of geometrized units in gravitational problems
is provided by the uncertainties in the two values given for M⊕. Earth’s mass is measured
by examining satellite orbits and using Kepler’s laws. This measures the Newtonian poten-
tial, which involves the product GM⊕, c2 times the geometrized value of the mass. This
number is known to ten significant figures, from laser tracking of satellites orbiting the
Earth. Moreover, the speed of light c now has a defined value, so there is no uncertainty in
it. Thus, the geometrized value of M⊕ is known to ten significant figures. The value of G,
however, is measured in laboratory experiments, where the weakness of gravity introduces
large uncertainty. The conversion factor G/c2 is uncertain by two parts in 105, so that is
also the accuracy of the SI value of M⊕. Similarly, the Sun’s geometrized mass is known
to nine figures by precise radar tracking of the planets. Again, its mass in kilograms is far
more uncertain.

8.2 E ins te in ’ s equat ions

In component notation, Einstein’s equations, Eq. (8.7), take the following form if we
specialize to � = 0 (a simplification at present, but one we will drop later), and if we
take k = 8π ,

Gαβ = 8πTαβ . (8.10)
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The constant � is called the cosmological constant, and was originally not present
in Einstein’s equations; he inserted it many years later in order to obtain static
cosmological solutions – solutions for the large-scale behavior of the universe – that
he felt at the time were desirable. Observations of the expansion of the universe sub-
sequently made him reject the term and regret he had ever invented it. However,
recent astronomical observations strongly suggest that it is small but not zero. We
shall return to the discussion of � in Ch. (12), but for the moment we shall set
� = 0. The justification for doing this, and the possible danger of it, are discussed in
Exer. 18, § 8.6.

The value k = 8π is obtained by demanding that Einstein’s equations predict the correct
behavior of planets in the solar system. This is the Newtonian limit, in which we must
demand that the predictions of GR agree with those of Newton’s theory when the latter
are well tested by observation. We saw in the last chapter that the Newtonian motions are
produced when the metric has the form Eq. (7.8). One of our tasks in this chapter is to
show that Einstein’s equations, Eq. (8.10), do indeed have Eq. (7.8) as a solution when
we assume that gravity is weak (see Exer. 3, § 8.6). We could, of course, keep k arbitrary
until then, adjusting its value to whatever is required to obtain the solution, Eq. (7.8). It
is more convenient, however, for our subsequent use of the equations of this chapter if
we simply set k to 8π at the outset and verify at the appropriate time that this value is
correct.

Eq. (8.10) should be regarded as a system of ten coupled differential equations (not
16, since Tαβ and Gαβ are symmetric). They are to be solved for the ten components
gαβ when the source Tαβ is given. The equations are nonlinear, but they have a well-
posed initial-value structure – that is, they determine future values of gαβ from given initial
data. However, one point must be made: since {gαβ} are the components of a tensor in
some coordinate system, a change in coordinates induces a change in them. In particular,
there are four coordinates, so there are four arbitrary functional degrees of freedom among
the ten gαβ . It should be impossible, therefore, to determine all ten gαβ from any initial
data, since the coordinates to the future of the initial moment can be changed arbitrarily. In
fact, Einstein’s equations have exactly this property: the Bianchi identities

Gαβ ;β = 0 (8.11)

mean that there are four differential identities (one for each value of α above) among the
ten Gαβ . These ten, then, are not independent, and the ten Einstein equations are really
only six independent differential equations for the six functions among the ten gαβ that
characterize the geometry independently of the coordinates.

These considerations are of key importance if we want to solve Einstein’s equations to
watch systems evolve in time from some initial state. In this book we will do this in a lim-
ited way for weak gravitational waves in Ch. (9). Because of the complexity of Einstein’s
equations, dynamical situations are usually studied numerically. The field of numerical
relativity has evolved a well-defined approach to the problem of separating the coordinate
freedom in gαβ from the true geometric and dynamical freedom. This is described in more
advanced texts, for instance Misner et al. (1973), or Hawking and Ellis (1973), see also
Choquet-Bruhat and York (1980) or the more recent review by Cook (2000). It will suffice
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here simply to note that there are really only six equations for six quantities among the gαβ ,
and that Einstein’s equations permit complete freedom in choosing the coordinate system.

8.3 E ins te in ’ s equat ions fo r weak grav i tat iona l f ie lds

Nearly Lorentz coordinate systems

Since the absence of gravity leaves spacetime flat, a weak gravitational field is one in which
spacetime is ‘nearly’ flat. This is defined as a manifold on which coordinates exist in which
the metric has components

gαβ = ηαβ + hαβ , (8.12)

where

|hαβ | 	 1, (8.13)

everywhere in spacetime. Such coordinates are called nearly Lorentz coordinates. It is
important to say ‘there exist coordinates’ rather than ‘for all coordinates’, since we can
find coordinates even in Minkowski space in which gαβ is not close to the simple diag-
onal (−1, +1, +1, +1) form of ηαβ . On the other hand, if one coordinate system exists
in which Eqs. (8.12) and (8.13) are true, then there are many such coordinate systems.
Two fundamental types of coordinate transformations that take one nearly Lorentz coordi-
nate system into another will be discussed below: background Lorentz transformations and
gauge transformations.

But why should we specialize to nearly Lorentz coordinates at all? Haven’t we just said
that Einstein’s equations allow complete coordinate freedom, so shouldn’t their physical
predictions be the same in any coordinates? Of course the answer is yes, the physical
predictions will be the same. On the other hand, the amount of work we would have to
do to arrive at the physical predictions could be enormous in a poorly chosen coordinate
system. (For example, try to solve Newton’s equation of motion for a particle free of all
forces in spherical polar coordinates, or try to solve Poisson’s equation in a coordinate
system in which it does not separate!) Perhaps even more serious is the possibility that in a
crazy coordinate system we may not have sufficient creativity and insight into the physics
to know what calculations to make in order to arrive at interesting physical predictions.
Therefore it is extremely important that the first step in the solution of any problem in
GR must be an attempt to construct coordinates that will make the calculation simplest.
Precisely because Einstein’s equations have complete coordinate freedom, we should use
this freedom intelligently. The construction of helpful coordinate systems is an art, and it
is often rather difficult. In the present problem, however, it should be clear that ηαβ is the
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simplest form for the flat-space metric, so that Eqs. (8.12) and (8.13) give the simplest and
most natural ‘nearly flat’ metric components.

Background Lorentz transformations

The matrix of a Lorentz transformation in SR is

(�ᾱβ ) =

⎛
⎜⎜⎝

γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , γ = (1 − v2)−1/2 (8.14)

(for a boost of velocity υ in the x direction). For weak gravitational fields we define a
‘background Lorentz transformation’ to be one which has the form

xᾱ = �ᾱβxβ , (8.15)

in which �ᾱβ is identical to a Lorentz transformation in SR, where the matrix elements
are constant everywhere. Of course, we are not in SR, so this is only one class of transfor-
mations out of all possible ones. But it has a particularly nice feature, which we discover
by transforming the metric tensor

gᾱβ̄ = �μᾱ�
ν
β̄gμν = �μᾱ�

ν
β̄ημν +�μᾱ�

ν
β̄hμν . (8.16)

Now, the Lorentz transformation is designed so that

�μᾱ�
ν
β̄ημν = ηᾱβ̄ , (8.17)

so we get

gᾱβ̄ = ηᾱβ̄ + hᾱβ̄ (8.18)

with the definition

hᾱβ̄ := �μᾱ�
ν
β̄hμν . (8.19)

We see that, under a background Lorentz transformation, hμν transforms as if it were
a tensor in SR all by itself! It is, of course, not a tensor, but just a piece of gαβ . But
this restricted transformation property leads to a convenient fiction: we can think of a
slightly curved spacetime as a flat spacetime with a ‘tensor’ hμν defined on it. Then
all physical fields – like Rμναβ – will be defined in terms of hμν , and they will ‘look
like’ fields on a flat background spacetime. It is important to bear in mind, however, that
spacetime is really curved, that this fiction results from considering only one type of coor-
dinate transformation. We shall find this fiction to be useful, however, in our calculations
below.
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Gauge transformations

There is another very important kind of coordinate change that leaves Eqs. (8.12) and (8.13)
unchanged: a very small change in coordinates of the form

xα′ = xα + ξα(xβ ),

generated by a ‘vector’ ξα , where the components are functions of position. If we demand
that ξα be small in the sense that |ξα ,β | 	 1, then we have

�α′
β = ∂xα′

∂xβ
= δαβ + ξα ,β , (8.20)

�αβ′ = δαβ − ξα ,β + 0(|ξα ,β |2). (8.21)

We can easily verify that, to first order in small quantities

gα′β′ = ηαβ + hαβ − ξα,β − ξβ,α , (8.22)

where we define

ξα := ηαβξ
β . (8.23)

This means that the effect of the coordinate change is to change hαβ

hαβ → hαβ − ξα,β − ξβ,α . (8.24)

If all |ξα ,β | are small, then the new hαβ is still small, and we are still in an acceptable coor-
dinate system. This change is called a gauge transformation, which is a term used because
of strong analogies between Eq. (8.24) and gauge transformations of electromagnetism.
This analogy is explored in Exer. 11, § 8.6. The coordinate freedom of Einstein’s equations
means that we are free to choose an arbitrary (small) ‘vector’ ξα in Eq. (8.24). We will use
this freedom below to simplify our equations enormously.

A word about the role of indices such as α′ and β ′ in Eqs. (8.21) and (8.22) may be
helpful here, as beginning students are often uncertain on this point. A prime or bar on
an index is an indication that it refers to a particular coordinate system, e.g. that gα′β ′ is
a component of g in the {xν′ } coordinates. But the index still takes the same values (0,
1, 2, 3). On the right-hand side of Eq. (8.22) there are no primes because all quantities
are defined in the unprimed system. Thus, if α = β = 0, we read Eq. (8.22) as: ‘The 0–0
component of g in the primed coordinate system is a function whose value at any point
is the value of the 0–0 component of η plus the value of the 0–0 “component” of hαβ
in the unprimed coordinates at that point minus twice the derivative of the function ξ0 –
defined by Eq. (8.23) – with respect to the unprimed coordinate x0 there.’ Eq. (8.22) may
look strange because – unlike, say, Eq. (8.15) – its indices do not ‘match up’. But that is
acceptable, since Eq. (8.22) is not what we have called a valid tensor equation. It expresses
the relation between components of a tensor in two specific coordinates; it is not intended
to be a general coordinate-invariant expression.
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Riemann tensor

Using Eq. (8.12), it is easy to show that, to first order in hμν ,

Rαβμν = 1

2
(hαν,βμ + hβμ,αν − hαμ,βν − hβν,αμ). (8.25)

As demonstrated in Exer. 5, § 8.6, these components are independent of the gauge, unaf-
fected by Eq. (8.24). The reason for this is that a coordinate transformation transforms the
components of R into linear combinations of one another. A small coordinate transfor-
mation – a gauge transformation – changes the components by a small amount; but since
they are already small, this change is of second order, and so the first-order expression,
Eq. (8.25), remains unchanged.

Weak-field Einstein equations

We shall now consistently adopt the point of view mentioned earlier, the fiction that hαβ is a
tensor on a ‘background’ Minkowski spacetime, i.e. a tensor in SR. Then all our equations
will be expected to be valid tensor equations when interpreted in SR, but not necessar-
ily valid under more general coordinate transformations. Gauge transformations will be
allowed, of course, but we will not regard them as coordinate transformations. Rather, they
define equivalence classes among all symmetric tensors hαβ : any two related by Eq. (8.24)
for some ξα will produce equivalent physical effects. Consistent with this point of view,
we can define index-raised quantities

hμβ := ημαhαβ , (8.26)

hμν := ηνβhμβ , (8.27)

the trace

h := hαα , (8.28)

and a ‘tensor’ called the ‘trace reverse’ of hαβ

h̄αβ := hαβ − 1

2
ηαβh. (8.29)

It has this name because

h̄ := h̄αα = −h. (8.30)

Moreover, we can show that the inverse of Eq. (8.29) is the same:

hαβ = h̄αβ − 1

2
ηαβ h̄. (8.31)



193 8.3 Einstein’s equations for weak gravitational fields
�

With these definitions it is not difficult to show, beginning with Eq. (8.25), that the
Einstein tensor is

Gαβ = − 1
2 [h̄αβ,μ

,μ + ηαβ h̄μν
,μν − h̄αμ,β

,μ

− h̄βμ,α
,μ + 0(h2

αβ )]. (8.32)

(Recall that for any function f ,

f ,μ := ημν f,ν.)

It is clear that Eq. (8.32) would simplify considerably if we could require

h̄μν ,ν = 0. (8.33)

These are four equations, and since we have four free gauge functions ξα , we might expect
to be able to find a gauge in which Eq. (8.33) is true. We shall show that this expectation
is correct: it is always possible to choose a gauge to satisfy Eq. (8.33). Thus, we refer to it
as a gauge condition and, specifically, as the Lorentz gauge condition. If we have an hμν
satisfying this, we say we are working in the Lorentz gauge. The gauge has this name,
again by analogy with electromagnetism (see Exer. 11, § 8.6). Other names we encounter
in the literature for the same gauge include the harmonic gauge and the de Donder gauge.

That this gauge exists can be shown as follows. Suppose we have some arbitrary h̄(old)
μν

for which h̄(old)μν
,ν �= 0. Then under a gauge change Eq. (8.24), we can show (Exer. 12,

§ 8.6) that h̄μν changes to

h̄(new)
μν = h̄(old)

μν − ξμ,ν − ξν,μ + ημνξ
α

,α . (8.34)

Then the divergence is

h̄(new)μν
,ν = h̄(old)μν

,ν − ξμ,ν
,ν . (8.35)

If we want a gauge in which h̄(new)μν
,ν = 0, then ξμ is determined by the equation

� ξμ = ξμ,ν
,ν = h̄(old)μν

,ν , (8.36)

where the symbol � is used for the four-dimensional Laplacian:

�f = f ,μ
,μ = ημν f ,μν =

(
− ∂2

∂t2
+ ∇2

)
f . (8.37)

This operator is also called the D’Alembertian or wave operator, and is sometimes denoted
by �. The equation

�f = g (8.38)

is the three-dimensional inhomogeneous wave equation, and it always has a solution for
any (sufficiently well behaved) g (see Choquet–Bruhat et al., 1977), so there always exists
some ξμ which will transform from an arbitrary hμν to the Lorentz gauge. In fact, this ξμ

is not unique, since any vector ημ satisfying the homogeneous wave equation

� ημ = 0 (8.39)

can be added to ξμ and the result will still obey

�(ξμ + ημ) = h̄(old)μν
,ν (8.40)
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and so will still give a Lorentz gauge. Thus, the Lorentz gauge is really a class of gauges.
In this gauge, Eq. (8.32) becomes (see Exer. 10, § 8.6)

Gαβ = − 1
2� h̄αβ . (8.41)

Then the weak-field Einstein equations are

� h̄μν = −16π Tμν . (8.42)

These are called the field equations of ‘linearized theory’, since they result from keeping
terms linear in hαβ .

8.4 Newton ian grav i tat iona l f ie lds

Newtonian l imit

Newtonian gravity is known to be valid when gravitational fields are too weak to pro-
duce velocities near the speed of light: |φ| 	 1, |v| 	 1. In such situations, GR must make
the same predictions as Newtonian gravity. The fact that velocities are small means that
the components Tαβ typically obey the inequalities |T00| � |T0i| � |Tij|. We can only say
‘typically’ because in special cases T0i might vanish, say for a spherical star, and the sec-
ond inequality would not hold. But in a strongly rotating Newtonian star, T0i would greatly
exceed any of the components of Tij. Now, these inequalities should be expected to trans-
fer to h̄αβ because of Eq. (8.42): |h̄00| � |h̄0i| � |h̄ij|. Of course, we must again be careful
about making too broad a statement: we can add in any solution to the homogeneous form
of Eq. (8.42), where the right-hand-side is set to zero. In such a solution, the sizes of the
components would not be controlled by the sizes of the components of Tαβ . These homo-
geneous solutions are what we call gravitational waves, as we shall see in the next chapter.
So the ordering given here on the components of h̄αβ holds only in the absence of signif-
icant gravitational radiation. Newtonian gravity, of course, has no gravitational waves, so
the ordering is just what we need if we want to reproduce Newtonian gravity in general
relativity. Thus, we can expect that the dominant ‘Newtonian’ gravitational field comes
from the dominant field equation

� h̄00 = −16πρ, (8.43)

where we use the fact that T00 = ρ + 0(ρv2). For fields that change only because the
sources move with velocity v, we have that ∂/∂t is of the same order as v ∂/∂x, so that

� = ∇2 + 0(v2∇2). (8.44)

Thus, our equation is, to lowest order,

∇2h̄00 = −16πρ. (8.45)
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Comparing this with the Newtonian equation, Eq. (8.1),

∇2φ = 4πρ

(with G = 1), we see that we must identify

h̄00 = −4φ. (8.46)

Since all other components of h̄αβ are negligible at this order, we have

h = hαα = −h̄αα = h̄00, (8.47)

and this implies

h00 = −2φ, (8.48)

hxx = hyy = hzz = −2φ, (8.49)

or

ds2 = −(1 + 2φ)dt2 + (1 − 2φ)(dx2 + dy2 + dz2). (8.50)

This is identical to the metric given in Eq. (7.8). We saw there that this metric gives the
correct Newtonian laws of motion, so the demonstration here that it follows from Einstein’s
equations completes the proof that Newtonian gravity is a limiting case of GR. Importantly,
it also confirms that the constant 8π in Einstein’s equations is the correct value of k.

Most astronomical systems are well-described by Newtonian gravity as a first approxi-
mation. But there are many systems for which it is important to compute the corrections
beyond Newtonian theory. These are called post-Newtonian effects, and in Exers. 19 and
20, § 8.6, we encounter two of them. Post-Newtonian effects in the Solar System include
the famous fundamental tests of general relativity, such as the precession of the perihelion
of Mercury and the bending of light by the Sun; both of which we will meet in Ch. 11.
Outside the Solar System the most important post-Newtonian effect is the shrinking of
the orbit of the Binary Pulsar, which confirms general relativity’s predictions concerning
gravitational radiation (see Ch. 9). Post-Newtonian effects therefore lead to important high-
precision tests of general relativity, and the theory of these effects is very well developed.
The approximation has been carried to very high orders (Blanchet 2006, Futamase and
Itoh 2007).

The far field of stat ionary relat ivist ic sources

For any source of the full Einstein equations, which is confined within a limited region of
space (a ‘localized’ source), we can always go far enough away from it that its gravitational
field becomes weak enough that linearized theory applies in that region. We say that such
a spacetime is asymptotically flat: spacetime becomes flat asymptotically at large distances
from the source. We might be tempted, then, to carry the discussion we have just gone
through over to this case and say that Eq. (8.50) describes the far field of the source, with
φ the Newtonian potential. This method would be wrong, for two related reasons. First,
the derivation of Eq. (8.50) assumed that gravity was weak everywhere, including inside
the source, because a crucial step was the identification of Eq. (8.45) with Eq. (8.1) inside
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the source. In the present discussion we wish to make no assumptions about the weakness
of gravity in the source. The second reason the method would be wrong is that we do not
know how to define the Newtonian potential φ of a highly relativistic source anyway, so
Eq. (8.50) would not make sense.

So we shall work from the linearized field equations directly. Since at first we assume
the source of the field Tμν is stationary (i.e. independent of time), we can assume that
far away from it hμν is independent of time. (Later we will relax this assumption.) Then
Eq. (8.42) becomes

∇2h̄μν = 0, (8.51)

far from the source. This has the solution

h̄μν = Aμν/r + 0(r−2), (8.52)

where Aμν is constant. In addition, we must demand that the gauge condition, Eq (8.33),
be satisfied:

0 = h̄μν ,ν = h̄μj
,j = −Aμjnj/r

2 + 0(r−3), (8.53)

where the sum on ν reduces to a sum on the spatial index j because h̄μν is time independent,
and where nj is the unit radial normal,

nj = xj/r. (8.54)

The consequence of Eq. (8.53) for all xi is

Aμj = 0, (8.55)

for all μ and j. This means that only h̄00 survives or, in other words, that, far from the
source

|h̄00| � |h̄ij|, |h̄00| � |h̄0j|. (8.56)

These conditions guarantee that the gravitational field does indeed behave like a Newtonian
field out there, so we can reverse the identification that led to Eq. (8.46) and define the
‘Newtonian potential’ for the far field of any stationary source to be

(φ)relativistic far field := − 1
4 (h̄00)far field. (8.57)

With this identification, Eq. (8.50) now does make sense for our problem, and it describes
the far field of our source.

Definit ion of the mass of a relat ivist ic body

Now, far from a Newtonian source, the potential is

(φ)Newtonian far field = −M/r + 0(r−2), (8.58)

where M is the mass of the source (with G = 1). Thus, if in Eq. (8.52) we rename the
constant A00 to be 4M, the identification, Eq. (8.57), says that

(φ)relativistic far field = −M/r. (8.59)
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Any small body, for example a planet, that falls freely in the relativistic source’s gravita-
tional field but stays far away from it will follow the geodesics of the metric, Eq. (8.50),
with φ given by Eq. (8.59). In Ch. 7 we saw that these geodesics obey Kepler’s laws for
the gravitational field of a body of mass M. We therefore define this constant M to be the
total mass of the relativistic source.

Notice that this definition is not an integral over the source: we do not add up the masses
of its constituent particles. Instead, we simply measure its mass – ‘weigh it’ – by the orbits
it produces in test bodies far away: this is how astronomers determine the masses of the
Earth, Sun, and planets. This definition enables us to write Eq. (8.50) in its form far from
any stationary source:

ds2 = − [1 − 2M/r + 0(r−2)]dt2

+ [1 + 2M/r + 0(r−2)](dx2 + dy2 + dz2). (8.60)

It is important to understand that, because we are not doing an integral over the source, the
source of the far-field constant M could be quite different from our expectations from New-
tonian theory, a black hole, for example. See also the discussion of the active gravitational
mass in Exer. 20, § 8.6.

The assumption that the source was stationary was necessary to reduce the wave equa-
tion, Eq. (8.42), to Laplace’s equation, Eq. (8.51). A source which changes with time can
emit gravitational waves, and these, as we shall see in the next chapter, travel out from
it at the speed of light and do not obey the inequalities Eq. (8.56), so they cannot be
regarded as Newtonian fields. Nevertheless, there are situations in which the definition
of the mass we have just given may be used with confidence: the waves may be very weak,
so that the stationary part of h̄00 dominates the wave part; or the source may have been
stationary in the distant past, so that we can choose r large enough that any waves have
not yet had time to reach that large an r. The definition of the mass of a time-dependent
source is discussed in greater detail in more-advanced texts, such as Misner et al. (1973) or
Wald (1985).

8.5 Fur ther read ing

There are a wide variety of ways to ‘derive’ (really, to justify) Einstein’s field equa-
tions, and a selection of them may be found in the texts listed below. The weak-field or
linearized equations are useful for many investigations where the full equations are too dif-
ficult to solve. We shall use them frequently in subsequent chapters, and most texts discuss
them. Our extraction of the Newtonian limit is very heuristic, but there are more rigorous
approaches that reveal the geometric nature of Newton’s equations (Misner et al. 1973,
Cartan 1923) and the asymptotic nature of the limit (Damour 1987, Futamase and Schutz
1983). Post-Newtonian theory is described in review articles by Blanchet (2006) and Futa-
mase and Itoh (2007). Einstein’s own road to the field equations was much less direct than
the one we took. As scholars have studied his notebooks, many previous assumptions about
his thinking have proved wrong. See the monumental set edited by Renn (2007).
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It seems appropriate here to list a sampling of widely available textbooks on GR. They
differ in the background and sophistication they assume of the reader. Some excellent
texts expect little background – Hartle (2003), Rindler (2006); some might be classed as
first-year graduate texts – Carroll (2003), Glendenning (2007), Gron and Hervik (2007),
Hobson, et al. (2006), parts of Misner et al. (1973), Møller (1972), Stephani (2004),
Weinberg (1972), and Woodhouse (2007); and some that make heavy demands of the stu-
dent – Hawking and Ellis (1973), Landau and Lifshitz (1962), much of Misner et al. (1973),
Synge (1960), and Wald (1984). The material in the present text ought, in most cases, to
be sufficient preparation for supplementary reading in even the most advanced texts.

Solving problems is an essential ingredient of learning a theory, and the book of prob-
lems by Lightman et al. (1975), though rather old, is still an excellent supplement to those
in the present book. An introduction with limited mathematics is Schutz (2003).

8.6 Exerc i ses

1 Show that Eq. (8.2) is a solution of Eq. (8.1) by the following method. Assume the
point particle to be at the origin, r = 0, and to produce a spherically symmetric field.
Then use Gauss’ law on a sphere of radius r to conclude

dφ

dr
= Gm/r2.

Deduce Eq. (8.2) from this. (Consider the behavior at infinity.)
2 (a) Derive the following useful conversion factors from the SI values of G and c:

G/c2 = 7.425 × 10−28m kg−1 = 1,

c5/G = 3.629 × 1052J s−1 = 1.

(b) Derive the values in geometrized units of the constants in Table 8.1 from their given
values in SI units.

(c) Express the following quantities in geometrized units:
(i) a density (typical of neutron stars) ρ = 1017 kg m−3;

(ii) a pressure (also typical of neutron stars) p = 1033 kg s−2 m−1;
(iii) the acceleration of gravity on Earth’s surface g = 9.80 m s−2;
(iv) the luminosity of a supernova L = 1041 J s−1.

(d) Three dimensioned constants in nature are regarded as fundamental: c, G, and �.
With c = G = 1, � has units m2, so �

1/2 defines a fundamental unit of length,
called the Planck length. From Table 8.1, we calculate �

1/2 = 1.616 × 10−35 m.
Since this number involves the fundamental constants of relativity, gravitation, and
quantum theory, many physicists feel that this length will play an important role
in quantum gravity. Express this length in terms of the SI values of c, G, and �.
Similarly, use the conversion factors to calculate the Planck mass and Planck time,
fundamental numbers formed from c, G, and � that have the units of mass and
time respectively. Compare these fundamental numbers with characteristic masses,
lengths, and timescales that are known from elementary particle theory.
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3 (a) Calculate in geometrized units:
(i) the Newtonian potential φ of the Sun at the Sun’s surface, radius 6.960 ×

108 m;
(ii) the Newtonian potential φ of the Sun at the radius of Earth’s orbit, r = 1 AU =

1.496 × 1011 m;
(iii) the Newtonian potential φ of Earth at its surface, radius = 6.371 × 106 m;
(iv) the velocity of Earth in its orbit around the Sun.

(b) You should have found that your answer to (ii) was larger than to (iii). Why, then,
do we on Earth feel Earth’s gravitational pull much more than the Sun’s?

(c) Show that a circular orbit around a body of mass M has an orbital velocity, in
Newtonian theory, of v2 = −φ, where φ is the Newtonian potential.

4 (a) Let A be an n × n matrix whose entries are all very small, |Aij| 	 1/n, and let I be
the unit matrix. Show that

(I + A)−1 = I − A + A2 − A3 + A4 − + . . .
by proving that (i) the series on the right-hand side converges absolutely for each
of the n2 entries, and (ii) (I + A) times the right-hand side equals I.

(b) Use (a) to establish Eq. (8.21) from Eq. (8.20).
5 (a) Show that if hαβ = ξα,β + ξβ,α , then Eq. (8.25) vanishes.

(b) Argue from this that Eq. (8.25) is gauge invariant.
(c) Relate this to Exer. 10, § 7.6.

6 Weak-field theory assumes gμν = ημν + hμν , with |hμν | 	 1. Similarly, gμν must be
close to ημν , say gμν = ημν + δgμν . Show from Exer. 4a that δgμν = −hμν + 0(h2).
Thus, ημαηνβhαβ is not the deviation of gμν from flatness.

7 (a) Prove that h̄αα = −hαα .
(b) Prove Eq. (8.31).

8 Derive Eq. (8.32) in the following manner:
(a) show that Rαβμν = ηασRσβμν + 0(h2

αβ );
(b) from this calculate Rαβ to first order in hμν ;
(c) show that gαβR = ηαβη

μνRμν + 0(h2
αβ );

(d) from this conclude that

Gαβ = Rαβ − 1
2ηαβR,

i.e. that the linearized Gαβ is the trace reverse of the linearized Rαβ , in the sense of
Eq. (8.29);

(e) use this to simplify somewhat the calculation of Eq. (8.32).
9 (a) Show from Eq. (8.32) that G00 and G0i do not contain second time derivatives of

any h̄αβ . Thus only the six equations, Gij = 8π Tij, are true dynamical equations.
Relate this to the discussion at the end of § 8.2. The equations G0α = 8π T0α are
called constraint equations because they are relations among the initial data for the
other six equations, which prevent us choosing all these data freely.

(b) Eq. (8.42) contains second time derivatives even when μ or ν is zero. Does this
contradict (a)? Why?

10 Use the Lorentz gauge condition, Eq. (8.33), to simplify Gαβ to Eq. (8.41).
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11 When we write Maxwell’s equations in special-relativistic form, we identify the scalar
potential φ and three-vector potential Ai (signs defined by Ei = −φ,i − Ai,0) as com-
ponents of a one-form A0 = −φ, Ai (one-form) = Ai (three-vector). A gauge transfor-
mation is the replacement φ → φ − ∂f /∂t, Ai → Ai + f,i. This leaves the electric and
magnetic fields unchanged. The Lorentz gauge is a gauge in which ∂φ/∂t + ∇iAi = 0.
Write both the gauge transformation and the Lorentz gauge condition in four-tensor
notation. Draw the analogy with similar equations in linearized gravity.

12 Prove Eq. (8.34).
13 The inequalities |T00| � |T0i| � |Tij| for a Newtonian system are illustrated in

Exers. 2(c). Devise physical arguments to justify them in general.
14 From Eq. (8.46) and the inequalities among the components hαβ , derive Eqs. (8.47)–

(8.50).
15 We have argued that we should use convenient coordinates to solve the weak-

field problem (or any other!), but that any physical results should be expressible in
coordinate-free language. From this point of view our demonstration of the Newtonian
limit is as yet incomplete, since in Ch. 7 we merely showed that the metric Eq. (7.8),
led to Newton’s law

dp/dt = −m∇φ
.But surely this is a coordinate-dependent equation, involving coordinate time and posi-
tion. It is certainly not a valid four-dimensional tensor equation. Fill in this gap in
our reasoning by showing that we can make physical measurements to verify that the
relativistic predictions match the Newtonian ones. (For example, what is the relation
between the proper time one orbit takes and its proper circumference?)

16 Re-do the derivation of the Newtonian limit by replacing 8π in Eq. (8.10) by k and fol-
lowing through the changes this makes in subsequent equations. Verify that we recover
Eq. (8.50) only if k = 8π .

17 (a) A small planet orbits a static neutron star in a circular orbit whose proper circum-
ference is 6 × 1011 m. The orbital period takes 200 days of the planet’s proper time.
Estimate the mass M of the star.

(b) Five satellites are placed into circular orbits around a static black hole. The proper
circumferences and proper periods of their orbits are given in the table below. Use
the method of (a) to estimate the hole’s mass. Explain the trend of the results you
get for the satellites.

Proper
circumference 2.5 × 106 m 6.3 × 106 m 6.3 × 107 m 3.1 × 108 m 6.3 × 109 m

Proper period 8.4 × 10−3 s 0.055 s 2.1 s 23 s 2.1 × 103 s

18 Consider the field equations with cosmological constant, Eq. (8.7), with � arbitrary
and k = 8π .
(a) Find the Newtonian limit and show that we recover the motion of the planets only

if |�| is very small. Given that the radius of Pluto’s orbit is 5.9 × 1012 m, set an
upper bound on |�| from solar-system measurements.

(b) By bringing � over to the right-hand side of Eq. (8.7), we can regard −�gμν/8π
as the stress-energy tensor of ‘empty space’. Given that the observed mass of the
region of the universe near our Galaxy would have a density of about 10−27 kg m3
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if it were uniformly distributed, do you think that a value of |�| near the limit you
established in (a) could have observable consequences for cosmology? Conversely,
if � is comparable to the mass density of the universe, do we need to include it in
the equations when we discuss the solar system?

19 In this exercise we shall compute the first correction to the Newtonian solution caused
by a source that rotates. In Newtonian gravity, the angular momentum of the source
does not affect the field: two sources with the same ρ(xi) but different angular momenta
have the same field. Not so in relativity, since all components of Tμν generate the field.
This is our first example of a post-Newtonian effect, an effect that introduces an aspect
of general relativity that is not present in Newtonian gravity.
(a) Suppose a spherical body of uniform density ρ and radius R rotates rigidly about

the x3 axis with constant angular velocity �. Write down the components T0 ν in
a Lorentz frame at rest with respect to the center of mass of the body, assum-
ing ρ,�, and R are independent of time. For each component, work to the lowest
nonvanishing order in �R.

(b) The general solution to the equation ∇2f = g, which vanishes at infinity, is the
generalization of Eq. (8.2),

f (x) = − 1

4π

∫
g(y)

|x − y|d3y,

which reduces to Eq. (8.2) when g is nonzero in a very small region. Use this to
solve Eq. (8.42) for h̄00 and h̄0j for the source described in (a). Obtain the solutions
only outside the body, and only to the lowest nonvanishing order in r−1, where r
is the distance from the body’s center. Express the result for h̄0j in terms of the
body’s angular momentum. Find the metric tensor within this approximation, and
transform it to spherical coordinates.

(c) Because the metric is independent of t and the azimuthal angle φ, particles orbiting
this body will have p0 and pφ constant along their trajectories (see § 7.4). Consider
a particle of nonzero rest-mass in a circular orbit of radius r in the equatorial plane.
To lowest order in �, calculate the difference between its orbital period in the
positive sense (i.e., rotating in the sense of the central body’s rotation) and in the
negative sense. (Define the period to be the coordinate time taken for one orbit of
�φ = 2π .)

(d) From this devise an experiment to measure the angular momentum J of the
central body. We take the central body to be the Sun (M = 2 × 1030 kg, R =
7 × 108 m,� = 3 × 10−6 s−1) and the orbiting particle Earth (r = 1.5 × 1011 m).
What would be the difference in the year between positive and negative orbits?

20 This exercises introduces the concept of the active gravitational mass. After deriv-
ing the weak-field Einstein equations in Eq. (8.42), we immediately specialized to
the low-velocity Newtonian limit. Here we go a few steps further without making the
assumption that velocities are small or pressures weak compared to densities.
(a) Perform a trace-reverse operation on Eq. (8.42) to get

� hμν = −16π
(

Tμν − 1
2 Tααη

μν
)

. (8.61)
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(b) If the system is isolated and stationary, then its gravitational field far away will
be dominated by h00, as argued leading up to Eq. (8.50). If the system has weak
internal gravity but strong pressure, show that h00 = −2� where � satisfies a
Newtonian-like Poisson equation

∇2� = 4π
(
ρ + Tk

k

)
. (8.62)

For a perfect fluid, this source term is just ρ + 3p, which is called the active grav-
itational mass in general relativity. If the system is Newtonian, then p 	 ρ and
we have the usual Newtonian limit. This is another example of a post-Newtonian
effect.



9 Gravitational radiation

9.1 The propagat ion of g rav i tat iona l waves

It may happen that in a region of spacetime the gravitational field is weak but not stationary.
This can happen far from a fully relativistic source undergoing rapid changes that took
place long enough ago for the disturbances produced by the changes to reach the distant
region under consideration. We shall study this problem by using the weak-field equations
developed in the last chapter, but first we study the solutions of the homogeneous system of
equations that we excluded from the Newtonian treatment in § 8.4. The Einstein equations
Eq. (8.42), in vacuum (Tμν = 0) far outside the source of the field, are(

− ∂2

∂t2
+ ∇2

)
h̄αβ = 0. (9.1)

In this chapter we do not neglect ∂2/∂t2. Eq. (9.1) is called the three-dimensional wave
equation. We shall show that it has a (complex) solution of the form

h̄αβ = Aαβ exp (ikαxα), (9.2)

where {kα} are the (real) constant components of some one-form and {Aαβ} the (complex)
constant components of some tensor. (In the end we shall take the real part of any complex
solutions.) Eq. (9.1) can be written as

ημν h̄αβ ,μν = 0, (9.3)

and, from Eq. (9.2), we have

h̄αβ ,μ = ikμh̄αβ . (9.4)

Therefore, Eq. (9.3) becomes

ημν h̄αβ ,μν = −ημνkμkν h̄αβ = 0.

This can vanish only if

ημνkμkν = kνkν = 0. (9.5)

So Eq. (9.2) gives a solution to Eq. (9.1) if kα is a null one-form or, equivalently, if the
associated four-vector kα is null, i.e. tangent to the world line of a photon. (Recall that
we raise and lower indices with the flat-space metric tensor ημν , so kα is a Minkowski
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null vector.) Eq. (9.2) describes a wavelike solution. The value of h̄αβ is constant on a
hypersurface on which kαxα is constant:

kαxα = k0t + k · x = const., (9.6)

where k refers to {ki}. It is conventional to refer to k0 as ω, which is called the frequency
of the wave:

�k → (ω, k) (9.7)

is the time–space decomposition of �k. Imagine a photon moving in the direction of the null
vector �k. It travels on a curve

xμ(λ) = kμλ+ lμ, (9.8)

where λ is a parameter and lμ is a constant vector (the photon’s position at λ = 0). From
Eqs. (9.8) and (9.5), we find

kμxμ(λ) = kμlμ = const. (9.9)

Comparing this with Eq. (9.6), we see that the photon travels with the gravitational wave,
staying forever at the same phase. We express this by saying that the wave itself travels at
the speed of light, and �k is its direction of travel. The nullity of �k implies

ω2 = |k|2, (9.10)

which is referred to as the dispersion relation for the wave. Readers familiar with wave
theory will immediately see from Eq. (9.10) that the wave’s phase velocity is one, as is its
group velocity, and that there is no dispersion.

The Einstein equations only assume the simple form, Eq. (9.1), if we impose the gauge
condition

h̄αβ ,β = 0, (9.11)

the consequences of which we must therefore consider. From Eq. (9.4), we find

Aαβkβ = 0, (9.12)

which is a restriction on Aαβ : it must be orthogonal to �k.
The solution Aαβ exp(ikμxμ) is called a plane wave. (Of course, in physical applications,

we use only the real part of this expression, allowing Aαβ to be complex.) By the theorems
of Fourier analysis, any solution of Eqs. (9.1) and (9.11) is a superposition of plane wave
solutions (see Exer. 3, § 9.7).

The transverse-traceless gauge

We so far have only one constraint, Eq. (9.12), on the amplitude Aαβ , but we can use our
gauge freedom to restrict it further. Recall from Eq. (8.38) that we can change the gauge
while remaining within the Lorentz class of gauges using any vector solving(

− ∂2

∂t2
+ ∇2

)
ξα = 0. (9.13)
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Let us choose a solution

ξα = Bα exp(ikμxμ), (9.14)

where Bα is a constant and kμ is the same null vector as for our wave solution. This
produces a change in hαβ , given by Eq. (8.24),

h(NEW)
αβ = h(OLD)

αβ − ξα,β − ξβ,α (9.15)

and a consequent change in h̄αβ , given by Eq. (8.34),

h̄(NEW)
αβ = h̄(OLD)

αβ − ξα,β − ξβ,α + ηαβξ
μ

,μ. (9.16)

Using Eq. (9.14) and dividing out the exponential factor common to all terms gives

A(NEW)
αβ = A(OLD)

αβ − i Bαkβ − i Bβkα + i ηαβBμkμ. (9.17)

In Exer. 5, § 9.7, it is shown that Bα can be chosen to impose two further restrictions
on A(NEW)

αβ :

Aαα = 0 (9.18)

and

AαβUβ = 0, (9.19)

where �U is some fixed four-velocity, i.e. any constant timelike unit vector we wish to
choose. Eqs. (9.12), (9.18), and (9.19) together are called the transverse–traceless (TT)
gauge conditions. (The word ‘traceless’ refers to Eq. (9.18); ‘transverse’ will be explained
below.) We have now used up all our gauge freedom, so any remaining independent com-
ponents of Aαβ must be physically important. Notice, by the way, that the trace condition,
Eq. (9.18), implies (see Eq. (8.29))

h̄TT
αβ = hTT

αβ . (9.20)

Let us go to a Lorentz frame for the background Minkowski spacetime (i.e. make a
background Lorentz transformation), in which the vector �U upon which we have based
the TT gauge is the time basis vector Uβ = δβ0. Then Eq. (9.19) implies Aα0 = 0 for
all α. In this frame, let us orient our spatial coordinate axes so that the wave is traveling
in the z direction, �k → (ω, 0, 0,ω). Then, with Eq. (9.19), Eq. (9.12) implies Aαz = 0 for
all α. (This is the origin of the adjective ‘transverse’ for the gauge: Aμν is ‘across’ the
direction of propagation �ez.) These two restrictions mean that only Axx, Ayy, and Axy = Ayx

are nonzero. Moreover, the trace condition, Eq. (9.18), implies Axx = −Ayy. In matrix form,
we therefore have in this specially chosen frame
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(ATT
αβ ) =

⎛
⎜⎜⎝

0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0

⎞
⎟⎟⎠. (9.21)

There are only two independent constants, ATT
xx and ATT

xy . What is their physical
significance?

The effect of waves on free part ic les

As we remarked earlier, any wave is a superposition of plane waves; if the wave travels in
the z direction, we can put all the plane waves in the form of Eq. (9.21), so that any wave
has only the two independent components hTT

xx and hTT
xy . Consider a situation in which

a particle initially in a wave-free region of spacetime encounters a gravitational wave.
Choose a background Lorentz frame in which the particle is initially at rest, and choose
the TT gauge referred to in this frame (i.e. the four-velocity Uα in Eq. (9.19) is the initial
four-velocity of the particle). A free particle obeys the geodesic equation, Eq. (7.9),

d

dτ
Uα + �αμνUμUν = 0. (9.22)

Since the particle is initially at rest, the initial value of its acceleration is

(dUα/dτ )0 = −�α 00 = − 1
2η
αβ (hβ0,0 + h0β,0 − h00,β ). (9.23)

But by Eq. (9.21), hTT
β0 vanishes, so initially the acceleration vanishes. This means the parti-

cle will still be at rest a moment later, and then, by the same argument, the acceleration will
still be zero a moment later. The result is that the particle remains at rest forever, regardless
of the wave! However, being ‘at rest’ simply means remaining at a constant coordinate
position, so we should not be too hasty in its interpretation. All we have discovered is that
by choosing the TT gauge – which means making a particular adjustment in the ‘wiggles’
of our coordinates – we have found a coordinate system that stays attached to individual
particles. This in itself has no invariant geometrical meaning.

To get a better measure of the effect of the wave, let us consider two nearby particles,
one at the origin and another at x = ε, y = z = 0, both beginning at rest. Both then remain
at these coordinate positions, and the proper distance between them is

� l ≡
∫

|ds2|1/2 =
∫

|gαβ dxα dxβ |1/2

=
∫ ε

0
|gxx|1/2 dx ≈ |gxx(x = 0)|1/2ε

≈ [1 + 1
2 hTT

xx (x = 0)]ε. (9.24)

Now, since hTT
xx is not generally zero, the proper distance (as opposed to the coordinate dis-

tance) does change with time. This is an illustration of the difference between computing
a coordinate-dependent number (the position of a particle) and a coordinate-independent
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number (the proper distance between two particles). The effect of the wave is unam-
biguously seen in the coordinate-independent number. The proper distance between two
particles can be measured: we will discuss two ways of measuring it in the paragraph
on ‘Measuring the stretching of space’ below. The physical effects of gravitational fields
always show up in measurables.

Equation (9.24) tells us a lot. First, the change in the distance between two particles
is proportional to their initial separation ε. Gravitational waves create a bigger distance
change if the original distance is bigger. This is the reason that modern gravitational
wave detectors, which we discuss below, are designed and built on huge scales, measuring
changes in separations over many kilometers (for ground-based detectors) or millions of
kilometers (in space). The second thing we learn from Eq. (9.24) is that the effect is small,
proportional to hTT

ij . We will see when we study the generation of waves below that these

dimensionless components are typically 10−21 or smaller. So gravitational wave detectors
have to sense relative distance changes of order one part in 1021. This is the experimental
challenge that was achieved for the first time in 2005, and improvements in sensitivity are
continually being made.

Tidal accelerat ions: gravitat ional wave forces

Another approach to the same question of how gravitational waves affect free particles
involves the equation of geodesic deviation, Eq. (6.87). This will lead us, in the following
paragraph, to a way of understanding the action of gravitational waves as a tidal force on
particles, whether they are free or not.

Consider again two freely falling particles, and set up the connecting vector ξα between
them. If we were to work in a TT-coordinate system, as in the previous paragraph, then
the fact that the particles remain at rest in the coordinates means that the components of
�ξ would remain constant; although correct, this would not be a helpful result since we
have not associated the components of �ξ in TT-coordinates with the result of any measure-
ment. Instead we shall work in a coordinate system closely associated with measurements,
the local inertial frame at the point of the first geodesic where �ξ originates. In this frame,
coordinate distances are proper distances, as long as we can neglect quadratic terms in
the coordinates. That means that in these coordinates the components of �ξ do indeed
correspond to measurable proper distances if the geodesics are near enough to one another.

What is more, in this frame the second covariant derivative in Eq. (6.87) simplifies. It
starts out as ∇U∇Uξ

α , where we are calling the tangent to the geodesic �U here instead of
�V . Now, the first derivative acting on �ξ just gives d ξα/d τ . But the second derivative is a
covariant one, and should contain not just d/d τ but also a term with a Christoffel symbol.
But in this local inertial frame the Christoffel symbols all vanish at this point, so the second
derivative is just an ordinary second derivative with respect to tau. The result is, again in
the locally inertial frame,

d2

dτ 2
ξα = Rα μνβ UμUνξβ , (9.25)
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where �U = d�x/dτ is the four-velocity of the two particles. In these coordinates the compo-
nents of �U are needed only to lowest (i.e. flat-space) order, since any corrections to Uα that
depend on hμν will give terms second order in hμν in the above equation (because Rαμνβ is
already first order in hμν). Therefore, �U → (1, 0, 0, 0) and, initially, �ξ → (0, ε, 0, 0). Then,
to first order in hμν , Eq. (9.25) reduces to

d2

dτ 2
ξα = ∂2

∂t2
ξα = εRα 00x = −εRα 0x0. (9.26)

This is the fundamental result, which shows that the Riemann tensor is locally measurable
by simply watching the proper distance changes between nearby geodesics.

Now, the Riemann tensor is itself gauge invariant, so its components do not depend
on the choice we made between a local inertial frame and the TT coordinates. It follows
also that the left-hand side of Eq. (9.26) must have an interpretation independent of the
coordinate gauge. We identify ξα as the proper lengths of the components of the connecting
vector �ξ , in other words the proper distances along the four coordinate directions over the
coordinate intervals spanned by the vector. With this interpretation, we free ourselves from
the choice of gauge and arrive at a gauge-invariant interpretation of the whole of Eq. (9.26).

Just to emphasize that we have restored gauge freedom to this equation, let us write the
Riemann tensor components in terms of the components of the metric in TT gauge. This
is possible, since the Riemann components are gauge-invariant. And it is desirable, since
these components are particularly simple in the TT gauge. It is not hard to use Eq. (8.25)
to show that, for a wave traveling in the z-direction, the components are

Rx
0x0 = Rx0x0 = − 1

2 h TT
xx,00,

Ry
0x0 = Ry0x0 = − 1

2 h TT
xy,00,

Ry
0y0 = Ry0y0 = − 1

2 h TT
yy,00, = −Rx

0x0,

⎫⎪⎬
⎪⎭ (9.27)

with all other independent components vanishing. This means, for example, that two par-
ticles initially separated in the x direction have a separation vector �ξ whose components’
proper lengths obey

∂2

∂t2
ξ x = 1

2ε
∂2

∂t2
hTT

xx ,
∂2

∂t2
ξ y = 1

2ε
∂2

∂t2
hTT

xy . (9.28a)

This is clearly consistent with Eq. (9.24). Similarly, two particles initially separated by ε
in the y direction obey

∂2

∂t2
ξ y = 1

2ε
∂2

∂t2
hTT

yy = − 1
2ε
∂2

∂t2
hTT

xx ,

∂2

∂t2
ξ x = 1

2ε
∂2

∂t2
hTT

xy . (9.28b)

Remember, from Eq. (9.21), that hTT
yy = −hTT

xx .
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Measuring the stretching of space

The action of gravitational waves is sometimes characterized as a stretching of space.
Eq. (9.24) makes it clear what this means: as the wave passes through, the proper sepa-
rations of free objects that are simply sitting at rest change with time. However, students of
general relativity sometimes find this concept confusing. A frequent question is, if space
is stretched, why is a ruler (which consists, after all, mostly of empty space with a few
electrons and nuclei scattered through it) not also stretched, so that the stretching is not
measurable by the ruler? The answer to this question lies not in Eq. (9.24) but in the
geodesic deviation equation, Eq. (9.26).

Although the two formulations of the action of a gravitational wave, Eqs. (9.24)
and (9.26), are essentially equivalent for free particles, the second one is far more use-
ful and instructive when we consider the behavior of particles that have other forces acting
on them as well. The first formulation is the complete solution for the relative motion of
particles that are freely falling, but it gives no way of including other forces. The second
formulation is not a solution but a differential equation. It shows the acceleration of one
particle (let’s call it B), induced by the wave, as measured in a freely falling local inertial
frame that initially coincides with the motion of the other particle (let’s call it A). It says
that, in this local frame, the wave acts just like a force pushing on B. This is called the tidal
force associated with the wave. This force depends on the separation �ξ . From Eq. (9.25), it
is clear that the acceleration resulting from this effective force is

∂2

∂t2
ξ i = −Ri

0j0ξ
j. (9.29)

Now, if particle B has another force on it as well, say �FB, then to get the complete motion of
B we must simply solve Newton’s second law with all forces included. This means solving
the differential equation

∂2

∂t2
ξ i = −Ri

0j0ξ
j + 1

mB
Fi

B, (9.30)

where mB is the mass of particle B. Indeed, if particle A also has a force �FA on it, then it
will not remain at rest in the local inertial frame. But we can still make measurements in
that frame, and in this case the separation of the two particles will obey

∂2

∂t2
ξ i = −Ri

0j0ξ
j + 1

mB
Fi

B − 1

mA
Fi

A. (9.31)

This equation allows us to treat material systems acted on by gravitational waves. The
continuum version of it can be used to understand how a ‘bar’ detector of gravitational
waves, which we will encounter below, reacts to an incident wave. And it allows us to
answer the question of what happens to a ruler when the wave hits. Since the atoms in
the ruler are not free, but instead are acted upon by electric forces from nearby atoms, the
ruler will stretch by an amount that depends on how strong the tidal gravitational forces are
compared to the internal binding forces. Now, gravitational forces are very weak compared
to electric forces, so in practice the ruler does not stretch at all. In this way the ruler can be
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(a) (b) (c)

x

y

t = t1 t = t1

t = t2t = t2

�Figure 9.1 (a) A circle of free particles before a wave traveling in the z direction reaches them. (b)
Distortions of the circle produced by a wave with the ‘+’ polarization. The two pictures represent
the same wave at phases separated by 180◦. Particles are positioned according to their proper
distances from one another. (c) As (b) for the ‘×’ polarization.

used to measure the tidal displacement of nearby free particles, in other words to measure
the ‘stretching of space’.

There are other ways of measuring the stretching. One of the most important in practice
is to send photons back and forth between the free particles and measure the changes
in the light–travel time between them. This is the principle of the laser interferometer
gravitational wave detector, and we will discuss it in some detail below.

Polar izat ion of gravitat ional waves

Eqs. (9.28a) and (9.28b) form the foundation of the definition of the polarization of a
gravitational wave. Consider a ring of particles initially at rest in the x − y plane, as in
Fig. 9.1(a). Suppose a wave has hTT

xx �= 0, hTT
xy = 0. Then the particles will be moved (in

terms of proper distance relative to the one in the center) in the way shown in Fig. 9.1(b),
as the wave oscillates and hTT

xx = −hTT
yy changes sign. If, instead, the wave had hTT

xy �= 0 but
hTT

xx = hTT
yy = 0, then the picture would distort as in Fig. 9.1(c). Since hTT

xy and hTT
xx are inde-

pendent, (b) and (c) provide a pictorial representation for two different linear polarizations.
Notice that the two states are simply rotated 45◦ relative to one another. This contrasts
with the two polarization states of an electromagnetic wave, which are 90◦ to each other.
As Exer. 16, § 9.7, shows, this pattern of polarization is due to the fact that gravity is
represented by the second-rank symmetric tensor hμν . (By contrast, electromagnetism is
represented by the vector potential Aμ of Exer. 11, § 8.6.)

An exact plane wave

Although all waves that we can expect to detect on Earth are so weak that linearized theory
ought to describe them very accurately, it is interesting to see if the linear plane wave
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corresponds to some exact solution of the nonlinear equations that has similar properties.
We shall briefly derive such a solution.

Suppose the wave is to travel in the z direction. By analogy with Eq. (9.2), we might
hope to find a solution that depends only on

u := t − z.

This suggests using u as a coordinate, as we did in Exer. 34, § 3.10 (with x replaced by z).
In flat space it is natural, then, to define a complementary null coordinate

v = t + z,

so that the line element of flat spacetime becomes

ds2 = −du dv + dx2 + dy2.

Now, we have seen that the linear wave affects only proper distances perpendicular to its
motion, i.e. in the x − y coordinate plane. So let us look for a nonlinear generalization of
this, i.e. for a solution with the metric

ds2 = −du dv + f 2(u) dx2 + g2(u) dy2,

where f and g are functions to be determined by Einstein’s equations. It is a straightforward
calculation to discover that the only nonvanishing Christoffel symbols and Riemann tensor
components are

�x
xu = ḟ /f , �y

yu = ġ/g,

�vxx = 2ḟ /f , �vyy = 2ġ/g,

Rx
uxu = −f̈ /f , Ry

uyu = −g̈/g,

and others obtainable by symmetries. Here, dots denote derivatives with respect to u. The
only vacuum field equation then becomes

f̈ /f + g̈/g = 0. (9.32)

We can therefore prescribe an arbitrary function g(u) and solve this equation for f (u). This
is the same freedom as we had in the linear case, where Eq. (9.2) can be multiplied by
an arbitrary f (kz) and integrated over kz to give the Fourier representation of an arbitrary
function of (z − t). In fact, if g is nearly 1,

g ≈ 1 + ε(u),

so we are near the linear case, then Eq. (9.32) has a solution

f ≈ 1 − ε(a).

This is just the linear wave in Eq. (9.21), with plane polarization with hxy = 0, i.e. the
polarization shown in Fig. 9.1(b). Moreover, it is easy to see that the geodesic equation
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implies, in the nonlinear case, that a particle initially at rest on our coordinates remains
at rest. We have, therefore, a simple nonlinear solution corresponding to our approximate
linear one.

This solution is one of a class called plane-fronted waves with parallel rays. See Ehlers
and Kundt (1962), § 2.5, and Stephani, et al. (2003), § 24.5.

Geometrical optics : waves in a curved spacetime

In this chapter we have made the simplifying assumption that our gravitational waves are
the only gravitational field, that they are perturbations of flat spacetime, starting from
Eq. (8.12). We found that they behave like a wave field moving at the speed of light in
special relativity. But the real universe contains other gravitational fields, and gravitational
waves have to make their way to our detectors through the fields of stars, galaxies, and the
universe as a whole. How do they move?

The answer comes from studying waves as perturbations of a curved metric, of the form
gαβ + hαβ , where g could be the metric created by any combination of sources of gravity.
The computation of the dynamical equation governing h is very similar to the one we went
through at the beginning of this chapter, but the mathematics of curved spacetime must be
used. We won’t go into the details here, but it is important to understand qualitatively that
the results are very similar to the results we would get for electromagnetic waves traveling
through complicated media.

If the waves have short wavelength, then they basically follow a null geodesic, and they
parallel-transport their polarization tensor. This is exactly the same as for electromagnetic
waves, so that photons and gravitational waves leaving the same source at the same time
will continue to travel together through the universe, provided they move through vacuum.
For this geometrical optics approximation to hold, the wavelength has to be short in two
ways. It must be short compared to the typical curvature scale, so that the wave is merely a
ripple on a smoothly curved background spacetime; and its period must be short compared
to the timescale on which the background gravitational fields might change. If nearby null
geodesics converge, then gravitational and electromagnetic waves traveling on them will
be focussed and become stronger. This is called gravitational lensing, and we will see an
example of it in Ch. 11.

