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Preface

While there has long been theoretical speculation concerning the early life of stars, the subject
first became an empirical one in the middle of the last century. Starting in the 1940s, the T Tauri
class of objects, residing within dark clouds, was recognized and subsequently examined in con-
siderable detail. This interest stemmed from the gradual realization that these peculiar variables
represent a primitive phase of solar-type stars. It also became apparent that the observed objects
must have condensed out of the dark clouds in which they are presently still found. By the mid
1950s, theorists began constructing numerical models for the pre-main-sequence evolutionary
phase. The following decade saw advances in understanding the basic physics of cloud collapse.

The pace of discovery accelerated rapidly in the 1970s, largely as a result of new instru-
mentation. The advent of infrared astronomy allowed observers to peer behind the thick veil
of obscuring dust and view even younger objects. Millimeter dishes, X-ray telescopes, and
sensitive array detectors in the optical and near-infrared all had major impacts. Meanwhile,
theoretical research kept apace, with studies of everything from chemical reaction networks in
cloud environments to the interiors of the youngest stars. By the 1980s, star formation became
one of the most vigorous areas of astronomical research.

There has been no sign of abatement in this activity. Indeed, parallel developments in other
areas have underscored the central importance of the problem of star formation. Since the mid
1990s, observers have detected large numbers of giant planets encircling nearby stars. The
properties of these systems range widely and call out for a more general understanding of the
planet formation process. These bodies arise from dusty, circumstellar disks, which themselves
appear during cloud collapse. Thus, a full account of planetary origins cannot ignore the early
evolution of the central, stellar object.

Equally relevant are contemporary advances in cosmology. Numerical simulations of the
last few decades follow the condensation of gas inside clumps of dark matter spread throughout
the expanding Universe. This gas ultimately converts itself into stars. We can even track ob-
servationally the record of this transformation in both nearby and ancient, far-off galaxies. The
pattern of star formation in a galaxy is a fundamental characteristic, one that correlates with,
and in some measure determines, its observed structure. What had traditionally been viewed as
a local phenomenon is now appreciated as a truly global one.

In the midst of such ongoing interest and progress, there is evidently a need to summarize the
state of our knowledge and the pressing, unsolved questions. A number of excellent textbooks
already cover the physics and chemistry of the interstellar medium, out of which stars are born.
Equally well represented is the theory of stellar structure and evolution. Planetary science and
galaxy formation have long been part of the standard curriculum. Still lacking, however, is a
comprehensive treatment of the area touching all of these, the formation of stars themselves.

Any work attempting to encapsulate a rapidly evolving field must face the issue of time-
liness. Won’t any “facts” we present become outdated very quickly? The answer very much
depends on the type of information conveyed. In the decade since we began this collaborative
effort, it is certainly true that there have been many exciting discoveries. There is a core of
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XII Preface

understanding, however, that has remained substantially intact. To put the matter succintly and
somewhat glibly: Pictures and numbers indeed change rapidly; ideas do not.

This, then, is primarily a book about the ideas of star formation. Developing and illustrating
these ideas has often required detailed exposition. This necessity, along with the sheer breadth
of the field, has resulted in a much thicker volume than we originally anticipated. We ask the
reader to be patient, trusting that the journey is worth some time and effort.

Two major hurdles confronted us at the very outset of the project. First was the daunting task
of collecting a vast amount of research results on many diverse topics. As one collects, one also
evaluates. Facts we had assumed were “well known” within the community often turned out,
upon scrutiny, to be either wrong or to require significant qualification. Note also that we were
not able to amass information through the time-honored method of constructing or borrowing
from lecture notes in a star formation course. We stress that it was the very lack of such a course
at our own and other institutions that provided an initial motivation for writing this work.

A second, and related, difficulty we faced was organizing all of this material in a logically
compelling manner. Our solution here has been to group similar chapters into Parts. The order-
ing of these six Parts then dictates the overall flow of the narrative. We thus start from a general
description of stars and their birth environments (Part I), before proceeding to a more detailed
look at physical processes occurring within interstellar clouds (Part II). Part III spans the critical
transition from clouds to stars. We describe the possible equilibrium configurations of clouds,
and how these structures are disrupted through collapse. We also examine the primitive stars
built up within the smallest collapsing entities. The profound thermal and mechanical effect of
young stars on their surroundings is the subject of Part IV. In Part V, we see how stars, once
divested of their cloud gas, evolve to maturity. Finally, the two chapters of Part VI return to
a larger-scale view. Chapter 19 describes star formation activity in local galaxies and beyond,
while Chapter 20 summarizes briefly our progress toward understanding key issues in the field.

We have aimed this book nominally at the level of graduate students in physics and astron-
omy. The complete text contains far more material than can be digested in a single semester.
As a guide to the instructor, we list here the chapters and sections we consider most essential.
We also suggest the time that could be devoted to each Part, assuming a 15-week course with
3 lecture hours per week.

Part Weeks Chapter/Sections

I 2 1; 2; 3; 4.1–4.3, 4.5
II 2 5.1–5.3; 6.1–6.2; 7; 8.1–8.2
III 4 9.1, 9.4–9.5; 10.1–10.2, 10.4; 11.1–11.3, 11.5; 12.1–12.3
IV 2 13.1–13.2; 14.1–14.2; 15.1–15.2,15.5
V 4 16.1–16.4; 17.1–17.3,17.5; 18.1–18.2, 18.4–18.5
VI 1 19.1–19.3; 20

Our book should also serve as a reference for professional researchers. This latter group
will observe that we have not simply compiled all of the currently popular models in each topic.
We have instead selected interpretations that fit best into the broad story of star formation, as
we understand it. Some aspects of this story will undoubtedly change in the coming years. We
nevertheless feel that anyone trying to master the subject is best served by a unified, coherent
presentation. Whoever wishes to follow more closely the underlying debates or to acquire
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historical perspective on any topic will want to consult key research and review articles, many
of which are cited as Suggested Reading at the end of each chapter.

As preparation, the prospective reader should have a solid background in physics at the
undergraduate level. We do not assume similar training in astronomy. Many basic astronomy
results, as well as much of its terminology, are presented within the text. Indeed, the study of star
formation itself provides a good introduction to astrophysical concepts, simply because of the
great variety of topics embraced by the field. In this context, the student should be comfortable
with both theoretical arguments and observational results. Note that we have not shied away
from describing observations for which no adequate model exists. To our minds, these results
are among the most interesting, as they represent areas where fundamental progress can be
made.

Over the years, we have received generous help and advice from many individuals. It is a
pleasure to acknowledge them. We are indebted to Amanda McCoy for her tireless effort in
producing hundreds of figures. Kevin Bundy read the entire manuscript and offered invaluable
commentary on both the scientific content and the manner of its presentation. Eric Feigelson
used a preliminary version of the book in a one-semester course; we are grateful to Eric and
his students at Penn State for their comments and corrections. Others who reviewed selected
chapters include Gibor Basri, Peter Bodenheimer, Jan Brand, Charles Curry, Daniele Galli,
Dave Hollenbach, Richard Larson, Gary Melnick, Karl Menten, Mario Pérez, Steve Shore,
and Hans Zinnecker. We have also benefited from discussions with Philippe André, Leo Blitz,
Paola Caselli, Riccardo Cesaroni, Tom Dame, George Herbig, Ray Jayawardhana, Chung-Pei
Ma, Thierry Montmerle, Antonella Natta, Sean Matt, Maria Sofia Randich, Leonardo Testi, Ed
Thommes, Malcolm Walmsley, and Andrew Youdin.



Part I

Star Formation in Our Galaxy



1 Overview

The complex of processes known as star formation must have occurred innumerable times in
the remote past. The Big Bang, after all, did not produce a Universe full of stars but of diffuse
gas. How gas turns into stars is the subject of this book. Anyone wishing to study the problem
is aided immeasurably by the fact that star formation is also occurring now, and in regions close
enough that the transformation can be examined in some detail. Indeed, most research activity
in this field consists of our bold, if frequently misguided, attempts to interpret what is in fact
happening all around us.

We begin, therefore, with the data. The four chapters of Part I describe various aspects of
star formation activity in our own Galaxy. We discuss the properties of the gas in interstellar
space, the structure of clouds that produce stars, and the morphology of young stellar groups.
The treatment here is quite broad, since all these topics will be revisited later. Our very first
task is to introduce the reader to the primary objects of interest, young stars themselves, and
to the environments in which they are born. We start with a descriptive tour of two relatively
nearby regions, before proceeding to a more quantitative and physical description of stars and
their evolution.

1.1 Stellar Nurseries: Orion

The figure of Orion the Hunter is a familiar sight in the winter sky of the Northern hemisphere.
It is one of the most easily recognized constellations and includes one tenth of the 70 brightest
stars. Less familiar, perhaps, is the fact that this area is an extraordinarily active site of stellar
formation. Over the years, no similar region has received such intense astronomical scrutiny,
nor been studied with such a variety of observational tools. We refer the reader to the sky map
of Figure 1.1. Here, some of the more conspicuous of the constellation’s members are indicated,
including the red supergiant Betelgeuse at the Hunter’s right shoulder, and brilliant blue Rigel at
his left foot. South of the three stars that comprise the belt of the Hunter is a bright, fuzzy patch.
This is the Orion Nebula, a cloud of gas being heated by the intense radiation of the Trapezium
stars embedded within it.

1.1.1 Giant Molecular Cloud

Young stars like those of the Trapezium are forming out of a huge body of gas known as the
Orion Molecular Cloud. The extent of this object is indicated by the shading in Figure 1.1. In its
longest dimension, the cloud covers 15◦ in the sky, or 120 pc at the distance of 450 pc.1 Orion
is but one of thousands of giant molecular clouds, or cloud complexes, found throughout the
Milky Way. The gas here is predominantly molecular hydrogen, H2. With their total masses of

1 The reader unfamiliar with units commonly employed in astronomy, such as the parsec (pc), should consult Appen-
dix A.
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1.1 Stellar Nurseries: Orion 3

Figure 1.1 A portion of the Northern sky. The Milky Way is depicted as light grey, while the
darker patches indicate giant molecular clouds. Also shown, according to their relative brightness,
are the more prominent stars, along with principle constellations.

order 105 M�, these structures are the largest cohesive entities in the Galaxy and are almost all
producing new stars.

The fact that we know of molecular clouds at all is a triumph of radio astronomy. Gas in
these regions is much too cold to radiate at visible wavelengths, but may be detected through its
radio emission in trace molecules such as CO. Here observers most often rely on single dishes
that can map extended areas of the sky. For more detailed studies of individual regions, one may



4 1 Overview

utilize the fact that several dishes linked together effectively increase the detector area and hence
the angular resolution. Such interferometers have been powerful research tools, especially for
studying the distribution of matter around newly formed stars.

The left panel of Figure 1.2 is a high-resolution CO map of the entire Orion molecular
cloud. In this case, the observations were made with a relatively large single-dish telescope.
The spectral line being detected is the commonly used 2.6 mm transition of the main isotope,
12C16O. We have distinguished in the figure two major subunits, labeled Orion A and B. Both
the elongated shape of the whole complex and its high degree of clumpiness are generic features
of such structures.

Along with their gas, molecular clouds contain an admixture of small solid particles, the
interstellar dust grains. These particles efficiently absorb light with wavelengths smaller than
their diameters (about 0.1 µm) and reradiate this energy into the infrared. Regions where the
dust effectively blocks the light from background stars are traditionally known as dark clouds.
Generally, these represent higher-density subunits within a flocculent cloud complex, although
they can also be found in isolation. Note that the extinction due to dust depends on its column
density, i. e., the volume density integrated along the line of sight. Figure 1.3 depicts the major
dark clouds in Orion, determined by tracing the regions of strong obscuration in optical pho-
tographs. A number of the most prominent structures, such as L1630 and L1641, are labeled by
their designations in the Lynds cloud catalogue. The shaded areas, including those with NGC
numbers, are chiefly reflection nebulae, i. e., dusty clouds that are scattering optical light from
nearby stars into our direction.2

The mid- and far-infrared emission from warm dust particles provides yet another means
to study the Orion region. The first instrument devoted exclusively to infrared mapping of
the sky was IRAS (for Infrared Astronomical Satellite), launched in 1983. Figure 1.4, which
spans the same angular scale as the previous two figures, shows the Orion Molecular Cloud as
a composite of three monochromatic IRAS images taken at 12, 60, and 100 µm. Radiation in
this spectral regime comes mainly from dust heated to roughly 100 K. The fact that even this
modest temperature is maintained over such an extended region demands the presence of many
stars of high intrinsic luminosity.

Returning to the 12C16O map of Figure 1.2, we see that several areas associated with reflec-
tion nebulae have closed, nested contours, indicating a local buildup in radio intensity. The re-
ceived intensity in 12C16O is correlated with the hydrogen column density, so that such buildups
mark the presence of embedded clumps. The 2.6 mm transition is most readily excited by gas
with number density near 103 cm−3 and is relatively weak at higher values. However, other
tracers are available to explore denser regions. The inset in Figure 1.2 is a map of Orion B in
the 3.1 mm line of CS, a transition excited near 104 cm−3. Here, most of the individual frag-
ments have sizes of about 0.1 pc and inferred masses near 20 M�, while the few largest ones
have masses ten times as great. Such localized peaks within the broad sea of molecular cloud
gas are known as dense cores and are the actual sites of star formation.

The stars being born within dense cores shine copiously in optical light, but none of this
short-wavelength radiation can penetrate the high column densities in dust. As before, however,
the same dust can be heated to emit at wavelengths that can escape. The shaded portions of
the Figure 1.2 inset show regions detected at 2.2 µm. What is being seen, in fact, are several

2 The NGC designation is historical and refers to the “New General Catalogue” of nebulous objects, dating from the
19th century.
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6 1 Overview

Figure 1.3 Dark clouds in Orion. The large swath is Barnard’s loop, a diffuse region of enhanced
optical emission. The labeled dark patches are reflection nebulae. Major clouds are also labeled
by their Lynds catalogue numbers.
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Figure 1.4 Infrared view of the
Orion Molecular Cloud. This is a
composite of three monochromatic
images at 12, 60 and 100 µm.

embedded stellar clusters, compact groups containing tens to hundreds of members. Each clus-
ter is associated with one of the more massive bodies of molecular gas, and virtually all cluster
members are still nested within their parent dense cores. Thus, we see that stars form in giant
molecular clouds at localized, massive peaks in the gas, and predominantly in a cluster mode,
rather than in isolation.

1.1.2 Orion Nebula and BN-KL Region

To the south of Orion B, the Orion A cloud consists of a similar clumpy distribution of molecu-
lar gas. Within one elongated, high-density region is the famous Orion Nebula, also designated
NGC 1976 or M42, the latter nomenclature referring to the 18th century Messier catalogue. As
shown in the optical photograph of Figure 1.5 (left panel), the nebula is a turbulent expanse of
gas, lit up by an embedded stellar cluster. The conspicuous ridge at the bottom of the photo-
graph is the Orion Bar, whose emission also stems from gas heated and ionized by the cluster
stars. This ionization front is seen edge on and is especially well defined because of the cool,
dusty region just beyond it. The cluster responsible for such energetic activity is the Ori Id OB
association, one of several small groups of massive stars in the giant complex. Near the center
of the figure are the four stars of the Trapezium, whose most prominent member, the O star
θ1 Ori C, has a luminosity of 4 × 105 L� and a surface temperature of 4 × 104 K.

Stars this hot emit most of their energy in the ultraviolet and are thus capable of ionizing
hydrogen gas out to considerable distances. The Orion Nebula, which is about 0.5 pc in di-
ameter, is the best studied example of such an HII region. Within the ionized plasma, the gas
temperature is comparable to that at the surface of the exciting star. As electrons and nuclei
recombine, the atoms emit a plethora of spectral lines, including optically visible radiation from
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Figure 1.6 Expansion of the Orion Nebula (schematic). The insert depicts the blueshifted spec-
trum of the n = 86 → 85 hydrogen recombination line, which has a rest-frame frequency of
10522.04 MHz.

both hydrogen and heavier elements. Here, these lines can be detected because the nebula sits
near the edge of the Orion A cloud, as depicted in Figure 1.6. While the ionization created by
the OB association slowly eats its way into the cloud, hot matter on the other side streams out
into the more rarefied gas adjacent to the cloud. As sketched in the figure, this streaming motion
in the direction of the Earth is evident from the Doppler shift toward the blue seen in hydrogen
recombination lines. The ionized gas is approaching the Earth at a velocity of 3 km s−1, while
the Trapezium stars themselves are retreating at 11 km s−1.

O and B stars, although intrinsically luminous, are produced only rarely within molecular
clouds. Much more frequently, gas condenses into low-mass stars, i. e., those of about 1 M� or
less. Thus, the Ori Id association is merely the tip of the iceberg in terms of stellar production,
as sensitive optical and infrared surveys have now made clear. The O and B stars lie in the
center of the populous Trapezium Cluster (also called the Orion Nebula Cluster). The right
panel of Figure 1.5 shows over 500 stars in this region, as imaged at 2.2 µm. The photograph
covers about 4′ × 4′ in angular extent, or 0.6 × 0.6 pc. With its central number density in stars
exceeding 104 pc−3, the Trapezium Cluster is among the most crowded star formation regions
in the Galaxy.

The near-infrared image contains a bright region in the upper right that is invisible optically.
This stellar cluster is actually located about 0.2 pc behind the Orion Nebula, in a portion of the
cloud complex designated OMC-1 (see Figure 1.6). Here reside two mysterious and powerful
sources of infrared radiation, the Becklin-Neugebauer (BN) Object and IRc2, each emitting
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Figure 1.7 Mid-infrared (19 µm) continuum radiation from the KL Nebula (greyscale). Prominent
infrared objects are labeled. The contours show emission from the 1.3 cm line of NH3.

luminosities from 103 to 105 L�. Both are part of the larger and more diffuse Kleinman-Low
(KL) Nebula, which is about 0.1 pc in diameter. The greyscale image of Figure 1.7, representing
emission at 19 µm, shows the area in more detail. To supplement this picture of the dust content,
the superposed contours trace 1.3 cm radiation from heated NH3 molecules. The NH3 radio
line is strongest where the dust emission is weak or absent. Since the molecule’s emission is
sensitive to the ambient temperature, this pattern suggests that the gas has been heated to the
point where dust is thermally destroyed.

The BN-KL region is producing a massive molecular outflow, i. e., high-velocity cloud gas
streaming away from the infrared stars. The outflow phenomenon, ubiquitous in star formation
regions, was first discovered here through detections of the Doppler shift in the 12C16O line.
Observations of numerous other molecular species reveal that the impact of this wind on nearby
gas has resulted in shock heating, which alters the pattern of chemical abundances in a charac-
teristic manner. Also seen in the vicinity is copious near-infrared emission from H2, resulting
from collisional excitation of the molecule in shock fronts. Finally, the BN-KL region contains
numerous interstellar masers, small regions of strongly beamed radiation from molecules such
as H2O and SiO. The measured intensity of these spots is vastly greater than that normally
emitted at the ambient temperature of roughly 100 K. The maser phenomenon is yet another
manifestation of wind-induced shocks in this extraordinarily active region.

1.2 Stellar Nurseries: Taurus-Auriga

Returning to Figure 1.1, we now proceed northwest from Orion, i. e., along the direction of the
Hunter’s belt. We soon encounter the constellation Taurus (the Bull). Taurus is notable for the
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Figure 1.8 Dark clouds in Taurus-Auriga. The large patches in the lower left and middle right
correspond to TMC-1 and L1495 in Figure 1.9.

bright orange star Aldebaran, as well as for the Hyades, the V-shaped group of stars marking
the Bull’s face, and the Pleiades group riding his shoulder. Both the Hyades and Pleiades are
nearby, young stellar clusters that continue to furnish valuable information for evolutionary
studies. We are more interested, however, in an even younger region to the north, extending
into the neighboring Auriga Constellation. Here, as in Orion, molecular clouds are actively
producing a multitude of new stars.

1.2.1 Dark Clouds

The clouds of Taurus-Auriga, indicated as the shaded area of Figure 1.1, have long been noted
even in optical images. Figure 1.8 is a photograph from early last century by E. E. Barnard,
covering a region of about 50 square degrees. Here one sees prominent dark lanes in the other-
wise rich stellar field. Referring to this photograph in his 1927 atlas of the Milky Way, Barnard
wrote

Very few regions of the sky are so remarkable as the Taurus region. Indeed, the
photograph is one of the most important of the collection, and bears the strongest
proof of the existence of obscuring matter in interstellar space.

Even more convincing – indeed, definitive – proof of interstellar dust was to come several years
later, with J. Trumpler’s demonstration of the progressive reddening of distant clusters.

The molecular gas accompanying the obscuring dust can be seen most readily in 12C16O,
as shown in Figure 1.9. The Taurus-Auriga region covers a greater angular area than the Orion
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Figure 1.9 Map of Taurus-Auriga in the 2.6 mm line of 12C16O. Prominent dark clouds are
labeled.

Molecular Cloud (see Fig. 1.1), but only because it is closer. At a distance of 140 pc, the
entire region measures about 30 pc in linear extent. As before, we have labeled some of the
main dark clouds, which show up as local peaks in the CO emission; Barnard’s optical image is
centered on L1521 and L1495. The dense core TMC-1 has been closely studied for its wealth
of interstellar molecules. Shown also in Figure 1.9 is the famous star T Tauri, to which we
shall return shortly. Note finally that the elongated structure to the north, including L1459 and
L1434, and the high-intensity area to the west containing Barnard 5 (B5) and NGC 1333, are
not physically associated with the Taurus-Auriga system, but are more distant, massive clouds
seen in projection.

In passing from Orion to Taurus-Auriga, we have not only diminished the physical scale of
the star forming region but also the mode of stellar production. The gas in Taurus-Auriga is not
part of a giant complex; the total mass in molecular hydrogen is of order 104 M�. Nor is the
region forming high-mass stars, with their attendent reflection nebulae and HII regions. Finally,
the existing low-mass stars are nowhere clustered as densely as in the Trapezium or even the
less populous groups of Orion B.

Let us now focus on the dark clouds of the region, using two different tracers. The upper
panel of Figure 1.10 is a map of the central portion of Taurus-Auriga, covering TMC-1, TMC-2
and the dark cloud L1495 in Figure 1.9. The image shows emission from 13C16O. This isotope
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Figure 1.10 upper panel: Map of Taurus-Auriga in the 2.7 mm line of 13C16O. lower panel: The
same region as seen by IRAS. Here the brighter regions mark concentrations of relatively cold
dust.

is excited at the same volume density as the more common 12C16O. However, it effectively
highlights regions of greater column density, which tend to trap the radiation from the more
abundant species. Notice that the dark clouds have an elongated appearance, not unlike those in
Orion (Figure 1.3).

As before, the infrared emission from warm dust grains is another useful tracer of molecular
gas. The lower panel of Figure 1.10 is an IRAS map of the same region as in the upper panel.
What is shown here is the ratio of the fluxes at 100 µm and 60 µm, a measure which emphasizes
the contribution from the colder (near 30 K) grains. There is evidently an excellent match
between the distributions of this dust component and the gaseous structures traced in 13C16O.

1.2.2 T Association

The dark clouds are also the birthplaces for young stars, as seen in Figure 1.11, which is a
composite of radio (12C16O), infrared, and optical data. For the stars, we have distinguished
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Figure 1.11 Central region of Taurus-Auriga in 12C16O, along with the locations of infrared stars
(squares) and optically visible T Tauri stars (triangles).

deeply embedded sources seen here in the infrared from optically visible, low-mass objects.
The latter belong to a class known as T Tauri stars, named for the prototypical object indicated
in Figure 1.9. Stars of the T Tauri class are but one type of pre-main-sequence star. In regions
like Orion, one also finds more massive pre-main-sequence objects known as Herbig Ae/Be
stars. Finally, we have seen that Orion (but not Taurus-Auriga) contains a number of O and
B stars, which are main-sequence objects. Note that a given source is classified as a T Tauri
or Herbig Ae/Be star based on specific observational criteria, while the pre-main-sequence and
main-sequence designations refer to the presumed evolutionary state of the star.

It is evident from Figure 1.11 that both the infrared and optically visible young stars of
Taurus-Auriga are confined to the denser molecular gas. The same is true for Orion, but the
stellar distributions are quite different. The Taurus Molecular Cloud harbors a T association,
in which stars are spread out more uniformly. Although some degree of clumping is evident,
we do not see the extreme crowding of Orion. Recall, for example, that the entire Trapezium
Cluster shown in Figure 1.5 has a diameter of about 0.4 pc, while each of the sparser groupings
in Figure 1.10 extends over about ten times that length.
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Figure 1.12 The dense core TMC-
1C, as traced by the 1.3 cm line
of NH3.

The relative isolation of the young stars in Taurus-Auriga, together with the proximity of
the region, have allowed more detailed study of individual stellar formation than in Orion. In
particular, molecular transitions sensitive to higher densities than CO have been used effectively
to examine the region’s dense cores. Figure 1.12 is a radio map of TMC-1C, one of several
subcondensations within TMC-1. The observations here were made in the 1.3 cm line of NH3,
which traces gas number densities near 104 cm−3. In central density, linear extent, and total
mass, the Taurus-Auriga dense cores are similar to most of those traced by CS in Orion, but no
very massive fragments are detected.

The dense core shown in Figure 1.12 does not contain a young star, but over half of those
observed in NH3 have infrared point sources in their central regions. These embedded objects
represent an earlier evolutionary stage than the visible T Tauri stars. Interestingly, most of these
infrared stars are associated with molecular outflows. Figure 1.13 is a CO map of the dark cloud
L1551, which the reader may locate in Figure 1.9. The striking bipolar lobes represent cloud
gas being dragged to great distances from the central infrared source, which in this case is an
embedded binary pair known collectively as IRS 5. These stars, with a total luminosity of less
than 30 L�, have a combined mass under 2 M�. In contrast, a high-mass star or group of stars is
creating the outflow in the Orion BN-KL region. Discovered in 1980, the L1551/IRS 5 system
was the first detected low-mass outflow, of which hundreds are now known. Indeed, the high
frequency of outflow observations probably indicates that every star turns on a powerful wind
before it is optically visible.

1.3 Stars and Their Evolution

The foregoing examples demonstrate amply that there is no difficulty producing a variety of
stars in the present-day Galaxy, given the right conditions. Of course, part of our task is to
elucidate what those “right conditions” are. Another goal must be to discern the sequence of
events by which a rarified cloud actually condenses to the stellar state. Clearly, both efforts
should be informed by a working knowledge of stars as physical objects and of the conceptual
tools that have been developed for their study.
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Figure 1.13 Map in 12C16O
of the L1551 cloud in
Taurus-Auriga. The star
marks the position of the
infrared source IRS 5.

1.3.1 Basic Properties

Virtually all the information we have about a star comes from the electromagnetic radiation it
emits. Photons from the deeper layers break free and stream outward into space at the pho-
tosphere. The two most basic properties of the star are its luminosity, i. e., the total energy
emitted per unit time, and the temperature at the photosphere. When our focus is on the physics
of stars, we will denote the luminosity as L∗, while the designation Lbol will be reserved for
discussions of the emitted radiation. The latter notation emphasizes that we are interested in the
bolometric, or total, luminosity, rather than that within a specific wavelength range.3 For the
second variable, it is conventional to use the effective temperature Teff , i. e., the temperature of
an equivalent blackbody of the same radius (see Chapter 2).

If the distance to the star is somehow known, Lbol can be obtained in principle by flux
measurements over a sufficiently broad wavelength range. The temperature Teff , on the other
hand, must always be deduced through theoretical modeling. Accordingly, astronomers often
prefer to characterize stars through two related quantities that are more easily measured. In place
of Lbol, one may use the logarithmic quantity MV , the absolute magnitude of the star in the V
(for visual) band, a relatively narrow wavelength interval centered on 5500 Å. Suppose FV is
the flux received in this band, i. e., the energy in a unit wavelength interval per unit area per
time. This flux is weaker for objects that are farther away. To measure the intrinsic brightness,
we imagine the star of interest to be located at some fixed distance, conventionally taken to be

3 We shall also use the symbol L∗ when referring to the observationally estimated luminosity from the star alone,
excluding any additional contribution from circumstellar matter. The quantity L∗ is numerically identical to Lbol

for mature stars that lack such material, but may differ in younger, more embedded objects.



1.3 Stars and Their Evolution 17

10 pc. Then MV is defined as

MV ≡ −2.5 log FV (10 pc) + mV ◦ , (1.1)

where mV ◦ is a constant. Note that, by definition, fainter stars have numerically greater magni-
tudes. The V band used here is one of the standard Johnson-Morgan sequence of filters, which
also include ultraviolet (U at 3650 Å) and blue (B at 4400 Å) wavebands. As detailed in Ap-
pendix A, another filter set, designated R, I, J, ...Q, extends into the infrared. Also used is the
Strömgren four-color system. Here the filter sequence u, v, b, and y covers 3500 Å to 5500 Å.

Written in terms of an arbitrary wavelength λ, equation (1.1) becomes

Mλ ≡ −2.5 log Fλ(10 pc) + mλ◦ , (1.2)

This equation can further be generalized to cover the case where the star is located, not at 10 pc,
but at an arbitrary distance r. The new equation then defines a distance-dependent quantity
known as the apparent magnitude:

mλ ≡ −2.5 log Fλ(r) + mλ◦ . (1.3)

Since the flux declines as r−2, the apparent and absolute magnitudes are related by

mλ = Mλ + 5 log
(

r

10 pc

)
, (1.4)

where the term added to Mλ is the distance modulus.
To find a surrogate quantity for Teff , we take advantage of the fact that a star’s surface

temperature is correlated with its color. The latter can be quantified by forming the ratio of flux
in the V band to some other, which is conventionally chosen as the B band. Equivalently, we
define the B − V color index as MB − MV . Notice, from equation (1.4), that this quantity is
also equal to mB −mV . We denote by (B − V )◦ the intrinsic color index. Here, the fluxes are
not those directly observed, but calculated under the assumption that the path to the star is free
of dust. These particles redden starlight and alter the apparent color (see § 2.3). The intrinsic
index at two arbitrary wavelengths λ1 and λ2 is written C◦

12. By convention, λ1 is less than λ2.
The color index is a measure of surface temperature based on photometric observations, i. e.,

those employing broadband filters. Another useful indicator is the spectral type. Astronomers
evaluate this quantity by observing the relative strengths of sharp absorption lines in the spec-
trum. The sequence of spectral types in order of descending Teff is designated O, B, A, F, G,
K, and M, where the nomenclature has purely historical significance. Thus, the O stars that
dominate the Orion Nebula are characterized by absorption lines from highly ionized heavy el-
ements, such as C III (i. e., C++), O III, etc. On the other hand, the Taurus-Auriga region is
rich in K and M stars, whose spectra show strong molecular bands in such species as CH and
TiO. As a refinement of the system, each spectral type is further divided into ten subclasses,
labeled 0 through 9, with higher numbers indicating cooler temperatures. The Sun, with its Teff

of 5800 K, is a G2 star. A star of type A0 serves to normalize the color indices. That is, the
constants mλ◦ in equation (1.3) are selected so that the absolute magnitudes in all bands are
identically zero for such an object.
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Figure 1.14 Color-magnitude diagram for 1094 stars in the solar neighborhood.

1.3.2 Main Sequence

The single most powerful conceptual tool in stellar astronomy is the Hertzsprung-Russell (HR)
diagram. This is a plot of luminosity versus surface temperature (or their equivalents) for a
single star or stellar group. A plot of MV versus (B − V )◦ is also known as a color-magnitude
diagram, while the L∗–Teff plane is often called a theoretical HR diagram. Figure 1.14 is a
color-magnitude diagram for relatively nearby stars. The vast majority, including the Sun itself,
lie along a band known as the main sequence. The Sun’s location is shown by the large open
circle at MV = +4.82 and (B−V )◦ = +0.65. Astronomers frequently refer to main-sequence
stars as dwarfs, to distinguish them from the sparser group to the upper right, the giants. Also
apparent is a group to the lower left, the white dwarfs.

Figure 1.15 shows the main sequence in the theoretical HR diagram. The existence of
this locus, in either set of coordinates, reflects the basic physics of stellar structure. A star
is a self-gravitating ball of gas, supported against collapse by its internal thermal pressure.
Throughout its life, the star continually radiates energy from its surface at the rate L∗. In a
main-sequence object, this energy is resupplied by the fusion of hydrogen into helium at the
center. The quantity L∗ thus equals, in this case, Lint, the luminosity crossing any interior
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Figure 1.15 Evolutionary track of a 1 M� star in the theoretical HR diagram. The grey solid line
represents the zero-age main sequence (ZAMS), while the dashed curve is the birthline.

spherical shell (see Figure 1.16). A main-sequence star is therefore in both hydrostatic and
thermal equilibrium.

In a star of given mass M∗ and radius R∗, the condition of hydrostatic equilibrium necessi-
tates a certain interior run of temperature and density, where both quantities decrease outward.
The radiative energy flux across any shell depends on the local temperature gradient, so that
Lint is also specified for this object. If we now imagine squeezing the star to smaller R∗, its
interior density rises. So must the temperature, in order to counteract the greater self-gravity.
The luminosity crossing interior shells will also increase in response to the steeper temperature
gradient. On the other hand, the star’s nuclear reaction rate, which reflects both the frequency
and energy of proton collisions, has its own functional dependence on the central density and
temperature. Thus, for each M∗, we cannot really vary R∗ at will; there is only one value for
which the interior luminosity can be sustained by reactions at the center. But the stellar radius
connects L∗ and Teff through the equation

L∗ = 4 π R2
∗ σB T 4

eff . (1.5)

where σB is the Stefan-Boltzmann constant. This blackbody relation, which we derive in Chap-
ter 2, actually defines Teff . In summary, a main-sequence star of fixed mass has a unique L∗ and
Teff . The curve in the HR diagram is simply the functional relationship L∗(Teff) obtained by
letting the stellar mass range freely.
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Figure 1.16 Energy transport in
a main-sequence star. The inte-
rior luminosity Lint is generated in
the nuclear-burning region near the
center and is equal to the surface
value L∗.

1.3.3 Early Phases

For an object that is not fusing hydrogen, both L∗ and Teff change with time. Correspondingly,
its representative point moves in the HR diagram. The fact that most stars are observed to be on
the main sequence reflects the longevity of the hydrogen-burning phase, during which L∗ and
Teff change only slightly. Younger objects are more distended, with central temperatures that
are too low for maintaining the fusion reaction. Nevertheless, these pre-main-sequence stars are
relatively luminous. Since they are also detectable at visible wavelengths, their properties are
well studied.