Gravitational waves do not always keep step with their electromagnetic counterparts.
Electromagnetic waves are strongly affected by ordinary matter, so that if their null
geodesic passes through matter, they can suffer additional lensing, scattering, or absorp-
tion. Gravitational waves are hardly disturbed by matter at all. They follow the null
geodesics even through matter. The reason is the weakness of their interaction with matter,
as we saw in Eq. (9.24). If the wave amplitudes hTT

ij are small, then their effect on any
matter they pass through is also small, and the back-effect of the matter on them will be
of the same order of smallness. Gravitational waves are therefore highly prized carriers of
information from distant regions of the universe: we can in principle use them to ‘see’ into
the centers of supernova explosions, through obscuring dust clouds, or right back to the
first fractions of a second after the Big Bang.
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9.2 The detec t ion of g rav i tat iona l waves

General considerat ions

The great progress that astronomy has made since about 1960 is due largely to the fact
that technology has permitted astronomers to begin to observe in many different parts of
the electromagnetic spectrum. Because they were restricted to observing visible light, the
astronomers of the 1940s could have had no inkling of such diverse and exciting phenom-
ena as quasars, pulsars, black holes in X-ray binaries, giant black holes in galactic centers,
gamma-ray bursts, and the cosmic microwave background radiation. As technology has
progressed, each new wavelength region has revealed unexpected and important informa-
tion. Most regions of the electromagnetic spectrum have now been explored at some level
of sensitivity, but there is another spectrum which is as yet completely untouched: the
gravitational wave spectrum.

As we shall see in § 9.5 below, nearly all astrophysical phenomena emit gravitational
waves, and the most violent ones (which are of course among the most interesting ones!)
give off radiation in copious amounts. In some situations, gravitational radiation carries
information that no electromagnetic radiation can give us. For example, gravitational waves
come to us direct from the heart of supernova explosions; the electromagnetic radiation
from the same region is scattered countless times by the dense material surrounding the
explosion, taking days to eventually make its way out, and in the process losing most of the
detailed information it might carry about the explosion. As another example, gravitational
waves from the Big Bang originated when the universe was perhaps only 10−25 s old; they
are our earliest messengers from the beginning of our universe, and they should carry the
imprint of unknown physics at energies far higher than anything we can hope to reach in
accelerators on the Earth.

Beyond what we can predict, we can be virtually certain that the gravitational-wave spec-
trum has surprises for us; clues to phenomena we never suspected. Astronomers know that
only 4% of the mass-energy of the universe is in charged particles that can emit or receive
electromagnetic waves; the remaining 96% cannot radiate electromagnetically but it nev-
ertheless couples to gravity, and some of it could turn out to radiate gravitational waves. It
is not surprising, therefore, that considerable effort has been devoted to the development
of sensitive gravitational-wave antennas.

The technical difficulties involved in the detection of gravitational radiation are enor-
mous, because the amplitudes of the metric perturbations hμν that can be expected from
distant sources are so small (see §§ 9.3 and 9.5 below). This is an area in which rapid
advances are being made in a complex interplay between advancing technology, large
investments by scientific funding agencies, and new astrophysical discoveries. This chap-
ter reflects the situation in 2008, when sensitive detectors are in operation, even more
sensitive ones are planned, but no direct detections have yet been made. The student who
wants to get updated should consult the scientific literature referred to in the bibliography,
§ 9.6.

Purpose-built detectors are of two types: bars and interferometers.
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• Resonant mass detectors. Also known as ‘bar detectors’, these are solid masses that
respond to incident gravitational waves by going into vibration. The first purpose-built
detectors were of this kind (Weber 1961). We shall study them below, because they
can teach us a lot. But they are being phased out, because interferometers (below) have
reached a better sensitivity.

• Laser interferometers. These detectors use highly stable laser light to monitor the proper
distances between free masses; when a gravitational wave comes by, these distances
will change – as we saw earlier. The principle is illustrated by the distance monitor
described in Exer. 9, § 9.7. Very large-scale interferometers (Hough and Rowan 2000)
are now being operated by a number of groups: LIGO in the USA (two 4-km detectors
and a third that is 2 km long), VIRGO in Italy (3 km), GEO600 in Germany (600 m),
and TAMA300 in Japan (300 m). These monitor the changes in separation between two
pairs of heavy masses, suspended from supports that isolate the masses from outside
vibrations. This approach has produced the most sensitive detectors to date, and is likely
to produce the first detections. A very sensitive dedicated array of spacecraft, called
LISA, is also planned. We will have much more to say about these detectors below.

Other ways of detecting gravitational waves are also being pursued.

• Spacecraft tracking. This principle has been used to search for gravitational waves using
the communication data between Earth and interplanetary spacecraft (Armstrong 2006).
By comparing small fluctuations in the round-trip time of radio signals sent to spacecraft,
we try to identify gravitational waves. The sensitivity of these searches is not very high,
however, because they are limited by the stability of the atomic clocks that are used for
the timing and by delays caused by the plasma in the solar wind.

• Pulsar timing. Radio astronomers search for small irregularities in the times of arrival of
signals from pulsars. Pulsars are spinning neutron stars that emit strong directed beams
of radio waves, apparently because they have ultra-strong magnetic fields that are not
aligned with the axis of rotation. Each time a magnetic pole happens to point toward
Earth, the beamed emission is observed as a ‘pulse’ of radio waves. As we shall see in
the next chapter, neutron stars can rotate very rapidly, even hundreds of times per second.
Because the pulses are tied to the rotation rate, many pulsars are intrinsically very good
clocks, potentially better than man-made ones (Cordes et al. 2004), and may accordingly
be used for gravitational wave detection. Special-purpose pulsar timing arrays are cur-
rently searching for gravitational waves, by looking for correlated timing irregularities
that could be caused by gravitational waves passing the radio array. When the planned
Square Kilometer Array (SKA) radio telescope facility is built (perhaps around 2020),
radio astronomers will have a superb tool for monitoring thousands of pulsars and dig-
ging deep for gravitational wave signals. But it is certainly conceivable that timing arrays
may detect gravitational waves before the ground-based interferometers do.

• Cosmic microwave background temperature perturbations. Cosmologists study the fluc-
tuations in the cosmic microwave background temperature distribution on the sky (see
Ch. 12) for telltale signatures of gravitational waves from the Big Bang. The effect is dif-
ficult to measure, but it may come within reach of the Planck spacecraft, due for launch
in 2009.
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Interferometers, spacecraft tracking, and pulsar timing all share a common principle: they
monitor electromagnetic radiation to look for the effects of gravitational waves. These are
all examples of the general class of beam detectors.

It is important to bear in mind that these different approaches are suitable for differ-
ent parts of the gravitational wave spectrum. Just as for the electromagnetic spectrum,
gravitational waves at different frequencies carry different kinds of information. While
ground-based detectors (bars and interferometers) typically observe between 10 Hz and
a few kHz (although some prototypes have been built for MHz frequencies), space-based
interferometers will explore the mHz part of the spectrum. Pulsar timing is suitable only at
nHz frequencies, because we have to average over short-time fluctuations in the arrival
times of pulses. And the cosmic microwave background was affected by gravitational
waves that had extremely long wavelengths at the time the universe was only a few hun-
dred thousand years old (Ch. 12), so the frequencies of those waves today are of order
10−16 Hz!

A resonant detector

Resonant detectors are a good case study for the interaction of gravitational waves with
continuous matter. To understand how they work in principle, we consider the following
idealized detector, depicted in Fig. 9.2. Two point particles, each of mass m, are connected
by a massless spring with spring constant k, damping constant ν, and unstretched length l0.
The system lies on the x axis of our TT coordinate system, with the masses at coordinate
positions x1 and x2. In flat space-time, the masses would obey the equations

mx1,00 = −k(x1 − x2 + l0) − ν(x1 − x2),0 (9.33)

and

mx2,00 = −k(x2 − x1 − l0) − ν(x2 − x1),0. (9.34)

If we define the stretch ξ , resonant frequency ω0, and damping rate γ by

ξ = x2 − x1 − l0, ω2
0 = 2 k/m, γ = ν/m, (9.35)

then we can combine Eqs. (9.33) and (9.34) to give

ξ,00 + 2γ ξ,0 + ω2
0ξ = 0, (9.36)

the usual damped harmonic-oscillator equation.
What is the situation as a gravitational wave passes? We shall analyze the problem in

three steps:

m

x1(t)

m

x2(t)

�Figure 9.2 A spring with two identical masses as a detector of gravitational waves.
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(1) A free particle remains at rest in the TT coordinates. This means that a local inertial
frame at rest at, say, x1, before the wave arrives remains at rest there after the wave hits. Let
its coordinates be {xα′ }. Suppose that the only motions in the system are those produced by
the wave, i.e. that ξ = 0(l0|hμν |) 	 l0. Then the masses’ velocities will be small as well,
and Newton’s equations for the masses will apply in the local inertial frame:

mxj′
,0′0′ = Fj′ , (9.37)

where {Fj′ } are the components of any nongravitational forces on the masses. Because {xα′ }
can differ from our TT coordinates {xα} only by terms of order hμν , and because x1, x1,0,
and x1,00 are all of order hμν , we can use the TT coordinates in Eq. (9.37) with negligible
error:

mxj
,00 = Fj + 0(|hμν |2). (9.38)

(2) The only nongravitational force on each mass is that due to the spring. Since all the
motions are slow, the spring will exert a force proportional to its instantaneous proper
extension, as measured using the metric. If the proper length of the spring is l, and if the
gravitational wave travels in the z direction, then

l(t) =
∫ x2(t)

x1(t)

[
1 + hTT

xx (t)
]1/2

dx = [x2(t) − x1(t)]
[
1 + 1

2 hTT
xx (t)

]
+ 0(|hμν |2), (9.39)

and Eq. (9.38) for our system gives

mx1,00 = −k(l0 − l) − ν(l0 − l),0, (9.40)

mx2,00 = −k(l − l0) − ν(l − l0),0, (9.41)

(3) Let us define the physical stretch ξ by

ξ = l − l0. (9.42)

We substitute Eq. (9.39) into this:

ξ = x2 − x1 − l0 + 1
2 (x2 − x1)hTT

xx + 0(|hμν |2). (9.43)

Noting that the factor (x2 − x1) multiplying hTT
xx can be replaced by l0 without changing

the equation to the required order of accuracy, we can solve this to give

x2 − x1 = l0 + ξ − 1
2 hTT

xx l0 + 0(|hμν |2). (9.44)

If we use this in the difference between Eqs. (9.41) and (9.40), we obtain

ξ,00 + 2γ ξ,0 + ω2
0ξ = 1

2 l0hTT
xx,00, (9.45)

correct to first order in hTT
xx . This is the fundamental equation governing the response of

the detector to the gravitational wave. It has the simple form of a forced, damped harmonic
oscillator. The forcing term is the tidal acceleration produced by the gravitational wave, as
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given in Eq. (9.28a), although our derivation started with the proper length computation in
Eq. (9.24). This shows again the self-consistency of the two approaches to understanding
the action of a gravitational wave on matter. An alternative derivation of this result using
the equation of geodesic deviation may be found in Exer. 21, § 9.7. The generalization to
waves incident from other directions is dealt with in Exer. 22, § 9.7.

We might use a detector of this sort as a resonant detector for sources of gravitational
radiation of a fixed frequency (e.g. pulsars or close binary stars). (It can also be used to
detect bursts – short wave packets of broad-spectrum radiation – but we will not discuss
detecting those.) Suppose that the incident wave has the form

hTT
xx = A cos� t. (9.46)

Then the steady solution of Eq. (9.45) for ξ is

ξ = R cos(� t + φ), (9.47)

with

R = 1
2 l0�

2A/[(ω2
0 −�2)2 + 4�2γ 2]1/2, (9.48)

tanφ = 2γ�/(ω2
0 −�2). (9.49)

(Of course, the general initial-value solution for ξ will also contain transients, which damp
away on a timescale 1/γ .) The energy of oscillation of the detector is, to lowest order
in hTT

xx ,

E = 1
2 m(x1,0)2 + 1

2 m(x2,0)2 + 1
2 kξ2. (9.50)

For a detector that was at rest before the wave arrived, we have x1,0 = −x2,0 = −ξ,0/2 (see
Exer. 23, § 9.7), so that

E = 1
4 m[(ξ,0)2 + ω2

0ξ
2] (9.51)

= 1
4 mR2[�2 sin2(� t + φ) + ω2

0 cos2(� t + φ)]. (9.52)

The mean value of this is its average over one period, 2π/�:

〈E〉 = 1
8 mR2(ω2

0 +�2). (9.53)

We shall always use angle brackets 〈 〉 to denote time averages.
If we wish to detect a specific source whose frequency � is known, then we should

adjust ω0 to equal� for maximum response (resonance), as we see from Eq. (9.48). In this
case the amplitude of the response will be

Rresonant = 1
4 l0A(�/γ ) (9.54)

and the energy of vibration is

Eresonant = 1
64 ml20�

2A2(�/γ )2. (9.55)
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The ratio �/γ is related to what is usually called the quality factor Q of an oscillator,
where 1/Q is defined as the average fraction of the energy of the undriven oscillator that it
loses (to friction) in one radian of oscillation (see Exer. 25, § 9.7):

Q = ω0/2γ . (9.56)

In the resonant case we have

Eresonant = 1
16 ml20�

2A2Q2. (9.57)

What numbers are realistic for laboratory detectors? Most such detectors are massive
cylindrical bars in which the ‘spring’ is the elasticity of the bar when it is stretched along
its axis. When waves hit the bar broadside, they excite its longitudinal modes of vibration.
The first detectors, built by Joseph Weber of the University of Maryland in the 1960s, were
aluminum bars of mass 1.4 × 103 kg, length l0 = 1.5 m, resonant frequency ω0 = 104 s−1,
and Q about 105. This means that a strong resonant gravitational wave of A = 10−20

(see § 9.3 below) will excite the bar to an energy of the order of 10−20 J. The resonant
amplitude given by Eq. (9.54) is only about 10−15 m, roughly the diameter of an atomic
nucleus! Many realistic gravitational waves will have amplitudes many orders of magni-
tude smaller than this, and will last for much too short a time to bring the bar to its full
resonant amplitude.

Bar detectors in operation

When trying to measure such tiny effects, there are in general two ways to improve things:
one is to increase the size of the effect, the other is to reduce any extraneous disturbances
that might obscure the measurement. And then we have to determine how best to make
the measurement. The size of the effect is controlled by the amplitude of the wave, the
length of the bar, and the Q-value of the material. We can’t control the wave’s amplitude,
and unfortunately extending the length is not an option: realistic bars may be as long as
3 m, but longer bars would be much harder to isolate from external disturbances. In order
to achieve high values of Q, some bars have actually been made of single crystals, but
it is hard to do better than that. Novel designs, such as spherical detectors that respond
efficiently to waves from any direction, can increase the signal somewhat, but the difficulty
of making bars intrinsically more sensitive is probably the main reason that they are not
the detector of choice at the moment.

The other issue in detection is to reduce the extraneous noise. For example, thermal
noise in any oscillator induces random vibrations with a mean energy of kT , where T is the
absolute temperature and k is Boltzmann’s constant,

k = 1.38 × 10−23 J/K.

In our example, this will be comparable to the energy of excitation if T is room temperature
(∼300 K). But we chose a very optimistic wave amplitude. To detect reliably a wave with
an amplitude ten times smaller would require a temperature 100 times smaller. For this
reason, bar detectors in the 1980s began to change from room-temperature operation to
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cryogenic operation at around 3K. The coldest, and most sensitive, bar operating today is
the Auriga bar, which goes below 100 mK.

Other sources of noise, such as vibrations from passing vehicles and everyday seismic
disturbances, could be considerably larger than thermal noise, so the bar has to be very
carefully isolated. This is done by hanging it from a support so that it forms a pendulum
with a low resonant frequency, say 1 Hz. Vibrations from the ground may move the top
attachment point of the pendulum, but little of this is transmitted through to the bar at fre-
quencies above the pendulum frequency: pendulums are good low-pass mechanical filters.
In practice, several sequential pendulums may be used, and the hanging frame is further
isolated from vibration by using absorbing mounts.

How do resonant detectors measure such small disturbances? The measuring appara-
tus is called the transducer. Weber’s original aluminum bar was instrumented with strain
detectors around its waist, where the stretching of the metal is maximum. Other groups
have tried to extract the energy of vibration from the bar into a transducer of very small
mass that was resonant at the same frequency; if the energy extraction was efficient, then
the transducer’s amplitude of oscillation would be much larger. The most sensitive readout
schemes involve ultra-low-noise low-temperature superconducting devices called SQUIDs.

We have confined our discussion to on-resonance detection of a continuous wave, in
the case when there are no motions in the detector. If the wave comes in as a burst with
a wide range of frequencies, where the excitation amplitude might be smaller than the
broad-band noise level, then we have to do a more careful analysis of their sensitivity, but
the general picture does not change. One difficulty bars encounter with broadband signals
is that it is difficult for them in practice (although not impossible in principle) to measure
the frequency components of a waveform very far from their resonant frequencies, which
normally lie above 600 Hz. Since most strong sources of gravitational waves emit at lower
frequencies, this is a serious problem. A second difficulty is that, to reach a sensitivity
to bursts of amplitude around 10−21 (which is the level that interferometers reached in
2005), bars need to conquer the so-called quantum limit. At these small excitations, the
energy put into the vibrations of the bar by the wave is below one quantum (one phonon)
of excitation of the resonant mode being used to detect them. The theory of how to detect
below the quantum limit – of how to manipulate the Heisenberg uncertainty relation in a
macroscopic object like a bar – is fascinating. But the challenge has not yet been met in
practice, and is therefore another serious problem that bars face. For more details on all of
these issues, see Misner et al. (1973), Smarr (1979), or Blair (1991).

The severe technical challenges of bar detectors come fundamentally from their small
size: any detector based on the resonances of a metal object cannot be larger than a few
meters in size, and that seriously limits the size of the tidal stretching induced by a gravita-
tional wave. Laser interferometer detectors are built on kilometer scales (and in space, on
scales of millions of kilometers). They therefore have an inherently larger response and are
consequently able to go to a higher sensitivity before they become troubled by quantum,
vibration, and thermal noise. The inherent difficulties faced by bars have led to a gradual
reduction in research funding for bar detectors during the period after 2000, as interfer-
ometers have steadily improved and finally surpassed the sensitivity of the best bars. After
2010 it seems unlikely that any bar detectors will remain in operation.
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Measuring distances with l ight

One of the most convenient ways of measuring the range to a distant object is by radar:
send out a pulse of electromagnetic radiation, measure how long it takes to return after
reflecting from the distant object, divide that by two and multiply by c, and that is the
distance. Remarkably, because light occupies such a privileged position in the theory of
relativity, this method is also an excellent way of measuring proper distances even in curved
spacetime. It is the foundation of laser interferometric gravitational wave detectors.

We shall compute how to use light to measure the distance between two freely falling
objects. Because the objects are freely falling, and because we make no assumption that
they are close to one another, we shall use the TT coordinate system. Let us consider for
simplicity at first a wave traveling in the z-direction with pure +–polarization, so that the
metric is given by

ds2 = −dt2 + [1 + h+(z − t)]dx2 + [1 − h+(t − z)]dy2 + dz2. (9.58)

Suppose, again for simplicity, that the two objects lie on the x-axis, one of them at the
origin x = 0 and the other at coordinate location x = L. In TT coordinates, they remain at
these coordinate locations all the time. To make our measurement, the object at the origin
sends a photon along the x-axis toward the other object, which reflects it back. The first
object measures the amount of proper time that has elapsed since first emitting the photon.
How is this related to the distance between the objects and to the metric of the gravitational
wave?

Note that a photon traveling along the x-axis moves along a null world line (ds2 = 0)
with dy = dz = 0. That means that it has an effective speed

(
dx

dt

)2

= 1

1 + h+
. (9.59)

Although this is not equal to one, this is just a coordinate speed, so it does not contradict
relativity. A photon emitted at time tstart from the origin reaches any coordinate location
x in a time t(x); this is essentially what we are trying to solve for. The photon reaches the
other end, at the fixed coordinate position x = L, at the coordinate time given by integrating
the effective speed of light from Eq. (9.59):

tfar = tstart +
∫ L

0

[
1 + h+(t(x))

]1/2 dx. (9.60)

This is an implicit equation since the function we want to find, t(x), is inside the integral.
But in linearized theory, we can solve this by using the fact that h+ is small. Where t(x)
appears in the argument of h+, we can use its flat-spacetime value, since corrections due
to h+ will only bring in terms of order h2+ in Eq. (9.60). So we set t(x) = tstart + x inside
the integral and expand the square root. The result is the explicit integration

tfar = tstart + L + 1
2

∫ L

0
h+(tstart + x)dx.
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The light is reflected back, and a similar argument gives the total time for the return trip:

treturn = tstart + 2L + 1
2

∫ L

0
h+(tstart + x)dx + 1

2

∫ L

0
h+(tstart + L + x)dx. (9.61)

Note that coordinate time t in the TT coordinates is proper time, so that this equation gives
a value that can be measured.

What does this equation tell us? First, suppose that L is actually rather small compared
to the gravitational wavelength, or equivalently that the return time is small compared to
the period of the wave, so that h+ is effectively constant during the flight of the photon.
Then the return time is just proportional to the proper distance to L as measured by this
metric. This should not be surprising: for a small separation we could set up a local inertial
frame in free fall with the particles, and in this frame all experiments should come out as
they do in special relativity. In SR we know that radar ranging gives the correct proper
distance, so it must do so here as well.

More generally, how do we use this equation to measure the metric of the wave? The
simplest way to use it is to differentiate treturn with respect to tstart, i.e. to monitor the
rate of change of the return time as the wave passes. Since the only way that tstart enters
the integrals in Eq. (9.61) is as the argument tstart + x of h+, a derivative of the integral
operates only as a derivative of h+ with respect to its argument. Then the integration with
respect to x is an integral of the derivative of h+ over its argument, which simply produces
h+ again. The result of this is the vastly simpler expression

dtreturn

dtstart
= 1 + 1

2

[
h+(tstart + 2L) − h+(tstart)

]
. (9.62)

This is rather a remarkable result: the rate of change of the return time depends only on the
metric of the wave at the time the wave was emitted and when it was received back at the
origin. In particular, the wave amplitude when the photon reflected off the distant object
plays no role.

Now, if the signal sent out from the origin is not a single photon but a continuous elec-
tromagnetic wave with some frequency ν, then each ‘crest’ of the wave can be thought
of as another null ray or another photon being sent out and reflected back. The derivative
of the time it takes these rays to return is nothing more than the change in the frequency of
the electromagnetic wave:

dtreturn

dtstart
= νreturn

νstart
.

So if we monitor changes in the redshift of the returning wave, we can relate that directly
to changes in the amplitude of the gravitational waves.

So far we have used a rather special arrangement of objects and wave: the wave was
traveling in a direction perpendicular to the separation of the objects. If instead the wave
is traveling at an angle θ to the z axis in the x − −z plane, the return time derivative does
involve the wave amplitude at the reflection time:

dtreturn

dtstart
= 1 + 1

2 {(1 − sin θ )h+(tstart + 2L) − (1 + sin θ )h+(tstart)

+2 sin θh+[tstart + (1 − sin θ )L]} . (9.63)
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This three-term relation is the starting point for analyzing the response of beam detectors,
as we shall see next. For its derivation see, Exer. 27, § 9.7.

Beam detectors

The simplest beam detector is spacecraft tracking (Armstrong 2006). Interplanetary space-
craft carry transponders, which are radio receivers that amplify and return the signals they
receive from the ground tracking station. A measurement of the return time of the sig-
nal tells the space agency how far away the spacecraft is. If the measurement is accurate
enough, small changes in the return time might be caused by gravitational waves. In prac-
tice, this is a difficult measurement to make, because fluctuations might also be caused
by changes in the index of refraction of the thin interplanetary plasma or of the iono-
sphere, both of which the signals must pass through. These effects can be discriminated
from a true gravitational wave by using the three-term relation, Eq. (9.63). The detected
waveform has to appear in three different places in the data, once with the opposite sign.
Random fluctuations are unlikely to do this.

Plasma fluctuations can also be suppressed by using multiple transponding frequencies
(allowing them to be measured) or by using higher-frequency transponding, even using
infrared laser light, which is hardly affected by plasma at all. But even then there will be
another limit on the accuracy: the stability of the clock at the tracing station that measures
the elapsed time treturn. Even the best clocks are, at present, not stable at the 10−19 level. It
follows that a beam detector of this type could not expect to measure gravitational waves
with amplitudes of 10−20 or below. Unfortunately, as we shall see below, this is where we
expect almost all amplitudes to lie.

The remedy is to use an interferometer. In an interferometer, light from a stable laser
passes through a beam splitter, which sends half the light down one arm and the other
half down a perpendicular arm. The two beams of light have correlated phases. When
they return after reflecting off mirrors at the ends of the arms, they are brought back into
interference (see Fig. 9.3). The interference measures the difference in the arm-lengths of
the two arms. If this difference changes, say because a gravitational wave passes through,
then the interference pattern changes and the wave can in principle be detected.

Now, an interferometer can usefully be thought of as two beam detectors laid perpendic-
ular to one another. The two beams are correlated in phase: any given ‘crest’ of the light
wave starts out down both arms at the same time. If the arms have the same proper length,
then their beams will return in phase, interfering constructively. If the arms differ, say, by
half the wavelength of light, then they will return out of phase and they will destructively
interfere. An interferometer solves the problem that a beam detector needs a stable clock.
The ‘clock’ in this case is one of the arms. The time-travel of the light in one arm essen-
tially provides a reference for the return time of the light in the other arm. The technology
of lasers, mirrors, and other systems is such that this reference can be used to measure
changes in the return travel time of the other arm much more stably than the best atomic
clocks would be able to do.
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�Figure 9.3 Sketch of the configuration of an interferometer like LIGO or VIRGO. Light from the laser passes
through the power recycling mirror to the beamsplitter, where it is divided between the two
arms. The arms form cavities, trapping most of the light, because the near mirrors are almost fully
reflecting. This power buildup increases the sensitivity. The light exiting the cavities returns to the
beamsplitter. A beam with destructive interference (difference of amplitudes) goes toward the
photodetector; it should be dark unless a gravitational wave is present. The other return beam
from the beamsplitter is the constructive interference beam returning toward the laser. Almost all
the light goes here, and in order not to waste it, the power recycling mirror returns it to the
interferometer in phase with the new incoming laser light. All the mirrors, including the
beamsplitter, are suspended in order to filter out mechanical vibration noise. Other refinements of
the optical design, such as mode cleaners and signal recycling mirrors, are not illustrated. The
diagram is not to scale: the arms are 3 to 4 km long, while the central area (near mirrors,
beamsplitter, laser, photodetector) is contained in a single building.

Interferometers are well-suited to registering gravitational waves: to see how this works,
look at the polarization diagram Fig. (9.1). Imagine putting an interferometer in the circle
in panel (a), with the beamsplitter at the center and the ends of the arms where the circle
intersects the x- and y-directions. Then when a wave with +–polarization arrives, as in
panel (b), it will stretch one arm and at the same time compress the other. This doubles the
effective armlength difference that the interference pattern measures. But even if the wave
arrives from, say, the x-direction, then its transverse action will still compress and expand
the y-arm, giving a signal half as large as the maximum. But a wave of ×-polarization, as
in panel (c), arriving perpendicular to both arms, will not stretch the interferometer arms at
all, and so will not be detected. The interferometer is therefore a linearly polarized detector
that responds to signals arriving from almost all directions.

Because interferometers bring light beams together and interfere them, it is often mis-
takenly thought that they measure the changes in their armlengths against a standard
wavelength, and that in turn sometimes leads students to ask whether the wavelength of
light is affected by the gravitational wave, thereby invalidating the measurement. Our dis-
cussion of beam detectors should make clear that the wavelength of the light is not the
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relevant thing: interferometers basically compare two return times, and as long as light trav-
els up and down the arms on a null worldline, it does not matter at all what the wavelength
is doing along the way.1

Interferometer observations

Interferometers are now (2008) the most sensitive operating detectors, and they are the
most likely instruments to make the first direct detections. They have two major advantages
over bar detectors: their sensitivity can be increased considerably without running into
fundamental problems of materials or physics, and (because they do not depend on any
resonant vibration) they operate over a broad spectrum of frequencies.

In designing an interferometer for gravitational waves, scientists face the same basic
options as for bar detectors: try to increase the size of the signal and try to reduce the
extraneous noise. Unlike bars, interferometers have a natural way of increasing the signal:
extending their length. The longer the arm, the larger will be the difference in return times
for a given gravitational wave amplitude. The largest earth-bound detectors are the two
4-km LIGO detectors in the USA, closely followed by 3-km VIRGO in Italy. But physical
length is only the first step. The light beams inside the arms can be folded over multiple
passes up and down or contained within resonating light cavities, so that the residence time
of light in each arm is longer; this again increases the difference in return times when there
is a gravitational wave. A simplified sketch of the optical design of the LIGO or VIRGO
detector is shown in Fig. (9.3).

But even with long arms, the signal can be masked by a variety of instrumental sources
of noise (Saulson 1994, Hough and Rowan 2000). To filter out vibrations from ground
disturbances, interferometers use the same strategy as bar detectors: the optical compo-
nents are suspended. Two- or three-stage suspensions are normal, but VIRGO uses seven
pendulums, each hanging from the one above; this is designed to allow the instrument to
observe at lower frequencies, where seismic vibration noise is stronger. Thermal vibrations
of mirrors and their suspensions are, as for bars, a serious problem, but interferometers do
not have the option to operate at temperatures as low as 4K, because the heat input from
the laser beam on the mirrors would be impossible to remove. Current interferometers (as
of 2008) all operate at room temperature, although there are plans in Japan to pioneer
operation at 40K. (The project is known as LCGT.) Thermal noise is controlled by using
ultra-high-Q materials for the mirrors and suspension wires; this confines the thermal noise
to narrow bands around the resonant frequencies of the mirror vibrations and pendulum
modes, and these are designed to be well outside the observation band of the instruments.
This approach, which includes using optical fiber as the suspension wire and bonding it
to mirrors without glue, has been pioneered in the GEO600 detector. As interferometers
become more advanced, they will also have to contend with quantum sources of noise and

1 In fact, the wavelength and frequency of light depend in any case on the observer, so the question cannot
be posed in a frame-invariant way. This is another reason not to introduce them into discussions of how
interferometers measure gravitational waves!
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�Figure 9.4 The LIGO gravitational wave observatory at Hanford, Washington, DC. One of the 4-km arms
stretches into the distance, the other leaves the photo off to the left. The laser light in the arms is
contained inside 4-km-long stainless-steel vacuum tubes 1.6 m in diameter. This observatory
actually operates two interferometers, the second one only 2 km long. The building housing its
end mirror can be seen half-way along the arm. The shorter instrument helps discriminate against
local disturbances. For an aerial view of this site go to a geographic display engine, such as
Google Maps, and type in the longitude and latitude (46.45, −119.4). The other LIGO detector
(which has only one interferometer) is in Livingston, Louisiana, at (30.55, −90.79). The VIRGO
detector near Pisa is at (43.64, 10.50), and GEO600 detector near Hanover is at (52.25, 9.81).
(Photo courtesy LIGO Laboratory.)

the Heisenberg uncertainty principle on the mirror locations, but even here there is a clearer
way of solving these problems of the quantum limit than for bar detectors.

The final source of noise is what physicists call shot noise, which is the random fluc-
tuations of intensity in the interference of the two beams that comes from the fact that
the beams are composed of discrete photons and not continuous classical electromagnetic
radiation. Shot noise is the major limitation on sensitivity in interferometers at frequencies
above about 200 Hz. It can be reduced, and hence the sensitivity increased, by increas-
ing the amount of light stored in the arm cavities, because with more photons the power
fluctuations go down.

The envelope of the different noise sources provides an observing band for ground-based
detectors that, for current instruments, runs from about 40 Hz up to around 1 kHz. At low
frequencies, it is difficult for the suspensions to isolate the mirrors from ground vibration.
In the middle of this range, the sensitivity limit is set by thermal noise from suspensions
and mirror vibrations. At higher frequencies, the limit is shot noise.

The detection of gravitational waves involves more than building and operating sensitive
detectors. It also requires appropriate data analysis, because the expected signals will be
below the broadband noise and must be extracted by intelligent computer-based filtering of
the data. Because the detectors are so complex, there is always the possibility that random
internal disturbances will masquerade as gravitational wave signals, so in practice signals
need to be seen in more than one detector at the same time in order for the scientists to
have confidence. Then the tiny (millisecond-scale) time-delays between different detectors’
observations provide information on the location of the source on the sky.
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Between mid-2005 and late 2007, the LIGO detectors logged operation in coincidence
(all three detectors) for more than a year at a sensitivity better than 10−21 for broadband
bursts of gravitational waves. From what astronomers know about potential sources of
gravitational waves (see below), it is certainly possible that signals of this strength would
arrive once or twice per year, but it is also possible that they are as rare as once per hundred
years! GEO600 has operated for more than half of this same period in coincidence as well.
VIRGO began operation at a similar sensitivity in early 2007. The LIGO and GEO detec-
tors pool their data and analyze them jointly in an organization called the LIGO Scientific
Collaboration (LSC). VIRGO also shares its data, which are then analyzed jointly with
LSC data. If further large-scale detectors are brought into operation (there are advanced
plans in Japan, as mentioned earlier, and in Australia), then they will presumably also join
these efforts. Each new detector improves the sensitivity of all existing detectors.

The existing detector groups plan modest incremental upgrades in sensitivity during
the remainder of the first decade of the twenty-first century, and then LIGO and VIRGO
expect to upgrade to sensitivities better than 10−22 and to push their lower frequency limit
closer to 10 Hz. These major upgrades, called Advanced LIGO and Advanced VIRGO,
will involve many new components and much more powerful lasers. As we will see below,
regular detections of gravitational waves are almost guaranteed at that point. But the first
detection could of course come at any time during this development schedule.

Even more ambitious than the ground-based detector projects is the LISA mission, a
joint undertaking of the European Space Agency (ESA) and the US space agency NASA
that is currently planned for launch around 2018. Going into space is necessary if we want
to observe at frequencies below about 1 Hz. At these low frequencies, the Earth’s Newto-
nian gravitational field is too noisy: any change in gravity will be registered by detectors,
and even the tiny changes in gravity associated with the density changes of seismic waves
and weather systems are larger than the expected amplitudes of gravitational waves. So
low-frequency observing needs to be done far from the Earth.

LISA will consist of three spacecraft in an equilateral triangle, all orbiting the Sun at
a distance of 1 AU, the same as the Earth, and trailing the Earth by 20o. Their separa-
tion will be 5 × 106 km, well-matched to detecting gravitational waves in the millihertz
frequency range. The three arms can be combined in various ways to form three dif-
ferent two-armed interferometers, which allows LISA to measure both polarizations of
an incoming wave and to sweep the sky with a fairly uniform antenna pattern. As with
ground-based instruments, LISA must contend with noise. Thermal noise is not an issue
because its large armlength means that the signal it is measuring – the time-difference
between arms – is much larger than would be induced by vibrations of materials. But
external disturbances, caused by the Sun’s radiation pressure and the solar wind, are sig-
nificant, and so the LISA spacecraft must be designed to fall freely to high accuracy.
Each spacecraft contains two free masses (called proof masses) that are undisturbed and
able to follow geodesics. The spacecraft senses the positions of the masses and uses very
weak jets to adjust its position so it does not disturb the proof masses. The proof masses
are used as the reference points for the interferometer arms. This technique is called
drag-free operation, and is one of a number of fascinating technologies that LISA will
pioneer.
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Communicating with 1 W lasers, LISA achieves a remarkable sensitivity, and will be
able to see the strongest sources in its band anywhere in the universe. We will return to
the kinds of sources that might be detected by LISA and the ground-based detectors after
studying the way that gravitational waves are generated in general relativity.

9.3 The generat ion of g rav i tat iona l waves

Simple estimates

It is easy to see that the amplitude of any gravitational waves incident on Earth should be
small. A ‘strong’ gravitational wave would have hμν = 0(1), and we should expect ampli-
tudes like this only very near a highly relativistic source, where the Newtonian potential
(if it had any meaning) would be of order one. For a source of mass M, this would be at
distances of order M from it. As with all radiation fields, the amplitude of the gravitational
waves falls off as r−1 far from the source. (Readers who are not familiar with solutions
of the wave equation will find demonstrations of this in the next sections.) So if Earth is a
distance R from a source of mass M, the largest amplitude waves we should expect are of
order M/R. For the formation of a 10 M� black hole in a supernova explosion in a nearby
galaxy 1023 m away, this is about 10−17. This is in fact an upper limit in this case, and
less-violent events will lead to very much smaller amplitudes.

Slow motion wave generation

Our object is to solve Eq. (8.42):(
− ∂2

∂t2
+ ∇2

)
h̄μν = −16πTμν. (9.64)

We will find the exact solution in a later section. Here we will make some simplifying –
but realistic – assumptions. We assume that the time-dependent part of Tμν is in sinusoidal
oscillation with frequency �, i.e. that it is the real part of

Tμν = Sμν(xi) e−i�t, (9.65)

and that the region of space in which Sμν �= 0 is small compared with 2π/�, the wave-
length of a gravitational wave of frequency �. The first assumption is not much of a
restriction, since a general time dependence can be reduced to a sum over sinusoidal
motions by Fourier analysis. Besides, many interesting astrophysical sources are roughly
periodic: pulsating stars, pulsars, binary systems. The second assumption is called the
slow-motion assumption, since it implies that the typical velocity inside the source region,
which is � times the size of that region, should be much less than one. All but the most
powerful sources of gravitational waves probably satisfy this condition.
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Let us look for a solution for h̄μν of the form

h̄μν = Bμν(xi) e−i�t. (9.66)

(In the end we must take the real part of this for our answer.) Putting this and Eq. (9.65)
into Eq. (9.64) gives

(∇2 +�2)Bμν = −16πSμν. (9.67)

It is important to bear in mind as we proceed that the indices on h̄μν in Eq. (9.64) play
almost no role. We shall regard each component h̄μν as simply a function on Minkowski
space, satisfying the wave equation. All our steps will be the same as for solving the scalar
equation (−∂2/∂t2 + ∇2)f = g, until we come to Eq. (9.75).

Outside the source (i.e. where Sμν = 0) we want a solution Bμν of Eq. (9.67) that rep-
resents outgoing radiation far away; and of all such possible solutions we want the one
that dominates in the slow-motion limit. Let us define r to be the spherical polar radial
coordinate, where the origin is chosen inside the source. We show in Exer. 29, § 9.7 that
the solution we seek is spherical outside the source,

Bμν = Aμν
r

ei�r + Zμν
r

e−i�r, (9.68)

where Aμν and Zμν are constants. The term in e−i�r represents a wave traveling toward
the origin r = 0 (called an ingoing wave), while the other term is outgoing (see Exer. 28,
§ 9.7). We want waves emitted by the source, so we choose Zμν = 0.

Our problem is to determine Aμν in terms of the source. Here we make our approxima-
tion that the source is nonzero only inside a sphere of radius ε 	 2π/�. Let us integrate
Eq. (9.67) over the interior of this sphere. One term we get is∫

�2Bμν d3x � �2|Bμν |max4πε3/3, (9.69)

where |Bμν |max is the maximum value Bμν takes inside the source. We will see that this
term is negligible. The other term from integrating the left-hand side of Eq. (9.67) is∫

∇2Bμν d3x =
∮

n · ∇Bμν dS, (9.70)

by Gauss’ theorem. But the surface integral is outside the source, where only the spherical
part of Bμν given by Eq. (9.68) survives:∮

n · ∇Bμν dS = 4πε2
(

d

dr
Bμν

)
r=ε

≈ −4πAμν, (9.71)

again with the approximation ε 	 2π/�. Finally, we define the integral of the right-hand
side of Eq. (9.67) to be

Jμν =
∫

Sμν d3x. (9.72)

Combining these results in the limit ε → 0 gives

Aμν = 4Jμν , (9.73)

h̄μν = 4Jμν ei�(r−t)/r. (9.74)
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These are the expressions for the gravitational waves generated by the source, neglecting
terms of order r−2 and any r−1 terms that are higher order in ε�.

It is possible to simplify these considerably. Here we begin to use the fact that {h̄μν} are
components of a single tensor, not the unrelated functions we have solved for in Eq. (9.74).
From Eq. (9.72) we learn

Jμν e−i�t =
∫

Tμν d3x, (9.75)

which has as one consequence:

− i�Jμ0 e−i�t =
∫

Tμ0
,0 d3x. (9.76)

Now, the conservation law for Tμν ,

Tμν ,ν = 0, (9.77)

implies that

Tμ0
,0 = −Tμk

,k (9.78)

and hence that

i�Jμ0 e−i�t =
∫

Tμk
,k d3x =

∮
Tμk nk dS, (9.79)

the last step being the application of Gauss’ theorem to any volume completely containing
the source. This means that Tμν = 0 on the surface bounding this volume, so that the
right-hand side of Eq. (9.79) vanishes. This means that if � �= 0, we have

Jμ0 = 0, h̄μ0 = 0. (9.80)

These conditions basically embody the laws of conservation of total energy and momen-
tum for the oscillating source. The neglected higher-order parts of h̄μ0 are gauge terms
(Exer. 32, § 9.7).

The expression for Jij can also be rewritten in an instructive way by using the result of
Exer. 23, § 4.10.

d2

dt2

∫
T00xlxm d3x = 2

∫
Tlm d3x. (9.81)

For a source in slow motion, we have seen in Ch. 7 that T00 ≈ ρ, the Newtonian mass
density. It follows that the integral on the left-hand side of Eq. (9.81) is what is often
referred to as the quadrupole moment tensor of the mass distribution,

Ilm :=
∫

T00xlxm d3x (9.82a)

= Dlm e−i�t (9.82b)

(Conventions for defining the quadrupole moment vary from one text to another. We follow
Misner et al. (1973).) In terms of this we have

h̄jk = −2�2Djk ei�(r−t)/r. (9.83)

It is important to remember that Eq. (9.83) is an approximation which neglects not
merely all terms of order r−2 but also r−1 terms that are not dominant in the slow-motion
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approximation. In particular, h̄ ,k
jk is of higher order, and this guarantees that the gauge

condition h̄μν ,ν = 0 is satisfied by Eqs. (9.83) and (9.80) at the lowest order in r−1 and �.
Because of Eq. (9.83), this approximation is often called the quadrupole approximation for
gravitational radiation.

As for the plane waves we studied earlier, we have here the freedom to make a further
restriction of the gauge. The obvious choice is to try to find a TT gauge, transverse to the
direction of motion of the wave (the radial direction), which has the unit vector nj = xj/r.
Exer. 32, § 9.7, shows that this is possible, so that in the TT gauge we have the simplest
form of the wave. If we choose our axes so that at the point where we measure the wave it
is traveling in the z direction, then we can supplement Eq. (9.80) by

h̄TT
zi = 0, (9.84)

h̄TT
xx = −h̄TT

yy = −�2(I–xx − I–yy) ei�r/r, (9.85)

h̄TT
xy = −2�2I–xy ei�r/r, (9.86)

where

I–jk := Ijk − 1
3δjkIl

l (9.87)

is called the trace-free or reduced quadrupole moment tensor.

Examples

Let us consider the waves emitted by a simple oscillator like the one we used as a detector
in § 9.2. If both masses oscillate with angular frequency ω and amplitude A about mean
equilibrium positions a distance l0, apart, then, by Exer. 30, § 9.7, the quadrupole tensor
has only one nonzero component,

Ixx = m[(x1)2 + (x2)2]

= [(− 1
2 l0 − A cos ω t)2 + ( 1

2 l0 − A cos ω t)2]

= const. + mA2 cos 2ω t + 2 ml0A cos ω t. (9.88)

Recall that only the sinusoidal part of Ixx should be used in the formulae developed in the
previous paragraph. In this case, there are two such pieces, with frequencies ω and 2ω.
Since the wave equation Eq. (9.64) is linear, we shall treat each term separately and simply
add the results later. The ω term in Ixx is the real part of 2ml0A exp(−iωt). The trace-free
quadrupole tensor has components

I–xx = Ixx − 1
3 Ij

j = 2
3 Ixx = 4

3 ml0A e−iωt,
I–yy = I–zz = − 1

3 Ixx = − 2
3 ml0A e−iωt,

}
(9.89)

all off-diagonal components vanishing. If we consider the radiation traveling in the z
direction, we get, from Eqs. (9.84)–(9.86),

h̄TT
xx = −h̄TT

yy = −2 mω2l0A eiω(r−t)/r, h̄TT
xy = 0. (9.90)

The radiation is linearly polarized, with an orientation such that the ellipse in Fig. 9.1 is
aligned with the line joining the two masses. The same is true for the radiation going in the
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y direction, by symmetry. But for the radiation traveling in the x direction (i.e. along the
line joining the masses), we need to make the substitutions z → x, x → y, y → z in Eqs.
(9.85)–(9.86), and we find

h̄TT
ij = 0. (9.91)

There is no radiation in the x direction. In Exer. 36, § 9.7, we will fill in this radiation
pattern by calculating the amount of radiation and its polarization in arbitrary directions.

A similar calculation for the 2ω piece of Ixx gives the same radiation pattern, replacing
Eq. (9.90) by

h̄TT
xx = −h̄TT

yy = −4 mω2A2 e2iω(r−t)/r, h̄TT
xy = 0. (9.92)

The total radiation field is the real part of the sum of Eqs. (9.90) and (9.92),

h̄TT
xx = −[2 mω2l0A cosω(r − t) + 4 mω2A2 cos 2ω(r − t)]/r. (9.93)

Let us estimate the radiation from a laboratory-sized generator of this type. If we take
m = 103 kg = 7 × 10−24 m, l0 = 1 m, A = 10−4 m, and ω = 104 s−1 = 3 × 10−4 m−1,
then the 2ω contribution is negligible and we find that the amplitude is about 10−34/r,
where r is measured in meters. This shows that laboratory generators are unlikely to
produce useful gravitational waves in the near future!

A more interesting example of a gravitational wave source is a binary star system.
Strictly speaking, our derivation applies only to sources where motions result from
nongravitational forces (this is the content of Eq. (9.77)), but our final result, Eqs. (9.84)–
(9.87), makes use only of the motions produced, not of the forces. It is perhaps not so
surprising, then, that Eqs. (9.84)–(9.87) are a good first approximation even for systems
dominated by Newtonian gravitational forces (see further reading for references). Let us
suppose, then, that we have two stars of mass m, idealized as points in circular orbit about
one another, separated a distance l0 (i.e. moving on a circle of radius 1

2 l0). Their orbit
equation (gravitational force = ‘centrifugal force’) is

m2

l20
= mω2

(
l0
2

)
⇒ ω = (2 m/l30)1/2, (9.94)

where ω is the angular velocity of the orbit. Then, with an appropriate choice of
coordinates, the masses move on the curves

x1(t) = 1
2 l0 cos ω t, y1(t) = 1

2 l0 sin ω t,
x2(t) = −x1(t), y2(t) = −y1(t),

}
(9.95)

where the subscripts 1 and 2 refer to the respective stars. These equations give

Ixx = 1
4 ml20 cos 2ωt + const.,

Iyy = − 1
4 ml20 cos 2ωt + const.,

Ixy = 1
4 ml20 sin 2ωt.

⎫⎬
⎭ (9.96)

The only nonvanishing components of the reduced quadrupole tensor are, in complex
notation and omitting time-independent terms,

I–xx = − I–yy = 1
4 ml20 e−2iωt,

I–xy = 1
4 iml20 e−2iωt.

}
(9.97)
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All the radiation comes out with frequency � = 2ω. The radiation along the z direction
(perpendicular to the plane of the orbit) is, by Eqs. (9.84)–(9.86),

h̄xx = −h̄yy = −2 ml20 ω
2 e2iω(r−t)/r,

h̄xy = −2 i ml20 ω
2 e2iω(r−t)/r.

}
(9.98)

This is circularly polarized radiation (see Exer. 15, § 9.7). The radiation in the plane of the
orbit, say in the x direction, is found in the same manner used to derive Eq. (9.91). This
gives

h̄TT
yy = −h̄TT

zz = ml20ω
2 e2iω(r−t)/r, (9.99)

all others vanishing. This shows linear polarization aligned with the orbital plane. The
antenna pattern and polarization are examined in greater detail in Exer. 38, § 9.7, and the
calculation is generalized to unequal masses in elliptical orbits in Exer. 39.

The amplitude of the radiation is of order ml20ω
2/r, which, by Eq. (9.94), is of order

(mω)2/3m/r. Binary systems are likely to be very important sources of gravitational waves,
indeed they may well be the first sources detected. Binary systems containing pulsars have
already provided strong indirect evidence for gravitational radiation (Stairs 2003, Lorimer
2008). The first, and still the most important of these systems is the one containing the
pulsar PSR B1913+16, the discovery of which by Hulse and Taylor (1975) led to their being
awarded the Nobel Prize for Physics in 1993. This system consists of two neutron stars
(see Ch. 10) orbiting each other closely. The orbital period, inferred from the Doppler shift
of the pulsar’s period, is 7 h 45 min 7 s (27907 s or 8.3721 × 1012 m), and both stars have
masses approximately equal to 1.4M� (2.07 km) (Taylor and Weisberg 1982). If the system
is 8 kpc = 2.4 × 1020 m away, then its radiation will have the approximate amplitude 10−23

at Earth. We will calculate the effect of this radiation on the binary orbit itself later in this
chapter. In Ch. 10 we will discuss the dynamics of the system, including how the masses
are measured.

Order-of-magnitude estimates

Although our simple approach does not enable us to write down solutions for h̄μν generated
by more complicated, nonperiodic motions, we can use Eq. (9.83) to obtain some order-
of-magnitude estimates. Since Djk is of order MR2, for a system of mass M and size R, the
radiation will have amplitude about M(�R)2/r ≈ v2(M/r), where v is a typical internal
velocity in the source. This applies directly to Eq. (9.99); note that in Eq. (9.93) the first
term uses, instead of R2, the product l0A of the two characteristic lengths in the problem.
If we are dealing with, say, a collapsing mass moving under its own gravitational forces,
then by the virial theorem v2 ∼ φ0, the typical Newtonian potential in the source, while
M/r ∼ φr, the Newtonian potential of the source at the observer’s distance r. Then we get
the simple upper limit

h � φ0φr. (9.100)
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So the wave amplitude is always less than, or of the order of, the Newtonian potential φr.
Why then can we detect h but not φr itself; why can we hope to find waves from a super-
nova in a distant galaxy without being able to detect its presence gravitationally before the
explosion? The answer lies in the forces involved. The Newtonian tidal gravitational force
on a detector of size l0 at a distance r is about φrl0/r2, while the wave force is hl0ω2 (see
Eq. (9.45)). The wave force is thus a factor φ0(ωr)2 ∼ (φ0r/R)2 larger than the Newtonian
force. For a relativistic system (φ0 ∼ 0.1) of size 1 AU (∼ 1011 m), observed by a detector
a distance 1023 m away, this factor is 1022. This estimate, incidentally, gives the largest
distance r at which we may still approximate the gravitational field of a dynamical system
as Newtonian (i.e. neglecting wave effects): r = R/φ0, where R is the size of the system.

The estimate in Eq. (9.100) is really an optimistic upper limit, because it assumed that
all the mass motions contributed to Djk. In realistic situations this could be a serious over-
estimate because of the following fundamental fact: spherically symmetric motions do not
radiate. The rigorous proof of this is discussed in Ch. 10, but in Exer. 40, § 9.7 we derive it
from linearized theory, Eq. (9.101) below. It also seems to follow from Eq. (9.82a): if T00

is spherically symmetric, then Ilm is proportional to δlm and I–lm vanishes. But this argu-
ment has to be treated with care, since Eq. (9.82a) is part of an approximation designed
to give only the dominant radiation. We would have to show that spherically symmetric
motions would not contribute to terms of higher order in the approximation if they were
present. This is in fact true, and it is interesting to ask what eliminates them. The answer
is Eq. (9.77): conservation of energy eliminates ‘monopole’ radiation in linearized theory,
just as conservation of charge eliminates monopole radiation in electromagnetism.

The danger of using Eq. (9.82a) too glibly is illustrated in Exer. 31e, § 9.7: four equal
masses at the corners of a rotating square give no time-dependent Ilm and hence no radiation
in this approximation. But they would emit radiation at a higher order of approximation.

Exact solut ion of the wave equation

Readers who have studied the wave equation, Eq. (9.64), will know that its outgoing-wave
solution for arbitrary Tμν is given by the retarded integral

h̄μν(t, xi) = 4
∫

Tμν(t − R, yi)

R
d3y, (9.101)

R = |xi − yi|,
where the integral is over the past light cone of the event (t, xi) at which h̄μν is evaluated.
We let the origin be inside the source and we suppose that the field point xi is far away,

|xi| := r � |yi| := y, (9.102)

and that time derivatives of Tμν are small. Then, inside the integral, Eq. (9.101), the
dominant contribution comes from replacing R−1 by r−1:

h̄μν(t, xi) ≈ 4

r

∫
Tμν(t − R, yi) d3y. (9.103)
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This is the generalization of Eq. (9.74). Now, by virtue of the conservation laws Eq. (9.77)

Tμν ,ν = 0,

we have ∫
T0μ d3y = const., (9.104)

i.e. the total energy and momentum are conserved. It follows that the 1/r part of h̄0μ is time
independent to lowest order, so it will not contribute to any wave field. This generalizes
Eq. (9.80). Again, see Exer. 32, § 9.7. Then, using Eq. (9.81), we get the generalization of
Eq. (9.83):

h̄jk(t, xi) = −2

r
Ijk,00(t − r). (9.105)

As before, we can adopt the TT gauge to get

h̄TT
xx = 1

r
[I–xx,00(t − r) − I–yy,00(t − r)],

h̄TT
xx = 2

r
[I–xx,00(t − r). (9.106)

9.4 The energy ca r r ied away by grav i tat iona l waves

Preview

We have seen that gravitational waves can put energy into things they pass through. This
is how bar detectors work. It stands to reason, then, that they also carry energy away from
their sources. This is a very important aspect of gravitational wave theory because, as we
shall see, there are some circumstances in which the effects of this loss of energy on a
source can be observed, even when the gravitational waves themselves cannot be detected.
There are a number of different methods of deriving the formula for this energy loss (see
Misner et al. 1973) and the problem has attracted a considerable amount of effort and has
been attacked from many different points of view; see Damour (1987), Schutz (1980a),
Futamase (1983), or Blanchet (2006). Our approach here will remain within the simple
case of linear theory and will make the maximum use of what we already know about the
waves.

In our discussion of the harmonic oscillator as a detector of waves in § 9.2, we implicitly
assumed that the detector was a kind of ‘test body’, where the influence on the gravitational
wave field is negligible. But this is, strictly speaking, inconsistent. If the detector acquires
energy from the waves, then surely the waves must be weaker after passing through the
detector. That is, ‘downstream’ of the detector they should have slightly lower amplitude
than ‘upstream’. It is easy to see how this comes about once we realize that in § 9.2 we
ignored the fact that the oscillator, once set in motion by the waves, will radiate waves
itself. We solved this in § 9.3 and found, in Eq. (9.88), that waves of two frequencies will
be emitted. Consider the emitted waves with frequency �, the same as the incident wave.
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Radiated wave
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Destructive interference

Downstream

Wave

Upstream

�Figure 9.5 When the detector of Fig. 9.2 is excited by a wave, it re-radiates some waves itself.

The part that is emitted exactly downstream has the same frequency as the incident wave,
so the total downstream wave field has an amplitude that is the sum of the two. We will
see below that the two interfere destructively, producing a net decrease in the downstream
amplitude (see Fig. 9.5). (In other directions, there is no net interference: the waves simply
pass through each other.) By assuming that this amplitude change signals a change in the
energy actually carried by the waves, and by equating this energy change to the energy
extracted from the waves by the detector, we will arrive at a simple expression for the
energy carried by the waves as a function of their amplitude. We will then be able to
calculate the energy lost by bodies that radiate arbitrarily, since we know from § 9.3 what
waves they produce.

The energy flux of a gravitat ional wave

What we are after is the energy flux, the energy carried by a wave across a surface per unit
area per unit time. It is more convenient, therefore, to consider not just one oscillator but
an array of them filling the plane z = 0. We suppose they are very close together, so we
may regard them as a nearly continuous distribution of oscillators, σ oscillators per unit
area (Fig. 9.6). If the incident wave is, in the TT gauge,

h̄TT
xx = A cos�(z − t),

h̄TT
yy = −h̄TT

xx ,
(9.107)

all other components vanishing, then in § 9.2 we have seen that each oscillator responds
with a steady oscillation (after transients have died out) of the form

ξ = R cos(�t + φ), (9.108)
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z = 0

�Figure 9.6 The situation when detectors of Fig. 9.5 are arranged in a plane at a density of σ per unit area.

where R and φ are given by Eqs. (9.48) and (9.49) respectively. This motion is steady
because the energy dissipated by friction in the oscillators is compensated by the work
done on the spring by the tidal gravitational forces of the wave. It follows that the wave
supplies an energy to each oscillator at a rate equal to

d E/d t = ν (dξ/d t)2 = mγ (dξ/d t)2. (9.109)

Averaging this over one period of oscillation, 2π/�, in order to get a steady energy loss,
gives (angle brackets denote the average)

〈dE/dt〉 = 1

2π/�

∫ 2π/�

0
mγ�2R2 sin2(�t + φ) d t

= 1
2 mγ�2R2. (9.110)

This is the energy supplied to each oscillator per unit time. With σ oscillators per unit area,
the net energy flux F of the wave must decrease on passing through the z = 0 plane by

δF = − 1
2σmγ�2R2. (9.111)

We calculate the change in the amplitude downstream independently of the calcula-
tion that led to Eq. (9.111). Each oscillator has a quadrupole tensor given by Eq. (9.88),
with ωt replaced by �t + φ and A replaced by R/2. (Each mass moves an amplitude A,
one-half of the total stretching of the spring R.) Since in our case R is tiny compared to
l0(R = 0(hTT

xx l0)), the 2� term in Eq. (9.88) is negligible compared to the � term. So each
oscillator has

Ixx = ml0R cos(�t + φ). (9.112)

By Eq. (9.83), each oscillator produces a wave amplitude

δh̄xx = −2�2ml0R cos[�(r − t) − φ]/r (9.113)
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�Figure 9.7 Geometry for calculating the field at P due to an oscillator at O.

at any point a distance r away. (We call it δh̄xx to indicate that it is small compared to the
incident wave.) It is a simple matter to get the total radiated field by adding up the contri-
butions due to all the oscillators. In Fig. 9.7, consider a point P a distance z downstream
from the plane of oscillators. Set up polar coordinates (ω̃,φ) in the plane, centered at Q
beneath P. A typical oscillator O at a distance ω̃ from Q contributes a field, Eq. (9.113), at
P, with r = (ω̃2 + z2)1/2. Since the number of such oscillators between ω̃ and ω̃ + dω̃ is
2πσω̃ dω̃, the total oscillator-produced field at P is

δh̄total
xx = −2m�2l0R2π

∫ ∞

0
σ cos[�(r − t) − φ]

w̃ dw̃

r
.

But we may change the integration variable to r,

w̃ dw̃ = r dr,

obtaining

δh̄total
xx = −2m�2l0R2π

∫ ∞

z
σ cos[�(r − t) − φ] dr. (9.114)

If σ were constant, this would be trivial to integrate, but its value would be undefined at
r = ∞. Physically, we should expect that the distant oscillators play no real role, so we
adopt the device of assuming that σ is proportional to exp (−εr) and allowing ε to tend to
zero after the integration. The result is

δh̄total
xx = 4πσm�l0R sin[�(z − t) − φ]. (9.115)

So the plane of oscillators sends out a net plane wave. To compare this to the incident
wave, we must put Eq. (9.115) in the same TT gauge (recall that Eq. (9.83) is not in the TT
gauge), with the result (Exer. 42, § 9.7)

δh̄TT
xx = −δh̄TT

xx = 2πσm�l0R sin[�(z − t) − φ]. (9.116)



238 Gravitational radiation
�

If we now add this to the incident wave, Eq. (9.107), we get the net result, to first order
in R,

h̄net
xx = h̄TT

xx + δh̄TT
xx

= (A − 2πσm�l0R sinφ) cos[�(z − t) − ψ], (9.117)

where

tanψ = 2πσm�l0R

A
cosφ. (9.118)

Apart from a small phase shift ψ , the net effect is a reduction in the amplitude A by

δA = −2πσm�l0R sinφ. (9.119)

This reduction must be responsible for the decrease in flux F downstream. Dividing
Eq. (9.111) by Eq. (9.119) and using Eqs. (9.48) and (9.49) to eliminate R and φ gives the
remarkably simple result

δF

δA
= 1

16π
�2A. (9.120)

This is our key result. It says that a change δA in the amplitude A of a wave of frequency
� changes its flux F (averaged over one period) by an amount depending only on �, A,
and δA. The oscillators helped us to derive this result from conservation of energy, but
they have dropped out completely! Eq. (9.120) is a property of the wave itself. We can
‘integrate’ Eq. (9.120) to get the total flux of a wave of frequency � and amplitude A:

F = 1

32π
�2A2. (9.121)

Since the average of the square of the wave, Eq. (9.107), is

〈(h̄TT
xx )2〉 = 1

2 A2

(again, angle brackets denote an average over one period), and since there are only two
nonvanishing components of h̄TT

μν , we can also write Eq. (9.121) as

F = 1
32π �

2〈h̄TT
μν h̄TTμν〉. (9.122)

This form is invariant under background Lorentz transformations, but not under gauge
changes. Since one polarization can be transformed into another by a background Lorentz
transformation (a rotation), Eq. (9.122) applies to all polarizations and hence to arbitrary
plane waves of frequency �. In fact, since it gives an energy rate per unit area, it applies
to any wavefront, either plane waves or the spherical expanding ones of § 9.3: we can
always look at a small enough area that the curvature of the wavefront is not noticeable.
The generalization to arbitrary waves (no single frequency) is in Exer. 43, § 9.7.

The reader who remembers the discussion of energy in § 7.3 may object that this whole
derivation is suspect because of the difficulty of defining energy in GR. Indeed, we have
not proved that energy is conserved, that the energy put into the oscillators must equal
the decrease in flux; we have simply assumed this in order to derive the flux. Our proof
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may be turned around, however, to argue that the flux we have constructed is the only
acceptable definition of energy for the waves, since our calculation shows it is conserved,
when added to other energies, to lowest order in hμν . The qualification ‘to lowest order’
is important, since it is precisely because we are almost in flat spacetime that, at lowest
order, we can construct conserved quantities. At higher order, away from linearized theory,
local energy cannot be so easily defined, because the time dependence of the true metric
becomes important. These questions are among the most fundamental in relativity, and
are discussed in detail in any of the advanced texts. Our equations should be used only in
linearized theory.

Energy lost by a radiat ing system

Consider a general isolated system, radiating according to Eqs. (9.82)–(9.87). By integrat-
ing Eq. (9.122) over a sphere surrounding the system, we can calculate its net energy loss
rate. For example, at a distance r along the z axis, Eq. (9.122) is

F = �6

32πr2
〈2(I–xx − I–yy)2 + 8I–xy〉. (9.123)

Use of the identity

I–i
i = I–xx + I–yy + I–zz = 0 (9.124)

(which follows from Eq. (9.87)) gives, after some algebra,

F = �6

16πr2
〈2I–ij I–

ij − 4I–zj I–z
j + I–2

zz〉. (9.125)

Now, the index z appears here only because it is the direction from the center of the coor-
dinates, where the radiation comes from. It is the only part of F which depends on the
location on the sphere of radius r about the source, since all the components of I–ij depend
on time but not position. Therefore we can generalize Eq. (9.125) to arbitrary locations on
the sphere by using the unit vector normal to the sphere,

nj = xj/r. (9.126)

We get for F

F = �6

16πr2
〈2I–ijI–

ij − 4njnkI–jiI–
i

k + ninjnknlI–ijI–kl〉. (9.127)

The total luminosity of the source is the integral of this over the sphere of radius r. In
Exer. 45, § 9.7 we prove the following integrals over the entire sphere∫

njnk sin θ dθ dφ = 4π

3
δjk, (9.128)∫

ninjnknl sin θ dθ dφ = 4π

15
(δijδkl + δikδjl + δilδjk). (9.129)
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It then follows that the luminosity L of a source of gravitational waves is

L =
∫

Fr2 sin θ dθ dφ = 1
4�

6〈2I–ijI–
ij − 4

3 I–ijI–
ij

+ 1
15 (I– i

i I–k
k + I– ijI–ij + I– ijI– ij)〉, (9.130)

L = 1
5�

6〈I– ijI–
ij〉. (9.131)

The generalization to cases where I–ij has a more general time dependence is

L = 1
5 〈...I– ij

...
I– ij〉, (9.132)

where dots denote time derivatives.
It must be stressed that Eqs. (9.121) and (9.132) are acccurate only for weak gravita-

tional fields and slow velocities. They can at best give only order-of-magnitude results for
highly relativistic sources of gravitational waves. But in the spirit of our derivation and
discussion of the order-of-magnitude estimate of hij in Eq. (9.70), we can still learn some-
thing about strong sources from Eq. (9.121). Since Ijk is of order MR2, Eq. (9.121) tells us
that L ∼ M2R4�6 ∼ (M/R)2(R�)6 ∼ φ2

0v
6. The luminosity is a very sensitive function of

the velocity. The largest velocities we should expect are of the order of the velocity of free
fall, v2 ∼ φ0, so we should expect

L � (φ0)5. (9.133)

Since φ0 � 1, the luminosity in geometrized units should never substantially exceed one.
In ordinary units this is

L � 1 = c5/G ≈ 3.6 × 1052 W. (9.134)

We can understand why this particular luminosity is an upper limit by the following
simple argument. The radiation field inside a source of size R and luminosity L has energy
density � L/R2 (because |T0i| ∼ |vi|T00 = cT00 = T00), which is the flux across its sur-
face. The total energy in radiation is therefore � LR. The Newtonian potential of the
radiation alone is therefore � L. We shall see in the next chapter that anything where
the Newtonian potential substantially exceeds one must form a black hole: its gravita-
tional field will be so strong that no radiation will escape at all. Therefore L ∼ 1 is the
largest luminosity any source can have. This argument applies equally well to all forms of
radiation, electromagnetic as well as gravitational. The brightest quasars and gamma-ray
bursts, which are the most luminous classes of object so far observed, have a (geometrized)
luminosity � 10−10. By contrast, black hole mergers (Ch. 11) have been shown by numer-
ical simulations to reach peak luminosities ∼ 10−3, all of the energy of course emitted in
gravitational waves.

An example. The Hulse–Taylor binary pulsar

In § 9.3 we calculated I–ij for a binary system consisting of two stars of equal mass M in
circular orbits a distance l0 apart. If we use the real part of Eq. (9.97) in Eq. (9.132), we get
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L = 8
5 M2l40ω

6. (9.135)

Eliminating l0 in favor of M and ω, we get

L = 32

5 3√4
(Mω)10/3 ≈ 4.0(Mω)10/3. (9.136)

This expression illustrates two things: first, that L is dimensionless in geometrized units
and, second, that it is almost always easier to compute in geometrized units, and then
convert back at the end. The conversion is

L (SI units) = c5

G
L (geometrized)

= 3.63 × 1052 J s−1 × L (geometrized). (9.137)

So for the binary pulsar system described in § 9.3, if its orbit were circular, we would have
ω = 2π/P = 7.5049 × 10−13 m−1 and

L = 1.71 × 10−29 (9.138)

in geometrized units. We can, of course, convert this to watts, but a more meaningful pro-
cedure is to compare this with the Newtonian energy of the system, which is (defining the
orbital radius r = 1

2 l0),

E = 1
2 Mω2r2 + 1

2 Mω2r2 − M2

2r

= M

r
(ω2r3 − 1

2 M) = −M2

4r
= −4−2/3M5/3ω2/3 ≈ −0.40M5/3ω2/3 (9.139)

= −1.11 × 10−3 m. (9.140)

The physical question is: How long does it take to change this? Put differently, the energy
radiated in waves must change the orbit by decreasing its energy, which makes |E| larger
and hence ω larger and the period smaller. What change in the period do we expect in, say,
one year?

From Eq. (9.139), by taking logarithms and differentiating, we get

1

E

dE

dt
= 2

3

1

ω

dω

dt
= −2

3

1

P

dP

dt
. (9.141)

Since dE/dt is just −L, we can solve for dP/dt:

dP/dt = (3 PL)/(2E) ≈ −15 PM−1(M�)8/3

= −2.0 × 10−13, (9.142)

which is dimensionless in any system of units. It can be reexpressed in seconds per year:

dP/dt = −6.0 × 10−6 s yr1. (9.143)
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This estimate needs to be revised to allow for the eccentricity of the orbit, which is con-
siderable: e = 0.617. The correct formula is derived in Exer. 49, § 9.7. The result is that
the true rate of energy loss is some 12 times our estimate, Eq. (9.138). This is such a large
factor because the stars’ maximum angular velocity (when they are closest) is larger than
the mean value we have used for �, and since L depends on the angular velocity to a high
power, a small change in the angular velocity accounts for this rather large factor of 12. So
the relativistic prediction is:

dP/dt = −2.4 × 10−12, (9.144)

= −7.2 × 10−15 s yr−1. (9.145)

The observed value as of 2004 is (Weisberg and Taylor 2005)

dP/dt = −(2.4184 ± 0.0009) × 10−12. (9.146)

The effect has been observed in other binaries as well (Lorimer 2008).

9.5 A st rophys i ca l sources of g rav i tat iona l waves

Overview

Physicists and astronomers have made great efforts to understand what kinds of sources
of gravitational waves the current detectors might be able to see. This has been motivated
partly by the need to decide whether the large investment in these detectors is justified,
and partly because the sensitivity of the detectors depends on the accuracy with which
waveforms can be predicted, so that they can be recognized against detector noise. While
the astrophysics of potential sources is beyond the scope of this book, it is useful to review
the basic classes of sources, learn what general relativity says about them, and understand
why they might be interesting to observe. We shall consider four groups of sources: binary
systems, spinning neutron stars, gravitational collapse, and the Big Bang.

Binary systems

We have seen how to compute the expected wave amplitude from a binary system in Eqs.
(9.98) and (9.99), as well as in Exers. 29 and 39 in § 9.7. There are a number of known
binary systems in our Galaxy which ought, by these equations, to be radiating gravitational
waves in the frequency band observable by LISA, and with amplitudes well above LISA’s
expected instrumental noise. When LISA begins its observations, therefore, scientists will
be looking for these signals as proof that general relativity is correct at this basic level, as
well as that the spacecraft is operating properly.

The ground-based detectors will not, however, be looking for signals from long-lived
binary systems. The reason is evident if we combine some of our previous computations.
We have calculated what the gravitational wave luminosity of an equal-mass binary is
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(Eq. (9.136)) and what its binding energy is (Eq. (9.139)). We used the last two equations
to derive the lifetime of the Hulse–Taylor binary pulsar. We can generalize this to find the
lifetime of any equal-mass circular binary system, expressing it in terms of the masses M
of the stars and the frequency of the orbit f = ω/2π :

τgw = −E

L
= 7.44 × 10−4M−5/3f −8/3, (9.147)

= 2.43

(
M

M�

)−5/3 ( f

100 Hz

)−8/3

s. (9.148)

What the second equation tells us is that, if LIGO observes a binary system composed of
stars of solar mass, it has only a few seconds to make the observation. During this time,
the signal increases in frequency, something the gravitational wave scientists call a ‘chirp’.
There are no realistic systems in the frequency range of ground-based detectors that are
long-lived. Instead, these detectors look for inspiral events ending in the merger of the
two objects, which itself might produce a burst of radiation. For neutron stars, the merger
happens when the signal frequency reaches about 2 kHz, a number that is sensitive to the
neutron star equation of state (see the next chapter). If the objects in the binary are black
holes of mass 10 M�, the final frequency is similar, and it scales inversely with the masses.
Advanced LIGO and VIRGO should see several neutron-star mergers per year, and while
the event rate for black holes is harder to predict, it is likely to be similar.

It is particularly interesting from the point of view of general relativity to observe
the merger of two black holes. This can be simulated numerically, and by comparing
the observed and predicted waveforms we have a unique test of general relativity in the
strongest possible gravitational fields. This is also the only direct way to observe a black
hole: after a merger of black holes or neutron stars has led to a single black hole, that
hole will oscillate for a short time until is radiates away all its deformities and settles
down as a smooth Kerr black hole (see Ch. 11). This ‘ringdown radiation’ carries a distinc-
tive signature that will distinguish the black hole from any neutron star or other material
system.

LISA, observing between 0.1 mHz and 10 mHz, will follow the coalescence and merger
of black holes around 106M�. Astronomers know that such black holes exist in the centers
of most galaxies, including our own Milky Way (Merritt and Milosavljevic 2005), as we
discuss in Ch. 11. LISA will have sufficient sensitivity to see such mergers anywhere in the
universe, even back to the time of the formation of the first stars and galaxies. Its obser-
vations may be very informative about the way galaxies themselves formed and merged in
the early universe.

Notice that, if we observe a chirp signal well enough to measure its inspiral timescale
τ from the rate of change of the signal’s frequency, then we can infer the mass M of the
system from Eq. (9.147). LISA by itself, or a network of ground-based detectors working
together, can measure the degree of circular polarization of the waves. This contains the
information about the inclination of the orbit to the line of sight, and allows us to compute
from the observed amplitude of the waves some standard amplitude, such as the amplitude
the same system would be radiating if it were oriented face-on. Then we can go back
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to Eq. (9.98), eliminate l0 in favor of the mass and frequency, and be left with just one
unknown: the distance r to the source. Remarkably, this property holds even if the binary
system does not have equal masses: chirping binary signals contain enough information to
deduce the distance to the source (Schutz 1986). Gravitational wave astronomers call these
systems ‘standard sirens’, by analogy with the usual standard candles of optical astronomy,
which we will discuss in Ch. 12. We will see there that gravitational wave observations of
black-hole binaries by LISA may assist astronomers measure the large-scale dynamics of
the universe.

Spinning neutron stars

Neutron stars are very compact stars formed in gravitational collapse. We will study them
as relativistic stellar objects in the next chapter. Here we simply note that many neutron
stars are pulsars, whose spin sweeps a beam of electromagnetic radiation past the Earth
each time they turn. Many spin rapidly, at frequencies above 20 Hz, and if these radiate
gravitational waves, then they would be in the observing band of ground-based detectors.
There could in principle be many stars not known as pulsars that also spin this rapidly,
because their beams do not cross the Earth. Moreover, radio surveys for pulsars only cover
the near neighborhood of the Sun in our Galaxy; there could be more distant pulsars that
are not yet known.

Such stars could radiate gravitational waves if they are not symmetric about the rotation
axis. Pulsars are clearly not symmetric, since they beam their radiation somehow. But it is
not clear how much mass asymmetry is required to produce the beaming. Other asymme-
tries could come from frozen-in irregularities in the semi-solid outer layer of a neutron star
(called its ‘crust’), or in a possible solid core. It is also known that spinning neutron stars
are vulnerable to a gravitational-wave driven instability called the r-mode instability, which
could produce significant radiation. We can compute the radiation due to mass asymmetry
from Eqs. (9.84)–(9.86). If the star is nearly axisymmetric, then we can approximate the
amplitude of either of the polarizations radiated along the spin axis by the formula

h ∼ 2ε�2INS/r,

where INS is the moment of inertia of the spherical neutron star and ε is the fractional
asymmetry of the star about the spin axis. If we use typical values of INS = 1038 kg m2, r =
1 kpc (about 3 × 1022 m),� = 2π f with f = 60 Hz, and ε = 10−5, then we get h ∼ 10−25.
This is a very small amplitude, but not impossibly small. Scientists find such small signals
by taking long stretches of data and filtering for them, essentially by performing a Fourier
transform. The Fourier transform concentrates the power of the signal in one frequency
band, while distributing the noise power of the data stream over the whole observing band.
To go from the Advanced LIGO broad-band sensitivity of around 10−22 to a sensitivity of
10−25 for a narrow-band signal like the one we are considering here, the data analyst must
have taken a number of cycles of the waveform equal to at least the square of the ratio of
these two numbers, or 106. For this frequency, this would take less than a day.
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Until a spinning neutron star has been observed, we won’t know what a reasonable
value for ε is. However, for many known pulsars we can already set limits from radio
observations. This is because, as for the binaries we considered above, a radiating pulsar
loses energy. This causes it to spin down. Most pulsars are observed to spin down, and so
their observed slowing rate sets an upper limit on the possible amplitude of gravitational
waves. It is only an upper limit, because it is very likely that the spindown is dominated
by other effects, such as losses to electromagnetic radiation and particle emission, so that
gravitational waves play a minor role. For known pulsars the limits obtained on ε this way
range from 10−3 to below 10−7.

It is therefore desirable to do searches for gravitational wave pulsars using months rather
than days of data. When the pulsar’s position and frequency are known from radio obser-
vations, this is not a difficulty, but when gravitational wave astronomers try to search the
entire sky for unknown neutron stars, the computational demands become enormous. This
is because the apparent frequency of the pulsar signal is strongly Doppler modulated by
the Earth’s spin and orbital motion during a period as long as a month or more, and the
details of the modulation depend on the star’s location on the sky. Data analysts therefore
have to search many different locations separately to perform their filtering. At present,
this is a problem that would overwhelm the most powerful computers in existence. The
gravitational wave projects are getting help in this analysis from the general public, using
the screen-saver called Einstein@Home.

Gravitat ional col lapse

The objective that motivated Joseph Weber to develop the first bar detector was to register
waves from a supernova. The spectacular optical display of a supernova explosion masks
what really happens inside: the compact core of a giant star, having exhausted its supply of
energy from nuclear reactions, collapses inward, and the subsequent dynamics can convert
some of the energy released into the explosion that blows off the envelope of the star. But
what happens to the collapsing core, and how that energy is converted into the explosion,
is not well understood because it is impossible to observe the core directly. Gravitational
waves, along with neutrinos, provide the only probes that come to us directly from the core.

The amplitude of gravitational waves to be expected is very uncertain. It is sensitive to
the initial state of rotation of the core, to instabilities that develop during collapse, and to
poorly understood details of the physics of dense matter. Modeling collapse on a computer
is difficult, and the predictions so far are only approximate. However, there is wide agree-
ment that the amplitudes are likely to be far smaller than the order-of-magnitude estimate
we made in the opening paragraph of § 9.3.

What is more, it is not possible at present to predict a detailed waveform, so that the data
analysts cannot dig so deeply into the noise of the detector as they can for binaries or spin-
ning neutron stars. All of these circumstances make it seem less likely that the first detected
signal will be that of a supernova explosion. That expectation would be reversed, however,
if the Galaxy experienced another supernova explosion like SN1987a, which occurred in
its satellite galaxy, the Large Magellanic Cloud.
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Gravitat ional waves from the Big Bang

The study of the large-scale structure of the universe, and its history, is called cosmol-
ogy, and it will be the subject of Ch. 12 below. Cosmology has undergone a revolution
since the 1980s, with a huge increase in data and in our insight into what went on in
the early universe. Part of that revolution impacts on the study of gravitational waves:
it seems very probable that the very early universe was the source of a random sea of
gravitational radiation that even today forms a background to our observations of other
sources.

The radiation originated in a host of individual events too numerous to count. The waves,
superimposed now, have very similar character to the random noise that comes from instru-
mental effects. Although the radiation was intense when it was generated, the expansion
of the universe has cooled it down, and one of the most uncertain aspects of our under-
standing is what intensity it should have today. It is possible that it will be strong enough
that, as detectors improve their sensitivity, they will encounter a ‘noise’ that does not
go away, and that can be shown to be isotropic on the sky. In exactly this way, Penzias
(1979) and Wilson (1979) discovered the cosmic microwave background radiation in a
radio receiver at Bell Labs, an event for which they were awarded the Nobel Prize for
Physics.

However, it is more likely that the radiation is weaker and will remain below the noise in
our detectors for some time to come. How, then, can we find it? The answer is that, while it
is a random noise in any one detector, the randomness is correlated between detectors. Two
detectors in the same place experience exactly the same noise. If we make a correlation of
their output (simply multiplying them and integrating in time) we should obtain a nonzero
result much larger than we expect from the variance of the correlation of two statistically
independent noise fields. In practice, the most sensitive pairs of detectors are the two LIGO
installations, and the VIRGO-GEO600 pair. Both have separations between them so that
the correlations in their random wavefields would not be perfect. However, gravitational
waves with wavelengths longer than the separation will still be well correlated, and this
allows these detectors to search for a background.

At present, the only limits we have are from the two LIGO detectors, and they are
not surprising. Cosmologists express the strength of backgrounds in terms of the energy
density they carry, as a fraction of the total energy density of all the material in the uni-
verse, averaged over large volumes. We know from present observations that the energy
density in random waves in the LIGO observing band is not larger than a fraction 10−5

of the total. It is hoped that Advanced LIGO may approach a limit around 10−10 of
the total.

LISA can also make observations of the background. In its case, the background would
have to be stronger than instrumental noise: correlation gains it nothing. But LISA’s sen-
sitivity in its waveband is great, and it seems likely that it would be able to detect a
background around 10−10 of the total. Observations of the cosmic microwave background
could also detect this radiation, at very low frequencies.

Pulsar timing might be able to detect a random background of gravitational waves from
astrophysical systems, but it seems likely that these backgrounds will be larger than the
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cosmological background. This is a general problem, and it may be that only at frequencies
above about 0.1 Hz will the universe be quiet enough to allow us to listen directly to the
hiss of gravitational waves from the Big Bang.

Theoretical predictions of the radiation to be expected vary hugely, from below 10−15

up to 10−8 and higher. This reflects the uncertainty in theoretical models of the physi-
cal conditions and indeed of the laws of physics themselves during the early Big Bang,
and demonstrates the importance that detecting a background would play in constrain-
ing these models. An observation of the random (stochastic) background of gravita-
tional waves is possibly the most important observation that gravitational wave detectors
can make.

9.6 Fur ther read ing

Joseph Weber’s early thinking about detectors is in Weber (1961). One of the most
interesting theoretical developments stimulated by research into gravitational wave detec-
tion has been the design of so-called ‘quantum nondemolition’ detectors: methods of
measuring aspects of the excitation of a vibrating bar to arbitrary precision without dis-
turbing the quantity being measured, even when the bar is excited only at the one- or
two-quantum (phonon) level. See early work by Thorne et al. (1979) and Caves et al.
(1980).

A full discussion of the wave equation is beyond our scope here, but is amply treated
in many texts on electromagnetism, such as Jackson (1975). A simplified discussion of
gravitational waves is in Schutz (1984). See also Schutz and Ricci (2001).

The detection of gravitational waves is a rapidly evolving field, so the student who wants
the latest picture should consult the literature, starting with the various articles that we have
cited from the open-access electronic journal Living Reviews in Relativity, whose review
articles are kept up-to-date: Armstrong (2006), Blanchet (2006), Futamase and Itoh (2007),
Hough and Rowan (2000), Will (2006). More popular-style articles about gravitational
waves and other applications of general relativity can be found on the Einstein Online
website: http://www.einstein-online.info/en/.

The websites of the detectors LIGO (http://www.ligo.caltech.edu/), GEO
(http://geo600.aei.mpg.de/), LSC (http://www.ligo.org/), VIRGO
(http://wwwcascina.virgo.infn.it/), and LISA (http://www.lisa-
science.org/) are also good sources of current information. The bar detectors
of the Rome group (http://www.roma1.infn.it/rog/) and the Auriga detec-
tor (http://www.auriga.lnl.infn.it/) are the last operating resonant-mass
detectors.

Readers who wish to assist with the compute-intensive analysis of data from
the big interferometers may download a screen-saver called Einstein@Home, which
uses the idle time on a computer to perform parts of the data analysis. Hun-
dreds of thousands of computers have so far joined this activity. See the website
http://einstein.phys.uwm.edu/.
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9.7 Exerc i ses

1 A function f (s) has derivative f ′(s) = df /ds. Prove that ∂f (kμxμ)/ ∂xν = kν f ′(kμxμ).
Use this to prove Eq. (9.4) and the one following it.

2 Show that the real and imaginary parts of Eq. (9.2) at a fixed spatial position {xi}
oscillate sinusoidally in time with frequency ω = k0.

3 Let h̄αβ (t, xi) be any solution of Eq. (9.1) that has the property
∫

dxα|h̄μν |2 < ∞, for
the integral over any particular xα holding other coordinates fixed. Define the Fourier
transform of h̄αβ (t, xi) as

H̄αβ (ω, ki) =
∫

h̄αβ (t, xi) exp (iωt − ikjx
j) dt d3x.

Show, by transforming Eq. (9.1), that H̄αβ (ω, ki) is zero except for those values of ω
and ki that satisfy Eq. (9.10). By applying the inverse transform, write h̄αβ (t, xi) as a
superposition of plane waves.

4 Derive Eqs. (9.16) and (9.17).
5 (a) Show that A(NEW)

αβ , given by Eq. (9.17), satisfies the gauge condition Aαβkβ = 0 if

A(OLD)
αβ does.

(b) Use Eq. (9.18) for A(NEW)
αβ to constrain Bμ.

(c) Show that Eq. (9.19) for A(NEW)
αβ imposes only three constraints on Bμ, not the four

that we might expect from the fact that the free index α can take any values from 0
to 3. Do this by showing that the particular linear combination kα(AαβUβ ) vanishes
for any Bμ.

(d) Using (b) and (c), solve for Bμ as a function of kμ, A(OLD)
αβ , and Uμ. These

determine Bμ: there is no further gauge freedom.
(e) Show that it is possible to choose ξβ in Eq. (9.15) to make any superposition of

plane waves satisfy Eqs. (9.18) and (9.19), so that these are generally applicable to
gravitational waves of any sort.

(f) Show that we cannot achieve Eqs. (9.18) and (9.19) for a static solution, i.e. one
for which ω = 0.

6 Fill in all the algebra implicit in the paragraph leading to Eq. (9.21).
7 Give a more rigorous proof that Eqs. (9.22) and (9.23) imply that a free particle initially

at rest in the TT gauge remains at rest.
8 Does the free particle of the discussion following Eq. (9.23) feel any acceleration?

For example, if the particle is a bowl of soup (whose diameter is much less than a
wavelength), does the soup slosh about in the bowl as the wave passes?

9 Does the free particle of the discussion following Eq. (9.23) see any acceleration? To
answer this, consider the two particles whose relative proper distance is calculated
in Eq. (9.24). Let the one at the origin send a beam of light towards the other, and
let it be reflected by the other and received back at the origin. Calculate the amount
of proper time elapsed at the origin between the emission and reception of the light
(you may assume that the particles’ separation is much less than a wavelength of the
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gravitational wave). By monitoring changes in this time, the particle at the origin can
‘see’ the relative acceleration of the two particles.

10 (a) We have seen that

hyz = A sinω(t − x), all other hμν = 0,

with A and ω constants, |A| 	 1, is a solution to Eqs. (9.1) and (9.11). For this
metric tensor, compute all the components of Rαβμν and show that some are not
zero, so that the spacetime is not flat.

(b) Another metric is given by

hyz = A sinω(t − x), htt = 2B(x − t),

htx = −B(x − t), all other hμν = 0.

Show that this also satisfies the field equations and the gauge conditions.
(c) For the metric in (b), compute Rαβμν . Show that it is the same as in (a).
(d) From (c) we conclude that the geometries are identical, and that the difference in

the metrics is due to a small coordinate change. Find a ξμ such that

hμν(part a) − hμν(part b) = −ξμ,ν − ξν,μ.

11 (a) Derive Eq. (9.27).
(b) Solve Eqs. (9.28a) and (9.28b) for the motion of the test particles in the polarization

rings shown in Fig. 9.1.
12 Do calculations analogous to those leading to Eqs. (9.28) and (9.32) to show that

the separation of particles in the z direction (the direction of travel of the wave) is
unaffected.

13 One kind of background Lorentz transformation is a simple 45◦ rotation of the x and y
axes in the x − y plane. Show that under such a rotation from (x, y) to (x′, y′), we have
hTT

x′y′ = hTT
xx , hTT

x′x′ = −hTT
xy . This is consistent with Fig. 9.1.

14 (a) Show that a plane wave with Axy = 0 in Eq. (9.21) has the metric

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2, (9.149)

where h+ = Axx sin[ω(t − z)].
(b) Show that this wave does not change proper separations of free particles if they are

aligned along a line bisecting the angle between the x- and y-axes.
(c) Show that a plane wave with Axx = 0 in Eq. (9.21) has the metric

ds2 = −dt2 + dx2 + 2h×dx dy + dy2 + dz2, (9.150)

where h× = Axy sin[ω(t − z)].
(d) Show that the wave in (c) does not change proper separations of free particles if

they are aligned along the coordinate axes.
(e) Show that the wave in (c) produces an elliptical distortion of the circle that is rotated

by 45◦ to that of the wave in (a).
15 (a) A wave is said to be circularly polarized in the x − y plane if hTT

yy = −hTT
xx and

hTT
xy = ±ihTT

xx . Show that for such a wave, the ellipse in Fig. 9.1 rotates without
changing shape.
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(b) A wave is said to be elliptically polarized with principal axes x and y if hTT
xy =

±iahTT
xx , where a is some real number, and hTT

yy = −hTT
xx . Show that if hTT

xy = αhTT
xx ,

where α is a complex number (the general case for a plane wave), new axes x′ and
y′ can be found for which the wave is elliptically polarized with principal axes x′
and y′. Show that circular and linear polarization are special cases of elliptical.

16 Two plane waves with TT amplitudes, Aμν and Bμν , are said to have orthogonal polar-
izations if (Aμν)∗Bμν = 0, where (Aμν)∗ is the complex conjugate of Aμν . Show that if
Aμν and Bμν are orthogonal polarizations, a 45◦ rotation of Bμν makes it proportional
to Aμν .

17 Find the transformation from the coordinates (t, x, y, z) of Eqs. (9.33)–(9.36) to the local
inertial frame of Eq. (9.37). Use this to verify Eq. (9.38).

18 Prove Eq. (9.39).
19 Use the sum of Eqs. (9.40) and (9.41) to show that the center of mass of the spring

remains at rest as the wave passes.
20 Derive Eq. (9.44) from Eq. (9.43), and then prove Eq. (9.45).
21 Generalize Eq. (9.45) to the case of a plane wave with arbitrary elliptical polarization

(Exer. 15) traveling in an arbitrary direction relative to the separation of the masses.
22 Consider the equation of geodesic deviation, Eq. (6.87), from the point of view of the

geodesic at the center of mass of the detector of Eq. (9.45). Show that the vector ξ as
we have defined it in Eq. (9.42) is twice the connecting vector from the center of mass
to one of the masses, as defined in Eq. (6.83). Show that the tidal force as measured by
the center of mass leads directly to Eq. (9.45).

23 Derive Eqs. (9.48) and (9.49), and derive the general solution of Eq. (9.45) for arbitrary
initial data at t = 0, given Eq. (9.46).

24 Prove Eq. (9.53).
25 Derive Eq. (9.56) from the given definition of Q.
26 (a) Use the metric for a plane wave with ‘+’ polarization, Eq. (9.58), to show that the

square of the coordinate speed (in the TT coordinate system) of a photon moving
in the x-direction is (

dx

dt

)2

= 1

1 + h+
.

This is not identically one. Does this violate relativity? Why or why not?
(b) Imagine that an experimenter at the center of the circle of particles in Fig. 9.1

sends a photon to the particle on the circle at coordinate location x = L on the
positive-x axis, and that the photon is reflected when it reaches the particle and
returns to the experimenter. Suppose further that this takes such a short time that
h+ does not change significantly during the experiment. To first order in h+, show
that the experimenter’s proper time that elapses between sending out the photon
and receiving it back is (2 + h+)L.

(c) The experimenter says that this proves that the proper distance between herself and
the particle is (1 + h+/2)L. Is this a correct interpretation of her experiment? If
the experimenter uses an alternative measuring process for proper distance, such as
laying out a number of standard meter sticks between her location and the particle,
would that produce the same answer? Why or why not?
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(d) Show that if the experimenter simultaneously does the same experiment with a
particle on the y-axis at y = L, that photon will return after a proper time of (2 −
h+)L.

(e) The difference in these return times is 2h+L and can be used to measure the wave’s
amplitude. Does this result depend on our use of TT gauge, i.e. would we have
obtained the same answer had we used a different coordinate system?

27 (a) Derive the full three-term return relation, Eq. (9.63), for the rate of change of the
return time for a beam traveling through a plane wave h+ along the x-direction,
when the wave is moving at an angle θ to the z-axis in the x − z plane.

(b) Show that, in the limit where L is small compared to a wavelength of the gravi-
tational wave, the derivative of the return time is the derivative of t + δL, where
δL = L cos2 θ h(t) is the excess proper distance for small L. Explain where the
factor of cos2 θ comes from.

(c) Examine the limit of the three-term formula in (a) when the gravitational wave is
traveling along the x-axis too (θ = ±π/2): what happens to light going parallel to
a gravitational wave?

28 (a) Reconstruct h̄μν as in Eq. (9.66), using Eq. (9.68), and show that surfaces of
constant phase of the wave move outwards for the Aμν term and inwards for Zμν .

(b) Fill in the missing algebra in Eqs. (9.69)–(9.71).
29 Eq. (9.67) in the vacuum region outside the source – i.e. where Sμν = 0 – can

be solved by separation of variables. Assume a solution for h̄μν has the form∑
lm Alm

μν fl(r)Ylm(θ ,φ)/
√

r, where Ylm is the spherical harmonic.
(a) Show that fl(r) satisfies the equation

f ′′
l + 1

r
f ′

l +
[
�2 − (l + 1

2 )2

r2

]
fl = 0.

(b) Show that the most general spherically symmetric solution is given by Eq. (9.68).
(c) Substitute the variable s = �r to show that fl satisfies the equation

s2 d2fl
ds2

+ s
dfl
ds

+ [s2 − (l + 1
2 )2]fl = 0. (9.151)

This is known as Bessel’s equation, whose solutions are called Bessel functions
of order l + 1

2 . Their properties are explored in most text-books on mathematical
physics.

(d) Show, by substitution into Eq. (9.151), that the function fl/
√

s is a linear combina-
tion of what are called the spherical Bessel and spherical Neumann functions

jl(s) = (−1)lsl
(

1

s

d

ds

)l ( sin s

s

)
, (9.152)

nl(s) = (−1)l+1sl
(

1

s

d

ds

)l (cos s

s

)
. (9.153)

(e) Use Eqs. (9.152) and (9.153) to show that for s � l, the dominant behavior of jl
and nl is
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jl(s) ∼ 1

s
sin

(
s − lπ

2

)
, (9.154)

nl(s) ∼ −1

s
cos

(
s − lπ

2

)
. (9.155)

(f) Similarly, show that for s 	 l, the dominant behavior is

jl(s) ∼ sl/ (2l + 1) ! ! , (9.156)

nl(s) ∼ − (2l − 1) ! ! /sl+1, (9.157)

where we use the standard double factorial notation

(m)! ! = m(m − 2)(m − 4) · · · 3 · 1 (9.158)

for odd m.
(g) Show from (e) that the outgoing-wave vacuum solution of Eq. (9.67), for any fixed

l and m, is

(h̄μν)lm = Alm
μνh(1)

l (�r) e−i�tYlm(θ ,φ), (9.159)

where h(1)
l (�r) is called the spherical Hankel function of the first kind,

h(1)
l (�r) = jl(�r) + inl(�r). (9.160)

(h) Repeat the calculation of Eqs. (9.69)–(9.74), only this time multiply Eq. (9.67)
by jl(r�)Y∗

lm(θ ,φ) before performing the integrals. Show that the left-hand side of
Eq. (9.67) becomes, when so integrated, exactly

ε2
(

jl(�ε)
d

dr
Bμν(ε) − Bμν(ε)

d

dr
jl(�ε)

)
,

and that when �ε 	 l this becomes (with the help of Eqs. (9.159) and
(9.156)–(9.157) above, since we assume r = ε is outside the source) simply
iAlm
μν/�. Similarly, show that the right-hand side of Eq. (9.67) integrates to

−16π�l
∫

TμνrlY∗
lm(θ ,φ)d3x/(2l + 1)! ! in the same approximation.

(i) Show, then, that the solution is Eq. (9.159), with

Alm
μν = 16π i�l+1Jlm

μν/(2l + 1)! ! , (9.161)

where

Jlm
μν =

∫
TμνrlY∗

lm(θ ,φ) d3x. (9.162)

(j) Let l = 0 and deduce Eq. (9.73) and (9.74).
(k) Show that if Jlm

μν �= 0 for some l, then the terms neglected in Eq. (9.161), because
of the approximation �ε 	 1, are of the same order as the dominant terms in
Eq. (9.161) for l + 1. In particular, this means that if Jμν �= 0 in Eq. (9.72), any
attempt to get a more accurate answer than Eq. (9.74) must take into account not
only the terms for l > 0 but also neglected terms in the derivation of Eq. (9.74),
such as Eq. (9.69).

30 Re-write Eq. (9.82a) for a set of N discrete point particles, where the masses are
{m(A), A = 1, . . . , N} and the positions are {xi

(A)}.
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31 Calculate the quadrupole tensor Ijk and its traceless counterpart I–jk (Eq. (9.87)) for the
following mass distributions.
(a) A spherical star where density is ρ(r, t). Take the origin of the coordinates in

Eq. (9.82) to be the center of the star.
(b) The star in (a), but with the origin of the coordinates at an arbitrary point.
(c) An ellipsoid of uniform density ρ and semiaxes of length a, b, c oriented along the

x, y, and z axes respectively. Take the origin to be at the center of the ellipsoid.
(d) The ellipsoid in (c), but rotating about the z axis with angular velocity ω.
(e) Four masses m located respectively at the points (a, 0, 0), (0, a, 0), (−a, 0, 0),

(0, −a, 0).
(f) The masses as in (e), but all moving counter-clockwise about the z axis on a circle

of radius a with angular velocity ω.
(g) Two masses m connected by a massless spring, each oscillating on the x axis with

angular frequency ω and amplitude A about mean equilibrium positions a distance
l0 apart, keeping their center of mass fixed.

(h) Unequal masses m and M connected by a spring of spring constant k and equilib-
rium length l0, oscillating (with their center of mass fixed) at the natural frequency
of the system, with amplitude 2A (this is the total stretching of the spring). Their
separation is along the x axis.

32 This exercise develops the TT gauge for spherical waves.
(a) In order to transform Eq. (9.83) to the TT gauge, use a gauge transformation gen-

erated by a vector ξα = Bα(xμ)ei�(r−t)/r, where Bα is a slowly varying function of
xμ. Find the general transformation law to order 1/r.

(b) Demand that the new h̄αβ satisfy three conditions to order 1/r: h̄0μ = 0, h̄αα = 0,
and h̄μjnj = 0, where nj := xj/r is the unit vector in the radial direction. Show that
it is possible to find functions Bα , which accomplish such a transformation and
which satisfy � ξα = 0 to order 1/r.

(c) Show that Eqs. (9.84)–(9.87) hold in the TT gauge.
(d) By expanding R in Eq. (9.103) but discarding r−1 terms, show that the higher-order

parts of h̄0μ that are not eliminated by Eq. (9.104) are gauge terms to order v2, i.e.
up to second time derivatives in the expansion of h̄00 and first time derivatives in
h̄0j in Eq. (9.103).

33 (a) Let nj be a unit vector in three-dimensional Euclidean space. Show that Pj
k = δj

k −
njnk is the projection tensor orthogonal to nj, i.e. show that for any vector Vj, (i)
Pj

kVk is orthogonal to nj, and (ii) Pj
kPk

lVl = Pj
kVk.

(b) Show that the TT gauge h̄TT
ij of Eqs. (9.84)–(9.86) is related to the original h̄kl of

Eq. (9.83) by

h̄TT
ij = Pk

i Pl
jh̄kl − 1

2 Pij(P
klh̄kl), (9.163)

where nj points in the z direction.
34 Show that I–jk is trace free, i.e. I– l

l = 0.
35 For the systems described in Exer. 31, calculate the transverse-traceless quadrupole

radiation field, Eqs. (9.85)–(9.86) or (9.163), along the x, y, and z axes. In Eqs. (9.85)–
(9.86) be sure to change the indices appropriately when doing the calculation on the x
and y axes, as in the discussion leading to Eq. (9.91).
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36 Use Eq. (9.163) or a rotation of the axes in Eqs. (9.85)–(9.86) to calculate the amplitude
and orientation of the polarization ellipse of the radiation from the simple oscillator,
Eq. (9.88), traveling at an angle θ to the x axis.

37 The ω and 2ω terms in Eq. (9.93) are qualitatively different, in that the 2ω term depends
only on the amplitude of oscillator A, while the ω term depends on both A and the
separation of the masses l0. Why should l0 be involved – the masses don’t move over
that distance? The answer is that stresses are transmitted over that distance by the
spring, and stresses cause the radiation. To see this, do an analogous calculation for
a similar system, in which stresses are not passed over large distances. Consider a
system consisting of two pairs of masses. Each pair has one particle of mass m and
another of mass M � m. The masses within each pair are connected by a short spring
whose natural frequency is ω. The pairs’ centers of mass are at rest relative to one
another. The springs oscillate with equal amplitude in such a way that each mass m
oscillates sinusoidally with amplitude A, and the centers of oscillation of the masses
are separated by l0 � A. The masses oscillate out of phase. Use the calculation of
Exer. 31(h) to show that the radiation field of the system is Eq. (9.93) without the ω
term. The difference between this system and that in Eq. (9.93) may be thought to be
the origin of the stresses to maintain the motion of the masses m.

38 Do the same as Exer. 36 for the binary system, Eqs. (9.98)–(9.99), but instead of finding
the orientation of the linear polarization, find the orientation of the ellipse of elliptical
polarization.

39 Let two spherical stars of mass m and M be in elliptical orbit about one another in
the x − y plane. Let the orbit be characterized by its total energy E and its angular
momentum L.
(a) Use Newtonian gravity to calculate the equation of the orbits of both masses about

their center of mass. Express the orbital period P, minimum separation a, and
eccentricity e as functions of E and L.

(b) Calculate I–kj for this system.
(c) Calculate from Eq. (9.106) the TT radiation field along the x and z axes. Show that

your result reduces to Eqs. (9.98)–(9.99) when m = M and the orbits are circular.
40 Show from Eq. (9.101) that spherically symmetric motions produce no gravitational

radiation.
41 Derive Eq. (9.115) from Eq. (9.114) in the manner suggested in the text.
42 (a) Derive Eq. (9.116).

(b) Derive Eqs. (9.117) and (9.118) by superposing Eqs. (9.107) and (9.116) and
assuming R is small.

(c) Derive Eq. (9.120) in the indicated manner.
43 Show that if we define an averaged stress–energy tensor for the waves

Tαβ =	 h̄TT
μν,α h̄TTμν

,β � /32π (9.164)

(where 	 � denotes an average over both one period of oscillation in time and one
wavelength of distance in all spatial directions), then the flux F of Eq. (9.122) is the
component T0z for that wave. A more detailed argument shows that Eq. (9.164) can in
fact be regarded as the stress–energy tensor of any wave packet, provided the averages
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are defined suitably. This is called the Isaacson stress–energy tensor. See Misner et al.
(1973) for details.

44 (a) Derive Eq. (9.125) from Eq. (9.123).
(b) Justify Eq. (9.127) from Eq. (9.125).
(c) Derive Eq. (9.127) from Eq. (9.122) using Exer. 33(b).

45 (a) Consider the integral in Eq. (9.128). We shall do it by the following method.
(i) Argue on grounds of symmetry that

∫
njnk sin θ dθ dφ must be proportional

to δjk. (ii) Evaluate the constant of proportionality by explicitly doing the case
j = k = z.

(b) Follow the same method for Eq. (9.129). In (i) argue that the integral can depend
only on δij, and show that the given tensor is the only one constructed purely from
δij that has the symmetry of being unchanged when the values of any two of its
indices are exchanged.

46 Derive Eqs. (9.130) and (9.131), remembering Eq. (9.124) and the fact that I–ij is
symmetric.

47 (a) Recall that the angular momentum of a particle is pφ . It follows that the angular
momentum flux of a continuous system across a surface xi = const. is Tiφ . Use this
and Exer. 43 to show that the total z component of angular momentum radiated by
a source of gravitational waves (which is the integral over a sphere of large radius
of Trφ in Eq. (9.164)) is

FJ = − 2
5 (Ïxl

...
I y

l − Ïyl
...
I x

l). (9.165)

(b) Show that if h̄TT
μν depends on t and φ only as cos(�t − mφ), then the ratio of the

total energy radiated to the total angular momentum radiated is �/m.
48 Calculate Eq. (9.135).
49 For the arbitrary binary system of Exer. 39:

(a) Show that the average energy loss rate over one orbit is

〈dE/dt〉 = −32

5

μ2(m + M)3

a5(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4
)

(9.166)

and from the result of Exer. 47(a)

〈dL/dt〉 = −32

5

μ2(m + M)5/2

a7/2(1 − e2)7/2

(
1 + 7

8
e2
)

, (9.167)

where μ = mM/(m + M) is the reduced mass.
(b) Show that

〈da/dt〉 = −64

5

μ(m + M)2

a3(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4
)

, (9.168)

〈de/dt〉 = −304

15

μ(m + M)2e

a4(1 − e2)5/2

(
1 + 121

304
e2
)

, (9.169)

〈dP/dt〉 = −192π

5

μ(m + M)3/2

a5/2(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4
)

. (9.170)

(c) Verify Eq. (9.144).
(Do parts (b) and (c) even if you can’t do (a).) These were originally derived by Peters

(1964).



10 Spherical solutions for stars

10.1 Coord inates fo r spher i ca l l y symmetr i c
spacet imes

For our first study of strong gravitational fields in GR, we will consider spherically sym-
metric systems. They are reasonably simple, yet physically very important, since very
many astrophysical objects appear to be nearly spherical. We begin by choosing the
coordinate system to reflect the assumed symmetry.

Flat space in spherical coordinates

By defining the usual coordinates (r, θ ,φ), the line element of Minkowski space can be
written

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2). (10.1)

Each surface of constant r and t is a sphere or, more precisely, a two-sphere – a two-
dimensional spherical surface. Distances along curves confined to such a sphere are given
by the above equation with dt = dr = 0:

dl2 = r2(dθ2 + sin2 θ dφ2) := r2 d�2, (10.2)

which defines the symbol d�2 for the element of solid angle. We note that such a sphere
has circumference 2πr and area 4πr2, i.e. 2π times the square root of the coefficient of
d�2 and 4π times the coefficient of d�2 respectively. Conversely, any two-surface where
the line element is Eq. (10.2) with r2 independent of θ and φ has the intrinsic geometry of
a two-sphere.

Two-spheres in a curved spacetime

The statement that a spacetime is spherically symmetric can now be made more precise: it
implies that every point of spacetime is on a two-surface which is a two-sphere, i.e. whose
line element is

dl2 = f (r′, t)(dθ2 + sin2 θ dφ2), (10.3)

where f (r′, t) is an unknown function of the two other coordinates of our manifold r′ and
t. The area of each sphere is 4π f (r′, t). We define the radial coordinate r of our spherical
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�Figure 10.1 Two plane sheets connected by a circular throat: there is circular (axial) symmetry, but the center
of any circle is not in the two-space.

geometry such that f (r′, t) := r2. This represents a coordinate transformation from (r′, t)
to (r, t). Then any surface r = const., t = const. is a two-sphere of area 4πr2 and circum-
ference 2πr. This coordinate r is called the ‘curvature coordinate’ or ‘area coordinate’
because it defines the radius of curvature and area of the spheres. There is no a priori rela-
tion between r and the proper distance from the center of the sphere to its surface. This r
is defined only by the properties of the spheres themselves. Since their ‘centers’ (at r = 0
in flat space) are not points on the spheres themselves, the statement that a spacetime is
spherically symmetric does not require even that there be a point at the center. A simple
counter-example of a two-space in which there are circles but no point at the center of
them is in Fig. 10.1. The space consists of two sheets, which are joined by a ‘throat’. The
whole thing is symmetric about an axis along the middle of the throat, but the points on this
axis – which are the ‘centers’ of the circles – are not part of the two-dimensional surface
illustrated. Yet if φ is an angle about the axis, the line element on each circle is just r2dφ2,
where r is a constant labeling each circle. This r is the same sort of coordinate that we use
in our spherically symmetric spacetime.

Meshing the two-spheres into a three-space for t = const

Consider the spheres at r and r + d r. Each has a coordinate system (θ ,φ), but up to now
we have not required any relation between them. That is, we could conceive of having the
pole for the sphere at r in one orientation, while that for r + d r was in another. The sensible
thing is to say that a line of θ = const.,φ = const. is orthogonal to the two-spheres. Such
a line has, by definition, a tangent �er. Since the vectors �eθ and �eφ lie in the spheres, we
require �er · �eθ = �er · �eφ = 0. This means grθ = grφ = 0 (recall Eqs. (3.3) and (3.21)). This
is a definition of the coordinates, allowed by spherical symmetry. We thus have restricted
the metric to the form

ds2 = g00 dt2 + 2g0r dr dt + 2g0θ dθ dt + 2g0φ dφ dt + grr dr2 + r2 d�2. (10.4)
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Spherical ly symmetric spacetime

Since not only the spaces t = const. are spherically symmetric, but also the whole space-
time, we must have that a line r = const., θ = const., φ = const. is also orthogonal to the
two-spheres. Otherwise there would be a preferred direction in space. This means that �et is
orthogonal to �eθ and �eφ , or gtθ = gtφ = 0. So now we have

ds2 = g00 dt2 + 2g0r dr dt + grr dr2 + r2 d�2. (10.5)

This is the general metric of a spherically symmetric spacetime, where g00, g0r, and grr

are functions of r and t. We have used our coordinate freedom to reduce it to the simplest
possible form.

10.2 Stat i c spher i ca l l y symmetr i c spacet imes

The metr ic

Clearly, the simplest physical situation we can describe is a quiescent star or black hole – a
static system. We define a static spacetime to be one in which we can find a time coordinate
t with two properties: (i) all metric components are independent of t, and (ii) the geometry
is unchanged by time reversal, t → −t. The second condition means that a film made of
the situation looks the same when run backwards. This is not logically implied by (i), as
the example of a rotating star makes clear: time reversal changes the sense of rotation, but
the metric components will be constant in time. (A spacetime with property (i) but not
necessarily (ii) is said to be stationary.)

Condition (ii) has the following implication. The coordinate transformation (t, r, θ ,φ) →
(−t, r, θ ,φ) has �0̄

0 = −1,�i
j = δi

j, and we find

g0̄0̄ = (�0
0̄)2g00 = g00,

g0̄r̄ = �0
0̄�

r
r̄g0r = −g0r,

gr̄r̄ = (�r
r̄)2grr = grr.

⎫⎬
⎭ (10.6)

Since the geometry must be unchanged (i.e. since gᾱβ̄ = gαβ ), we must have g0r ≡ 0. Thus,
the metric of a static, spherically symmetric spacetime is

ds2 = −e2� dt2 + e2� dr2 + r2 d�2, (10.7)

where we have introduced �(r) and �(r) in place of the two unknowns g00(r) and grr(r).
This replacement is acceptable provided g00 < 0 and grr > 0 everywhere. We shall see
below that these conditions do hold inside stars, but they break down for black holes.
When we study black holes in the next chapter we shall have to look carefully again at our
coordinate system.
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If we are interested in stars, which are bounded systems, we are entitled to demand that,
far from the star, spacetime is essentially flat. This means that we can impose the following
boundary conditions (or asymptotic regularity conditions) on Einstein’s equations:

lim
r→∞�(r) = lim

r→∞ �(r) = 0. (10.8)

With this condition we say that spacetime is asymptotically flat.

Physical interpretat ion of metr ic terms

Since we have constructed our coordinates to reflect the physical symmetries of the space-
time, the metric components have useful physical significance. The proper radial distance
from any radius r1 to another radius r2 is

l12 =
∫ r2

r1

e� dr, (10.9)

since the curve is one on which dt = dθ = dφ = 0. More important is the significance
of g00. Since the metric is independent of t, we know from Ch. 7 that any particle fol-
lowing a geodesic has constant momentum component p0, which we can define to be the
constant −E:

p0 := −E. (10.10)

But a local inertial observer at rest (momentarily) at any radius r of the spacetime mea-
sures a different energy. Her four-velocity must have Ui = d xi/d τ = 0 (since she is
momentarily at rest), and the condition �U · �U = 1 implies U0 = e−�. The energy she
measures is

E∗ = −�U · �p = e−�E. (10.11)

We therefore have found that a particle whose geodesic is characterized by the constant
E has energy e−�E relative to a locally inertial observer at rest in the spacetime. Since
e−� = 1 far away, we see that E is the energy a distant observer would measure if the
particle gets far away. We call it the energy at infinity. Since e−� > 1 everywhere else (this
will be clear later), we see that the particle has larger energy relative to inertial observers
that it passes elsewhere. This extra energy is just the kinetic energy it gains by falling in a
gravitational field. The energy is studied in more detail in Exer. 3, § 10.9.

This is particularly significant for photons. Consider a photon emitted at radius r1 and
received very far away. If its frequency in the local inertial frame is νem (which would be
determined by the process emitting it, e.g. a spectral line), then its local energy is hνem

(h being Planck’s constant) and its conserved constant E is hνem exp [�(r1)]. When it
reaches the distant observer it is measured to have energy E, and hence frequency E/h ≡
νrec = νem exp [�(r1)]. The redshift of the photon, defined by

z = λrec − λem

λem
= νem

νrec
− 1, (10.12)
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is therefore

z = e−�(r1) − 1. (10.13)

This important equation attaches physical significance to e�. (Compare this calculation
with the one in Ch. 2.)

The Einstein tensor

We can show that for the metric given by Eq. (10.7), the Einstein tensor has components

G00 = 1

r2
e2� d

dr
[r(1 − e−2�)], (10.14)

Grr = − 1

r2
e2�(1 − e−2�) + 2

r
�′, (10.15)

Gθθ = r2e−2�[�′′ + (�′)2 +�′/r −�′�′ −�′/r], (10.16)

Gφφ = sin2 θGθθ , (10.17)

where �′ := d�/dr, etc. All other components vanish.