What supplies the star’s luminosity during this early phase? The answer is the compressive
work of gravity, which slowly squeezes the object to higher density. The local rate of energy loss
from this process is zero at the center and increases monotonically outward. Thus, as illustrated
in Figure 1.17, Lint across an arbitrary mass shell within a pre-main-sequence star is less than
L∗. The surface radiation now causes a net drain of energy, leading to steady contraction and to
continuous alteration of both L∗ and Teff .

Determining pre-main-sequence tracks in the HR diagram for different stellar masses is an
important aspect of star formation theory. Anticipating later results, Figure 1.15 shows the
evolutionary track for a star of 1 M�. The star first appears as an optically visible object on
a curve called the birthline. As it then contracts, the star begins to descend a nearly vertical
path. During this time, L∗ is so high that energy is transported outward not by radiation but
by thermal convection, i. e., the mechanical motion of buoyant gas. By the time the star’s path
turns sharply upward and to the left, energy is partially transported by radiation, as well. After
3 × 107 yr, the star joins the main sequence.
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Figure 1.17 Energy transport in
a pre-main-sequence star. In this
case, there is no nuclear-burning re-
gion. The luminosity Lint mono-
tonically increases from zero at the
center to L∗ at the surface.

Stars of other mass traverse analogous paths in the HR diagram but at very different rates.
Less massive objects tend to have lower surface temperatures. According to equation (1.5),
their values of L∗ are also smaller for a given surface area, resulting in slower contraction.
To quantify the rate, we first note that the sum of a star’s thermal and gravitational energies
is a negative quantity that is about GM2

∗/R∗ in absolute value. The object radiates away an
appreciable portion of this energy over the Kelvin-Helmholtz time:

tKH ≡ G M2
∗

R∗ L∗

= 3 × 107 yr
(

M∗
1 M�

)2 (
R∗

1 R�

)−1 (
L∗

1 L�

)−1

.

(1.6)

The significance of tKH is that the star shrinks by about a factor of two over this interval,
starting from any point during its pre-main-sequence phase. Notice that tKH gets longer as the
contraction proceeds. Thus, equation (1.6) also provides an approximate measure of the total
time needed for a star to contract to its main-sequence values of M∗, R∗, and L∗.

Figure 1.18 displays pre-main-sequence tracks over a wide range of masses. All tracks
descend from the birthline, which intersects the main sequence near 8 M�. Higher-mass stars
exhibit no optically visible pre-main-sequence phase, but first appear on the main sequence
itself. If we imagine a group of stars all beginning contraction on the birthline at t = 0, their
subsequent positions in the diagram at any fixed time would fall along a sequence of smooth
curves. Figure 1.18 also shows a set of such pre-main-sequence isochrones. The reader should
verify that the pattern of isochrones is consistent with the slower evolution of less massive
objects and with the continual slowing of contraction at any fixed mass.
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Figure 1.18 Pre-main-sequence evolutionary tracks. Each track is labeled by the stellar mass in
units of M�. The grey curves are isochrones, labeled in yr. The t = 0 isochrone coincides with
the birthline, the lighter solid curve at the top. Note that the t = 1 × 108 yr isochrone nearly
matches the ZAMS, the lighter solid curve at the bottom.

The pre-main-sequence phase of evolution is not the first. At an earlier epoch, stars are
still forming out of the gravitational collapse of their parent dense cores. Such protostars are
even more luminous than pre-main-sequence stars, but are so obscured by interstellar dust that
their emitted radiation lies entirely in the infrared and longer wavelengths. Under these circum-
stances, Teff cannot be found by the traditional methods. Indeed, the character of the observed
spectrum reflects more the properties of the dust surrounding the star than the stellar surface.
Protostars therefore cannot be placed in a conventional HR diagram, and their identification
within molecular clouds is still not secure.

Returning to pre-main-sequence evolution, we noted earlier that the contraction of any star
causes its central temperature to rise. As long as the stellar mass exceeds 0.08 M�, the temper-
ature eventually reaches a value (near 107 K) where hydrogen fusion begins. Just at this point,
the star is said to be on the zero-age main sequence (ZAMS), and the corresponding relation
between L∗ (or Lbol) and Teff marks a rather precise locus in the HR diagram. The ZAMS is
the curve actually shown in both Figures 1.15 and 1.18, and its properties are also listed in Ta-
ble 1.1. The reader should bear in mind that the table represents a one-parameter family, where
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the basic physical variable is the stellar mass. Note also that astronomers sometimes use, in
place of Lbol, the bolometric magnitude:

Mbol ≡ −2.5 log
(

Lbol

L�

)
+ m◦ , (1.7)

where the constant m◦ is +4.75. The difference Mbol − MV for a main-sequence star of any
spectral type is known as the bolometric correction, here evaluated in the V -waveband.

Table 1.1 Properties of the Main Sequence

Mass Sp. Type MV log Lbol log Teff tMS

(M�) (mag) (L�) (K) (yr)

60 O5 −5.7 5.90 4.65 3.4×106

40 O6 −5.5 5.62 4.61 4.3×106

20 O9 −4.5 4.99 4.52 8.1×106

18 B0 −4.0 4.72 4.49 1.2×107

10 B2 −2.4 3.76 4.34 2.6×107

8 B3 −1.6 3.28 4.27 3.3×107

6 B5 −1.2 2.92 4.19 6.1×107

4 B8 −0.2 2.26 4.08 1.6×108

2 A5 1.9 1.15 3.91 1.1×109

1.5 F2 3.6 0.46 3.84 2.7×109

1 G2 4.7 0.04 3.77 1.0×1010

0.8 K0 6.5 −0.55 3.66 2.5×1010

0.6 K7 8.6 −1.10 3.59
0.4 M2 10.5 −1.78 3.54
0.2 M5 12.2 −2.05 3.52
0.1 M7 14.6 −2.60 3.46

1.3.4 Consumption of Nuclear Fuel

Stars remain on the main sequence for relatively long periods of time because of the vast supply
of hydrogen available for fusion. To estimate the main-sequence lifetime tms, we use the fact
that the basic nuclear reaction is the fusion of four protons into 4He. This process releases
26.7 MeV per helium nucleus, or 0.007 mp c2 for each proton of mass mp. If fH is the fraction
of hydrogen consumed, then the star releases a total energy

Etot = 0.007 fH X M∗ c2 (1.8)

during this period. Here, X is the star’s mass fraction in hydrogen, which is typically 70 per-
cent. The energy Etot divided by tms must equal the (nearly constant) luminosity L∗. Detailed
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calculations show that fH ≈ 0.1 for most masses, so that the lifetime is approximately 4

tms ≈ 5 × 10−4 M∗ c2

L∗

= 1 × 1010 (M∗/M�)
(L∗/L�)

yr .

(1.9)

Here we have normalized the time to solar parameters. Because L∗ increases very rapidly with
M∗, tms falls correspondingly fast. Thus, the Sun, with a current age of 4.6 × 109 yr, is about
midway through its main-sequence life. Table 1.1 gives more accurate values for tms. We see
that an O star of 40 M� lives for a relatively brief time, only 4.3 × 106 yr, while a K star of
0.6 M� burns hydrogen for 6.7 × 1010 yr, longer than the present age of the Galaxy.

As a star ends its life on the main sequence, its representative point in the HR diagram
follows another well-defined path. Consider again the case of 1 M�, whose post-main-sequence
track is shown by the dashed curve in Figure 1.15. The exhaustion of hydrogen leaves a helium-
rich central region that is thermally inert, i. e., too cold to ignite its own nuclear reactions.
Surrounding this region is a thick shell of fusing hydrogen. Continued shell burning adds more
helium to the core, which eventually contracts from its self-gravity and from the weight of the
overlying envelope of matter. The energy released from this contraction expands the envelope,
and the star moves rapidly to the right in the HR diagram. This period ends once the envelope
becomes convectively unstable. The greatly distended star then moves up the nearly vertical red
giant branch, which resembles a time-reversed pre-main-sequence track.

While ascending the giant branch, the star is characterized by a contracting, inert core of
helium, a hydrogen-burning shell, and an expanding envelope. The energy from the core and
shell raises the luminosity by a factor of almost 103. The temperature in the core eventually
reaches the point where helium can begin to fuse, forming 12C. The star then moves to the
left in the HR diagram, tracing the horizontal branch. After another 108 yr, helium burning
exhausts itself in the core and shifts to an outer shell. The star, now containing two burning
shells, ascends the asymptotic giant branch, so called because it approaches the original giant
branch.

The ultimate fate of a star depends on its initial mass. In the 1 M� case, the asymptotic giant
sheds a massive wind, exposing a small inert object at the center. The path in Figure 1.15 was
computed under the plausible assumption that 0.4 M� was lost during this phase. The remnant
central star is a white dwarf, an object so dense that it cannot be supported by ordinary gas
pressure. Instead, the outward force stems from electron degeneracy pressure, i. e., the mutual
repulsion of the electrons’ quantum mechanical wavefunctions. Such a star has no nuclear
reserves and gradually fades from sight along the dashed curve shown in Figure 1.15.

More massive stars repeat the core-shell pattern of nuclear fusion numerous times while
traversing the upper reaches of the HR diagram. These multiple ignition events create succes-
sively heavier elements. There is a limit, however, to the energy that can be extracted this way.
In stars more massive than about 8 M�, the central core eventually undergoes a violent collapse
to become a neutron star or black hole. This collapse liberates so much energy that it completely
disperses the outer layers of the star. Of the energy that is radiated, most goes into neutrinos.

4 In this book, the symbol ≈ means “equals, to within a factor of two to three,” while the symbol ∼ means “equals,
to within an order of magnitude.”
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Nevertheless, the optical luminosity associated with this supernova briefly exceeds that of the
entire Galaxy. The neutron star or black hole left behind gradually dims, until its presence is
only known through its gravitating mass.

1.4 The Galactic Context

This, in broadest outline, is the evolution of a single star. However, our theory has a global aspect
as well, since stellar birth and death are part of a vast evolutionary scheme being enacted in all
galaxies like our own. Although we will continue, throughout this book, to emphasize the more
local aspects of the problem, it is important to bear in mind this larger picture. Accordingly, let
us take a brief look at our Galaxy and the role of star formation within it.

1.4.1 Structure of the Milky Way

The most conspicuous feature of the Galaxy is its highly flattened disk of stars. Our Sun orbits
at a radius of 8.5 kpc, or about a third of the distance to the outer edge. The local rotation
speed is 220 km s−1, corresponding to a period of 2.4×108 yr within this differentially rotating
structure. The local thickness of the disk i. e., the average vertical excursion of the stars within it,
varies systematically with spectral type. Thus, O and B stars have a characteristic half-thickness
of 100 pc, while the figure increases to 350 pc for G stars like the Sun.5 These observations
refer to the solar neighborhood, i. e., to objects closer than about 0.5 kpc.

The densest concentration of stars is in the central bulge. This nearly spherical configuration
extends out of the disk plane and has a radius of 3 kpc. Even farther from the plane is an
extended stellar halo (or spheroid) consisting of both globular clusters and a large population
of field stars. Each cluster is a compact group with roughly 105 members. Halo stars, known
collectively as Population II, are the oldest in the Galaxy, with only 1 percent or less of the
heavy element content of those in the disk (Population I). The total mass of the stellar halo is at
most comparable to that of the disk, about 6 × 1010 M�. Finally, there is evidence for another
nonplanar component, the unseen dark halo. The composition and spatial distribution of this
(probably nonstellar) matter are still not known, but its total mass exceeds that of the disk and
spheroid, perhaps by an order of magnitude.

What does the Galaxy look like? The solar system is embedded within the disk, so it is
difficult to obtain a global view by direct observation, as opposed to theoretical reconstruction.
While huge numbers of stars are visible at optical wavelengths, interstellar dust dims the light
from the more distant ones. Hence, the effective viewing distance is limited to several kpc.
However, red giant stars are relatively luminous and have such low surface temperatures that
they emit copiously in the near infrared. Their radiation penetrates the dust and can thus be
detected over much greater distances. The top panel of Figure 1.19 is a near-infrared portrait of
the Galaxy obtained with the COBE satellite. Clearly evident in this remarkable image are the
very thin disk and the central bulge. The bottom panel of the figure shows the more familiar,
optical image.

5 We define the half-thickness ∆z of a planar distribution of matter as one half the ratio of total surface density to the
volume density at the midplane. Alternatively, one may specify the scale height h, defined as the location where the
volume density falls to e−1 of its midplane value. For a Gaussian distribution of density, ∆z = (

√
π/2) h = 0.89 h.
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Figure 1.19 Two views of the Milky Way. The upper panel depicts the near-infrared emission, as
seen by the COBE satellite. Beneath this is the optical image, shown at the same angular scale.

1.4.2 Spiral Arms

A true face-on view of our Galaxy is, of course, impossible to obtain, but would resemble the
external galaxy M51 (NGC 5194), shown in the two panels of Figure 1.20. Here the most
conspicuous feature is the presence of well-delineated spiral arms. Morphologically, M51 is a
slightly later-type galaxy than the Milky Way, which has a somewhat larger nucleus and less
extended arms. Other galaxies exhibit no spiral structure at all. Extreme early-type systems, the
ellipticals, resemble three-dimensional spheroids rather than flattened disks.6 In addition, there
is a motley crew of irregulars, typified by the small companion to M51 seen in Figure 1.20.

According to density wave theory, the arms in spiral galaxies are not composed of a fixed
group of stars, but represent a wave-like enhancement of density and luminosity rotating at a
characteristic pattern speed. Both stars and gas in the underlying disk periodically overtake
the arms and pass through them. Notice that, in Figure 1.20, the arms are more evident in the
left image, taken in blue light, whereas the central bulge shows up strongly in the righthand,

6 The designations “early” and “late,” as applied to galaxies, refer to position along the Hubble morphological se-
quence. The same terms are used for stars, “early” ones being those with Teff higher than solar. In neither case is
there an implied temporal ordering.
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Figure 1.20 The galaxy M51 seen in blue light (left panel) and through a red filter (right panel).
Note the prominence of the spiral arms in the blue image.

near-infrared photograph. The color of a galaxy is determined by the relative abundance and
distribution in spectral type of its component stars. O and B stars, which have the highest surface
temperature, dominate the blue image, while red giants, i. e., dying stars of relatively low mass,
are better seen through the infrared filter. Apparently, the most massive stars are concentrated
heavily in spiral arms.

Recall that the main-sequence lifetime of a typical O star is of order 106 yr, only about
1 percent of the rotation period of a spiral arm. Thus spiral arms must produce, at each location
in the disk, a temporary increase in gas density leading to a rise in the local star formation rate.
Although stars of all mass are formed, it is the exceptionally bright O and B stars that are most
conspicuous in optical photographs. Once the spiral wave has passed, the rate of forming new
stars drops back down to its former low level.

This picture is reinforced by looking at the gas content of spiral galaxies. As we have seen,
the molecular clouds that form stars can be detected most readily through their emission in CO.
Figure 1.21 is yet another view of the galaxy M51. Here, an intensity map in the 2.6 mm CO
line has been superposed on an optical image in the red Hα line, produced by atomic hydrogen
heated to temperatures near 104 K. It is clear that the molecular gas is indeed concentrated along
the spiral arms. Note that the radio contours seen here represent only 30 percent of the total CO
emission. The remainder emanates from the interarm region, but is too smoothly distributed
to be detected by the interferometer used for this observation. Closer inspection reveals that
the Hα arms are displaced about 300 pc downstream from those seen in CO. Since Hα mainly
stems from O and B stars, the implication is that cold gas entering the arms first condenses to
form large cloud structures that later produce the massive stars. For a representative velocity of
100 km s−1 for material entering the arms, the corresponding time lag is 3 × 106 yr.
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Figure 1.21 Map of M51 in the 2.6 mm line of 12C16O (solid contours) and the Hα line at 6563 Å
(dark patches).

1.4.3 Recycling of Gas and Stars

The total mass of Galactic molecular gas, from which all new stars originate, is estimated to be
2 × 109 M�, or about 3 percent of the mass of the stellar disk. Much earlier in time, the very
young Galaxy consisted entirely of diffuse gas. This material could have been produced cosmo-
logically, during the nucleosynthesis occurring throughout the Universe in the first few minutes
following the Big Bang. If so, the gas would have consisted solely of hydrogen, helium, and
trace amounts of deuterium and lithium. On the other hand, both the present-day interstellar gas
and the stars themselves, although composed predominantly of hydrogen and helium, contain a
full complement of heavier elements, known in astronomical parlance as “metals.” These could
only have been produced through stellar nucleosynthesis. Thus, the primordial gas must first
have condensed into stars, which later injected diffuse matter back into space. This gas itself
had time to form a new generation of stars, which again injected gas following nuclear process-
ing. The interstellar matter of today, therefore, has been recycled a number of times through
stellar interiors.

Figure 1.22 illustrates the recycling process in a highly schematic fashion. Stars form con-
tinually through the condensation and collapse of interstellar gas clouds. These stars slowly
consume their nuclear fuel, eventually ending their lives as white dwarfs, neutron stars, or black
holes. The matter within such a compact object is irretrievably lost to the interstellar medium.
But this mass is always less – often considerably less – than that of the original star, since stellar
evolution itself inevitably produces mass loss.
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Figure 1.22 Recycling of stars and gas in the Galaxy.

The mass ejection process from stars is gentle and protracted in those objects destined to
become white dwarfs. As we have seen, the outer envelopes of such stars inflate greatly after
exhaustion of the neutral hydrogen. The loosely bound envelope then escapes as a stellar wind
during the red giant and asymptotic giant phases. As this expanding gas cools, heavy elements
within it nucleate into interstellar grains, which are then dispersed along with the gas. Although
we have already mentioned grains for their obscuration of starlight, we will have much more to
say about these submicron-size particles, which play an important role in the formation of stars.

Frequently, the white dwarf that survives mass ejection is part of a binary system. In the
course of its own evolution, the companion may drive off matter that lands on the high-density
surface of the compact object. Once it is sufficiently compressed, this hot material undergoes
runaway nuclear fusion; the resulting nova ejects additional matter into space. Finally, stars too
massive to become white dwarfs emit strong winds throughout their relatively brief lifetimes.
The dispersal of their outer layers in a supernova is yet another source of Galactic gas.

Of the three mechanisms described, winds from stars with M∗ � 3 M� provide roughly
90 percent of the mass returned to the interstellar medium. Supernovae and the winds from
massive stars account for the remainder. The latter two processes also yield the bulk of the
heavy elements. All of the ejected gas mixes with that already present to form the raw material
for new stars. The mixing process is partly nonlocal, since material from supernova explosions
can be blown so far that it ultimately settles in a very different part of the Galaxy.

The formation of compact objects provides a continual drain on the Galactic gas content.
Accordingly, the star formation rate has been falling with time for 1 × 1010 yr, the age of the
oldest disk stars. This global formation rate, which we shall denote as Ṁ∗, is currently about
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4 M� yr−1. Here, the estimate relies on observations of O and B stars, which can be seen over
the greatest distances. Using the known radiative output from a single star and the appropriate
lifetime, the observed luminosity from a region yields the birthrate for stars of that type. The
rate for all stars then follows by adopting a distribution of masses at birth. Another quantity of
interest is ṁ∗, the local rate of star formation, as measured per unit area of the disk. Near our
own Galactocentric radius ��, this quantity is about 3 × 10−9 M� yr−1 pc−2. The rate rises
inward to a radius of about 3 kpc, inside of which it falls precipitously, before attaining a central
peak. This behavior is correlated with the distribution of Galactic gas, and it is to this topic that
we turn next.

Chapter Summary

The raw material for new stars within our Galaxy is a relatively small admixture of gas, con-
centrated especially near the spiral arms. Much of this diffuse matter is bound together into
the extensive structures known as giant molecular clouds. At discrete sites, such as the Orion
Nebula, both low-mass objects like the Sun and the much more luminous O and B stars form to-
gether within populous clusters. Other cloud complexes, such as that in Taurus-Auriga, are less
dense and massive than giant molecular clouds. These sparser entities create loose associations
of low- and intermediate-mass objects.

Each individual star originates in the collapse of a cloud fragment. After this optically
invisible protostar phase, the subsequent evolution is conveniently pictured in the HR diagram,
a plot of luminosity versus effective temperature. Starting at the locus known as the birthline,
the star descends along a pre-main-sequence track, slowly contracting under its own gravity.
The representative point in the diagram settles for a long time on the main sequence. Here the
star derives energy from nuclear fusion. After exhausting this fuel, the object temporarily swells
in radius, before eventually fading from sight. It also spews out gas, which joins the reservoir
out of which additional stars will be made.

Suggested Reading

For an explanation of our abbreviations of journals and reviews, see the Sources list, toward the
end of the book.

Section 1.1 The rich star-forming region of the Orion Nebula continues to yield fresh discov-
eries. Useful summaries, covering both the gas and stellar content, are

Genzel, R. & Stutzki, J. 1989, ARAA, 27, 41

O’Dell, C. R. 2003, The Orion Nebula: Where Stars are Born (Cambridge: Harvard U.
Press).

Section 1.2 A brief but lucid summary of the Taurus-Auriga cloud complex and its stellar
population is

Lada, E. A., Strom, K. M., & Myers, P. C. 1993, in Protostars and Planets III, ed. E. H.
Levy and J. I. Lunine (Tucson: U. of Arizona Press), p. 245.
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Section 1.3 Two texts on stellar structure and evolution are

Clayton, D. D. 1983, Principles of Stellar Structure and Nucleosynthesis (Chicago: U. of
Chicago)

Hansen, C. J. & Kawaler, S. D. 1994, Stellar Interiors: Physical Principles, Structure, and
Evolution (New York: Springer-Verlag).

As their titles imply, both books emphasize basic physics. Chapter 2 in the second text is a
useful overview of the main phases of stellar evolution.

Section 1.4 The terminology used to describe the components of the Milky Way unfortunately
varies among authors. Here we follow the convention established by

King, I. R. 1990, in The Milky Way as a Galaxy, ed. G. Gilmore, I. R. King, and P. C. van
der Kruit (Mill Valley: University Books), p. 1.

Star formation on the Galactic scale will be treated more fully in Chapter 19. For general texts,
we recommend

Binney, J. & Merrifield, M. 1998, Galactic Astronomy (Princeton: Princeton U. Press)

Scheffler, H. & Elsasser, H. 1987, Physics of the Galaxy and Interstellar Matter (New
York: Springer-Verlag).

The first emphasizes Galactic structure, while the second also includes a very broad array of
topics relevant to the interstellar medium.



2 The Interstellar Medium

A deeper understanding of early stellar evolution must begin by examining the rarefied medium
out of which stars form. In this chapter, accordingly, we describe the overall physical proper-
ties of interstellar matter. We include both the gaseous constituent and the solid grains. For
the former, we emphasize the physical state of the hydrogen and defer discussion of interstellar
molecules until Chapter 5. Our treatment of the dust naturally brings in elements of radiation
transport theory. The concepts introduced here will be extensively used throughout the remain-
der of this book.

2.1 Galactic Gas and Its Detection

We previously discussed the molecular hydrogen content of spiral galaxies, stressing the role of
this gas in the production of stars. Equally important is the atomic component (HI), which has
a total mass in our Galaxy exceeding H2, and serves as the reservoir that ultimately produces
molecular clouds. Finally, hydrogen can also be in ionized form (HII). While the total mass
here is relatively small, this component is important as a tracer of massive stars.

2.1.1 Radio Emission from Atomic Hydrogen

The utility of CO for observing distant molecular clouds lies in the fact that the obscuring
interstellar dust is transparent to millimeter photons (see § 2.4 below). To trace the HI gas, it
is fortunate that there is another detectable, long-wavelength transition, the hydrogen line at
21.1 cm. Since its discovery in 1951, the 21 cm line has been of paramount importance for
revealing the interstellar medium in our own and external galaxies.

We can understand the origin of this radiation by recalling the quantum mechanics of the
hydrogen atom. In the nonrelativistic model based on Schrödinger’s equation, the energy of the
system, consisting of a single electron of mass me and charge e bound to a proton of mass mp,
is given by

E = − µep e4

2 �2 n2

= 13.6 eV n−2 ,

(2.1)

where n, the principal quantum number, can be 1, 2, 3, etc., and where µep is the reduced
mass, memp/(me + mp). The zero of energy, reached asymptotically for large n, represents
the marginally bound state. The ultraviolet spectral lines generated by downward transitions to
n = 1 form the Lyman series, where n = 2 → 1 yields the Lyα line at 1216 Å, n = 3 → 1
yields Lyβ at 1026 Å, etc. Similarly, the visible lines created by the jump to n = 2 constitute
the Balmer series, with n = 3 → 2 being the 6563 Å Hα line we have already encountered.

The Formation of Stars. Steven W. Stahler and Francesco Palla
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40559-3

The Formation of Stars
Steven W. Stahler and Francesco Palla

© 2004 WILEY-VCH Verlag GmbH & Co.



2.1 Galactic Gas and Its Detection 33

Figure 2.1 Origin of the 21 cm line. The hydrogen atom has greater energy when the spins of its
proton and electron are parallel.

In the nonrelativistic treatment, a state with quantum number n actually consists of n2 levels
of identical energy. Each level is labeled not only by n, but also by a quantum number l,
corresponding classically to the magnitude of the electron’s orbital angular momentum L, and
by a third quantum number ml, corresponding to the projection of L along any fixed axis. For
a given n, l can take on any integer value from 0 to n − 1, while ml can range from −l to +l.
Thus, in the n = 1 state normally found in interstellar gas, both l and ml are zero.

The electron also has an intrinsic spin, which can be identified classically with another
angular momentum vector S and an associated magnetic moment µ. In the electron’s own
reference frame, the motion of the charged proton creates a magnetic field which torques the
spinning electron. The relativistic Dirac theory shows how this spin-orbit interaction causes the
n2 levels to have slightly different energies. Such fine splitting of the energy vanishes whenever
l = 0. Even in this case, however, a smaller, hyperfine splitting is present due to the fact that the
proton itself has an intrinsic spin I and therefore a magnetic moment. In a semi-classical picture,
the energy of the atom depends on whether the vectors S and I are parallel or antiparallel (see
Figure 2.1). Quantum mechanically, the two states are labeled by a quantum number F , which
is 1 and 0 in the upper and lower states, respectively. The energy difference is so small, only
5.9 × 10−5 eV, that the wavelength of the emitted photon lies in the radio regime.

Within a region of HI gas, a hydrogen atom can be excited to the F = 1 state by collision
with a neighboring atom. Usually, the same atom is later collisionally deexcited, but there is
a small probability that the downward transition occurs through emission of a 21 cm photon.
Despite the long interval between emission events for a given atom, 1 × 107 yr on average, an
appreciable radio signal can be built up by a sufficiently large number of atoms. Indeed, the HI
column density NHI, i. e., the number of atoms per unit area along any line of sight, is directly
proportional to the received intensity of the 21 cm radiation.

Converting a column density into a volume density requires knowing the spatial location of
the emitting gas. The actual received 21 cm signal is both shifted and spread out over a finite
width in wavelength due to the Doppler effect. That is, any motion of a hydrogen atom toward or
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away from the observer changes the received wavelength from the intrinsically emitted value.
The overall shift in peak intensity mainly stems from the differential rotation of the Galaxy.
Since the pattern of rotation is well known, velocity shifts can be correlated with positions
within the disk. Analysis of the emission profiles in many directions thus yields the number
density nHI throughout large regions.

Occasionally, one finds an extragalactic radio source, such as a quasar, behind a region
of atomic hydrogen. If this source emits in the 21 cm regime, some of its photons will be
absorbed by the intervening matter. Figure 2.2 shows a representative HI spectrum toward the
quasar 3C 161.1 The upper solid curve was obtained by averaging the signal from four lines of
sight slightly offset from the point-like source. The resulting profile represents emission from
HI gas, only some of which stems from the region of interest. When the telescope is pointed
directly at the quasar, the additional signal is nearly constant in wavelength, except for the finite
range removed by absorption. Hence, subtraction of the previous average from the on-source
signal yields the absorption spectrum, also shown in the figure. In warmer gas, there is more
collisionally induced emission of 21 cm radiation. The corresponding dip in the spectrum is
therefore less pronounced. We can see, then, how 21 cm absorption profiles are useful probes
of the gas temperature.

2.1.2 HI Distribution

Such radio studies, conducted over four decades, have been supplemented by numerous obser-
vations of optical and ultraviolet absorption lines seen against background stars. The net result
is a rather detailed picture of the HI gas. This component of the interstellar medium pervades
the Galactic disk, with a scale height of about 100 pc for Galactocentric radii between 4 and
8.5 kpc. In the outer Galaxy, the scale height appears to increase linearly with radius, while the
HI layer at the furthest distances seen is warped by several kpc from a perfect plane. Throughout
the Galaxy, most of the gas is in discrete clumps known as HI clouds. Although cloud proper-
ties vary broadly, typical number densities lie in the range from 10 to 100 cm−3, and diameters
range from 1 to 100 pc. The random motion of individual clouds, superposed on the general
Galactic rotation, contributes significantly to the broadening of the observed 21 cm emission
and creates the multiple emission peaks seen in Figure 2.2. A representative cloud temperature
is 80 K, with a factor of two variation in either direction.

Figure 2.2 also indicates that a good deal of HI emission occurs outside the wavelength
range in which the quasar radiation is being absorbed. The surplus emission, shown by the
dashed profile in the figure, is generally smooth and stems from atomic gas not confined to
individual clouds. This warm neutral medium is also distributed widely, with a scale height
twice that of the cold component and a total mass that is also probably larger. The number
density of this gas is about 0.5 cm−3 and its temperature, while difficult to ascertain because of
the medium’s transparency, is estimated at 8×103 K. Note that the term “neutral” is not strictly
correct for either the cold or warm gas, since some metals in both are ionized by stellar photons.
Ionized carbon, in particular, is an important coolant of the gas, as we shall discuss shortly.

The HI gas in the disk actually extends far beyond the visible stars. Indeed, observations of
the circular velocity of this component in external spiral galaxies have provided the strongest

1 We defer until Chapter 3 an explanation of the units used in this figure, which is essentially a plot of photon intensity
versus wavelength.
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Figure 2.2 Radio spectrum of a quasar partially obscured by HI gas. The upper solid curve
shows, as a function of velocity (or, equivalently, wavelength), the intensity of emission in the
21 cm line. The lower solid curve shows, with a different amplitude scale, the absorption. This
absorption is mostly confined in velocity between the two vertical bars. Finally, the upper dashed
curve indicates the contribution to the total emission from the warm neutral medium.

evidence for extended, dark halos. The distribution of HI surface density in our own Galaxy
is shown in Figure 2.3. Within the central bulge, the density is very low, but rises to a fairly
uniform level between radii of 4 and 14 kpc. At larger radii the surface density declines, but in a
manner that is rather uncertain because of the poorly known Galactic rotation at these distances.

2.1.3 Molecular Gas

Returning to the molecular gas, the CO line emission commonly used to trace this component
has a shorter wavelength than the 21 cm HI line and so provides higher spatial resolution.
Numerous surveys have established that the molecular gas is also spread throughout the Galaxy
and mostly contained in discrete clouds. A rotationally excited CO molecule decays much
more quickly than an HI atom in the F = 1 state. Hence CO is intrinsically a stronger emitter.
So much radiation is produced, however, that most molecular clouds are optically thick to the
2.6 mm line, i. e., a photon is absorbed and reradiated many times before reaching the surface.
Under these circumstances, the received intensity from a single cloud is not proportional to
the column density. Nevertheless, the line is still useful for tracing the total H2 contained in a
gravitationally bound ensemble of clouds, as we will discuss in Chapter 6.
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Figure 2.3 Galactic surface densities of H2, HI, and HII gas. The densities are shown as a
function of radial distance from the Galactic center. Note the high central peak of the molecular
component. The ionized component shown is only that within HII regions.

The global distribution of H2 is quite different from HI (see Figure 2.3). There is little
molecular gas outside 10 kpc, but the surface density inside climbs quickly, reaching a broad
maximum centered at 6 kpc. The origin of this massive molecular ring is uncertain, but is
presumably related to Galactic spiral structure. The falloff in density inside the ring is broadly
consistent with the decline in the measured star formation rate. Thus, the sharp rise in molecular
density within 1 kpc of the Galactic center is especially intriguing. Whatever the origin of this
gas, observations show that it is producing large numbers of massive stars. Note finally that the
inward rise in star formation activity near the Sun’s position is consistent with the fact that the
observed metallicity in both stars and gas has a measured radial gradient in the same sense.

Molecular gas is more closely confined to the Galactic plane than the atomic component,
with a scale height of 60 pc at the solar position, or about half the HI value. While the atomic
gas fills much of the disk up to its nominal scale height, the molecular component occupies
only about one percent of the available volume. The difference in scale heights reflects the
lower random velocity of the molecular cloud ensemble. This velocity has a median value of
4 km s−1 and seems to vary little with either cloud mass or Galactocentric radius. The dominant
gravitational force toward the plane is that from the stars, whose surface density falls steeply
with radius. Hence the H2 thickness should increase outward, a conclusion confirmed by the
CO surveys.

2.1.4 HII Regions

In addition to its atomic and molecular forms, interstellar hydrogen also exists in the ionized
state. Some of this gas is confined to HII regions surrounding individual O and B stars. Stel-
lar Lyman continuum radiation, produced by hydrogen recombinations in which the photon
energy exceeds 13.6 eV, ionizes a spherical volume several parsecs in radius. Recombining
electrons and ions in this region emit a plethora of lines, including the optical Balmer series of
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Figure 2.4 Emission in 1.3 cm
continuum radiation (white con-
tours) from the Orion Nebula. The
optical photograph is a negative im-
age in the Hα line.

hydrogen. Transitions between much higher levels of the atom produce radiation at centimeter
wavelengths. This emission provides a radio beacon for HII regions over large distances.

Figure 2.4 shows the best studied HII region, that in Orion. Here, radio contours at 1.3 cm
are overlaid on a negative Hα image. The contours are centered on the Trapezium stars, which
also illuminate much of the region in Hα. Notice how much more symmetric the radio emission
appears than the optical line, which is readily attenuated by dust. By summing the flux from such
radio peaks over the Galactic plane, the total surface density can be obtained (Figure 2.3). Like
the molecular component, the HII gas peaks at a radius near 5 kpc. Since HII regions are created
by young, massive stars, this similarity further establishes the association of star formation
activity with molecular gas. The total mass contained in these regions is about 1 × 108 M�, an
order of magnitude less than the molecular or atomic hydrogen masses.2

The presence of emission lines from the heavier elements in HII regions allows reconstruc-
tion of the chemical composition of interstellar gas. Analysis of the absorption lines from stars
lying behind HI clouds is another means to this end. The standard of comparison in such stud-
ies is solar composition, i. e., the elemental distribution found in the solar photosphere and in
primitive solar system bodies such as meteorites. Table 2.1 lists number abundances relative to
hydrogen of the most prevalent elements in gas of solar composition. Also shown are observed
abundances in the HII region M42. It is apparent that the metals in this region are systemati-
cally depleted relative to the solar standard. Such depletion is generally observed in interstellar
gas and can be several orders of magnitude for iron and calcium. Since the total metallicity
is presumed to be uniform throughout the solar neighborhood, this trend is evidence that an
increasing portion of heavier atoms is locked up in solid matter, i. e., interstellar grains.