10.3 Stat i c per fec t f lu id E ins te in equat ions

Stress–energy tensor

We are interested in static stars, in which the fluid has no motion. The only nonzero
component of �U is therefore U0. What is more, the normalization condition

�U · �U = −1 (10.18)

implies, as we have seen before,

U0 = e−�, U0 = −e�. (10.19)

Then T has components given by Eq. (4.38):

T00 = ρ e2�, (10.20)

Trr = p e2�, (10.21)

Tθθ = r2p, (10.22)

Tφφ = sin2 θ Tθθ . (10.23)

All other components vanish.
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Equation of state

The stress–energy tensor involves both p and ρ, but these may be related by an equation of
state. For a simple fluid in local thermodynamic equilibrium, there always exists a relation
of the form

p = p(ρ, S), (10.24)

which gives the pressure p in terms of the energy density ρ and specific entropy S. We often
deal with situations in which the entropy can be considered to be a constant (in particular,
negligibly small), so that we have a relation

p = p(ρ). (10.25)

These relations will of course have different functional forms for different fluids. We will
suppose that some such relation always exists.

Equations of motion

The conservation laws are (Eq. (7.6))

Tαβ ;β = 0. (10.26)

These are four equations, one for each value of the free index α. Because of the symmetries,
only one of these does not vanish identically: the one for which α = r. It implies

(ρ + p)
d�

dr
= −dp

dr
. (10.27)

This is the equation that tells us what pressure gradient is needed to keep the fluid static in
the gravitational field, the effect of which depends on d�/dr.

Einstein equations

The (0, 0) component of Einstein’s equations can be found from Eqs. (10.14) and (10.20).
It is convenient at this point to replace �(r) with a different unknown function m(r)
defined as

m(r) := 1
2 r(1 − e−2�), (10.28)
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or

grr = e2� =
(

1 − 2m(r)

r

)−1

. (10.29)

Then the (0,0) equation implies

dm(r)

dr
= 4πr2ρ. (10.30)

This has the same form as the Newtonian equation, which calls m(r) the mass inside the
sphere of radius r. Therefore, in relativity we call m(r) the mass function, but it cannot be
interpreted as the mass energy inside r since total energy is not localizable in GR. We shall
explore the Newtonian analogy in § 10.5 below.

The (r, r) equation, from Eqs. (10.15) and (10.21), can be cast in the form

d�

dr
= m(r) + 4πr3 p

r[r − 2m(r)]
. (10.31)

If we have an equation of state of the form Eq. (10.25), then Eqs. (10.25), (10.27), (10.30),
and (10.31) are four equations for the four unknowns �, m, ρ, p. If the more general equa-
tion of state, Eq. (10.24), is needed, then S is a completely arbitrary function. There is no
additional information contributed by the (θ , θ ) and (φ,φ) Einstein equation, because (i) it
is clear from Eqs. (10.16), (10.17), (10.22), and (10.23) that the two equations are essen-
tially the same, and (ii) the Bianchi identities ensure that this equation is a consequence of
Eqs. (10.26), (10.30), and (10.31).

10.4 The exte r io r geomet ry

Schwarzschi ld metr ic

In the region outside the star, we have ρ = p = 0, and we get the two equations

dm

dr
= 0, (10.32)

d�

dr
= m

r(r − 2m)
. (10.33)
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These have the solutions

m(r) = M = const., (10.34)

e2� = 1 − 2M

r
, (10.35)

where the requirement that � → 0 as r → ∞ has been applied. We therefore see that the
exterior metric has the following form, called the Schwarzschild metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2 d�2. (10.36)

For large r this becomes

ds2 ≈ −
(

1 − 2M

r

)
dt2 +

(
1 + 2M

r

)
dr2 + r2 d�2. (10.37)

We can find coordinates (x, y, z) such that this becomes

ds2 ≈ −
(

1 − 2M

R

)
dt2 +

(
1 + 2M

R

)
(dx2 + dy2 + dz2), (10.38)

where R := (x2 + y2 + z2)1/2. We see that this is the far-field metric of a star of total
mass M (see Eq. (8.60)). This justifies the definition, Eq. (10.28), and the choice of the
symbol M.

General i ty of the metr ic

A more general treatment, as in Misner et al. (1973), establishes Birkhoff’s theorem,
that the Schwarzschild solution, Eq. (10.36), is the only spherically symmetric, asymp-
totically flat solution to Einstein’s vacuum field equations, even if we drop our initial
assumptions that the metric is static, i.e. if we start with Eq. (10.5). This means that
even a radially pulsating or collapsing star will have a static exterior metric of constant
mass M. One conclusion we can draw from this is that there are no gravitational waves
from pulsating spherical systems. (This has an analogy in electromagnetism: there is no
‘monopole’ electromagnetic radiation either.) We found this result from linearized theory
in Exer. 40, § 9.7.

10.5 The inte r io r s t ruc tu re of the sta r

Inside the star, we have ρ �= 0, p �= 0, and so we can divide Eq. (10.27) by (ρ + p) and use
it to eliminate � from Eq. (10.31). The result is called the Tolman–Oppenheimer–Volkov
(T–O–V) equation:
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dp

dr
= − (ρ + p)(m + 4πr3 p)

r(r − 2m)
. (10.39)

Combined with Eq. (10.30) for dm/dr and an equation of state of the form of Eq. (10.25),
this gives three equations for m, ρ, and p. We have reduced � to a subsidiary position; it
can be found from Eq. (10.27) once the others have been solved.

General rules for integrating the equations

Since there are two first-order differential equations, Eqs. (10.30) and (10.39), they require
two constants of integration, one being m(r = 0) and the other p(r = 0). We now argue
that m(r = 0) = 0. A tiny sphere of radius r = ε has circumference 2πε, and proper radius
|grr|1/2ε (from the line element). Thus a small circle about r = 0 has ratio of circum-
ference to radius of 2π |grr|−1/2. But if spacetime is locally flat at r = 0, as it must be
at any point of the manifold, then a small circle about r = 0 must have ratio of circum-
ference to radius of 2π . Therefore grr(r = 0) = 1, and so as r goes to zero, m(r) must
also go to zero, in fact faster than r. The other constant of integration, p(r = 0) := pc

or, equivalently, ρc, from the equation of state, simply defines the stellar model. For a
given equation of state p = p(ρ), the set of all spherically symmetric static stellar mod-
els forms a one-parameter sequence, the parameter being the central density. This result
follows only from the standard uniqueness theorems for first-order ordinary differential
equations.

Once m(r), p(r), and ρ(r) are known, the surface of the star is defined as the place where
p = 0. (Notice that, by Eq. (10.39), the pressure decreases monotonically outwards from
the center.) The reason p = 0 marks the surface is that p must be continuous everywhere,
for otherwise there would be an infinite pressure gradient and infinite forces on fluid
elements. Since p = 0 in the vacuum outside the star, the surface must also have p = 0.
Therefore we stop integrating the interior solution there and require that the exterior metric
should be the Schwarzschild metric. Let the radius of the surface be R. Then in order to
have a smooth geometry, the metric functions must be continuous at r = R. Inside the star
we have

grr =
(

1 − 2m(r)

r

)−1

and outside we have

grr =
(

1 − 2M

r

)−1

.

Continuity clearly defines the constant M to be

M := m(R). (10.40)
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Thus the total mass of the star as determined by distant orbits is found to be the integral

M =
∫ R

0
4πr2ρ dr, (10.41)

just as in Newtonian theory. This analogy is rather deceptive, however, since the integral
is over the volume element 4πr2dr, which is not the element of proper volume. Proper
volume in the hypersurface t = const. is given by

|g|1/2 d3x = e�r2 sin θ dr dθ dφ, (10.42)

which, after doing the (θ ,φ) integration, is just 4πr2 e�+� dr. Thus M is not in any sense
just the sum of all the proper energies of the fluid elements. The difference between the
proper and coordinate volume elements is where the ‘gravitational potential energy’ con-
tribution to the total mass is placed in these coordinates. We need not look in more detail
at this; it only illustrates the care we must take in applying Newtonian interpretations to
relativistic equations.

Having obtained M, this determines g00 outside the star, and hence g00 at its surface:

g00(r = R) = −
(

1 − 2M

R

)
. (10.43)

This serves as the integration constant for the final differential equation, the one which
determines � inside the star: Eq. (10.27). We thereby obtain the complete solution.

Notice that solving for the structure of the star is the first place where we have actually
assumed that the point r = 0 is contained in the spacetime. We had earlier argued that it
need not be, and the discussion before the interior solution made no such assumptions.
We make the assumption here because we want to talk about ‘ordinary’ stars, which we
feel must have the same global topology as Euclidean space, differing from it only by
being curved here and there. However, the exterior Schwarzschild solution is independent
of assumptions about r = 0, and when we discuss black holes we shall see how different
r = 0 can be.

Notice also that for our ordinary stars we always have 2m(r) < r. This is certainly true
near r = 0, since we have seen that we need m(r)/r → 0 at r = 0. If it ever happened that
near some radius r1 we had r − 2m(r) = ε, with ε small and decreasing with r, then by the
T–O–V equation, Eq. (10.39), the pressure gradient would be of order 1/ε and negative.
This would cause the pressure to drop so rapidly from any finite value that it would pass
through zero before ε reached zero. But as soon as p vanishes, we have reached the surface
of the star. Outside that point, m is constant and r increases. So nowhere in the spacetime
of an ordinary star can m(r) reach 1

2 r.

The structure of Newtonian stars

Before looking for solutions, we shall briefly look at the Newtonian limit of these equa-
tions. In Newtonian situations we have p 	 ρ, so we also have 4πr3p 	 m. Moreover, the
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metric must be nearly flat, so in Eq. (10.29) we require m 	 r. These inequalities simplify
Eq. (10.39) to

dp

dr
= −ρm

r2
. (10.44)

This is exactly the same as the equation of hydrostatic equilibrium for Newtonian stars (see
Chandrasekhar 1939), a fact which should not surprise us in view of our earlier interpre-
tation of m and of the trivial fact that the Newtonian limit of ρ is just the mass density.
Comparing Eq. (10.44) with its progenitor, Eq. (10.39), shows that all the relativistic cor-
rections tend to steepen the pressure gradient relative to the Newtonian one. In other words,
for a fluid to remain static it must have stronger internal forces in GR than in Newtonian
gravity. This can be interpreted loosely as indicating a stronger field. An extreme instance
of this is gravitational collapse: a field so strong that the fluid’s pressure cannot resist it.
We shall discuss this more fully in § 10.7 below.

10.6 Exac t inte r io r so lu t ions

In Newtonian theory, Eqs. (10.30) and (10.44) are very hard to solve analytically for a
given equation of state. Their relativistic counterparts are worse.1 We shall discuss two
interesting exact solutions to the relativistic equations, one due to Schwarzschild and one
by Buchdahl (1981).

The Schwarzschi ld constant-density inter ior solut ion

To simplify the task of solving Eqs. (10.30) and (10.39), we make the assumption

ρ = const. (10.45)

This replaces the question of state. There is no physical justification for it, of course. In
fact, the speed of sound, which is proportional to (dp/dρ)1/2, is infinite! Nevertheless, the
interiors of dense neutron stars are of nearly uniform density, so this solution has some
interest for us in addition to its pedagogic value as an example of the method we use to
solve the system.

We can integrate Eq. (10.30) immediately:

m(r) = 4πρr3/3, r � R, (10.46)

where R is the star’s as yet undetermined radius. Outside R the density vanishes, so m(r) is
constant. By demanding continuity of grr, we find that m(r) must be continuous at R. This
implies

1 If we do not restrict the equation of state, then Eqs. (10.44) and (10.39) are easier to solve. For example,
we can arbitrarily assume a function m(r), deduce ρ(r) from it via Eq. (10.30), and hope to be able to solve
Eq. (10.44) or Eq. (10.39) for p. The result, two functions p(r) and ρ(r), implies an ‘equation of state’ p = p(ρ)
by eliminating r. This is unlikely to be physically realistic, so most exact solutions obtained in this way do not
interest the astrophysicist.
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m(r) = 4πρR3/3 := M, r � R, (10.47)

where we denote this constant by M, the Schwarzschild mass.
We can now solve the T–O–V equation, Eq. (10.39):

dp

dr
= − 4

3πr
(ρ + p)(ρ + 3p)

1 − 8πr2ρ/3
. (10.48)

This is easily integrated from an arbitrary central pressure pc to give

ρ + 3p

ρ + p
= ρ + 3pc

ρ + pc

(
1 − 2

m

r

)1/2
. (10.49)

From this it follows that

R2 = 3

8πρ
[1 − (ρ + pc)2/(ρ + 3pc)2] (10.50)

or

pc = ρ[1 − (1 − 2M/R)1/2]/[3(1 − 2M/R)1/2 − 1]. (10.51)

Replacing pc in Eq. (10.49) by this gives

pc = ρ
(1 − 2Mr2/R3)1/2 − (1 − 2M/R)1/2

3(1 − 2M/R)1/2 − (1 − 2Mr2/R3)1/2
. (10.52)

Notice that Eq. (10.51) implies pc → ∞ as M/R → 4/9. We will see later that this is a
very general limit on M/R, even for more realistic stars.

We complete the uniform-density case by solving for� from Eq. (10.27). Here we know
the value of � at R, since it is implied by continuity of g00:

g00(R) = −(1 − 2M/R). (10.53)

Therefore, we find

exp(�) = 3
2 (1 − 2M/R)1/2 − 1

2 (1 − 2Mr2/R3)1/2, r � R. (10.54)

Note that � and m are monotonically increasing functions of r, while p decreases
monotonically.

Buchdahl’s inter ior solut ion

Buchdahl (1981) found a solution for the equation of state

ρ = 12(p∗p)1/2 − 5p, (10.55)

where p∗ is an arbitrary constant. While this equation has no particular physical basis,
it does have two nice properties: (i) it can be made causal everywhere in the star by
demanding that the local sound speed (dp/dρ)1/2 be less than 1; and (ii) for small p it
reduces to

ρ = 12(p∗p)1/2, (10.56)
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which, in the Newtonian theory of stellar structure, is called an n = 1 polytrope. The n = 1
polytrope is one of the few exactly solvable Newtonian systems (see Exer. 14, § 10.9),
so Buchdahl’s solution may be regarded as its relativistic generalization. The causality
requirement demands

p < p∗, ρ < 7p∗. (10.57)

Like most exact solutions2 this one is difficult to deduce from the standard form of the
equations. In this case, we require a different radial coordinate r′. This is defined, in terms
of the usual r, implicitly by Eq. (10.59) below, which involves a second arbitrary constant
β, and the function3

u(r′) := β
sin Ar′

Ar′ , A2 := 288πp∗
1 − 2β

. (10.58)

Then we write

r(r′) = r′ 1 − β + u(r′)
1 − 2β

. (10.59)

Rather than demonstrate how to obtain the solution (see Buchdahl 1981), we shall content
ourselves simply to write it down. In terms of the metric functions defined in Eq. (10.7),
we have, for Ar′ � π ,

exp(2�) = (1 − 2β)(1 − β − u)(1 − β + u)−1, (10.60)

exp(2�) = (1 − 2β)(1 − β + u)(1 − β − u)−1(1 − β + β cos Ar′)−2, (10.61)

p(r) = A2(1 − 2β)u2[8π (1 − β + u)2]−1, (10.62)

ρ(r) = 2A2(1 − 2β)u(1 − β − 3
2 u)[8π (1 − β + u)2]−1, (10.63)

where u = u(r′). The surface p = 0 is where u = 0, i.e. at r′ = π/A ≡ R′. At this place,
we have

exp (2�) = exp (−2�) = 1 − 2β, (10.64)

R ≡ r(R′) = π (1 − β)(1 − 2β)−1A−1. (10.65)

Therefore, β is the value of M/R on the surface, which in the light of Eq. (10.13) is related
to the surface redshift of the star by

zs = (1 − 2β)−1/2 − 1. (10.66)

Clearly, the nonrelativistic limit of this sequence of models is the limit β → 0. The mass
of the star is given by

M = πβ(1 − β)

(1 − 2β)A
=
[

π

288p∗(1 − 2β)

]1/2

β(1 − β). (10.67)

2 An exact solution is one which can be written in terms of simple functions of the coordinates, such as poly-
nomials and trigonometric functions. Finding such solutions is an art that requires the successful combination
of useful coordinates, simple geometry, good intuition, and in most cases luck. See Stefani et al. (2003) for a
review of the subject.

3 Buchdahl uses different notation for his parameters.
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Since β alone determines how relativistic the star is, the constant p∗ (or A) simply gives
an overall dimensional scaling to the problem. It can be given any desired value by an
appropriate choice of the unit for distance. It is β, therefore, whose variation produces
nontrivial changes in the structure of the model. The lower limit on β is, as we remarked
above, zero. The upper limit comes from the causality requirement, Eq. (10.57), and the
observation that Eqs. (10.62) and (10.63) imply

p/ρ = 1
2 u(1 − β − 3

2 u)−1, (10.68)

whose maximum value is at the center, r = 0:

pc/ρc = β(2 − 5β)−1. (10.69)

Demanding that this be less than 1
7 gives

0 < β < 1
6 . (10.70)

This range spans a spectrum of physically reasonable models from the Newtonian (β ≈ 0)
to the very relativistic (surface redshift 0.22).

10.7 Rea l i s t i c s ta r s and grav i tat iona l co l lapse

Buchdahl’s theorem

We have seen in the previous section that there are no uniform-density stars with radii
smaller than (9/4)M, because to support them in a static configuration requires pressures
larger than infinite! This is in fact true of any stellar model, and is known as Buchdahl’s
theorem (Buchdahl 1959). Suppose we manage to construct a star in equilibrium with a
radius R = 9M/4, and then give it a (spherically symmetric) inward push. It has no choice
but to collapse inwards: it cannot reach a static state again. But during its collapse, the
metric outside it is just the Schwarzschild metric. What it leaves, then, is the vacuum
Schwarzschild geometry outside. This is the metric of a black hole, and we will study
it in detail in the next chapter. First we look at some causes of gravitational collapse.

Formation of stel lar-mass black holes

Any realistic appraisal of the chances of forming a black hole must begin with an under-
standing of the way stars evolve. We give a brief summary here. See the bibliography in
§ 10.8 for books that cover the subject in detail.

An ordinary star like our Sun derives its luminosity from nuclear reactions taking place
deep in its core, mainly the conversion of hydrogen to helium. Because a star is always
radiating energy, it needs the nuclear reactions to replace that energy in order to remain
static. The Sun will burn hydrogen in a fairly steady way for some 1010 years. A more
massive star, whose core has to be denser and hotter to support the greater mass, may
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remain steady only for a million years, because the nuclear reaction rates are very sensitive
to temperature and density. Astronomers have a name for such steady stars: they call them
‘main sequence stars’ because they all fall in a fairly narrow band when we plot their
surface temperatures against luminosity: the luminosity and temperature of a normal star
are determined mainly by its mass.

However, when the original supply of hydrogen in the core is converted to helium, this
energy source turns off, and the core of the star begins to shrink as it gradually radiates its
stored energy away. This shrinking compresses and actually heats the core! Interestingly,
this means that self-gravitating systems have negative specific heat: as they lose energy,
they get hotter. Such systems are thermodynamically unstable, and the result is that every
star will eventually either collapse to a black hole or be held up by nonthermal forces, like
the quantum-mechanical ones we discuss below.

Eventually the temperature in the shrinking core gets high enough to ignite another
reaction, which converts helium into carbon and oxygen, releasing more energy. Because
of the temperature sensitivity of the nuclear reactions, the luminosity of the star increases
dramatically. In order to cope with this new energy flux, the outer layers of the star have
to expand, and the star acquires a kind of ‘core-halo’ structure. Its surface area is typically
so large that it cools below the surface temperature of the Sun, despite the immense tem-
peratures inside. Such a star is called a red giant, because its lower surface temperature
makes it radiate more energy in the red part of the spectrum. The large luminosity of red
giants causes many of them gradually to blow away large fractions of their original mate-
rial, reducing their total mass. Stars showing such strong stellar winds form spectacular
‘planetary nebulae’, a favorite subject of astronomical photographs.

Eventually the star exhausts its helium as well, and what happens next depends very
much on what mass it has left at this point. It may just begin to cool off and contract to
form a small-mass white dwarf, supported forever by quantum-mechanical pressure (see
below). Or if its core has a higher temperature, it may then go through phases of turning
carbon into silicon, and silicon into iron. Eventually, however, every star must run out
of energy, since 56Fe is the most stable of all nuclei – any reaction converting iron into
something else absorbs energy rather than releasing it. The subsequent evolution of the
star depends mainly on four things: the star’s mass, rotation, magnetic field, and chemical
composition.

First consider slowly rotating stars, for which rotation is an insignificant factor in their
structure. A star of the Sun’s mass or smaller will find itself evolving smoothly to a state
in which it is called a white dwarf. This is a star whose pressure comes not from thermal
effects but from quantum mechanical ones, which we discuss below. The point about rela-
tively low-mass stars like our Sun is that they don’t have strong enough gravitational fields
to overwhelm these quantum effects or to cause rapid contraction earlier on in their history.
A higher-mass star will also evolve smoothly through the hydrogen-burning main-sequence
phase, but what happens after that is still not completely understood. It is even more com-
plicated if the star is in a close binary system, where it may pass considerable mass to its
companion as it evolves off the main sequence and into a red giant. If a star loses enough
mass, through a wind or to a companion, then its subsequent evolution may be quiet, like
that expected for our Sun. But it seems that not all stars follow this route. At some point
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in the nuclear cycle, the quantum-mechanical pressure in the core of a sufficiently massive
star can no longer support its weight, and the core collapse. If the star is not too mas-
sive (perhaps an initial mass of up to 15–20 M⊙), then the strong nuclear repulsion forces
may be able to stop the collapse when the mean density reaches the density of an atomic
nucleus; the infalling matter then ‘bounces’ and is expelled in a spectacular supernova
explosion of Type II. (But the physics of this bounce, and even the fraction of collapses
that experience it, is not yet – in 2008 – well understood.) The compact core is left behind
as a neutron star, which we will study below. If the original star is even more massive
than this, then computer simulations suggest that the collapse cannot be reversed, and the
result is a black hole, perhaps accompanied by some kind of explosion, maybe a burst of
gamma rays (Woosley and Bloom 2006). These so-called ‘stellar-mass’ black holes may
have masses anywhere from 5 to 60 M⊙, depending on the progenitor star. A number of
such black holes have been identified in X-ray binary systems in our Galaxy, as we will
discuss in the next chapter.

This picture can be substantially altered by rotation and magnetic fields, and this is
the subject of much current research. Rotation may induce currents that change the main-
sequence evolution by mixing inner and outer layers of the star. In the collapse phase,
rotation becomes extremely important if angular momentum is conserved by the collapsing
core. But substantial magnetic fields may allow transfer of angular momentum from the
core to the rest of the star, permitting a more spherical collapse.

The composition of the star is also a key issue. Most stars formed today belong to what
astronomers call Population I, and have relative element abundances similar to that of the
Sun: they form from gas clouds that have been mixed with matter containing a whole
spectrum of elements that were created by previous generations of stars and in previous
supernova explosions. However, the very first generation of stars (perversely called Popu-
lation III) were composed of pure hydrogen and helium, the only elements created in the
Big Bang in any abundance (see Ch. 12). These stars may have been much more massive
(hundreds of solar masses), and they may have evolved very rapidly to the point of gravita-
tional collapse, leading perhaps to a population of what astronomers call intermediate-mass
black holes, from perhaps 100 M⊙ upwards to several thousand solar masses (see Miller
and Colbert 2004).

Intermediate mass black holes are given this name because their masses lie between
those of stellar-mass black holes and those of the supermassive black holes that
astronomers have discovered in the centers of most ordinary galaxies. We will discuss
these in more detail in the next chapter.

Quantum mechanical pressure

We shall now give an elementary discussion of the forces that support white dwarfs and
neutron stars. Consider an electron in a box of volume V . Because of the Heisenberg
uncertainty principle, its momentum is uncertain by an amount of the order of

�p = hV−1/3, (10.71)
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where h is Planck’s constant. If its momentum has magnitude between p and p + dp, it is
in a region of momentum space of volume 4πp2 dp. The number of ‘cells’ in this region of
volume �p is

dN = 4πp2 dp/(�p)3 = 4πp2 dp

h3
V . (10.72)

Since it is impossible to define the momentum of the electron more precisely than �p,
this is the number of possible momentum states with momentum between p and p + dp
in a box of volume V . Now, electrons are Fermi particles, which means that they have the
remarkable property that no two of them can occupy exactly the same state. (This is the
basic reason for the variety of the periodic table and the solidity and relative impermeability
of matter.) Electrons have spin 1

2 , which means that for each momentum state there are two
spin states (‘spin-up’ and ‘spin-down’), so there are a total of

V
8πp2 dp

h3
(10.73)

states, which is then the maximum number of electrons that can have momenta between p
and p + dp in a box of volume V .

Now suppose we cool off a gas of electrons as far as possible, which means reducing
each electron’s momentum as far as possible. If there is a total of N electrons, then they are
as cold as possible when they fill all the momentum states from p = 0 to some upper limit
pf, determined by the equation

N

V
=
∫ pf

0

8πp2 dp

h3
= 8πp3

f

3h3
. (10.74)

Since N/V is the number density, we get that a cold electron gas obeys the relation

n = 8πp3
f

3h3
, pf =

(
3h3

8π

)1/3

n1/3. (10.75)

The number pf is called the Fermi momentum. Notice that it depends only on the number
of particles per unit volume, not on their masses.

Each electron has mass m and energy E = (p2 + m2)1/2. Therefore the total energy
density in such a gas is

ρ = ETOTAL

V
=
∫ pf

0

8πp2

h3
(m2 + p2)1/2 dp. (10.76)

The pressure can be found from Eq. (4.22) with �Q set to zero, since we are dealing with
a closed system:

p = − d

dV
(ETOTAL) = −V

8πp2
f

h3
(m2 + p2

f )1/2 dpf

dV
− ρ.

For a constant number of particles N, we have

V
dpf

dV
= −n

dpf

dn
= 1

3

(
3h3

8π

)1/3

n1/3 = 1
3 pf,
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and we get

p =
(

8π

3h3

)
p3

f (m2 + p2
f )1/2 − ρ. (10.77)

For a very relativistic gas where pf � m (which will be the case if the gas is compressed
to small V) we have

ρ ≈ 2π p4
f

h3
(10.78)

p ≈ 1
3ρ. (10.79)

This is the equation of state for a ‘cold’ electron gas. So the gas has a pressure comparable
to its density even when it is as cold as possible. In Exer. 22, § 4.10 we saw that Eq. (10.79)
is also the relation for a photon gas. The reason that the relativistic Fermi gas behaves like
a photon gas is essentially that the energy of each electron far exceeds its rest mass; the
rest mass is unimportant, so setting it to zero changes little.

White dwarfs

When an ordinary star is compressed, it reaches a stage where the electrons are free of the
nuclei, and we have two gases, one of electrons and one of nuclei. Since they have the same
temperatures, and hence the same energies per particle, the less-massive electrons have far
less momentum per particle. Upon compression the Fermi momentum rises (Eq. (10.5))
until it becomes comparable with the momentum of the electrons. They are then effectively
a cold electron gas, and supply the pressure for the star. The nuclei have momenta well
in excess of pf, so they are a classical gas, but they supply little pressure. On the other
hand, the nuclei supply most of the gravity, since there are more neutrons and protons than
electrons, and they are much more massive. So the mass density for Newtonian gravity
(which is adequate here) is

ρ = μmpne, (10.80)

where μ is the ratio of number of nucleons to the number of electrons (of the order of 1
or 2), mp is the proton mass, and ne the number density of electrons. The relation between
pressure and density for the whole gas when the electrons are relativistic is therefore

p = kρ4/3, k = 2π

3h3

(
3h3

8πμmp

)4/3

. (10.81)

The Newtonian structure equations for the star are

dm
dr = 4πr2 ρ,
dp
dr = −ρ m

r2 .

}
(10.82)
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In order of magnitude, these are (for a star of mass M, radius R, typical density ρ̄ and
typical pressure p̄)

M = R3ρ̄,
p̄/R = ρ̄M/R2.

}
(10.83)

Setting ρ̄ = kρ̄−4/3, from Eq. (10.81), gives

kρ̄1/3 = M

R
. (10.84)

Using Eq. (10.83) in this, we see that R cancels out and we get an equation only for M:

M =
(

3k3

4π

)1/2

= 1

32μ2m2
p

(
6h3

π

)1/2

. (10.85)

Using geometrized units, we find (with μ = 2)

M = 0.47 × 105 cm = 0.32 M�. (10.86)

From our derivation we should expect this to be the order of magnitude of the maximum
mass supportable by a relativistic electron gas, when most of the gravity comes from a cold
nonrelativistic gas of nuclei. This is called the Chandrasekhar limit, and a more precise
calculation, based on integrating Eq. (10.82) more carefully, puts it at M ≈ 1.3 M⊙. Any
star more massive than this cannot be supported by electron pressure, and so cannot be a
white dwarf. In fact, the upper mass limit is marginally smaller, occuring at central densities
of about 1010 kg m−3, and is caused by the instability described next.

Neutron stars

If the material is compressed further than that characteristic of a white dwarf (which has
ρ � 1010 kg m−3), it happens that the kinetic energy of electrons gets so large that if they
combine with a proton to form a neutron, energy can be released, carried away by a neu-
trino. So compression results in the loss of electrons from the gas which is providing
pressure: pressure does not build up rapidly enough, and the star is unstable. There are
no stable stars again until central densities reach the region of 1016 kg m−3. By this den-
sity, essentially all the electrons are united with the protons to form a gas of almost pure
neutrons. These are also Fermi particles, so they obey exactly the same quantum equation
of state as we derived for electrons, Eqs. (10.78) and (10.79). The differences between a
neutron star and a white dwarf are two: firstly, a much higher density is required to push
pf up to the typical momentum of a neutron, which is more massive than an electron; and
secondly, the total energy density is now provided by the neutrons themselves: there is no
extra gas of ions providing most of the self-gravitation. So, here, the total equation of state
at high compression is Eq. (10.79):

p = 1

3
ρ. (10.87)

Unfortunately, there exist no simple arguments giving an upper mass in this case, since the
fully relativistic structure equations (Eqs. 10.30 and 10.39) must be used.



275 10.7 Realist ic stars and gravitational col lapse
�

In fact, neutron star matter is the most complex and fascinating state of matter that
astronomers have yet discovered. The dense degenerate gas of neutrons appears to be
superfluid, despite the very high temperatures (106 K or higher) that we find inside neutron
stars. The neutrons are in chemical equilibrium with a much less dense gas of protons and
electrons, and the protons may exhibit superconductivity! These properties probably are
important for understanding why neutron stars have developed such strong magnetic fields
that do not align with their rotation axes, but the connection is not understood. At the cen-
ter of a neutron stars the density may be so large that the neutrons dissolve into essentially
free quarks. It has proved extremely difficult for nuclear theorists to compute an equation of
state for nuclear matter under these conditions. The physical conditions are out of reach of
laboratory experiment, and the short range and complexity of the nuclear force (the strong
interaction) require physicists to make one or another approximation and assumption in
order to arrive at an equation of state. There are thus dozens of proposed equations of state,
all leading to stars with very different properties from one another (Lattimer and Prakash
2000). Different equations of state predict different relations between the mass and radius
of a neutron star, and also vastly different maximum masses for neutron stars, ranging
from about 1.5 M⊙ to perhaps 2.5 M⊙. If it were possible to measure both the mass and
the radius of one neutron star, much of this uncertainty would be resolved. Alternatively, if
we had the masses of a large enough sample of neutron stars, enough to give us confidence
that we were observing the maximum mass, then that would help as well.

Neutron stars are observed primarily as pulsars (as mentioned in the previous chapter),
although some non-pulsating neutron stars are known through their X-ray and gamma-ray
emission. Although the connection between stellar evolution and the formation of neutron
stars is not fully understood, pulsar studies make it clear that neutron stars are often created
in supernova explosions. Astronomers have been able to associate a number of pulsars
with supernova remnants, including one of the youngest known pulsars, PSR B0531+21,
in the center of the Crab nebula. Studies of the motion of pulsars suggest that they get
strong ‘kicks’ when they are born, with typical velocities of 400 to 1000 km s−1. This
compares with the orbital speed of the Sun around the center of the Galaxy, which is about
200 km s−1, and the typical random speeds of stars relative to one another, which is some
tens of km s−1. The kick must result from some kind of asymmetry in the gravitational
collapse and subsequent initial explosion.

From the point of view of understanding neutron star structure, the most interesting
pulsars are those in binary systems, where the orbital dynamics allow astronomers to mea-
sure or at least to place limits on their masses. Many accurately measured masses are now
known, and remarkably they cluster around 1.4 M⊙ (Lorimer 2008, Stairs 2003); however,
some stars seem to have masses as high as 2 M⊙ or more. Neutron stars in some binary
systems become X-ray sources, in the same way as for black holes: gas falls on to them
from their companions. This leads to the stars being spun up to very high rotation rates.
The fastest pulsar known is PSR J1748-2446ad, which spins at 716 Hz!

Rotation can, in principle, considerably increase the upper limit on stellar masses
(Stergioulas 2003), at least until rotation-induced relativistic instabilities set in (Friedman
and Schutz 1978, Andersson et al 1999, Kokkotas and Schmidt 1999). Realistically, this
probably doesn’t allow more than a factor of 1.5 in mass.
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10.8 Fur ther read ing

Our construction of the spherical coordinate system is similar to that in most other texts,
but it is not particularly systematic, nor is it clear how to generalize the method to
other symmetries. Group theory affords a more systematic approach. See Stefani et al.
(2003).

It is clear that the computation of Riemann and Einstein tensors of metrics more
complicated than the simple static spherical metric will be time-consuming. Modern
computer-algebra systems, like Maple or Mathematica, have packages that can do this auto-
matically. The most elegant way to do these computations by hand is the Cartan approach,
described in Misner et al. (1973).

A full discussion of spherical stellar structure may be found in Shapiro and Teukolsky
(1983). In deriving stellar solutions we demanded continuity of g00 and grr across the
surface of the star. A full discussion of the correct ‘junction conditions’ across a surface of
discontinuity is in Misner et al. (1973).

There are other exact compressible solutions for stars in the literature. See Stefani et al.
(2003).

The evolution of stars through the different stages of nuclear burning is a huge subject,
on which astrophysicists have made great progress with the help of computer simulations.
But there are still many open questions, particularly concerning the evolution of stars in
binary systems, where interaction with the companion becomes an issue. Good references
include Hansen et al. (2004) and Tayler (1994).

A more rigorous derivation of the equation of state of a Fermi gas may be found in
quantum mechanics texts. See Chandrasekhar (1957) for a full derivation of his limit on
white dwarf masses. See also Shapiro and Teukolsky (1983).

The instability which leads to the absence of stars intermediate in central density
between white dwarfs and neutron stars is discussed in Harrison et al. (1965), Shapiro
and Teukolsky (1983), and Zel’dovich and Novikov (1971). For a review of the fascinating
story of pulsars, see Lyne and Smith (1998) or Lorimer and Kramer (2004).

It is believed that the main route to formation of black holes is the collapse of the core of
a massive star, which leads to a supernova of Type II. Such supernovae may be sources of
gravitational radiation. The more massive collapse events may lead to so-called hypernovae
and gamma-ray bursts. A good introduction to contemporary research is in the collection by
Höflich et al. (2004). For an up-to-date view, the reader should consult recent proceedings
of the Texas Symposium in Relativistic Astrophysics, a series of conferences that takes
place every two years. Other types of supernovae arise from white-dwarf collapse and do
not lead to neutron stars. We will discuss the mechanism underlying supernovae of Type
Ia in Ch. 12 on cosmology.

There are many resources for neutron stars and black holes on the web, including web-
sites about X-ray observations. Readers can find popular-style articles on the Einstein
Online website:

http://www.einstein-online.info/en/.
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10.9 Exerc i ses

1 Starting with ds2 = ηαβ dxαdxβ , show that the coordinate transformation r = (x2 +
y2 + z2)1/2, θ = arccos(z/r),φ = arctan(y/x) leads to Eq. (10.1), ds2 = −dt2 + dr2 +
r2(dθ2 + sin2 θ dφ2).

2 In deriving Eq. (10.5) we argued that if �et were not orthogonal to �eθ and �eφ , the metric
would pick out a preferred direction. To see this, show that under rotations that hold t
and r fixed, the pair (gθ t, gφt) transforms as a vector field. If these don’t vanish, they
thus define a vector field on every sphere. Such a vector field cannot be spherically sym-
metric unless it vanishes: construct an argument to this effect, perhaps by considering
the discussion of parallel-transport on the sphere at the beginning of § 6.4.

3 The locally measured energy of a particle, given by Eq. (10.11), is the energy the same
particle would have in SR if it passed the observer with the same speed. It therefore
contains no information about gravity, about the curvature of spacetime. By referring
to Eq. (7.34) show that the difference between E∗ and E in the weak-field limit is, for
particles with small velocities, just the gravitational potential energy.

4 Use the result of Exer. 35, § 6.9 to calculate the components of Gμν in Eqs. (10.14)–
(10.17).

5 Show that a static star must have Ur = Uθ = Uφ = 0 in our coordinates, by examining
the result of the transformation t → −t.

6 (a) Derive Eq. (10.19) from Eq. (10.18).
(b) Derive Eqs. (10.20)–(10.23) from Eq. (4.37).

7 Describe how to construct a static stellar model in the case that the equation of state
has the form p = p(ρ, S). Show that we must give an additional arbitrary function, such
as S(r) or S(m(r)).

8 (a) Prove that the expressions Tαβ ;β for α = t, θ , or φ must vanish by virtue of the
assumptions of a static geometric and spherical symmetry. (Do not calculate the
expressions from Eqs. (10.20)–(10.23). Devise a much shorter argument.)

(b) Derive Eq. (10.27) from Eqs. (10.20)–(10.23).
(c) Derive Eq. (10.30) from Eqs. (10.14), (10.20), (10.29).
(d) Prove Eq. (10.31).
(e) Derive Eq. (10.39).

9 (a) Define a new radial coordinate in terms of the Schwarzschild r by

r = r̄(1 + M/2r̄)2. (10.88)

Notice that as r → ∞, r̄ → r, while at the horizon r = 2M, we have r̄ = 1
2 M. Show

that the metric for spherical symmetry takes the form

ds2 = −
[

1 − M/2r̄

1 + M/2r̄

]2

dt2 +
[

1 + M

2r̄

]4

[dr̄2 + r̄2 d�2]. (10.89)

(b) Define quasi-Cartesian coordinates by the usual equations x = r̄ cosφ sin θ , y =
r̄ sinφ sin θ , and z = r̄ cos θ so that (as in Exer. 1), dr̄2 + r̄2 d�2 = dx2 + dy2 +
d z2.
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Thus, the metric has been converted into coordinates (x, y, z), which are called
isotropic coordinates. Now take the limit as r̄ → ∞ and show

ds2 = −
[

1 − 2M

r̄
+ 0

(
1

r̄2

)]
dt2 +

[
1 + 2M

r̄
+ 0

(
1

r̄2

)]
(dx2 + dy2 + dz2).

This proves Eq. (10.38).
10 Complete the calculation for the uniform-density star.

(a) Integrate Eq. (10.48) to get Eq. (10.49) and fill in the steps leading to Eqs. (10.50)–
(10.52) and (10.54).

(b) Calculate e� and the redshift to infinity from the center of the star if M = 1 M� =
1.47 km and R = 1 R� = 7 × 105 km (a star like the Sun), and again if M = 1 M�
and R = 10 km (typical of a neutron star).

(c) Take ρ = 10−11 m−2 and M = 0.5 M�, and compute R, e� at surface and center,
and the redshift from the surface to the center. What is the density 10−11 m−2 in
kg m−3?

11 Derive the restrictions in Eq. (10.57).
12 Prove that Eqs. (10.60)–(10.63) do solve Einstein’s equations, given by Eqs. (10.14)–

(10.17) and (10.20)–(10.23) or (10.27), (10.30), and (10.39).
13 Derive Eqs. (10.66) and (10.67).
14 A Newtonian polytrope of index n satisfies Eqs. (10.30) and (10.44), with the equa-

tion of state p = Kρ(1+1/n) for some constant K. Polytropes are discussed in detail by
Chandrasekhar (1957). Consider the case n = 1, to which Buchdahl’s equation of state
reduces as ρ → 0.
(a) Show that ρ satisfies the equation

1

r2

d

dr

(
r2 dρ

dr

)
+ 2π

K
ρ = 0, (10.90)

and show that its solution is

ρ = αu(r), u(r) = sin Ar

Ar
, A2 = 2π

K
,

where α is an arbitrary constant.
(b) Find the relation of the Newtonian constants α and K to the Buchdahl constants β

and p∗ by examining the Newtonian limit (β → 0) of Buchdahl’s solution.
(c) From the Newtonian equations find p(r), the total mass M and the radius R, and

show them to be identical to the Newtonian limits of Eqs. (10.62), (10.67), and
(10.65).

15 Calculations of stellar structure more realistic than Buchdahl’s solution must be done
numerically. But Eq. (10.39) has a zero denominator at r = 0, so the numerical calcu-
lation must avoid this point. One approach is to find a power-series solution to Eqs.
(10.30) and (10.39) valid near r = 0, of the form
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m(r) =
∑

j

mjr
j,

p(r) =
∑

j

pjr
j,

ρ(r) =
∑

j

ρjr
j. (10.91)

Assume that the equation of state p = p(ρ) has the expansion near the central density ρc

p = p(ρc) + (pc�c/ρc)(ρ − ρc) + · · · , (10.92)

where �c is the adiabatic index d(lnp)/d(lnρ) evaluated at ρc. Find the first two non-
vanishing terms in each power series in Eq. (10.91), and estimate the largest radius r
at which these terms give an error no larger than 0.1% in any power series. Numerical
integrations may be started at such a radius using the power series to provide the initial
values.

16 (a) The two simple equations of state derived in § 10.7, p = kρ4/3 (Eq. (10.81)) and
p = ρ/3 (Eq. (10.87)), differ in a fundamental way: the first has an arbitrary dimen-
sional constant k, the second doesn’t. Use this fact to argue that a stellar model
constructed using only the second equation of state can only have solutions in
which ρ = μ/r2 and m = νr, for some constants μ and ν. The key to the argu-
ment is that ρ(r) may be given any value by a simple change of the unit of length,
but there are no other constants in the equations whose values are affected by such
a change.

(b) Show from this that the only nontrivial solution of this type is for μ =
3/(56π), ν = 3/14. This is physically unacceptable, since it is singular at r = 0
and it has no surface.

(c) Do there exist solutions which are nonsingular at r = 0 or which have finite
surfaces?

17 (This problem requires access to a computer) Numerically construct a sequence of
stellar models using the equation of state

p =
{

kρ4/3, ρ � (27 k3)−1,
1
3ρ, ρ � (27 k3)−1,

(10.93)

where k is given by Eq. (10.81). This is a crude approximation to a realistic ‘stiff’
neutron-star equation of state. Construct the sequence by using the following values for
ρc : ρc/ρ∗ = 0.1, 0.8, 1.2, 2, 5, 10, where ρ∗ = (27 k3)−1. Use the power series devel-
oped in Exer. 15 to start the integration. Does the sequence seem to approach a limiting
mass, a limiting value of M/R, or a limiting value of the central redshift?

18 Show that the remark made before Eq. (10.80), that the nuclei supply little pressure,
is true for the regime under consideration, i.e. where me < p2

f /3 kT < mp, where k is
Boltzmann’s constant (not the same k as in Eq. (10.81)). What temperature range is this
for white dwarfs, where n ≈ 1037 m−3?
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19 Our Sun has an equatorial rotation velocity of about 2 km s−1.
(a) Estimate its angular momentum, on the assumption that the rotation is rigid (uni-

form angular velocity) and the Sun is of uniform density. As the true angular
velocity is likely to increase inwards, this is a lower limit on the Sun’s angular
momentum.

(b) If the Sun were to collapse to neutron-star size (say 10 km radius), conserving both
mass and total angular momentum, what would its angular velocity of rigid rotation
be? In nonrelativistic language, would the corresponding centrifugal force exceed
the Newtonian gravitational force on the equator?

(c) A neutron star of 1 M� and radius 10 km rotates 30 times per second (typical of
young pulsars). Again in Newtonian language, what is the ratio of centrifugal to
gravitational force on the equator? In this sense the star is slowly rotating.

(d) Suppose a main-sequence star of 1 M� has a dipole magnetic field with typical
strength 1 Gauss in the equatorial plane. Assuming flux conservation in this plane,
what field strength should we expect if the star collapses to radius of 10 km? (The
Crab pulsar’s field is of the order of 1011 Gauss.)



11 Schwarzschild geometry and black holes

11.1 Tra jec to r ies in the Schwarzs ch i ld spacet ime

The ‘Schwarzschild geometry’ is the geometry of the vacuum spacetime outside a spherical
star. It is determined by one parameter, the mass M, and has the line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2 d�2 (11.1)

in the coordinate system developed in the previous chapter. Its importance is not just that
it is the gravitational field of a star: we shall see that it is also the geometry of the spherical
black hole. A careful study of its timelike and null geodesics – the paths of freely moving
particles and photons – is the key to understanding the physical importance of this metric.

Black holes in Newtonian gravity

Before we embark on the study of fully relativistic black holes, it is well to understand that
the physics is not really exotic, and that speculations on analogous objects go back two
centuries. It follows from the weak equivalence principle, which was part of Newtonian
gravity, that trajectories in the gravitational field of any body depend only on the position
and velocity of the particle, not its internal composition. The question of whether a particle
can escape from the gravitational field of a body is, then, only an issue of velocity: does
it have the right escape velocity for the location it starts from. For a spherical body like a
star, the escape velocity depends only on how far one is from the center of the body.

Now, a star is visible to us because light escapes from its surface. As long ago as the
late 1700’s, the British physicist John Michell and the French mathematician and physicist
Pierre Laplace speculated (independently) on the possibility that stars might exist whose
escape velocity was larger than the speed of light. At that period in history, it was popular
to regard light as a particle traveling at a finite speed. Michell and Laplace both understood
that if nature were able to make a star more compact than the Sun, but with the same mass,
then it would have a larger escape velocity. It would therefore be possible in principle to
make it compact enough for the escape velocity to be the velocity of light. The star would
then be dark, invisible. For a spherical star, this is a simple computation. By conservation
of energy, a particle launched from the surface of a star with mass M and radius R will
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just barely escape if its gravitational potential energy balances its kinetic energy (using
Newtonian language):

1
2v

2 = GM

R
. (11.2)

Setting v = c in this relation gives the criterion for the size of a star that would be invisible:

R = 2GM

c2
. (11.3)

Remarkably, as we shall see this is exactly the modern formula for the radius of a black
hole in general relativity (§ 11.2). Now, both Michell and Laplace knew the mass of the
Sun and the speed of light to enough accuracy to realize that this formula gives an absurdly
small size, of order a few kilometers, so that to them the calculation was nothing more than
an amusing speculation.

Today this is far more than an amusing speculation: objects of this size that trap light are
being discovered all over the universe, with masses ranging from a few solar masses up to
109 or 1010 M�. (We will discuss this in § 11.4 below.) The small size of a few kilometers
is not as absurd as it once seemed. For a 1 M� star, using modern values for c and G, the
radius is about 3 km. We saw in the last chapter that neutron stars have radii perhaps three
times as large, with comparable masses, and that they cannot support more than three solar
masses, perhaps less. So when neutron stars accrete large amounts of material, or when
neutron stars merge together (as the stars in the Hulse–Taylor binary must do in about
108 y), formation of something even more compact is inevitable. What is more, it takes
even less exotic physics to form a more massive black hole. Consider the mean density of
an object (again in Newtonian terms) with the size given by Eq. (11.3):

ρ̄ = M
4
3πR3

= 3c6

32πG3M2
. (11.4)

This scales as M−2, so that the density needed to form such an object goes down as its
mass goes up. It is not hard to show that an object with a mass of 109 M� would become a
Newtonian ‘dark star’ when its density had risen only to the density of water! Astronomers
believe that this is a typical mass for the black holes that are thought to power quasars (see
§ 11.4 below), so these objects would not necessarily require any exotic physics to form.

Although there is a basic similarity between the old concept of a Newtonian dark star
and the modern black hole that we will explore in this chapter, there are big differences
too. Most fundamentally, for Michell and Laplace the star was dark because light could
not escape to infinity. The star was still there, shining light. The light would still leave the
surface, but gravity would eventually pull it back, like a ball thrown upwards. In relativity,
as we shall see, the light never leaves the ‘surface’ of a black hole; and this surface is itself
not the edge of a massive body but just empty space, left behind by the inexorable collapse
of the material that formed the hole.
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Conserved quantit ies

We begin our study of relativistic black holes by examining the trajectories of particles.
This will allow us eventually to see whether light rays are trapped or can escape.

We have seen (Eq. (7.29) and associated discussion) that when a spacetime has a certain
symmetry, then there is an associated conserved momentum component for trajectories.
Because our space has so many symmetries – time independence and spherical symmetry –
the values of the conserved quantities turn out to determine the trajectory completely. We
shall treat ‘particles’ with mass and ‘photons’ without mass in parallel.

Time independence of the metric means that the energy −p0 is constant on the trajectory.
For massive particles with rest mass m �= 0, we define the energy per unit mass (specific
energy) Ẽ, while for photons we use a similar notation just for the energy E:

particle : Ẽ := −p0/m; photon : E = −p0. (11.5)

Independence of the metric of the angle φ about the axis implies that the angular momen-
tum pφ is constant. We again define the specific angular momentum L̃ for massive particles
and the ordinary angular momentum L for photons:

particle L̃ := pφ/m; photon L = pφ . (11.6)

Because of spherical symmetry, motion is always confined to a single plane, and we can
choose that plane to be the equatorial plane. Then θ is constant (θ = π/2) for the orbit, so
dθ/dλ = 0, where λ is any parameter on the orbit. But pθ is proportional to this, so it also
vanishes. The other components of momentum are:

particle : p0 = g00p0 = m

(
1 − 2M

r

)−1

Ẽ,

pr = m dr/dτ ,

pφ = gφφpφ = m
1

r2
L̃; (11.7)

photon : p0 =
(

1 − 2M

r

)−1

E,

pr = dr/dλ,

pφ = dφ/dλ = L/r2. (11.8)

The equation for a photon’s pr should be regarded as defining the affine parameter λ. The
equation �p · �p = −m2 implies

particle :

− m2Ẽ2
(

1 − 2M

r

)−1

+ m2
(

1 − 2M

r

)−1 ( dr

dτ

)2

+ m2L̃2

r2
= −m2; (11.9)
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photon :

− E2
(

1 − 2M

r

)−1

+
(

1 − 2M

r

)−1 ( dr

dλ

)2

+ L2

r2
= 0.

(11.10)

These can be solved to give the basic equations for orbits,

particle :

(
dr

dτ

)2

= Ẽ2 −
(

1 − 2M

r

)(
1 + L̃2

r2

)
; (11.11)

photon :

(
dr

dλ

)2

= E2 −
(

1 − 2M

r

)
L2

r2
. (11.12)

Types of orbits

Both equations have the same general form, and we define the effective potentials

particle : Ṽ2(r) =
(

1 − 2M

r

)(
1 + L̃2

r2

)
; (11.13)

photon : V2(r) =
(

1 − 2M

r

)
L2

r2
. (11.14)

Their typical forms are plotted in Figs. 11.1 and 11.2, in which various points have been
labeled and possible trajectories drawn (dotted lines).

Both Eq. (11.11) and Eq. (11.12) imply that, since the left side is positive or zero, the
energy of a trajectory must not be less than the potential V . (Here and until Eq. (11.17)
we will take E and V to refer to Ẽ and Ṽ as well, since the remarks for the two cases are

r
2M
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∼

�Figure 11.1 Typical effective potential for a massive particle of fixed specific angular momentum in the
Schwarzschild metric.
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�Figure 11.2 The same as Fig. 11.1 for a massless particle.

identical.) So for an orbit of given E, the radial range is restricted to those radii for which
V is smaller than E. For instance, consider the trajectory which has the value of E indicated
by point G (in either diagram). If it comes in from r = ∞, then it cannot reach smaller r
than where the dotted line hits the V2 curve, at point G. Point G is called a turning point.
At G, since E2 = V2 we must have (dr/dλ)2 = 0, from Eq. (11.12). Similar conclusions
apply to Eq. (11.11). To see what happens here we differentiate Eqs. (11.11) and (11.12).
For particles, differentiating the equation(

dr

dτ

)2

= Ẽ2 − Ṽ2(r)

with respect to τ gives

2

(
dr

dτ

)(
d2r

dτ 2

)
= −dṼ2(r)

dr

dr

dτ
,

or

particles :
d2r

dτ 2
= −1

2

d

dr
Ṽ2(r). (11.15)

Similarly, the photon equation gives

photons :
d2r

dλ2
= −1

2

d

dr
V2(r). (11.16)

These are the analogs in relativity of the equation

ma = −∇φ,

where φ is the potential for some force. If we now look again at point G, we see that the
radial acceleration of the trajectory is outwards, so that the particle (or photon) comes in
to the minimum radius, but is accelerated outward as it turns around, and so it returns to
r = ∞. This is a ‘hyperbolic’ orbit – the analog of the orbits which are true hyperbolae in
Newtonian gravity.
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It is clear from Eq. (11.15) or (Eq. (11.16) that a circular orbit (r = const.) is possible
only at a minimum or maximum of V2. These occur at points A and B in the diagrams (there
is no point B for photons). A maximum is, however, unstable, since any small change in
r results in an acceleration away from the maximum, by Eqs. (11.15) and (11.16). So for
particles, there is one stable (B) and one unstable circular orbit (A) for this value of L̃. For
photons, there is only one unstable orbit for this L. We can be quantitative by evaluating

0 = d

dr

[(
1 − 2M

r

)(
1 + L̃2

r2

)]

and

0 = d

dr

[(
1 − 2M

r

)
L2

r2

]
.

These give, respectively

particles : r = L̃2

2M

[
1 ±

(
1 − 12M2

L̃2

)1/2]
; (11.17)

photons : r = 3M. (11.18)

For particles, there are two radii, as we expect, but only if L̃2 > 12M2. The two radii are
identical for L̃2 = 12M2 and don’t exist at all for L̃2 < 12M2. This indicates a qualitative
change in the shape of the curve for Ṽ2(r) for small L̃. The two cases, L̃2 = 12M2 and
L̃2 < 12M2, are illustrated in Fig. 11.3. Since there is a minimum L̃2 for a circular particle
orbit, there is also a minimum r, obtained by taking L̃2 = 12M2 in Eq. (11.17)

particle : rMIN = 6M. (11.19)

For photons, the unstable circular orbit is always at the same radius, r = 3M, regard-
less of L.

The last kind of orbit we need consider is the one whose energy is given by the line
which passes through the point F in Figs. 11.1 and 11.2. Since this nowhere intersects the
potential curve, this orbit plunges right through r = 2M and never returns. From Exer. 1,

2M

1

r

(a)

Point of
inflection

V2(r)
L2 = 12M2

2M

1

r

(b)

V2(r)
L2 < 12M2

�Figure 11.3 As Fig. 11.1 for the indicated values of specific angular momentum.
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§ 11.7, we see that for such an orbit the impact parameter (b) is small: it is aimed more
directly at the hole than are orbits of smaller Ẽ and fixed L̃.

Of course, if the geometry under consideration is a star, its radius R will exceed 2M, and
the potential diagrams, Figs. 11.1–11.3, will be valid only outside R. If a particle reaches
R, it will hit the star. Depending on R/M, then, only certain kinds of orbits will be possible.

Perihel ion shift

A particle (or planet) in a (stable) circular orbit around a star will make one complete
orbit and come back to the same point (i.e. same value of φ) in a fixed amount of coordi-
nate times, which is called its period P. This period can be determined as follows. From
Eq. (11.17) it follows that a stable circular orbit at radius r has angular momentum

L̃2 = Mr

1 − 3M/r
, (11.20)

and since Ẽ2 = Ṽ2 for a circular orbit, it also has energy

Ẽ2 =
(

1 − 2M

r

)2
/(

1 − 3M

r

)
. (11.21)

Now, we have

dφ

dτ
:= Uφ = pφ

m
= gφφ

pφ
m

= gφφ L̃ = 1

r2
L̃ (11.22)

and
dt

dτ
:= U0 = p0

m
= g00 p0

m
= g00(−Ẽ) = Ẽ

1 − 2M/r
. (11.23)

We obtain the angular velocity by dividing these:

dt

dφ
= dt/dτ

dφ/dτ
=
(

r3

M

)1/2

. (11.24)

The period, which is the time taken for φ to change by 2π , is

P = 2π

(
r3

M

)1/2

. (11.25)

This is the coordinate time, of course, not the particle’s proper time. (But see Exer. 7,
§ 11.7: coordinate time is proper time far away.) It happens, coincidentally, that this is
identical to the Newtonian expression.

Now, a slightly noncircular orbit will oscillate in and out about a central radius r. In
Newtonian gravity the orbit is a perfect ellipse, which means, among other things, that
it is closed: after a fixed amount of time it returns to the same point (same r and φ). In
GR, this does not happen and a typical orbit is shown in Fig. 11.4. However, when the
effects of relativity are small and the orbit is nearly circular, the relativistic orbit must be
almost closed: it must look like an ellipse which slowly rotates about the center. One way
to describe this is to look at the perihelion of the orbit, the point of closest approach to
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(a)

(c)

(b)

�Figure 11.4 (a) A Newtonian orbit is a closed ellipse. Grid marked in units of M. (b) An orbit in the
Schwarzschild metric with pericentric and apcentric distances similar to those in (a). Pericenters
(heavy dots) advance by about 97◦ per orbit. (c) A moderately more compact orbit than in (b) has
a considerably larger pericenter shift, about 130◦.

the star. (‘Peri’ means closest and ‘helion’ refers to the Sun; for orbits about any old star
the name ‘periastron’ is more appropriate. For orbits around Earth – ‘geo’ – we speak of
the ‘perigee’. These opposite of ‘peri’ is ‘ap’: the furthest distance. Thus, an orbit also
has an aphelion, apastron, or apogee, depending on what it is orbiting around. The general
terms, not specific to any particular object, are perapsis and apapsis.) The perihelion will
rotate around the star in some manner, and observers can hope to measure this. It has been
measured for Mercury to be 43′′/century, and we must try to calculate it. Note that all other
planets are further from the Sun and therefore under the influence of significantly smaller
relativistic corrections to Newtonian gravity. The measurement of Mercury’s precession
is a herculean task, first accomplished in the 1800s. Due to various other effects, such as
the perturbations of Mercury’s orbit due to the other planets, the observed precession is
about 5600′′/century. The 43′′ is only the part not explainable by Newtonian gravity, and
Einstein’s demonstration that his theory predicts exactly that amount was the first evidence
in favor of the theory.



289 11.1 Trajectories in the Schwarzschild spacetime
�

To calculate the precession, let us begin by getting an equation for the particle’s orbit.
We have dr/dτ from Eq. (11.11). We get dφ/dτ from Eq. (11.22) and divide to get(

dr

dφ

)2

= Ẽ2 − (1 − 2M/r)
(
1 + L̃2/r2

)
L̃2/r4

. (11.26)

It is convenient to define

u := 1/r (11.27)

and obtain (
du

dφ

)2

= Ẽ2

L̃2
− (1 − 2Mu)

(
1

L̃2
+ u2

)
. (11.28)

The Newtonian orbit is found by neglecting u3 terms (see Exer. 11, § 11.7)

Newtonian :

(
du

dφ

)2

= Ẽ2

L̃2
− 1

L̃2
(1 − 2Mu) − u2. (11.29)

A circular orbit in Newtonian theory has u = M/L̃2 (take the square root equal to 1 in
Eq. (11.17)), so we define

y = u − M

L̃2
, (11.30)

so that y represents the deviation from circularity. We then get(
dy

dφ

)2

= Ẽ2 − 1

L̃2
+ M2

L̃4
− y2. (11.31)

It is easy to see that this is satisfied by

Newtonian : y =
[

Ẽ2 + M2/L̃2 − 1

L̃2

]1/2

cos(φ + B), (11.32)

where B is arbitrary. This is clearly periodic: as φ advances by 2π , y returns to its value
and, therefore, so does r. The constant B just determines the initial orientation of the orbit.
It is interesting, but unimportant for our purposes, that by solving for r we get

Newtonian :
1

r
= M

L̃2
+
[

Ẽ2 + M2/L̃2 − 1

L̃2

]1/2

cos(φ + B), (11.33)

which is the equation of an ellipse.
We now consider the relativistic case and make the same definition of y, but instead of

throwing away the u3 term in Eq. (11.28) we assume that the orbit is nearly circular, so
that y is small, and we neglect only the terms in y3. Then we get

Nearly circular:(
dy

dφ

)2

= Ẽ2 + M2/L̃2 − 1

L̃2
+ 2M4

L̃6
+ 6M3

L̃2
y −

(
1 − 6M2

L̃2

)
y2. (11.34)
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This can be made analogous to Eq. (11.31) by completing the square on the right-hand
side. The result is the solution

y = y0 + A cos(kφ + B), (11.35)

where B is arbitrary and the other constants are

k =
(

1 − 6M2

L̃2

)1/2

,

y0 = 3M3/k2L̃2,

A = 1

k

[
Ẽ2 + M2/L̃2 − 1

L̃2
+ 2M4

L̃6
− y2

0

]1/2

. (11.36)

The appearance of the constant y0 just means that the orbit oscillates not about y = 0
(u = M̃/L2) but about y = y0: Eq. (11.30) doesn’t use the correct radius for a circular orbit
in GR. The amplitude A is also somewhat different, but what is most interesting here is
the fact that k is not 1. The orbit returns to the same r when kφ goes through 2π , from
Eq. (11.35). Therefore the change in φ from one perihelion to the next is

�φ = 2π

k
= 2π

(
1 − 6M2

L̃2

)−1/2

, (11.37)

which, for nearly Newtonian orbits, is

�φ  2π

(
1 + 3M2

L̃2

)
. (11.38)

The perihelion advance, then, from one orbit to the next, is

�φ = 6πM2/L̃2 radians per orbit. (11.39)

We can use Eq. (11.20) to obtain L̃ in terms of r, since the corrections for noncircu-
larity will make changes in Eq. (11.39) of the same order as terms we have already
neglected. Moreover, if we consider orbits about a nonrelativistic star, we can approximate
Eq. (11.20) by

L̃2 = Mr

1 − 3M/r
≈ Mr,

so that we get

�φ ≈ 6π
M

r
. (11.40)

For Mercury’s orbit, r = 5.55 × 107 km and M = 1 M⊙ = 1.47 km, so that

(�φ)Mercury = 4.99 × 10−7 radians per orbit. (11.41)

Each orbit take 0.24 yr, so the shift is

(�φ)Mercury = .43′′/yr = 43′′/century. (11.42)
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Binary pulsars

Another system in which the pericenter shift is observable is the Hulse-Taylor binary pulsar
system PSR B1913+16 that we introduced in § 9.3. While this is not a “test particle”
orbiting a spherical star, but is rather two roughly equal-mass stars orbiting their common
center of mass, the pericenter shift (in this case, the periastron shift) still happens in the
same way. The two neutron stars of the Hulse-Taylor system have mean separation 1.2 ×
109 m, so using Eq. (11.40) with M = 1.4 M⊙ = 2.07 km gives a crude estimate of �φ =
3.3 × 10−5 radians per orbit = 2◦.1 per year. This is much easier to measure than Mercury’s
shift! In fact, a more careful calculation, taking into account the high eccentricity of the
orbit and the fact that the two stars are of comparable mass, predict 4◦.2 per year.

For our purposes here we have calculated the periastron shift from the known masses
of the star. But in fact the observed shift of 4.2261◦ ± 0.0007 per year is one of the data
which enable us to calculate the masses of the neutron stars in the PSR B1913+16 sys-
tem. The other datum is another relativistic effect: a redshift of the signal which results
from two effects. One is the special-relativistic ‘transverse-Doppler’ term: the 0(v)2 term
in Eq. (2.39). The other is the changing gravitational redshift as the pulsar’s eccentric orbit
brings it in and out of its companion’s gravitational potential. These two effects are obser-
vationally indistinguishable from one another, but their combined resultant redshift gives
one more number which depends on the masses of the stars. Using it and the periastron shift
and the Newtonian mass function for the orbit allows us to determine the stars’ masses and
the orbit’s inclination (see Stairs 2003).

While PSR B1913+16 was the first binary pulsar to be discovered, astronomers now
know of many more (Lorimer 2008, Stairs 2003). The most dramatic system is the so-called
double pulsar system PSR J0737-3039, the first binary discovered in which both members
are seen as radio pulsars (Kramer et al. 2006). In this system the pericenter shift is around
17◦ per year! Because both pulsars can be tracked, this system promises to become the
best testing ground so far for the deviations of general relativity from simple Newtonian
behavior. We discuss some of these now.

Post-Newtonian gravity

The pericenter shift is an example of corrections that general relativity makes to Newto-
nian orbital dynamics. In going from Eq. (11.37) to Eq. (11.38), we made an approximation
that the orbit was ‘nearly Newtonian’, and we did a Taylor expansion in the small quantity
M2/L̃2, which by Eq. (11.20) is (M/r)(1 − 3M/r). This is indeed small if the particle’s
orbit is far from the black hole, r � M. So orbits far from the hole are very nearly like
Newtonian orbits, with small corrections like the pericenter shift. These are orbits where,
in Newtonian language, the gravitational potential M/r is small, as is the particle’s orbital
velocity, which for a circular orbit is related to the potential by v2 = M/r. Far from even
an extremely relativistic source, gravity is close to being Newtonian. We say that the peri-
center shift is a post-Newtonian effect, a correction to Newtonian motion in the limit of
weak fields and slow motion.
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We showed in § (8.4) that Newton’s field equations emerge from the full equations of
general relativity in this same limit, where the field (we called it h in that calculation) is
weak and the velocities small. It is possible to follow that approximation to higher order, to
keep the first post-Newtonian corrections to the Einstein field equations in this same limit.
If we did this, we would be able to show the result we have asserted, that the pericenter
shift is a general feature of orbital motion. We showed in that section that the metric of
spacetime that describes a Newtonian system with gravitational potential φ is, to first order
in φ, given by the metric

ds2 = −(1 + 2φ)dt2 + (1 − 2φ)(dx2 + dy2 + dz2). (11.43)

For comparison, let us take the limit for weak fields of the Schwarzschild metric given in
Eq. (11.1:

ds2 ≈ −
(

1 − 2M

r

)
dt2 +

(
1 + 2M

r

)
dr2 + r2 d�2, (11.44)

where we have expanded grr and kept only the lowest order term in M/r. These two metrics
look similar – their g00 terms are identical – but they appear not to be identical, because if
we transform the spatial line element of Eq. (11.43) to polar coordinates in the usual way,
we would expect to see in Eq. (11.44) the spatial line element

d�2 =
(

1 + 2M

r

)(
dr2 + r2 d�2

)
. (11.45)

(Readers who want to be reminded about the transformation from Cartesian to spherical
coordinates in flat space should see Eq. (6.19) and Exer. 28, § 6.9.) Is this difference from
the spatial part of Eq. (11.44) an indication that the Schwarzschild metric does not obey
the Newtonian limit? The answer is no – we are dealing with a coordinate effect.

Coordinates in which the line element has the form of Eq. (11.45) are called isotropic
coordinates because there is no distinction in the metric among the directions x, y, and z.
Isotropic coordinates are related to Schwarzschild coordinates by a change in the definition
of the radial coordinate. If we call the isotropic coordinates (t, r̄, θ , φ), where (t, θ , φ) are
the same as in Schwarzschild, then we make the simple transformation for large r given by

r̄ = r − M. (11.46)

Then to lowest order in M/r or M/r̄, the expression 1 + 2M/r in Eq. (11.44) equals 1 −
2M/r̄. But the factor in front of d�2 is r2, which becomes (again to first order) r̄2(1 +
2M/r). It follows that this simple transformation changes the spatial part of the line element
of Eq. (11.44) to Eq. (11.45) in terms of the radial coordinate r̄. This demonstrates that the
far field of the Schwarzschild solution does indeed conform to the form in Eq. (8.50).

There are of course many other post-Newtonian effects in general relativity besides the
pericenter shift. In the next paragraph we will explore the deflection of light. Later in
this chapter we will meet the dragging of inertial frames due to the rotation of the source
of gravity (also called gravitomagnetism). It is possible to expand the Einstein equations
beyond the first post-Newtonian equations and find second and higher post-Newtonian
effects. Physicists have put considerable work into doing such expansions, because they
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provide highly accurate predictions of the orbits of inspiralling neutron stars and black
holes, which are needed for the detection of the gravitational waves they emit (recall Ch. 9).

The post-Newtonian expansion assumes not just weak gravitational fields but also slow
velocities. The effect of this is that the Newtonian (Keplerian) motion of a planet depends
only on the g00 part of the metric. The reason is that, in computing the total elapsed proper
time along the world line of the particle, the spatial distance increments the particle makes
(for example dr) are much smaller than the time increments dt, since dr/dt 	 1. Recall that
g00 is also responsible for the gravitational redshift. It follows, therefore, that Newtonian
gravity can be identified with the gravitational redshift: knowing one determines the other
fully. Newtonian gravity is produced exclusively by the curvature of time in spacetime.
Spatial curvature comes in only at the level of post-Newtonian corrections.

Gravitat ional deflect ion of l ight

In our discussion of orbits we treated only particles, not photons, because photons do not
have bound orbits in Newtonian gravity. In this section we treat the analogous effect for
photons, their deflection from straight-line motion as they pass through a gravitational field.
Historically, this was the first general-relativistic effect to have been predicted before it was
observed, and its confirmation in the eclipse of 1919 (see McCrae 1979) made Einstein an
international celebrity. The fact that it was a British team (led by Eddington) who made the
observations to confirm the theories of a German physicist incidentally helped to alleviate
post-war tension between the scientific communities of the two countries. In modern times,
the light-deflection phenomenon has become a key tool of astronomy, as we describe in a
separate paragraph on gravitational lensing below. But first we need to understand how and
why gravity deflects light.

We begin by calculating the trajectory of a photon in the Schwarzschild metric under the
assumption that M/r is everywhere small along the trajectory. The equation of the orbit is
the ratio of Eq. (11.8) to the square root of Eq. (11.12):

dφ

dr
= ± 1

r2

[
1

b2
− 1

r2

(
1 − 2M

r

)]−1/2

, (11.47)

where we have defined the impact parameter,

b := L/E. (11.48)

In Exer. 1, § 11.7, it is shown that b would be the minimum value of r in Newtonian
theory, where there is no deflection. It therefore represents the ‘offset’ of the photon’s
initial trajectory from a parallel one moving purely radially. An incoming photon with
L > 0 obeys the equation

dφ

du
=
(

1

b2
− u2 + 2Mu3

)−1/2

, (11.49)

with the same definition as before,

u = 1/r. (11.50)
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If we neglect the u3 term in Eq. (11.49), all effects of M disappear, and the solution is

r sin(φ − φ0) = b, (11.51)

a straight line. This is, of course, the Newtonian result.
Suppose now we assume Mu 	 1 but not entirely negligible. Then if we define

y := u(1 − Mu), u = y(1 + My) + 0(M2u2), (11.52)

Eq. (11.49) becomes

dφ

dy
= (1 + 2My)(

b−2 − y2
)1/2

+ 0(M2u2). (11.53)

This can be integrated to give

φ = φ0 + 2M

b
+ arcsin(by) − 2M

(
1

b2
− y2

)1/2

. (11.54)

The initial trajectory has y → 0, so φ → φ0: φ0 is the incoming direction. The photon
reaches its smallest r when y = 1/b, as we can see from setting dr/dλ = 0 in Eq. (11.22)
and using our approximation Mu 	 1. This occurs at the angle φ = φ0 + 2M/b + π/2. It
has thus passed through an angle π/2 + 2M/b as it travels to its point of closest approach.
By symmetry, it passes through a further angle of the same size as it moves outwards
from its point of closest approach (see Fig. 11.5). It thus passes through a total angle
of π + 4M/b. If it were going on a straight line, this angle would be π , so the net
deflection is

�φ = 4M/b. (11.55)

To the accuracy of our approximations, we may use for b the radius of closest approach
rather than the impact parameter L/E. For the sum, the maximum effect is for trajectories
for which b = R⊙, the radius of the Sun. Given M = 1 M⊙ = 1.47 km and R⊙ = 6.96 ×
105 km, we find

(�φ)⊙,max = 8.45 × 10−6 rad = 1′′.74. (11.56)

φ = φ0 + π + 

φ = φ0

4M
b

φ = φ0 +        + 
2M
b

π
2

y = 1
b

�Figure 11.5 Deflection of a photon.
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φ0

Sun

Satellite
n→

s→

a→
To star

�Figure 11.6 An observation from Earth of a star not at the limb of the Sun does not need to correct for the
full deflection of Fig. 11.5.

For Jupiter, with M = 1.12 × 10−3 km and R = 6.98 × 104 km, we have

(�φ)�,max = 6.42 × 10−8 rad = 0′′.013. (11.57)

This deflection has been measured by the Hipparcos astrometry satellite.
Of course, satellite observations of stellar positions are made from a position near Earth,

and for stars that are not near the Sun in the sky the satellite will receive their light before
the total deflection, given by Eq. (11.55), has taken place. This situation is illustrated in
Fig. 11.6. An observer at rest at the position of the satellite observes an apparent position
in the direction of the vector �a, tangent to the path of the light ray, and if he knows his
distance r from the Sun, he can calculate the true direction to the star, �s. Exer. 16, § 11.7,
derives the general result.

Although the deflection of light was a key to establishing the correctness of general rel-
ativity, it is interesting that there is a purely Newtonian argument for light deflection. This
was first predicted by Cavendish in 1784 and independently by the German astronomer
J. G. von Söldner (1776–1833) in 1801. The argument relies on light behaving like a par-
ticle moving at speed c. Since the motion of a particle in a gravitational field depends only
on its velocity, Cavendish and von Söldner were able to compute the simple result that the
deflection would be 2M/b, exactly half of the prediction of general relativity in Eq. (11.55).
Einstein himself, unaware of this previous work, derived the same result in 1908, just at
the beginning of his quest for a relativistic theory of gravity. So the triumph of general
relativity was not that it predicted a deflection, but that it predicted the right amount of
deflection.

The reason that this Newtonian result is half of the fully relativistic one is not hard to
understand. Recall the remark at the end of the paragraph on post-Newtonian effects, that
the orbits of planets depend only on g00 because their velocities are small. Now, light is
not slow: the spatial increments dr are comparable to the time increments dt. This means
that the spatial part of the metric, say grr, are of equal weight with g00 in determining the
motion of a photon. Looking at Eq. (11.44), we see that the deviations from flatness in
both g00 and grr are the same. Whatever deflection is produced by g00 (the only part of the
metric that the Newtonian computations were sensitive to) is doubled by grr. The extra-
large deflection of light in general relativity compared with Newtonian gravity is direct
evidence for the curvature of space as well as time.
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Gravitat ional lensing

It may of course happen that photons from the same star will travel trajectories that pass on
opposite sides of the deflecting star and intersect each other after deflection, as illustrated
in Fig. 11.7. Rays 1 and 2 are essentially parallel if the star (∗) is far from the deflecting
object (S). An observer at position B would then see two images of the star, coming from
apparently different directions.

This is a very simple and special arrangement of the objects, but it illustrates the prin-
ciple that gravitating bodies act as lenses. Lensing is essentially universal: no matter how
weak the deflection, it would always be possible to place the observer B far enough away
from S to see two rays from the same point on the source. We don’t get such “double
vision” when we look at the heavens because the probability of ‘being in exactly the right
spot’ B for any given star and lens is small, and because many sources are not pointlike
like our star: if the angular separation of the images at B (which is of order the deflection
angle) is small compared to the angular size of the object on the sky, then we are not likely
to be able to tell the difference between the two rays.

But as astronomers have built larger and more powerful telescopes, able to see much
greater distances into the universe, they have revealed a sky filled with lensed images. Of
particular importance is lensing by clusters of galaxies. There are so many galaxies in the
universe that, beyond any given relatively distant cluster, there is a high probability that
there will be another group of galaxies located in just the right position to be lensed into
multiple images in our telescope: the probability of ‘being in exactly the right spot’ has
become reasonably large. What is more, the masses of galaxy clusters are huge, so the
deflections are much bigger than the sizes of the more distant galaxy images, so separating
them is not a problem. In fact, we often see multiple images of the same object, created by
the irregularities of the lensing mass distribution. A good example is in Fig. 11.8.

Even more important than the creation of separate images can be the brightening of
single images by the focusing of light from them. This is called magnification. The mag-
nification of galaxy images by lensing makes it possible for astronomers to see galaxies at
greater distances, and has helped studies of the very early universe. Lensing also helps us
map the mass distribution of the lensing cluster, and this has shown that clusters have much
more mass than can be associated with their luminous stars. Astronomers call this dark
matter, and it will be an important subject in the next chapter, when we discuss cosmology.

Detailed modeling of observed lenses has shown that the dark matter is distributed more
smoothly inside clusters than the stars, which clump into the individual galaxies. The mass
of a cluster may be ten or more times the mass of its stars. The dark matter is presumably
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�Figure 11.7 Deflection can produce multiple images.
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�Figure 11.8 A picture taken with the Hubble Space Telescope of a cluster called 0024+1654 (fuzzy round
galaxies) showing many images of a much more distant galaxy. The images are distorted, all of
them stretched in the direction transverse to the line joining the image and the center of the
cluster, and compressed along this line. Picture courtesy of W. N. Colley and E. Turner (Princeton
University), J. A. Tyson (Bell Labs, Lucent Technologies) and NASA.

made of something that carries no electric charge, because light from the distant galaxies
passes through it without absorption or scattering, and it seems to emit no electromagnetic
radiation. Physicists do not know of any elementary particle that could serve as dark matter
in this way: apart from neutrinos, all electrically neutral particles known at present (2008)
are unstable and decay quickly. And neutrinos are thought to be too light to have been
trapped in the gravitational fields of clusters. Dark matter is one of the biggest mysteries at
the intersection of astronomy and particle physics today.

Studies of gravitational lensing have the potential to reveal any matter that clumps in
some way. Lensing observations of individual stars in our galaxy (microlensing) have
shown that there appears to be a population of objects with stellar masses that are also
dark: they are observed only because they pass across more distant stars in our Galaxy and
produce lensing. In this case, observers do not see two separate images. Instead, they see
is brightening of the distant star, caused by the fact that the lens focuses more light on
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the telescope than would reach it if the lens were not there. This brightening is temporary
because the lensing object itself moves, and so the lensing event is transitory. Optical stud-
ies of the region around the lensed stars have shown that the lensing object is not as bright
as a normal white dwarf star but has a mass that is a good fraction of a solar mass. The
nature of these lensing objects, which could represent a significant fraction of the mass of
the Galaxy, is still (2008) a mystery.

11.2 Nature of the sur face r = 2M

Coordinate singular it ies

It is clear that something funny goes wrong with the line element, Eq. (11.1) at r = 2M, but
what is not clear is whether the problem is with the geometry or just with the coordinates.
Coordinate singularities – places where the coordinates don’t describe the geometry prop-
erly – are not unknown in ordinary calculus. Consider spherical coordinates at the poles.
The north pole on a sphere has coordinates θ = 0, 0 � φ < 2π . That is, although φ can
have any value for θ = 0, all values really correspond to a single point. We might draw a
coordinate diagram of the sphere as follows (Fig. 11.9 – maps of the globe are sometimes
drawn this way), in which it would not be at all obvious that all points at θ = 0 are really
the same point. We could, however, convince ourselves of this by calculating the circum-
ference of every circle of constant θ and verifying that these approached zero as θ → 0
and θ → π . That is, by asking questions that have an invariant geometrical meaning, we
can tell if the coordinates are bad. For the sphere, the metric is positive-definite, so if two
points have zero distance between them, they are the same point (e.g. θ = 0,φ = π and
θ = 0,φ = 2π : see Exer. 18, § 11.7). In relativity, the situation is more subtle, since there
are curves (null curves) where distinct points have zero invariant distance between them.
In fact, the whole question of the nature of the surface r = 2M is so subtle that it was not
answered satisfactorily until 1960. (This was just in time, too, since black holes began to
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�Figure 11.9 One way of drawing as sphere on a flat piece of paper. Not only are φ = 0 and φ = 2π really the
same lines, but the lines θ = 0 and θ = π are each really just one point. Spherical coordinates are
therefore not faithful representations of the sphere everywhere.
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be of importance in astronomy within a decade as new technology made observations of
quasars, pulsars, and X-ray sources possible.) We shall explore the problem by asking a
few geometrical questions about the metric and then demonstrating a coordinate system
which has no singularity at this surface.

Infal l ing part ic les

Let a particle fall to the surface r = 2M from any finite radius R. How much proper time
does that take? That is, how much time has elapsed on the particle’s clock? The simplest
particle to discuss is the one that falls in radially. Since dφ = 0, we have L̃ = 0 and, from
Eq. (11.11), (

dr

dτ

)2

= Ẽ2 − 1 + 2M

r
, (11.58)

or

dτ = − dr(
Ẽ2 − 1 + 2M/r

)1/2
(11.59)

(the minus sign because the particle falls inward). It is clear that if Ẽ2> 1 (unbound par-
ticle), the integral of the right-hand side from R to 2M is finite. If Ẽ = 1 (particle falling
from rest at ∞), the integral is simply

�τ = 4M

3

[( r

2M

)3/2
]R

2M
, (11.60)

which is again finite. And if Ẽ< 1, there is again no problem since the particle cannot be
at larger r than where 1 − Ẽ2 = 2M/r (see Eq. (11.58)). So the answer is that any particle
can reach the horizon in a finite amount of proper time. In fact there is nothing about the
integral that prevents us placing the lower limit smaller than 2M, that is the other side of
the surface r = 2M. The particle apparently can go inside r = 2M in a finite proper time.

We now ask how much coordinate time elapses as the particle falls in. For this we use

U0 = dt

dτ
= g00U0 = g00 po

m
= −g00Ẽ =

(
1 − 2M

r

)−1

Ẽ.

Therefore we have

dt = Ẽ dτ

1 − 2M/r
= − Ẽ dr

(1 − 2M/r)(Ẽ2 − 1 + 2M/r)1/2
. (11.61)

For simplicity, we again consider the case Ẽ = 1 and examine this near r = 2M by defining
the new variable

ε := r − 2M.

Then we get

dt = −(ε + 2M)3/2dε

(2M)1/2ε
. (11.62)
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It is clear that as ε → 0 the integral of this goes like In ε, which diverges. We would also
find this for Ẽ �= 1, because the divergence comes from the [1 − (2M/r)]−1 term, which
doesn’t contain Ẽ. Therefore a particle reaches the surface r = 2M only after an infinite
coordinate time has elapsed. Since the proper time is finite, the coordinate time must be
behaving badly.

Inside r = 2M

To see just how badly it behaves, let us ask what happens to a particle after it reaches
r = 2M. It must clearly pass to smaller r unless it is destroyed. This might happen if at
r = 2M there were a ‘curvature singularity’, where the gravitational forces grew strong
enough to tear anything apart. But calculation of the components Rαβμν of Riemannian
tensor in the local inertial frame of the infalling particle shows them to be perfectly finite:
Exer. 20, § 11.7. So we must conclude that the particle will just keep going. If we look at
the geometry inside but near r = 2M, by introducing ε := 2M − r, then the line element is

ds2 = ε

2M − ε
dt2 − 2M − ε

ε
dε2 + (2M − ε)2d�2. (11.63)

Since ε > 0 inside r = 2M, we see that a line on which t, θ ,φ are constant has ds2 < 0: it
is timelike. Therefore ε (and hence r) is a timelike coordnate, while t has become spacelike:
even more evidence for the funniness of t and r! Since the infalling particle must follow a
timelike world line, it must constantly change r, and of course this means decrease r. So
a particle inside r = 2M will inevitably reach r = 0, and there a true curvature singulaity
awaits it: sure destruction by infinite forces (Exer. 20, § 11.7). But what happens if the
particle inside r = 2M tries to send out a photon to someone outside r = 2M in order to
describe his impending doom? This photon, no matter how directed, must also go forward
in ‘time’ as seen locally by the particle, and this means to decreasing r. So the photon
will not get out either. Everything inside r = 2M is trapped and, moreover, doomed to
encounter the singularity at r = 0, since r = 0 is in the future of every timelike and null
world line inside r = 2M. Once a particle crosses the surface r = 2M, it cannot be seen by
an external observer, since to be seen means to send out a photon which reaches the external
observer. This surface is therefore called a horizon, since a horizon on Earth has the same
effect (for different reasons!). We shall henceforth refer to r = 2M as the Schwarzschild
horizon.

Coordinate systems

So far, our approach has been purely algebraic – we have no ‘picture’ of the geometry. To
develop a picture we will first draw a coordinate diagram in Schwarzschild coordinates,
and on it we will draw the light cones, or at least the paths of the radially ingoing and
outgoing null lines emanating from certain events (Fig. 11.10). These light cones may be
calculated by solving ds2 = 0 for θ and φ constant:
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�Figure 11.10 Light cones drawn in Schwarzschild coordinates close up near the surface r = 2M.

dt

dr
= ±

(
1 − 2M

r

)−1

. (11.64)

In a t − r diagram, these lines have slope ± 1 far from the star (standard SR light cone)
but their slope approaches ±∞ as r → 2M. This means that they become more vertical:
the cone ‘closes up’. Since particle world lines are confined within the local light cone
(a particle must move slower than light), this closing up of the cones forces the world lines
of particles to become more vertical: if they reach r = 2M, they reach it at t = ∞. This
is the ‘picture’ behind the algebraic result that a particle takes infinite coordinate time to
reach the horizon. Notice that no particle world line reaches the line r = 2M for any finite
value of t. This might suggest that the line (r = 2M, −∞ < t < ∞) is really not a line at
all but a single point in spacetime. That is, our coordinates may go bad by expanding a
single event into the whole line r = 2M, which would have the effect that if any particle
reached the horizon after that event, then it would have to cross r = 2M ‘after’ t = +∞.
This singularity would then be very like the one in Fig. 11.9 for spherical coordinates at the
pole: a whole line in the bad coordinates representing a point in the real space. Notice that
the coordinate diagram in Fig. 11.10 makes no attempt to represent the geometry properly,
only the coordinates. It clearly does a poor job on the geometry because the light cones
close up. Since we have already decided that they don’t really close up (particles reach the
horizon at finite proper time and encounter a perfectly well-behaved geometry there), the
remedy is to find coordinates which do not close up the light cones.

Kruskal–Szekeres coordinates

The search for these coordinates was a long and difficult one, and ended in 1960. The
good coordinates are known as Kruskal–Szekeres coordinates, are called u and v, and are
defined by
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u = (r/2M − 1)1/2er/4M cosh(t/4M),
v = (r/2M − 1)1/2er/4M sinh(t/4M),

}
(11.65)

for r> 2M and

u = (1 − r/2M)1/2er/4M sinh(t/4M),
v = (1 − r/2M)1/2er/4M cosh(t/4M),

}
(11.66)

for r< 2M. (This transformation is singular at r = 2M, but that is necessary in order to
eliminate the coordinate singularity there.) The metric in these coordinates is found to be

ds2 = −32M3

r
e−r/2M(dv2 − du2) + r2d�2, (11.67)

where, now, r is not to be regarded as a coordinate but as a function of u and v, given
implicitly by the inverse of Eqs. (11.65) and (11.66):( r

2M
− 1

)
er/2M = u2 − v2. (11.68)

Notice several things about Eq. (11.67). There is nothing singular about any metric term
at r = 2M. There is, however, a singularity at r = 0, where we expect it. A radial null line
(dθ = dφ = ds = 0) is a line

dv = ±du. (11.69)

This last result is very important. It means that in a (u,υ) diagram, the light cones are all
as open as in SR. This result makes these coordinates particularly useful for visualizing
the geometry in a coordinate diagram. The (u,υ) diagram is, then, given in Fig. 11.11.
Compare this with the result of Exer. 21, § 5.8.
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II

r = const

r = 0

r = const

t = constr = 2M
, t 

= ∞

�Figure 11.11 Kruskal–Szekeres coordinates keep the light cones at 45◦ everywhere. The singularity at r = 0
(toothed line) bounds the future of all events inside (above) the line r = 2M, t = +∞. Events
outside this horizon have part of their future free of singularities.
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Much needs to be said about this. First, two light cones are drawn for illustration. Any
45◦ line is a radial null line. Second, only u and υ are plotted: θ and φ are suppressed;
therefore each point is really a two sphere of events. Third, lines of constant r are hyper-
bolae, as is clear from Eq. (11.68). For r> 2M, these hyperbolae run roughly vertically,
being asymptotic to the 45◦ line from the origin u = υ = 0. For r< 2M, the hyperbolae
run roughly horizontally, with the same asymptotes. This means that for r< 2M, a timelike
line (confined within the light cone) cannot remain at constant r. This is the result we had
before. The hyperbola r = 0 is the end of the spacetime, since a true singularity is there.
Note that although r = 0 is a ‘point’ in ordinary space, it is a whole hyperbola here. How-
ever, not too much can be made of this, since it is a singularity of the geometry: we should
not glibly speak of it as a part of spacetime with a well-defined dimensionality.

Our fourth remark is that lines of constant t, being orthogonal to lines of constant r,
are straight lines in this diagram, radiating outwards from the origin u = υ = 0. (They are
orthogonal to the hyperbolae r = const. in the spacetime sense of orthogonality; recall
our diagrams in § 1.7 of invariant hyperbolae in SR, which had the same property of
being orthogonal to lines radiating out from the origin.) In the limit as t → ∞, these lines
approach the 45◦ line from the origin. Since all the lines t = const. pass through the ori-
gin, the origin would be expanded into a whole line in a (t, r) coordinate diagram like
Fig. 11.10, which is what we guessed after discussing that diagram. A world line cross-
ing this t = ∞ line in Fig. 11.11 enters the region in which r is a time coordinate, and so
cannot get out again. The true horizon, then, is this line r = 2M, t = +∞.

Fifth, since for a distant observer t really does measure proper time, and an object that
falls to the horizon crosses all the lines t = const. up to t = ∞, a distant observer would
conclude that it takes an infinite time for the infalling object to reach the horizon. We have
already drawn this conclusion before, but here we see it displayed clearly in the diagram.
There is nothing ‘wrong’ in this statement: the distant observer does wait an infinite time
to get the information that the object has crossed the horizon. But the object reaches the
horizon in a finite time on its own clock. If the infalling object sends out radio pulses each
time its clock ticks, then it will emit only a finite number before reaching the horizon, so
the distant observer can receive only a finite number of pulses. Since these are stretched
out over a very large amount of the distant observer’s time, the observer concludes that
time on the infalling clock is slowing down and eventually stopping. If the infalling ‘clock’
is a photon, the observer will conclude that the photon experiences an infinite gravitational
redshift. This will also happen if the infalling ‘object’ is a gravitational wave of short
wavelength compared to the horizon size.

Sixth, this horizon is itself a null line. This must be the case, since the horizon is the
boundary between null rays that cannot get out and those that can. It is therefore the path
of the ‘marginal’ null ray. Seventh, the 45◦ lines from the origin divide spacetime up into
four regions, labeled I, II, III, IV. Region I is clearly the ‘exterior’, r> 2M, and region II
is the interior of the horizon. But what about III and IV? To discuss them is beyond the
scope of this publication (see Misner et al. 1973, Box 33.2G and Ch. 34; and Hawking and
Ellis 1973), but one remark must be made. Consider the dashed line in Fig. (11.11), which
could be the path of an infalling particle. If this black hole were formed by the collapse of
a star, then we know that outside the star the geometry is the Schwarzschild geometry, but
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inside it may be quite different. The dashed line may be taken to be the path of the surface
of the collapsing star, in which case the region of the diagram to the right of it is outside
the star and so correctly describes the spacetime geometry, but everything to the left would
be inside the star (smaller r) and hence has possibly no relation to the true geometry of
the spacetime. This includes all of regions III and IV, so they are to be ignored by the
astrophysicist (though they can be interesting to the mathematician!). Note that parts of
I and II are also to be ignored, but there is still a singularity and horizon outside the star.

The eighth and last remark we will make is that the coordinates u and υ are not par-
ticularly good for describing the geometry far from the star, where guu and gυυ fall off
exponentially in r. The coordinates t and r are best there; indeed, they were constructed in
order to be well behaved there. But if we is interested in the horizon, then we use u and v.

11.3 Genera l b lack ho les

Formation of black holes in general

The phenomenon of the formation of a horizon has to do with the collapse of matter to
such small dimensions that the gravitational field traps everything within a certain region,
which is called the interior of the horizon. We have explored the structure of the black
hole in one particular case – the static, spherically symmetric situation – but the formation
of a horizon is a much more general phenomenon. When we discuss astrophysical black
holes in § 11.4 we will address the question of how Nature might arrange to get so much
mass into such a small region. But it should be clear that, in the real world, black holes are
not formed from perfectly spherical collapse. Black holes form in complicated dynamical
circumstances, and after they form they continue to participate in dynamics: as members
of binary systems, as centers of gas accretion, as sources of gravitational radiation. In this
section we learn how to define black holes and what we know about them in general.

The central, even astonishing property of the Schwarzschild horizon is that anything
that crosses it can not get back outside it. The definition of a general horizon (called an
event horizon) focuses on this property. An event horizon is the boundary in spacetime
between events that can communicate with distant observers and events that cannot. This
definition assumes that distant observers exist, that the spacetime is asymptotically flat,
as defined in § 8.4. And it permits the communication to take an arbitrarily long time: an
event is considered to be outside the horizon provided it can emit a photon in even just one
special direction that eventually makes it out to a distant observer. The most important part
of the definition to think about is that the horizon is a boundary in spacetime, not just in
the space defined by one moment of time. It is a three-dimensional surface that separates
the events of spacetime into two regions: trapped events inside the horizon and untrapped
events outside.

Since no form of communication can go faster than light, the test of whether events can
communicate with distant observers is whether they can send light rays, that is whether
there are null rays that can get arbitrarily far away. As the boundary between null rays that
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can escape and null rays that are trapped, the horizon itself is composed of null world lines.
These are the marginally trapped null rays, the ones that neither move away to infinity nor
fall inwards. By definition these marginal null rays stay on the horizon forever, because if
a ray were to leave it toward the exterior or interior, then it would not mark the horizon.
It is not hard to see that this definition fits the Schwarzschild horizon, which is static and
unchanging, but when we consider dynamical situations there are some surprises.

The formation of a horizon from a situation where there is initially no black hole illus-
trates well the dynamical nature of the horizon. Consider the collapse of a spherical star to
form a black hole. In the end there is a static Schwarzschild horizon, but before that there
is an intermediate period of time in which the horizon is growing from zero radius to its
full size. This is easy to see by considering Fig. 11.12, which illustrates (very schemati-
cally) the collapsing situation. (The time coordinate is a kind of Schwarzschild time, but it
isn’t to be taken too literally.) As matter falls in, the trajectories of photons that start from
the center of the collapsing star (wavy lines) are more and more affected. Photon (a) gets
out with little trouble, photon (b) has some delay, and photon (c) is the ‘marginal’ one,
which just gets trapped and remains on the Schwarzschild horizon. Anything later than (c)
is permanently trapped, anything earlier gets out. So photon (c) does in fact represent the
horizon at all times, by definition, since it is the boundary between trapped and untrapped.
Thus, we see the horizon grow from zero radius to 2M by watching photon (c)’s progress
outwards. For this spherically symmetric situation, if we knew the details of the collapse,
we could easily determine the position of the horizon. But if there were no symmetry –
particularly if the collapse produced a large amount of gravitational radiation – then the
calculation would be far more difficult, although the principle would be the same.

As a more subtle example of a dynamical horizon, consider what happens to the
Schwarzschild horizon of the ‘final’ black hole in Fig. 11.12 if at a much later time some
more gas falls in (not illustrated in the figure). For simplicity, we again assume the infalling
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�Figure 11.12 Schematic spacetime diagram of spherical collapse. Light ray (a) hardly feels anything, (b) is
delayed, and (c) is marginally trapped. The horizon is defined as the ray (c), so it grows
continuously from zero radius as the collapse proceeds.
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gas is perfectly spherical. Let the mass of the hole before the gas falls in be called M0. The
surface r = 2M0 is static and appears to be the event horizon: photons inside it fall towards
the singularity at the center, and photons infinitesimally outside it gradually move further
and further away from it. But then the new gas falls across this surface and increases the
mass of the hole to M1. Clearly, the new final state will be a Schwarzschild solution of
mass M1, where the larger surface r = 2M1 looks like an event horizon. It consists of null
rays neither falling in nor diverging outwards. Now, what is the history of these rays? What
happens if we trace backwards in time along a ray that just stays at r = 2M1? We would
find that, before the new gas arrived, it was one of those null world lines just outside the
surface r = 2M0, one of the rays that were very gradually diverging from it. The extra mass
has added more gravitational attraction (more curvature) that stopped the ray from moving
away and now holds it exactly at r = 2M1. Moreover, the null rays that formed the static
surface r = 2M0 before the gas fell in are now inside r = 2M1 and are therefore falling
toward the singularity, again pulled in by the gravitational attraction of the extra mass. The
boundary in spacetime between what is trapped and what is not consists therefore of the
null rays that in the end sit at r = 2M1, including their continuation backwards in time.
The null rays on r = 2M0 were not actually part of the true horizon of spacetime even at
the earlier time: they are just trapped null rays that took a long time to find out that they
were trapped! Before the gas fell in, what looked like a static event horizon (r = 2M0)
was not an event horizon at all, even though it was temporarily a static collection of null
rays. Instead, the true boundary between trapped and untrapped was even at that early time
gradually expanding outwards, traced by the null world lines that eventually became the
surface r = 2M1.

This example illustrates the fact that the horizon is not a location in space but a boundary
in spacetime. It is not possible to determine the location of the horizon by looking at a
system at one particular time; instead we must look at its entire evolution in time, find out
which null rays eventually really do escape and which ones are trapped, and then trace out
the boundary between them. The horizon is a property of the spacetime as a whole, not of
space at any one moment of time. In our example, if many years later some further gas falls
into the hole, then we would find that even those null rays at r = 2M1 would actually be
trapped and would not have been part of the true event horizon after all. The only way to
find the true horizon is to know the entire future evolution of the spacetime and then trace
out the boundary between trapped and untrapped regions.

This definition of the event horizon is mathematically consistent and logical, but it is
difficult to work with in practical situations. If we know only a limited amount about a
spacetime, it can in principle be impossible to locate the horizon. For example, computer
simulations of solutions of Einstein’s equations containing black holes cannot run forever,
so they don’t have all the information needed even to locate the horizons of their black
holes. So physicists also work with another kind of surface that can be defined at any
one moment of time. It uses the other property of the Schwarzschild horizon, that it is
a static collection of null rays. Physicists define a locally trapped surface to be a two-
dimensional surface at any particular time whose outwardly directed null rays are neither
expanding nor contracting at that particular moment. Locally trapped surfaces are always
inside true horizons in dynamical situations, just as r = 2M0 turned out to be inside the
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true horizon, but very often they are so close to the true horizon that they offer an excellent
approximation to it.

General propert ies of black holes

While the detailed structure of an event horizon is not easy to compute, some important
general properties of horizons are understood, and they underpin the confidence with which
astronomers now employ black holes in models of complex astrophysical phenomena. Here
are some important theorems and conjectures.

(1) It is believed that any horizon will eventually become stationary, provided that it is
not constantly disturbed by outside effects like accretion. So an isolated black hole
should become stationary. (The calculations in item (3) below support this idea.) The
stationary horizons, by contrast with nonstationary ones, are completely known. The
principal result is that a stationary vacuum black hole is characterized by just two
numbers: its total mass M and total angular momentum J. These parameters are defined
not by any integrals over the ‘interior’ of the horizon, but by the gravitational field far
from the hole. We have defined the mass M of any metric in this fashion in § 8.4, and
in Exer. 19, § 8.6, we have seen how J can be similarly defined. The unique stationary
vacuum black hole is the Kerr solution, Eq. (11.71), which we study in detail below. If
the angular momentum is zero, the Kerr solution becomes the Schwarzschild metric.
This uniqueness theorem results from work done by Hawking (1972), Carter (1973),
and Robinson (1975). See Chruściel (1996) and Heusler (1998) for reviews.

(2) If the black hole is not in vacuum, its structure may be more general. It may carry an
electric charge Q and, in principle, a magnetic monopole moment F, although mag-
netic monopoles are not found in Nature. Both of these charges can be measured by
Gauss’ law integrals over surfaces surrounding the hole and far from it. It is also felt
that collapse is unlikely to lead to a significant residual charge Q, so astrophysicists
normally take only M and J to be nonzero. But other kinds of fields, such as those
encountered in particle physics theories, can add other complications: self-gravitating
interacting scalar fields, Yang-Mills fields, and so on. See Heusler (1998) for a review.
Again, these complications are not usually thought to be relevant in astrophysics. What
may be relevant, however, is the distortion of the horizon produced by the tidal effect
of matter surrounding the black hole. If a massive stationary disk of gas surrounds the
hole, then the metric will not be exactly Kerr (e.g. Will 1974, 1975; Ansorg 2005).

(3) If gravitational collapse is nearly spherical, then all nonspherical parts of the mass
distribution – quadrupole moment, octupole moment – except possibly for angular
momentum, are radiated away in gravitational waves, and a stationary black hole of
the Kerr type is left behind. If there is no angular momentum, a Schwarzschild hole
is left behind (Price 1972a, b). The Kerr black hole appears to be stable against all
perturbations, but the proof is not quite complete (Whiting 1989, Beyer 2001).

(4) An important general result concerning nonstationary horizons is the area theorem of
Hawking (Hawking and Ellis 1973): in any dynamical process involving black holes,
the total area of all the horizons cannot decrease in time. We saw this in a qualitative
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way in our earlier discussion of how to define a horizon when matter is falling into
a black hole: the area is actually increasing during the period before the infalling gas
reaches the hole. We shall see below how to quantify this theorem by calculating the
area of the Kerr horizon. The area theorem implies that, while two black holes can
collide and coalesce, a single black hole can never bifurcate spontaneously into two
smaller ones. (A restricted proof of this is in Exer. 26, § 11.7 using the Kerr area
formula below; a full proof is outlined in Misner et al. 1973, Exer. 34.4, and requires
techniques beyond the scope of this book.) The theorem assumes that the local energy
density of matter in spacetime (ρ) is positive. The analogy between an ever-increasing
area and the ever-increasing entropy of thermodynamics has led to the development
of black-hole thermodynamics, and the understanding that black holes fit into thermal
physics in a very natural way. The entropy associated with the area of the horizon is
given in Eq. (11.114). The key to this association is the demonstration by Hawking that
quantum mechanics can lead to spontaneous radiation from a black hole. The radiation
has a thermal spectrum, which leads to a temperature and hence an entropy for the
horizon. This violation of the area theorem by quantum effects happens because in
quantum mechanics, energies are not always required to be positive. We study this
Hawking radiation in § 11.5 below.

(5) Inside the Schwarzschild and Kerr horizons there are curvature singularities where the
curvature, and hence the tidal gravitational force, becomes infinite. General theorems,
mostly due to Hawking and Penrose, imply that any horizon will contain a singular-
ity within it of some kind (Hawking and Ellis 1973). But it is not known whether
such singularities will always have infinite curvature; all that is known is that infalling
geodesics are incomplete and cannot be continued for an infinite amount of proper
time or affine distance. The existence of these singularities is generally regarded as
a serious shortcoming of general relativity, that its predictions have limited validity
in time inside horizons. Many physicists expect this shortcoming to be remedied by
a quantum theory of gravity. The uncertainty principle of quantum mechanics, so the
expectation goes, will make the singularity a little ‘fuzzy’, the tidal forces will not
quite reach infinite strength, and the waveform will continue further into the future. In
the absence of an acceptable theory of quantum gravity, this remains only a hope, but
there are some computations in restricted quantum models that are suggestive that this
might in fact happen (Bojowald 2005, Ashtekar and Bojowald 2006).

(6) The generic existence of singularities inside horizons, hidden from the view of distant
observers, prompts the question of whether there can be so-called naked singularities,
that is singularities outside horizons. These would be far more problematic for gen-
eral relativity, for it would mean that situations could arise in which general relativity
could make no predictions beyond a certain time even for normal regions of space-
time. Having singularities in unobservable regions inside horizons is bad enough, but
if singularities arose outside horizons, general relativity would be even more flawed. In
response to this concern, Penrose (1979) formulated the cosmic censorship conjecture,
according to which no naked singularities can arise out of nonsingular initial condi-
tions in asymptotically flat spacetimes. Penrose had no proof of this, and offered it as a
challenge to relativity theorists. Even today there is considerable debate over whether,
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and in exactly what formulation, the conjecture is true (Berger 2002, Cruściel 1991,
Rendall 2005). One naked singularity seems inescapable in general relativity: the Big
Bang of standard cosmology is naked to our view. If the universe re-collapses, there
will similarly be a Big Crunch in the future of all our world lines. These issues are
discussed in the next chapter.

Item (1) above is truly remarkable: a massive black hole, possibly formed from 1060

individual atoms and molecules – whose history as a gas may have included complex gas
motions, shock waves, magnetic fields, nucleosynthesis, and all kinds of other complica-
tions – is described fully and exactly by just two numbers, its mass and spin. The horizon
and the entire spacetime geometry outside it depend on just these two numbers. All the
complication of the formation process is effaced, forgotten, reduced to two simple num-
bers. No other macroscopic body is so simple to describe. We might characterize a star by
its mass, luminosity, and color, but these are just a start, just categories that contain an infi-
nite potential variety within them. Stars can have magnetic fields, spots, winds, differential
rotation, and many other large-scale features, to say nothing of the different motions of
individual atoms and ions. While this variety may not be relevant in most circumstances,
it is there. For a black hole, it is simply not there. There is nothing but mass and spin, no
individual structure or variety revealed by microscopic examination of the horizon (see the
reaction of Chandrasekhar to this fact, quoted in § 11.4 below). In fact, the horizon is not
even a real surface, it is just a boundary in empty space between trapped and untrapped
regions. The fact that no information can escape from inside the hole means that no infor-
mation about what fell in is visible from the outside. The only quantities that remain are
those that are conserved by the fundamental laws of physics: mass and angular momentum.

Kerr black hole

The Kerr black hole is axially symmetric but not spherically symmetric (that is rotationally
symmetric about one axis only, which is the angular-momentum axis), and is characterized
by two parameters, M and J. Since J has dimension m2, we conventionally define

a := J/M, (11.70)

which then has the same dimensions as M. The line element is

ds2 = − �− a2 sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dt dφ

+ (r2 + a2)2 − a2� sin2 θ

ρ2
sin2 θ dφ2 + ρ2

�
dr2 + ρ2 dθ2, (11.71)

where

� := r2 − 2Mr + a2,

ρ2 := r2 + a2 cos2 θ . (11.72)

The coordinates are called Boyer–Lindquist coordinates; φ is the angle around the axis of
symmetry, t is the time coordinate in which everything is stationary, and r and θ are similar
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to the spherically symmetric r and θ but are not so readily associated to any geometrical
definition. In particular, since there are no metric two-spheres, the coordinate r cannot be
defined as an ‘area’ coordinate as we did before. The following points are important:

(1) Surfaces t = const., r = const. do not have the metric of the two-sphere, Eq. (10.2).
(2) The metric for a = 0 is identically the Schwarzschild metric.
(3) There is an off-diagonal term in the metric, in contrast to Schwarzschild:

gtφ = −a
2Mr sin2 θ

ρ2
, (11.73)

which is 1
2 the coefficient of dt dφ in Eq. (11.71) because the line element contains two

terms,

gtφ dt dφ + gφt dφ dt = 2gtφ dφ dt,

by the symmetry of the metric. Any axially symmetric, stationary metric has preferred
coordinates t and φ, namely those which have the property gαβ,t = 0 = gαβ,φ . But the
coordinates r and θ are more-or-less arbitrary, except that they may be chosen to be
(i) orthogonal to t and φ (grt = grφ = gθ t = gθφ = 0) and (ii) orthogonal to each other
(gθr = 0). In general, we cannot choose t and φ orthogonal to each other (gtφ �= 0).
Thus Eq. (11.71) has the minimum number of nonzero gαβ (see Carter 1969).

Dragging of inert ial frames

The presence of gtφ �= 0 in the metric introduces qualitatively new effects on particle tra-
jectories. Because gαβ is independent of φ, a particle’s trajectory still conserves pφ . But
now we have

pφ = gφαpα = gφφpφ + gφtpt, (11.74)

and similarly for the time components:

pt = gtαpα = gttpt + gtφpφ . (11.75)

Consider a zero angular-momentum particle, pφ = 0. Then, using the definitions (for
nonzero rest mass)

pt = m dt/dτ , pφ = m dφ/dτ , (11.76)

we find that the particle’s trajectory has

dφ

dt
= pφ

pt
= gφt

gtt
:= ω(r, θ ). (11.77)

This equation defines what we mean by ω, the angular velocity of a zero angular-
momentum particle. We shall find ω explicitly for the Kerr metric when we obtain the
contravariant components gφt and gtt below. But it is clear that this effect will be present
in any metric for which gtφ �= 0, which in turn happens whenever the source is rotating
(e.g. a rotating star as in Exer. 19, § 8.6). So we have the remarkable result that a particle
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dropped ‘straight in’ (pφ = 0) from infinity is ‘dragged’ just by the influence of gravity so
that it acquires an angular velocity in the same sense as that of the source of the metric
(we’ll see below that, for the Kerr metric, ω has the same sign as a). This effect weakens
with distance (roughly as 1/r3; see Eq. (11.90) below for the Kerr metric), and it makes the
angular momentum of the source measurable in principle, although in most situations the
effect is small, as we have seen in Exer. 19, § 8.6. This effect is often called the dragging
of inertial frames.

This effect has a close analogy with magnetism. Newtonian gravity is, of course, very
similar to electrostatics, with the sign change that ensures that ‘charges’ of the same sign
attract one another. In electromagnetism, a spinning charge creates additional effects which
we call magnetism. Here we have the gravitational analog, the gravitational effects due to
a spinning mass. For that reason these effects are called gravitomagnetism. The analogy
between gravitomagnetism and standard magnetism is perhaps easier to see in the Lense–
Thirring effect: a gyroscope placed in orbit around a rotating star will precess by a small
amount that is proportional to the angular momentum of the star, just as a spinning electron
precesses if it orbits through a magnetic field.

Small as it is, the Lense–Thirring effect created by the spin of the Earth has been mea-
sured. Detailed studies of the orbits of two geodesy satellites have so far been able to
verify that the effect is as predicted by general relativity, with an accuracy at the 20% level
(Ciufolini et al., 2006). An order of magnitude improvement could be made with an addi-
tional satellite in a specially chosen orbit. In addition, a satellite experiment called Gravity
Probe B (GP-B), which has measured the precession of on-board gyroscopes, is currently
(2008) analyzing its data and is expected to report soon, hopefully with errors below the
10% level. GP-B is one of the most sensitive and high-precision experiments ever per-
formed in orbit. Gravitomagnetic effects are regularly taken into account in modeling the
details of the emission of X-rays near black holes (e.g. Brenneman and Reynolds 2006),
and they may also soon be seen in the double pulsar system PSR J0737-3039 referred to
earlier in this chapter.

Ergoregion

Consider photons emitted in the equatorial plane (θ = π/2) at some given r. In particular,
consider those initially going in the ±φ-direction, that is tangent to a circle of constant r.
Then they generally have only dt and dφ nonzero on the path at first and since ds2 = 0, we
have

0 = gtt dt2 + 2gtφ dt dφ + gφφ dφ2

⇒ dφ

dt
= − gτφ

gφφ
±
[(

gtφ

gφφ

)2

− gtt

gφφ

]1/2

. (11.78)

Now, a remarkable thing happens if gtt = 0: the two solutions are

dφ

dt
= 0 and

dφ

dt
= −2gtφ

gφφ
. (11.79)
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We will see below that for the Kerr metric the second solution gives dφ/dt the same sign
as the parameter a, and so represents the photon sent off in the same direction as the
hole’s rotating. The other solution means that the other photon – the one sent ‘backwards’–
initially doesn’t move at all. The dragging of orbits has become so strong that this photon
cannot move in the direction opposite the rotation. Clearly, any particle, which must move
slower than a photon, will therefore have to rotate with the hole, even if it has an angular
momentum arbitrarily large in the opposite sense to the hole’s!

We shall see that the surface where gtt = 0 lies outside the horizon; it is called the
ergosphere. It is sometimes also called the ‘static limit’, since inside it no particle can
remain at fixed r, θ , φ. From Eq. (11.71) we conclude that it occurs at

r0 := rergosphere = M + √
(M2 − a2 cos2 θ ). (11.80)

Inside this radius, since gtt > 0, all particles and photons must rotate with the hole.
Again, this effect can occur in other situations. Models for certain rotating stars are

known where there are toroidal regions of space in which gtt > 0 (Butterworth and Ipser
1976). These will have these super-strong frame-dragging effects. They are called ergore-
gions, and their boundaries are ergotoroids. They can exist in solutions which have no
horizon at all. But the stars are extremely compact (relativistic) and very rapidly rotating.
It seems unlikely that real neutron stars would have ergoregions.

The Kerr horizon

In the Schwarzschild solution, the horizon was the place where gtt = 0 and grr = ∞. In
the Kerr solution, the ergosphere occurs at gtt = 0 and the horizon is at grr = ∞, i.e. where
� = 0:

r+ := rhorizon = M + √
(M2 − a2). (11.81)

It is clear that the Kerr ergosphere lies outside the horizon except at the poles, where it is
tangent to it. The full proof that this is the horizon is beyond our scope here: we need to
verify that no null lines can escape from inside r+. We shall simply take it as given (see
the next section below for a partial justification). Since the area of the horizon is important
(Hawking’s area theorem), we shall calculate it.