2 We stress that this mass estimate includes only discrete HII regions. A larger amount of gas is contained in the warm
ionized medium, introduced below.
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Table 2.1 Elemental Abundances in the Solar System and M42

Element Solar System M42

He/H 0.1 0.1
C/H 3.6×10−4 3.4×10−4

N/H 1.1×10−4 6.8×10−5

O/H 8.5×10−4 3.8×10−4

Si/H 3.6×10−5 3.0×10−6

All abundances are by number relative to hydrogen.

A useful concept for quantitative work is the mean molecular weight of interstellar gas.
Symbolized µ, this quantity represents the average mass of a particle of gas relative to the
hydrogen mass mH . Thus, in a gas of mass density ρ, the total number density of particles is

ntot =
ρ

µ mH
. (2.2)

Any one element contributes a number density of particles given by

ni =
Xi fi ρ

Ai mH
. (2.3)

Here, Xi is the mass fraction of the element, Ai its atomic weight relative to hydrogen, and
fi the number of free particles (including electrons) per atomic nucleus. The hydrogen mass
fraction, conventionally designated X , is 0.70 in solar composition gas, while that for helium,
denoted Y , is 0.28. For heavier elements, the mass fraction is the metallicity Z = 0.02, and the
average atomic weight is AZ = 17. By summing equation (2.3) over the three “elements” and
comparing to equation (2.2), it follows that molecular gas of solar composition has µ = 2.4,
while HI gas has µ = 1.3. In the case of a fully ionized gas, such as that found in stellar
interiors, we may use the convenient fact that fZ ≈ 2 AZ to derive µ = 0.61.

2.2 Phases of the Interstellar Medium

Interstellar hydrogen exists in a variety of chemical forms– ionized, atomic, and molecular. In
addition, atomic hydrogen itself is found in both discrete clouds and as warmer, more rarified
gas. What is the origin of this diversity and how is it maintained? Our aim in this section is to
see what insights theory can provide regarding these questions.

2.2.1 Pressure Equilibrium

We first need to draw a distinction between HII regions and the others. The ionized gas here
arises from the ultraviolet radiation of nearby, massive stars. Each individual region is thus
a transient phenomenon that disappears over the 106 yr lifetime of its parent object. Neutral
hydrogen, however, persists for much longer periods and over vast regions devoid of stars.

Consider first the atomic component. With regard to its origin and stability, an essential clue
is provided by the gas pressure. For a typical HI cloud with number density n = 30 cm−3

and temperature T = 80 K, the product nT is 2 × 103 cm−3 K. This figure is matched, within
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Figure 2.5 (a) Theoretical prediction for the equilibrium temperature of interstellar gas, displayed
as a function of the number density n. (b) Equilibrium pressure nT as a function of number
density. The horizontal dashed line indicates the empirical nT -value for the interstellar medium.

a factor of two, by the corresponding product for the warm neutral medium (n = 0.5 cm−3;
T = 8 × 103 K). The numbers suggest that HI clouds and the warm neutral medium might
profitably be viewed as two phases of the interstellar medium that coexist in pressure equilib-
rium.

We may pursue this idea quantitatively as follows. The thermal energy content of any gas
results from the balance of heating and cooling processes. As we will detail in Chapter 7, rates
for these processes can be determined by both theoretical and empirical methods. Assuming
this information to be at hand, imagine slowly compressing a parcel of interstellar gas to suc-
cessively higher densities. At each step, the gas will assume an equilibrium temperature and
pressure, which can be determined by equating the heating and cooling rates. We can then
examine those states that have pressures matching the known interstellar value.

The results of such a calculation, for gas of solar composition, are displayed in Figure 2.5.
Over the range of densities shown, heating is provided mostly by starlight, through its ejection
of electrons from the surfaces of interstellar grains. Figure 2.5a shows that this heating yields,
at lower densities, temperatures approaching 104 K, where internal electron levels of hydrogen
are excited. The gas in this regime cools primarily through emission of the Lyα line. At higher
densities, hydrogen is in the ground electronic state and becomes an inefficient radiator. Atomic
carbon, however, remains ionized by ambient ultraviolet photons, and the gas cools through the
158 µm transition of C II.

The solid curve in Figure 2.5b shows the predicted run of pressure (represented as
nT = P/kB , where kB is Boltzmann’s constant) as a function of density. A parcel of gas
with pressure lying above this curve cools faster than it can be heated, while the reverse is true
for points which lie below. The equilibrium curve crosses the mean empirical P/kB-value of
3 × 103 K cm−3 (dashed horizontal line) at three distinct points. Imagine first that the gas
finds itself at point B. Suppose further that it is compressed slightly while maintaining pressure
equilibrium with its surroundings. Since its representative point now crosses above the equilib-
rium curve, it must cool until it reaches point C. Conversely, any slight expansion of the same
parcel causes it to heat up until it reaches point A. Point B, therefore, represents a thermally
unstable state. Furthermore, the density and temperature at the stable point A (n = 0.4 cm−3;
T = 7000 K), are seen to match those in the warm neutral medium. Conditions at point C
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(n = 60 cm−3; T = 50 K), where the gas is said to be in the cold neutral medium, are just those
in typical HI clouds.

From this analysis, we have strong reason to believe that any large mass of atomic hydrogen
gas naturally divides into two components with very different properties. Of course, we still do
not know how the actual separation occurs in detail. Nor does the foregoing reasoning tell us
the relative fractional volumes of the two phases, much less the sizes and masses of individual
HI clouds. At present, our knowledge of the atomic component is simply too rudimentary to
address these issues from a theoretical perspective.

What of the molecular gas? Can it, too, be regarded as a phase of the interstellar medium?
In any molecular cloud, densities are sufficiently high that self-gravity plays a dominant role in
the cloud’s mechanical equilibrium. In other words, the product nT deep inside can be much
greater than the background value, since the interior pressure must also resist the weight of
overlying gas. On the other hand, the more rarified material in the cloud’s outer layers must still
match the external pressure if this region is not to expand or contract. In Chapter 8, we will use
this requirement to establish plausible surface conditions for molecular clouds.

2.2.2 Vertical Distribution of HI

In the atomic gas, as well, thermal and mechanical conditions are intimately related. Consider,
for example, the gas distribution above and below the Galactic disk midplane. Under the in-
fluence of the vertical gravitational force, the two components should separate spatially, with
the colder and denser medium residing closer to the plane. Indeed, we may estimate the scale
height of the cold neutral medium by balancing gravity against the internal pressure gradient.
Let Φg be the Galactic gravitational potential, so that ∇Φg is the vector force per unit mass.
The equation of hydrostatic equilibrium then reads

− 1
ρHI

∇PHI − ∇Φg = 0 . (2.4)

Let z represent the height above the midplane. Dotting the last equation with the unit vector ẑ
and transposing yields

1
ρHI

∂PHI

∂z
= −∂Φg

∂z
, (2.5)

where PHI and ρHI are, respectively, the pressure and mass density of the atomic gas. These
two quantities are related by

PHI = ρHI c2
HI . (2.6)

Here the quantity cHI, which has the dimensions of velocity, represents the random internal
motion of the medium. It is also the speed of sound, assuming the medium keeps a fixed tem-
perature during passage of the waves. For an ideal gas, cHI is given in terms of the temperature
and mean molecular weight by (RT/µ)1/2, with R being the gas constant. If we assume that
cHI does not vary with z, then substitution of equation (2.6) into (2.5) and a single integration
yields the relation between ρ and Φg:

ρHI(z)
ρHI(0)

= exp
[
Φg(0) − Φg(z)

c2
HI

]
. (2.7)
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Figure 2.6 Motion of HI gas in the Galaxy.
Discrete clouds move away from the Galactic
midplane at z = 0, reaching an average dis-
tance hHI above and below it. This distance is
less than h∗, the scale height for low-mass stars.

To make further progress, we need to specify the gravitational potential. This quantity is
related to ρ∗, the total mass density in the Galaxy, through Poisson’s equation:

∇2Φg = 4 π G ρ∗ . (2.8)

In a thin disk, we may safely ignore horizontal gradients and write (2.8) as

∂2Φg

∂z2
= 4 π G ρ∗(z) . (2.9)

Most of the Galactic matter consists of low-mass stars, which have a scale height h∗ greater
than that of the neutral gas (Figure 2.6). Hence, we may safely replace ρ∗(z) in equation (2.9)
by its midplane value ρ∗(0). We then integrate this equation twice, noting that the gravitational
force at the midplane, which is −∂Φg/∂z, must vanish by symmetry. The resulting potential is
given by

Φg(z) = Φg(0) + 2πGρ∗(0) z2 . (2.10)

Equations (2.7) and (2.10) together imply that the cold neutral medium has a Gaussian distribu-
tion. The corresponding scale height is

hHI =
[
2πGρ∗(0)

c2
HI

]−1/2

. (2.11)

How well does this theoretical prediction accord with observations? From measurements of
the vertical distribution and velocity of stars of various masses, ρ∗(0) in the solar neighborhood
is known to be 0.18 M� pc−3. If we then calculate cHI using a temperature of 80 K, we find from
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equation (2.11) that hHI is 10 pc, only 10 percent of the observed value! In hindsight, this failure
is not too surprising. After all, 21 cm observations show that the cold gas actually consists of
discrete clouds in seemingly random motion. A typical cloud velocity in the z-direction is
6 km s−1. Substitution of this value for cHI in (2.11) yields a scale height much closer to
the observed one. The lesson here, as illustrated in Figure 2.6, is that the vertical distribution
of cold HI gas stems from the bulk motion of individual clouds rather than internal pressure
support. The salient question is now the energizing agent for this motion.

2.2.3 Warm and Hot Intercloud Gas

Widespread stirring of the neutral gas could be provided by supernovae. Although supernova
explosions are rare, occurring only once every 50 years or so in a galaxy like our own, the
expanding material from each event sweeps out a large volume and imparts considerable mo-
mentum to the surrounding gas. The extremely hot gas within the advancing shell of a supernova
remnant cools so slowly that new remnants inevitably intersect older ones, resulting in a net-
work of connected bubbles. Indeed, there is good evidence that the solar system is located
within such a rarified region (see § 7.2). On a much greater scale, it is thought that the hot gas
fills a large volume of the disk, surrounding the neutral component and effectively constitut-
ing a third phase of the interstellar medium. The temperature of this hot intercloud medium is
predicted theoretically to be 106 K, and its density 0.003 cm−3.

Verification of the properties, including the spatial distribution, of the third phase has been
slow, as the relevant data are difficult to obtain. Thus far, spectral lines from highly ionized
heavy elements have provided the only solid clues. Since these lines lie in the ultraviolet, they
must be observed from space. In the early 1970s, the Copernicus satellite observed perva-
sive emission from OVI. Other spaceborne instruments have subsequently detected additional
species. It is interesting that optical lines from less highly ionized elements are also seen. These
lines, together with widespread, diffuse emission in Hα, point to the existence of yet another gas
component. This warm ionized medium, first systematically explored in the 1980s, shares the
same density and temperature as the warm neutral medium, but its hydrogen is mostly ionized.
Accounting for the energy input required to maintain this ionization poses another challenge to
theory.

It should be clear from this brief discussion that many aspects of the interstellar gas remain
unexplained. In particular, recent observations have emphasized the general principle that the
medium is essentially a dynamic entity. This feature naturally renders the theorist’s task much
more difficult. Nevertheless, the insight that the gas consists of discrete phases in approximate
pressure equilibrium will continue to play a key role. As a convenient reference for the reader,
we summarize in Table 2.2 the basic properties of the known phases. Note that we have included
the important molecular component, although this gas is not in pressure balance with the other
phases.

2.3 Interstellar Dust: Extinction and Thermal Emission

Optical radiation from distant stars is attenuated by intervening dust. If this effect were not taken
into account, an observed star would either be assigned too small a luminosity or else placed
at an erroneously large distance. Indeed, the problem is even worse, since dust grains also
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Table 2.2 Phases of the Interstellar Medium

Phase ntot T M f
(cm−3) (K) (109 M�)

molecular > 300 10 2.0 0.01
cold neutral 50 80 3.0 0.04
warm neutral 0.5 8 × 103 4.0 0.30
warm ionized 0.3 8 × 103 1.0 0.15
hot ionized 3 × 10−3 5 × 105 – 0.50

f is the volume filling factor.

redden the light passing through them. The dust content of interstellar matter must therefore be
considered in determining the two most basic properties of any star – its luminosity and effective
temperature. Extinction and reddening occur not only at visible wavelengths but, to varying
degrees, throughout the electromagnetic spectrum. Since they enter astronomy so pervasively,
we pause in our exploration of the interstellar medium to present the essential concepts and
terminology related to these linked phenomena. In addition, we need to examine the emission
produced by the dust as a result of heating by stellar light.

2.3.1 Extinction and Reddening

Let us first quantify the wavelength dependence of extinction. Recall from Chapter 1 that the
brightness of a star near any wavelength λ is measured either by mλ or Mλ, its apparent and
absolute magnitudes, respectively. The presence of dust between the star and Earth alters the
relation between these two quantities from equation (1.4) to

mλ = Mλ + 5 log
(

r

10 pc

)
+ Aλ , (2.12)

where Aλ, a positive quantity measured in magnitudes, is known simply as the extinction at
wavelength λ. Note that, even at the fiducial distance of 10 pc, the star now has mλ > Mλ, i. e.,
it is dimmer than its absolute magnitude.

The general tendency of dust to redden distant objects implies that Aλ must diminish with
increasing λ, at least in the optical regime. Consider, then, writing equation (2.12) for the same
star at two different wavelengths λ1 and λ2. Eliminating r between the equations yields

(mλ1 − mλ2) = (Mλ1 − Mλ2) + (Aλ1 − Aλ2) . (2.13)

The first righthand quantity is C◦
12, the intrinsic color index measured at λ1 and λ2. As we

noted in § 1.3, this quantity can also be written in terms of the UBV filter names as (B − V )◦,
(U−B)◦, etc. The lefthand quantity in equation (2.13), denoted generically as C12, or as B−V ,
U−B, etc., is the observed color index. The difference between the intrinsic and observed color
indices is a measure of reddening known as the color excess, E12:

E12 ≡ C12 − C◦
12 (2.14a)

= Aλ1 − Aλ2 . (2.14b)
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The color excess is written in the UBV system as EB−V, EU−B, etc. At visual wavelengths,
Aλ1 > Aλ2 for λ1 < λ2, and E12 is a positive quantity.

Both the extinction and the color excess are proportional to the column density of dust grains
along the line of sight.3 Consider yet a third wavelength, λ3. Then the ratios Aλ3/E12 and
E32/E12 depend only on intrinsic grain properties. If we now fix λ1 and λ2, while letting the
third wavelength have the arbitrary value λ, either ratio provides a measure of the wavelength-
variation of dust extinction. Conventionally, λ1 and λ2 are chosen to correspond to the B and V
filters, respectively. In this case, Eλ−V/EB−V is known as the normalized selective extinction
at λ, while Aλ/EB−V is the normalized total extinction. From equation (2.14b), these two
quantities are simply related:

Eλ−V

EB−V
=

Aλ

EB−V
− AV

EB−V
(2.15a)

=
Aλ

EB−V
− R . (2.15b)

Here the fiducial ratio R is measured to be:

R ≡ AV

EB−V

= 3.1 .

(2.16)

The quoted value applies to the diffuse interstellar medium, but R can be significantly higher in
dense molecular clouds, including those where stars form.

A plot of either Eλ−V/EB−V or Aλ/EB−V versus λ is known as the interstellar extinction
curve. Figure 2.7 shows the standard curve, in which the independent variable is 1/λ. This im-
portant result, summarizing the extinction and reddening properties of the interstellar medium,
was obtained by applying equation (2.14b) empirically, i. e., by comparing the observed color
indices of many stars with unreddened objects of the same spectral type. The ratio R is then
obtained from equation (2.15b) by measuring the limit of Eλ−V/EB−V for long wavelengths,
under the assumption that Aλ tends to zero in this limit. In practice, observations out to the
mid-infrared suffice for this purpose.

2.3.2 Transfer of Radiation

Thus far, we have considered extinction only as it alters the observations of stars at fixed dis-
tances. Let us now change perspective and look at the progressive effect of dust on the light
propagating from the surface of a star. We begin with some definitions. Any radiation field
may be described by Iν , its specific intensity. This quantity is defined so that Iν ∆ν ∆A∆Ω
is the energy per unit time, with frequency between ν and ν + ∆ν, that propagates normal to
the area ∆A and within the solid angle ∆Ω (see Figure 2.8). Note that we could just as easily
have defined a quantity Iλ within a certain wavelength range; we will freely alternate between
ν and λ as our independent variable. In general, Iν is a function not only of ν and the spatial
position relative to the radiation source, but also of the propagation direction, where the latter

3 A useful fact is that AV , when averaged over all lines of sight within the Galactic plane, increases by 1.9 mag kpc−1

away from the Sun. In Chapter 3, we will present a general relation between AV and hydrogen column density.
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Figure 2.7 Interstellar extinction curve. Plotted as a function of inverse wavelength λ−1 are both
the selective and total extinction. Note that the true wavelength λ is shown on the top horizontal
scale.

is indicated by the unit vector n̂ in Figure 2.8. We next define the specific flux Fν , also known
as the flux density. This is the monochromatic energy per area per unit time passing through a
surface of fixed orientation ẑ, and is given by

Fν ≡
∫

Iν µ dΩ . (2.17)

Here µ ≡ n̂ · ẑ is the cosine of the angle between the propagation direction and the surface
normal (Figure 2.8). Since light travels at the speed c, Iν/c represents the energy density prop-
agating in the direction n̂. The total energy density per unit frequency at a fixed location is
therefore

uν ≡ 1
c

∫
Iν dΩ . (2.18)

This quantity is closely related to the mean intensity Jν , i. e., the average of Iν over all direc-
tions:

Jν ≡ 1
4π

∫
Iν dΩ . (2.19)

Consider now ∆Iν , the change of Iν along the direction of propagation (Figure 2.9). Over a
small distance ∆s, dust grains can remove radiation from the beam through several processes.
One is absorption, in which the radiative energy is transformed to internal motion of the grain
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Figure 2.8 Definition of the specific intensity Iν . We imagine light propagating within a cone
of solid angle ∆Ω centered on a direction n̂. The vector n̂ can itself be tilted at some angle θ

relative to ẑ. The latter defines the normal direction to the surface area ∆A of interest.

Figure 2.9 Passage of light through dust grains. Radiation with specific intensity Iν enters an
area ∆A at the left. By the time it travels a distance ∆s, the intensity changes to Iν + ∆Iν

through absorption, scattering and thermal emission by the grains.

lattice. Photons are also lost from the beam by scattering. Here, the induced excitation quickly
decays and reemits another photon in a different direction. This second photon has a frequency
identical to the first in the rest frame of the grain. An external observer sees a slight Doppler
shift associated with the finite grain velocity.

For present purposes, we may lump absorption and scattering together, and simply note
that the total extinction must be proportional to ∆s. In addition, the rate of photon removal
should vary linearly with the incident flux, i. e., with Iν itself. Finally, for a gaseous medium
with a given admixture of grains, the extinction must be proportional to the total density ρ. We
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therefore write this negative contribution to ∆Iν as −ρκνIν . Here κν is the opacity, a quantity
measured in cm2 g−1 that depends on the incident frequency ν, the relative number of grains,
and their intrinsic physical properties.

There are also several ways that Iν can be increased in ∆s. The lattice vibrations excited by
radiation also emit it, generally at infrared wavelengths. In addition to such thermal emission,
photons are added to the beam by being scattered from beams propagating in other directions.
As before, we lump these processes together and define an emissivity jν , such that jν ∆ν ∆Ω
is the energy per volume per unit time emitted into the direction n̂. Writing the elementary
volume as ∆A∆s and recalling that Iν is defined as an energy per unit area, we see that the
augmentation to Iν is simply jν ∆s. The full change to Iν is thus

∆Iν = −ρ κν Iν ∆s + jν∆s ,

Dividing through by ∆s, we obtain the equation of transfer:

dIν

ds
= −ρ κν Iν + jν . (2.20)

Although we have motivated this result for the specific case of radiation propagating through
dust grains, both equation (2.20) and the associated terminology are applicable to any continu-
ous medium which can remove or generate photons. For example, we will use the equation of
transfer in Chapter 6 to discuss the interaction of radio waves with interstellar molecules.

The quantity 1/ρκν , which has the dimensions of a length, is known as the photon mean free
path. The ratio of ∆s to this length, i. e., the product ρκν∆s, is the optical depth, denoted ∆τν .4

When a photon propagates through an optically-thick medium, i. e., one for which ∆τν � 1, it
has a high probability of extinction. Conversely, radiation can travel freely in an optically-thin
environment (∆τν � 1). Note that the same physical medium can be optically thin or thick,
depending on the frequency of the radiation in question.

2.3.3 Extinction and Optical Depth

At this point, we have two nondimensional measures of extinction, the optical depth and the
quantity Aλ introduced in equation (2.12). To see the relation between them, we first use the
equation of transfer to obtain the specific intensity at a point P located a distance r from the
center of a star (Figure 2.10). The plan is to use this result to obtain the star’s apparent magnitude
at P . Suppose we measure the specific intensity at a frequency where the intervening dust has
negligible emission, so that jν = 0 in equation (2.20). Reverting from frequency to wavelength,
we integrate the equation along any ray from the stellar surface to P , obtaining

Iλ(r) = Iλ(R∗) exp (−∆τλ) . (2.21)

Here ∆τλ denotes the optical depth from the stellar radius to P . Referring to Figure 2.10, we see
that this depth depends on the precise location of the emitting point within the cone converging
on P . However, we suppose that r � R∗, so that this variation can safely be ignored. Similarly,
Iλ(R∗) is independent of propagation direction within the cone if the stellar surface is assumed
to radiate like a blackbody (see below).

4 Here we follow the imprecise, but accepted, procedure of employing the term “optical” depth even for frequencies
outside the visual regime.
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Figure 2.10 Attenuation of starlight by the interstellar medium. The point P , located a distance
r from a star of radius R∗, receives a specific intensity Iλ(r). This intensity is reduced from the
value Iλ(R∗) emitted isotropically from the stellar surface.

Our next step is to use equation (2.17) to find the specific flux received at P . In the present
case, µ ≈ 1, and the small solid angle ∆Ω subtended by the star is πR2

∗/r2. Thus

Fλ(r) = π Iλ(R∗)
(

R∗
r

)2

exp (−∆τλ) . (2.22)

Imagine now that the same star were located at some other distance r◦ from P , and that there
were no intervening extinction. Writing the received flux in this case as F ∗

λ (r◦), we have simply

F ∗
λ (r◦) = π Iλ(R∗)

(
R∗
r◦

)2

. (2.23)

If we now divide equation (2.22) by equation (2.23), the result can be written in the form

−2.5 log Fλ(r) = −2.5 log F ∗
λ (r◦) + 5 log

(
r

r◦

)
+ 2.5 (log e)∆τλ . (2.24)

Referring to Equations (1.2) and (1.3), we let r◦ equal 10 pc. We then add the constant mλ◦ to
both sides of equation (2.24) to find

mλ = Mλ + 5 log
(

r

10 pc

)
+ 2.5 (log e)∆τλ . (2.25)

Comparison of this equation with (2.12) yields the desired result:

Aλ = 2.5 (log e)∆τλ

= 1.086 ∆τλ .
(2.26)

Thus, the two measures of extinction actually give very similar numerical values.

2.3.4 Blackbody Radiation

Let us now examine quantitatively the grains’ thermal emission. Imagine surrounding a portion
of interstellar gas, with its admixture of grains, by a container whose walls are maintained at
temperature T . Suppose further that these walls absorb all the photons impinging on them, while
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the gas is transparent to this radiation. Then the heated walls will generate their own photons,
and the interior of the container will be filled with radiation that is in thermal equilibrium with
the walls. This means that the distribution of photons among the available quantum states is the
most probable one consistent with the free exchange of energy between radiation and matter.
The radiation energy density under these conditions is given by the Planck formula:

uν =
8πhν3/c3

exp(hν/kBT ) − 1
. (2.27)

The so-called blackbody radiation we have just described is also isotropic, i. e., the specific
intensity Iν is independent of direction. From equation (2.18), we have Iν = cuν/4π. The
specific intensity in this case is given the special symbol Bν and is a function of temperature
alone:

Bν(T ) =
2hν3/c2

exp(hν/kBT ) − 1
. (2.28)

We may also define a Bλ(T ) by using

Bλ = Bν

(
dν

dλ

)

= −
( c

λ2

)
Bν

to obtain

Bλ(T ) =
2hc2/λ5

exp(hc/λkBT ) − 1
. (2.29)

Within our hypothetical container, the spatial uniformity of the radiation field implies, from
equation (2.20), that the emissivity of the matter obeys

(jν)therm = ρ κν,abs Bν(T ) , (2.30)

where we have indicated that only the absorption component of κν counts here. Now remove
the container walls. The same matter must emit thermally at precisely the same rate. In applying
equation (2.30), we must take care to use Td, the temperature of the dust grains, which may be
quite different from the temperature of the surrounding gas (see Chapter 7). 5

Figure 2.11 plots the important function Bν(T ) for several values of T . We see that increas-
ing T raises the intensity at all frequencies but maintains the shape of the curve. By making
the substitution x ≡ hν/kBT in equation (2.28), the reader may verify that Bν(T ) reaches its
maximum at x◦ = 2.82, so that

νmax

T
=

x◦ kB

h

= 5.88 × 1010 Hz K−1 .
(2.31)

Similarly, from substitution of y ≡ hc/λkBT into equation (2.29), it follows that Bλ(T ) peaks
at the wavelength λmax, where

λmax T = 0.29 cm K . (2.32)

5 Equation (2.30) is a statement of Kirkhoff’s law; see also Appendix E. Note that we adopt the convention that a
subscript d denotes dust, while g denotes gas.
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Figure 2.11 The specific intensity Bν(T ) of blackbody radiation. The quantity is shown as a
function of frequency for three representative temperatures.

Equations (2.31) and (2.32) are alternate forms of Wien’s displacement law. This relation,
especially in the form of equation (2.32), has great practical utility.

For future reference, we note that the blackbody relations in Equations (2.27) through (2.29)
also apply to the interiors of stars. Any star is so optically thick at all frequencies that its matter
and radiation are very nearly in thermal equilibrium. Hence, the radiation energy density at an
interior point with temperature T is given by equation (2.27). Moreover, the specific intensity of
the light leaving the star is given by Equations (2.28) and (2.29), with T now being the effective
temperature Teff introduced in § 1.3. We therefore have

Iλ(R∗) = Bλ(Teff) . (2.33)

To find the specific flux leaving the surface, we return to equation (2.17), but recast in terms of
wavelength. Writing dΩ = 2πdµ and integrating from µ = 0 to 1, we find:

Fλ(R∗) = π Bλ(Teff) . (2.34)

We may integrate this equation over all wavelengths to obtain the bolometric flux. Again letting
y ≡ hc/λkBT , we find

Fbol =
2 π k4

B T 4

c2 h3

∫ ∞

0

y3 dy

ey − 1
.

The integral has the value π4/15, so we may write

Fbol = σB T 4
eff , (2.35)

where the Stefan-Boltzmann constant is given by

σB ≡ 2 π5 k4
B

15 c2 h3

= 5.67 × 10−5 erg cm−2 s−1 K−4 .

(2.36)
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Multiplication of equation (2.35) by the stellar surface area 4πR2
∗ leads to the relation between

Lbol (or L∗) and Teff in equation (1.5).
Our manipulations, incidentally, have allowed us to determine the total energy density in any

blackbody radiation field. That is, we can now integrate equation (2.27) over all frequencies. It
is conventional to write the result of this integration as

urad = a T 4 . (2.37)

Here, we have introduced the radiation density constant a ≡ 4σB/c, which has the numerical
value 7.56 × 10−15 erg cm−3 K−4.

2.4 Interstellar Dust: Properties of the Grains

We next turn to the physical characteristics of the dust grains themselves, as deduced from both
their effect on background starlight and their own emission. This information adds, of course,
to our general understanding of the interstellar medium. But grain properties are also intimately
linked, as we shall see, with those of star-forming clouds.

2.4.1 Efficiency of Extinction

The opacity κν represents the total extinction cross section per mass of interstellar material.
If we now wish to explore the contribution of each individual grain, a change of notation is
in order. Since the gas itself contributes only a minor part of the extinction in the interstellar
medium, we may write

ρ κν = nd σd Qν . (2.38)

Here nd is the number of dust grains per unit volume.The quantity σd, with the dimensions of
area, is the geometrical cross section of a typical grain, taken for simplicity to be spherical. That
is, σd ≡ πa2

d, where ad is the grain radius. The ratio of the actual extinction cross section to
this projected cross section is Qν , the extinction efficiency factor. As usual, Qν can be written
as the sum of absorption and scattering components, which we will denote Qν,abs and Qν,sca,
respectively.

The empirical form of Qν (or its equivalent Qλ) can be obtained from the interstellar ex-
tinction curve, Figure 2.7, along with some theoretical input to set the scale. Equations (2.26)
and (2.38) make it clear that the wavelength variation of the efficiency factor is just

Qλ

Qλ◦
=

Aλ/EB−V

Aλ◦/EB−V
, (2.39)

where λ◦ is any reference wavelength. In the limit of zero wavelength, classical electromag-
netic theory gives the result that both Qν,abs and Qν,sca approach unity, yielding a total effi-
ciency factor of 2. Figure 2.7 shows that Aλ/EB−V = 14 at the last available data point of
λ = 1000 Å. Theory indicates that the extinction rises only slightly at shorter wavelengths, so
we may apply this number as our asymptotic value to conclude that

Qλ = 0.14
Aλ

EB−V
. (2.40)



52 2 The Interstellar Medium

Any theoretical model of grain composition must reproduce this basic connection to obser-
vations. For example, the behavior of the extinction curve tells us that Qλ varies roughly as λ−1

in the optical regime. At longer wavelengths, there is a local maximum near 10 µm, not evident
in the figure. There is also a more prominent peak in the ultraviolet, at 2200 Å. Finally, grain
models must account for the scattering and polarization of the interstellar medium observed at
visible and near-infrared wavelengths.

In the context of star formation, there has been much effort to determine Qλ at far-infrared
and millimeter wavelengths. The general interstellar medium is transparent in this regime, so
one turns instead to the observed emission from heated dust clouds. Suppose the total optical
depth ∆τλ through a cloud subtending an angle ∆Ω is less than unity. Suppose further that
the cloud is sufficiently transparent in the optical that AV can be determined through counts of
background stars, a technique we will discuss in Chapter 6. Then Equations (2.20) and (2.30)
imply that the specific intensity leaving the cloud is approximately

Iλ = Bλ(Td) ∆τλ .

Here, we have ignored the absorption term in (2.20). Application of equation (2.17) shows that
the received flux can be written as

Fλ = Bλ(Td) ∆Ω ∆τλ ∆τλ � 1 , (2.41)

where we have also assumed that ∆Ω is small. If the dust temperature is known through other
observations or theoretical considerations, equation (2.41) yields ∆τλ. Knowledge of AV , to-
gether with Equations (2.16), (2.26), and (2.40) then gives Qλ.

The determination of Td and AV is usually problematic, so that the wavelength dependence
of Qλ in this regime is also poorly determined. It is conventional to write this dependence,
for 30 µm � λ � 1 mm, as λ−β . Here, β is a positive number, which is thought to decline
from about 1 to 2 over this wavelength range. There is also evidence that β is generally smaller
in the densest clouds and circumstellar disks, but closer to 2 in more diffuse environments.
This difference may reflect physical agglomeration of the grains in the denser regions.6 The
cumulative effect of these considerations is that Qλ, and hence the opacity, is presently uncertain
by an order of magnitude at λ = 1 mm. We will see later that this circumstance hinders the
attempt to measure disk masses.

2.4.2 Size Distribution and Abundance

Returning to the issue of grain structure, most extinction observations can be accommodated if
the particles consist of refractory cores surrounded by icy mantles. The cores are rich in silicates,
such as the mineral olivine found in terrestrial rocks. Silicates can account for the 10 µm feature
through the vibration of the SiO bond. Traditionally, the 2200 Å spike has been attributed
to electronic excitation of graphite, which has therefore been added as another core material.
However, the failure to detect graphite in comets and meteorites has cast some doubt on this
interpretation. The mantles consist of a mixture of water ice and other molecules presumably

6 As we have just seen, the opacity of a grain does not depend on the wavelength λ of absorbed radiation once the
geometric size becomes larger than λ. From equation (2.38), the wavelength-dependence of the efficiency factor also
vanishes in this limit. Hence, centimeter-size grains have a small exponent β in the millimeter.
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adsorbed from the surrounding gas. Such mantles can persist within cold interstellar clouds, but
sublimate once the grain temperature exceeds about 100 K.

How large are the grains? In most models, a radius of ad ∼ 0.1 µm is adopted, and this
frequently serves as a rough estimate. However, it is clear that a continuous distribution of
sizes is necessary to match the extinction data. The most commonly used distribution is that of
Mathis, Rumpl, and Nordsiek. Here, the relative number of grains per interval in radius varies
as a−3.5

d , with upper and lower cutoffs at 0.25 µm and 0.005 µm, respectively. Equations such
as (2.38) are therefore more correctly written as integrals over the size distribution, but we will
not need this refinement. 7

Within our simplified picture of uniform spherical grains, we imagine an HI cloud with
hydrogen number density nH . We will later find it useful to know Σd, the total geometric cross
section of grains per hydrogen atom:

Σd ≡ nd σd

nH
. (2.42)

If our hypothetical cloud has a length L along the line of sight, then Σd can also be written as a
ratio of column densities:

Σd =
Nd σd

NH
, (2.43)

where Nd ≡ ndL and NH ≡ nHL. We can evaluate the numerator in this relation by first
noting that equation (2.38) can be rewritten, after multiplication by L, as

∆τλ = Nd σd Qλ . (2.44)

The quantity ∆τλ/Qλ can be found using equations (2.26) and (2.40). Applying the result to
equation (2.42), we find

Σd = 7.8
(

EB−V

NH

)
cm2 . (2.45)

The ratio of color excess to hydrogen column density in equation (2.45) has been established
empirically, through an important set of observations. To measure NH in any region, we take
advantage of the fact that O and B stars located behind clouds can excite electronic transitions
in the intervening hydrogen. For diffuse clouds, the stars are still visible but have additional
absorption lines superposed. These lines are in the ultraviolet and can only be observed above
the Earth’s atmosphere. In 1972, an ultraviolet spectrometer aboard the OAO-2 satellite first
measured the Lyα transition in the spectra of 69 O and B stars. The depth of the absorption
line translates into a hydrogen column density. In addition, the B and V magnitudes of these
same stars were observed in order to ascertain their color excess. The two quantities are well
correlated, with a linear relationship:

EB−V

NH
= 1.7 × 10−22 mag cm2 . (2.46)

7 The concept of an average grain size is useful because a number of important effects increase with the particle radius.
Such effects include the extinction of starlight and the catalysis of H2 formation (Chapter 5). In these cases, the
properly weighted average radius is not far below the upper cutoff of the distribution. An exception is photoelectric
heating (Chapter 7), which is so efficient at small radii that a full integration is necessary.