The horizon is a surface of constant r and t, by Eq. (11.81) and the fact that the metric
is stationary. Any surface of constant r and t has an intrinsic metric whose line element
comes from Eq. (11.71) with dt = dr = 0:

dl2 = (r2 + a2)2 − a2�

ρ2
sin2 θ dφ2 + ρ2 dθ2. (11.82)

The proper area of this surface is given by integrating the square root of the determinant of
this metric over all θ and φ:

A(r) =
∫ 2π

0
dφ

∫ π

0
dθ

√
[(r2 + a2)2 − a2�] sin θ . (11.83)
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Since nothing in the square root depends on θ or φ, and since the area of a unit two-sphere is

4π =
∫ 2π

0
dφ

∫ π

0
dθ sin θ ,

we immediately conclude that

A(r) = 4π
√

[(r2 + a2)2 − a2�]. (11.84)

Since the horizon is defined by � = 0, we get

A(horizon) = 4π (r2+ + a2). (11.85)

Equatorial photon motion in the Kerr metr ic

A detailed study of the motion of photons in the equatorial plane gives insight into the ways
in which ‘rotating’ metrics differ from nonrotating ones. First, we must obtain the inverse
of the metric, Eq. (11.71), which we write in the general stationary, axially symmetric
form:

ds2 = gtt dt2 + 2gtφ dt dφ + gφφ dφ2 + grr dr2 + gθθ dθ2.

The only off-diagonal element involves t and φ; therefore

grr = 1

grr
= �ρ−2, gθθ = 1

gθθ
= ρ−2. (11.86)

We need to invert the matrix (
gtt gtφ

gtφ gφφ

)
.

Calling its determinant D, the inverse is

1

D

(
gφφ −gtφ

−gtφ gtt

)
, D = gttgφφ − (gtφ)2. (11.87)

Notice one important deduction from this. The angular velocity of the dragging of inertial
frames is Eq. (11.77):

ω = gφt

gtt
= −gtφ/D

gφφ/D
= − gtφ

gφφ
. (11.88)

This makes Eqs. (11.78) and (11.79) more meaningful. For the metric, Eq. (11.71), some
algebra gives

D = −� sin2 θ , gtt = − (r2 + a2)2 − a2� sin2 θ

ρ2�
,

gtφ = −a
2Mr

ρ2�
, gφφ = �− a2 sin2 θ

ρ2� sin2 θ
. (11.89)

Then the frame dragging is

ω = 2Mra

(r2 + a2)2 − a2� sin2 θ
. (11.90)
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The denominator is positive everywhere (by Eq. (11.72)), so this has the same sign as a,
and it falls off for large r as r−3, as we noted earlier.

A photon whose trajectory is in the equatorial plane has dθ = 0; but, unlike the
Schwarzschild case, this is only a special kind of trajectory: photons not in the equato-
rial plane may have qualitatively different orbits. Nevertheless, a photon for which pθ = 0
initially in the equatorial plane always has pθ = 0, since the metric is reflection symmet-
ric through the plane θ = π/2. By stationarity and axial symmetry the quantities E = −pt

and L = pφ are constants of the motion. Then the equation �p · �p = 0 determines the motion.
Denoting pr by dr/dλ as before, we get, after some algebra,(

dr

dλ

)2

= grr[(−gtt)E2 + 2gtφEL − gφφL2]

= grr(−gtt)

[
E2 − 2 ωEL + gφφ

gtt
L2
]

. (11.91)

Using Eqs. (11.72), (11.86), and (11.90) for θ = π/2, we get(
dr

dλ

)2

= (r2 + a2)2 − a2�

r4

[
E2 − 4Mra

(r2 + a2)2 − a2�
EL

− r2 − 2Mr

(r2 + a2)2 − a2�
L2
]

. (11.92)

This is to be compared with Eq. (11.12), to which it reduces when a = 0. Apart from
the complexity of the coefficients, Eq. (11.92) differs from Eq. (11.12) in a qualitative way
in the presence of a term in EL. So we cannot simply define an effective potential V2 and
write (dr/dλ)2 = E2 − V2. What we can do is nearly as good. We can factor Eq. (11.91):(

dr

dλ

)2

= (r2 + a2)2 − a2�

r4
(E − V+)(E − V−). (11.93)

Then V±, by Eqs. (11.91) and (11.92), are

V±(r) = [ω ± (ω2 − gφφ/gtt)1/2]L (11.94)

= 2Mra ± r2�1/2

(r2 + a2)2 − a2�
L. (11.95)

This is the analog of the square root of Eq. (11.14), to which it reduces when a = 0. Now,
the square root of Eq. (11.14) becomes imaginary inside the horizon; similarly, Eq. (11.95)
is complex when � < 0. In each case the meaning is that in such a region there are no
solutions to dr/dλ = 0, no turning points regardless of the energy of the photon. Once a
photon crosses the line� = 0 it cannot turn around and get back outside that line. Clearly,
� = 0 marks the horizon in the equatorial plane. What we haven’t shown, but what is also
true, is that � = 0 marks the horizon for trajectories not in the equatorial plane.

We can discuss the qualitative features of photon trajectories by plotting V±(r). We
choose first the case aL > 0 (angular momentum in the same sense as the hole), and of
course we confine attention to r � r+ (outside the horizon). Notice that for large r the
curves (in Fig. 11.13) are asymptotic to zero, falling off as 1/r. This is the regime in
which the rotation of the hole makes almost no difference. For small r we see features not
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�Figure 11.13 Factored potential diagram for equatorial photon orbits of positive angular momentum in the Kerr
metric. As a → 0, the upper and lower curves approach the two square roots of Fig. 11.2 outside
the horizon.

present without rotation: V− goes through zero (easily shown to be at r0, the location of the
ergosphere) and meets V+ at the horizon, both curves having the value aL/2Mr+ := ω+L,
where ω+ is the value of ω on the horizon. From Eq. (11.93) it is clear that a photon can
move only in regions where E > V+ or E < V−. We are used to photons with positive E:
they may come in from infinity and either reach a minimum r or plunge in, depending on
whether or not they encounter the hump in V+. There is nothing qualitatively new here.
But what of those for which E � V−? Some of these have E > 0. Are they to be allowed?

To discuss negative-energy photons we must digress a moment and talk about moving
along a geodesic backwards in time. We have associated our particles’ paths with the math-
ematical notion of a geodesic. Now a geodesic is a curve, and the path of a curve can be
traversed in either of two directions; for timelike curves one is forwards and the other back-
wards in time. The tangents to these two motions are simply opposite in sign, so one will
have four-momentum �p and the other −�p. The energies measured by observer �U will be
−�U · �p and +�U · �p. So one particle will have positive energy and another negative energy.
In flat spacetime we conventionally take all particles to travel forwards in time; since all
known particles have positive or zero rest mass, this causes them all to have positive energy
relative to any Lorentz observer who also moves forwards in time. Conversely, if �p has pos-
itive energy relative to some Lorentz observer, it has positive energy relative to all that go
forwards in time. In the Kerr metric, however, it will not do simply to demand positive E.
This is because E is the energy relative to an observer at infinity; the particle near the hori-
zon is far from infinity, so the direction of ‘forward time’ isn’t so clear. What we must do
is set up some observer �U near the horizon who will have a clock, and demand that −�p · �U
be positive for particles that pass near him. A convenient observer (but any will do) is one
who has zero angular momentum and resides at fixed r, circling the hole at the angular
velocity ω. This zero angular-momentum observer (ZAMO) is not on a geodesic, so he
must have a rocket engine to remain on this trajectory. (In this respect he is no different
from us, who must use our legs to keep us at constant r in Earth’s gravitational field.) It is
easy to see that he has four-velocity U0 = A, Uφ = ωA, Ur = Uθ = 0, where A is found
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from the condition �U · �U = −1 : A2 = gφφ/(−D). This is nonsingular for r > r+. Then he
measures the energy of a particle to be

EZAMO = −�p · �U = −(p0 U0 + pφ Uφ)

= A(E − ωL). (11.96)

This is the energy we must demand be positive-definite. Since A is positive, we require

E > ωL. (11.97)

From Eq. (11.95) it is clear that any photon with E > V+ also satisfies Eq. (11.97) and so
is allowed, while any with E < V− violates Eq. (11.97) and is moving backwards in time.
So in Fig. 11.13 we consider only trajectories for which E lies above V+; for these there is
nothing qualitatively different from Schwarzschild.

The Penrose process

For negative angular-momentum particles, however, new features do appear. If aL < 0, it is
clear from Eq. (11.95) that the shape of the V± curves is just turned over, so they look like
Fig. 11.14. Again, of course, condition Eq. (11.97) means that forward-going photons must
lie above V+(r), but now some of these can have E < 0! This happens only for r < r0, i.e.
inside the ergosphere. Now we see the origin of the name ergoregion: it is from the Greek
‘ergo-’, meaning energy, a region in which energy has peculiar properties.

The existence of orbits with negative total energy leads to the following interesting
thought experiment, originally suggested by Roger Penrose (1969). Imagine dropping an
unstable particle toward a Kerr black hole. When it is inside the ergosphere it decays into
two photons, one of which finds itself on a null geodesic with negative energy with respect
to infinity. It is trapped in the ergoregion and inevitably falls into the black hole. The other
particle must have positive energy, since energy is conserved. If the positive-energy pho-
ton can be directed in such a way as to escape from the ergoregion, then the net effect is to
leave the hole with less energy than it had to begin with: the infalling particle has ‘pumped’

ω+ L

V

r+ r0

r

aL < 0

V+(r)

V–(r)
B

A

A′

�Figure 11.14 As Fig. 11.13 for negative angular momentum photons.
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the black hole and extracted energy from it! By examining Figs. 11.13 and 11.14, we can
convince oneselves that this only works if the negative-energy particle also has a negative
L, so that the process involves a decrease in the angular momentum of the hole. The energy
has come at the expense of the spin of the black hole.

Blandford and Znajek (1977) suggested that the same process could operate in a practical
way if a black hole is surrounded by an accretion disk (see later in this chapter) containing
a magnetic field. If the field penetrates inside the ergosphere, then it could facilitate the
creation of pairs of electrons and positrons, and some of them could end up on negative-
energy trapped orbits in the ergoregion. The escaping particles might form the energetic
jets of charged particles that are known to be emitted from near black holes, especially in
quasars. In this way, quasar jets might be powered by energy extracted from the rotation
of black holes. As of this writing (2008) this is still one of a number of viable competing
models for quasar jets.

The Penrose process is not peculiar to the Kerr black hole; it happens whenever there
is an ergoregion. If a rotating star has an ergoregion without a horizon (bounded by an
ergotoroid rather than an ergosphere), the effective potentials look like Fig. 11.15, drawn
for aL < 0 (Comins and Schutz 1978). (For aL > 0 the curves just turn over, of course.)

The curve for V+ dips below zero in the ergoregion. Outside the ergoregion it is positive,
climbing to infinity as r → 0. The curve for V− never changes sign, and also goes to infinity
as r → 0. The Penrose process operates inside the ergoregion, where the negative-energy
photons are trapped.

In stars, the existence of an ergoregion leads to an instability (Friedman 1978). Roughly
speaking, here is how it works. Imagine a small ‘seed’ gravitational wave that has, perhaps
by scattering from the star, begun to travel on a negative-energy null line in the ergoregion.
It is trapped there, and must circle around the star forever within the ergotoroid. But, being
a wave, it is not localized perfectly, and so part of the wave inevitably creates disturbances
outside the ergoregion, i.e. with positive energy, which radiate to infinity. By conservation
of energy, the wave in the ergoregion must get stronger because of this ‘leakage’ of energy,

V

r

aL < 0

r = 0

V+(r)

V–(r)

Ergoregion

�Figure 11.15 As Fig. 11.14 for equatorial orbits in the spacetime of a star rotating rapidly enough to have
an ergoregion.
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since strengthening it means creating more negative energy to balance the positive energy
radiated away. But then the cycle continues: the stronger wave in the ergoregion leaks even
more energy to infinity, and so its amplitude grows even more. This is the hallmark of an
exponential process: the stronger it gets, the faster it grows. Of course, these waves carry
angular momentum away as well, so in the long run the process results in the spindown of
the star and the complete disappearance of the ergoregion.

In principle, this might also happen to Kerr black holes, but here there is a crucial dif-
ference: the wave in the ergoregion does not have to stay there forever, but can instead
travel across the horizon into the hole. There it can no longer create waves outside the
ergosphere. Physicists have studied the stability of the Kerr metric intensively, and all indi-
cations are that all waves in the ergoregion lose more amplitude across the horizon than
they gain by radiating to infinity: in other words, Kerr is stable. There are still gaps in the
proof, but (as we shall see below) astronomical observations increasingly suggest that there
are Kerr black holes in Nature, so the gaps will one day probably be filled by more clever
mathematics than we have so far been able to bring to this problem!

11.4 Rea l b lack ho les in as t ronomy

As we noted before, the unique stationary (time-independent) solution for a black hole is
the Kerr metric. This extraordinary result makes studying black holes in the real world
much simpler than we might have expected. Most real-world systems are so complicated
that they can only be studied through idealizations; each star, for example, is individual,
and astronomers work very hard to classify them, discover patterns in their appearance that
give clues to their interiors, and generally build models that are complex enough to cap-
ture their important properties. But these models are still simplifications, since with 1057

particles a star has an enormous number of physical degrees of freedom. Not so with black
holes. Provided they are stationary, they have just two intrinsic degrees of freedom: their
mass and spin. In his 1975 Ryerson Lecture at the University of Chicago, long before the
majority of astronomers had accepted that black holes were commonplace in the universe,
the astrophysicist S. Chandrasekhar expressed his reaction to the uniqueness theorem in
this way (Chandrasekhar 1987):

In my entire scientific life, extending over forty-five years, the most shattering experience has been
the realization that an exact solution of Einstein’s equations of general relativity, discovered by the
New Zealand mathematician, Roy Kerr, provides the absolutely exact representation of untold num-
bers of massive black holes that populate the universe. This shuddering before the beautiful, this
incredible fact that a discovery motivated by a search after the beautiful in mathematics should find
its exact replica in Nature, persuades me to say that beauty is that to which the human mind responds
at its deepest and most profound.

The simplicity of the black hole model has made it possible to identify systems containing
black holes based only on indirect evidence, on their effects on nearby gas and stars. Until
gravitational wave detectors become sufficiently sensitive to detect radiation from black
holes, this will be the only way to find them.
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The small size of black holes means that, in order to gain reasonable confidence in such
an identification, we have normally to make an observation either with very high angular
resolution to see matter near the horizon or by using photons of very high energy, which
originate from strongly compressed and heated matter near the horizon. Using orbiting
X-ray observatories, astronomers since the 1970s have been able to identify a number
of black hole candidates, particularly in binary systems in our Galaxy. These have masses
around 10M�, and they presumably have arisen from the gravitational collapse of a massive
star, as discussed in the previous chapter. With improvements in high-resolution astronomy,
astronomers since the 1990s have been able to identify supermassive black holes in the cen-
ters of galaxies, with masses ranging from 106 to 1010M�. It came as a big surprise when
astronomers found that almost all galaxies that are close enough to allow the identification
of a central black hole have turned out to contain one. Indeed, one of the most secure black
hole identifications is the 4.3 × 106M� black hole in the center of our own Galaxy (Genzel
and Karas 2007)!

Black holes of stel lar mass

An isolated black hole, formed by the collapse of a massive star, would be very difficult
to identify. It might accrete a small amount of gas as it moves through the interstellar
medium, but this gas would not emit much X-radiation before being swallowed. No such
candidates have been identified. All known stellar-mass black holes are in binary systems
whose companion star is so large that it begins dumping gas on to the hole. Being in a
binary system, the gas has angular momentum, and so it forms a disk around the black hole.
But within this disk there is friction, possibly caused by turbulence or by magnetic fields.
Friction leads material to spiral inwards through the disk, giving up angular momentum
and energy. Some of this energy goes into the internal energy of the gas, heating it up
to temperatures in excess of 106 K, so that the peak of its emission spectrum is at X-ray
wavelengths.

Many such X-ray binary systems are now known. Not all of them contain black holes:
a neutron star is compact enough so that gas accreting on to it will also reach X-ray tem-
peratures. Astronomers distinguish black holes from neutron stars in these systems by two
means: mass and pulsations. If the accreting object pulsates in X-rays at a very steady rate,
then it is a pulsar and it cannot be a black hole: black holes cannot hold on to a magnetic
field and make it rotate with the hole’s rotation. Most systems do not show such pulsa-
tions, however. In these cases, astronomers try to estimate the mass of the accreting object
from observations of the velocity and orbital radius of the companion star (obtained by
monitoring the Doppler shift of its spectral lines) and from an estimate of the companion’s
mass (again from its spectrum). These estimates are uncertain, particularly because it is
usually hard to estimate the inclination of the plane of the orbit to the line of sight, but if
the accreting object has an estimated mass much more than about 5M�, then it is believed
likely to be a black hole. This is because the maximum mass of a neutron star cannot be
much more than 3M� and is likely much smaller.
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Mass turns out to be a good discriminator: of the dozen or so black-hole candidates,
only one or two have an estimated mass under 7M�, while all the mass estimates for
the remaining X-ray binary systems lie around or under 2M�. There does seem to be a
mass gap, therefore, between black holes and neutron stars, at least for objects formed in
binaries. One of the most secure candidates is one of the first ever observed: Cyg X-1,
whose mass is around 10M�. The largest stellar black-hole mass ever estimated is 70M�,
for the black hole in the binary system M33 X-7. As its name indicates, this system lies in
the galaxy M33, which at 1 Mpc is about twice as far from our Galaxy as the Andromeda
Galaxy (M31) is. What is most remarkable about M33 X-7 is that it is an eclipsing system,
which constrains the inclination angle enough to make the mass estimate more secure.

Although we are confident that stellar evolution occasionally produces black holes, the
pathway is still in doubt. Most astronomers assume that this happens in supernova explo-
sions, and this view is reinforced by the fact that computer simulations of supernovae have
more difficulty expelling the stellar envelope and leaving a neutron star behind than they
do forming a black hole from the collapsing stellar core. But there is increasing evidence
to associate most gamma-ray bursts with black-hole formations from very rapidly rotating
progenitor stars.

How do we know that these massive objects are black holes? The answer is that any
other explanation is less plausible. They cannot be neutron stars: no equation of state that
is causal (i.e. has a sound speed less than the speed of light) can support more than about
3M�. It would be possible to invent some kind of exotic matter (sometimes called bosonic
matter) that might just make a massive compact object that does not collapse, but we have
no evidence for such matter. But until we detect the signature of black holes in gravitational
waves, such as their ringdown radiation (Ch. 9), we will not be able to exclude such exotic
scenarios completely.

Supermassive black holes

The best evidence for supermassive black holes is for the closest one to us: the 4.3 ×
106M� black hole in the center of the Milky Way. This was discovered by making repeated
high-resolution measurements of the positions of stars in the very center of the Galaxy.
The measurements had to be made using infrared light, because in visible light the center
is obscured by interstellar dust. Over a period of ten years some of the stars were observed
to move by very considerable distances, and not just on straight lines, but rather on clearly
elliptical orbits. All the orbits had a common gravitating center, but the center was dark.
The stars’ spectra revealed their radial velocities, so with three-dimensional velocities and
a good idea of how far away the galactic center is, it is possible to estimate the mass of the
central object from each orbit. All the orbits are consistent, and point to a dark object of
4.3 × 106M� directly at the center.

Remarkably, one of the orbiting stars approaches to within about 120 AU of the gravi-
tating center, and attains a speed of some 5000 km s−1, more than 1% of the speed of light!
Other than a black hole, no known or plausible matter system could contain such a large
amount of mass in such a small volume, without itself collapsing rapidly to a black hole.
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Other black holes of similar masses are inferred in external galaxies, including in our
nearest neighbor M31, mentioned above. It seems, therefore, that black holes are associated
with galaxy formation, but the nature of this association is not clear: did the holes come
first, or did they form as part of the process of galaxy formation? It is also not clear whether
the holes formed with large mass, say 105–106M�, or whether they started out with smaller
masses (perhaps 104–105M�) and grew later. And if they grew, it is not clear whether they
grew by accreting gas and stars or by merging with other black holes. This last question
may be answered by the LISA satellite (Ch. 9), which will detect mergers over a wide mass
range throughout the universe.

But black holes like those in the center of our Galaxy are the babies of the supermas-
sive black hole population: as we have mentioned earlier, astronomers believe that the
quasar phenomenon is created by gas accreting on to much more massive black holes, typ-
ically 109M�. While these are too far away for astronomers to resolve the region near the
black hole, the only quasar model that has survived decades of observation in many wave
bands is the black hole model. This model now has the consensus of the great majority of
astrophysicists working in the field.

Since quasars were much more plentiful in the early universe than they are today, it
seems that these ultra-massive black holes had to form very early, while their more modest
counterparts like that, in the Milky Way might have taken longer. This suggests that the
black holes in quasars did not form by the growth of holes like our own; this is another of
the unanswered questions about supermassive black holes.

Remarkably, there seems to be a good relationship between the mass of the central
black hole and the velocity dispersion (random velocities) in the central part of the galaxy
surrounding the hole, which is called the galactic bulge. The more massive the hole, the
higher the velocities. This relationship seems to have a simple form all the way from 106

to 1010M�. It might be a clue to how the holes formed.
Astronomers know that galaxies frequently merge, and this ought to bring at least some

of their black holes to merge as well, producing strong gravitational waves in the LISA
band. In fact, as we shall see in the next chapter, current models for galaxy formation
suggest that all galaxies are themselves the products of repeated mergers with smaller
clusters of stars, and so it is possible that, in the course of the formation and growth of
galaxies, the central black holes grew larger and larger by merging with incoming black
holes.

As remarked before, LISA should decide this issue, but already there is a growing body
of evidence for mergers of black holes. A number of galaxies with two distinct bright cores
are known, and remarkable evidence was very recently (2008) announced for the ejection
of a supermassive black hole at something like 1% of the speed of light from the center
of a galaxy (Komossa et al. 2008). Speeds like this can only be achieved as a result of the
‘kick’ that a final black hole gets as a result of the merger (see below).

Intermediate-mass black holes

If there are black holes of 10M� and of 106M� and more, are there black holes with
masses around 100–104M�? Astronomers call these intermediate mass black holes, but
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the evidence for their existence is still ambiguous. Some bright X-ray sources may be
large black holes, and perhaps there are black holes in this mass range in globular clus-
ters. Astronomers are searching intensively for better evidence for these objects, which
might have formed in the first generation of star formation, when clouds made up of pure
hydrogen and helium first collapsed. These first stars were probably a lot more massive
than the stars, like our Sun, that formed later from gas clouds that had been polluted by
the heavier elements made by the first generation of stars. Numerical simulations suggest
that some of these first stars (called Population III stars) could have rapidly collapsed to
black holes. But finding these holes will not be easy. As this book goes to press (2008),
unpublished data from the European Space Agency suggest the existence of a black hole
with mass 4 × 104M� in the cluster Omega Centauri. Observations of similar objects may
well reveal more such black holes.

Dynamical black holes

Although stationary black holes are simple, there are situations where black holes are
expected to be highly dynamical, and these are more difficult to treat analytically. When a
black hole is formed, any initial asymmetry (such as quadrupole moments) must be radi-
ated away in gravitational waves, until finally only the mass and angular momentum are
left behind. This generally happens quickly: studies of linear perturbations of black holes
show that black holes have a characteristic spectrum of oscillations, but that they typically
damp out (ring down) exponentially after only a few cycles (Kokkotas and Schmidt 1999).
The Kerr metric takes over very quickly.

Even more dynamical are black holes in collision, either with other black holes or with
stars. As described in Ch. 9, binary systems involving black holes will eventually merge,
and black holes in the centers of galaxies can merge with other massive holes when galax-
ies merge. These situations can only be studied numerically, by using computers to solve
Einstein’s equations and perform a dynamical simulation.

Numerical techniques for GR have been developed over a period of several decades, but
progress initially was slow. The coordinate freedom of general relativity, coupled with the
complexity of the Einstein equations, means that there is no unique way to formulate a
system of equations for the computer. Most formulations have turned out to lead to intrin-
sically unstable numerical schemes, and finding a stable scheme took much trial and error.
Moreover, when black holes are involved the full metric has a singularity where its com-
ponents diverge; this has somehow to be removed from the numerical domain, because
computers can work only to a finite precision. See Bona and Palenzuela-Luque (2005) and
Alcubierre (2008) for surveys of these problems and their solutions.

Only by the mid-2000s were scientists able to regulate all these problems and produce
reliable simulations of spinning Kerr black holes orbiting one another and then merging
together to form a single final Kerr black hole. Results have been coming out rapidly
since then. One of the most interesting aspects of black hole mergers is the so-called
‘kick’. When there is no particular symmetry in the initial system, then the emitted grav-
itational radiation will emerge asymmetrically, so that the waves will carry away a net
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linear momentum in some direction. The result will be that the final black hole recoils in
the opposite direction. The velocity of the recoil, being dimensionless, does not depend
on the overall mass scale of the system, just on dimensionless initial data: the ratio of the
masses of the initial holes, the dimensionless spin parameters of the holes (a/M), and the
directions of the spins. Normally these recoil velocities are of order a few hundred km s−1,
which could be enough to expel the black hole from the center of a star cluster or even a
spiral galaxy. Even more remarkably, recoil velocities exceeding 10% of the speed of light
are inferred from simulations for some coalescences (Campanelli et al. 2007). In the long
run, the predictions of gravitational wave emission from these simulations will be used by
gravitational wave astronomers to assist in searches and in the interpretation of signals that
are found.

11.5 Quantum mechan i ca l emiss ion of rad iat ion
by b lack ho les : the Hawking process

In 1974 Stephen Hawking startled the physics community by proving that black holes
aren’t black: they radiate energy continuously! This doesn’t come from any mistake in what
we have already done; it arises in the application of quantum mechanics to electromagnetic
fields near a black hole. We have until now spoken of photons as particles following a
geodesic trajectory in spacetime; but according to the uncertainty principle these ‘particles’
cannot be localized to arbitrary precision. Near the horizon this markedly changes the
behavior of ‘real’ photons from what we have already described for idealized null particles.

Hawking’s calculation (Hawking 1975) uses the techniques of quantum field theory, but
we can derive its main prediction very simply from elementary considerations. What fol-
lows, therefore, is a ‘plausibility argument’, not a rigorous discussion of the effect. One
form of the uncertainty principle is �E�t ≥ �/2, where �E is the minimum uncertainty
in a particle’s energy which resides in a quantum mechanical state for a time�t. According
to quantum field theory, ordinary space is filled with ‘vacuum fluctuations’ in electromag-
netic fields, which consist of pairs of photons being produced at one event and recombining
at another. Such pairs violate conservation of energy, but if they last less than�t = �/2�E,
where �E is the amount of violation, they violate no physical law. Thus, in the largescale,
energy conservation holds rigorously, while, on a small scale, it is always being violated.
Now, as we have emphasized before, spacetime near the horizon of a black hole is perfectly
ordinary and, in particular, locally flat. Therefore these fluctuations will also be happen-
ing there. Consider a fluctuation which produces two photons, one of energy E and the
other with energy −E. In flat spacetime the negative-energy photon would not be able to
propagate freely, so it would necessarily recombine with the positive-energy one within
a time �/2E. But if produced just outside the horizon, it has a chance of crossing the
horizon before the time �/2E elapses; once inside the horizon it can propagate freely, as
we shall now show. Consider the Schwarzschild metric for simplicity, and recall from our
discussion of orbits in the Kerr metric that negative energy is normally excluded because
it corresponds to a particle that propagates backwards in time. Inside the event horizon,
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an observer going forwards in time is one going toward decreasing r. For simplicity let
us choose one on a trajectory for which p0 = 0 = U0 = 0. Then Ur is the only nonzero
component of �U, and by the normalization condition �U · �U = −1 we find Ur:

Ur = −
(

2M

r
− 1

)1/2

, r < 2M, (11.98)

negative because the observer is ingoing. Any photon orbit is allowed for which −�p ·
�U> 0. Consider a zero angular-momentum photon, moving radially inside the horizon. By
Eq. (11.12) with L = 0, it clearly has E = ± pr. Then its energy relative to the observer is

− �p · �U = −prUrgrr = −
(

2M

r
− 1

)−1/2

pr. (11.99)

This is positive if and only if the photon is also ingoing: pr < 0. But it sets no restriction at
all on E. Photons may travel on null geodesics inside the horizon, which have either sign of
E, as long as pr < 0. (Recall that t is a spatial coordinate inside the horizon, so this result
should not be surprising: E is a spatial momentum component there.)

Since a fluctuation near the horizon can put the negative-energy photon into a real-
izeable trajectory, the positive-energy photon is allowed to escape to infinity. Let us see
what we can say about its energy. We first look at the fluctuations in a freely falling
inertial frame, which is the one for which spacetime is locally flat and in which the fluctu-
ations should look normal. A frame that is momentarily at rest at coordinate 2M + ε will
immediately begin falling inwards, following the trajectory of a particle with L̃ = 0 and
Ẽ = [1 − 2M/(2M + ε)]1/2 ≈ (ε/2M)1/2, from Eq. (11.11). It reaches the horizon after a
proper-time lapse �τ obtained by integrating Eq. (11.59):

�τ = −
∫ 2M

2M+ε

(
2M

r
− 2M

2M + ε

)−1/2

dr. (11.100)

To first order in ε this is

�τ = 2(2Mε)1/2. (11.101)

We can find the energy E of the photon in this frame by setting this equal to the fluctuation
time �/2E . The result is

E = 1
4�(2Mε)−1/2. (11.102)

This is the energy of the outgoing photon, the one which reaches infinity, as calculated on
the local inertial frame. To find its energy when it gets to infinity we recall that

E = −�p · �U,

with −U0 = Ẽ ≈ (ε/2M)1/2. Therefore

E = −g00p0U0 = U0g00E, (11.103)

where E is the conserved energy on the photon’s trajectory, and is the energy it is measured
to have when it arrives at infinity. Evaluating g00 at 2M + ε gives, finally,

E = E(ε/2M)1/2 = �/8M. (11.104)
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Remarkably, it doesn’t matter where the photon originated: it always comes out with this
characteristic energy!

The rigorous calculation which Hawking performed showed that the photons which
come out have the spectrum characteristic of a black body with a temperature

TH = �/8πkM, (11.105)

where k is Boltzmann’s constant. At the peak of the black-body spectrum, the energy of
the photon is (by Wien’s displacement law)

E = 4.965kT = 1.580�/8M, (11.106)

fairly close to our crude result, Eq. (11.104). Our argument does not show that the photons
should have a black-body spectrum; but the fact that the spectrum originates in random
fluctuations, plus the fact that the black hole is, classically, a perfect absorber, makes this
result plausible as well.

It is important to understand that the negative-energy photons in the Hawking effect
are not the same as the negative-energy photons that we discussed in the Penrose process
above. The Penrose process works only inside an ergoregion, and uses negative-energy
orbits that are outside the horizon of the black hole. The Hawking result is more profound:
it operates even for a nonspinning black hole and connects negative-energy photons inside
the horizon with positive-energy counterparts outside. It operates in the Kerr metric as well,
but again it happens across the horizon, not the ergosphere. The Hawking effect does not
lead to an unstable runaway, the way the Penrose process does for a star with an ergoregion.
This is because Hawking’s negative-energy photon is already inside the horizon and does
not create any further positive-energy photons outside. So the Hawking radiation is a steady
thermal radiation, created by ever-present quantum fluctuations near the horizon.

Notice that the Hawking temperature of the hole is proportional to M−1. The rate of
radiation from a black body is proportional to AT4, where A is the area of the body, in this
case of the horizon, which is proportional to M2 (see Eq. (11.85)). So the luminosity of
the hole is proportional to M−2. This energy must come from the mass of the hole (every
negative-energy photon falling into it decreases M), so we have

dM/dt ∼ M−2,

M2 dM ∼ dt,

}
(11.107)

or the lifetime of the hole is

τ ∼ M3. (11.108)

The bigger the hole the longer it lives, and the cooler its temperature. The numbers work
out that a hole of mass 1012 kg has a lifetime of 1010 yr, about the age of the universe. Thus(

τ

1010 yr

)
=
(

M

1012 kg

)3

. (11.109)

Since a solar mass is about 1030 kg, black holes formed from stellar collapse are essentially
unaffected by this radiation, which has a temperature of about 10−7 K. On the other hand,
it is possible for holes of 1012 kg to form in the very early universe. To see the observable
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effect of their ‘evaporation’, let us calculate the energy radiated in the last second by setting
τ = 1 s = (3 × 107)−1 yr in Eq. (11.109). We get

M ≈ 106 kg ∼ 1023 J. (11.110)

So for a brief second it would have a luminosity about 0.1% of the Sun’s luminosity, but in
spectrum it would be very different. Its temperature would be 1011 K, emitting primarily
in γ -rays! We might be tempted to explain the gamma-ray bursts mentioned earlier in this
chapter as primordial black hole evaporations, but the observed gamma bursts are in fact
billions of times more luminous. A primordial black-hole evaporation would probably be
visible only if it happened in our own Galaxy. No such events have been identified.

It must be pointed out that all derivations of Hawking’s result are valid only if the typical
photon has E 	 M, since they involve treating the spacetime of the black hole as a fixed
background in which we solve the equations of quantum mechanics, unaffected to first
order by the propagation of these photons. This approximation fails for M ≈ h/M, or for
black holes of mass

MPl = h1/2 = 1.6 × 10−35 m = 2.2 × 10−8 kg. (11.111)

This is called the Planck mass, since it is a mass derived only from Planck’s constant
(and c and G). To treat quantum effects involving such holes, we need a consistent theory
of quantum gravity, which is one of the most active areas of research in relativity today.
All we can say here is that the search has not yet proved fully successful, but Hawking’s
calculation appears to have been one of the most fruitful steps.

The Hawking effect has provided a remarkable unification of gravity and thermodynam-
ics. Consider Hawking’s area theorem, which we may write as

dA

dt
� 0. (11.112)

For a Schwarzschild black hole,

A = 16 πM2,

dA = 32 πM dM,

or (if we arrange factors in an appropriate way)

dM = 1

32 πM
dA = �

8 πkM
d

(
kA

4�

)
. (11.113)

Since dM is the change in the hole’s total energy, and since �/8πkM is its Hawking
temperature TH , we may write Eq. (11.113) in the form

dE = TH dS,

with

S = kA/4�. (11.114)

Since, by Eq. (11.112), this quantity S can never decrease, we have in Eqs. (11.113) and
(11.112) the first and second laws of thermodynamics as they apply to black holes! That
is, a black hole behaves in every respect as a thermodynamic black body with temperature
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TH = �/8πkM and entropy kA/4�. This analogy had been noticed as soon as the area
theorem was discovered (see Bekenstein 1973, 1974, and Misner et al. 1973, Box 33.4),
but at that time it was thought to be an incomplete analogy because black holes did not
have a true temperature. The Hawking radiation fits the missing piece into the puzzle.

But the Hawking radiation has raised other questions. One of them concerns information.
The emission of radiation from the black hole raises the possibility that the radiation could
carry information that, in the classical picture, is effaced by the formation of the horizon.
If the radiation is perfectly thermal, then it contains no information. But it is possible that
the outgoing photons and gravitons have a thermal black-body spectrum but also have
weak correlations that contain the information. This information would not have come
from inside the hole, but from the virtual photons and gravitons just outside the horizon,
which are affected by the details of the collapsing matter that passes through them on its
the way to forming the black hole, and which then become real photons and gravitons
by the process described above. Whether this picture is indeed correct, and what kind of
information can in principle be recovered from the outgoing radiation, are still matters of
considerable debate among physicists.

The Hawking radiation has also become a touchstone for the development of full theories
of quantum gravity. Physicists test new quantization methods by showing that they can
predict the Hawking radiation and associated physics, such as the entropy of the black
hole. This is not sufficient to prove that a method will work in general, but it is regarded as
necessary.

11.6 Fur ther read ing

The story of Karl Schwarzschild’s discovery of the solution named after him is an
extraordinary one. See the on-line biography of Schwarzschild by J. J. O’Connor and
E. F. Robertson in the MacTutor History of Mathematics archive, at the URL www
-history.mcs.st-andrews.ac.uk/Biographies/Schwarzschild.html
(cited April 2008).

The perihelion shift and deflection of light are the two classical tests of GR. Other the-
ories predict different results: see Will (1993, 2006). A short, entertaining account of the
observation of the deflection of light and its impact on Einstein’s fame is in McCrea (1979).
To learn more about gravitational lensing, see Wambsganss (1998), Schneider et al (1992),
Schneider (2006), or Perlick (2004).

The Kerr metric has less symmetry than the Schwarzschild metric, so it might be
expected that particle orbits would have fewer conserved quantities and therefore be harder
to calculate. This is, quite remarkably, false: even orbits out of the equator have three
conserved quantities: energy, angular momentum, and a difficult-to-interpret quantity asso-
ciated with the θ motion. The same remarkable property carries over to the wave equations
that govern electromagnetic fields and gravitational waves in the Kerr metric: these equa-
tions separate completely in certain coordinate systems. See Teukolsky (1972) for the first
general proof of this and Chandrasekhar (1983) for full discussions.
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Black-hole thermodynamics is treated thoroughly in Carter (1979), while the related
theory of quantum fields in curved spacetimes is reviewed by Wald (1994). This relates to
work on quantum gravity. See the references cited in the §7.5.

Although the field of numerical relativity is rapidly evolving, some parts of
it are mature and have been reviewed. Interested readers might consult the
numerical relativity section of the online journal Living Reviews in Relativity at
http://relativity.livingreviews.org/ or, at a more popular level, the
Einstein Online website http://www.einstein-online.info/en/.

11.7 Exerc i ses

1 Consider a particle or photon in an orbit in the Schwarzschild metric with a certain E
and L, at a radius r � M. Show that if spacetime were really flat, the particle would
travel on a straight line which would pass a distance b := L/[E2 − m2]1/2 from the
center of coordinates r = 0. This ratio b is called the impact parameter. Show also that
photon orbits that follow from Eq. (11.12) depend only on b.

2 Prove Eqs. (11.17) and (11.18).
3 Plot Ṽ2 against r/M for the three cases L̃2 = 25 M2, L̃2 = 12 M2, L̃2 = 9 M2 and verify

the qualitative correctness of Figs. 11.1 and 11.3.
4 What kind of orbits are possible outside a star of radius (a) 2.5 M, (b) 4 M, (c) 10 M?
5 The centers of active galaxies and quasars contain black holes of mass 106 − 109 M�

or more.
(a) Find the radius R0.01 at which −g00 differs from the ‘Newtonian’ value 1 − 2 M/R

by only 1%. (We may think of this as a kind of limit on the region in which
relativistic effects are important.)

(b) A ‘normal’ star may have a radius of 1010 m. Approximately how many such stars
could occupy the volume of space between the horizon R = 2 M and R0.01?

6 Compute the wavelength of light that gets to a distant observer from the following
sources.
(a) Light emitted with wavelength 6563 Å (Hα line) by a source at rest where � =

−10−6. (Typical star.)
(b) Same as (a) for � = −6 × 10−5 (value for the white dwarf 40 Eridani B).
(c) Same as (a) for a source at rest at radius r = 2.2 M outside a black hole of mass

M = 1 M� = 1.47 × 105 cm.
(d) Same as (c) for r = 2.02 M.

7 A clock is in a circular orbit at r = 10 M in a Schwarzschild metric.
(a) How much time elapses on the clock during one orbit? (Integrate the proper time

dτ = |ds2|1/2 over an orbit.)
(b) It sends out a signal to a distant observer once each orbit. What time interval does

the distant observer measure between receiving any two signals?
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(c) A second clock is located at rest at r = 10 M next to the orbit of the first clock.
(Rockets keep it there.) How much time elapses on it between successive passes of
the orbiting clock?

(d) Calculate (b) again in seconds for an orbit at r = 6 M where M = 14 M�. This is
the minimum fluctuation time we expect in the X-ray spectrum of Cyg X-1: why?

(e) If the orbiting ‘clock’ is the twin Artemis, in the orbit in (d), how much does she
age during the time her twin Diana lives 40 years far from the black hole and at
rest with respect to it?

8 (a) Derive Eqs. (11.20) and (11.24).
(b) Derive Eqs. (11.26) and (11.28).

9 (This problem requires access to a computer.)
(a) Integrate numerically Eq. (11.26) or Eq. (11.28) for the orbit of a particle (i.e.

for r/M as a function of φ) when E2 = 0.91 and (L̃/M)2 = 13.0. Compare the
perihelion shift from one orbit to the next with Eq. (11.37).

(b) Integrate again when Ẽ2 = 0.95 and (L̃/M)2 = 13.0. How much proper time does
this particle require to reach the horizon from r = 10 M if its initial radial velocity
is negative?

10 (a) For a given value of L̃, what is the minimum value of Ẽ that permits a particle with
m �= 0 to reach the Schwarzschild horizon?

(b) Express this result in terms of the impact parameter b (see Exer. 1).
(c) Conversely, for a given value of b, what is the maximum value of L̃ that permits

a particle wth m �= 0 to reach the Schwarzschild horizon? Relate your result to
Fig. 11.3.

11 The right-hand side of Eq. (11.28) is a polynomial in u. Trace the u3 term back through
the derivation and show that it would not be present if we had started with the Newto-
nian version of Eq. (11.9). Interpret this term as a redshift effect on the orbital kinetic
energy. Show that it is responsible for the maximum in the curve in Fig. 11.1.

12 (a) Prove that Eq. (11.32) solves Eq. (11.31).
(b) Derive Eq. (11.33) from Eq. (11.32) and show that it describes an ellipse by

transforming to Cartesian coordinates.
13 (a) Derive Eq. (11.34) in the approximation that y is small. What must it be small

compared to?
(b) Derive Eqs. (11.35) and (11.36) from (11.34).
(c) Verify the remark after Eq. (11.36) that y = 0 is not the correct circular orbit for

the given Ẽ and L̃ by using Eqs. (11.20) and (11.21) to find the correct value of y
and comparing it to y0 in Eq. (11.36).

(d) Show from Eq. (11.13) that a particle which has an inner turning point in the ‘New-
tonian’ regime, i.e. for r � M, has a value L̃ � M. Use this to justify the step from
Eq. (11.37) to Eq. (11.38).

14 Compute the perihelion shift per orbit and per year for the following planets, given
their distance from the Sun and their orbital period: Venus (1.1 × 1011 m, 1.9 × 107 s);
Earth (1.5 × 1011 m, 3.2 × 107 s); Mars (2.3 × 1011 m, 5.9 × 107 s).

15 (a) Derive Eq. (11.51) from (11.49), and show that it describes a straight line passing
a distance b from the origin.
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(b) Derive Eq. (11.53) from (11.49).
(c) Integrate Eq. (11.53) to get (11.54).

16 We calculate the observed deflection of a null geodesic anywhere on its path as follows.
See Ward (1970).
(a) Show that Eq. (11.54) may be solved to give

bu = sin(φ − φ0) + M

b
[1 − cos(φ − φ0)]2 + 0

(
M2

b2

)
. (11.115)

(b) In Schwarzschild coordinates, the vector

�v → −(0, 1, 0, dφ/dr) (11.116)

is tangent to the photon’s path as seen by an observer at rest in the metric at the
position r. Show that this observer measures the angle α in Fig. 11.16 to be

cosα = (�v · �er)/(�v · �v)1/2(�er · �er)1/2, (11.117)

where �er has components (0, 1, 0, 0). Argue that φ − π + α is the apparent angular
position of the star, and show from Eq. (11.115) that if M = 0 (no deflection),
φ − π + α = φ0.

(c) When M �= 0, calculate the deflection

δφ := (φ − π + α) − φ0 (11.118)

to first order in M/b. Don’t forget to use the Schwarzschild metric to compute the
dot products in Eq. (11.117). Obtain

δφ = 2M

b
[1 − cos(φ − φ0)], (11.119)

which is, in terms of the position r of the observer,

δφ = 2M

r

1 − cos(φ − φ0)

sin(φ − φ0)
. (11.120)

(d) For M=1 M�=1.47 km, r=1 AU=1.5 × 106 km, how far from the Sun on the sky
can this deflection be detected if we can measure angles to an accuracy of 2 × 10−3

arcsec?

αυ

φ
φ0

er

r

Sun

→
→

�Figure 11.16 The deflection of light by the Sun.
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17 We can use Eq. (11.115) above on a different problem, namely to calculate the expected
arrival times at a distant observer of pulses regularly emitted by a satellite in a circular
orbit in the Schwarzschild metric. This is a simplified version of the timing problem
for the binary pulsar system (§ 9.4). See Damour and Deruelle (1986).
(a) Show that along the trajectory, Eq. (11.115), coordinate time elapses at the rate

dt/dφ = b

[
(bu)2

(
1 − 2M

b
bu

)]−1

. (11.121)

(b) Integrate this to find the coordinate travel time for a photon emitted at the position
uE, φE and received at the position uR, φR, where uR 	 uE.

(c) Since Eq. (11.115) is satisfied at both (uR,φR) and (uE,φE), show that

φR − φ0 = (uR/uE) sin(φE − φR)
{
1 + (uR/uE) cos(φE − φR)

+ MuE(1 − cos[φE − φR])2/ sin2(φE − φR)
}

, (11.122)

to first order in MuE and uR/uE and that, similarly,

b = (1/uR)
{
φR − φ0 + MuE[1 − cos(φE − φR)]2/ sin(φE − φR)

}
. (11.123)

(d) Use these in your result in (b) to calculate the difference δt in travel time between
pulses emitted at (uE,φE) and at (uE,φE + δφE) to first order in δφE. (The receiver
is at fixed (uR,φR).)

(e) For an emitter in a circular orbit uE = const.,φE = �tE, plot the relativistic correc-
tions to the arrival time interval between successive pulses as a function of observer
‘time’, �tR. Comment on the use of this graph, in view of the original assumption
M/b 	 1.

18 Use the expression for distances on a sphere, Eq. (10.2), to show that all the points on
the line θ = 0 in Fig. 11.9 are the same physical point.

19 Derive Eqs. (11.59) and (11.60).
20 (a) Using the Schwarzschild metric, compute all the nonvanishing Christoffel symbols:

�t
rt = −�r

rr = M

r2

(
1 − 2M

r

)−1

; �r
tt = M

r2

(
1 − 2M

r

)
,

�r
θθ = �r

φφ/ sin2 θ = −r

(
1 − 2M

r

)
,

�θ θr = �φφr = 1

r
, (11.124)

�φθφ = −�θφφ/ sin2 θ = cot θ .

Show that all others vanish or are obtained from these by symmetry. (In your argu-
ment that some vanish, you should use the symmetries t → −t,φ → −φ, under
either of which the metric is invariant.)
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(b) Use (a) or the result of Exer. 35, § 6.9 to show that the only nonvanishing
components of the Riemann tensor are

Rt
rtr = −2

M

r3

(
1 − 2M

r

)−1

,

Rt
θ tθ = Rt

φtφ/ sin2 θ = M/r,

Rθ φθφ = 2M sin2 θ/r,

Rr
θrθ = Rr

φrφ/ sin2 θ = −M/r, (11.125)

plus those obtained by symmetries of the Riemann tensor.
(c) Convert these components to an orthonormal basis aligned with the Schwarzschild

coordinates. Show that all components fall off as r−3 for large r.
(d) Compute RαβμνRαβμν , which is independent of the basis, and show that it is

singular as r → 0.
21 A particle of m �= 0 falls radially toward the horizon of a Schwarzschild black hole of

mass M. The geodesic it follows has Ẽ = 0.95.
(a) Find the proper time required to reach r = 2 M from r = 3 M.
(b) Find the proper time required to reach r = 0 from r = 2 M.
(c) Find, on the Schwarzschild coordinate basis, its four-velocity components at r =

2.001 M.
(d) As it passes 2.001 M, it sends a photon out radially to a distant stationary

observer. Compute the redshift of the photon when it reaches the observer. Don’t
forget to allow for the Doppler part of the redshift caused by the particle’s
velocity.

22 A measure of the tidal force on a body is given by the equation of geodesic deviation,
Eq. (6.87). If a human will be crushed when the acceleration gradient across its body
is 400 m s−2 per meter, calculate the minimum mass Schwarzschild black hole that
would permit a human to survive long enough to reach the horizon on the trajectory in
Exer. 21.

23 Prove Eq. (11.67).
24 Show that spacetime is locally flat at the center of the Kruskel–Szekeres coordinate

system, u = v = 0 in Fig. 11.11.
25 Given a spherical star of radius R � M and mean density ρ, estimate the tidal force

across it which would be required to break it up. Use this as in Exer. 22 to define the
tidal radius RT of a black hole of mass MH: the radius at which a star of density ρ near
the hole will be torn apart. For what mass MH is RT = 100 MH if ρ = 103 kg m−3,
typical of our Sun? This illustrates that even some applications of black holes in
astrophysical contexts require few ‘relativistic’ effects.

26 Given the area of a Kerr hole, Eq. (11.85), with r+ defined in Eq. (11.81), show that any
two holes with masses m1 and m2 and angular momenta m1a1 and m2a2 respectively
have a total area less than that of a single hole of mass m1 + m2 and angular momentum
m1a1 + m2a2.

27 Show that the ‘static limit’, Eq. (11.80), is a limit on the region of spacetime in which
curves with r, θ , and φ constant are timelike.
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28 (a) Prove Eq. (11.87).
(b) Derive Eq. (11.89).

29 In the Kerr metric, show (or argue on symmetry grounds) that a geodesic which passes
through a point in the equatorial ‘plane’ (θ = π/2) and whose tangent there is tangent
to the plane (pθ = 0) remains always in the plane.

30 Derive Eqs. (11.91) and (11.92).
31 Show that a ZAMO has four-velocity components U0 = A, Uφ = ωA, Ur = Uθ = 0,

A2 = gφφ/(−D), where D is defined in Eq. (11.87).
32 Show, as argued in the text, that the Penrose process decreases the angular momentum

of the hole.
33 Derive Eq. (11.101) from Eq. (11.100).
34 (a) Use the area theorem to calculate the maximum energy released when two

Schwarzschild black holes of mass M collide to form a Schwarzschild hole.
(b) Do the same for holes of mass m1 and m2, and express the result as a percentage of

m1 when m1 → 0 for fixed m2.
35 The Sun rotates with a period of approximately 25 days.

(a) Idealize it as a solid sphere rotating uniformly. Its moment of inertia is 2
5 M�R2�,

where M� = 2 × 1030 kg and R� = 7 × 108 m. In SI units compute J�.
(b) Convert this to geometrized units.
(c) If the entire Sun suddenly collapsed into a black hole, it would form a Kerr hole

of mass M� and angular momentum J�. What would be the Kerr parameter,
a� = J�/M�, in m? What is the ratio a�/M�? Physicists expect that a Kerr hole
will never be formed with a>M, because centrifugal forces will halt the collapse
or create a rotational instability. The result of this exercise is that even a quite
ordinary star like the sun needs to get rid of angular momentum before forming a
black hole.

(d) Does an electron have too much angular momentum to form a Kerr hole with
a<M? (Neglect its charge.)

36 (a) For a Kerr black hole, prove that for fixed M, the largest area is obtained for a = 0
(Schwarzschild).

(b) Conversely, prove that for fixed area, the smallest mass is obtained for a = 0.
37 (a) An observer sits at constant r,φ in the equatorial plane of the Kerr metric (θ =

π/2) outside the ergoregion. He uses mirrors to cause a photon to circle the hole
along a circular path of constant r in the equatorial plane. Its world line is thus a null
line with dr = dθ = 0, but it is not, of course, a geodesic. How much coordinate
time t elapses between the emission of a photon in the direction of increasing φ and
its receipt after it has circled the hole once? Answer the same for a photon sent off
in the direction of decreasing φ, and show that this is a different amount of time.
Does the photon return redshifted from its original frequency?

(b) A different observer rotates about the hole on an orbit of r = const. and angular
velocity given by Eq. (11.77). Using the same arrangement of mirrors, he measures
the coordinate time that elapses between his emission and his receipt of a photon
sent in either direction. Show that in this case the two terms are equal. (This is a
ZAMO, as defined in the text.)
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38 Consider equatorial motion of particles with m �= 0 in the Kerr metric. Find the analogs
of Eqs. (11.91)–(11.95) using Ẽ and L̃ as defined in Eqs. (11.5) and (11.6). Plot Ṽ± for
a = 0.5 M and L̃/M = 20, 12, and 6. Discuss the qualitative features of the trajectories.
For arbitrary a determine the relations among Ẽ, L̃, and r for circular orbits with either
sense of rotation. What is the minimum radius of a stable circular orbit? What happens
to circular orbits in the ergosphere?

39 (a) Derive Eq. (11.109) from Eq. (11.105) and the black-body law, luminosity =
σAT4, where A is the area and σ is the Stefan–Boltzmann radiation constant,
σ = 0.567 × 10−7 Wm−2(K)−4.

(b) How small must a black hole be to be able to emit substantial numbers of electron–
positron pairs?



12 Cosmology

12.1 What i s cosmology?

The universe in the large

Cosmology is the study of the universe as a whole: its history, evolution, composition,
dynamics. The primary aim of research in cosmology is to understand the large-scale struc-
ture of the universe, but cosmology also provides the arena, and the starting point, for the
development of all the detailed small-scale structure that arose as the universe expanded
away from the Big Bang: galaxies, stars, planets, people. The interface between cosmology
and other branches of astronomy, physics, and biology is therefore a rich area of scientific
research. Moreover, as astronomers have begun to be able to study the evidence for the Big
Bang in detail, cosmology has begun to address very fundamental questions of physics:
what are the laws of physics at the very highest possible energies, how did the Big Bang
happen, what came before the Big Bang, how did the building blocks of matter (electrons,
protons, neutrons) get made? Ultimately, the origin of every system and structure in the
natural world, and possibly even the origin of the physical laws that govern the natural
world, can be traced back to some aspect of cosmology.

Our ability to understand the universe on large scales depends in an essential way on
general relativity. It is not hard to see why. Newtonian theory is an adequate description of
gravity as long as, roughly speaking, the mass M of a system is small compared to the size,
R : M/R 	 1. We must replace Newtonian theory with GR if the system changes in such
a way that M/R gets close to one. This can happen if the system’s radius R becomes small
faster than M, which is the domain of compact or collapsed objects: neutron stars and black
holes have very small radii for the mass they contain. But we can also get to the relativistic
regime if the system’s mass increases faster than its radius. This is the case for cosmology:
if space is filled with matter of roughly the same density everywhere, then, as we consider
volumes of larger and larger radius R, the mass increases as R3, and M/R eventually must
get so large that GR becomes important.

What length scale is this? Suppose we begin increasing R from the center of our Sun.
The Sun is nowhere relativistic, and once R is larger than R�, M hardly increases at all
until the next star is reached. The system of stars of which the Sun is a minor member is a
galaxy, and contains some 1011 stars in a radius of about 15 kpc. (One parsec, abbreviated
pc, is about 3 × 1016 m.) For this system, M/R ∼ 10−6, similar to that for the Sun itself. So
galactic dynamics has no need for relativity. (This applies to the galaxy as a whole: small
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regions, including the very center, may be dominated by black holes or other relativistic
objects.) Galaxies are observed to form clusters, which often have thousands of members
in a volume of the order of a Mpc. Such a cluster could have M/R ∼ 10−4, but it would
still not need GR to describe it adequately.

When we go to larger scales than the size of a typical galaxy cluster, however, we enter
the domain of cosmology.

In the cosmological picture, galaxies and even clusters are very small-scale structures,
mere atoms in the larger universe. Our telescopes are capable of seeing to distances greater
than 10 Gpc. On this large scale, the universe is observed to be homogeneous, to have
roughly the same density of galaxies, and roughly the same types of galaxies, everywhere.
As we shall see later, the mean density of mass–energy is roughly ρ = 10−26 kg m−3.
Taking this density, the mass M = 4πρR3/3 is equal to R for R ∼ 6 Gpc, which is well
within the observable universe. So to understand the universe that our telescopes reveal to
us, we need GR.

Indeed, GR has provided scientists with their first consistent framework for studying cos-
mology. We shall see that metrics exist that describe universes that embody the observed
homogeneity: they have no boundaries, no edges, and are homogeneous everywhere. New-
tonian gravity could not consistently make such models, because the solution of Newton’s
fundamental equation ∇2� = 4πGρ is ambiguous if there is no outer edge on which to set
a boundary condition for the differential equation. So only with Einstein could cosmology
become a branch of physics and astronomy.

We should ask the converse question: if we live in a universe whose overall structure
is highly relativistic, how is it that we can study our local region of the universe without
reference to cosmology? How can we, as in earlier chapters, apply general relativity to
the study of neutron stars and black holes as if they were embedded in an empty asymp-
totically flat spacetime, when actually they exist in a highly relativistic cosmology? How
can astronomers study individual stars, geologists individual planets, biologists individual
cells – all without reference to GR? The answer, of course, is that in GR spacetime is
locally flat: as long as your experiment is confined to the local region you don’t need to
know about the large-scale geometry. This separation of local and global is not possible in
Newtonian gravity, where even the local gravitational field within a large uniform-density
system depends on the boundary conditions far away, on the shape of the distant “edge” of
the universe (see Exer. 3, § 12.6). So GR not only allows us to study cosmology, it explains
why we can study the rest of science without needing GR!