54 2 The Interstellar Medium

Applying this result to equation (2.45) finally yields

Σd = 1.0 × 10−21 cm2 . (2.47)

This evaluation of Σd allows us to obtain a convenient expression for κλ in terms of the
standard extinction curve. Referring to equation (2.38), we first write ρ as mHnH/X . We then
solve this equation for the opacity to find

κλ =
X nd σd Qλ

mH nH
.

Using the definition of Σd and its numerical value, we have

κλ = 420 cm2 g−1 Qλ

= 59 cm2 g−1 Aλ

EB−V
,

(2.48)

where we have also employed equation (2.40).
It is also instructive to estimate fd, the mass fraction of the interstellar medium contained in

grains. Within the picture of uniform spheres, this fraction is

fd =
4πa3

dρd

3µmH

(
nd

nH

)
, (2.49)

where ρd, the internal grain density, is about 3 g cm−3. The number fraction nd/nH is just
Σd/πa2

d, which is 3 × 10−12 for ad = 0.1 µm. We thus find for the mass fraction

fd =
4ρdadΣd

3µmH

= 0.02 .

(2.50)

Since this number matches the metallicity of the gas, we confirm that a large proportion of heavy
elements must be locked up in solid form.

2.4.3 Polarization of Starlight

Another important aspect of grains is their ability to polarize radiation. Consider the visible re-
flection nebulae surrounding bright, young stars. Here, stellar photons travel unimpeded through
gaps in patchy cloud gas until they encounter a grain and are scattered in our direction. Prior
to the scattering event, the incident electric field vector E oscillates randomly within the plane
normal to the propagation direction n̂ (see Figure 2.12). Now focus on radiation that scatters
into directions 90◦ from n̂, such as ŝ or ŝ′ in the figure. These new directional vectors define
their own normal planes. The scattered field E only oscillates along the line that is the projec-
tion of the new plane and the old. Hence, this radiation is linearly polarized. Scattering into
other directions, such as ŝ′′, results in partial polarization. That is, E again oscillates along two
orthogonal lines, but with unequal amplitude.
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Figure 2.12 Polarization of light by grain
scattering. The incident radiation propa-
gates along the direction n̂. That portion
scattered into orthogonal directions ŝ or ŝ′

is linearly polarized, while that in an arbi-
trary direction ŝ′′ is only partially polar-
ized.

If one rotates a polarizing filter in front of a source, the received intensity at any wavelength
varies from some lowest value Imin up to Imax. The orientation of the polarizer corresponding
to Imax is the position angle of E, while the degree of polarization is defined to be

P ≡ Imax − Imin

Imax + Imin
. (2.51)

This quantity is a function of wavelength, since Qλ,sca generally decreases with λ. Conse-
quently, reflection nebulae appear bluer than their central stars. Values of P in the optical are
typically a few percent in the reflection nebulae surrounding young stars, but can be as high as
0.2. Note that the change in polarization direction (i. e., the orientation of E) across such a neb-
ula depends on the position of the star relative to the line of sight. In many cases, the pattern of
E-vectors accurately locates an illuminating source that is too embedded for direct observation.

In the presence of a magnetic field, grains also polarize radiation through dichroic extinction.
This phenomenon depends on the fact that the particles are not perfect spheres, but irregular
structures that tend to rotate end over end, i. e., about their shortest principal axes. Grain material
also has a small electric charge and is paramagnetic. Both features cause it to acquire a magnetic
moment M that points along the instantaneous axis of rotation. Interaction with the ambient
magnetic field then creates a torque M ×B that gradually forces the grain’s short axis to align
with the field. Figure 2.13 illustrates this situation, for the case of an idealized, cylindrical grain.

Consider now unpolarized radiation that impinges on this rotating grain. The electric field
is most effective in driving charges down the body’s long axis, This direction therefore becomes
the one of maximum absorption for the electromagnetic wave. As seen in Figure 2.13, the
electric vector of the transmitted radiation lies along the ambient B. The reader may check that
the effect is greatest when the propagation direction of the incident radiation is nearly orthogonal
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Figure 2.13 Polarization by
dichroic extinction. Radiation
propagating in direction n̂ im-
pacts an elongated grain rotat-
ing about the magnetic field B.
The transmitted radiation is po-
larized in the direction of B.

to the field. The observation of polarized light from background stars is a powerful method for
mapping the magnetic field throughout the Galaxy.

2.4.4 PAHs

Returning to the reflection nebulae around massive stars, we often find that such regions emit
copiously at far-infrared wavelengths, in addition to the optical and ultraviolet. This radiation
represents the thermal emission from the grains themselves. For a star at distance r, the flux on
the grain falls as r−2. With Qλ,abs varying as λ−2, the thermal emission is proportional to T 6

d

(see Chapter 7). Hence, the grain temperature falls as r−1/3. For a representative distance of
0.1 pc from a B star, Td is about 100 K. The temperature is somewhat higher for smaller grains,
for which the efficiency factor governing emission is lower. However, the high temperature-
sensitivity of the emission implies that this effect is not strong.

A number of reflection nebulae display a quantitatively small, but significant, anomaly in
their emission. While the lion’s share of the luminosity is in the ultraviolet, visual and far
infrared, about one percent is emitted at near-infrared wavelengths. Figure 2.14 gives one ex-
ample. Here, the observed near-infrared flux is well matched by a blackbody at a temperature of
about 1500 K, along with a narrower emission feature near 3 µm. The broadband emission could
not possibly be reflected starlight, since the radiation of the illuminating B star is predominantly
in the visible and ultraviolet. Furthermore, the derived temperature is an order of magnitude
higher than the value for heated dust, even at the smallest sizes posited in the Mathis, Rumpl,
and Nordsiek distribution. Most intriguingly, the temperature does not decline with distance
from the star.

The solution to this puzzle is to consider grains so tiny that their total thermal energy con-
tent is much less than the energy of a single stellar photon. Since the energy of a photon, unlike
the stellar flux Fν , does not decrease with distance, the peak temperature Td could also be
distance-independent. Under such circumstances the very concept of an equilibrium dust tem-
perature loses significance. The temperature of each grain would undergo stochastic jumps with
every photon impact and then rapidly fall as the grain cools. Because of the steep temperature-
dependence of the emissivity, the observed Td would be heavily weighted toward the peak
values.

How small does such a grain have to be? If ∆Td is the temperature jump, then the grain
lattice gains energy 3NkB∆Td, where N is the number of atoms. We equate this energy to the
photon value hν and solve for N :

N =
hν

3 kB ∆Td
, (2.52)
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Figure 2.14 Near-infrared radiation
from the reflection nebula NGC 7023.
The specific flux Fν is displayed as
a function of wavelength. The solid
curve shows the flux from a blackbody
at 1500 K. Note the excess emission be-
tween 3 and 4 µm.

For a representative photon energy of 10 eV and temperature jump of 1000 K, we find that
N = 40. If ∆r is the lattice spacing between atoms, this number can be packed into a sphere
with radius R ≈ N1/3∆r = 10 Å, assuming a typical ∆r of 3 Å.

The 3 µm emission spike seen in Figure 2.14 is actually one of several that were unexplained
in the standard grain models. Since the 1980s, much effort has been devoted to the laboratory
study of tiny grains (or macromolecules) that can reproduce these features. The most promising
are known chemically as polycyclic aromatic hydrocarbons, or PAHs. These consist of linked
carbon rings lying in a single plane. Figure 2.15 shows a representative PAH together with its
emission spectrum in the near infrared. Here, the peaks arise from vibration of the C-H and C-C
bonds.

Despite their small cross section, PAHs within clouds are important as heating agents, facil-
itating the transfer of the energy in starlight to the interstellar gas. In this role, their planar struc-
ture helps, allowing electrons to be readily liberated by ultraviolet photons. Theoretical studies
which include PAHs in order to match observed cloud temperatures find that their population
relative to ordinary grains can still be found by extrapolation of the standard size distribution.
This fact lends support to the view that the distribution itself has a universal character, reflecting
essential aspects of the origin and dissemination of interstellar grains.

Chapter Summary

Much of the matter between stars consists of gas at about 100 K, where hydrogen is in atomic
form (HI). Discrete HI clouds permeate the Galaxy and have large velocities in and out of the
plane. Warmer and more rarefied gas, with a temperature closer to 104 K, also exists, but its
structure is poorly known. So too is the morphology of even hotter gas at 106 K. All of these
components appear to coexist in rough pressure equilibrium.
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Figure 2.15 Emission from a candidate PAH (arbitrary units). The filled peaks represent emission
calculated from the laboratory-measured absorption spectrum of the organic compound shown.
The dashed curve displays, for comparison, the observed emission from the reflection nebula
NGC 2023. Note again the spike near 3 µm.

Yet another form of hydrogen, and the most interesting from the perspective of star forma-
tion, is the molecular (H2). While the total mass here is comparable to that in HI, the spatial
distribution is very different. The molecular gas surface density in the Galactic disk attains a
local peak at a radius of 6 kpc and then climbs steeply toward the center. Molecular cloud inte-
riors are under a higher pressure than the other phases of the interstellar medium because of the
influence of self-gravity.

Solid dust grains mixed in with the gas absorb background radiation and redden its color.
Both effects are quantified as a function of wavelength by the interstellar extinction curve. Each
grain consists of a relatively dense core surrounded by an icy mantle. Radiation from the dust
around hot stars shows that the larger grains attain equilibrium between stellar heating and
thermal emission. However, the tiniest structures, known as PAHs, reveal themselves through
their anomalously high temperatures.
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3 Molecular Clouds

Having surveyed the gas content of the Galaxy, we now take a closer look at the molecular
component. Table 3.1 summarizes the physical properties of Galactic molecular clouds. For
later reference, we have distinguished a number of cloud types, but any such classification
scheme necessarily has a degree of arbitrariness. The diameter L, for example, is really a
characteristic value within a range that blends into the adjacent type. Note that our listing is
in order of increasing AV , the typical visual extinction along a line of sight through the cloud
interior. At the low end are diffuse clouds. These are relatively isolated entities, with comparable
amounts of atomic and molecular hydrogen. The fact that AV is near unity means that much
of the light from background stars can actually traverse these objects. Absorption lines seen in
such radiation, particularly in the ultraviolet, have proved to be of considerable value for studies
of molecular abundances and chemical reaction networks. However, diffuse molecular clouds
represent a minor fraction of interstellar gas and are never found to produce stars, so we will not
be examining them in any detail.

We pass instead to the next category in Table 3.1, the giant molecular clouds. Here, the
reader has already encountered one important example, the complex in Orion. We first discuss
more systematically the properties of such structures. To aid in the analysis, we introduce and
then utilize the virial theorem, a powerful tool for understanding the mechanical equilibrium of
self-gravitating bodies. We then turn our attention to dense cores and Bok globules, the much
tinier entities associated with the birth of individual stars.

3.1 Giant Molecular Clouds

Both HI and diffuse molecular clouds can persist for long periods by means of pressure balance.
That is, the internal thermal motion of the gas is prevented from dispersing the cloud by the
confining presence of a surrounding, more rarefied and warmer medium. In giant molecular
clouds, we encounter an entirely different dynamical situation. Here the main cohesive force is
the cloud’s own gravity, while internal thermal pressure plays only a minor role in the overall

Table 3.1 Physical Properties of Molecular Clouds

Cloud Type AV ntot L T M Examples
(mag) (cm−3) (pc) (K) (M�)

Diffuse 1 500 3 50 50 ζ Ophiuchi
Giant Molecular Clouds 2 100 50 15 105 Orion
Dark Clouds

Complexes 5 500 10 10 104 Taurus-Auriga
Individual 10 103 2 10 30 B1

Dense Cores/Bok Globules 10 104 0.1 10 10 TMC–1/B335
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Figure 3.1 Typical 2.6 mm profile of 12C16O in the Galactic plane.

force balance. Such an environment is clearly more favorable to star formation, which proceeds
through gravitational condensation.

3.1.1 Galactic Distribution

Within the Milky Way, over 80 percent of the molecular hydrogen resides in giant cloud com-
plexes. The latter also account for most of the new star production. A typical giant cloud, we
will show later, survives for 3× 107 yr before it is destroyed by the intense winds from embed-
ded O and B stars. On average, the cloud converts about 3 percent of its mass into stars during
this time. Given the total H2 mass in the Galactic disk of 2 × 109 M�, it follows that the star
formation rate from giant clouds is about 2 M� yr−1. This rate is a bit less than, but consistent
with, Ṁ∗ quoted in Chapter 1, which was based on the observed luminosities of massive stars
and their theoretical lifetimes. Bearing in mind the significant uncertainty associated with the
underlying data, such consistency is gratifying.

In the case of Orion, we have seen how the relatively rare O and B stars found throughout
the complex are signposts for the local production of numerous low-mass objects. There are un-
doubtedly other pockets of star formation still hidden from view by the large column densities
in dust. Generalizing from Orion, it is significant that every Galactic OB association thus far ob-
served is closely associated with a giant molecular cloud. This fact was established by extensive
observations in the 2.6 mm line of 12C16O. Indeed, cloud complexes were initially discovered
in the 1970s through CO studies of the sky near known HII regions, infrared sources, and areas
of high visual extinction. Because it can be detected over large distances, the 2.6 mm line has
remained the tool of choice for largescale surveys, both in our own and external galaxies.
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Figure 3.2 Galactic distribution of giant molecular clouds interior to the solar position. Note the
“zone of avoidance,” where radial velocities are too small for accurate position determination.

Figure 3.1 is a representative 12C16O spectrum. The figure follows radio astronomical con-
vention by plotting, instead of the specific intensity Iν , a proportional quantity known as the
antenna temperature, TA; this quantity is defined precisely in Appendix C. Note also that the
independent variable in Figure 3.1 is not the frequency ν itself, but rather the “radial” gas veloc-
ity Vr along the line of sight. This is the velocity that would, through the Doppler effect, shift
the line-center frequency ν◦ into ν. Thus, Vr is given by c (ν◦ − ν)/ν◦. A positive Vr-value
thus corresponds to a redshifted line (ν < ν◦).

The spectrum in Figure 3.1 shows a number of discrete peaks. Each of these represents an
individual giant molecular cloud along the line of sight, which is here given in Galactic coordi-
nates by l = 30◦ and b = 0◦ (i. e., in the disk plane). The radial velocity of each cloud reflects
its particular Galactocentric orbital speed. This speed varies in a known way with distance from
the Galactic center. By taking a large number of spectra, therefore, one can map the distribution
of clouds over a wide area of the disk. Moreover, the integrated value of TA under each peak
is a measure of the total cloud mass (see Chapter 6). Figure 3.2 displays the results of a cloud
survey utilizing these tools. Here the observations are limited to Galactocentric radii compara-
ble to or less than solar, and to very massive cloud complexes in excess of 105 M�. The “zone
of avoidance” toward the Galactic center is the region where the line-of-sight component of the
clouds’ circular velocity is too small to yield a reliable distance. Notice how the alignment of
clouds in two regions delineates fragments of spiral arms. 1

1 In some renderings of Galactic structure, the two local features shown in Figure 3.2 are pieces of a contiguous
“Sagittarius-Cygnus arm.” A second global structure, the Perseus arm, passes outside the solar position.
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Figure 3.3 The Rosette Molecular Cloud, as seen in the 2.6 mm line of 12C16O. The dashed
contour indicates the boundary of the HI envelope.

Figure 3.3 is a map in 12C16O of the Rosette Molecular Cloud. This well-studied giant
complex is located in the Monoceros region at a distance of 1.5 kpc. It appears as the small
shaded region in Figure 1.1, just to the left of the Orion Molecular Cloud and inside the Milky
Way band. The cloud contains the Rosette Nebula, an HII region generated by a compact group
of five O stars. As was the case for the Orion Nebula, the massive stars are themselves embedded
within a more extended cluster of low-mass members. The location of this cluster, designated
NGC 2244, is also indicated in Figure 3.3.

3.1.2 Internal Clumps

The Rosette Molecular Cloud has an elongated, clumpy appearance reminiscent of the Orion
cloud (Figure 1.2). We must bear in mind that the 2.6 mm line of 12C16O is always optically
thick in giant molecular clouds and so emanates only from their surface layers. To probe internal
structure, one can utilize the analogous line from a rarer isotope, such as 13C16O. In this case,
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a photon from the deep interior has a smaller probability of absorption in the lower column
density of 13C16O molecules. On the other hand, the received intensity is also less than for
the main isotope, necessitating longer integration times at the telescope. Figure 3.4 is a 13C16O
map of an interior portion of the Rosette cloud. Again we see that the emission presents a highly
clumpy appearance. However, we can be certain that the peaks represent true internal density
enhancements.

Any map is a two-dimensional projection onto the plane of the sky and therefore blends
together structures that are physically distinct. As before, the radial velocity of the emitting gas
can be effectively used as the third coordinate. The distribution of velocities is contained in
the line spectrum at each sampled position, but it is cumbersome to display a two-dimensional
array of all the spectra. Alternatively, one can take a linear slice through the full map and
give the values of Iν (or rather TA(Vr)) only at points along that slice. Figure 3.5 shows the
resulting position-velocity diagram for the cut at b = −1.◦75; this cut is indicated in Figure 3.4.
The diagram shows, for example, that the clump seen near l = 207.◦75 actually consists of two
overlapping structures separated in velocity by about 5 km s−1.

There is an important difference between the velocity variation encountered in this high-
resolution scan and that displayed by the complexes as a whole, illustrated in Figure 3.1. In
the latter case, the velocities of the giant molecular clouds correlate systematically with Galac-
tocentric radius. In contrast, the clump velocities within a complex appear to be randomly
dispersed about a mean value. For the Rosette Molecular Cloud, this mean is +13 km s−1,
while the one-dimensional dispersion, i. e., the root-mean-square deviation, of the radial veloc-
ity is 2.3 km s−1. The simplest interpretation of this local dispersion is that the clumps represent
a swarm of relatively high-density parcels that maintain their integrity as they move within the
interior of the cloud complex.

By integrating the 13C16O intensity within the borders of individual clumps, one can reliably
determine the clump mass and the volume-averaged density. We will be detailing this technique
in Chapter 6. In the Rosette cloud, where the typical clump radius is 1.5 pc, the average mass
thus obtained is 250 M�, corresponding to a hydrogen density nH = 550 cm−3. Since the
mean density for the entire complex is only 60 cm−3, the clumps cannot occupy a large fraction
of the volume.

Figure 3.6 shows the actual distribution of the clump mass M . Above a certain minimum,
the number of clumps per unit mass, N , falls off as a power law:

N = N◦

(
M

Mmin

)−1.5

(M ≥ Mmin) , (3.1)

where N◦ is a constant, and where Mmin ≈ 30 M�. The pure power-law dependence is in-
dicated in the figure by a dashed line. Other giant molecular clouds yield a similar result.
Interestingly, cloud surveys such as that displayed in Figure 3.2 also find this power law for
the masses of complexes as a whole. Such universality suggests that giant clouds are built
up by the agglomeration of many clumps which were already distributed in mass according to
equation (3.1).

Returning to our Rosette example, the structure of the complex is further clarified by exam-
ining the visual extinction through the cloud gas. By multiplying Equations (2.16) and (2.46),
we first obtain the generally useful result

AV /NH = 5.3 × 10−22 mag cm2 . (3.2)
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Figure 3.4 Map of the Rosette Molecular Cloud in 13C16O. The horizontal line is the cut used in
Figure 3.5.

Figure 3.5 Position-velocity diagram for the cut indicated in Figure 3.4.
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A typical line of sight through a spherical cloud of density nH and radius R will penetrate a
column density NH of nHR. We thus find that the average Rosette clump has an AV of 1.0.
For the complex as a whole, the mean AV -value is 1.9, as determined by both 12C16O and
13C16O mapping. Since the interclump gas appears too tenuous to contribute significantly to
AV , these results imply that our generic line of sight through the complex intersects two clumps.
In summary, the clumps, which comprise as much as 90 percent of the total mass of 1×105 M�,
fill the projected area of the complex but not its interior volume.

3.1.3 Atomic Constituent

The space between clumps is occupied by a lower-density gas, whose properties are not yet
known in detail. A fraction of this material is certainly molecular, since it can be detected at
low intensity in 13C16O. The remainder is probably atomic gas at a temperature 2 to 4 times the
10 K characterizing the clumps themselves. Evidence for this component comes from 21 cm
observations of molecular clouds, both giant complexes and more isolated dark clouds. Such
studies often find a central absorption dip superposed on the ubiquitous emission from HI. As
an illustration, Figure 3.7 shows two 21 cm profiles observed near the star-forming dark cloud
ρ Ophiuchi. The dip seen directly toward the cloud (Figure 3.7a) stems from relatively cold
HI gas partially absorbing the emission from warmer, background material. This dip is absent
when the line of sight is slightly offset (Figure 3.7b).

The interclump gas represents a minor fraction of the complex by mass. However, both the
Rosette and other systems also have extended, massive envelopes of atomic hydrogen. These
envelopes span linear sizes several times that of the enclosed complexes and have compara-

Figure 3.6 Distribution of clump masses in the Rosette Molecular Cloud.
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Figure 3.7 Profiles of HI emission in the dark cloud complex ρ Ophiuchi (a) directly toward the
complex, and (b) adjacent to the molecular gas.

ble total masses. They appear as an excess of 21 cm emission associated in both position and
velocity with giant molecular clouds. The temperature of the envelope gas lies in the range
of 50 to 150 K, i. e., similar to other HI clouds found throughout the Galaxy. Because of the
much poorer spatial resolution available with centimeter radiation, these structures have not
been mapped with nearly the detail of their molecular interiors, but there is evidence for fila-
ments, arcs, and other inhomogeneities. The dashed contour in Figure 3.3 traces, for the Rosette
system, the locus of the HI intensity at half the peak value. Similar envelopes, but on a reduced
scale, are also detected around isolated dark clouds.

3.1.4 Origin and Demise

We have already seen one indication that giant molecular clouds are formed through the ac-
cumulation of many individual clumps. The clustering of the complexes along Galactic spiral
arms suggests that this buildup occurs as gas flows into the potential wells associated with the
arms (recall Figure 1.19). Here, the original gas is presumably atomic. Molecular clumps could
form inside the condensing medium through their self-shielding from ultraviolet radiation (see
Chapter 8), leaving behind the present HI envelopes. Note further that the observed drop in the
H2 surface density between the arms implies that a typical giant cloud cannot survive as long as
the interarm travel time of the Galactic gas, i. e., about 108 yr at the solar position.

What destroys the complexes? There is strong empirical evidence that the powerful winds
and radiative heating associated with massive, embedded stars are the primary agents. In the
Rosette cloud, the O stars within the Nebula have already dispersed much of the adjacent atomic
and molecular gas, and are driving a thick HI shell into the remainder. The shell radius of
18 pc, in combination with the expansion velocity of 5 km s−1 obtained from the 21 cm line,
implies that the expansion has proceeded for 4 × 106 yr. This time matches the age of the
partially embedded NGC 2244 cluster, as determined by the main-sequence turnoff method (see
Chapter 4).

For other systems, it is also possible to witness the progressive alteration in cloud properties
as a function of the age of an associated stellar cluster. Older complexes generally contain
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Figure 3.8 Molecular mass near open stellar clusters as a function of the cluster age. The vertical
arrows signify upper bounds.

more clumps of smaller diameter and show evidence for streams of ionized gas. In addition,
the cloud fragments are receding from the stars, with a typical speed of 10 km s−1. Figure 3.8
displays the total molecular mass, as gauged by CO emission, lying within 25 pc of known
stellar clusters. This mass is plotted as a function of the cluster age. (We will see how the
second quantity is obtained in Chapter 4.) Note the marked decline in the mass by an age of
5 × 106 yr (log t = 6.7), with essentially complete disappearance after 5 × 107 yr. The first O
stars must appear relatively soon after the formation of a complex, since the majority of giant
clouds seen today contain a massive association. Thus, the disappearance time also provides an
estimate of the maximum duration of complexes.

3.2 Virial Theorem Analysis

The random nature of the clump velocities within complexes is an important clue to cloud
morphology. Let us now take a more quantitative approach and ask if the magnitude of the
velocity dispersion is consistent with the internal gravitational field. To do so, we pause in our
survey of molecular clouds to introduce the virial theorem, which not only allows us to address
this question for giant complexes and other cloud types, but also to assess generally the balance
of forces within any structure in hydrostatic equilibrium.
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3.2.1 Statement of the Theorem

Our starting point is the equation of motion for an inviscid fluid. We generalize the hydrostatic
equation (2.4) to include acceleration as well as the effect of an ambient magnetic field:

ρ
Du

Dt
= −∇P − ρ∇Φg +

1
c

j × B . (3.3)

The quantity Du/Dt represents the full (or convective) time derivative of the fluid velocity u,
including both its rate of change at fixed spatial position x and the change induced by transport-
ing the element to a new location with differing velocity:

Du

Dt
≡

(
∂u

∂t

)
x

+ (u · ∇) u . (3.4)

The last term in equation (3.3) is the magnetic force per unit volume acting on a current density
j. The two quantities j and B are related through Ampère’s law:

∇ × B =
4π

c
j . (3.5)

The full Maxwell equation corresponding to (3.5) also contains on the right side the displace-
ment current 1/c (∂E/∂t)x, where E is the electric field. This term may be safely ignored for
the relatively slow changes of interest. Using (3.5), we recast equation (3.3) as

ρ
Du

Dt
= −∇P − ρ∇Φg +

1
4π

(B · ∇)B − 1
8π

∇|B|2 . (3.6)

Here we have also employed the vector identity for triple cross products. The third righthand
term in (3.6) represents the tension associated with curved magnetic field lines, while the last
term is the gradient of a scalar magnetic pressure of magnitude |B|2/8π, analogous to the
thermal pressure but not generally isotropic. Note that the existence of tension requires bending
of the field lines, while pressure arises from the crowding of the lines, whether they be curved
or straight.

Equation (3.6) governs the local behavior of the fluid. To derive a relation between global
properties of the gaseous body, we form the scalar product of (3.6) with the position vector r
and integrate over volume. We also avail ourselves of the equation of mass continuity:

−
(

∂ρ

∂t

)
x

= ∇ · (ρ u) , (3.7)

as well as Poisson’s equation, where the right side of (2.8) now contains the gas density ρ. We
show in Appendix D how interchange of the order of differentiation and repeated integration by
parts leads to the virial theorem:

1
2

∂2I

∂ t2
= 2 T + 2 U + W + M , (3.8)

where we have dropped the subscript on the partial derivative. Here I is a quantity resembling
the moment of inertia:

I ≡
∫

ρ |r|2 d3x . (3.9)



70 3 Molecular Clouds

Of the righthand terms in (3.8), T is the total kinetic energy in bulk motion:

T ≡ 1
2

∫
ρ |u |2 d3x , (3.10)

while U is the energy contained in random, thermal motion:

U ≡ 3
2

∫
n kB T d3x

=
3
2

∫
P d3x .

(3.11)

The quantity W is the gravitational potential energy:

W ≡ 1
2

∫
ρ Φg d3x , (3.12)

and M is the energy associated with the magnetic field:

M ≡ 1
8π

∫
|B|2 d3x . (3.13)

In writing equation (3.8), we have ignored a number of surface integrals, including one
representing the effect of any external pressure. (See equation (D.12) in Appendix D.) Such
an approximation would not be justified for HI or diffuse clouds, but is valid for the strongly
self-gravitating giant complexes. The issue here is which of the terms in (3.8) can balance the
gravitational binding energy W . Note that the integrals U , M, and T are all positive, while
W is negative. If none of these three terms can match W in magnitude, then a typical giant
molecular cloud would be in a state of gravitational collapse.

3.2.2 Free-Fall Time

Let us briefly explore this latter possibility. We denote by R ≡ L/2 the characteristic “radius”
for a cloud of mass M . Then, to within a factor of order unity, W is −GM2/R. Equation (3.8)
reduces in this case to

1
2

∂2I

∂ t2
≈ −G M2

R
.

If we further approximate I as MR2, then dimensional analysis of this relation tells us that R
in the collapsing cloud shrinks by roughly a factor of two over a characteristic free-fall time tff .
This is approximately

tff ≈
(

R3

G M

)1/2

= 7 × 106 yr
(

M

105 M�

)−1/2(
R

25 pc

)3/2

,

(3.14)

where we have inserted representative numbers from Table 3.1. Note further that, since
M/R3 ≈ ρ, the time scale can also be written as (G ρ)−1/2. It is conventional to define tff
precisely as

tff ≡
(

3 π

32 G ρ

)−1/2

. (3.15)
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This expression actually gives the time for a homogeneous sphere with zero internal pressure to
collapse to a point (Chapter 12).

Equation (3.14) indicates that giant molecular clouds have free-fall times comparable to their
observed lifetimes. Does this mean that the clouds are indeed collapsing? One issue here is our
questionable use of a global, volume-averaged density in equation (3.14). The higher density
appropriate for an individual clump would have yielded a tff -value closer to 106 yr. In any
case, there is no convincing empirical evidence for large-scale shrinking or flattening over such
an interval. The complexes’ internal velocities also appear to be random, not systematically
directed toward a collapsing center. Apparently, the entities survive until they are destroyed
from within, by the massive stars they spawn.

3.2.3 Support of Giant Complexes

If the complexes are in approximate force balance over their lifetimes, we may actually ignore
the left side in equation (3.8) and obtain the form of the virial theorem appropriate for longterm
stability:

2 T + 2 U + W + M = 0 . (3.16)

For a cloud in such “virial equilibrium,” the question is again how to balance W . In order
to gauge the effectiveness of the internal pressure in supporting the cloud, we first note that
U is given, in the spirit of our approximations, by MRT/µ, where T is a representative gas
temperature. We then form the ratio

U

|W| ≈ MRT

µ

(
G M2

R

)−1

= 3 × 10−3

(
M

105 M�

)−1(
R

25 pc

)(
T

15 K

)
.

(3.17)

Even after considering a reasonable spread in the values of M , R, and T , this result shows
unambiguously that giant complexes are not sustained by thermal pressure.

We turn to the final, magnetic term in equation (3.16). Studies of the polarization of back-
ground starlight reveal the existence of a large-scale B-field throughout the plane of the Galaxy.
This field penetrates giant molecular clouds and could exert a major dynamical influence, help-
ing to prevent collapse. The strength of the magnetic force relative to self-gravity is measured by

M
|W| ≡ |B|2 R3

6 π

(
G M2

R

)−1

= 0.3
(

B

20 µG

)2 (
R

25 pc

)4 (
M

105 M�

)−2

,

(3.18)

where we have crudely represented the cloud as a sphere of radius R in estimating M. The
magnetic field strength in molecular clouds is currently obtained from the Zeeman splitting
of either the 21 cm line of HI or of a cluster of lines near 18 cm from OH (see Chapter 6).
Unfortunately, this technique has not yet provided results for either the clump or interclump gas
in giant clouds. Our representative B-value in equation (3.18) comes from measurements in
nearby dark clouds and is consistent with the somewhat lower values detected in the warm HI
envelopes of giant complexes.
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The numerical estimate of M/|W| indicates that the magnetic field is important, but in pre-
cisely what sense? According to equation (3.3), the associated force acts on a fluid element
in a direction orthogonal to B. Thus any self-gravitating cloud supported mainly by a well-
ordered field can slide freely along field lines until it settles into a nearly planar configuration.
Such flattening is not evident in the giant complexes, so we are forced to reject the hypothe-
sis of a perfectly smooth internal field. Now the direction of B in the plane of the sky, but
not its magnitude, can be ascertained from the optical polarization mentioned earlier. We saw
in Chapter 2 how elongated grains lying perpendicular to the field polarize starlight through
dichroic extinction. However, the observed E vectors in any local region are never perfectly
aligned, but display significant scatter. This scatter indicates the presence of a random com-
ponent to B, coexisting with the smooth background. The field distortion arises, at least in
part, from magnetohydrodynamic (MHD) waves, also called hydromagnetic waves. As we will
discuss in Chapter 9, these waves may provide the isotropic support preventing the cloud from
flattening.

The final term to consider in equation (3.16) is the kinetic energy T . The bulk velocity
within giant clouds stems mostly from the random motion of their clumps. Denoting by ∆V
the mean value of this speed, we find

T
|W| ≈ 1

2
M ∆V 2

(
GM2

R

)−1

= 0.5
(

∆V

4 km s−1

)2 (
M

105 M�

)−1 (
R

25 pc

)
.

(3.19)

To obtain a representative ∆V , which we take to be the three-dimensional velocity dispersion,
we have increased the Rosette line-of-sight dispersion of 2.3 km s−1 by a factor of

√
3, as would

be appropriate for a random, three-dimensional velocity field. Our numerical result for T /|W|
implies that the typical internal ∆V is close to the virial velocity Vvir, which we define as

Vvir ≡
(

G M

R

)1/2

. (3.20)

Comparison with equation (3.14) shows that Vvir is the velocity of a parcel of gas that traverses
the cloud over the free-fall time tff . In other words, it is the typical speed attained by matter
under the influence of the cloud’s internal gravitational field.

The actual velocity dispersion in any cloud can readily be determined by the broadening
of some spectral line, generally one of CO. Figure 3.9 shows that, despite considerable scatter,
∆V roughly matches Vvir (or, equivalently, that T matches |W|) not only in our typical giant
molecular cloud, but over a much wider range of sizes. In giant complexes, this approximate
equality is consistent with the picture of a swarm of relatively small clumps, each one moving
in the gravitational field created by the whole ensemble. The kinetic energy in clump motion is
matched by that of the internal magnetic field, which also has a significant random component.
Since energy can be exchanged between the matter and field through hydromagnetic waves,
such equipartition is not too surprising. Nevertheless, there are as yet no quantitative, theoret-
ical models of giant clouds, incorporating both the uniform and fluctuating field, that account
naturally for this result.

Viewed as separate entities, the clumps within giant molecular clouds fall under the “indi-
vidual dark cloud” category in Table 3.1. The largest clumps have masses of order 103 M�, but
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Figure 3.9 The ratio of the bulk kinetic energy T to the gravitational potential energy |W| for
molecular clouds, plotted as a function of the cloud diameter L.

even more massive dark clouds exist. The Taurus-Auriga system described in Chapter 1 and the
well-studied ρ Ophiuchi region are two prime examples. Yet another at roughly the same dis-
tance is Corona Australis in the Southern hemisphere. Though differing morphologically from
each other, all have mean densities similar to the clumps, but total masses closer to 104 M�.
We shall term such objects dark cloud complexes. While accounting for a significant fraction of
Galactic star formation, it is noteworthy that they do not produce the OB associations that are
a hallmark of the more massive systems. On the other hand, complexes such as ρ Ophiuchi do
contain regions with peak AV -values of order 100. Such locales always harbor a multitude of
embedded young stars.

3.3 Dense Cores and Bok Globules

We now focus on the smallest cloud entities. These dense cores and Bok globules are seen, in
many cases, to harbor infrared point sources of emission. We know, therefore, that they are sites
of star formation. How this production occurs will occupy much of our attention. We begin,
however, with an overview of the cloud properties.

3.3.1 Quiescent Gas

The hierarchy of molecular clouds displays several intriguing patterns. One we have seen is the
similarity of T and |W|. The much sparser observations of magnetic field strengths are also
consistent with a rough equality of M and |W|, holding over an equally broad range of cloud
parameters. Finally, there is a third trend not evidently tied to energy considerations. Suppose
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Figure 3.10 Three-dimensional velocity dispersion of molecular clouds as a function of their
diameter.

one observes the broadening of a spectral line toward a cloud without spatially resolving that
object. This broadening, as we have seen, can be translated directly into a velocity dispersion.
Figure 3.10 demonstrates that the measured dispersion varies systematically with cloud size:

∆V = ∆V◦

(
L

L◦

)n

, (3.21)

where n ≈ 0.5, and where ∆V◦ ≈ 1 km s−1 for L◦ = 1 pc. This empirical relation, whose
basis is still not fully understood, is often called Larson’s law. Taken literally, equation (3.21),
in conjunction with (3.20), implies that the column density ML−2 is unchanged from cloud
to cloud. In fact, there is a slow increase of the proportional quantity AV toward denser and
smaller clouds, as indicated in Table 3.1. Nevertheless, the near constancy of AV is also of
interest and could well be a clue toward deciphering the puzzle of cloud origin and structure.

The broadening of a spectral line from any molecular cloud stems from both thermal mo-
tion and bulk velocity of the emitting gas. The quantity ∆V in equation (3.21) refers only to
the nonthermal component, which is presumably induced by hydromagnetic waves.2 As we
consider successively smaller clouds, ∆V eventually reaches the ambient thermal speed, whose
root-mean-square value is (3RT/µ)1/2. Equation (3.21) implies that this transition is reached

2 In contrast, the kinetic energy T in Figure 3.9 was calculated using both the thermal and nonthermal velocity disper-
sions.
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at a size scale Ltherm found from

Ltherm =
3RT L◦
µ ∆V 2◦

= 0.1 pc
(

T

10 K

)
.

An object of size Ltherm, which also has U ≈ |W|, is a more quiescent environment than
larger dark clouds with their energetic internal waves. In fact, both the clumps within giant
complexes and isolated dark clouds do contain distinguishable substructures of this dimension.
These entities are the dense cores responsible for individual star formation.

Our surveys of Orion and Taurus-Auriga showed how these cores are found throughout the
interiors of dark clouds (recall Figure 1.2). With densities exceeding 104 cm−3, such structures
cannot be probed by the usual 12C16O or even 13C16O lines, which are both optically thick.
Other species, such as NH3, 12C18O, and CS, emit radio lines that are optically thin and can be
used both for discerning global properties and for spatial mapping. These observations, carried
out since the early 1980s, show that the typical dense core comprises several solar masses of
gas, and has a temperature near 10 K. Although a few individual cores within a dark cloud may
be far more massive, the aggregate of all cores generally comprises less than 10 percent of the
total gas supply.

The most extensive studies have been conducted using the 1.3 cm line of NH3. Figure 3.11
is a typical NH3 spectrum toward the center of the dense core L260, at a distance of 160 pc. The
dashed curve is the profile expected from thermal motion alone, as calculated for the internal
temperature of 9 K. (We will later see how such a figure is obtained.) Here, it is assumed that
the probability of any line-of-sight velocity Vr is given by the Maxwell-Boltzmann distribution,
so that the observed intensity varies as

TA(Vr) ∝ exp
(
−mNH3 V 2

r

2 kB T

)
(3.22)

where mNH3 is the mass of the ammonia molecule. (See Appendix E for a general discussion
of line broadening.) Note that the root-mean-square value of Vr is (kBT/mNH3)

1/2; this is the
one-dimensional dispersion for thermal motion.

The profile in equation (3.22) has a full-width half-maximum extent of

∆VFWHM (therm) =
(

8 ln 2 kBT

mNH3

)1/2

, (3.23)

which has the value 0.15 km s−1 for L260. Figure 3.11 shows that the observed profile is
actually broader than this. The additional broadening can be ascribed to a random field of
turbulent velocities; the solid line is the calculated model result. The turbulent velocities in
the model obey a Gaussian probability distribution like that in equation (3.22), but with an
associated width denoted ∆VFWHM (turb). Since the two distributions are uncorrelated, the
total profile width is

∆V 2
FWHM (tot) = ∆V 2

FWHM (therm) + ∆V 2
FWHM (turb) , (3.24)
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Figure 3.11 Profile in the 1.3 mm line of NH3 of the dense core L260. The histogram represents
the observed profile, while the dashed curve is a theoretical result assuming purely thermal motion.
The heavy solid curve is the theoretical profile including a Gaussian distribution of turbulent
speeds.

as we show in Appendix E. In our example, we find that ∆VFWHM (turb) must be 0.11 km s−1

in order to reproduce the observed total width of 0.19 km s−1.
It is instructive to compare the spatial maps of a given core in a number of different lines.

Figure 3.12 is a composite map of L1489, a dense core containing an infrared point source, as
indicated. Shown are the half-maximum intensity contours in NH3 (the 1.3 cm line), CS (at
3.0 mm), and 12C18O (at 2.7 mm). The observed lines are excited into emission by collisions
with ambient hydrogen molecules. The fact that different molecular transitions require different
threshold hydrogen densities for excitation accounts in part for the systematic widening of the
maps. Thus, the 1.3 cm line from NH3 has a higher threshold than the line from 12C18O and
therefore samples a compact, interior region. Smaller regions are less turbulent, according to
equation (3.21), so that we can also understand the relatively low value of the nonthermal NH3

line width.
However, there are complications to this picture. The CS line has an even larger critical

hydrogen density than NH3. Yet Figure 3.12 shows its map extending farther out. A plausible
explanation is that the CS molecules stick to dust grains at the highest ambient densities. Then
the observed central intensity would be lowered, and the radial falloff in flux made more shallow.
The half-maximum contour thus moves outward, as seen. Another puzzle is the offset of all the
maps in Figure 3.12 from the embedded star. The latter would naturally be expected to form at
the density peak. This offset is seen in other cases but not well understood.

The presence of pointlike infrared sources in cores such as L1489 is, of course, the most
direct evidence that these structures indeed form stars. The IRAS satellite found such embedded
stars in about half the dense cores in Taurus-Auriga and ρ Ophiuchi that had been previously
identified through molecular lines. While some of these sources have optical counterparts, an
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Figure 3.12 Composite map of the dense core L1489 in the lines of NH3, CS, and 12C18O.
Each contour corresponds to the intensity at half its peak value. Note the offset position of the
embedded infrared source.

equal number do not. Finally, most of the optically invisible stars within cores are associated
with outflows, as detected in CO. These important findings tell us, first, that dense cores exist for
a substantial time prior to forming stars. Second, since optically invisible stars are presumably
the youngest, outflow generation occurs extremely early in stellar evolution. Third, a dense core
does not suddenly vanish after forming a star, but gradually dissipates as the object inside ages.

From an observational perspective, there are no outstanding differences between the dense
cores lacking infrared sources and those containing young stars. Both types, for example, have
visual extinctions that range from about 5 to 15 mag.3 On the other hand, the sample having
deeply embedded, optically invisible stars includes some cores with significantly higher NH3

line widths, as illustrated in Figure 3.13. Since the difference in the measured gas temperature
between cores with and without stars is negligible, the larger widths must be due to turbulent
motion. It is tempting to associate the higher level of turbulence with the molecular outflows
created by the youngest stars. As we will see in Chapter 13, turbulence is indeed an integral
feature of outflows, but a more convincing link to the observed line widths needs to be made.

3.3.2 Intrinsic Shapes

Let us now turn to the more detailed properties of dense cores, beginning with their shapes.
Here the type of composite map shown in Figure 3.12 represents the best data available. For
the commonly used NH3 line at 1.3 cm, the beam diameter with a 40-meter telescope is 80′′, or
0.05 pc at the distance of Taurus-Auriga. The corresponding figure is 0.01 pc for the 3.0 mm line
of CS. Thus, the current resolution of single-dish (as opposed to interferometric) observations
is modest for NH3, but adequate at shorter wavelengths for discerning gross spatial features.

3 Extinction measurements in dense cores presently rely on an empirical correlation between AV and the column
density in an optically thin tracer such as 12C18O. We discuss such relationships in Chapter 6.
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Figure 3.13 Distribution of dense cores as a function of their NH3 velocity width ∆VFWHM. The
top histogram shows those cores whose nearest star lies outside their boundaries, again as seen in
NH3. The bottom histogram is for cores with embedded stars.

In particular, examination of several dozen dense cores reveals mean axial ratios of about 0.6,
similar to the L1489 case shown here. This ratio, as well as the orientation of the long axis, does
not vary greatly from line to line for a given core. The question now is which three-dimensional
structures can yield such shapes when projected onto the sky.

As a first approximation, we assume that all cores have a single intrinsic shape, which we
take to be spheroidal. Figure 3.14 shows how both oblate (flattened) and prolate (elongated)
spheroids can appear to have identical axial ratios when projected on the sky. However, if we
further assume that the spheroids are randomly oriented, then the oblate configurations are less
likely.

The argument here is a bit technical but worth some effort. Refer to Figure 3.14, and de-
fine true and apparent (i. e., projected) axial ratios for the oblate spheroid as Rtrue ≡ b/a and
Rapp ≡ b′/a, respectively. Note that Rtrue < Rapp < 1 for any angle i between the line of
sight and the spheroid’s axis of rotation. Figure 3.15 shows more explicitly the relation between
b′ and the true axes. It also defines a length y◦, which is related to b′ by b′ = y◦ sin i. As an
exercise in geometry, the reader may verify that

y2
◦ = a2 cot2 i + b2 , (3.25)

from which we deduce
(b′)2 = a2 cos2 i + b2 sin2 i . (3.26)

We thus find that

sin2 i =
1 − R2

app

1 − R2
true

. oblate (3.27)

Consider now the average observed ratio for a number of randomly oriented spheroids,
all with identical Rtrue. Denoting by 〈 〉 the average over solid angle and recalling that
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Figure 3.14 Projected views of oblate and prolate spheroids. Both objects generally appear as
ellipses in the plane of the sky.

Figure 3.15 Geometric relations within the
cross section of an oblate spheroid.

〈sin2 i〉 = 2/3, we see that no Rtrue, however small, will reproduce a given 〈R2
app〉 unless

〈R2
app〉 > 1/3. The observations to date marginally satisfy this latter criterion and demand that

Rtrue be about 0.2, i. e., that the putative oblate spheroids be highly flattened.
Turning to the prolate case, the analogous relation to equation (3.26) is

(a′)2 = a2 sin2 i + b2 cos2 i , (3.28)

where the axis labels are defined in Figure 3.14. Since Rtrue is still b/a but Rapp is now b/a′,
we find

cos2 i =
R−2

true − R−2
app

R−2
true − 1

. prolate (3.29)

Recognizing that 〈cos2 i〉 = 1/3, the averaged form of equation (3.29) may be written

R−2
true = 〈R−2

app〉 +
1
2

(
〈R−2

app〉 − 1
)

. (3.30)
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The difference with the oblate case is now apparent. The last equation yields a value of Rtrue

for any 〈R−2
app〉. Moreover, the first quantity only slightly exceeds the second for modest ratios.

Reproducing the observations requires only that Rtrue lie between 0.4 and 0.5. That is, the
structure can be rounder than in the oblate case.

We may recast the essential argument in non-mathematical terms. Even a razor-thin disk
usually presents a rather high aspect ratio, when projected randomly onto the sky. A perfectly
thin needle, on the other hand, looks just the same in projection, except when it is exactly pole-
on. Thus, a prolate object needs more intrinsic thickness for its projected image to have a sizable
apparent thickness.

Which case is more reasonable: a highly flattened disk or a thick cigar? While not de-
manding the rounder, prolate shapes, the observations certainly favor them. The measured line
widths in dense cores indicate that they are largely, though not totally, supported by the thermal
pressure gradient, which acts isotropically. In addition, the dark cloud regions containing the
cores often have a striated appearance (recall Figure 1.9). In a number of cases, there is clear
alignment of the cores’ long axes with these “fingers” of visual obscuration. Our geometric
argument indicates that the larger structures, with their extreme axial ratios, are unlikely to be
flattened. The same should then be true for their embedded cores. We will see in Chapter 12
that prolate clouds are also attractive theoretically as progenitors for binary stars.

Molecular lines are not the only tools for probing the cores’ structure. The dust grains
coexisting with the gas also emit continuum radiation as a result of their finite temperatures.
Detection of this emission at millimeter wavelengths has yielded maps of high spatial resolution.
Figure 3.16 shows the starless dense core L63, situated in a relatively isolated dark cloud about
160 pc away. The left panel is a map in the 1.3 cm line of NH3, while the right is the same object
viewed in 1.3 mm continuum radiation. Although the second image covers a smaller spatial
extent, it displays a similar elongation as the NH3 map. The continuum version also reveals
more small-scale structure. Here, the angular resolution of the telescope is 12′′, corresponding
to 0.01 pc at the estimated distance.

Both the continuum radiation and the molecular line are optically thin in this case, and thus
yield conditions in the core’s deep interior. As we have indicated, line emission can only be pro-
duced when the ambient density exceeds the critical value ncrit associated with that transition.
The emission also tends to fall off significantly for n > ncrit, so that any given line samples a
relatively narrow density range. Dust emission does not suffer from this limitation and requires
only that the density and temperature along the line of sight be high enough for detection. The
continuum maps are thus potentially useful for reconstructing the internal density profile, al-
though detailed results still require accurate knowledge of the internal temperature distribution.
The studies have indicated that starless cores like L63 have densities that rise steeply from the
outside, but then reach a shallower plateau somewhat above 105 cm−3.

3.3.3 Magnetic Fields

Since magnetic forces are expected to be significant in dense cores, it would be extremely
valuable if field strengths could be ascertained directly by observation in these regions. Unfor-
tunately, this is not yet the case. To date, measurements by Zeeman splitting are limited to a
handful of dark clouds of larger size and lower density. Optical and near-infrared polarization
maps using background field stars, which yield the direction but not the magnitude of B, are
also confined to these sparser regions.
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Figure 3.16 (a) The dense core L63, mapped in the 1.3 cm line of NH3. (b) The core as mapped
in 1.3 mm continuum radiation.

Figure 3.17 is an optical polarization map of the ρ Ophiuchi dark cloud complex. Here,
the more filamentary density contours display the elongated substructure mentioned previously.
The short line segments indicate the direction of the electric vector of the stellar radiation.
Assuming the polarization is due to magnetically aligned grains, this direction is also that of the
ambient magnetic field. Note that most of the mass of this complex, as well as the intense star
formation activity, is contained in the L1688 cloud toward the lower right. In this region, there
is no strong correspondence between the field direction and the cloud morphology. However,
there is striking alignment in the lower-mass fragments L1709 and L1755 stretching to the
northeast. Further south, this same field direction is preserved, creating a systematic offset from
the orientation of the clouds L1729 and L1712.

A particularly well-studied object, with magnetic field measurements spanning a range of
densities, is B1, a fragment some 3 pc in diameter within the Perseus dark cloud complex.
Measurements in OH emission lines yield field strengths ranging from 10 µG in the more rarified
outer portion of the cloud to 54 µG in a compact central region of diameter 0.2 pc. Since this
latter region, which includes an embedded star, contains some 10 M� of cloud gas, the magnetic
virial term M is about 1/3 the gravitational potential energy W . Such a fraction is consistent
with the analysis of NH3 line profiles in typical dense cores, provided that the amplitude of the
fluctuating field is comparable to that of the more uniform component.

One promising development in this field is the observation of polarized, submillimeter emis-
sion from heated dust grains. This technique allows us, at least in principle, to trace directly
the field geometry within dense cores themselves. Curiously, the maps obtained thus far show
a steep falloff in the degree of polarization toward the core center. It is unclear whether this
trend is due to the magnetic field topology, or to altered properties of the grains themselves. In
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Figure 3.17 Dark clouds in the ρ Ophiuchi complex. The contours represent 13C16O emission.
The short line segments indicate the direction and degree of polarization of the electric field vector.

the case of B1, the polarization dips, but is nonzero, at each of several internal density clumps,
including the one with the embedded star. The magnetic field vectors of the various clumps are
not aligned.

3.3.4 Rotation

As cores collapse to form stars, field lines are pulled in, following the gas motion. The resulting
buildup in magnetic pressure acts as an impediment to further collapse and alters the direction
of the dynamical evolution. In a similar manner, any initial rotational motion in the core must
increase through angular momentum conservation, ultimately creating a centrifugal barrier to
collapse. It is therefore also important to search observationally for core rotation. Here the idea
is to look for variation in the radial velocity Vr across the cloud face. As usual, we gauge Vr by
the Doppler-induced shift in some spectral line. The majority of dense cores analyzed thus far
indeed display the expected variation.

As one illustration, Figure 3.18 is an NH3 map of a dense core within L1251A, an elongated
dark cloud at a distance of 200 pc. The filled squares superposed on the contour map of the
1.3 cm line have sizes proportional to the measured Vr at each position. A velocity gradient
from left to right is clearly present. Its magnitude of 1.3 km s−1 pc−1, is typical of those
observed, which range from the detection limit near 0.3 km s−1 pc−1 to a factor of ten higher.
Tracer molecules other than NH3 yield similar figures. If every dense core were rotating as a
solid body with its rotation axis perpendicular to the line of sight, the measured gradient would



3.3 Dense Cores and Bok Globules 83

Figure 3.18 Rotation of the dense core L1251A. The size of each filled square is proportional to
the radial velocity, as gauged from the 1.3 cm line of NH3. The star symbol marks the position of
the embedded source IRAS 22290+7458.

correspond to Ω, the cloud’s angular velocity. For tipped axes that form an angle i with the line
of sight, the gradient would be Ω/ sin i.

These results must be viewed with some caution. For example, the projected motion of a
molecular outflow can also create gradients in the radial velocity. However, this effect cannot
be dominant, as similar velocity gradients are seen in cores with and without young stars. As-
suming, then, that the observations are indicative of true rotation, we may gauge its dynamical
significance. A dense core of mass M and diameter L has a rotational kinetic energy given by
Trot = (1/20) ML2Ω2, if the object is idealized as a uniform-density sphere. The result for a
prolate configuration of average diameter L and modest axial ratio is the same within a factor
of two. Since the potential energy in the spherical case is W = (6/5) GM2/L, we can estimate
the ratio of Trot to |W|:

Trot

|W| ≈ Ω2 L3

24 G M

= 1 × 10−3

(
Ω

1 km s−1 pc−1

)2 (
L

0.1 pc

)3 (
M

10 M�

)−1

.

(3.31)

Equation (3.31) implies that a dense core rotates so slowly (with a representative period
of 2π/Ω = 6 × 106 yr) that the associated centrifugal force is negligible compared to the
self-gravity and pressure gradients that truly determine its equilibrium structure. It is hardly
surprising, then, that the observed orientations of the rotation axes bear no apparent relation to
the cores’ spatial elongations. The true significance of the rotation lies not in cloud structure,
but in the effect on collapse itself.

3.3.5 Globule Structure

We finally discuss compact, dense regions not embedded within larger complexes. These are
the Bok globules, named in honor of the astronomer who first recognized, in the 1940s, their po-
tential role in stellar birth. Bok’s insight has since been amply confirmed through observations
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of embedded infrared sources and energetic molecular outflows associated with a large fraction
of these objects. Apart from their relative isolation, globules resemble the more common dense
cores in most respects. About 200 of them lie within 500 pc of the Sun, where they can be
picked out as small patches of visual extinction. The optical photograph in Figure 3.19 shows
the extraordinarily sharp boundaries of the globule B68 in Ophiuchus. Radio observations in
CO have determined that such structures are actually surrounded by envelopes of more diffuse
gas, extending over a few parsecs.

The relatively simple appearance of Bok globules, together with the sparsity of surrounding
matter, render them attractive candidates for high-resolution mapping. The most well-studied
object is B335, at a distance of 250 pc. This globule consists of a visually opaque core of 11 M�
and an elongated envelope of twice that mass (Figure 3.20). Near the peak density of the core
is a far-infrared star with luminosity 3 L�. This star is driving an extended molecular outflow.
Observations in CO, which form the basis of Figure 3.20, have been supplemented by others
using a variety of tracers, in order to establish the density profile as a function of the distance
r from the star. The data are consistent with a profile nH(r) that rises as r−2 for r decreasing
from 0.3 to 0.03 pc, and with a flatter profile interior to that.

We will describe in Chapter 6 how molecular line observations can provide temperatures in
molecular cloud interiors by utilizing multiple transitions from the same species. In B335, this
technique has established an inner temperature near 10 K. At larger distances, the temperature
estimate is less secure and relies partially on the chemical enhancement of CO isotopes (see
Chapter 6). Figure 3.21 displays the empirical temperature distribution in B335 as a function of
nH . Notice how the measured density values surpass 104 cm−3, just as in dense cores. The fact
that the temperature increases outward (i. e., toward lower nH) is noteworthy and somewhat
surprising in an object containing an embedded star. However, the stellar heating is confined
to much smaller radii than these observations probe. The outward rise in the envelope actually
stems from the cosmic rays and ultraviolet radiation field in which globules are immersed.

The infrared stars that have so far been detected within Bok globules are of relatively low
luminosity. The same holds for the stars within dense cores. What, then, are the cloud fragments
that give rise to high-mass stars? The answer to this basic question is not known. It is true that
there are infrared point sources of very large luminosity, but these are generally so far away that
the surrounding cloud structures are not amenable to high-resolution studies. Moreover, such
observations are unfavorable in a statistical sense. Protostars and embedded main-sequence
stars of high mass must disperse their parent clouds in a time short compared with the typical
stellar lifetime of a few million years. Hence it is difficult to witness the actual birth of an O or
B star, but relatively easy to observe the destructive aftermath of that birth in the surrounding,
fragmentary molecular gas.

The damage wrought by massive stars may help explain the otherwise puzzling existence of
Bok globules themselves. That is, some globules could represent the remnants of larger clouds
dispersed by stellar winds and radiation pressure. Finally. the influence of massive stars on their
surroundings can also be discerned by comparing dense cores in Taurus-Auriga with those in
the Orion Molecular Cloud. Studies of several dozen examples in both environments, carried
out with comparable spatial resolution, show the Orion cores to be systematically warmer, by
about 5 K. These objects also have NH3 line widths two to three times broader, indicating a
higher degree of turbulent support. Moreover, we will see in Chapter 5 that the elevated gas
temperatures close to Orion’s massive stars promote a qualitatively distinct chemical reaction
network. Note finally that the typical Orion dense core has three times the mass and twice the
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Figure 3.19 Optical photo-
graph of the Bok globule B68
in Ophiuchus.

Figure 3.20 Core and envelope of the globule B335. Contours represent the column density
in molecular hydrogen, as estimated from CO measurements. The outermost contour spans a
diameter of 2.5 pc. The interior cross marks the peak value of the H2 column density.
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Figure 3.21 Gas temperature as a function of nH in the globule B335.

diameter of its counterpart in Taurus-Auriga. This difference should be related to the prolifer-
ation of high-mass stars in giant molecular clouds and their scarcity in dark cloud complexes.
Elucidating the connection is another task for future research.

Chapter Summary

Most Galactic star formation occurs in giant molecular clouds. These structures are clumpy
and possess extended envelopes of HI gas. Both the random motion of clumps and the pressure
associated with an internal magnetic field prevent immediate gravitational collapse. Thermal
pressure is unimportant in this regard. After a period not greatly exceeding 107 yr, the entire
cloud is dispersed by winds and radiative heating from massive stars it previously created.

A convenient tool for analyzing molecular clouds, or any other self-gravitating structure, is
the virial theorem. Here we compare the magnitudes of global, integrated quantities such as the
gravitational potential and bulk kinetic energies. In this way, one avoids constructing a detailed
interior model, while still gaining understanding of the dominant forces at play.

Giant molecular clouds lie at one end of a hierarchy of morphological types, differing in
both linear size and mass density. The internal motion of all clouds decreases systematically
with size. Near the other end of the hierarchy are the dense cores and Bok globules that actually
produce individual stars and binaries. Cores and globules are intrinsically elongated and rotate
slowly in space. Prior to the start of protostellar collapse, they are supported against self-gravity
by a combination of thermal and magnetic pressure.
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4 Young Stellar Systems

The fraction of visible stars in the sky that are located in well-defined groups like the Pleiades
is relatively small. However, such stars are always found to be young, either through their
photospheric properties or by the presence of nearby gas. In addition, the probability that any
randomly chosen star belongs to some aggregate rises sharply with stellar mass. Since more
massive stars also tend to be younger on average, these facts suggest that clustering could be an
important feature of early stellar evolution. We now believe, in fact, that all stars are born within
groups scattered throughout the Galactic disk. These are either true clusters– entities with a high
space density that are usually gravitationally bound – or the much looser associations, which
can extend over 100 pc or more.

We noted in Chapter 1 how the theoretical lifetimes of massive stars, together with estimates
for the total mass in OB associations, yield the current stellar production rate in such groups
throughout the Galaxy. Similarly, the total masses of other types of associations and clusters
give their present birthrates. Comparison of the results shows that star formation in all optically
visible clusters accounts for only about 10 percent of the Galactic total. The remainder occurs
primarily in OB associations, although their precise contribution is still uncertain. The difficulty
is that the typical OB association is so far away that its lower-luminosity members cannot be
seen directly, and the total mass must be inferred by theoretical extrapolation. Fortunately,
this situation is rapidly improving through the use of sensitive detectors at infrared and X-ray
wavelengths.

This chapter is a descriptive survey of the various groups into which stars are born. We begin
with optically invisible aggregates still embedded within the gas and dust of molecular clouds.
Partially revealed associations are the next topic. We cover in turn T, R, and OB associations,
each distinguished by the masses of its prominent members. This traditional nomenclature,
while motivated observationally, is somewhat misleading, as each region includes a substantial
mass range. Section 4.3 is a brief overview of the fully exposed open clusters, for which obser-
vations are most complete. Finally, we discuss the distribution of stellar masses, both in nascent
groups and within the general field population.

4.1 Embedded Clusters

Clusters of optically revealed stars are the scant remains of much more populous systems created
within the dense interiors of molecular cloud complexes. Although no complete census exists,
observations are consistent with the hypothesis that most stars form in such environments. We
shall use the term “embedded cluster” generically, to signify any group of physically related
stars so obscured by ambient molecular gas that most can be detected only at infrared and
longer wavelengths. In applying this terminology, we recognize that the issue of whether any
particular group will remain gravitationally bound following dispersal of its gas is rarely, if ever,
known with confidence.
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4.1.1 Near-Infrared Surveys

The discovery of embedded stellar aggregates resulted from a key technological advance in
infrared astronomy. Prior to the early 1980s, observational surveys at these longer wavelengths
could not attain the fine detail available with optical instruments. The situation dramatically
changed with the advent of near-infrared array detectors. These solid state devices provide in a
relatively short exposure time detailed views of embedded systems, even those of large angular
size. A filter in one of the standard wavelengths precedes the detector, so that a monochromatic
image results. Combining several such images also allows one to produce a composite, false-
color rendition. We will later show examples of both types.

The utility of near-infrared radiation for penetrating large columns of molecular cloud gas
is evident from the interstellar extinction curve (Figure 2.7). It can be seen that a photon in
the K band, centered at 2.22 µm, has an extinction 0.1 times that of a V -band photon at
0.555 µm. Consider now a representative T Tauri star of spectral type K7, with MV = +6.5 and
MK = +2.2. If such a star were at a distance of 200 pc, equation (2.12) tells us that it would
have an apparent V -magnitude above a reasonable detection threshold, e. g., mV = +25, only if
the associated cloud extinction AV were under 12 mag. On the other hand, the same star could
be inside a cloud with AV = 100 and still be detectable at K, where the limiting magnitude at
large, groundbased telescopes is currently about +20. Of course, observations in the mid- and
far-infrared regimes would be even more effective in this regard. Such radiation, however, is
so strongly absorbed by the Earth’s atmosphere that its detection, at the longest wavelengths,
requires spaceborne instruments. The 1983 launch of IRAS first allowed reconstruction of the
nearly complete spectral distribution of emitted energy from numerous embedded stars.

Clusters inside molecular clouds have thus far mostly been discovered through surveys in a
single near-infrared waveband. A cluster is usually first identified as a region with a significant
overdensity of sources compared with nearby fields. However, this initial reconnaissance work
is never sufficient to establish the true membership. Many, if not most, of the stars in the
group will be intrinsically fainter than the ones first seen. Besides accounting for completeness,
it is also necessary to separate out background objects that are reddened by the same cloud.
One may estimate the total cluster population statistically by using off-cloud observations to
subtract the expected number of background and foreground stars in the region. Individual
cluster members can be selected in principle by their proper motion (movement in the sky
relative to the background), but one needs at least two observations widely separated in time.
Other identification techniques include spectroscopy and multicolor photometry.

Let us consider further the photometric method, which often combines K-band observations
with those at J (1.25 µm) and H (1.65 µm). The principal tool in such studies is a near-infrared
color-color diagram. As illustrated in Figure 4.1, one plots the J − H color on the vertical
axis and H − K horizontally. The magnitude conventions imply that the numerical values of
both J − H and H − K increase for redder, cooler stars. In any individual case, the observed
colors depend both on the photospheric properties and on the extinction provided by the cloud.
Background stars, however, exhibit a well-defined relationship between the two colors.

To obtain this relationship, we assume that all sources outside the cluster are either main-
sequence stars or the rarer but more luminous red giants. If stellar surfaces radiated as perfect
blackbodies, equation (2.29) indicates that the ratio of emergent fluxes at any two wavelengths
would be a unique function of the temperature Teff . The dotted line in Figure 4.1 displays the
blackbody values of J−H and H−K for the indicated range of Teff . Stellar photospheres depart
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Figure 4.1 Near-infrared color-color diagram. The J −H and H−K color indices are displayed
as the vertical and horizontal axes, respectively. The solid curve shows the relation between these
indices for main-sequence stars (lower branch) and giants (upper branch). The dotted curve shows
the colors of blackbody spectra at the indicated temperatures. Straight dashed lines indicate the
relative color changes due to interstellar reddening.

from a blackbody because they are not equally opaque at all wavelengths. A dominant source
of opacity in the outer layers of low-mass stars (including the Sun) is the H− ion. The opacity
from H− has a broad minimum near 1.6 µm, close to the H-band. Consequently, cool stars
that emit much of their energy in this regime have near-infrared colors that differ significantly
from blackbodies. This deviation is evident in the solid curve in the figure, which represents a
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sequence of photospheres for both main-sequence stars and giants. Moving to the right along
this curve toward lower Teff , the surface opacity is increasingly dominated by molecular lines.
A prime source in the near-infrared is CO, whose rich spectrum we shall encounter again in
Chapter 5. The depth of the numerous CO absorption lines, and consequently the broadband
color, is sensitive to the stellar surface gravity, which is lower in the giants. Hence, the solid
curve eventually bifurcates, at a spectral type of early K. The upper branch represents the giants,
while the lower is the main sequence.

Thus far we have considered only unreddened stars, such as those found in front of the
cluster of interest. As we saw in Chapter 2, colors are also modified through dust extinction.
The actual values of the color excesses EJ−H and EH−K depend on the column density, but
a general relation between the two may be deduced from the extinction curve. Referring once
more to Figure 2.7, we find

EJ−H

EH−K
=

(
EJ−V

EB−V
− EH−V

EB−V

) (
EH−V

EB−V
− EK−V

EB−V

)
−1

=
2.58 − 2.25
2.77 − 2.58

= 1.74 .

(4.1)

Thus, for any background star with intrinsic colors (J−H)◦ and (H−K)◦, the observed colors
lie along the reddening vector given by

(J − H) − (J − H)◦ = 1.74 [(H − K) − (H − K)◦] . (4.2)

Returning to Figure 4.1, the measured J −H and H −K values for an ensemble of stars should
fall within the band enclosed by dashed lines.

In Figure 4.2 we show a color-color diagram for IC 348, a compact cluster located in the
Perseus Molecular Cloud, at a distance of 320 pc. This system does contain numerous optically
visible stars, but many more are still embedded. Of the 342 sources plotted, comparison with
adjacent fields indicates that about 60 percent should be cluster members. The majority of stars
in the diagram have near-infrared colors that are close to, but above, the main-sequence curve,
with a displacement along the reddening vector that corresponds to AV � 5 mag. A smaller
number of sources have significantly larger AV , while some 20 percent lie well outside the
dashed boundaries altogether. These latter stars, which are redder in H − K than would be
expected from their J − H colors, are said to exhibit an infrared excess.

4.1.2 Classification of Member Stars

The infrared excess of a young star arises not from the reddening due to distant grains, but
from emission relatively close to the stellar surface. That is, the phenomenon is circumstellar,
rather than interstellar, in origin. As our present example illustrates, all stars within embedded
clusters are subject to reddening by foreground dust, whether or not they have an infrared excess.
Once the full spectral energy distribution of a source is established from observations, one may
use the estimated AV through the cloud, together with the extinction curve, to calculate Aλ,
the extinction at all other wavelengths. In this manner, the “dereddened” energy distribution
stemming from the star and its circumstellar matter can be reconstructed. Stars with heavy
infrared excesses and those with none lie at the extremes of a rather well-defined morphological
sequence of broadband spectra.
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Figure 4.2 Color-color diagram of the embedded cluster IC 348. The open circles represent
member stars. The solid curve at the lower left, partially hidden from view, is the main-sequence
relation from Figure 4.1, shown with the associated reddening band (dashed lines). The reddening
vector corresponding to AV = 5 mag is at the lower right.