The cosmological arena

In recent years, with the increasing power of ground- and space-based astronomical obser-
vatories, cosmology has become a precision science, one which physicists look to for
answers to some of their most fundamental questions. The basic picture of the universe
that observations reveal is remarkably simple, when averaged over distance scales much
larger than, say, 10 Mpc. We see a homogeneous universe, expanding at the same rate
everywhere. The universe we see is also isotropic: it looks the same, on average, in every
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direction we look. The universe is filled with radiation with a black-body thermal spectrum,
with a temperature of 2.725K. The expansion means that the universe has a finite age, or
at least that it has expanded in a finite time from a state of very high density. The thermal
radiation suggests that the universe was initially much hotter than today, and has cooled as
it expanded. The expansion resolves the oldest of all cosmological conundrums, Olbers’
Paradox. The sky is dark at night because we do not receive light from all stars in our
infinite homogeneous universe, but only from stars that are close enough for light to have
traveled to us during the age of the universe.

But the expansion raises other deep questions, about how the universe evolved to its
present state and what it was like much earlier. We would like to know how the first stars
formed, why they group into galaxies, why galaxies form clusters: where did the density
irregularities come from that have led to the enormously varied structure of the universe on
scales smaller than 10 Mpc? We would like to know how the elements formed, what the
universe was like when it was too dense and too hot to have normal nuclei, and what the
very hot early universe can tell us about the laws of physics at energies higher than we can
explore with particle accelerators. We would like to know if the observed homogeneity and
isotropy of the universe has a physical explanation.

Answering these questions has led physicists to explore some very deep issues at the
frontiers of our understanding of fundamental physics. The homogeneity problem can be
solved if the extremely early universe expanded exponentially rapidly, in a phase that physi-
cists call inflation. This could happen if the laws of physics at higher energies than can be
explored in the laboratory have a suitable form, and if so this would as a bonus help to
explain the density fluctuations that led to the observed galaxies and clusters. As we shall
see, it appears that most of the matter in the universe is in an unknown form, which physi-
cists call dark matter because it radiates no light. Even more strangely, the universe seems
to be pervaded by a relativistic energy density that carries negative pressure and which is
driving the expansion faster and faster; physicists call this the dark energy. The mysteries
of dark energy and of inflation may only really be solved with a better understanding of
the laws of physics at the highest energies, so theoretical physicists are looking more and
more to astronomical answers for clues to better theories.

Modern cosmology is already providing answers to some of these questions, and the
answers are becoming more precise and more definite at a rapid pace. This chapter gives a
snapshot of the fundamentals of our understanding at the present time (2008). More than
any other area covered in this textbook, cosmology is a study that promises new insights,
surprises, perhaps even a revolution.

12.2 Cosmolog i ca l k inemat i c s : observ ing the
expand ing un iver se

Before we can begin to understand the deep questions of cosmology, let alone their
answers, we need to be able to describe and work with the notion of an expanding universe.
In this section we develop the metric that describes a homogeneous expanding universe, we
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show how astronomical observations measure the expansion history, and we develop the
framework for discussing physical processes in the expanding universe. In the following
section 12.3 we will apply Einstein’s equations to our models to see what GR has to tell us
about how the universe expands.

Homogeneity and isotropy of the universe

The simplest approach to applying GR to cosmology is to use the remarkable observed
large-scale uniformity. We see, on scales much larger than 10 Mpc, not only a uniform
average density but uniformity in other properties: types of galaxies, their clustering den-
sities, their chemical composition and stellar composition. Of course, when we look very
far away we are also looking back in time, the time it took the light we observe to reach us;
over sufficiently long look-back times we also see evolution, we see a younger universe.
But the evolution we see is again the same in all directions, even when we look at parts of
the early universe that are very far from one another. We therefore conclude that, on the
large scale, the universe is homogeneous. What is more, on scales much larger than 10 Mpc
the universe seems to be isotropic about every point: we see no consistently defined special
direction.1

A third feature of the observable universe is the uniformity of its expansion: galaxies, on
average, seem to be receding from us at a speed which is proportional to their distance from
us. This recessional velocity is called the Hubble flow after its discoverer Edwin Hubble.
This kind of expansion is easily visualized in the ‘balloon’ model (see Fig. 12.1). Paint
regularly spaced dots on a spherical balloon and then inflate it. As it grows, the distance
on the surface of the balloon between any two points grows at a rate proportional to that
distance. Therefore any point will see all other points receding at a rate proportional to their

�Figure 12.1 As the figure is magnified, all relative distances increase at a rate proportional to their
magnitudes.

1 A universe could be homogeneous but anisotropic, if, for instance, it had a large-scale magnetic field which
pointed in one direction everywhere and whose magnitude was the same everywhere. On the other hand, an
inhomogeneous universe could not be isotropic about every point, since most – if not all – places in the universe
would see a sky that is ‘lumpy’ in one direction and not in another.
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distance. This proportionality preserves the homogeneity of the distribution of dots with
time. It means that our location in the universe is not special, even though we appear to see
everything else receding away from us. We are no more at the ‘center’ of the cosmological
expansion than any other point is. The Hubble flow is compatible with the Copernican
Principle, the idea that the universe does not revolve around (or expand away from) our
particular location.

The Hubble expansion gives another opportunity for anisotropy. The universe would
be homogeneous and anisotropic if every point saw a recessional velocity larger in, say,
the x direction than in the y direction. In our model, this would happen if the balloon were
an ellipsoid; to keep its shape it would have to expand faster along its longest axis than
along the others. Our universe does not have any measurable velocity anisotropy. Because
of this extraordinary simplicity, we can describe the relation between recessional velocity
and distance with a single constant of proportionality H:

v = Hd (12.1)

Astronomers call H Hubble’s parameter. Its present value is called Hubble’s constant,
H0. The value of H0 is measured – by methods we discuss below – to be H0 =
(71 ± 4) km s−1Mpc−1 in astronomers’ peculiar but useful units. To get its value in normal
units, convert 1 Mpc to 3.1 × 1022 m to get H0 = (2.3 ± 0.1) × 10−18 s−1. In geometrized
units, found by dividing by c, this is H0 = (7.7 ± 0.4) × 10−27 m−1. Associated with the
Hubble constant is the Hubble time tH = H−1

0 = (4.3 ± 0.2) × 1017 s. This is about 14 bil-
lion years, and is the time-scale for the cosmological expansion. The age of the universe
will not exactly be this, since in the past the expansion speed varied, but this gives the
order of magnitude of the time that has been available for the universe as we see it to have
evolved.

We may object that the above discussion ignores the relativity of simultaneity. If the
universe is changing in time – expanding – then it may be possible to find some definition
of time such that hypersurfaces of constant time are homogeneous and isotropic, but this
would not be true for other choices of a time coordinate. Moreover, Eq. (12.1) cannot be
exact since, for d > 1.3 × 1026 m = 4200 Mpc, the velocity exceeds the velocity of light!
This objection is right on both counts. Our discussion was a local one (applicable for
recessional velocities 	 1) and took the point of view of a particular observer, ourselves.
Fortunately, the cosmological expansion is slow, so that over distances of 1000 Mpc, large
enough to study the average properties of the homogeneous universe, the velocities are
essentially nonrelativistic. Moreover, the average random velocities of galaxies relative to
their near neighbors is typically less than 100 km s−1, which is certainly nonrelativistic,
and is much smaller than the systematic expansion speed over cosmological distances.

Therefore, the correct relativistic description of the expanding universe is that, in our
neighborhood, there exists a preferred choice of time, whose hypersurfaces are homoge-
neous and isotropic, and with respect to which Eq. (12.1) is valid in the local inertial frame
of any observer who is at rest with respect to these hypersurfaces at any location.

The existence of a preferred cosmological reference frame may at first seem startling:
did we not introduce special relativity as a way to get away from special reference frames?
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There is no contradiction: the laws of physics themselves are invariant under a change of
observer. But there is only one universe, and its physical make-up defines a convenient
reference frame. Just as when studying the solar system it would be silly for us to place
the origin of our coordinate system at, say, the position of Jupiter on 1 January 1900, so
too would it be silly for us to develop the theory of cosmology in a frame that does not
take advantage of the simplicity afforded by the large-scale homogeneity. From now on
we will, therefore, work in the cosmological reference frame, with its preferred definition
of time.

Models of the universe: the cosmological pr inciple

If we are to make a large-scale model of the universe, we must make some assumption
about regions that we have no way of seeing now because they are too distant for our
telescope. We should in fact distinguish two different inaccessible regions of the universe.

The first inaccessible region is the region which is so distant that no information (travel-
ing on a null geodesic) could reach us from it no matter how early this information began
traveling. This region is everything that is outside our past light-cone. Such a region usu-
ally exists if the universe has a finite age, as ours does (see Fig. 12.2). This ‘unknown’
region is unimportant in one respect: what happens there has no effect on the interior of
our past light cone, so how we incorporate it into our model universe has no effect on the
way the model describes our observable history. On the other hand, our past light cone is a
kind of horizon, which is called the particle horizon: as time passes, more and more of the
previously unknown region enters the interior of our past light cone and becomes observ-
able. So the unknown regions across the particle horizon can have a real influence on our
future. In this sense, cosmology is a retrospective science: it reliably helps us understand
only our past.

It must be acknowledged, however, that if information began coming in tomorrow that
yesterday’s ‘unknown’ region was in fact very different from the observed universe, say

Unobserved

Unknown

Our location

Particle horizon

Unknown

t = now

t = 0

�Figure 12.2 Schematic spacetime diagram showing the past history of the Universe, back to t = 0. The
‘unknown’ regions have not had time to send us information; the ‘unobserved’ regions are
obscured by intervening matter.
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highly inhomogeneous, then we would be posed difficult physical and philosophical ques-
tions regarding the apparently special nature of our history until this moment. It is to avoid
these difficulties that we usually assume that the unknown regions are very like what we
observe, and in particular are homogeneous and isotropic. Notice that there are very good
reasons for adopting this idea. Consider, in Fig. 12.2, two hypothetical observers within our
own past light cone, but at such an early time in the evolution of the universe that their own
past light-cones are disjoint. Then they are outside each other’s particle horizon. But we
can see that the physical conditions near each of them are very similar: we can confirm that
if they apply the principle that regions outside their particle horizons are similar to regions
inside, then they would be right! It seems unreasonable to expect that if this principle holds
for other observers, then it will not also hold for us.

This modern version of the Copernican Principle is called the Cosmological Principle,
or more informally the Assumption of Mediocrity, the ordinary-ness of our own location in
the universe. It is, mathematically, an extremely powerful (i.e. restrictive) assumption. We
shall adopt it, but we should bear in mind that predictions about the future depend strongly
on the assumption of mediocrity.

The second inaccessible region is that part of the interior of our past light cone which
our instruments cannot get information about. This includes galaxies so distant that they
are too dim to be seen; processes that give off radiation – like gravitational waves – which
we have not yet been able to detect; and events that are masked from view, such as those
which emitted electromagnetic radiation before the epoch of decoupling (see below) when
the universe ceased to be an ionized plasma and became transparent to electromagnetic
waves. The limit of decoupling is sometimes called our optical horizon since no light
reaches us from beyond it (from earlier times). But gravitational waves do propagate freely
before this, so eventually we will begin to make observations across this ‘horizon’: the
optical horizon is not a fundamental limit in the way the particle horizon is.

Cosmological metr ics

The metric tensor that represents a cosmological model must incorporate the observed
homogeneity and isotropy. We shall therefore adopt the following idealizations about the
universe: (i) spacetime can be sliced into hypersurfaces of constant time which are perfectly
homogeneous and isotropic; and (ii) the mean rest frame of the galaxies agrees with this
definition of simultaneity. Let us next try to simplify the problem as much as possible by
adopting comoving coordinates: each galaxy is idealized as having no random velocity,
and we give each galaxy a fixed set of coordinates {xi, i = 1, 2, 3}. We choose our time
coordinate t to be proper time for each galaxy. The expansion of the universe – the change
of proper distance between galaxies – is represented by time-dependent metric coefficients.
Thus, if at one moment, t0, the hypersurface of constant time has the line element

dl2(t0) = hij(t0) dxi dx j (12.2)
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(these hs have nothing to do with linearized theory), then the expansion of the hypersurface
can be represented by

dl2(t1) = f (t1, t0)hij(t0) dxi dx j

= hij(t1) dxi dx j. (12.3)

This form guarantees that all the hijs increase at the same rate; otherwise the expansion
would be anisotropic (see Exer. 4, § 12.6). In general, then, Eq. (12.2) can be written

dl2(t) = R2(t)hij dxi dx j, (12.4)

where R is an overall scale factor which equals one at t0, and where hij is a constant metric
equal to that of the hypersurface at t0. We shall explore what form hij can take in detail in
a moment.

First we extend the constant-time hypersurface line element to a line element for the full
spacetime. In general, it would be

ds2 = −dt2 + g0i dt dxi + R2(t)hij dxi dx j, (12.5)

where g00 = −1, because t is proper time along a line dxi = 0. However, if the defini-
tion of simultaneity given by t = const. is to agree with that given by the local Lorentz
frame attached to a galaxy (idealization (ii) above), then �e0 must be orthogonal to �ei in our
comoving coordinates. This means that g0i = �e0 · �ei must vanish, and we get

ds2 = −dt2 + R2(t)hij dxi dx j. (12.6)

What form can hij take? Since it is isotropic, it must be spherically symmetric about the
origin of the coordinates, which can of course be chosen to be located at any point we like.
When we discussed spherical stars we showed that a spherically symmetric metric always
has the line element (last part of Eq. (10.5))

dl2 = e2�(r) dr2 + r2d�2. (12.7)

This form of the metric implies only isotropy about one point. We want a stronger con-
dition, namely that the metric is homogeneous. A necessary condition for this is certainly
that the Ricci scalar curvature of the three-dimensional metric, Ri

i, must have the same
value at every point: every scalar must be independent of position at a fixed time. We will
show below, remarkably, that this is sufficient as well, but for now we just treat it as the
next constraint we place on the metric in Eq. (12.7). We can calculate Ri

i using Exer. 35
of § 6.9. Alternatively, we can use Eqs. (10.15)–(10.17) of our discussion of spherically
symmetric spacetimes in Ch. 10, realizing that Gij for the line element, Eq. (12.7), above
is obtainable from Gij for the line element, Eq. (10.7), of a spherical star by setting � to
zero. We get

Grr = − 1

r2
e2�(1 − e−2�),

Gθθ = −r e−2��′, (12.8)

Gφφ = sin2 θGθθ .
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The trace of this tensor is also a scalar, and must also therefore be constant. So instead
of computing the Ricci scalar curvature, we simply require that the trace G of the three-
dimensional Einstein tensor be a constant. (In fact, this trace is just −1/2 of the Ricci
scalar.) The trace is

G = Gijg
ij

= − 1

r2
e2�(1 − e−2�) e−2� − 2r e−2��′r−2

= − 1

r2
+ 1

r2
e−2�(1 − 2r�′)

= − 1

r2
[1 − (r e−2�)′]. (12.9)

Demanding homogeneity means setting G to some constant κ:

κ = − 1

r2
[r(1 − e−2�)]′. (12.10)

This is easily integrated to give

grr = e2� = 1

1 + 1
3κr2 − A/r

, (12.11)

where A is a constant of integration. As in the case of spherical stars, we must demand local
flatness at r = 0 (compare with § 10.5): grr(r = 0) = 1. This implies A = 0. Defining the
more conventional curvature constant k = −κ/3 gives

grr = 1

1 − kr2

dl2 = dr2

1 − kr2
+ r2 d�2. (12.12)

We have not yet proved that this space is isotropic about every point; all we have shown
is that Eq. (12.12) is the unique space which satisfies the necessary condition that this
curvature scalar be homogeneous. Thus, if a space that is isotropic and homogeneous exists
at all, it must have the metric, Eq. (12.12), for at least some k.

In fact, the converse is true: the metric of Eq. (12.12) is homogeneous and isotropic
for any value of k. We will demonstrate this explicitly for positive, negative, and zero k
separately in the next paragraph. General proofs not depending on the sign of k can be
found in, for example, Weinberg (1972) or Schutz (1980b). Assuming this result for the
time being, therefore, we conclude that the full cosmological spacetime has the metric

ds2 = −dt2 + R2(t)

[
dr2

1 − kr2
+ r2 d�2

]
. (12.13)

This is called the Robertson–Walker metric. Notice that we can, without loss of generality,
scale the coordinate r in such a way as to make k take one of the three values +1, 0, −1. To
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see this, consider for definiteness k = −3. Then re-define r̃ = √
3r and R̃ = 1/

√
3R, and

the line element becomes

ds2 = −dt2 + R̃2(t)

[
dr̃2

1 − r̃2
+ r̃2 d�2

]
. (12.14)

What we cannot do with this rescaling is change the sign of k. Therefore there are only
three spatial hypersurfaces we need consider: k = (−1, 0, 1).

Three types of universe

Here we prove that all three kinds of hypersurfaces represent homogenous and isotropic
metrics that have different large-scale geometries. Consider first k = 0. Then, at any
moment t0, the line element of the hypersurface (setting dt = 0) is

dl2 = R2(t0)
[
dr2 + r2 d�2

]
= d(r′)2 + (r′)2 d�, (12.15)

with r′ = R(t0)r. (Remember that R(t0) is constant on the hypersurface.) This is clearly
the metric of flat Euclidean space. This is the flat Robertson–Walker universe. That it is
homogeneous and isotropic is obvious.

Consider, next, k = +1. Let us define a new coordinate χ (r) such that

dχ2 = dr2

1 − r2
(12.16)

and χ = 0 where r = 0. This integrates to

r = sinχ , (12.17)

so that the line element for the space t = t0 is

dl2 = R2(t0)[dχ2 + sin2 χ (dθ2 + sin2 θ dφ2)]. (12.18)

We showed in Exer. 33, § 6.9, that this is the metric of a three-sphere of radius R(t0), i.e. of
the set of points in four-dimensional Euclidean space that are all at a distance R(t0) from
the origin. This model is called the closed, or spherical Robertson–Walker metric and the
balloon analogy of cosmological expansion (Fig. 12.1) is particularly appropriate for it. It is
clearly homogeneous and isotropic: no matter where we stand on the three-sphere, it looks
the same in all directions. Remember that the fourth spatial dimension – the radial direction
to the center of the three-sphere – has no physical meaning to us: all our measurements are
confined to our three-space so we can have no physical knowledge about the properties or
even the existence of that dimension. At this point we should perhaps think of it as simply
a tool for making it easy to visualize the three-sphere, not as an extra real dimension,
although see the final paragraph of this chapter for a potentially different point of view
on this.

The final possibility is k = −1. An analogous coordinate transformation (Exer. 8, § 12.6)
gives the line element

dl2 = R2(t0)(dχ2 + sinh2 χ d�2). (12.19)
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This is called the hyperbolic, or open, Robertson–Walker model. Notice one peculiar
property. As the proper radial coordinate χ increases away from the origin, the circum-
ferences of spheres increase as sinh χ . Since sinhχ > χ for all χ > 0, it follows that
these circumferences increase more rapidly with proper radius than in flat space. For this
reason this hypersurface is not realizable as a three-dimensional hypersurface in a four-
or higher-dimensional Euclidean space. That is, there is no picture which we can easily
draw such as that for the three-sphere. The space is call ‘open’ because, unlike for k = +1,
circumferences of spheres increase monotonically with χ : there is no natural end to the
space.

In fact, as we show in Exer. 8, § 12.6, this geometry is the geometry of a hypersurface
embedded in Minkowski spacetime. Specifically, it is a hypersurface of events that all have
the same timelike interval from the origin. Since this hypersurface has the same interval
from the origin in any Lorentz frame (intervals are Lorentz invariant), this hypersurface is
indeed homogeneous and isotropic.

Cosmological redshift as a distance measure

When studying small regions of the universe around the Sun, astronomers measure proper
distances to stars and other objects and express them in parsecs, as we have seen, or in the
multiples kpc and Mpc. But if the object is at a cosmological distance in a universe that
is expanding, then what we mean by distance is a little ambiguous, due to the long time it
takes light to travel from the object to us. Its separation from our location when it emitted
the light that we receive today may have been much less than its separation at present,
i.e. on the present hypersurface of constant time. Indeed, the object may not even exist
any more: all we know about it is that it existed at the event on our past light-cone when
it emitted the light we receive today. But between then and now it might have exploded,
collapsed, or otherwise changed dramatically. So the notion of the separation between us
and the object now is not as important as it might be for local measurements.

Instead, astronomers commonly use a different measurement of separation: the redshift
z of the spectrum of the light emitted by the object, let us say a galaxy. In an expanding
universe that follows Hubble’s Law, Eq. (12.1), the further away the galaxy is, the faster it is
receding from us, so the redshift is a nice monotonic measure of separation: larger redshifts
imply larger distances. Of course, as we noted in the discussion following Eq. (12.1), the
galaxy’s redshift contains an element due to its random local velocity; over cosmological
distances this is a small uncertainty, but for the nearby parts of the universe astronomers
use conventional distance measures, mainly Mpc, instead of redshift.

To compute the redshift in our cosmological models, let us assume that the galaxy has a
fixed coordinate position on some hypersurface at the cosmological time t at which it emits
the light we eventually receive at time t0. Recall our discussion of conserved quantities in
§ 7.4: if the metric is independent of a coordinate, then the associated covariant component
of momentum is constant along a geodesic. In the cosmological case, the homogeneity
of the hypersurfaces ensures that the covariant components of the spatial momentum of
the photon emitted by our galaxy are constant along its trajectory. Suppose that we place
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ourselves at the origin of the cosmological coordinate system (since the cosmology is
homogeneous, we can put the origin anywhere we like), so that light travels along a radial
line θ = const., φ = const. to us. In each of the cosmologies the line-element restricted to
the trajectory has the form

0 = −dt2 + R2(t)dχ2. (12.20)

(To get this for the flat hypersurfaces, simply rename the coordinate r in the first part of
Eq. (12.15) to χ .) It follows that the relevant conserved quantity for the photon is pχ .
Now, the cosmological time coordinate t is proper time, so the energy as measured by a
local observer at rest in the cosmology anywhere along the trajectory is −p0. We argue in
Exer. 9, § 12.6, that conservation of pχ implies that p0 is inversely proportional to R(t). It
follows that the wavelength as measured locally (in proper distance units) is proportional
to R(t), and hence that the redshift z of a photon emitted at time t and observed by us at
time t0 is given by

l + z = R(t0)/R(t). (12.21)

It is important to keep in mind that this is just the cosmological part of any overall red-
shift: if the source or observer is moving relative to the cosmological rest frame, then there
will be a further factor of 1 + zmotion multiplied into the right-hand-side of Eq. (12.24).

We now show that the Hubble parameter H(t) is the instantaneous relative rate of
expansion of the universe at time t:

H(t) = Ṙ(t)

R(t)
. (12.22)

Our galaxy at a fixed coordinate location χ is carried away from us by the cosmologi-
cal expansion. At the present time t0 its proper distance d from us (in the constant-time
hypersurface) is the same for each of the cosmologies when expressed in terms of χ :

d0 = R(t0)χ . (12.23)

It follows by differentiating this that the current rate of change of proper distance between
the observer at the origin and the galaxy at fixed χ is

v = (Ṙ/R)0d0 = H0d0, (12.24)

where H0 is the present value of the Hubble parameter. By comparison with Eq. (12.1), we
see that this is just the present value of the Hubble parameter Ṙ/R. We show in Exer. 10,
§ 12.6 that this velocity is just v = z, which is what is required to give the redshift z,
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provided the galaxy is not far away. In our cosmological neighborhood, therefore, the cos-
mological redshift is a true Doppler shift. Moreover, the redshift is proportional to proper
distance in our neighborhood, with the Hubble constant as the constant of proportionality.
We shall now investigate how various measures of distance depend on redshift when we
leave our cosmological neighborhood.

The scale factor of the Universe R(t) is related to the Hubble parameter by Eq. (12.22).
Integrating this for R gives

R(t) = R0 exp

[∫ t

t0
H(t′)dt′

]
. (12.25)

The Taylor expansion of this is

R(t) = R0[1 + H0(t − t0) + 1
2 (H2

0 + Ḣ0)(t − t0)2 + · · · ], (12.26)

where subscripted zeros denote quantities evaluated at t0. The time-derivative of the
Hubble parameter contains information about the acceleration or deceleration of the expan-
sion. Cosmologists sometimes replace Ḣ0 with the dimensionless deceleration parameter,
defined as

q0 = −R0R̈0/Ṙ
2
0 = −

(
1 + Ḣ0/H

2
0

)
. (12.27)

The minus sign in the definition and the name ‘deceleration parameter’ reflect the assump-
tion, when this parameter was first introduced, that gravity would be slowing down the
cosmological expansion, so that q0 would be positive. However, astronomers now believe
that the universe is accelerating, so the idea of a ‘deceleration parameter’ has gone out of
fashion. Nevertheless, any formula containing Ḣ0 can be converted to one in terms of q0

and vice-versa.
What does Hubble’s law, Eq. (12.1), look like to this accuracy? The recessional velocity

v is deduced from the redshift of spectral lines, so it is more convenient to work directly
with the redshift. Combining Eq. (12.25) with Eq. (12.21) we get

1 + z(t) = exp

[
−
∫ t

t0
H(t′)dt′

]
. (12.28)

The Taylor expansion of this is

z(t) = H0(t0 − t) + 1
2 (H2

0 − Ḣ0)(t0 − t)2 + · · · . (12.29)

This is not directly useful yet, since we have no independent information about the time
t at which a galaxy emitted its light. Perhaps Eq. (12.29) is more useful when inverted to
give an expansion for the look-back proper time to an event with redshift z:

t0 − t(z) = H−1
0

[
z − 1

2 (1 − Ḣ0/H
2
0)z2 + · · ·

]
. (12.30)

From the simple expansion

H(t) = H0 + Ḣ0(t − t0) + · · · ,
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we can substitute in the first term of the previous equation and get an expansion for H as a
function of z:

H(z) = H0

(
1 − Ḣ0

H2
0

z + · · ·
)

. (12.31)

Note that Eq. (12.28) can also be inverted to give the exact and very simple relation

H(t) = − ż

1 + z
. (12.32)

Although cosmology is self-consistent only within a relativistic framework, it is never-
theless useful to ask how the expansion of the universe looks in Newtonian language. We
imagine a spherical region uniformly filled with galaxies, starting at some time with radi-
ally outward velocities that are proportional to the distance from the center of the sphere.
If we are not near the edge – and of course the edge may be much too far away for us
to see today – then we can show that the expansion is homogeneous and isotropic about
every point. The galaxies just fly away from one another, and the Hubble constant is the
scale for the initial velocity: it is the radial velocity per unit distance away from the origin.
The problem with this Newtonian model is not that it cannot describe the local state of the
universe, it is that, with gravitational forces that propagate instantaneously, the dynamics
of any bit of the universe depends on the structure of this cloud of galaxies arbitrarily far
away. Only in a relativistic theory of gravity can we make sense of the dynamical evolution
of the universe. This is a subject we will study below.

When light is redshifted, it loses energy. Where does this energy go? The fully relativistic
answer is that it just goes away: since the metric depends on time, there is no conservation
law for energy along a geodesic. Interestingly, in the Newtonian picture of the universe just
described, the redshift is just caused by the different velocities of the diverging galaxies
relative to one another. As the photon moves outward in the expanding cloud, it finds itself
passing galaxies that are moving faster and faster relative to the center. It is not surprising
that they measure the energy of the photon to be smaller and smaller as it moves outwards.

Cosmography: measures of distance in the universe

Cosmography refers to the description of the expansion of the universe and its history.
In cosmography we do not yet apply the Einstein equations to explain the motion of the
universe, instead we simply measure its expansion history. The language of cosmography
is the language of distance measures and the evolution of the Hubble parameter.

By analogy with Eq. (12.1), we would like to replace t in Eq. (12.29) with distance. But
what measure of distance is suitable over vast cosmological separations? Not coordinate
distance, which would be unmeasurable. What about proper distance? The proper distance
between the events of emission and reception of the light is zero, since light travels on
null lines. The proper distance between the emitting galaxy and us at the present time is
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also unmeasurable: in principle, the galaxy may not even exist now, perhaps because of a
collision with another galaxy. To get out of this difficulty, let us ask how distance crept into
Eq. (12.1) in the first place.

Distances to nearby galaxies are almost always inferred from luminosity measurements.
Consider an object whose distance d is known, which is at rest, and which is near enough
to us that we can assume that space is Euclidean. Then a measurement of its flux F leads
to an inference of its absolute luminosity:

L = 4πd2F (12.33)

Alternatively, if L is known, then a measurement of F leads to the distance d. The role of d
in Eq. (12.1) is, then, as a replacement for the observable (L/F)1/2.

Astronomers have used brightness measurements to build up a carefully calibrated cos-
mological distance ladder to measure the scale of the universe. For each step on this ladder
they identify what is called a standard candle, which is a class of objects whose abso-
lute luminosity L is known (say from a theory of their nature or from reliably calibrated
distances to nearby examples of this object). As their ability to see to greater and greater
distances has developed, astronomers have found new standard candles that they could cali-
brate from previous ones but that were bright enough to be seen to greater distances than
the previous ones. The distance ladder starts at the nearest stars, the distances to which can
be measured by parallax (independently of luminosity), and continues all the way to very
distant high-redshift galaxies.

In the spirit of such measurements, cosmologists define the luminosity distance dL to
any object, no matter how distant, by inverting Eq. (12.33):

dL =
(

L

4πF

)1/2

. (12.34)

The luminosity distance is often the observable that can be directly measured by
astronomers: if the intrinsic luminosity L is known or can be inferred, then a measure-
ment of its brightness F determines the luminosity distance. The luminosity distance is
the proper distance the object would have in a Euclidean universe if it were at rest with
respect to us, if it had an intrinsic luminosity L, and if we received an energy flux F from
it. However, in an expanding cosmology this will not generally be the proper distance to
the object.

We shall now find the relation between luminosity distance and the cosmological scales
we have just introduced. Consider an object emitting with luminosity L at a time te. What
flux do we receive from it at the later time t0? Suppose for simplicity that the object gives
off only photons of frequency νe at time te. (This frequency will drop out in the end, so our
result will be perfectly general.) In a small interval of time δte the object emits

N = Lδte/hνe (12.35)

photons in a spherically symmetric manner. To find the flux we receive, we must calculate
the area of the sphere that these photons occupy at the time we observe them.
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We place the object at the origin of the coordinate system, and suppose that we sit
at coordinate position r in this system, as given in Eq. (12.13). Then when the photons
reach our coordinate distance from the emitting object, the proper area of the sphere they
occupy is given by integrating over the sphere the solid-angle part of the line-element in
Eq. (12.13), which is R2

0r2d�2. The integration is just on the spherical angles and produces
the area:

A = 4πR2
0r2. (12.36)

Now, the photons have been redshifted by the amount (1 + z) = R0/R(te) to frequency ν0:

hν0 = hνe/(1 + z). (12.37)

Moreover, they arrive spread out over a time δt0, which is also stretched by the redshift:

δt0 = δte(1 + z). (12.38)

The energy flux at the observation time t0 is thus Nhν0/(Aδt0), from which it follows that

F = L/A(1 + z)2. (12.39)

From Eq. (12.34), we then find

dL = R0r(1 + z). (12.40)

To use this, we need to know the comoving source coordinate location r as a function
of the redshift z of the photon the source emitted. This comes from solving the equation
of motion of the photon. In this case, all we have to do is use Eq. (12.13) with ds2 = 0 (a
photon world line) and d�2 = 0 (photon traveling on a radial line from its emitter to the
observer at the center of the coordinates). This leads to the differential equation

dr(
1 − kr2

)1/2
= − dt

R(t)
= dz

R0H(z)
, (12.41)

where the last step follows from differentiating Eq. (12.21). This equation involves the
curvature parameter k, but for small r and z the curvature will come into the solution only at
second order. If we ignore this at present and work only to first order beyond the Euclidean
relations, it is not hard to show that

dL = R0r(1 + z) =
(

z

H0

)[
1 +

(
1 + 1

2

Ḣ0

H2
0

)
z

]
+ · · · . (12.42)

If we can measure the luminosity distances and redshifts of a number of objects, then
we can in principle measure Ḣ0. Measurements of this kind led to the discovery of the
accelerating expansion of the universe (below).

Another convenient measure of distance is the angular diameter distance. This is based
on another way of measuring distances in a Euclidean space: the angular size θ of an object
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at a distance d can be inferred if we know the proper diameter D of the object transverse to
the line of sight, θ = D/d. This leads to the definition of the angular diameter distance dA

to an object anywhere in the universe:

dA = D/θ . (12.43)

The dependence of dA on redshift z is explored in Exer. 12, § 12.6. The result is

dA = Rer = (1 + z)−2dL, (12.44)

where Re is the scale factor of the universe when the photon was emitted. The analogous
expression to Eq. (12.42) is

dA = R0r/(1 + z) =
(

z

H0

)[
1 +

(
−1 + 1

2

Ḣ0

H2
0

)
z

]
+ · · · . (12.45)

There are situations where we have in fact an estimate of the comoving diameter D of
an emitter. In particular, the temperature irregularities in maps of the cosmic microwave
background radiation (see below) have a length scale that is determined by the physics of
the early universe.

Although we have provided small-z expansions for many interesting measures, it is
important to bear in mind that astronomers today can observe objects out to very high
redshifts. Some galaxies and quasars are known at redshifts greater than z = 6. The cos-
mological microwave background, which we will discuss below, originated at redshift
z ∼ 1000, and is our best tool for understanding the Big Bang. Even so, the universe
was already some 300 000 years old at that redshift. Sometime in the future, gravitational
wave detectors may detect random radiation from the Big Bang itself, originating when the
universe was only a fraction of a second old.

The derivation of Eq. (12.42) illustrates a point which we have encountered before: in
the attempt to translate the nonrelativistic formula v = Hd into relativistic language, we
were forced to re-think the meaning of all the terms in the equations and to go back to the
quantities we can directly measure. If the study of GR teaches us only one thing, it should
be that physics rests ultimately on measurements: concepts like distance, time, velocity,
energy, and mass are derived from measurements, but they are often not the quantities
directly measured, and our assumptions about their global properties must be guided by a
careful understanding of how they are related to measurements.

The universe is accelerat ing!

The most remarkable cosmographic result since Hubble’s original work was the discovery
that the expansion of the universe is not slowing down, but rather speeding up. This was
done by essentially making a plot of the luminosity distance against redshift, but where
luminosities are given in magnitudes. This is called the magnitude–redshift diagram, and
we derive its low-z expansion in Exer. 13, § 12.6. Two teams of astronomers, called the
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High-Z Supernova Search Team (Riess et al., 1998) and the Supernova Cosmology Project
(Perlmutter et al., 1999), respectively, used supernova explosions of Type Ia as standard
candles out to redshifts of order 1. Although there was considerable scatter among the data
points, both teams found that the best fit to the data was a universe that was speeding up and
not slowing down. The data from the High-Z Team are shown in Fig. 12.3. See Filippenko
(2008) for a full discussion.

The top diagram shows the flux (magnitude) measurement for each of the supernovae
in the sample, along with error bars. The trend seems to curve upwards, meaning that at
high redshifts the supernovae are dimmer than expected. This would happen if the universe
were speeding up, because the supernovae would simply be further away than expected.
Three possible fits are shown, and the best one has a large positive cosmological constant,
which we shall see below is the simplest way, within Einstein’s equations, that we can
accommodate acceleration. The lower diagram shows the same data but plotting only the
residuals from the fit to a flat universe. This shows more clearly how the data favor the
curve for the accelerating universe.

These studies were the first strong evidence for acceleration, but by now there are several
lines of investigation that lead to the same conclusion. Astronomers initially resisted the
conclusion, because it undermines a basic assumption we have always made about gravity,
that it is universally attractive. If the energy density of the universe exerts attractive gravity,
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�Figure 12.3 The trend of luminosity versus redshift for Type Ia supernovae is fit best with an accelerating
universe. The lower part of this curve determines H0, the upper part demonstrates acceleration.
(High-Z Supernova Search Team: Riess, et al, 1998.)
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the expansion should be slowing down. Instead it speeds up. What can be the cause of this
repulsion? We shall return to this question repeatedly through the rest of this chapter.

12.3 Cosmolog i ca l dynamics : unders tand ing the
expand ing un iver se

In the last section we saw how to describe a homogeneous and isotropic universe and how
to measure its expansion. In order to study the evolution of the universe, to understand
the creation of the huge variety of structures that we see, and indeed to make sense of
the accelerating expansion measured today, we have to apply Einstein’s equations to the
problem, and to marry them with enough physics to explain what we see. In this section
we will study Einstein’s equations, with relatively simple perfect-fluid physics and with the
cosmological constant that seems to be implied by the expansion. In the following sections
we will study more and more of cosmological physics.

Dynamics of Robertson–Walker universes: Big Bang
and dark energy

We have seen that a homogeneous and isotropic universe must be described by one of the
three Robertson–Walker metrics given by Eq. (12.13). For each choice of the curvature
parameter k = (−1, 0, +1), the evolution of the universe depends on just one function of
time, the scale factor R(t). Einstein’s equations will determine its behavior.

As in earlier chapters, we idealize the universe as filled with a homogeneous perfect
fluid. The fluid must be at rest in the preferred cosmological frame, for otherwise its veloc-
ity would allow us to distinguish one spatial direction from another: the universe would
not be isotropic. Therefore, the stress-energy tensor will take the form of Eq. (4.36) in the
cosmological rest frame. Because of homogeneity, all fluid properties depend only on time:
ρ = ρ(t), p = p(t), etc.

First we consider the equation of motion for matter, Tμν ;ν = 0, which follows from the
Bianchi identities of Einstein’s field equations. Because of isotropy, the spatial components
of this equation must vanish identically. Only the time component μ = 0 is nontrivial. It is
easy to show (see Exer. 14, § 12.6) that it gives

d

dt

(
ρR3

)
= −p

d

dt

(
R3
)

, (12.46)

where R(t) is the cosmological expansion factor. This is easily interpreted: R3 is propor-
tional to the volume of any fluid element, so the left-hand side is the rate of change of its
total energy, while the right-hand side is the work it does as it expands (−p d V).
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There are two simple cases of interest, a matter-dominated cosmology and a radiation-
dominated cosmology. In a matter-dominated era, which includes the present epoch, the
main energy density of the cosmological fluid is in cold nonrelativistic matter particles,
which have random velocities that are small and which therefore behave like dust: p = 0.
So we have

Matter-dom :
d

dt

(
ρR3

)
= 0. (12.47)

In a radiation-dominated era (as we shall see, in the early universe), the principal energy
density of the cosmological fluid is in radiation or hot, highly relativistic particles, which
have an equation of state p = 1

3ρ (Exer. 22, § 4.10). Then we get

Radiation-dom :
d

dt
(ρR3) = − 1

3ρ
d

dt
(R3), (12.48)

or

Radiation-dom :
d

dt

(
ρR4

)
= 0. (12.49)

The Einstein equations are also not hard to write down for this case. Isotropy will guar-
antee that Gtj = 0 for all j, and also that Gjk ∝ gjk. That means that only two components
are independent, Gtt and (say) Grr. But the Bianchi identity will provide a relationship
between them, which we have already used in deriving the matter equation in the previous
paragraph. (The same happened for the spherical star.) Therefore we only need compute
one component of the Einstein tensor (see Exer. 16, § 12.6):

Gtt = 3(Ṙ/R)2 + 3k/R2. (12.50)

Therefore, besides Eqs. (12.47) or (12.49), we have only one further equation, the Einstein
equation with cosmological constant �

Gtt +�gtt = 8πTtt. (12.51)

Physicists today hope that they will eventually be able to compute the value of the cos-
mological constant from first principles in a consistent theory where gravity is quantized
along with all the other fundamental interactions. From this point of view, the cosmological
constant will represent just another contribution to the whole stress-energy tensor, which
can be given the notation

Tαβ� = −(�/8π )gαβ . (12.52)

From this point of view, the energy density and pressure of the cosmological constant
‘fluid’ are
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ρ� = �/8π , p� = −ρ�. (12.53)

Cosmologists call ρ� the dark energy: an energy that is not associated with any known
matter field. Its associated dark pressure p� has the opposite sign. Physicists generally
expect that the dark energy will be positive, so that most discussions of cosmology today
are in the framework of � ≥ 0. We will return below to the implications of the associated
negative value for the dark pressure. Notice that, as the universe expands, the dark energy
density and dark pressure remain constant. In these terms the tt-component of the Einstein
equations can be written

1

2
Ṙ2 = −1

2
k + 4

3
πR2(ρm + ρ�), (12.54)

where now we write ρm for the energy density of the matter (including radiation), to dis-
tinguish it from the dark energy density. This equation makes it easy to understand the
observed acceleration of our universe. It appears (see below) that k = 0, or at least that
the k-term is negligible. Then, since we are in a matter-dominated epoch, the term R2ρm

decreases as R increases, while the term R2ρ� increases rather strongly. Since today, as we
shall see below, ρ� > ρm, the result is that Ṙ increases as R increases. This trend must con-
tinue now forever, provided the acceleration is truly propelled by a cosmological constant,
and not by some physical field that will go away later.

How, physically, can a positive dark energy density drive the universe into accelerated
expansion? Is not positive energy gravitationally attractive, so would it not act to slow down
the expansion? To answer this it is helpful to look at the spatial part of Einstein’s equations,
where there acceleration R̈ explicitly appears. Rather than derive this from the Christoffel
symbols, we can use the fact that (as remarked above) it follows from the two basic equa-
tions we have already written down: Eq. (12.46) and the time-derivative of Eq. (12.54). In
Exer. 17, § 12.6 we show that the combination of these two equations implies the following
simple ‘equation of motion’ for the scale factor:

R̈

R
= −4π

3
(ρ + 3p), (12.55)

where ρ and p are the total energy density and pressure, including both the normal matter
and the dark energy.

The acceleration is produced, not by the energy density alone, but by ρ + 3p. We have
met this combination before, in Exer. 20, § 8.6, where we called it the active gravitational
mass. We showed there that, in general relativity, when pressure cannot be ignored, the
source of the far-away Newtonian field is ρ + 3p, not just ρ. In the cosmological context,
the same combination generates the cosmic acceleration. It is clear that the negative pres-
sure associated with the cosmological constant can, if it is large enough, make this sum
negative, and that is what drives the universe faster and faster. Einstein’s gravity with a
cosmological constant has a kind of in-built anti-gravity!
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Notice that a negative pressure is not by any means unphysical. Negative stress is called
tension, and in a stretched rubber band, for example, the component of the stress ten-
sor along the band is negative. Interestingly, our analogy using a balloon to represent the
expanding universe also introduces a negative pressure, the tension in the stretched rubber.
What is remarkable about the dark energy is that its tension is so large, and it is isotropic.
See Exer. 18, § 12.6 for a further discussion of the tension in this ‘fluid’.

Eq. (12.54) is written in a form that suggests studying the expansion of the universe in
a way analogous to the energy methods physicists use for particle motion (as we did for
orbits in Schwarzschild in Ch. 11). The left-hand side looks like a ‘kinetic energy’ and the
right-hand side contains a constant (−k/2) that plays the role of the ‘total energy’ and a
potential term proportional to R2(ρm + ρ�), which depends on R explicitly and through ρm.
The dynamics of R will be constrained by this energy equation.

We can use this constraint to explore what might happen to our universe in the far dis-
tant future, assuming of course the Cosmological Principle, that nothing significantly new
comes over our particle horizon. If ρ� ≥ 0 (see above) and if the matter content of the uni-
verse also has positive energy density, then one conclusion from Eq. (12.54) is immediate:
an expanding hyperbolic universe (k = −1) will never stop expanding. For the flat uni-
verse (k = 0), an expanding universe will also never stop if ρ� > 0; however, if ρ� = 0,
then it could asymptotically slow down to a zero expansion rate as R approaches infinity,
since the matter density will decrease at least as fast as R−3. An expanding closed universe
(k = 1) will, if ρ� = 0, always reach a maximum expansion radius and then turn around
and re-collapse, again because R2ρm decreases with R. A re-collapsing universe eventually
reaches another singularity, called the Big Crunch! But if ρ� > 0, then the ultimate fate of
an expanding closed universe depends on the balance of ρm and ρ�.

We can ask similar questions about the history of our universe: was there a Big Bang,
where the scale factor R had the value zero at a finite time in the past? First we consider
for simplicity ρ� = 0. Then Eq. (12.54) shows that, as R gets smaller, the matter term gets
more and more important compared to the curvature term −k/2. Again this is because R2ρm

is proportional either to R−1 for matter-dominated dynamics or, even more extremely, to
R−2 for the radiation-dominated dynamics of the very early universe. Therefore, since our
universe is expanding now, it could not have been at rest with Ṙ = 0 at any time in the
past. The existence of a Big Bang, i.e. whether we reach R = 0 at a finite time in the past,
depends only on the behavior of the matter; the curvature term is not important, and all
three kinds of universes have qualitatively similar histories.

Let us do the computation for a universe that is radiation-dominated, as ours will have
been at an early enough time, and that has � = 0 for simplicity. We write ρ = BR−4 for
some constant B, and we neglect k in Eq. (12.54). This gives

Ṙ2 = 8
3πBR−2,

or

dR

dt
=
(

8
3πB

)1/2
R−1. (12.56)



357 12.3 Cosmological dynamics: understanding the expanding universe
�

This has the solution

R2 =
(

32
3 πB

)1/2
(t − T), (12.57)

where T is a constant of integration. So, indeed, R = 0 was achieved at a finite time in the
past, and we conventionally adjust our zero of time so that R = 0 at t = 0, which means
we redefine t so that T = 0.

Note that we have found that a radiation-dominated cosmology with no cosmological
constant has an expansion rate where R(t) ∝ t1/2. If we had done this computation for a
matter-dominated cosmology with ρ� = 0, we would have found R(t) ∝ t2/3 (see Exer. 19,
§ 12.6).

What happens if there is a cosmological constant? If the dark energy is positive, there is
no qualitative change in the conclusion, since the term involving ρ� simply increases the
value of Ṙ at any value of R, and this brings the time where R = 0 closer to the present
epoch. If the matter density has always been positive, and if the cosmological constant is
non-negative, then Einstein’s equations make the Big Bang inevitable: the universe began
with R = 0 at a finite time in the past. This is called the cosmological singularity: the
curvature tensor is singular, tidal forces become infinitely large, and Einstein’s equations
do not allow us to continue the solution to earlier times. Within the Einstein framework we
cannot ask questions about what came before the Big Bang: time simply began there.

How certain, then, is our conclusion that the universe began with a Big Bang? First, we
must ask if isotropy and homogeneity were crucial; the answer is no. The ‘singularity theo-
rems’ of Penrose and Hawking (see Hawking and Ellis 1973) have shown that our universe
certainly had a singularity in its past, regardless of how asymmetric it may have been. But
the theorems predict only the existence of the singularity: the nature of the singularity is
unknown, except that it has the property that at least one particle in the present universe
must have originated in it. Nevertheless, the evidence is strong indeed that we all origi-
nated in it. Another consideration however is that we don’t know the laws of physics at
the incredibly high densities (ρ → ∞) which existed in the early universe. The singularity
theorems of necessity assume (1) something about the nature of Tμν , and (2) that Einstein’s
equations (without cosmological constant) are valid at all R.

The assumption about the positivity of the energy density of matter can be challenged
if we allow quantum effects. As we saw in our discussion of the Hawking radiation in the
previous chapter, fluctuations can create negative energy for short times. In principle, there-
fore, our conclusions are not reliable if we are within one Planck time tPl = GMPl/c2 ∼
10−43 s of the Big Bang! (Recall the definition of the Planck mass in Eq. (11.111).) This
is the domain of quantum gravity, and it may well turn out that, when we have a quantum
theory of the gravitational interaction, we will find that the universe has a history before
what we call the Big Bang.

Philosophically satisfying as this might be, it has little practical relevance to the universe
we see today. We might not be able to start our universe model evolving from t = 0, but
we can certainly start it from, say, t = 100tPl within the Einstein framework. The primary
uncertainties about understanding the physical cosmology that we see around us are, as
we will discuss below, to be found in the physics of the early universe, not in the time
immediately around the Big Bang.
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So far we have restricted our attention to the case of a positive cosmological constant.
While this seems to be the most relevant to the evolution of our universe, cosmologies
with negative cosmological constant are also interesting. We leave their exploration to the
exercises.

Einstein introduced the cosmological constant in order to allow his equations to have a
static solution, Ṙ = 0. He did not know about the Hubble flow at the time, and he followed
the standard assumption of astronomers of his day that the universe was static. Even in the
framework of Newtonian gravity, this would have presented problems, but no-one seems
to have tried to find a solution until Einstein addressed the issue within general relativity.
We have to do more than just set Ṙ = 0 in Eq. (12.54); we have to guarantee that the
solution is an equilibrium one, that the dynamics won’t change Ṙ, i.e. that the universe is
at a minimum or maximum of the ‘potential’ we discussed earlier. We show in Exer. 20,
§ 12.6 that the static solution requires

ρ� = 1

2
ρ0.

For Einstein’s static solution, the dark energy density has to be exactly half of the matter
energy density. We shall see below that in our universe the measured value of the dark
energy density is about twice that of the matter energy density, so we are near to but not
exactly at Einstein’s static solution.

Crit ical density and the parameters of our universe

If we divide Eq. (12.54) by 4πR2/3, we obtain a version that is instructive for discussions
of the physics of the universe:

3H2

8π
= − 3k

8πR2
+ ρm + ρ�, (12.58)

where we have substituted the Hubble parameter H for Ṙ/R. Since the last two terms on
the right are energy densities, it is useful to interpret the other terms in that way. Thus,
the Hubble expansion has associated with it an energy density ρH = 3H2/8π , and the
spatial curvature parameter contributes an effective energy density ρk = −3k/8πR2. This
equation becomes

ρH = ρk + ρm + ρ�.

Now, if in the universe today the ‘physical’ energy density ρm + ρ� is less than the Hub-
ble energy density ρH , then (as we have seen before), the curvature energy density must
be positive, the curvature parameter k must be negative, and the universe has hyperbolic
hypersurfaces. Conversely, if the physical energy density is larger than the Hubble energy
density, the universe will be the closed model. The Hubble energy density is therefore a
threshold, and we call it the critical energy density ρc:

ρc = 3

8π
H2

0 . (12.59)



359 12.3 Cosmological dynamics: understanding the expanding universe
�

The ratio of any energy density to the critical is called � with an appropriate subscript.
Thus, we can divide the earlier energy-density equation, evaluated at the present time, by
ρc to get

1 = �k +�m +��. (12.60)

These are the quantities used to label the curves in Fig. 12.3. The data from supernovae,
the cosmic microwave background, and studies of the evolution of galaxy clusters (below)
all suggest that our universe at present has

�� = 0.7,�m = 0.3,�k = 0. (12.61)

These mean that we live in a flat universe, dominated by a positive cosmological constant.
What size do these numbers have? It is conventional among astronomers to normalize

the Hubble constant H0 to the value 100 km s−1 Mpc−1 by introducing the scaled Hubble
constant h (nothing to do with gravitational wave amplitudes!):

h = H0/100 km s−1 Mpc−1. (12.62)

The best value today is h = 0.71. Using this, the critical energy density is

ρc = 1.88 × 10−26h2kg m−3 = 9.5 × 10−27kg m−3.

As we have noted, the matter energy density is about 0.3 times this, and this is much more
than astronomers can account for by counting stars and galaxies. In fact, studies of the for-
mation of elements in the early universe (below) tell us that the density of baryonic matter
(normal matter made of protons, neutrons, and electrons) has �b = 0.04. So most of the
matter in the universe is non-baryonic, does not emit light, and can be studied astronomi-
cally only indirectly, through its gravitational effects. This is called dark matter. So we can
split �m into its components:

�m = �b +�d, �b = 0.04, �d = 0.26. (12.63)

We will return in § 12.4 below to a discussion of the nature and distribution of the dark
matter. The values in Eqs. (12.61) and (12.63) are commonly referred to as the concordance
cosmology.

The variety of possible cosmological evolutions and the data are captured in the diagram
in Fig. 12.4. The evidence is getting rather strong that the dark energy is present, and even
dominant. That raises new, important questions. The deepest is, where in physics does this
energy come from? We will mention below some of the speculations, but at present there
is simply no good theory for it. In such a situation, better data might help. For example,
astronomers could try to determine if the dark energy density really is constant in time (as
it would be if it comes from a cosmological constant) or variable, which would indicate
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�Figure 12.4 In the �m v. �� plane one sees the variety of possible cosmological models, their histories and
futures. The constraints from studies of supernovae (Knop et al. 2003), the cosmic microwave
background radiation (Spergel et al. 2003), and galaxy clustering (Allen et al. 2002) are
consistent with one another and all overlap in a small region of parameter space centered on
�� = 0.7 and �m = 0.3. This means that �k = 0 to within the errors. Figure courtesy the
Supernova Cosmology Project.

that it comes from some physical field masquerading as a cosmological constant. As of
this writing, new space and ground-based observing programs are being planned, so that in
another decade we might have a new generation of ultra-precise measurements of the dark
energy.

From the point of view of general relativity, one of the most intriguing ways of studying
the dark energy is with the LISA gravitational wave detector. As mentioned in § 9.5, LISA
will be able to observe coalescences of black holes at high redshifts and measure their
distances. What will be measured from the signal is the luminosity distance dL to the binary,
since it is based on an inference of the luminosity of the system in gravitational waves
from the information contained in the signal. This measurement can be made with great
accuracy, perhaps with errors at the few percent level. To do cosmography, we have to
combine these luminosity distance measures with redshifts, and that will not be easy: black
hole coalescences do not give off any electromagnetic radiation directly, so it will not be
easy to identify the galaxy in which the event has occurred. But the galaxies hosting the
mergers will not be normal galaxies, and the merger event might be accompanied by other
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signs, such as an alteration of X-ray luminosity, the existence of unusual jets, a disturbed
morphology. It may well be possible in many cases to identify the host galaxy within
the LISA position error box, which may be less than 10 arcminutes in size in favorable
cases.

A gravitational-wave measurement would be a very desirable complement to other stud-
ies of the dark energy, because it needs no calibration: it would be independent of the
assumptions of the cosmic distance ladder. It would therefore be an important check on the
systematic errors of other methods.

12.4 Phys i ca l cosmology : the evo lu t ion
of the un iver se we observe

The observations described in the last section confirm the reliability of using a general-
relativistic cosmological model with dark energy to describe the evolution of the universe,
starting as far back as our observations can take us. During the last few decades, astro-
physicists have developed a deep and rich understanding of how the universe we see, with
all its structure and variety, evolved out of a homogeneous hot expanding plasma. The story
is a fascinating one that we can only sketch here. But it is fair to say that there is now a
consistent story that goes from the moment that protons and neutrons became identifiable
particles right up to the formation of stars like our Sun and planets like our Earth. Many
of the details are poorly understood, especially where observations are difficult to perform,
but the physical framework for understanding them is not in doubt.

The expansion of the universe was accompanied by a general cooling off of its matter:
photons have been redshifted, the random velocities of gas particles dropped, structures
like galaxies and stars condensed out. The history of the universe is therefore a thermal
history: instead of using cosmological time t or the scale factor R to mark different stages
of evolution, we will use temperature, or equivalently energy, converting between them by
E = kT . That brings us closer to the physics.

Our understanding of the history of the universe rests on our understanding of its physi-
cal laws, and these are tested up to energies of order 1 TeV in modern particle colliders. So
our physical picture of the evolution of the universe can reliably start when the expanding
plasma had that sort of energy.

Decoupl ing: forming the cosmic microwave
background radiat ion

If we start at the present moment and go backwards, the matter energy density increases
as the scale factor R decreases, but the dark energy density remains constant, so (unless
the dark energy comes from some exotic physics) we can safely ignore the dark energy at
early times. The density of ordinary matter (dark and baryonic) increases as R−3, while
the energy density of the photons of the cosmic microwave background increases as R−4.
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Since the energy density of the cosmic microwave background today is�γ ∼ 10−5 and the
matter density is�m = 0.3, they will have been equal when the scale factor was a factor of
3 × 104 smaller than today. Since redshift and scale factor go together, this is the redshift
when the expanding universe changed from radiation-dominated to matter dominated. At
higher redshifts, the universe was radiation-dominated. The temperature was about 105K
and the energy scale was about 10 eV. This happened about 3000 years after the Big Bang.

Now, this energy is near the ionization energy of hydrogen, which is 13.6 eV. This is
an important number because hydrogen is the principal constituent of the baryonic mat-
ter. If the temperature is high enough to ionize hydrogen, the universe will be filled with
a plasma that is opaque to electromagnetic radiation. Once hydrogen cools off enough to
become neutral, the remaining photons in the universe will be able to move through it with
a low probability of scattering. This moment of decoupling (also called recombination)
defines the moment at which the cosmic microwave background radiation was created.
This actually occurs at a rather smaller energy than 13.6 eV, since there is enough hydro-
gen to stop the photons even when only a small portion of it is ionized. The epoch of
decoupling occurred at a temperature a bit below 1 eV, at a time when the universe was
matter-dominated. The redshift was about 2000, and the time was about 4 × 105 years after
the Big Bang.