To illustrate the trend, we turn to another well-studied region, the dense cluster at the heart of
the ρ Ophiuchi dark cloud complex. Near-infrared surveys have detected hundreds of embedded
stars in the L1688 cloud, at the western end of the complex (recall Figure 3.17). Toward the
center of this cloud, the visual extinction exceeds 50 mag. The dereddened spectral energy
distributions of three representative sources are shown in Figure 4.3. Plotted as a function of
wavelength is λFλ, the flux measured per logarithmic wavelength interval. The spectrum of
the star WL 12 shows a pronounced infrared excess, in that λFλ, which would normally peak
near 1 µm in a late-type star, is still increasing out to 60 µm. The flux eventually does fall at
submillimeter and longer wavelengths, which are not included here. For the star SR 24, the flux
has a shallow negative slope in the mid- and far-infrared regime, while for SR 20 it falls steeply.
In this last example, the spectrum is beginning to resemble a blackbody curve, also shown in
the figure.
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Figure 4.3 Spectral energy distribution of three stars in the ρ Ophiuchi dark cloud complex. The
dashed curve corresponds to a blackbody at 2300 K. From bottom to top, these broadband spectra
exemplify Class I, II, and III sources, respectively.

The copious infrared emission from the first two sources stems from heated dust grains. Note
from equation (2.32) that thermal radiation which peaks at 10 µm has an associated temperature
near 300 K. The typical infrared excess does not display a pure blackbody spectrum, indicating
a significant range of temperatures. Moreover, these temperatures are high enough that the dust
in question must be relatively close to the star. It is natural to suppose that these grains are part
of cloud material that is either participating in protostellar collapse or else was left behind after
collapse ended. Such remnant matter gradually disappears with time.

Pursuing this line of reasoning, we may use the infrared excess as an empirical measure of
stellar youth. We quantify matters by considering the infrared spectral index αIR:

αIR ≡ d log (λFλ)
d logλ

. (4.3)

It is conventional to evaluate the derivative by numerically differencing the flux between 2.2 and
10 µm. Infrared sources such as WL 12, with αIR > 0, are said to be in Class I. Such objects
are generally associated with dense cores, as seen by NH3 emission. The less embedded star
SR 24 is an example of a Class II source, for which −1.5 < αIR < 0. Class III stars like SR 20
have αIR < −1.5. Finally, a “Class 0” has been added to incorporate sources so deeply buried
that they can only be detected at far-infrared and millimeter wavelengths. One example, shown
in Figure 4.4, is the object known as L1448/mm. This star of 10 L� lies inside a Bok globule
in the Perseus region, some 300 pc distant. Notice how its spectral energy distribution is shifted
to much longer wavelengths than those in Figure 4.3. Like all Class 0 objects, L1448/mm is
driving a powerful molecular outflow.



94 4 Young Stellar Systems

Figure 4.4 Spectral energy distribution of the Class 0 source L1448/mm in Perseus.

4.1.3 Cluster Luminosity Functions

The spectral classification scheme is a convenient means to gauge the evolutionary status of
cluster stars that are inaccessible to more direct observation. A complementary tool of equal
importance is the cluster luminosity function. Here one counts up the number of stars ∆N that
have luminosities in the range L∗ to L∗ + ∆L∗, where L∗ itself spans the range of observed
values. We recall from Chapter 1 that pre-main-sequence stars have luminosities that evolve
during contraction, at rates that are highly mass-dependent. Since any sufficiently young cluster
contains a large fraction of such objects, the form of ∆N(L∗) changes with time until most
members have settled onto the main sequence. The potential value of the luminosity function as
an evolutionary probe is thus apparent, but observers have not yet taken full advantage of this
technique.

The main impediment has been the practical difficulty of obtaining bolometric luminosities
for large numbers of embedded stars. The satellite observations used at long wavelengths have
so far lacked the high spatial resolution required to sample the crowded fields in dense clusters.
Consequently, the most complete luminosity functions at present are those in a single near-
infrared wavelength, usually the K band. Figure 4.5 shows the K luminosity function for 90
stars in the central region (L1688 cloud) of the ρ Ophiuchi complex. Note that the falloff in the
population for mK � 10 simply reflects the incompleteness of observations at this magnitude.
Subsequent observations have found the population to increase down to at least mK = 14.
At this faint level and beyond, the membership of the numerous sources in the vicinity is less
secure.

Measurements at other wavelengths have allowed the determination of bolometric lumi-
nosities for about 50 of the ρ Ophiuchi stars in L1688. Figure 4.6 displays the currently known
bolometric luminosity function. Also shown here is the distribution of sources among the spec-
tral classes. Once again, the decline in the population at the highest luminosities is real, but
that at low Lbol is not, and is being pushed back by more sensitive surveys. We will return to
the physical interpretation of luminosity functions later in this chapter and again in Chapter 12,
when we revisit cluster evolution from a more theoretical perspective.
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Figure 4.5 Luminosity function in the K band for 90 stars in the L1688 region of ρ Ophiuchi.

Figure 4.6 Bolometric luminosity function for 55 ρ Ophiuchi stars, again in L1688. The distri-
bution among three spectral classes is indicated.
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4.1.4 Morphology of the Groups

Let us now turn to the morphology of actual clusters. A more complete picture is obtained
by combining infrared studies of stars and their attendant dust with radio observations of the
gas. One important example is the ensemble of clusters within the L1630 region of Orion B.
Here, star formation is almost exclusively confined to four discrete regions: NGC 2071, 2068,
2023, and 2024 (recall Figures 1.2 and 1.3). Each of these clusters, roughly 1 pc in diameter, is
associated with a previously known HII region or reflection nebula, signaling the presence of at
least one O or B star. Stellar densities are of order 100 pc−3, similar to the nucleus of the L1688
cloud in ρ Ophiuchi. In both locations, molecular gas with nH > 104 cm−3 comprises from 50
to 90 percent of the total mass of several hundred M� within the cluster borders.

The massive, bright stars spawned within many clusters allow these systems to be seen
across the Galaxy. Subsequent mapping with near-infrared arrays has then revealed the lower-
mass population. Plates 1 through 8 (see end of chapter) are a sequence of images showing
groups in formation, at the distance of Orion and beyond. First is NGC 2024, richest of the
L1630 clusters. On the left in Plate 1 is the optical view, which is notable for the broad, vertical
dust lane obscuring most of the interior stars. Several hundred of these stars are revealed in the
infrared image shown as the righthand part of Plate 1. Here it is apparent that the very brightest
stars tend to lie in the most crowded portion of the cluster, a region that is invisible optically.

Most embedded systems like this one are not destined to form open clusters, but will become
unbound after their gas is dispersed. The argument is a statistical one. Assuming that star
formation in the Orion Molecular Cloud is representative of other complexes, then roughly 50
clusters like NGC 2024 should be forming now within 2 kpc of the Sun. We noted in Chapter 3
that much of the molecular gas associated with a cluster disappears by 5 × 106 yr, which we
may take as a representative formation time. Thus, after 108 yr of steady cluster production,
about 50 × 20 = 103 systems should be found in the same Galactic area. In fact, the total
number of open clusters this age or younger is less than 100, so that their formation must be
quite inefficient.

Plate 2 is a near-infrared view of S106, the nearest (at 600 pc) and best-studied example
of a bipolar nebula illuminated by a massive star. Long known as an optical HII region, S106
again has a prominent dark lane in its central region. Here radio studies have uncovered a rich
concentration of molecular gas. Situated within the obscuring slab is the infrared source IRS 4,
a late-O or early-B star of 104 L� that is driving high-velocity, ionized flows into each lobe.
These latter two structures span a total length of 0.7 pc. Over 200 stars with mK < +14 are
located within a 0.3 pc radius of IRS 4. The stellar density, which again peaks near the massive
star, exceeds 103 pc−3, approaching that in the Trapezium cluster.

Not all massive stars coincide with low-luminosity clusters, at least according to present
observations. Plate 3 is a red photograph showing three HII regions in the Gem OB1 association,
2.5 kpc distant. The left and center regions are denoted S255 and S257, respectively, while
the more diffuse region to the right is S254. The bottom panel (Plate 4) is a near-infrared
image covering a smaller scale. The two brightest objects on the extreme left and right are
the isolated B0 stars exciting S255 and S257, respectively. These stars have no detected low-
mass companions. On the other hand, the prominent cluster between them, revealed only in
the infrared, contains about 70 members within a 0.5 pc radius. Near the cluster center is
an embedded star, designated S255/IR, that radiates close to 105 L�, largely in the far-infrared.
The cluster itself is sandwiched between two peaks of radio emission from a compact molecular
cloud.
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Intermediate-mass stars are also frequently located within clusters of less massive objects,
but this retinue is less dense. Consider the Herbig Be star BD+40◦4124, located 1 kpc away, in
the direction of the Cygnus spiral arm. Near-infrared imaging (Plate 5) shows the star attended
by several dozen embedded sources; these outnumber the nearby visible T Tauri stars by a
factor of three. Observations in 12C18O and CS reveal two such visible stars, V1318 Cygni and
V1686 Cygni, to be situated in a ridge of very dense gas, comprising several hundred M�. The
molecular outflow and maser activity also detected in the region stem from a bright infrared
binary companion to V1318 Cygni, rather than the optical Be star. This companion has the
largest infrared excess of any cluster member. Whether other visible Herbig stars actually drive
molecular outflows remains an open question.

Occasionally, star forming regions of differing ages are found in proximity, as illustrated in
Plate 6. This image shows the environment of NGC 7538, a previously known HII region in the
Cas OB2 association. Diffuse radiation from the HII region itself, consisting of both reflected
starlight and thermal gas emission, appears as the crescent-shaped nebulosity surrounding the
hot, white OB stars. The two prominent red patches are even younger regions containing molec-
ular gas and compact clusters of embedded stars.

One of the most spectacular HII regions is NGC 3603, shown in the central portion of
Plate 7. This massive cluster, seen here in the near-infrared, is located in the Carina spiral arm,
at a distance of 6 to 7 kpc. The O and B stars alone comprise some 2000 M� and have 100
times the ionizing luminosity of the Trapezium Cluster. Indeed, the center of NGC 3603 is
one of the densest concentrations of high-mass objects in the Galaxy. Many of the O and B
stars are visible optically, despite the ambient dust. However, the far more numerous low-mass
stars are only discernible in the infrared. Their placement in a color-magnitude diagram yields
pre-main-sequence contraction ages of 3 × 105 to 1 × 106 yr.

The production of many thousands of stars in such a brief period makes NGC 3603 an
impressive HII region but still not on the scale of a true starburst. To find these, we need to
go outside the Milky Way. The neighboring Large Magellanic Cloud, for example, contains
30 Doradus (Plate 8). This giant HII region is morphologically similar to NGC 3603, but has a
total luminosity ten times higher, i. e., of order 108 L�. The central cluster is bright enough to be
seen optically, even at a distance of 50 kpc. Note the great tendrils of gas around the compact,
stellar group. These structures give the region its other name, The Tarantula Nebula. Even
brighter starbursts lie within dwarf irregular and spiral galaxies, all located at greater distances.

4.2 T and R Associations

The fate of an embedded cluster depends partially on how its gas is dispersed. In many cases,
one or more high-mass stars drive off the interstellar matter relatively quickly. The result is the
expanding group of stars known as an OB association. Other systems were born in dark cloud
complexes that never contained massive stars. The extended distribution of low-mass stars in
Taurus-Auriga (Figure 1.11) is not the product of rapid dispersal, but largely reflects the initial
extent of the parent cloud. Not only are many of the visible stars too young to have spread
far, but a significant number of even younger, embedded sources are commingled spatially with
the others. Since the vast majority of the members in this system are T Tauri stars, the Taurus-
Auriga stellar complex is designated generically as a T association. The term was introduced by
V. Ambartsumian in 1949, four years after the identification of the T Tauri class by A. H. Joy.
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4.2.1 T Tauri Star Birthsites

While the existence of an embedded cluster can be initially established by simply examining
near-infrared images, finding a T association requires also the identification of T Tauri stars per
se. These come in two varieties. The classical T Tauri stars are conspicuous spectroscopically
for their strong optical emission lines in Hα, as well as the H and K-lines of Ca II at 3968 Å
and 3934 Å, respectively. A practical and efficient search strategy, then, is to equip wide-
field telescopes with objective prisms that can simultaneously record many stellar spectra over
a few square degrees of the sky. Such surveys, however, capture only part of the population
of interest. At least as numerous as the classical members are the weak-lined T Tauri stars.
As their name implies, these stars lack strong emission lines, although the two types overlap
substantially in age. The weak-lined population was actually discovered through its enhanced
X-ray emission relative to main-sequence field stars. X-ray detection was made initially with
the Einstein satellite, launched in 1979 and operational through 1981. The launch of the more
sensitive ROSAT satellite in 1991 provided more weak-lined candidates.

Figure 4.7 shows the distribution of nearby T associations in the Galactic plane. The groups
range from TW Hydrae, a small aggregate of T Tauri stars only 50 pc away, to the populous
and highly active NGC 1333 in the Perseus cloud complex. Named for a bright reflection
nebula, the latter region contains dozens of visible young stars and over a hundred embedded
ones, including many that drive molecular outflows. Within the Serpens region, also depicted
here, most visible stars are associated with the L572 cloud, which has a dense complement of
infrared sources. Finally, the large molecular complex in Cygnus has both revealed T Tauri stars
and embedded sources in the L984 and L988 clouds.

Our figure also includes major embedded clusters, such as ρ Ophiuchi and IC 348 (also
part of the Perseus cloud). Indeed, all the regions shown in this map contain both obscured
and visible objects. Within ρ Ophiuchi, for example, is a large group of revealed low-mass
objects on the outskirts of the compact L1688 core. The numerous visible stars of IC 348 are
more centrally concentrated. Surveys in Hα have discerned a scattered population of visible
stars lying outside the four obscured clusters of Orion B. In summary, embedded clusters and T
associations should be viewed as extremes along a continuum of morphological types.

The properties of T associations are well illustrated by the nearest prominent example,
Taurus-Auriga, which has been scrutinized thoroughly in the infrared, optical, and X-ray
regimes. Here, it has been possible to establish the membership of most stars kinematically.
One first obtains a radial velocity, Vr, for each star by examining a convenient portion of its op-
tical spectrum. We compare absorption lines with those of a standard star of the same spectral
type, yielding the Doppler shift and hence Vr. In Taurus-Auriga, the results for both classi-
cal and weak-lined members agree well with the velocities of the local cloud gas, as obtained
from molecular lines. Note that both cloud and stellar Vr-values change over the length of the
complex, but the entity as a whole appears to be gravitationally bound.

Obtaining the orthogonal component of velocity, i. e., the proper motion, requires compar-
ison of at least two wide-field images well separated in time. Such comparison shows that the
proper motions of Taurus-Auriga stars cluster tightly about a single vector, as expected. The
one-dimensional dispersion is from 2 to 3 km s−1. No velocity information is available for
the more deeply embedded (Class I) members, which constitute about 10 percent of the popula-
tion. The total number of kinematically confirmed members within the boundary of the complex
shown in Figure 1.11 stands at about 100, with 60 being classical and the rest weak-lined T Tauri
stars. This tally is probably complete down to a V -magnitude of +15.5.
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Figure 4.7 Distribution within the Galactic plane of nearby T associations and embedded clusters.
Note the longitude convention: the Galactic center is at l = 0◦, while Cygnus lies near l = 90◦.
Note also the symbol representing the Sun’s location.

Although associations do not exhibit the high degree of central concentration seen in em-
bedded clusters, all large molecular clouds, including dark cloud complexes, are intrinsically
clumpy. Hence, some degree of clustering is to be expected in the stars born from such struc-
tures. Figure 4.8 confirms this hypothesis in the case of Taurus-Auriga. The heavy contours
are lines of constant stellar surface density in the plane of the sky, while the lighter curve is
the CO boundary from Figure 1.11. Each of the 6 groups, containing 5 to 20 stars each, has a
projected radius under 1.0 pc and an internal, radial velocity dispersion of 0.5 to 1.0 km s−1.
Thus, most of the total measured dispersion across the complex actually stems from the relative
motion between these subunits.

4.2.2 HR Diagrams: Main-Sequence Turnon

A particularly effective means of visualizing the composition and evolutionary status of a
T association is to place its optically visible members in the theoretical HR diagram. Figure 4.9
displays the diagrams for four associations. In most cases, the quantity L∗ has been extrapo-
lated from the luminosity in the J-band. To this monochromatic value was added a bolometric
correction. Strictly speaking, the latter is appropriate only for a main-sequence star. Detailed
comparisons find, however, that the resulting L∗-values are accurate to within an error of about
20 percent.
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Figure 4.8 Clumping of stars in Taurus-Auriga. The heavy contours represent stellar surface
density, while the solid grey contour is the border of CO emission from Figure 1.11.

Beginning with Taurus-Auriga (Figure 4.9a), we see that many stars are crowded near the
birthline, also shown in each panel. These members have only recently dispersed their obscuring
envelopes of dust and gas. An even younger population is represented by the embedded, infrared
sources, which, in the absence of a measurable effective temperature, cannot be placed in a
conventional HR diagram. The youngest optical members are mostly classical T Tauri stars,
symbolized by the filled circles, but contain an admixture of weak-lined members (open circles).
Below the birthline, the number of low-mass stars drops off before the main sequence is reached,
at isochrones corresponding to several million years. Thus, the complex as a whole began
forming stars at that epoch and continues to produce them today.

It is also apparent that the proportion of non-emission stars increases markedly as a function
of age. This trend is consistent with the fact that the strong emission lines present in the clas-
sical T Tauri population are absent in ZAMS stars of the same mass. In addition, most of the
weak-lined stars, including the ones shown here, lack the infrared excess of their classical coun-
terparts. 1 Thus, both the hot gas (T ∼ 104 K) creating optical emission lines and the cooler

1 An infrared excess always signifies the presence of circumstellar dust. Hence those weak-lined stars with main-
sequence spectral energy distributions in the infrared were formerly designated “naked” T Tauri stars. The open
circles in Figure 4.9 also include some older, “post-T Tauri” stars, to be defined shortly.
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Figure 4.9 HR diagrams for four stellar associations. In panels (a)–(c), closed circles represent
classical T Tauri stars, while open circles are weak-lined and post-T Tauri stars. For NGC 2264,
we show both classical T Tauri and Herbig Ae/Be stars, as well as main-sequence objects. The
upper and lower solid curves in each panel are the birthline and ZAMS, respectively.

dust (T ∼ 102 − 103 K) emitting in the near- and mid-infrared regimes gradually disappear in
a low-mass pre-main-sequence object.

The highest stellar density in a nearby T association occurs in the Lupus constellation in
the southern sky. Because of its location, about 10◦ south of ρ Ophiuchi, this large and active
association is less well-studied than Taurus-Auriga. Star formation is mainly confined to four
subgroups embedded in an extended dark cloud complex (see Figure 4.10). The total mass
in molecular gas is 3 × 104 M�, close to that for Taurus-Auriga, with a substantial fraction
located in the isolated B228 cloud. The greatest concentrations of CO emission correspond to
filamentary dust lanes apparent in optical photographs.

Originally, the young stars catalogued in Lupus were classical T Tauri’s discovered in ob-
jective prism surveys. Later X-ray studies found other, weak-lined objects. In addition, there
is a Herbig Ae star of 71 L�. Fully half of the association members are in the Lupus 3 sub-
group; these stars are only indicated schematically in Figure 4.10. The Ae star (HR 5999) is
part of a binary pair at the center of this highly compact stellar birthplace. The HR diagram
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Figure 4.10 Stars and molecular gas in the Lupus association. The contours trace 12C16O inten-
sity. Large star symbols represent tight clusters.

for all the subgroups together (Figure 4.9b) again shows a population near the birthline, in-
dicating current star formation activity. The picture will be more complete once infrared and
weak-lined sources are studied more systematically. Finally, we note that a polarization map
of background starlight reveals a well-ordered magnetic field oriented roughly perpendicular to
the most prominent filaments.

In the case of Taurus-Auriga, the distance of 140 pc can be determined reliably by comparing
the absolute and dereddened apparent magnitudes of main-sequence stars that have reflection
nebulae, and are therefore physically associated with the dark clouds. For the more sparsely
sampled Lupus region, a more uncertain figure of 150 pc follows from its proximity to the
Scorpius-Centaurus OB association. Yet a third T association at a similar distance is that of
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Figure 4.11 Halo of X-ray emitting stars in the Chamaeleon region. The solid contours trace
100 µm continuum emission, delineating the dust and gas. Dotted lines and curves indicate right
ascension and declination.

Chamaeleon. In this region, close to the South celestial pole, the molecular gas is confined
to three well-defined, coherent structures, as labeled in Figure 4.11. Of these, Chamaeleon I
has both the highest visual extinction and the largest population of young stars, while the more
irregular Chamaeleon III appears to lack any star formation activity. Since the Chamaeleon
constellation is 15◦ from the Galactic plane, all three clouds are relatively free of background
stars.

The HR diagram for Chamaeleon I includes some 80 association members. About half were
first identified optically, either from Hα emission surveys or else by virtue of their photometric
variability, another characteristic property of classical T Tauri stars. The remainder are weak-
lined stars discovered initially through their X-ray emission by the ROSAT satellite. It is clear
from the diagram in Figure 4.9c that the classical and weak-lined stars are thoroughly intermin-
gled in both mass and age, with many close to the birthline. Further evidence of ongoing star
formation is the presence of infrared sources with no optical counterparts; some of these are
exciting Herbig-Haro objects and molecular outflows.

X-ray observations have revealed an additional population of stars in the Chamaeleon re-
gion. Some lie inside the molecular cloud boundaries, but most do not, and are distributed over
tens of parsecs (Figure 4.11). Similar halos surround the Taurus-Auriga, Orion, and Lupus re-
gions. A relatively young age is indicated for some of these objects by the presence of surface
lithium, which is gradually destroyed in the course of stellar evolution (Chapter 16). This subset
consists largely of post-T Tauri stars, i. e., contracting objects intermediate in their properties
between classical and weak-lined stars on the one hand, and those already settled onto the main
sequence (Chapter 17). The rest are even older, with ages perhaps as great as 108 yr. In any case,



104 4 Young Stellar Systems

Figure 4.12 Stars and gas in
NGC 2264. The solid contour rep-
resents the boundary of emission in
12C16O.

this halo population either migrated from the present-day Chamaeleon region or else formed out
of molecular gas that has long since vanished.

The fourth HR diagram of Figure 4.9 shows NGC 2264, a populous grouping of stars in
Monoceros. In both evolution and morphology, this region represents a transition from a fully
embedded to an open cluster. Several hundred optically visible members range in mass from
the O7 star S Mon to very late-type T Tauri stars. The system lies at a distance of 800 pc, too
far for complete X-ray identification of weak-lined stars. As seen in Figure 4.12, most visible
members are crowded into the southern portion of a large molecular cloud. This cloud in turn is
part of the Mon OB1 complex, whose boundary we have also included in Figure 1.1. Judging
from the slight color excesses observed, the visible cluster sits just in front of the cloud, while
a host of embedded infrared stars – some driving vigorous molecular outflows – extend further
behind. The cloud itself, some 25 pc long and with a mass of 3× 104 M�, conveniently blocks
background starlight at optical wavelengths, facilitating study of the cluster members.

The HR diagram of NGC 2264 again shows numerous stars close to the birthline, including
now the most massive pre-main-sequence objects near 10 M�. In addition, there is a clearly
defined main sequence, but only down to 3 M�, corresponding to a spectral type of A0. Less
massive stars, with their slower contraction rates, have not yet had time to reach the ZAMS. His-
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Figure 4.13 Bolometric luminosity functions for (a) Taurus-Auriga and (b) Chamaeleon I. The
dashed curve is the initial luminosity function, defined here as the relative number of field stars per
logarithmic unit of Lbol (see § 4.5.1.). Shading indicates different infrared classes, as explained
in panel (a).

torically, it was the discovery of this main-sequence turnon in the equivalent color-magnitude
diagram that enabled M. Walker in 1956 to demonstrate unambiguously the existence of the pre-
main-sequence phase. Through spectroscopic analysis, Walker then confirmed that the youngest
low-mass members were the recently identified T Tauri class. Note that the contraction time
from the birthline to the ZAMS for a 3 M� star is 2 × 106 yr. This figure represents the time
in the past when visible stars first began to emerge from the front face of the Mon OB1 cloud.
Clearly, this process is continuing today.

4.2.3 Association Luminosity Functions

The bolometric luminosity functions of T associations, like those for embedded clusters, are
another potentially valuable diagnostic and less plagued in this case by incompleteness of the
sample. Figure 4.13a shows the luminosity function for 130 stars in Taurus-Auriga. Here, as
in Figure 4.6, we have subdivided the members by their near-infrared class. The peak near
Lbol ∼ 1 L� is real, since the limiting luminosity of the survey is closer to 0.1 L�.

Figure 4.13b displays the same data for 62 stars in Chamaeleon I. The existence of a max-
imum in this case is more problematic. In addition, the absence of Class III objects simply
reflects the selection criteria for membership, which included the detection of a near-infrared
excess. For both associations, the luminosity functions have more stars than the respective HR
diagrams, which require spectroscopic analysis to establish Teff .
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How are we to gauge the significance of Figure 4.13? It is instructive to compare these re-
sults with the theoretical luminosity distribution of field stars as they first appear on the ZAMS.
This so-called initial luminosity function, denoted Ψ (Lbol), is shown by the dashed curves
in Figure 4.13. As described in § 4.5 below, we obtain the function by combining stellar lu-
minosities with main-sequence lifetimes. In both Taurus-Auriga and Chamaeleon I, Ψ (Lbol)
matches rather well the observed falloff at high luminosity. For Taurus, however, the data dis-
play a steeper decline near 1 L�. Figure 4.6 shows that the same is true for the embedded
ρ Ophiuchi cluster. Another difference from the smooth field-star curve is the maximum in the
Taurus-Auriga luminosity function. Both these characteristics are in accord with theoretical ex-
pectations (Chapter 12). The “initial” luminosity function is in fact only reached gradually in a
cluster or association, as pre-main-sequence members contract and cool.

4.2.4 Intermediate-Mass Objects

We have seen how the discovery of a T association generally begins with an objective prism
search for emission-line objects. Included in this category are the rarer Herbig Ae and Be stars,
which are often picked out through the same technique. Most intermediate-mass stars, however,
are even closer to the ZAMS and lack prominent emission lines. On the other hand, their
contraction times are so short that such stars are frequently still illuminating nearby molecular
gas. Groups of young, intermediate-mass stars are therefore conspicuous on optical photographs
by the reflection nebulae accompanying them. These appear as fuzzy patches that are bluer in
color than their host stars, since the reflection of visible light from dust grains is more efficient
at shorter wavelengths. We call such stellar groups R associations.

Because intermediate-mass stars lack both the brilliance of more massive objects and the
large numbers of T Tauri stars, R associations have not received a great deal of scrutiny. The

Table 4.1 The Nearest R Associations

Name Distance B stars
(pc)

Taurus R1 110 4
Taurus R2 140 2
Scorpius R1 150 9
Perseus R1 330 4
Taurus-Orion R1 360 5
Cepheus R2 400 5
Vela R1 460 3
Cassiopeia R1 530 5
Orion R1/R2 470 6
Cepheus R1 660 3
Canis Major R1 690 8
Monoceros R1 800 4
Monoceros R2 830 7
Vela R2 870 6
Scorpius R5 870 4
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typical system consists of a dozen or so A- and B-type stars spread out over perhaps 10 pc. Inter-
mingled with these objects is a larger population of low-mass stars, many of which are T Tauri’s.
The majority of intermediate-mass stars in the association are on the main sequence, but some
have the emission lines indicative of pre-main-sequence contraction. From Figure 1.18, these
latter members have nearly identical luminosities as ZAMS stars of the same mass but lower
effective temperatures. One well-known R association is Mon R1, located near the NGC 2264
cluster. Other examples include Ori R1 and Ori R2. The first is within the L1630 region of the
Orion B molecular complex (Figure 1.3), while the second is a more widely dispersed collection
of reflection nebulae centered on the Trapezium in Orion A. Table 4.1 lists all the R associations
within 1 kpc. Here we give both the distance and the number of identified B stars.

Photometric techniques are employed to study the properties of the dust within R associa-
tions. Recall that stars already on the main sequence have well-known absolute magnitudes and
intrinsic colors as a function of their spectral type. Given the latter, the apparent B − V color
of a main-sequence star illuminating a reflection nebula immediately yields its color excess
EB−V. Suppose now that the distance to the association is already established. Then the ap-
parent V -magnitude of the same member star gives its associated AV through equation (2.12).
One common result of such investigations is that AV varies substantially from one star to an-
other within the R association, indicating a clumpy distribution of dust. More intriguing is the
fact that the ratio AV /EB−V is often higher than the fiducial interstellar value given by equa-
tion (2.16). Such “greyer” extinction is a sign that the typical grain is abnormally large, the
result presumably of continuing mantle growth within the denser portions of the enveloping
clouds.

4.3 OB Associations

As we consider progressively more massive young stars, any cloud material in proximity not
only reflects starlight, but starts to generate its own optical radiation. This emission stems from
ionization created by the ultraviolet component of the stellar spectrum. The O and early-B
stars capable of such ionization are themselves often found in loose collections of a few dozen
members. Although their boundaries are often difficult to locate with any precision, these OB
associations extend over regions that can be as small as ordinary open clusters, or as large as
several hundred parsecs in diameter.

Historically, the tendency for O and B-type stars to cluster was recognized as soon as precise
spectral classification became available, at the beginning of the 20th century. Spectroscopic and
proper motion studies gave a physical basis to the observed grouping by establishing common
spatial velocities for bright stars in Orion, Perseus, and the Scorpius-Centaurus region. It grad-
ually became clear that their large internal velocities, typically about 4 km s−1, doom these
systems to expansion and eventual dispersal. Observational verification of the expansion came
in 1952, when A. Blaauw measured proper motions in what is now called Per OB2 (signifying
the second OB association in the Perseus region). With this discovery came understanding of
the great size range of these systems. The largest are the oldest, with maximum inferred ages of
about 3 × 107 yr.
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4.3.1 Location within the Galaxy

None of the massive stars in OB associations have optically visible pre-main-sequence con-
traction phases. In any given system, therefore, most of the luminous members lie on the main
sequence, while a smaller fraction are supergiants caught in the act of leaving it. This fact allows
determination of the distance to the association, through the technique known as spectroscopic
parallax. The first step is to obtain, through analysis of absorption lines, the spectral types of
as many member stars as possible. Photometry in the V -band then allows placement of the
association in a diagram plotting mV against spectral type. At this point, we again utilize the
fact that the absolute magnitude MV is a known function of spectral type along the main se-
quence (Table 1.1). The difference between MV and mV for each star then yields the distance
via equation (2.12). Of course, this equation cannot be used without knowledge of the inter-
stellar extinction AV . Since the extinction is itself proportional to distance, one must obtain a
self-consistent solution through trial and error.

For individual stars located outside associations, a variant of the method is still feasible.
First, one uses spectroscopic analysis to verify that the object is on the main sequence. Pho-
tometry in two wavebands then establishes the apparent color. This may be compared with the
intrinsic color index to yield the reddening and extinction, and hence the distance. Note that a
basic assumption underlying spectroscopic parallax is that the standard relations hold between
reddening and extinction, and between extinction and distance. The method is therefore un-
suited for investigating clumpy clouds or those with anomalously large grains, although such
local effects presumably fade in significance with greater distance. Indeed, many visible OB
associations are too far away for accurate spectroscopy. In these cases, photometry in three
wavebands suffices to place the member stars in a color-color diagram analogous to Figure 4.2.
If the stars lie off the appropriate main-sequence curve, one may draw the reddening vector to
read off the extinction and thus the distance. When applied to the (U − B, B − V ) diagram,
this procedure is traditionally known as the Q method.2

Such techniques have facilitated the location of hundreds of O and B stars throughout the
Galactic disk. Early efforts yielded the first convincing delineation of the local spiral arms, a
discovery soon corroborated by researchers employing the 21 cm line of HI. OB associations
trace the spiral structure as reliably as the interstellar gas because their constituent stars are too
young to have moved far from their birthsites. Out of 200 O stars within 3 kpc of the Sun,
some 75 percent are within associations. The figure falls to 50 percent for B0 – B2 stars, whose
population is not as completely sampled. Modern study of OB associations has been greatly
facilitated by the remarkable sensitivity of charge-coupled detectors (CCDs). In addition, near-
infrared arrays and X-ray detectors have enabled us to probe the lower-mass component of these
systems.

2 Consider, for any observed star, the quantity EU−B/EB−V. The relation analogous to equation (4.1) together with
the interstellar extinction curve (Figure 2.7) imply that this ratio has the numerical value 0.71, independently of the
actual degree of reddening to the star or its spectral type. From the definition of the color excess (equation (2.14)), it
follows that

(U − B) − 0.71 (B − V ) = (U − B)◦ − 0.71 (B − V )◦ ≡ Q .

The quantity Q is thus also reddening-independent, but varies with spectral type. Note that (U −B)◦ and (B−V )◦
are functionally related along the main sequence. Knowledge of Q from the apparent magnitudes therefore also
yields the star’s intrinsic colors and hence the reddening.
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Figure 4.14 Galactic distribution of the closest OB associations. The Sun is indicated near the
center of the frame. Sizes of the circles represent the physical dimension of each system and, in
a few cases, the gross morphology. Note the ring of stellar and gaseous emission in Gould’s Belt
(shaded region), surrounding the solar symbol.

Before delving into the morphology of individual associations, let us first consider their
spatial distribution. Figure 4.14 depicts all the systems within 1.5 kpc, as projected onto the
Galactic plane. The reader may profitably compare Figure 3.2 for giant molecular clouds, which
focuses on objects inside the Sun’s galactocentric radius. Note that the nearest segment of the
Perseus spiral arm, containing such associations as Cep OB1 and Per OB1, lies beyond the upper
right border of Figure 4.14, between 2 and 3 kpc away. Note, too, we have already encountered
many of these systems in other contexts. Thus, Mon OB1 is the relatively small association con-
taining the cluster NGC 2264, and Mon OB2 encompasses NGC 2244 in the Rosette molecular
cloud. Ori OB1 is the large association that includes the Trapezium, while Per OB2 surrounds
the embedded cluster IC 348. These examples illustrate how expanding stellar systems may
harbor smaller, interior clusters. They further remind us of the intimate relationship between
OB associations and giant molecular clouds. Indeed, it is the rare association that is not in close
proximity to some cloud complex.

Table 4.2 summarizes essential properties of the associations closer than about 600 pc, as
measured by the Hipparcos satellite. Listed here are both a distance and an estimated physical
diameter. The latter, indicated approximately in Figure 4.14, was obtained using the average
angular extent of each system together with its distance. The table also gives separately the
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Table 4.2 The Nearest OB Associations

Name Distance Diameter O stars B Stars
(pc) (pc)

Lower Centaurus-Crux 120 50 0 42
Upper Centaurus-Lupus 140 75 0 66
Upper Scorpius 150 30 0 49
α Persei (Perseus 3) 180 10 0 30
Cassiopeia-Taurus 210 200 0 83
Cepheus 6 270 40 0 6
Perseus 2 320 50 0 17
Trumpler 10 360 45 0 22
Lacerta 1 370 60 1 35
Vela 2 410 75 1 81
Orion1 470 75 9 327
Collinder 121 590 120 2 85
Cepheus 2 610 110 1 53

numbers of O and B-star members, as established through both spectroscopy and proper motion.
Notice that over half the systems have no O stars, which are rare objects indeed. Note finally
that the relatively small association designated Trumpler 10 is not depicted in the spatial map,
as it lies in front of the larger Vela OB2.

Returning to Figure 4.14, the shaded, open structure surrounding the solar position is
Gould’s Belt. This huge ring of bright stars and gas, up to 700 pc in diameter, links a number
of the closest associations. Near its center lies the Cassiopeia-Taurus (Cas-Tau) system. Con-
taining no stars brighter than MV = −5 and extending over some 200 pc, this diffuse grouping
stands out from the background field only by virtue of the similar and parallel proper motions of
its members. The entire Taurus-Auriga cloud complex lies within its borders, as does the small
and possibly bound system α Persei listed in Table 4.2. The Cas-Tau association appears to
represent the largely dispersed remnant from an earlier epoch of massive star formation. Other
systems in such an advanced state of disintegration must exist throughout the Galaxy, but are
currently impossible to find outside the solar neighborhood.

4.3.2 Expansion

The more compact associations strung out along Gould’s Belt have velocities indicating a gen-
eral expansion from the Cas-Tau region. The best-studied such system is that of Scorpius-
Centaurus (Sco-Cen). With a maximum size that rivals Cas-Tau, this association consists of
a sequence of three, spatially discrete subgroups (Figure 4.15). At one end lie the embedded
stars of the ρ Ophiuchi molecular clouds. The Lupus T association and its molecular complex
are just inside the border of the middle (Upper Centaurus-Lupus) subgroup, as shown in the
figure. Neither cloud region is forming O stars, but the ρ Ophiuchi complex in particular has
clearly been disturbed by such activity nearby. In Figure 3.17, the change in both the cloud
morphology and the pattern of polarization vectors near L1688 suggest compression from the
Upper Scorpius subgroup to its right. This impression is reinforced by 21 cm data revealing a
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Figure 4.15 Subgroups within the Sco-Cen OB association. Shown are the prominent stars, as
well as the molecular clouds in ρ Ophiuchi and Lupus.

shell of atomic hydrogen centered on the massive stars in Upper Scorpius and impinging on the
ρ Ophiuchi clouds.

From the dashed boundaries shown in Figure 4.15, it is apparent that the three optically
visible subgroups within Sco-Cen have differing sizes and hence ages. That is, these groups are
separated both spatially and temporally. It is natural to suppose that all three originated in a giant
molecular complex, of which the ρ Ophiuchi and Lupus clouds are the sole remains. The pattern
of subgroup ages then corresponds to the order in which various high-density regions of the
parent complex underwent gravitational collapse. Thus, the first subgroup to form massive stars
was Upper Centaurus-Lupus, followed by Lower Centaurus-Crux, and then Upper Scorpius.

To quantify matters and obtain actual ages, one may utilize the expansion velocities of indi-
vidual stars. Tracing their motion backwards in time leads to a unique configuration for which
the stellar density is highest. The corresponding time then gives the age of the subgroup in
question. In practice, both radial velocities and proper motions of the expected magnitude (a
few km s−1) are difficult to obtain. Within Sco-Cen, accurate proper motions are available in
Upper Scorpius, while radial velocities here are too small for detection. Figure 4.16 depicts the
proper motion vectors, as well as the inferred initial configuration, which has an associated age
of 4 × 106 yr. The longest dimension of this configuration is about 45 pc, in good agreement
with present-day giant cloud complexes. Note that all the velocities shown are those relative to
the mean proper motion of the subgroup; the latter reflects the global expansion of Gould’s Belt
mentioned previously.

4.3.3 Main-Sequence Turnoff

An independent check on this kinematic method comes from another clock– the HR diagram.
As was the case for the low-mass T associations, the distribution of stars in the diagram con-
stitutes a record of star formation history, but now supplies complementary information. Fig-
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Figure 4.16 Reconstructing the initial configuration of the Upper Scorpius subgroup. (a) Proper
motion vectors of prominent stars. (b) Most compact structure leading to the present configuration.

ure 4.17 displays the HR diagram for the Upper Scorpius subgroup. While the intermediate-
mass stars fall along the main sequence, higher-mass members begin to deviate from it, and
the most massive stars are absent altogether. This main-sequence turnoff reflects the age of the
system. The deviation occurs at a mass of about 30 M�, which translates into a main-sequence
lifetime of 5× 106 yr. The Upper Scorpius region must have begun producing stars at least that
far back in the past. Stars of significantly greater mass formed then or earlier would have fin-
ished burning hydrogen by now and migrated out of the diagram, thus accounting for the present
truncation of the main sequence. As illustrated in Figure 4.17, we may conveniently read off the
system age (in the foregoing sense) by matching the empirical turnoff with the set of theoretical
post-main-sequence isochrones, i. e., the loci of constant evolutionary time for stars of various
mass. Here, t = 0 corresponds to the initiation of hydrogen fusion on the ZAMS.

These considerations will naturally remind the reader of our previous discussion of the main-
sequence turnon in T associations. Both features of the HR diagram are age indicators, but their
conceptual difference is noteworthy. The turnon point singles out the oldest pre-main-sequence
stars in the association, i. e., it indicates when the formation of relatively low-mass objects
began. Conversely, the turnoff identifies the youngest post-main-sequence members and thus
tells us when the last high-mass stars were born. In a region currently devoid of molecular gas,
this latter time marks the end of the star formation process. Quite generally, the turnon “age”
should always exceed that given by the turnoff, with their difference being a measure of the total
duration of star formation activity.

Because of the statistics of stellar masses, not all forming groups exhibit both turnon and
turnoff points. Pure T associations like Lupus or Taurus-Auriga simply lack the high-mass
component that would include a turnoff. With regard to OB associations, however, numerous
surveys support the view that regions harboring massive stars invariably contain many more
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Figure 4.17 Main-sequence
turnoff in Upper Scorpius. The
dashed curve represents the
ZAMS, while the solid curve is
the 5 × 106 yr isochrone.

of lower mass. Within Upper Scorpius, X-ray observations by the Einstein satellite turned up
dozens of previously unknown members. Subsequent photometry and spectroscopy showed that
most of these are weak-lined T Tauri stars. Deeper surveys by the ROSAT and Chandra X-ray
satellites have uncovered even more sources, which by now outnumber the massive stars shown
in Figure 4.17.

4.3.4 The Orion Association

Let us apply these ideas to the best known of all OB associations, that in Orion. Figure 4.18
shows the familiar outline of CO emission from the giant molecular cloud, along with the ap-
proximate boundaries of the four identified subgroups. That labeled 1c largely coincides with
the Ori R1 association, while the small 1d subgroup is the region of radius 2.5 pc that includes
the even more compact Trapezium cluster.

The spatial pattern of all the subgroups again suggests vividly the progression of massive star
formation and further demonstrates how this process serves to clear out molecular gas. Thus,
the oldest and largest 1a subgroup lies in an area currently free of CO emission. With a little
imagination, one can picture how the Orion A cloud once extended northward into this region.
The somewhat younger 1b system still partially encompasses dense gas, while the smallest 1c
and 1d groups are wholly embedded within Orion A. This temporal ordering is confirmed by
the stellar distribution. For example, the most luminous star in 1b is the supergiant ζ Ori, with a
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Figure 4.18 Subgroups in the Orion OB association. The outline of CO emission is also shown.

mass of 49 M� and a main-sequence lifetime of 4 × 106 yr. The corresponding member of 1a
is η Ori, a B1 main-sequence star of 16 M� with a lifetime of 1.4 × 107 yr.

We saw in Chapter 1 how near-infrared surveys have revealed many young, low-mass stars
in the Orion B cloud. Similarly, in the 1d subgroup, a large, low-mass population is manifest
both in the optical and infrared. A similar distribution surely holds in Orion 1a, where a turnon
should exist somewhat below 1.5 M�, the mass with a pre-main-sequence contraction time of
1.4 × 107 yr. Picking out F and G stars from the plethora of background sources over such a
wide area is a challenging task.

Returning, then, to Figure 4.18, we can now appreciate how the OB association represents
but one aspect (albeit the most conspicuous one) of much more extensive formation activity.
Failure to recognize this fact has misled some into positing a causal link in subgroup formation.
The idea is that the creation of O and B stars in one locale somehow induces collapse in a
neighboring region, leading to a kind of OB chain reaction. However, while there is ample
evidence that massive stars can terminate formation activity over a substantial volume, there is
little to suggest that they also initiate it (except on a restricted spatial scale; see Chapter 15.)
The relative ages and locations of OB subgroups are certainly of interest, but the true global
pattern of stellar birth can only be discerned through multiple observations. A case in point is
the L1641 region of Orion A, also depicted in Figure 4.18. Here, X-ray and infrared studies
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have uncovered a distributed population consisting of hundreds of low-mass stars. The oldest
are weak-lined T Tauri’s, with ages that rival high-mass members of the 1a subgroup, while the
youngest are embedded infrared sources or classical T Tauri stars near the birthline.

The physical picture emerging is that the Orion Molecular Cloud has been gravitationally
settling over some period exceeding 107 yr. This contraction has proceeded locally at different
rates and with diverse outcomes. It apparently began within the present 1a subgroup, at an epoch
which can best be measured once a turnon in low-mass stars is observed. Eventually, enough
massive stars formed here to disperse the surrounding gas. Sometime later, the L1641 region
also condensed to the point of star formation, but never attained the compactness necessary for
massive stars. The 1c and 1d regions followed suit, and intense formation activity continues
today in both Orion A and B. The details in this highly incomplete picture will undoubtedly
change as future studies focus increasingly on the low-mass stellar component. What seems
secure, both in Orion and elsewhere, is that star formation in any particular region can occur
without an external trigger, purely through the gravitational contraction of a large cloud region.
We shall elaborate this key idea in subsequent chapters.

4.3.5 Embedded and Runaway Stars

We have been focusing on massive stars that are optically visible. These have either moved
away from, or else destroyed, the gas and dust in their immediate vicinity within the last few
million years. The HII regions they excite are extended structures, with typical diameters of
1018 cm (i. e., 0.3 pc). Even younger O and early-B stars exist, for which the enshrouding
matter completely absorbs all ultraviolet and visible photons. Constituting some 10 percent of
the massive star population in the solar neighborhood, these objects are detectable through their
reemission of stellar photons at radio and infrared wavelengths. Such ultracompact HII regions,
roughly 1017 cm in size, are among the most luminous Galactic objects in the far infrared.
The powerful radio source W49 in Aquila contains at least seven of these regions crowded into
an area only 0.8 pc in diameter. Dense systems like this one could represent the ancestors of
Trapezium-like clusters within visible OB associations and probably contain numerous low-
mass members that are currently beyond detection.

Figure 4.19 shows the distribution of ultracompact HII regions in the Galactic plane, as
revealed through IRAS observations in the far infrared. There is nearly a perfect match with
the corresponding distribution of giant molecular clouds, delineated by the CO contours in the
same figure. This agreement underscores the extreme youth of the deeply embedded stars.

At the other extreme are massive objects with little or no associated interstellar matter. As
we mentioned, about 25 percent of O stars do not appear to be members of clusters or associa-
tions. These field objects tend to be farther from the Galactic midplane than their counterparts
within groups. Their radial velocities also exhibit more dispersion about the local value expected
from Galactic rotation alone. Statistical analysis of the velocities reveals that most objects are
leaving the plane, rather than entering it from above and below. Thus, the stars were likely born
in ordinary associations, but with speeds that were higher than average.

A large fraction of the field objects are runaway OB stars. These have exceptionally high
spatial velocities, typically from 50 to 150 km s−1, and are sometimes located high above the
Galactic plane. In one sense, the origin of runaways is not a mystery, since their proper motions
can often be traced back to a known OB association. The real problem is their velocities, which
indicate that the objects were once subject to strong forces. Thus, each runaway might originally
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Figure 4.19 upper panel: Emission in 12C16O within the Galactic plane. lower panel: Distribu-
tion of far-infrared point sources, each of which corresponds to an ultracompact HII region.

have been a member of a close binary pair consisting of two massive stars. If the companion
exploded as a supernova, the star of interest could escape with a speed equal to the orbital value.
Alternatively, the star may have been launched after a close encounter with other stars inside a
dense cluster, like those often found at the centers of OB associations.

Neither hypothesis is free of difficulty. Calculations of binary evolution show that the ini-
tially more massive star (the primary) transfers a great deal of mass to the secondary before the
primary becomes a supernova. The explosion consequently ejects too little mass to unbind the
system. The binary thereafter consists of the now-massive secondary along with a neutron star
or black hole. Such, at least, is the prediction of theory. In fact, no such pair has ever been seen.
Almost all observed runaway OB stars are single, in contrast to the general stellar population
(Chapter 12).

A simple modification of this picture may resolve the difficulty. Suppose the supernova
explosion were anisotropic. Then the strong recoil force acting on the compact object would
easily free it from its companion star, despite the relatively small ejected mass. Observations
show, in fact, that the youngest neutron stars (which happen to be radio pulsars) have very high
velocities, often 500 km s−1 or even more. Speeds of this magnitude could plausibly result from
an asymmetric supernova. Unfortunately, the cause of the putative anisotropy in the explosion
is not yet understood.

As to the cluster hypothesis, numerical simulations have indeed produced single, high-speed
stars through encounters between two binaries. The usual outcome is for the least massive of the
four stars to be ejected. Low-mass runaways, however, are apparently very rare. For this hypoth-
esis to survive, the cluster must have an unusual mass distribution by normal Galactic standards,
one that is very strongly skewed toward the upper end. Alternatively, the binaries might consist
of four intermediate-mass objects, two of which physically merge during the encounter. The
numerical studies indicate that such collisions indeed occur, although the escaping, merged star
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naturally has a lower speed than would a single, runaway object. The reader should keep these
possibilities in mind as we periodically return to explore the special problems connected with
massive star formation.

4.4 Open Clusters

Our final category of young systems includes those most easily recognized by the unaided eye.
These are called open clusters because their individual members can often be clearly distin-
guished. In contrast, only the largest telescopes can resolve the central regions of the much
more massive and dense globular clusters, very old systems residing far outside the plane of the
Milky Way. Open (or “galactic”) clusters are the most evolved aggregates we have discussed.
Half of them reach ages of 1 × 108 yr, while about 10 percent survive as long as 1 × 109 yr.
Even at 108 yr, however, all stars of less than 0.5 M� are still in the pre-main-sequence phase,
so most of these systems are young enough for our purposes.

4.4.1 Basic Properties

The largest open clusters are those near the centers of the more compact OB associations. Ex-
amples include NGC 2244, the group of diameter 11 pc within the Mon OB2 association, and
IC 1396, a 12 pc cluster located inside Cep OB2 (see Figure 4.14). Despite appearances, systems
of this type are rarely gravitationally bound, as few remain within older and larger associations.
Most other open clusters are indeed bound and have diameters ranging from 2 to 10 pc, with
a median value close to 4 pc. The total number of members in any one is always difficult to
assess, but the population seen in photographs can be anywhere from 10 to 103. Within the
Galaxy, open clusters concentrate strongly toward the plane; the scale height of the distribution
in the solar neighborhood is 65 pc. There are currently over 1200 systems known, almost all of
them less than 6 kpc from the Sun. The sample is essentially complete within 2 kpc, while dust
extinction increasingly hampers visual observations at greater distances.

Table 4.3 lists all known open clusters within 300 pc. We shall discuss shortly how the
actual distances are established. The diameters were obtained by eye from photographic plates,
after applying the distances. While clearly subject to some uncertainty, these figures should
represent the volume within which the majority of component stars reside. The tabulated ages
follow from analyzing the main-sequence turnoff in the HR diagram. Finally, we note that the
membership figures given in the last column represent true counts (or estimates) of the total
number of objects for which there is optical photometry in the U -, B-, and V -bands.

Open clusters contain little molecular gas and are not currently forming protostars. They
therefore represent groups whose members, all located at nearly the same distance, share a com-
mon age and chemical composition. These characteristics have made them invaluable research
tools for over a century. In 1930, Trumpler first demonstrated the phenomenon of interstellar
absorption by showing that clusters of smaller apparent diameter, which are more distant on
average, are also systematically dimmer, above and beyond the usual inverse square falloff in
flux. Over the next 30 years, it was the intercomparison of open clusters of different ages that
provided the empirical foundation for the developing theories of pre- and post-main-sequence
evolution. More recently, studies of stellar surface activity (such as X-ray emission), rotation,
and the depletion of light elements have also relied heavily on these systems.
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Table 4.3 The Nearest Open Clusters

Name Distance Diameter Age Members
(pc) (pc) (106 yr)

Ursa Major 25 0.9 300 25
Hyades 41 4.3 630 550
Coma Berenices 96 2.7 450 45
Melotte 227 120 2.4 370 25
Pleiades 130 5.2 130 800
IC 2602 160 4.7 32 120
IC 2391 175 3.1 46 80
α Persei 185 16 72 380
Praesepe 190 3.8 730 500
Collinder 359 250 17 32 13
Blanco 1 270 5.5 63 190
NGC 6475 300 7.0 250 120
NGC 2451 300 4.4 45 180

We have already mentioned the indirect means that must be employed to obtain distances to
OB associations. In contrast, the familiar open cluster of the Hyades is one of the few stellar
groups close enough that its distance follows from velocity measurements alone. The proper
motion vectors of the stars all converge to a single point, indicating that the cluster is receding.
If θ is the system’s present angular diameter, the proper motions yield θ̇, the rate at which this
diameter is shrinking. For small θ, the fractional rate of shrinking, θ̇/θ, is also equal to Vr/d.
Here, Vr is the common radial velocity of the stars at distance d. Once the velocity is determined
from Doppler shifts of the spectral lines, this moving-cluster method directly gives d, which is
41 pc in the present case.

The actual value of the Hyades distance is not as important as the role of the moving-cluster
method in astronomical calibration. Within the Hyades, knowing the cluster distance allows
one to assign luminosities to all members with measured apparent magnitudes. Since many of
these stars are on the main sequence, this assignment, together with spectroscopic temperature
determinations, establishes the ZAMS empirically over a finite range of L∗ and Teff . Turning
to other open clusters, one can now apply the technique of spectroscopic parallax described in
§ 4.3. That is, we vertically slide each diagram of mV versus spectral type until it matches
the Hyades, thereby both establishing the cluster distance and completing the calibration of
the main sequence itself. Such main-sequence fitting is the basis of the ZAMS represented by
the theoretical curves in Figures 1.15 and 1.18. The distances provided by the moving-cluster
method and spectroscopic parallax form the lowest rungs of the cosmic distance ladder. To
go beyond our Galaxy, we must utilize other techniques – including observations of pulsating
stars and supernovae – to bootstrap our way outward. At each step, however, the most reliable
measurements are relative ones, so that even the greatest cosmological distances rest ultimately
on those few established kinematically for nearby open clusters.



4.4 Open Clusters 119

Figure 4.20 HR diagrams of four open clusters, arranged by age. For each system, both the
ZAMS (dashed curve) and the best-fit isochrone (solid curve) are also displayed.

4.4.2 Evolution in the HR Diagram

As before, the HR diagram is a powerful tool for gauging the evolutionary status of any ob-
served system. The vexing incompleteness problem that plagues more embedded T and OB
associations is here greatly diminished. In addition, the age span of open clusters is such that
both main-sequence turnoffs and turnons may be observed, sometimes within a single cluster.
Figure 4.20 is a composite of four diagrams, in order of increasing age. The values of L∗ and
Teff were derived in all cases from photometric observations at visual and near-infrared wave-
lengths, after applying a global extinction correction for each cluster. In addition to the ZAMS,
the figure also includes the theoretical post-main-sequence isochrones that best fit the high-mass
turnoff in each case.

Our youngest example (Figure 4.20a) is NGC 4755, or “Herschel’s Jewel Box,” a rich sys-
tem of several hundred members. Located in the Southern Crux constellation, its distance of
2.1 kpc is too great for adequate study of the fainter objects, which undoubtedly contain an
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admixture of interlopers from the field. Even within the brighter population, the HR diagram
shows considerable scatter, most of which stems from patchy extinction contaminating the lu-
minosity estimates. Nevertheless, the stellar distribution displays, in addition to the turnoff, a
clear departure from the ZAMS at low masses, below about log Teff = 3.9. From Table 1.1, this
temperature corresponds to a mass of 2 M�. Such a star has a pre-main-sequence contraction
time of 8 × 106 yr. The post-main-sequence isochrone in the figure has the similar associated
age of 1 × 107 yr.

Systems this young containing massive stars are not uncommon and some may actually be
OB associations rather than open clusters. Most often, classification is a matter of historical
accident. The difference, however, is a true physical one, since it involves the eventual fate of
the system. Will it quickly disperse, or will it remain gravitationally bound for an extended
period? In principle, the answer may be obtained empirically, through accurate measurement of
the stars’ spatial velocities.

The advantages of proximity are evident for the Pleiades (Figure 4.20b), which lies only
130 pc away. Here, the scatter in the HR diagram is much less than for NGC 4755, and the
low-mass portion of the 800 or so known members is better sampled. The very brightest of
these, familiar in the Northern sky as the Seven Sisters, are part of a central core of stars within
an extended halo, some 4◦ (i. e., 10 pc) in radius. The haze seen in optical photographs attests
to the presence of interstellar matter, but the extinction is modest, with AV = 0.12 mag. In the
HR diagram, the turnoff from the main sequence is clear. The displayed isochrone corresponds
to an age of 1 × 108 yr. The main-sequence turnon is less apparent, but a careful examination
confirms its presence near L∗ = 0.1 L�. As in our previous example, there is rough agreement
between the turnon and turnoff ages, but the measurements are still too inexact to warrant further
assessment of their difference.

One difficulty in obtaining more precise turnon ages is that even the empirical ZAMS is not
known to great accuracy at the lowest luminosities. As we have seen, a crucial building block in
this enterprise is the Hyades, whose diagram we display as Figure 4.20c. Spectroscopic analysis
reveals that the metallicity in the Hyades is higher than that of other nearby clusters by a factor
of about 1.5. This difference is enough to shift the Hyades main sequence slightly toward lower
temperatures, and a proper compensation is necessary in constructing the fiducial ZAMS. As
for the evolutionary status of the cluster itself, its nuclear age of 6 × 108 yr is relatively secure,
and implies that the main sequence is populated only up to 2 M�. Correspondingly, the turnon
is now lowered to about 0.1 M�, or a luminosity of 1 × 10−3 L�. This point lies well below
the observational cutoff present in the Figure.

Figure 4.20d depicts NGC 752, one of a handful of open clusters significantly older than
the Hyades. At a distance of 400 pc, this sparsely populated system has fewer than a hundred
observed members. Its advanced evolutionary state is apparent from the absence of all high- and
intermediate-mass stars. At the turnoff age, estimated to be 2 × 109 yr, stars of 1.5 M� are just
completing main-sequence hydrogen fusion. There are undoubtedly additional cluster members
below the 0.8 M� minimum mass shown here. Only those of less than 0.09 M�, however, are
still in their pre-main-sequence phase.

An interesting feature in the HR diagram of NGC 752 is the clump of stars above and to the
right of the main sequence. An analogous, but smaller, group is also visible in the Hyades. Evo-
lutionary calculations show these stars to be red giants undergoing core helium burning. Finally,
we see that the diagram again displays considerable scatter about the ZAMS, despite the fact
that the cluster is at a high Galactic latitude and suffers little extinction. One plausible source
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for this scatter is the presence of unresolved binaries, which can raise the apparent luminosity if
their mass ratios are close to unity.

4.4.3 Mass Segregation

Returning to the Pleiades, the central concentration of its brightest and most massive members
is a phenomenon we have encountered before. We recall the deeply embedded clusters of L1630
in Orion, with their luminous cores of O and B stars (Figure 1.2), or the buildup of stars sur-
rounding the massive object in S106 (Plate 2). Within the more exposed NGC 2264 cluster,
careful mapping of the stellar density reveals two concentrations – one surrounding S Mon and
another associated with a star that is again the most massive in its local region. In principle,
more refined observations of mass segregation should be possible for open clusters, but less
than two dozen systems have so far been examined in sufficient detail. For most of these, the
average stellar mass drops steadily from the center outwards.

Since mass segregation is present to some extent in the very youngest systems, it is evidently
part of the star formation process itself. Thus, the salient question, which we shall explore later,
is not how the most massive objects find their way to the densest regions, but why they form
there in the first place. Having said this, it is also true that open clusters are old enough that the
process of dynamical relaxation can further promote the settling of massive stars toward their
centers.

To understand dynamical relaxation, consider a hypothetical cluster of 1000 stars, with a
total mass of 500 M� and diameter of 5 pc. The typical velocity of a cluster member is given
by the virial value in equation (3.20), and is about 1 km s−1, if we assume that no gas remains
in the system. The crossing time over which the star can traverse most of the cluster is therefore
5 × 106 yr. During each such passage, the stellar orbit is determined mainly by the smoothly
varying gravitational force arising from the system as a whole. However, each interaction with
an individual field star produces an additional tug, and many such tugs change the orbit com-
pletely. The system gradually relaxes toward a state independent of initial conditions, one in
which the total available energy is apportioned roughly equally among the members.

Under the new conditions, the least massive stars have the highest velocities and therefore
fill out the largest volume. Conversely, the high-mass members tend to crowd toward the middle.
For our sample cluster, theory predicts that such a state prevails within about 15 crossing times,
where the precise figure depends on the stellar mass spectrum. Thus, the relaxation time is
roughly 7 × 107 yr, too long for embedded systems but within the range for open clusters. One
might expect, from this argument, that older clusters would exhibit a steeper outward falloff in
the average mass of their members, but no such effect is evident in the data at hand.

4.4.4 Destruction by Giant Clouds

The centrally peaked appearance of open clusters is strong, though not conclusive, evidence that
they are gravitationally bound. This is not to say they they remain intact for all time. Dynamical
relaxation gradually inflates a halo of lighter stars, some of which actually escape. Such “evap-
oration,” however, typically requires 100 crossing times to deplete an isolated system. Why,
then, do so few observed clusters survive to even 109 yr? Clearly, some external process is at
work that destroys them more efficiently.
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There is little direct observational evidence bearing on this question, but theory suggests that
the main culprit is encounters with giant molecular clouds. The rate of such encounters is low–
about one for each rotation of the cluster about the Galaxy– but the cloud mass is so huge that
the effect can be devastating. Both molecular clouds and clusters have similar random motions
within the Galactic disk. Their typical relative velocity exceeds a cluster’s internal velocity
dispersion by about an order of magnitude. During an encounter, the cloud effectively imparts
a brief impulse to each star, in a manner somewhat akin to dynamical relaxation. In this case,
however, there is a net energy gain by the cluster as a whole.

The additional energy arises from the tidal component of the gravitational interaction. Stars
that are closest to the passing cloud respond most strongly, causing the stellar system to stretch
along the line joining the centers of mass. Incidentally, the same effect, but arising from the
general Galactic field, strips stars from the cluster halos and truncates their radii to about 10 pc in
the solar neighborhood. Often only a single encounter with a giant molecular cloud is sufficient
to disrupt a cluster entirely. If not, the cumulative tidal stretching from several such encounters
does the job. It is ironic, then, that the very structures giving rise to all young clusters appear
responsible for their ultimate demise.

4.5 The Initial Mass Function

Any attempt to understand the origin of stellar groups must address the issue of their internal
mass distribution. It is not obvious, of course, that any single function will adequately describe
all existing systems. In principle, the natural variation in such environmental factors as the
ambient magnetic field or the molecular cloud temperature prior to cluster formation could
yield a wide variety of distributions. However, we have already seen from numerous examples
that massive stars are intrinsically rarer than their low-mass counterparts. We now seek to
quantify this notion. As a practical matter, the masses of embedded stars are difficult to obtain
empirically, so we first look to field stars in the solar neighborhood. We will then show that the
mass distribution found here also appears to hold, at least approximately, for discrete clusters
and associations. This important finding bolsters the view that all stars are born within such
groups.

4.5.1 Luminosities Past and Present

Even for an unobscured field star at a known distance, it is the luminosity within a certain
wavelength range, rather than the mass, that is directly observable. A fundamental statistical
property of field stars is thus the general luminosity function, Φ (MV ). This function is defined
so that Φ (MV )∆MV is the number of stars per cubic parsec in the solar neighborhood with
absolute visual magnitude between MV −∆MV /2 and MV + ∆MV /2. Obtaining the general
luminosity function is no trivial matter. One must derive distances to large numbers of stars
and make proper extrapolations for the even larger numbers whose distances are unavailable
directly. Other, more subtle complications abound. For example, the Galactic scale heights of
stars vary inversely with mass, the brightest stars hovering close to the midplane during their
relatively short lifetimes. These same stars can be seen out to distances much greater than their
scale heights. Thus, they appear to occupy flattened disks, whose volumes must be accurately
assessed when obtaining densities. Beginning with the pioneering efforts of P. J. van Rhijn in
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Figure 4.21 General luminosity function for stars in the solar neighborhood.

the 1920s, such difficulties have gradually been overcome, and a modern result is displayed as
the solid curve in Figure 4.21.

Over most of the magnitude range shown, the general luminosity function rises with in-
creasing MV , i. e., there are more dim stars than bright ones in any fixed magnitude interval.
This trend continues up to MV ≈ +12, after which there is a steady decline. The details of this
slow falloff remain somewhat uncertain, since many of the observed “stars” in this regime are
actually binaries that have not been spatially resolved. On the other hand, there is no doubt that
the slope of Φ(MV ) is considerably steeper for the most luminous stars. This initial sharp rise
levels off rather abruptly at about M∗

V = +5. Reference to Table 1.1 reveals that a star at this
transitional magnitude has a main-sequence lifetime tMS slightly greater than 1010 yr. This time
is close to the age of the Galactic disk, currently estimated at tgal = 1 × 1010 yr. If we recall
that any star’s post-main-sequence lifetime is brief compared to tMS, the origin of the change in
slope becomes clear. Relatively dim, low-mass stars with MV � M∗

V have been accumulating
steadily over the lifetime of the Galaxy, while only a fraction of the brighter, short-lived stars
with MV � M∗

V have survived.
It is apparent, then, that Φ(MV ) itself does not accurately reflect the relative production rate

of stars with various MV -values. However, the foregoing argument can readily be quantified to
make the necessary modification. Following the notation of Chapter 1, let ṁ∗(t) be the total
Galactic star formation rate per square parsec near the solar position. Notice that we use the
rate integrated over the disk thickness, in order to account for the diffusion of stars from the
midplane during their evolution. To a fair approximation, in fact, the stellar volume density falls
off exponentially away from the plane, with a scale height H that is a function of MV . We
further define the initial luminosity function Ψ(MV ) to be the relative frequency with which
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stars of a given MV first appear. This function is normalized to unity:
∫

Ψ(MV ) dMV = 1.
Resetting M∗

V to that magnitude for which tMS = tgal precisely, we can write the general
luminosity function as an integral over time, where the integration limits depend on MV :

Φ(MV ) =




∫ tgal
tgal−tMS

dt ṁ∗(t) Ψ(MV ) [2 H(MV )]−1 if MV < M∗
V∫ tgal

0
dt ṁ∗(t) Ψ(MV ) [2 H(MV )]−1 if MV ≥ M∗

V .
(4.4)

In writing equation (4.4), we have ignored any possible time-dependence in Ψ(MV ) or
H(MV ). Furthermore, we are actually interested in the appearance of main-sequence stars with
various magnitudes, while Φ(MV ) encompasses bright field stars that are giants and super-
giants. Accordingly, the luminosity function on the left side of equation (4.4) must be dimin-
ished at the lowest values of MV , corresponding to the brightest stars.

After making this correction, knowledge of the main-sequence lifetimes tMS(MV ) allows
us to invert equation (4.4) and obtain Ψ(MV ), provided we know the rate ṁ∗(t). Neither theory
nor observation is of much help in this regard, beyond the general statement that ṁ∗(t) should
diminish with time. Fortunately, the final result is rather insensitive to the prescription adopted
here, so we follow the standard expedient of ignoring the time dependence and adopting a fixed
rate. With Ψ(MV ) in hand, it is a straightforward matter to apply bolometric corrections and
obtain the relative birthrates of stars as a function of Lbol rather than MV . This is Ψ(Lbol), the
form of the initial luminosity function already shown in Figure 4.13. As anticipated, the curve
here is smoother than Φ(MV ), since it lacks the age-dependent falloff for the brightest stars.