Observations of the cosmic microwave background reveal that it has an almost perfect
black-body spectrum with a temperature of T = 2.725K. But they also show that it has
small but significant temperature irregularities, departures from strict homogeneity that are
the harbingers of the formation of galaxy clusters and galaxies. A map of these is shown in
Fig. 12.5. The temperature irregularities are of order 10−5 of the background temperature,
and they are caused by irregularities in the matter distribution of the same relative size.
Small as these may seem, numerical studies show that they are adequate to lead to all
the structure we see today. Because the dominant form of matter is the dark matter, the
density fluctuations that are seen in Fig. 12.5 and that led to galaxy formation were in its

�Figure 12.5 A map of the small-scale temperature inhomogeneities of the cosmic microwave background,
made by the WMAP satellite (Spergel, et al, 2003). The range of fluctuations is ±200μK. Figure
courtesy the WMAP project and NASA. .
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distribution. Simulations show that only if the random velocities of dark matter particles
were small could the small irregularities grow in size fast enough to trap baryonic gas and
make it form galaxies. The matter had, therefore, to be cold, and we call this model of
galaxy formation the cold dark matter model. The standard cosmological model is called
�CDM: cold dark matter with a cosmological constant.

The parameters of our cosmology – the cosmological constant, matter fraction, and so
on – leave their imprint on these fluctuations. The fluctuations occur on all length-scales,
but they do not have the same size on different scales. The angular spectrum of fluctuations
contains a rich amount of information about the cosmological parameters, and it is here that
we find the constraints shown in Fig. 12.4.

Dark matter and galaxy formation: the universe
after decoupl ing

Going forward from the time of decoupling, physicists have simulated the evolution of
galaxies and clusters of galaxies from the initial perturbations. The density perturbations
in the dark matter grow slowly, as they have been doing since before decoupling. But before
decoupling, the baryonic matter could not respond very much to them, because it remained
in equilibrium with the photons. Once the baryonic matter took the form of neutral atoms,
it could begin to fall into the gravitational wells created by the dark matter.

Unlike the dark matter, the baryonic matter had the ability to concentrate itself at the bot-
toms of these wells, so that the density irregularities of the baryonic matter soon became
stronger than those of the dark matter. The reason for this is that the baryonic matter was
charged: as the atoms fell into the potential wells, they collided with one another and colli-
sionally excited their electrons into higher energy levels. The density was low enough that
the electrons then decayed back to the ground state by radiating away the excess energy.
Now that decoupling had happened, this was a one-way street, a way of extracting energy
from the baryonic gas and allowing it to clump inside the dark-matter wells. Astronomers
call this process cooling, even though the net effect of radiating energy away is to make
the baryonic matter hotter as it falls deeper into the potential wells!

The dark matter itself is not charged, so it cannot form such strong contrast. It forms
extended ‘halos’ around galaxies today, as we shall see below. Extensive numerical sim-
ulations using supercomputers show that the clumps of baryonic gas eventually began to
condense into basic building-block clumps of a million solar masses or so, and then these
began to merge together to form galaxies. So although images of the universe seem to show
a lot of well-separated galaxies, the fact is that most of the objects we see were formed from
many hundreds or more of mergers. Mergers are still going on: astronomers have discov-
ered a fragment of several million solar masses that is currently being integrated into our
own Milky Way galaxy, on the other side of the center from our location. The unusual
star cluster Omega Centauri seems to be the core of such a mini-galaxy that was absorbed
by the Milky Way long ago. As mentioned in § 11.4, astronomers have found a massive
black hole in its center. And the Magellanic Clouds, easily visible in the sky in the southern
hemisphere, may be on their way to merging into the Milky Way.
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In 2012 the European Space Agency plans to launch the astrometry satellite GAIA,
which will measure the positions and proper motions of a billion stars to unprecedented
accuracy. One of the many goals of GAIA will be to map the velocity field of the Milky
Way, because astronomers expect that ancient mergers will still be apparent as ‘streams’ of
stars moving differently from others.

Sometime during this hierarchy of merging structures, the density of the gas got high
enough for the first generation of stars to form. These are called Population III stars,
and they were unlike anything we see today. Since the gas from which they formed was
composed only of hydrogen and helium, with none of the heavier elements that were
made by this generation of stars and incorporated into the next, these stars were much
more massive. With masses between 100 and 1000 M�, they became very hot, evolved
quickly, generated heavier elements, blew much of their outer layers and much of the
new elements away with strong stellar winds, and then very likely left behind a large
population of black holes. The ultraviolet light emitted by these stars seems to have
re-ionized much of the hydrogen in the universe, which had been neutral since decou-
pling. All of this happened between redshifts of 10 and 20, the epoch of re-ionization.
This was the epoch of first light for galaxies, the first time that the expanding universe
would have looked optically a bit like it does today, if there had been anyone there to
observe it!

After re-ionization and the generation of heavier elements by the first stars, the continued
expansion of the universe led galaxies to be more and more isolated from each other, and
they became nurseries for one generation of new stars after another, each with a bit more of
the heavier elements. Our Sun, whose age is about 5 billion years, was formed at a redshift
between 0.3 and 0.4.

One of the puzzles in this scenario of hierarchical structure formation is the appearance
of massive black holes in the centers of apparently all galaxies. Astrophysicists do not yet
know whether these formed directly by the collapse of huge gas clouds as the baryonic mat-
ter was accumulating in the potential wells, or if they arose later by the growth and merger
of intermediate-mass black holes left behind by Population III stars. The fact that galaxy
evolution is dominated by mergers suggests that the LISA gravitational wave observatory
(see the previous chapter) will have an abundance of black-hole mergers to study.

Although physicists do not know what kinds of particles (or indeed, more massive struc-
tures like black holes) might make up the dark matter, and although the dark matter emits
no electromagnetic radiation, it is possible to make indirect observations of it. One way it
shows itself is in the rotation curves of spiral galaxies: in the outer regions of spirals the
orbital speeds of gas and stars are much greater than could be accounted for by the grav-
itational pull of the visible stars. Indeed, observations suggest that in most spiral galaxies
the total mass of the galaxy inside a given radius continues to increase linearly with radius
even well outside the visible limits of the galaxy. This is the footprint of the dark matter
density concentration within which the galaxy formed. The other way of getting indirect
evidence for dark matter is through gravitational lensing. Astronomers have many images
like Fig. 11.8, as we discussed in the previous chapter. Both of these methods involve
essentially using gravity to ‘weigh’ the dark matter.
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The early universe: fundamental physics meets cosmology

If we go back in time from the moment when the radiation and matter densities were equal,
then we are in a radiation-dominated universe. Eventually, when we are only about about
200s away from the Big Bang, the temperature rises to about 50 keV, the mass differ-
ence between a neutron and a proton. This is the temperature at which nuclear reactions
among protons and neutrons come into equilibrium with each other. Above this energy
all the baryons were free. As the universe cooled through this temperature, some heavier
elements were formed: mainly 4He, but also small amounts of 3He, Li, B, and traces of
other light elements. All the lithium and helium we see in the universe today was formed
at this time: processes inside stars tend to destroy light elements, not make them. The
final abundances of these elements is very sensitive to the rate at which the universe was
expanding at this time. From extensive computations of the reaction networks, astrophysi-
cists have been able to show that the universe contains no significant amounts of light or
massless particles other than photons and the three types of neutrinos that are known from
particle-physics experiments. If there were others, their self-gravity would have slowed
the universe more strongly, which means that to match the Hubble expansion today, a
universe with such extra particles would have had to have been expanding faster than
the nucleosynthesis computations allow. If there are extra particles, they must have an
energy density today that is significantly less than that of the photons, which have �γ ∼
10−5. Gravitational waves from the Big Bang must, therefore, satisfy this nucleosynthesis
bound.

Notice that we are already within 200 s of the Big Bang in this discussion, and still we
are in the domain of well-understood physics. At about 1 s, the temperature was around 500
keV, which is the mass of the electron. In this plasma, therefore, there was an abundance
of electrons and positrons, constantly annihilating against one another and being created
again by photons. Much earlier than this the rest mass of the electrons is negligible, so
the number and energy density of photons and of electrons and positrons was similar. As
the universe expanded through this 500 keV temperature and cooled, the electrons and
positrons continued to annihilate, but no more were produced. After a few seconds, there
were apparently essentially no positrons, and there was about one electron for every 109

photons. This ratio of 109 is called the specific entropy of the universe, a measure of its
disorder.

Why were there any electrons left at all after this annihilation phase? Why, in other
words, was there any matter left over to build into planets and people? Extensive observa-
tional programs, coupled to numerical simulations, have convincingly established that there
is no ‘missing’ antimatter hidden somewhere, no anti-stars or anti-galaxies: significant
amounts of antimatter just do not exist any more. Clearly, during the equilibrium plasma
phase, electrons and positrons were not produced in equal numbers. The same must also
have happened at a much earlier time, when protons and antiprotons were in equilibrium
with the photon gas, when the temperature was above a few hundred MeV (only 10 μs after
the Big Bang): something must have favored protons over antiprotons in the same ratio as
for electrons over positrons, so that the overall plasma remained charge-neutral. This is one
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of the central mysteries of particle physics. Something in the fundamental laws of physics
gave a slight preference to electrons. Nature has a mattter-antimatter asymmetry.

At times earlier than 10−5s, there are no protons or neutrons, just a plasma of quarks and
gluons, the fundamental building blocks of baryons. According to particle theory, quarks
are ‘confined’, so that we never see a free one detached from a baryon. But at high enough
temperatures and densities, the protons overlap so much that the quarks can stay confined
and still behave like free particles.

We can even push our perspective another step higher in temperature, to around 10
TeV, which is the frontier for current accelerators. Physics is not well understood at these
energies, and the Large Hadron Collider at CERN in Geneva will soon (end of 2008) start
doing experiments to look for the Higgs particle and to find evidence for supersymmetry.
Both of these are theoretical constructs designed to solve deep theoretical problems in
fundamental physics. In particular, supersymmetry has the advantage of making it easier
within particle physics theories to predict a value of the cosmological constant in the range
of what we observe. If supersymmetry is found, it will encourage the idea that the dark
energy can be accommodated within the current framework of fundamental physics theory.
At 10 TeV, we are just 10−14s after the Big Bang. Although physics is poorly known, it is
unlikely that anything happened at this point that will challenge the picture presented here
of what happened later.

In this scheme there is one important thing that is missing: we have mentioned no mech-
anism in any of this physics for generating the density irregularities in the dark matter that
led to galaxy formation. We observe them in the microwave background, and we know
that they are needed in order to trigger all the processes that eventually led to our own
evolution. But even at 10−14s, they are simply an initial condition: they have to be there,
at a much smaller amplitude than we see them in the microwave background because the
irregularities grow as the universe expands, but they must be there. And known physics
has no explanation for how they got there. The exciting answer to this problem lies in the
scenario of inflation, which we come back to below.

But the density perturbations are not the only feature of the early universe that is not
explained. Right from the start we have assumed homogeneity and isotropy, based on
observations. We have had to accept a small amount of inhomogeneity in the density dis-
tribution at the time of decoupling, but that was inevitable: our assumption of homogeneity
does not hold on small scales, where galaxies and planets form. On the large scale, we need
to ask, why is the universe so smooth? This is particularly difficult to explain because in
the standard Big Bang, there is no physical process that could work to smooth things out.
This needs some explanation.

Consider the primordial abundance of helium. It was fixed when the universe was only
five minutes old. When we look with our telescopes in opposite directions on the sky, we
can see distant quasars and galaxies that appear to have the same element abundances as
we do, and yet they are so far away from each other that they could not have been in
communication: they are outside each other’s particle horizon in the standard cosmologi-
cal model. One way to ‘explain’ this is simply to postulate that the initial conditions for
the Big Bang were the same everywhere, even in causally disconnected regions. But it
would be more satisfying physically if some process could be found that enabled these
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regions to communicate with each other at a very early time, even though they appear to be
disconnected. Again, inflation offers such a mechanism. Inflation. The basic idea of infla-
tion (Starobinsky 1980, Guth 1981, Linde 1982) is that, at a very early time like 10−35s,
the universe was dominated by a large positive cosmological constant, much larger than
we have today, but one that was only temporary: it turned on at some point and then turned
off again, for reasons we will discuss below. But during the time when the universe was
dominated by this constant, the matter and curvature were unimportant, and the universe
expanded according to the simple law

H2 = 8
3πρ� �⇒ Ṙ

R
= 1/τ�, (12.64)

which is an exponential law with a growth time

τ� =
(

3

8πρ�

)1/2

. (12.65)

If this exponential expansion lasted 20 or 30 e-foldings, then a region of very small size
could have been inflated into the the size of a patch that would be big enough to become
the entire observable universe today. The idea is that, before inflation, this small region
had been smoothed out by some physical process, which was possible because it was small
enough to do this even in the time available. Then inflation set in and expanded it into the
initial data for our universe.

This would explain the homogeneity of what we see: everything did indeed come from
the same patch. And inflation also explains the fluctuation in the cosmic microwave back-
ground. Here we have to go into more detail about the mechanism for inflation. Attempts
to compute the cosmological constant today focus on the vacuum energy of quantum
fields, which we used in order to explain the Hawking radiation in the previous chapter.
The vacuum energy is attractive for this purpose because the vacuum must be invari-
ant under Lorentz transformations: there should not be any preferred observer for empty
space in quantum theory. This means that any stress-energy tensor associated with the vac-
uum must be Lorentz invariant. Now, the only Lorentz-invariant symmetric tensor field of
type

(0
2

)
is the metric tensor itself, so any vacuum-energy explanation of dark energy will

automatically produce something like a cosmological constant, proportional to the metric
tensor.

In some models of the behavior of the physical interactions at very high energies, beyond
the TeV scale, it is postulated that there is a phase transition in which the nature of the
vacuum changes, and a large amount of vacuum energy is released in the form of a cosmo-
logical constant, powering inflation. But this is a dynamical process, which sets in when
the phase change occurs and then stops when the energy is converted into the real energy
that eventually becomes the particles and photons in our universe. So for a limited time,
the universe inflates rapidly. Now, at the beginning there are the usual vacuum fluctuations,
and the remarkable thing is that the exponential inflation amplifies these fluctuations in
much the same way as a nonlinear oscillator can pump up its oscillation amplitude. When
inflation finishes, what were small density perturbations on the quantum scale have become
much larger, classical perturbations.
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When physicists perform computations with this model, it does very well. The amplitude
of the fluctuations is reasonable, their spectrum matches that which is inferred from the
cosmic microwave background, and the physical assumptions are consistent with modern
views of unification among the various interactions of fundamental physics. Inflation will
remain a ‘model’ and not a ‘theory’ until either a full theory unifying the nuclear forces
is found or until some key observation reveals the fields and potential that are postulated
within the model. However, it is a powerful and convincing paradigm, and it is currently
the principal framework within which physicists address the deepest questions about the
early universe.

Beyond general relat ivity

Inflation goes beyond standard physics, making assumptions about the way that the laws
governing the nuclear interactions among particles behave at the very high energies that
obtained in the early universe. But it does not modify gravity: it works within classical
general relativity. Nevertheless, as we have remarked before, the classical theory must
eventually be replaced by a quantum description of gravitation, and the search for this
theory is a major activity in theoretical physics today.

Although no consistent theory has yet emerged, the search has produced a number of
exciting ideas that offer the possibility of new kinds of observations, new kinds of expla-
nations. One approach, called loop quantum gravity, directly attacks the problem of how to
quantize spacetime, ignoring at first the other forces in spacetime, like electromagnetism.
On a fine scale, presumably the Planck scale, it postulates that the manifold nature of space-
time breaks down, and the smaller-scale structure is one of nested, tangled loops. There are
a number of variants on this approach, with different structures, but the common idea is
that spacetime is a coarse-grained average over something that has a much richer topology.
These ideas come from the mathematics in a natural way. A recent triumph of loop quan-
tum gravity is to show that the Big Bang may not have been singular after all, that going
backwards in time the universe is able to pass through the Big Bang and become a classical
collapsing universe on the other side (Bojowald 2005).

Even more active, in terms of the number of physicists working in it, is the string-theory
approach to quantum gravity. Here the aim is to unify all the interactions, including gravity,
so the theory includes the nuclear and electromagnetic interactions from the start. String
theory seems to be consistent, in the sense of not having to do artificial things to get rid
of infinite energies, only in 11 spacetime dimensions. We live in just four of these, so
physicists are beginning to ask questions about the remaining ones.

The first assumption was that they never got big: that attached to each point is a Planck-
sized seven-sphere offering the possibility of exiting from our four-dimensional universe
only to things that are smaller than the Planck length. This would not be easy to observe.
But it is also possible that some of these extra dimensions are big, and our four-dimensional
universe is simply a four-surface in this five- or more-dimensional surrounding. This sur-
face has come to be called a brane, from the word ‘membrane’. String theory on branes
has a special property: electromagnetism and the nuclear forces are confined to our brane,
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but gravitation can act in the extra dimensions too. This would lead to a modification of
the inverse-square-law of Newtonian gravity on short distances, on scales comparable to
a relevant length-scale in the surrounding space. All we can say is that this scale must be
smaller than about a millimeter, from experiments on the inverse square law. But there
are many decades between a millimeter and the Planck scale, and new physics might be
waiting to be discovered anywhere in between (Maartens 2004).

The new physics could take many different forms. Some kind of collision with another
brane might have triggered the Big Bang. A nearby extra brane might have a parallel world
of stars and galaxies, interacting with us only through gravity: shadow matter. There might
be extra amounts of gravitational radiation, due either to shadow matter or to unusual
brane-related initial conditions at the Big Bang.

Although these ideas sound like science fiction, they are firmly grounded in model the-
ories, which are deliberate over-simplifications of the full equations of string theory, and
which involve deliberate choices of the values of certain constants in order to get these
strange effects. They should be treated as neither predictions nor idle speculation, but
rather as harbingers of the kind of revolutionary physics that a full quantum theory of
gravity might bring us. Experimental hints, from high-precision physics, or observational
results, perhaps from gravitational waves or from cosmology, might at any time provide
key clues that could point the way to the right theory.

12.5 Fur ther read ing

The literature on cosmology is vast. In the body of the chapter I have given the principal
references to original results, so I list here some recommended books on the subject.

Standard cosmology is treated in great detail in Weinberg (1972). Cosmological models
in general relativity become somewhat more complex when the assumption of isotropy
is dropped, but they retain the same overall features: the Big Bang, open vs. closed.
See Ryan and Shepley (1975). A well-balanced introduction to cosmology is Heidmann
(1980).

Early discussions on physical cosmology that remain classics include Peebles (1980),
Liang and Sachs (1980), and Balian et al. (1980). More modern is Liddle (2003).

An important current research area is into inhomogeneous cosmologies. See MacCal-
lum (1979). Another subject closely allied to theoretical cosmology is singularity theory:
Geroch and Horowitz (1979), Tipler et al. (1980). See also the stimulating article by
Penrose (1979) on time asymmetry in cosmology.

For greater depth on physical cosmology, see the excellent text by Mukhanov (2005).
For a different point of view on ‘why’ the universe has the properties it does, see the book
by Barrow and Tipler (1986) on the anthropic principle.

For popular-level cosmology articles written by research scientists, see the Einstein
Online website: http://www.einstein-online.info/en/.
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12.6 Exerc i ses

1 Use the metric of a two-sphere to prove the statement associated with Fig. 12.1, that
the rate of increase of the distance between any two points as the sphere expands (as
measured on the sphere!) is proportional to the distance between them.

2 The astronomer’s distance unit, the parsec, is defined to be the distance from the Sun
to a star whose parallax is exactly one second of arc. (The parallax of a star is half the
maximum change in its angular position as measured from Earth as Earth orbits the
Sun.) Given that the radius of Earth’s orbit is 1 AU = 1011 m, calculate the length of
one parsec.

3 Newtonian cosmology.
(a) Apply Newton’s law of gravity to the study of cosmology by showing that the gen-

eral solution of ∇2� = 4πρ for ρ = const. is a quadratic polynomial in Cartesian
coordintes, but is not necessarily isotropic.

(b) Show that if the universe consists of a region where ρ = const., outside of which
there is vacuum, then, if the boundary is not spherical, the field will not be isotropic:
the field will show significant deviations from sphericity throughout the interior,
even at the center.

(c) Show that, in such a Newtonian cosmology, an experiment done locally could
determine the shape of the boundary, even if the boundary is far outside our particle
horizon.

4 Show that if hij(t1) �= f (t1, t0)hij(t0) for all i and j in Eq. (12.3), then distances between
galaxies would increase anisotropically: the Hubble law would have to be written as

vi = Hj
ix j (12.66)

for a matrix Hi
j not proportional to the identity.

5 Show that if galaxies are assumed to move along the lines xi = const., and if we see
the local universe as homogeneous, then g0i in Eq. (12.5) must vanish.

6 (a) Prove the statement leading to Eq. (12.8), that we can deduce Gij of our three-
spaces by setting � to zero in Eqs. (10.15)–(10.17).

(b) Derive Eq. (12.9).
7 Show that the metric, Eq. (12.7), is not locally flat at r = 0 unless A = 0 in Eq. (12.11).
8 (a) Find the coordinate transformation leading to Eq. (12.19).

(b) Show that the intrinsic geometry of a hyperbola t2 − x2 − y2 − z2 = const. > 0
in Minkowski spacetime is identical with that of Eq. (12.19) in appropriate
coordinates.

(c) Use the Lorentz transformations of Minkowski space to prove that the k = −1
universe is homogeneous and isotropic.

9 (a) Show that a photon which propagates on a radial null geodesic of the metric,
Eq. (12.13), has energy −p0 inversely proportional to R(t).

(b) Show from this that a photon emitted at time te and received at time tr by observers
at rest in the cosmological reference frame is redshifted by

l + z = R(tr)/R(te). (12.67)
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10 Show from Eq. (12.24) that the relationship between velocity and cosmological redshift
for a nearby object (small light-travel-time to us) is z = v, as we would expect for an
object with a recessional velocity v.

11 (a) Prove Eq. (12.29) and deduce Eq. (12.30) from it.
(b) Fill in the indicated steps leading to Eq. (12.31).

12 Derive Eq. (12.42) from Eq. (12.31). Derive Eq. (12.44) from Eq. (12.40).
13 Astronomers usually do not speak in terms of intrinsic luminosity and flux. Rather, they

use absolute and apparent magnitude. The (bolometric) apparent magnitude of a star is
defined by its flux F relative to a standard flux Fs:

m = −2.5 log10(F/Fs) (12.68)

where Fs = 3 × 10−8 J m−2 s−1 is roughly the flux of visible light at Earth from the
brightest stars in the night sky. The absolute magnitude is defined as the apparent
magnitude the object would have at a distance of 10 pc:

M = −2.5 log10[L/4π(10 pc)2Fs]. (12.69)

Using Eq. (12.42), with Eq. (12.27), rewrite Eq. (12.34) in astronomer’s language as:

m − M = 5 log10(z/10 pc H0) + 1.09(1 − q0)z. (12.70)

Astronomers call this the redshift-magnitude relation.
14 (a) For the Robertson–Walker metric Eq. (12.13), compute all the Christoffel symbols

�μαβ . In particular show that the nonvanishing ones are:

�0
jk = Ṙ

R
gjk, �j

0k = Ṙ

R
δj

k, �r
rr = kr

1 − kr2
,

�r
θθ = −r(1 − kr2), �r

φφ = −r(1 − kr2) sin2 θ , (12.71)

�θ rθ = �φrφ = 1

r
, �θφφ = sin θ cos θ , �φθφ = cot θ .

(b) Using these Christoffel symbols, show that the time-component of the divergence
of the stress-energy tensor of the cosmological fluid is

T0α
;α = ρ̇ + 3(ρ + p)

Ṙ

R
. (12.72)

(c) By multiplying this equation by R3, derive Eq. (12.46).
15 Show from Eq. (12.49) that if the radiation has a black-body spectrum of temperature

T , then T is inversely proportional to R.
16 Use the Christoffel symbols computed in Exer. 14 above to derive Eq. (12.50).
17 Use Eq. (12.46) and the time-derivative of Eq. (12.54) to derive Eq. (12.55) for R̈. Make

sure you use the fact that p� = −ρ�.
18 In this chapter we saw that the negative pressure (tension) of the cosmological con-

stant is responsible for accelerating the universe. But is this a contradiction to ordinary
physics? Does a tension pull inward, not push outward? Resolve this apparent contra-
diction by showing that the net pressure force on any local part of the universe is zero.
Refer to the discussion at the end of § 4.6.
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19 Assuming the universe to be matter-dominated and to have zero cosmological constant,
show that at times early enough for one to be able to neglect k in Eq. (12.54), the scale
factor evolves with time as R(t) ∝ t2/3.

20 Assume that the universe is matter dominated and find the value of ρ� that permits the
universe to be static.
(a) Because the universe is matter-dominated at the present time, we can take ρm(t) =

ρ0[R0/R(t)]3 where the subscript ‘0’ refers to the static solution we are looking
for. Differentiate the ‘energy’ equation Eq. (12.54) with respect to time to find the
dynamical equation governing a matter-dominated universe:

R̈ = 8
3πρ�R − 4

3πρ0R3
0R−2. (12.73)

Set this to zero to find the solution

ρ� = 1
2ρ0.

For Einstein’s static solution, the cosmological constant energy density has to be
half of the matter energy density.

(b) Put our expression for ρm into the right-hand-side of Eq. (12.54) to get an energy-
like expression which has a derivative that has to vanish for a static solution. Verify
that the above condition on ρ� does indeed make the first derivative vanish.

(c) Compute the second derivative of the right-hand-side of Eq. (12.54) with respect to
R and show that, at the static solution, it is positive. This means that the ’potential’
is a minimum and Einstein’s static solution is stable.

21 Explore the possible futures and histories of an expanding cosmology with nega-
tive cosmological constant. You may wish to do this graphically, by drawing figures
analogous to Fig. 11.1. See also Fig. 12.4.

22 (Parts of this exercise are suitable only for students who can program a computer.)
Construct a more realistic equation of state for the universe as follows.
(a) Assume that, today, the matter density is ρm = m × 10−27 kg m−3 (where m is of

order 1) and that the cosmic radiation has black-body temperature 2.7 K. Find the
ratio ε = ρr/ρm, where ρr is the energy density of the radiation. Find the number
of photons per baryon, ∼ εmpc2/kT .

(b) Find the general form of the energy-conservation equation, T0μ
,μ = 0, in terms of

ε(t) and m(t).
(c) Numerically integrate this equation and Eq. (12.54) for � = 0 back in time from

the present, assuming Ṙ/R = 75 km s−1 Mpc−1 today, and assuming there is no
exchange of energy between matter and radiation. Do the integration for m = 0.3,
1.0, and 3.0. Stop the integration when the radiation temperature reaches Ei/26.7 k,
where Ei is the ionization energy of hydrogen (13.6 eV). This is roughly the tem-
perature at which there are enough photons to ionize all the hydrogen: there is
roughly a fraction 2 × 10−9 photons above energy Ei when kT = Ei/26.7, and this
is roughly the fraction needed to give one such photon per H atom. For each m,
what is the value of R(t)/R0 at that time, where R0 is the present scale factor?
Explain this result. What is the value of t at this epoch?
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(d) Determine whether the pressure of the matter is still negligible compared to that
of the radiation. (You will need the temperature of the matter, which equals the
radiation temperature now because the matter is ionized and therefore strongly
coupled to the radiation.)

(e) Integrate the equations backwards in time from the decoupling time, now with the
assumption that radiation and matter exchange energy in such a way as to keep
their temperatures equal. In each case, how long ago was the time at which R = 0,
the Big Bang?

23 Calculate the redshift of decoupling by assuming that the cosmic microwave radiation
has temperature 2.7 K today and had the temperature Ei/20 k at decoupling, where
Ei = 13.6 eV is the energy needed to ionize hydrogen (see Exer. 22c).

24 If Hubble’s constant is 75 km s−1 Mpc−1, what is the minimum present density for a
k = +1 universe?

25 Estimate the times earlier than which our uncertainty about the laws of physics prevents
us drawing firm conclusions about cosmology as follows.
(a) Deduce that, in the radiation-dominated early universe, where the curvature term

depending on the curvature constant k (0, 1, −1) is negligible, the temperature T
behaves as (from now on, k is Boltzmann’s constant)

T = βt−1/2, β = (45 �
3/32π3)1/4k−1.

(b) Assuming that our knowledge of particle physics is uncertain for kT > 103 GeV,
find the earliest time t at which we can have confidence in the physics.

(c) Quantum gravity is probably important when a photon has enough energy kT to
form a black hole within one wavelength (λ = h/kT). Show that this gives kT ∼
h1/2. This is the Planck temperature. At what time t is this an important worry?



A Appendix A Summary of linear algebra

For the convenience of the student we collect those aspects of linear algebra that are
important in our study. We hope that none of this is new to the reader.

Vector space

A collection of elements V = {A, B, . . .} forms a vector space over the real numbers if and
only if they obey the following axioms (with a, b real numbers).

(1) V is an abelian group with operation + (A + B = B + A ∈ V) and identity
0 (A + 0 = A).

(2) Multiplication of vectors by real numbers is an operation which gives vectors and
which is:

(i) distributive over vector addition, a(A + B) = a(A) + a(B);
(ii) distributive over real number addition, (a + b)(A) = a(A) + b(A);

(iii) Associative with real number multiplication, (ab) (A) = a(b(A));
(iv) consistent with the real number identity, 1(A) = A.

This definition could be generalized to vector spaces over complex numbers or over any
field, but we shall not need to do so.

A set of vectors {A, B, . . .} is said to be linearly independent if and only if there do not
exist real numbers {a, b, . . . , f }, not all of which are zero, such that

aA + bB + · · · + fF = 0.

The dimension of the vector space is the largest number of linearly independent vectors we
can choose. A basis for the space is any linearly independent set of vectors {A1, . . . , An},
where n is the dimension of the space. Since for any B the set {B, A1, . . . , An} is linearly
dependent, it follows that B can be written as a linear combination of the basis vectors:

B = b1A1 + b2A2 + · · · + bnAn.

The numbers {b1, . . . , bn} are called the components of B on {A1, . . . , An}.
An inner product may be defined on a vector space. It is a rule associating with any pair

of vectors, A and B, a real number A · B, which has the properties:

(1) A · B = B · A,
(2) (aA + bB) · C = a(A · C) + b(B · C).
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By (1), the map (A, B) → (A · B) is symmetric; by (2), it is bilinear. The inner product is
called positive-definite if A · A > 0 for all A �= 0. In that case the norm of the vector A is
|A| ≡ (A · A)1/2. In relativity we deal with inner products that are indefinite: A · A has one
sign for some vectors and another for others. In this case the norm, or magnitude, is often
defined as |A| ≡ |A · A|1/2. Two vectors A and B are said to be orthogonal if and only if
A · B = 0.

It is often convenient to adopt a set of basis vectors {A1, . . . , An} that are orthonormal:
Ai · Aj = 0 if i �= j and |Ak| = 1 for all k. This is not necessary, of course. The reader
unfamiliar with nonorthogonal bases should try the following. In the two-dimensional
Euclidean plane with Cartesian (orthogonal) coordinates x and y and associated Cartesian
(orthonormal) basis vectors ex and ey, define A and B to be the vectors A = 5ex + ey, B =
3ey. Express A and B as linear combinations of the nonorthogonal basis {e1 = ex, e2 =
ey − ex}. Notice that, although e1 and ex are the same, the 1 and x components of A and B
are not the same.

Matrices

A matrix is an array of numbers. We shall only deal with square matrices, e.g.

(
1 2
3 1

)
or

⎛
⎝ 1 2 5

−6 3 18
105 0 0

⎞
⎠ .

The dimension of a matrix is the number of its rows (or columns). We denote the elements
of a matrix by Aij, where the value of i denotes the row and that of j denotes the column;
for a 2 × 2 matrix we have

A =
(

A11 A12

A21 A22

)
.

A column vector W is a set of numbers Wi, for example

(
W1

W2

)
in two dimen-

sions. (Column vectors form a vector space in the usual way.) The following rule governs
multiplication of a column vector by a matrix to give a column vector V = A · W:(

V1

V2

)
=
(

A11 A12

A21 A22

)(
W1

W2

)
=
(

A11W1 + A12W2

A21W1 + A22W2

)
.

In index notation this is clearly

Vi =
2∑

j=1

AijWj.

For n-dimensional matrices and vectors, this generalizes to

Vi =
n∑

j=1

AijWj.
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Notice that the sum is on the second index of A.
Matrices form a vector space themselves, with addition and multiplication by a number

defined by:

A + B = C ⇒ Cij = Aij + Bij.

aA = B ⇒ Bij = aAij.

For n × n matrices, the dimension of this vector space is n2. A natural inner product may
be defined on this space:

A · B =
∑

i,j

AijBij.

We can easily show that this is positive-definite. More important than the inner product,
however, for our purposes, is matrix multiplication. (A vector space with multiplication
is called an algebra, so we are now studying the matrix algebra.) For 2 × 2 matrices, the
product is

AB = C ⇒
(

C11 C12

C21 C22

)

=
(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)

=
(

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
In index notation this is

Cij =
2∑

k=1

AikBkj.

Generalizing to n × n matrices gives

Cij =
n∑

k=1

AikBkj.

Notice that the index summed on is the second of A and the first of B. Multiplication
is associative but not commutative; the identity is the matrix whose elements are δij, the
Kronecker delta symbol (δij = 1 if i = j, 0 otherwise).

The determinant of a 2 × 2 matrix is

det A = det

(
A11 A12

A21 A22

)
= A11A22 − A12A21.

Given any n × n matrix B and an element Blm (for fixed l and m), we call Slm the (n − 1) ×
(n − 1) submatrix defined by excluding row l and column m from B, and we call Dlm the
determinant of Slm. For example, if B is the 3 × 3 matrix

B =
⎛
⎝ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠ ,
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then the submatrix S12 is the 2 × 2 matrix

S12 =
(

B21 B23

B31 B33

)
and its determinant is

D12 = B21B33 − B23B31.

Then the determinant of B is defined as

det (B) =
n∑

j=1

(−1)i+jBijDij for any i.

In this expression we sum only over j for fixed i. The result is independent of which i was
chosen. This enables us to define the determinant of a 3 × 3 matrix in terms of that of a
2 × 2 matrix, and that of a 4 × 4 in terms of 3 × 3, and so on.

Because matrix multiplication is defined, it is possible to define the multiplicative inverse
of a matrix, which is usually just called its inverse;

(B−1)ij = (−1)i+jDji/ det (B)

The inverse is defined if and only if det (B) �= 0.
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acceleration, 46–48
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of the universe, 351–353

accretion disk, 317
active gravitational mass, 197, 202, 355
adiabatic, 103
affine parameter, 161, 166, 175
angular diameter distance, 350–351
angular momentum, 180, 287
angular velocity, 180, 287, 310
antisymmetric metric, 75
area coordinate, 257
area theorem of Hawking, 307–308
Assumption of Mediocrity, 341
asymptotically flat spacetime, 195, 259
Auriga bar, 219

background Lorentz transformations, 190, 238
background Minkowski spacetime, 205
bar detectors, 214, 218–219
baryons, 100, 359, 363
basis one-forms, 60–61

polar coordinate, 122–123
basis vectors, 36–37, 60, 375

derivatives of, 125–126
inverse transformations, 39–41
orthonormal, 375
polar coordinate, 122–123, 135
transformation of, 37–39

beam detectors, 215, 222–224
Bianchi identities, 163–165, 166, 188, 262
Big Bang, 356, 365, 368

gravitational waves, 213, 246–247
Big Crunch, 356
binary pulsar, 195, 291
binary star system, 231, 232, 242–244, 275
Birkhoff’s theorem, 263
black holes, 27, 258, 304–318, 364

degrees of freedom, 318
dynamical, 322–323
formation of, 269–271, 304–307
formula for the radius of, 282
general properties, 307–309
intermediate-mass, 321–322
Kerr, 307, 309–310, 316

merger of, 243
metric, 269
in Newtonian gravity, 281–282
quantum mechanical emission of radiation,

323–327
real, 318–323
Schwarzschild, 307, 326
of stellar mass, 269–271, 319–320
supermassive, 320–321

Boyer–Lindquist coordinates, 309
branes, 368, 369
Buchdahl’s interior solution, 267–269
Buchdahl’s theorem, 269

center of momentum (CM) frame, 44
Chandrasekhar limit, 274
Chandrasekhar, S., 186, 318
chirping signals, 243, 244
Christoffel symbols, 127, 138, 157, 162, 174, 176,

178, 207
calculation from the metric, 133–134
and the metric, 131–135

circularly polarized radiation, 232
clusters, 336
cold dark matter model, 363
cold electron gas, 272, 273
column vectors, 375
comma-goes-to-semicolon rule, 174
components

of the metric, 75
of one-forms, 66–67

connecting vector, 162
conservation

of energy, 99
of energy-momentum, 98–99
of entropy, 175
of four-momentum, 43–44, 175
of particles, 100, 174
of quantities, 178–180, 283–284

conservation laws, 102–104
constants, in SI and geometrized units, 187t
continuum, 84
contraction, 59
conventions, sign of interval, 18–19
cooling, 363
coordinate singularities, 298–299
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coordinate systems, 300–301
coordinates

Kruskal–Szekeres, 301–304
for spherically symmetric spacetimes, 256–258

Copernican Principle, 339, 341
cosmic censorship conjecture, 308
cosmic microwave background radiation, 246, 351,

361–363
cosmic microwave background temperature

perturbations, 214
cosmography, 348–351
cosmological constant, 188, 352, 354, 357, 358
cosmological distance ladder, 349
cosmological expansion factor, 353
cosmological principle, 340–341, 356
cosmological redshift, 345–348
cosmological singularity, 357
cosmology, 246, 335–373

matter-dominated, 354
metrics, 341–344
radiation-dominated, 354

covariant derivative, 127–128, 130, 151, 161, 166
covariant differentiation, 150–153
covariant vectors. see one-forms
covectors. see one-forms
critical energy density, 358–361
curvature, 111–141, 142

intrinsic and extrinsic, 153–154
relation of gravitation to, 111–118
role of, 117–118
of a sphere, 154

curvature coordinate, 257
curvature singularity, 300
curvature tensor, 157–163
curved manifolds, 142–170
curved spacetime

two-spheres in, 256–257
waves in, 212

curves
definition, 120–121
lengths and volumes of, 147–148
and vectors, 120–122
cylinder, intrinsic geometry of, 153, 154

D’Alembertian, 193
dark energy, 337, 355, 356, 360
dark energy density, 358, 361
dark matter, 296–297, 337, 359, 364
dark pressure, 355
deceleration parameter, 347
decoupling, 361–363

universe after, 363–364
derivatives

of basis vectors, 125–126
covariant, 127–128, 130, 151, 161, 166
of general vectors, 126–127
notation for, 65

of one-forms, 129–131
of tensors, 76, 129–131
vector field, 150

determinant, 376, 377
differentiable manifolds, 143
differential structure, 143
dispersion relation, of a wave, 204
displacement vector, 33
distances, measuring with light, 220–222
divergence, 129
divergence formula, 152–153
Doppler-shift formula for photons, 49
dot product, 57, 123
drag-free operation, 226
dragging of inertial frames, 310–311
dual vector space, 59
dummy index, 35, 37
dust, 85–88

stress-energy tensor, 91–93
dynamical black holes, 322–323

Earth, mass of, 187
Einstein, Albert, 2
Einstein equations, 184–202

integration of, 264–265
purpose and justification of, 184–187
static perfect fluid, 260–262
in vacuum, 203
for weak gravitational fields, 189–194

Einstein equivalence principle, 115, 173, 174, 185
Einstein law of composition of velocities, 23
Einstein summation convention, 34
Einstein tensor, 164–165, 166, 193, 260, 343
electromagnetic radiation, 213
electromagnetic spectrum, 213
electromagnetic waves, 212
electromagnetism, 311
electrons, 272
element

of a continuum, 84
of proper volume, 166

ellipse, equation of, 289
elsewhere, 14

absolute, 13
energy

density of, 91–92, 94t
and gravitational waves, 234–242
at infinity, 259
law of conservation of, 99
lost by a radiating system, 239–242
of a particle, 48

energy flux, 98
gravitational waves, 235–239

energy-momentum, conservation of, 98–99
entropy, 95, 96

law of conservation of, 175
equation of geodesic deviation, 163
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equations of motion, 261
equations of state, 261

neutron stars, 275
equivalence, principle of, 114–115
ergoregion, 311–312, 316
ergosphere, 312
ergotoroids, 312
escape velocity, 281
Euclidean space, 142, 156
event horizon, 304, 306
events, 5, 6, 12–13
exact plane wave, 210–212
extremal length, 157
extrinsic curvature, 153, 154

far field, of stationary relativisitic sources,
195–196

Fermi momentum, 272, 273
Fermi particles, 274
field equations

of GR, 185
of linearized theory, 194

first law of thermodynamics, 94–96
flat manifold, 160, 166
flat space, spherical coordinates, 256
fluid element, 97

four-velocity, 94t
fluids, 84–85, 93–100
flux, across a surface, 85–87, 90
flux vector, 94t
four-acceleration, 104
four-momentum, 42–44

conservation of, 43–44, 175
of a particle, 49

four-vector, 35n
four-velocity, 41–42, 46–48, 49, 62, 87

of fluid element, 94t
Fourier transform, 244
free index, 35
free particles, effect of waves on, 206–207
freely falling frame, 172
freely falling particle, 179
frequency, of a wave, 204
function, 57–58
future, 14

absolute, 13

GAIA satellite, 364
galactic bulge, 321
galaxies, 336

formation of, 321, 363–364
Galilean law of addition of velocities, 2, 23
gauge transformations, 191
gauge, transverse-traceless, 204–206
Gauss’ law, 105–106, 153
general fluids, 93–100
general horizon, 304

general relativity, 3, 104–105, 194, 322, 335, 351
cosmology and, 336
curved spacetime of, 76
field equations of. see Einstein equations

general stress-energy tensor, 96
general vector, 35
GEO600, 226
geodesic deviation, 161–163
geodesic equation, 179
geodesics, 156–157, 166

extremal length, 157
geometer, 74
geometrical optics, 212
GPS navigation system, 113
GR. see general relativity
gradient, 62–65, 90, 128
gravitational collapse, 245
gravitational fields, 184, 194–197
gravitational lensing, 212, 296–298
gravitational potential energy, 178
gravitational radiation, 195, 203–255
gravitational redshift experiment, 112–113, 115
gravitational self-energy, 178
gravitational spacetime, 117
gravitational wave detectors, 207
gravitational wave forces, 207–208
gravitational wave spectrum, 213
gravitational waves, 194, 212

amplitude of, 227
astrophysical sources of, 242–247
from the Big Bang, 246–247
detection of, 213–227
energy and, 234–242
energy flux, 235–239
generation of, 227–234
polarization of, 210
propagation of, 203–212

gravitomagnetism, 311
graviton, 50
gravity, 114, 172, 173

defection of light by, 293–295
Newtonian, 194–195, 336

harmonic gauge, 193
harmonic oscillator, 215, 216, 234
Hawking area theorem, 307–308
Hawking process, 323–327
heat conduction, 100–101
Higgs particle, 366
Hilbert space, 71
homogeneity, 367
horizon, 300, 303, 304, 306

Kerr, 312–313
optical, 341
particle, 340

Hubble constant, 339, 347, 359
Hubble flow, 338
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Hubble parameter, 339, 346, 347
Hubble time, 339
Hulse–Taylor binary pulsar, 240, 291
hydrogen, ionization of, 362
hyperbola

invariant, 14–17
tangent to, 17

hypersurface, 44

impact parameter, 293
index, 191

contravariant, 73
covariant, 73
dummy, 35, 37
free, 35
Greek, 6
Latin, 6
raising and lowering of, 74–76

inertial frames, 4, 91, 114, 178, 205
dragging of, 310–311
freely falling, 116
local, 116–117
nonexistence at rest on Earth, 113–114

inertial observers, 2, 3–4
inflation, 367, 368
inner product, 374–375
interferometers, 214, 219, 222–224

observations, 224–227
intermediate-mass black holes, 271, 321–322
internal energy per particle, 94t
interval

invariance of, 9–14, 22
spacelike, 111
timelike, 111

intrinsic curvature, 153–154
invariant hyperbolae, 14–17
inverse transformations, 59
isotropic coordinates, 292

Jacobian, 118, 147

Keplerian motion of the planets, 177
Kerr black hole, 243, 307, 309–310, 316
Kerr horizon, 308, 312–313
Kerr metric, 310, 312, 327

equatorial photon motion in, 313–316
Kerr, Roy, 318
Kerr solution, 307
Kronecker delta, 10, 36, 40, 45, 75, 376
Kruskal–Szekeres coordinates, 301–304

Laplace, Pierre, 281
Laplacian, 129
Large Hadron Collider, 366
laser interferometer gravitational wave detector, 210,

214, 219, 220
law of conservation of energy, 99

law of conservation of entropy, 175
law of conservation of particles, 174
lengths of curves, 147
Lense–Thirring effect, 311
lensing, gravitational, 212, 296–298
light

gravitational deflection of, 293–295
measuring distances with, 220–222

light cones, 12f, 13, 300–301, 302, 303
LIGO detectors, 224, 225f, 226, 243, 246
line element, 124, 342

of flat spacetime, 211
linear algebra, 374–377
linearity, 57, 143
linearized theory, field equations of, 194
LISA, 214, 226, 227, 242, 243, 246, 321, 360, 364
local flatness, 145–146, 151
local flatness theorem, 149–150
local inertial frames, 116–117, 146, 216
locally trapped surfaces, 306
loop quantum gravity, 368
Lorentz contraction, 1, 18, 85, 86f
Lorentz frame. see inertial frames
Lorentz gauge, 193–194
Lorentz transformation, 1, 21–22, 34, 39, 190
luminosity, 240, 350
luminosity distance, 349

macroscopic quantities, definition of, 94
magnetism, 311
magnification, 296
magnitude–redshift diagram, 351
main sequence stars, 270
manifolds

coordinates, 142
definition, 142
differentiable, 143
dimension, 142
flat, 160
Riemannian, 144–150, 165

mass
of the Earth, 187
of a relativistic body, 196–197
of a star, 268

mass density, 184
mass function, 262
matrices, 375–377

determinant, 376, 377
dimension of, 375
inverse, 377
multiplication, 376
vector space, 376

matter-dominated cosmology, 354
matter energy density, 361
MCRF, 41, 42, 91, 94, 96, 101, 103, 174, 184

symmetry in, 97–98
Mercury, perihelion of, 288
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metric, 56, 64, 66, 111, 123–124, 165, 171,
185, 341

antisymmetric, 75
black hole, 269
calculation of Christoffel symbols from,

133–134
Christoffel symbols and, 131–135
components of, 58
cosmological, 341–344
definition, 57
of Euclidean space, 133
inverse, 69–70, 124
and local flatness, 145–146
as a mapping of vectors into one-forms, 68–72
Minkowski, 177
mixed components of, 75
signature of, 145
static spherically symmetric spacetimes, 258–259
symmetric, 68
of waves, 221

Michell, John, 281
microlensing, 297
Minkowski metric, 177
Minkowski space, 117, 256, 345
momentarily comoving reference frame. see MCRF
momentum density, 98
momentum, Fermi, 272, 273
momentum, flux of, 96–97
motion

equation of, 261
of a freely falling particle, 175

naked singularities, 308
nearly Lorentz coordinate systems, 189–190
neutrinos, 50, 297
neutron stars, 243, 244–245, 271, 274–275,

282, 319
forces which support, 271–273

neutrons, 100, 275
Newtonian dark star, 282
Newtonian gravitational fields, 184, 194–197
Newtonian gravity, 194–195, 336

black holes in, 281–282
Newtonian limit, 188, 194–195
Newtonian potential, 195, 196, 232, 240
Newtonian stars

equation of hydrostatic equilibrium, 266
structure of, 265–266

Newtonian tidal gravitational force, 233
Newton’s laws, 2
noncoordinate bases, 135–138
normal one-forms, 66, 72
normal vector, 66, 72
notation, for derivatives, 65
notation, spacetime diagrams, 6
null rays, 304–305, 306
null vector, 45

number density, 85, 94t
as a timelike flux, 88–89

number-flux four-vector, 87–88

observation, 4
Olbers’ Paradox, 337
one-forms, 58–66, 70–71

basis, 60–61
defining a surface, 89–90
as derivative of a function, 62–65
general properties, 58–60
image of, 61–62
inner product, 72
linearity, 143
magnitude of, 71–72
normal, 66, 72
polar coordinate basis, 122–123
representation of a frame by, 91
and surfaces, 88–91
vectors and, 119–120

optical horizon, 341
orbits, 284–287

circular, 286
hyperbolic, 285

order-of-magnitude estimates, 232–233
orthogonality, 45, 46, 303
orthonormality, 45

paradoxes, 19
and physical intuition, 23–24
pole-in-the-barn, 23
space-war, 23
twin paradox, 21, 23, 25–27

parallel-transport, 155–156, 158, 166
parallelepiped, 87
parallelism, 117
parameters, affine, 157, 161, 166, 175
particle horizon, 340
particles

angular momentum, 283
conservation of, 100
energy of, 48
four-momentum of, 49
infalling, 299–300
law of conservation of, 174
potential, 284

past, the, 14
absolute, 13

path, 120
Penrose process, 316–318, 325
perfect fluids, 84–85, 100–104, 353
periastron shift, 291
pericenter shift, 291, 292
perihelion shift, 287–290
period, 287
photons, 49–50

angular momentum, 283



391 Index
�

motion in the equatorial plane, 313–316
potential, 284
zero rest-mass, 49–50

Planck mass, 326
Planck time, 357
plane-fronted waves with parallel rays, 212
plane wave, 204, 206

exact, 210–212
planetary nebulae, 270
planets, Newtonian (Keplerian) motion of, 293
plasma fluctuations, 222
polar coordinate basis vectors, 135
polar coordinates

tensor algebra in, 118–124
tensor calculus in, 125–131

polar unit basis, 136–137
polarization, of gravitational waves, 210
polytrope, 268
Population III stars, 364
post-Newtonian effects, 195, 202
post-Newtonian gravity, 291–293
Pound–Rebka–Snider experiment, 112, 113,

114, 115
precession, 288–289
pressure, 94t, 102, 104

quantum mechanical, 271–273
pressure gradient, 105
principle of equivalence, 114–115
principle of relativity, 1, 19, 20
proof masses, 226
proper distance, 206, 348–349
proper length, 18f, 208
proper radial distance, 259
proper time, 17
proper volume element, 148, 265
protons, 100
pseudo-Riemannian space, 75
pulsar timing, 214, 215, 246
pulsars, 232, 244, 275

quadrupole approximation for gravitational radiation,
230

quadrupole moment tensor, 229
quality factor of an oscillator, 218
quantities, conservation of, 178–180, 283–284
quantum nondemolition detectors, 247
quasar jets, 317
quasars, 321

r-mode instability, 244
radar, 220
radiating system, energy lost by, 239–242
radiation-dominated cosmology, 354
real black holes, 318–323
realistic stars and gravitational collapse, 269–275
recombination, see decoupling
red giant, 270

redshift, 350, 362
cosmological, 345–348
gravitational, 112–113, 115
of photons, 259

relativistic body, mass of, 196–197
relativity, principle of, 1, 19, 20
resonant mass detectors, 214, 215–218
rest mass, 42, 43
rest-mass density, 94t
Ricci scalar, 164, 166
Ricci scalar curvature, 342
Ricci tensor, 164, 166, 185
Riemann curvature tensor, 159
Riemann tensor, 139, 161, 166, 174, 192, 208
Riemannian manifolds, 144–150, 165
Riemannian spaces, 75, 117
Robertson–Walker metric, 343

closed, 344
flat, 344
hyperbolic, 345
open, 345
spherical, 344

scalar, covariant derivative of, 128
scalar product, 44–46, 56, 374–375
Schwarzschild black hole, 307, 326
Schwarzschild constant-density interior solution,

266–267
Schwarzschild geometry, 281
Schwarzschild horizon, 300, 304, 305
Schwarzschild metric, 262–263, 292, 323, 327
Schwarzschild spacetime, trajectories in,

281–298
second law of thermodynamics, 96
shot noise, 225
SI units, 4–5, 186
signature of the metric, 145
simultaneity, 172

failure of, 8
singularity

coordinate, 298–299
cosmological, 357
curvature, 300, 308
naked, 308

slow-motion assumption, 227
Solar System, post-Newtonian effects, 195
space, measuring the stretching of, 209–210
spacecraft tracking, 214, 222
spacelike interval, 111
spacetime, 1, 171–172

asymptotically flat, 195, 259
curvature, 154
metric of, 171
quantizing, 368
slightly curved, 175–177
spherically symmetric, 258
static spherically symmetric, 258–260
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spacetime diagrams, 5–6
construction of coordinates, 12f
notation, 6

special relativity, 2, 178
fundamental principles of, 1–3
Lorentz transformation, 190
metric of, 111
perfect fluids in, 84–110

specific entropy, 94t
of the universe, 365

speed of light, universality of, 1, 2, 10, 21
sphere, curvature, 154–155
spherical solutions for stars, 256–280
spherical star, collapse to form a black hole, 305
spherical symmetric spacetimes, coordinates for,

256–258
spinning neutron stars, 244–245
spinor space, 75
Square Kilometer Array (SKA) radio telescope, 214
SQUIDS, 219
SR. see special relativity
standard candle, 349
standard sirens, 244
stars

characteristics of, 309
collapse of spherical star, 305
composition of, 271
exact interior solutions, 266
exterior geometry, 262–263
interior structure, 263–266
mass of, 265, 268
population III, 364
realistic stars and gravitational collapse,

269–275
spherical solutions for, 256–280
surface of, 264

static limit, 312
static spacetimes

definition, 258
spherically symmetric, 258–260

stationary horizons, 307
stationary relativisitic sources, far field of, 195–196
stellar mass black holes, 269–271, 319–320
stress-energy tensor, 92–93, 101, 260, 353
stretching of space, 209–210
string theory, 368–369
summation convention, 37
supermassive black holes, 320–321
supernova, 245
supernova explosions, 320, 352
supersymmetry, 366
surface element, 90
surfaces

flux across, 90
one-forms and, 88–91

symmetry, of one-forms, 67–68

tangent vector, 121
temperature, 94t
tension, 356
tensor algebra

in polar coordinates, 118–124
review, 143–144

tensor analysis, 56–83
tensor calculus, in polar coordinates, 125–131
tensors, 143

antisymmetric, 68
components of, 58, 66–67
covectors, 58–66
definition, 56–57
differentiation of, 76
field, 143
general stress-energy, 96
linear function of M one-forms and N vectors into

real numbers, 73
linear function of M one-forms into real numbers,

73
metric, 123–124
permissible tensor operations, 144
reduced quadrupole moment, 230
Riemannian, 139, 161, 166, 174, 192, 208
symmetric, 67
trace-free moment, 230
with two vector arguments, 66

thermal noise, 218, 224
thermodynamics

first law of, 94–96
second law, 96

three-dimensional wave equation, 203
tidal forces, 117, 173, 207–208, 209, 233
time dilation, 17
timelike interval, 111
Tolman–Oppenheimer–Volkov equation, 263–264

integration of, 264–265
transducer, 219
transponders, 222
transverse-traceless gauge, 204–206
turning point, 285
twin paradox, 23, 25–27
two-spheres

in a curved spacetime, 256–257
meshing into a three-space, 257

uncertainty principle of quantum mechanics, 308, 323
unit vectors, 136
units, 4–5

geometrized, 186–187
natural, 4
SI, 4–5, 186

universality of the speed of light, 1, 2, 10, 21
universe

acceleration of, 351–353
age of, 339
anisotropy, 339
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closed, 356
after decoupling, 363–364
evolution of, 361–369
expansion of, 337, 338, 356
flat, 356
history of, 356
homogeneity, 336, 337, 338–340
hyperbolic, 356
isotropic, 336, 338–340
measures of distance in, 348–351
models of, 340–341
radiation-dominated, 362, 365
re-collapsing, 356
Robertson–Walker, 353–358
scale factor, 347
specific entropy, 365

vacuum energy, 367
vector algebra, 36–41

metric and nonmetric, 75–76
vector analysis, 33–55
vector field, 128
vector space, 374–375

dimension, 376
dual, 59
matrices, 376

vectors, 70–71
basis, 375
column, 375
connecting, 162
curves and, 120–122
definition, 33–36
derivatives of general, 126–127
displacement, 33
divergence of, 137, 152
flux, 94t
as a function of one-forms, 72–73
gradient, 64
linearity, 143
linearly independent, 374
magnitude, 44

norm of, 375
normal, 66, 72
null, 44, 45
and one-forms, 119–120
orthogonal, 45, 46
polar coordinate basis, 122–123
scalar product, 44–46
spacelike, 44
tangent, 121
timelike, 44
unit, 136

velocities, Galilean law of addition of, 2, 23
velocity, absolute, 2
velocity-composition law, 22–23
vibrations, interferometers and, 224
VIRGO detector, 224, 226
viscosity, 101
visual observation, 4
volume element, 148
volumes of curves, 147–148

wave equation
exact solution, 233–234
three-dimensional, 203

wave-function, 71
wave generation, 227–232
wave operator, 193
waves

in a curved spacetime, 212
effect on free particles, 206–207
metric of, 221

weak equivalence principle, 115, 172–173, 281
weak-field Einstein equations, 192–194
weak gravitational fields, 189–194
Weber, Joseph, 218, 245
white dwarf, 270, 273–274

forces which support, 271–273
world line, 5

zero angular-momentum observer (ZAMO), 315
zero rest-mass particles, 49–50
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