4.5.2 Character of the Mass Distribution

Our true goal, however, is the distribution at birth of various stellar masses. We accordingly
define ξ (M∗) to be the initial mass function (IMF), the relative number of stars produced per
unit mass interval. Again normalizing this function to unity, we have simply

ξ (M∗) = Ψ(MV )
dMV

dM∗
. (4.5)

The derivative on the righthand side refers to variations along the main sequence and can be
obtained numerically from Table 1.1 or its equivalent.3

Historically, E. E. Salpeter proceeded in the manner we have outlined to find that ξ (M∗)
varies as Mγ

∗ , with γ = −2.35. This simple power law is still frequently employed to obtain
approximate results, but has long since been supplanted by other investigations using more
extensive data. Figure 4.22 displays the results of a later study. For convenience, we may
approximate the mass function as a sequence of power laws:

ξ (M∗) =




C (M∗/M�)−1.2 0.1 < M∗/M� < 1.0

C (M∗/M�)−2.7 1.0 < M∗/M� < 10

0.40 C (M∗/M�)−2.3 10 < M∗/M� ,

(4.6)

3 Many authors define the IMF as the relative number of stars per logarithmic mass interval, i. e., as M∗ ξ(M∗). The
reader should check carefully in each case.
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Figure 4.22 Initial mass function for solar neighborhood stars. The dashed line has the same
slope as Salpeter’s power law.

where C is a normalization constant. It is apparent that ξ (M∗) is considerably flatter than
Salpeter’s function (dashed line) below 1.0 M� and approaches it for M∗ � 10 M�. Both of
these general features have been amply confirmed. Our simple power law does not capture the
broad maximum near 0.1 M� seen in the figure, but the true behavior at the lowest masses
remains unclear. Their small luminosities make objects in this regime difficult to detect. After
extensive searches, a growing population of brown dwarfs, i. e., objects less massive than the
hydrogen-burning limit of 0.08 M�, is presently being uncovered. These and other data indicate
that ξ (M∗) is relatively flat near the brown-dwarf limit. Establishing its precise form will
require additional effort.

This lingering uncertainty should not obscure the essential message of Figure 4.22. Within
any volume undergoing star formation, the number of new stars per unit mass falls rapidly
above roughly 0.1 M�. If we make the simplifying assumption that ξ (M∗) is constant below
this value, then equation (4.6) implies that half of all stars are produced with M∗ ≥ 0.2 M�.
Only 12 percent have masses exceeding 1 M�, while the fraction drops to 0.3 percent for stars
above 10 M�. Conversely, 70 percent of stars have M∗ ≥ 0.1 M�. We conclude that the star
formation process yields objects with a characteristic mass of a few tenths of M�. Things might
have been otherwise. One could imagine stars forming with a pure power-law mass spectrum
down to some very low level at the planetary scale. That this is not the case is surely significant.
Unfortunately, current theory cannot explain, in any convincing manner, the form of ξ (M∗).
Even the origin of the basic mass scale itself remains uncertain. Needless to say, we shall revisit
this central issue in later chapters.
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4.5.3 Mass Function in Stellar Groups

It is worth reemphasizing that ξ (M∗) represents an average over thousands of field stars, i. e.,
objects outside of known clusters or associations. What is the corresponding function within
such groups? In any one system of a few hundred stars or less, statistical fluctuations become
significant when addressing this issue. With this caveat in mind, the best candidates for inves-
tigation are the relatively unobscured open clusters. Here, the members are no longer accreting
molecular gas, while the stellar masses themselves can be read with confidence from the HR
diagram, given knowledge of both L∗ and Teff . On the other hand, the main-sequence turnoffs
limit the highest observed masses to modest values, about 15 M� for a cluster age of 107 yr.
One must turn to OB associations to probe the upper end of the distribution. Unfortunately, both
the greater distances and the presence of main-sequence turnons make the lowest-mass mem-
bers difficult to access. Since no one system is ideal, one is forced to sample the mass spectrum
within groups in a piecemeal fashion.

Figure 4.23 illustrates the complementary roles of open clusters and OB associations. The
left panel shows the number of stars per unit mass, denoted ξcluster(M∗), for most known
members of the Pleiades, along with the curve from equation (4.6). The flattening below
M∗ ≈ 0.15 M� is similar to that seen in Figure 4.22 for field objects. Note that the lumi-
nosities and effective temperatures of many cluster members were obtained here from their R-
and I-band magnitudes. The stellar masses then followed by comparison with theoretical pre-
main-sequence tracks. In contrast, single measurements at V sufficed for the more massive
stars, which are certain to be on the main sequence. It is apparent that the mass distribution in
this accessible and populous system also matches the field (i. e., equation (4.6)) between 0.15
and 5 M�. Other open clusters yield mass functions that are similar but exhibit significant
variation. Such deviations from the field-star result do not appear to be correlated with cluster
morphology or age, and largely disappear if one adds together the populations of at least a dozen
systems.

Turning to OB associations, the most reliable procedure is to focus on rich, spatially compact
subgroups. One such subgoup is NGC 6611, a cluster within the Serpens OB1 association,
2.2 kpc distant. The stars here illuminate the Eagle Nebula (M16), long known as a visible
HII region traversed by broad lanes of obscuration. Most of the stars in NGC 6611 are still
embedded within the local molecular cloud. However, the 150 or so members above 5 M�
are bright enough that they can be placed in the HR diagram through optical measurements.
Figure 4.23b shows the masses at this upper end of the distribution. A power-law falloff is
evident. Indeed, the best-fit line has Γ ≡ d log ξ/d log(M∗/M�) = −2.1, close to the Salpeter
value of −2.35. Other, less populous clusters within associations have Γ-values that range from
−1.7 to −3.0 and a mean consistent with the slope of the field-star initial mass function.

We conclude, then, that all groups of sufficient membership display a similar decline in pop-
ulation with mass, at least above the brown-dwarf regime. The steepness of this falloff for stars
exceeding several M� makes it difficult to obtain the complete mass or population of any group
by extrapolation from its very brightest components. We stress that the actual form of the initial
mass function must currently be viewed as a purely empirical result, one whose proper expla-
nation awaits better understanding of both cluster formation and the termination of protostellar
collapse. In particular, the absence of any obvious breaks in the observed distribution does not
necessarily imply that a single mechanism is at work in the origin of all stellar masses. On the
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Figure 4.23 Empirical mass functions for (a) the Pleiades, and (b) the cluster NGC 6611. The
solid curves represent the initial mass function from equation (4.6).

contrary, their distinctive central concentration in bound clusters suggests that the most massive
stars form very differently from their more numerous, low-mass counterparts.

Chapter Summary

Stars are not formed separately, but in groups within molecular clouds. All the observed mem-
bers of such primitive, embedded clusters suffer heavy extinction and reddening because of
interstellar dust. Additionally, they exhibit varying degrees of excess infrared emission created
by circumstellar matter, i. e., dust immediately adjacent to the stars themselves. The ensemble of
observed spectral energy distributions fall into four classes that appear to define an evolutionary
sequence.

Somewhat older, visible objects are generally located in either T or OB associations. The
former contain classical and weak-lined T Tauri stars along with residual cloud gas, and remain
intact for periods up to 107 yr. OB associations, so called because they also include a few
massive objects, are already dispersing into the field population. Here, the molecular gas was
driven off violently by the winds and radiation pressure of the highest-mass members. Finally,
a relatively small fraction of stars survives dissipation of their parent cloud as gravitationally
bound clusters.

The observed luminosities of field stars, together with their main-sequence lifetimes, allow
one to deduce the statistical distribution of masses at birth. This initial mass function peaks
between 0.1 and 1.0 M�, a fundamental and unexplained fact. The distribution within specific
groups, obtained by placing members in the HR diagram, agrees broadly with the field-star
result.
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Plate 1 left: Optical photograph of the NGC 2024 cluster in Orion B. The image covers an
angular size of 4′ × 10′, or 0.4 × 1 pc. right: Near-infrared image of the same cluster. The
vertical scale matches that of the optical image. This is a composite picture combining three
separate mosaics in the J , H , and K wavebands. The color coding is blue, green, and red,
respectively.

Plate 2 Near-infrared image of the S106 bipolar nebula. This is a composite of the J , H , and K
wavebands. The color coding in this and all other composite, near-infrared images is the same
as in Plate 1.
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Plate 3 Negative optical photograph of three HII regions in the Gem OB1 association. The
regions span a total distance of 9 pc.

Plate 4 Expanded near-infrared (J , H , and K) image of Gem OB1. The bright nebula in the
center lies between the left and center HII regions of Plate 3, and is invisible optically.
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Plate 5 Composite, near-infrared image (J , H , and K) of the region surrounding the Herbig
Be star BD+40◦4124. This object is the brightest central spot. The most prominent companion
is an emission-line star, V1686 Cyg, that is also optically visible, but most of the other, nearby
objects can only be seen in the near-infrared.

Plate 6 Near-infrared image (J , H , and K) of NGC 7538. The entire image covers 12′ × 12′,
or 9.5× 9.5 pc at the 2.7 kpc distance of the region. The red patches are embedded clusters that
appear to be younger than the prominent HII region.
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Plate 7 Composite J , H , and K-band near-infrared image of the dense cluster NGC 3603. The
field of view is 3.′5 × 3.′5, or 6 × 6 pc at a distance of 6 kpc.

Plate 8 Composite image in B, V , and R-bands of 30 Doradus in the Large Magellanic Cloud.
The gas filaments surrounding the central cluster span about 50 pc.



Part II

Physical Processes in Molecular
Clouds



5 Molecular Transitions: Basic Physics

With this chapter, we begin a broad discussion of molecular clouds from a physical perspective.
Our treatment throughout Part II will be more theoretical and quantitative than previously, as the
underlying goal is to provide a basis for understanding cloud structure and protostellar collapse,
the subjects of Part III. We will not attempt an exhaustive coverage of molecular cloud physics,
but concentrate instead on those areas that seem at present to be most relevant for star formation.

To explore conditions within the clouds that produce stars, astronomers rely mainly on ob-
servations of spectral lines emitted by various molecules. Hence, our initial goals in this chapter
are to describe how such species form throughout interstellar space and how their abundances
reflect local conditions. We next turn to the simplest and most common molecules that have
been employed as tracers of cloud properties. The aim is to present, succinctly but accurately,
the physical principles underlying the most readily observed transitions. Chapter 6 will then
demonstrate how these transitions are used in practice to determine cloud properties.

5.1 Interstellar Molecules

From a chemical viewpoint, an important feature of dark clouds is their relatively high col-
umn density in dust, which effectively blocks ambient radiation at both optical and ultraviolet
wavelengths. Hence interstellar molecules, which would have short lifetimes against ultraviolet
photodissociation in unshielded regions of space, are able to survive and proliferate. To date,
over 100 molecules have been identified, ranging from the simplest diatomic species to long
chains like the cyanopolyyne HC11N. Dense cores contain many of the more complex species
found so far, but the shock-heated regions of Orion and the Galactic center cloud Sagittarius B2
have also been rich sources. Equally important are the distended envelopes of evolved, giant
stars, which we have already noted as the birth sites of interstellar grains.

5.1.1 Reaction Energetics

Molecular astrophysics began in the late 1930s, with the discovery of CH, CH+, and CN in
diffuse clouds. These simple molecules were detected by their absorption of optical light from
background stars. The question of how such species form immediately posed a theoretical
challenge, one which deepened with the discovery in the 1960s of OH, NH3, and H2O. The
problem is one of energetics. Consider first the collision of two atoms. The particles approach
each other with positive total energy. Unless energy can somehow be given to a third body,
the atoms will simply rebound after their encounter. The simultaneous collision of a third atom
can occur with appreciable frequency at terrestrial densities, but not in the vastly more rarefied
interior of a molecular cloud. It is also possible for the energy sink to be a photon, i. e., for
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Figure 5.1 Mechanics of ion-molecule reac-
tions. The charged ion induces a dipole mo-
ment in the neutral molecule, creating an elec-
trostatic attraction between the two species.

the two atoms to form an excited molecule which radiatively decays to the ground state before
it can dissociate. Again, the probability of such radiative association is generally too low in
molecular clouds to be of interest.

In the laboratory, molecules also form through neutral-neutral reactions. Here, the colliding
species, whether atoms or molecules, combine temporarily into a configuration known as an
activated complex. This then separates into two or more product species that share the total
energy. The process involves the making and breaking of chemical bonds, and usually requires
a net expenditure of energy. The associated activation barrier has a typical energy, expressed
in temperature units, of ∆E/kB ∼ 100 K. A barrier of this magnitude is not insurmountable
in shock-heated clouds, but completely suppresses neutral-neutral reactions in the very cold
interiors of quiescent clouds.

By the early 1970s, it had become clear that ion-molecule reactions can alleviate the energy
difficulty. When a charged ion approaches a neutral molecule (or atom), it induces a dipole
moment in the latter, creating an electrostatic attraction between the two. (See Figure 5.1.) The
long-range nature of this attraction means that the effective cross section is greatly increased
above the geometric value for direct collision. Even at temperatures near 10 K, such reactions
can proceed fast enough to account for a large fraction of observed interstellar molecules. Since,
however, the fraction of ions available at any time is relatively small, the huge abundance of H2

itself cannot be explained in this manner. In this important special case, to which we shall return
later, two neutral atoms can react, but only through the catalytic action of an interstellar grain
surface.

In symbolic form, the generic ion-molecule reaction may be written

A+ + B → C+ + D , (5.1)

where all species can be atoms or molecules. If C = B and D = A, the reaction is simple
charge exchange. Reactions involving negative ions and neutrals are also possible, in which
case one of the products is a free electron. If nA+ and nB denote the number densities of the
reactants, then we let kim (nA+) (nB) be the reaction rate per unit volume per unit time. For
either positive or negative ions, the rate coefficient kim is of order 10−9 cm3 s−1 and is only
weakly dependent on temperature.

Positively charged molecules within clouds are also destroyed by ambient free electrons.
The electron recombines to create an energetic, unstable neutral molecule. Most of the time,
this molecule simply “autoionizes,” spitting back the electron. However, if its constituent atoms
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separate before autoionization occurs, the molecule falls apart into neutral species:

A+ + e− → B + C . (5.2)

The rate coefficient for such dissociative recombination is kdr ∼ 10−7 cm3 s−1 for a tempera-
ture T near 100 K and increases slowly as the temperature falls. Note that, if A represents an
atom instead of a molecule, reaction with an electron yields the neutral form of the atom plus a
photon. The typical rate for this radiative recombination, krr ∼ 10−11 cm3 s−1, is again very
low for most circumstances.

5.1.2 Abundance Patterns

Suppose we wish to observe some molecule through its emission in a particular spectral line.
The detection of this line, which results from a transition between discrete energy levels, re-
quires an ambient temperature high enough to excite the upper level of interest. Within quiescent
clouds, this requirement generally singles out low-lying rotational transitions, with associated
photon wavelengths in the millimeter regime. Even when it has such a transition, however, a
highly complex molecule is intrinsically difficult to detect. In this case, a great many levels
exist in any appreciable energy range. Many of these become populated in a sufficiently warm
environment, so that the power in any one transition is relatively small.

Most of the molecules observed to date contain one or more carbon atoms. While no inor-
ganic species found in space contain more atoms than NH3, organic molecules exist in complex
rings and chains. Hence the carbon bond, which plays such a dominant role in terrestrial chem-
istry, is also important in the interstellar environment. Furthermore, since the cosmic abundance
of oxygen exceeds that of carbon, it is no surprise that the relatively tightly bound CO is the
most abundant species after H2 itself. The observations of CO, pursued since 1970, have yielded
more information on star-forming regions than any other molecule.

Theorists employ time-dependent computer models to understand the pattern of chemical
abundances in any region. These programs simulate large reaction networks, usually operat-
ing at fixed ambient density and temperature. With time, the reactions that create and destroy
various species equilibrate, and the abundances approach steady-state values. Dense cores with
no internal stars provide a particularly simple environment to test such schemes. Starting with
reasonable initial conditions, the models have little difficulty matching the observed abundances
of simple species like CO, CS, or HCO+. Such agreement represents a gratifying confirmation
of the ion-molecule chemistry at the root of these networks. On the other hand, the models are
not without problems. One finds that complex organics always build up in time initially and
then disappear as carbon becomes locked up in CO. At the density and temperature of a typical
dense core such as TMC-1, there would be nearly complete conversion of atomic carbon to CO
by 1 × 106 yr.

Such a time is difficult to reconcile with our understanding of cloud history. Although no
accurate ages for dense cores are available, the process of gravitational settling that creates them
operates over a period of order 107 yr. The observed presence of organics therefore remains
puzzling. In addition, the current chemical models have difficulty explaining the significant
spatial variation in molecular abundances seen across TMC-1 and other starless cores. The two
simplest possibilities– gradients in age or elemental composition– both seem rather contrived as
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Figure 5.2 Submillimeter spectrum of two regions in Orion. The KL Nebula (upper spectrum)
shows many more molecular lines than the dense core in Orion 1.5′ South (lower spectrum).

a general explanation. The observed gradients could also reflect the presence of still undetected
young stars, whose luminosities would thermally alter the local chemistry.

Chemical gradients are also present in sites of high-mass star formation, such as the Orion
BN-KL region. The fact that the luminous infrared sources IRc2 and BN have significantly
affected their surroundings is evident from Figure 5.2. Here a portion of the spectrum near
the 868 µm (ν = 345 GHz) transition of H13CN is shown, both for the KL Nebula and for a
starless dense core known as Orion 1.5′ South, located 0.2 pc from IRc2. (Recall Figure 1.7.)
Although the two cores have similar total column densities through their centers, the one in the
KL Nebula has a far richer spectrum of molecular lines. At the same time, this region has a
lower abundance of complex organics. In fact, Orion 1.5′ South has a similar chemical makeup
as TMC-1, although it has 5 times the temperature and 10 times the density of the latter. Clearly,
the critical factor here is proximity to a massive star.

Several effects are at work to alter and enrich the molecular population near IRc2. The
core material surrounding the star has a temperature of some 200 K, sufficient to vaporize grain
mantles and thereby reinject molecules into the gas phase. Even closer to the star, shock waves
driven by the massive outflow can heat the gas to the point of destroying the grain cores them-
selves. Such thermal processing explains why sulfur and silicon, both major grain constituents,
are relatively abundant in this and other outflow regions. At the same time, such environments
are unfavorable to long chains, which apparently need heavily shielded dense cores to form and
survive.

Of the total list of known interstellar molecules, about half were first discovered in Sagit-
tarius B2, a giant molecular cloud located within 200 pc of the Galactic center. With a visual
extinction of some 30 mag, even near-infrared observations of the region are unable to detect
any but the brightest sources. Figure 5.3 is a high-resolution map in 800 µm continuum emis-
sion from heated dust. The cloud complex Sgr B2 lies along the dust ridge that also contains
Sgr A∗, a compact radio source only a few parsecs from the Galaxy’s true center. As in the case
of Orion, the abundance of molecules is correlated with an elevated gas temperature created
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by the presence of many embedded stars. Most molecules are seen in Sgr B2/North, a com-
pact clump with gas temperature 200 K and a density in H2 as high as 107 cm−3. Here, it is
impossible to see the stellar cluster directly, but its presence is inferred from the 5 × 106 L�
in radiation emitted by heated dust. The pattern in molecular abundances broadly resembles
Orion KL. It is intriguing that an equally luminous clump located just 2 parsecs away from
Sgr B2/North is relatively sparse in molecular lines. The luminosity in this latter region, known
as Sgr B2/Middle, stems from identifiable HII regions associated with several dozen O and B
stars. The lesson here is that the ultraviolet radiation inflating an HII region also destroys the
molecules that previously surrounded the star when it was more deeply embedded.

5.1.3 Adherence to Grains

Any account of the chemistry within dense clouds must consider the propensity of molecules to
stick to grain surfaces. Consider a volume V of cloud gas with a number density nd of spherical
grains, each with radius ad. In the reference frame of a molecule, the grains are all moving with
Vtherm, the molecule’s thermal speed:

Vtherm =
(

3 kB T

2 A mH

)1/2

. (5.3)

Here A is the molecule’s mass relative to hydrogen. In a time interval ∆t, each grain sweeps
out the cylindrical volume πa2

d Vtherm ∆t, and all grains sweep out a volume larger by ndV .
Hence, the probability per unit time that the molecule is struck by some grain is the ratio of
this total volume to V , or nd πa2

d Vtherm. Inverting this probability gives the average time for a
collision to occur:

tcoll =
1

nd πa2
d Vtherm

=
1

nH Σd Vtherm
.

(5.4)

Here we have used equation (2.42) for the total geometric cross section of the grains per hydro-
gen atom.

The quantity tcoll measures the time to deplete significantly a given molecule, provided
there is a high probability of sticking upon collision. Such is the case for all molecules
except H2, which does not readily adhere to grain mantles. Consider CS, for which
Vtherm = 5.3 × 103 cm s−1 at T = 10 K. From equation (5.4), we find that tcoll is only
6 × 105 yr at the center of a dense core with nH = 104 cm−3. Once again, we face the
dilemma that the disappearance time is brief compared to the expected cloud age. To put the
matter another way, chemical models without grain depletion of molecules give a reasonable
match to the observed CS abundance.

There evidently must exist some mechanism for reinjecting molecules from grain surfaces
back into the gas phase. Ultraviolet photons would serve the purpose, but too few of them pen-
etrate dark cloud interiors. In sufficiently small grains, the heat from surface chemical reactions
could raise the grain temperature enough to sublimate many species. However, for standard
grains within dark clouds, the problem of rapid depletion of the molecules remains unsolved.
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Figure 5.3 Continuum emission at 800 µm from heated dust near the Galactic center. Many
molecules have been discovered in the giant molecular cloud Sgr B2, located 200 pc from the
strong radio source Sgr A∗. The dashed line demarcates the Galactic plane.
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5.2 Hydrogen (H2)

We now consider a few of the species that have been especially fruitful in the study of molecular
clouds. Table 5.1 lists abundances and important transitions for all the molecules discussed in
this chapter, as well as some others of interest. The sixth column gives the energy difference
between the upper and lower states. This energy is expressed as an equivalent temperature by
using the Boltzmann constant kB . Also given is the Einstein coefficient Aul, i. e., the prob-
ability per time of spontaneous decay from the upper to the lower state. Appendix B intro-
duces the Einstein coefficients more systematically. Finally, Table 5.1 lists the critical density,
ncrit ≡ Aul/γul, where γul is the rate of collisionally induced downward transitions in the mol-
ecule, as measured per unit colliding partner. This quantity, as we have noted, is an estimate
of the minimum ambient density at which collisions depopulate the upper state before it can
decay through radiation. The utility of ncrit will become evident as we proceed through specific
examples.

5.2.1 Allowed Transitions

It is an unfortunate fact that the chief constituent of cold interstellar clouds, the hydrogen mol-
ecule, is also among the most difficult to detect. Even the lowest excited energy levels, those
corresponding to molecular rotation, are too far above the ground state to be easily populated.
In addition, H2 consists of two identical hydrogen atoms and therefore lacks a permanent elec-
tric dipole moment. A rotationally excited molecule must radiate through a relatively slow
quadrupole transition. To find H2, it is best to look in hotter environments, such as clouds irra-
diated by a luminous star or shocked by a stellar wind. Here, photons or particle collisions can
excite vibrational and electronic states that do decay in a relatively brief time. The molecule
was actually first detected in 1970, through rocket observations that found several ultraviolet ab-
sorption lines in the direction of the O star ξ Persei. These lines arise from the photo-excitation
of electronic states in H2 within an intervening diffuse cloud.

Since the hydrogen molecule plays a dominant role in many aspects of star formation, it is
worthwhile to examine its transitions in some detail. We begin with the rotational levels. In
classical mechanics, the kinetic energy of a dumbbell rotating about an axis through the center
of mass and perpendicular to the plane of rotation is given by

Erot =
J2

2 I
, (5.5)

where I is the moment of inertia and J the angular momentum. The quantum-mechanical
analog of (5.5) is

Erot =
�

2

2 I
J (J + 1)

≡ B h J (J + 1) .

(5.6)

Here J is now the dimensionless rotational quantum number, which can be 0, 1, 2, etc. The
quantity B in the second form of equation (5.6) is known as the rotational constant and has the
units of frequency.
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Figure 5.4 Rotational levels of H2 for the first two vibrational states. Within the v = 0 state, the
J = 2 → 0 transition at 28.2 µm is displayed. Also shown is the transition giving the 1-0 S(1)
rovibrational line at 2.12 µm. Note that two different energy scales are used.

The moment of inertia of H2 is the smallest of any diatomic molecule, so equation (5.6)
shows why its energy levels are widely spaced. Figure 5.4 displays the ladder of rotational lev-
els. Here the energy E is given both as an equivalent temperature, E/kB , and in wave numbers,
E/hc. Note that the two scales are similar numerically, since kB/hc = 0.70 deg−1 cm−1. The
second measure is convenient in that the energy difference between two states yields directly
the inverse of the wavelength of the emitted photon.1 As already noted, the rotational levels of
H2 decay principally through electric quadrupole transitions, in which J decreases by 2. The
lowest possible transition, J = 2 → 0, has an associated energy change of 510 K and the rela-
tively low Einstein A-value of 3.0 × 10−11 s−1. Each decay produces a photon of wavelength
28.2 µm. This far-infrared line has been detected through spaceborne observations.

The total energy of the hydrogen molecule is the sum of its rotational, vibrational, and
electronic contributions:

Etot = Erot + Evib + Eelect . (5.7)

In quantum mechanics, the energy of a simple harmonic oscillator of natural frequency ν◦ is

Evib = ��◦ (v + 1/2) , (5.8)

where �◦ ≡ 2πν◦, and where the vibrational quantum number v can be 0, 1, 2, etc. The J = 0
rotational level of the v = 1 state has an energy above ground equivalent to 6.6 × 103 K and
an A-value of 8.5 × 10−7 s−1. In the hot environments where vibrational states are excited,
the molecule relaxes through rovibrational transitions, in which both J and v change. (See
Figure 5.4.) Here, the change in v is unrestricted, while ∆J can be 0 or ±2. Suppose v′ and v′′

1 In this chapter only, we follow the spectroscopic definition of wave number, k ≡ 1/λ.
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Figure 5.5 Potential energy of H2 as a function of internuclear separation. Note again the use of
two alternate energy scales. The three solid curves correspond to the ground and first two excited
electronic states. The horizontal lines represent vibrational levels. Arrows depict photo-excitation
into the Lyman band, followed by either fluorescent decay or dissociation.

denote the initial and final vibrational states, respectively. Then we designate the rovibrational
transitions as v′− v′′ O(J ′′), Q(J ′′), or S(J ′′) for J ′′−J ′ = 2, 0, or −2. Thus, the commonly
observed 1 − 0 S(1) line, with a wavelength of 2.12 µm, represents the transition from the
(v′ = 1, J ′ = 3) to the (v′′ = 0, J ′′ = 1) level.

The electronic states are even more widely spaced, with an energy separation of order 105 K.
Figure 5.5 is a potential energy diagram for the ground and first two excited states, which are
formed by promoting one electron to a higher orbital. The figure displays the Coulomb energy
of the protons plus the binding energy of the electrons, calculated as a function of internuclear
separation. This total energy acts as the potential well in which the protons oscillate. For
each electronic state, the equilibrium separation of the nuclei is located at the minimum of its
potential.

The ground electronic state contains 14 vibrational levels, plus a continuum of levels with
E > ∆Ediss = 4.48 eV, the molecule’s binding energy. In regions of high density, such as
shocks or collapsing clouds, H2 may be destroyed through energetic collisions. Otherwise,
dissociation occurs by the absorption of an ultraviolet photon. For photon energies exceed-
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ing 14.7 eV, the process is direct and leaves one of the hydrogen atoms in an excited elec-
tronic state. However, indirect radiative dissociation is more common. Here, a photon with
E > 11.2 eV excites H2 to a higher electronic state. About 85 percent of the time, the excited
molecule drops back to ground through electronic and rovibrational transitions. The cluster of
transitions connecting levels of varying v and J within the first excited electronic state to lev-
els in the ground electronic state is known as the Lyman band, while the transitions between
the second excited electronic and ground states fall within the Werner band. During the entire
decay process, known as fluorescence, lines are emitted with wavelengths ranging from the ul-
traviolet to the infrared. Observers have detected many of these in hot cloud regions. In order to
dissociate, the molecule must decay from an excited electronic state to a vibrational continuum
level lying above the v = 14 level in the ground state. (See Figure 5.5.) After dissociation, the
molecule’s energy surplus goes into both radiation and kinetic energy of the constituent atoms.

5.2.2 Formation Rates

Let us now return to the question of H2 formation. The allowed radiative transitions within the
ground electronic state are so slow that simple association of two free atoms is rarely productive.
What is needed is a third body to absorb the released energy. Interstellar dust grains play
this role. Two hydrogen atoms that have just landed on a grain wander along its surface until
they encounter one another. The grain’s heat capacity is so large that it can easily absorb the
recombination energy without an appreciable rise in temperature.

To quantify the H2 formation rate, consider a gas containing nHI hydrogen atoms per unit
volume. Suppose these have a thermal velocity Vtherm. Then a single grain with geometric
cross section σd is struck by an atom, on average, within the collision time tcoll:

tcoll = (nHI σd Vtherm)−1 . (5.9)

The incident atom is attracted to the grain surface not by a chemical bond, but by the weaker
Van der Waals force, with a typical binding energy of 0.04 eV. The atom rapidly explores the
surface, through quantum mechanical tunneling, until it comes to rest at a lattice defect. Here the
unpaired electron forms a somewhat stronger bond to the lattice, with an energy of order 0.1 eV.
Within another interval tcoll, a second atom lands on the grain and quickly finds a binding site
adjacent to the first. Only then do the two atoms combine.

The resulting H2 molecule has no unpaired electrons and so binds only weakly to the defect
site where it formed. Thus, it soon returns to the gas phase. We may write the total H2 formation
rate per unit volume as

RH2 =
1
2

γH nd t−1
coll

=
1
2

γH nd σd nHI Vtherm .

(5.10)

Here nd is the grain number density, and γH is the sticking probability, i. e., the fraction of
atoms striking a grain that eventually recombine. This probability is about 0.3 at the gas and
grain temperatures of quiescent molecular clouds.
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Even in gas that is completely devoid of dust grains, H2 can still form through purely gas-
phase processes, as long as the temperature and density are high enough. Assuming that the gas
is at least lightly ionized, there will be a supply of free electrons. Two coupled reactions then
occur:

H + e− → H− + hν

H− + H → H2 + e− ,
(5.11)

where we use hν to denote a photon. Additionally, the ambient protons provide H2 through

H + H+ → H+
2 + hν

H+
2 + H → H2 + H+ .

(5.12)

Molecular hydrogen may have formed by these reactions in the early Universe, before dust
grains condensed from the heavy-element debris of previous stellar generations. Because of
the limited supply of free electrons and protons, only a small fraction of the atomic hydrogen
could have turned molecular by this route. However, if the primordial hydrogen gas reached
sufficiently high densities, then the three-body processes

H + H + H → H2 + H (5.13a)

and
H + H + H2 → 2 H2 (5.13b)

may have produced the first molecular clouds.
We have mentioned that the main destruction mechanism for H2 at lower densities is pho-

todissociation by ultraviolet photons of energy 11.2 eV or higher. Such radiation, largely pro-
duced by O and B stars, permeates interstellar space with a flux sufficient to dissociate each
molecule within a time period of about 400 years. A cloud of pure H2, therefore, cannot exist,
since all the molecules near the surface are effectively destroyed. However, this very process,
along with efficient absorption of the radiation by dust grains, cuts down the ultraviolet flux until
molecules further inside can survive. The interstellar H2 is therefore said to be self-shielding.
We will return to this phenomenon in Chapter 8, when we discuss the chemical makeup of
star-forming clouds.

5.3 Carbon Monoxide (CO)

The simple and abundant molecule CO forms only through gas-phase reactions. Its strong
binding energy of 11.1 eV then helps preserve the molecule against further destructive reactions.
Like H2, therefore, CO is self-shielding in the ambient field of ultraviolet radiation. In the outer
regions of a molecular cloud, the two species build up in a similar manner, although CO remains
dissociated to a greater depth. (See Chapter 8.)

It is fortunate for astrophysics that the CO molecule does have a permanent electric dipole
moment and emits strongly at radio frequencies. Since its 1970 discovery in the Orion molecular
cloud, CO has served as the primary tracer of molecular gas, both in our own and in external
galaxies. The most abundant isotope, 12C16O, is naturally the easiest to detect, but 13C16O,
12C18O, and occasionally 12C17O and 13C18O, have also proved useful.
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Figure 5.6 Rotational levels of 12C16O within the ground (v = 0) vibrational state. The astro-
physically important J = 1 → 0 transition at 2.60 mm is shown.

5.3.1 Populating the Rotational Ladder

The rotational levels again have energies given by equation (5.6). These levels are more closely
spaced than for H2 because the moment of inertia is greater. (See Figure 5.6.) More importantly,
the faster electric dipole transitions can now occur. Here, J changes by ±1. The J = 1 state
is elevated above the ground state in 12C16O by ∆E10 = 4.8 × 10−4 eV, or by an equivalent
temperature of only 5.5 K. It is therefore easy to excite this level inside a quiescent cloud and
even to populate J = 2, which lies 16 K above the ground state. When the J = 1 → 0 transition
is made radiatively, the emitted photon has a wavelength of 2.60 mm.

Within a molecular cloud, excitation of CO to the J = 1 level occurs primarily through
collisions with the ambient H2. In a cloud of relatively low total number density ntot, each
upward transition is followed promptly by emission of a photon. Conversely, when ntot is high,
the excited CO usually transfers its excess energy to a colliding H2 molecule, with no emis-
sion of a photon. The critical density separating the two regimes is given by A10/γ10. Using
A10 = 7.5 × 10−8 s−1 and γ10 = 2.4 × 10−11 cm3 s−1 (the appropriate value for collisions
with H2 at a temperature of 10 K), we find that ncrit is 3 × 103 cm−3.

In general, the rate of spontaneous photon emission per unit volume from the J = 1 → 0
transition is n1A10. Here nJ denotes the number density of CO molecules in the level with
quantum number J . We may determine these populations by balancing the rates of collisional
and radiative excitation and deexcitation. Appendix B presents the simplified but instructive
example of a two-level system. The ratio of the densities n1 and n0 is usually expressed through
the excitation temperature, Tex. We define this quantity through a generalization of Boltzmann’s
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Figure 5.7 Emission in the J = 1 → 0 line of 12C16O. The CO is immersed in a gas of pure H2.
Emission is measured per CO molecule and is displayed as a function of H2 number density.

law:
n1

n0
=

g1

g0
exp

(
− ∆E10

kBTex

)
, (5.14)

where g1 and g0 are the degeneracies of the two levels. In the case of CO rotational states,
gJ = 2J +1. For ntot � ncrit, n1/n0 is small and proportional to ntot. (See Appendix B.) The
excitation temperature in this case is less than Tkin, the kinetic temperature that characterizes the
velocity distribution of the colliding molecules. For ntot � ncrit, however, the CO molecule
comes into local thermodynamic equilibrium (LTE) with its environment. The J = 1 and J = 0
level populations are again related through equation (5.14), but with Tex now equal to Tkin.

Increasing the density in a cloud can therefore enhance the J = 1 → 0 emission, but only
for subcritical values of ntot. We show the full behavior in Figure 5.7, which was obtained by
numerical calculation of the level populations. At a fixed value of Tkin, the 1 → 0 emission
rate peaks as ntot increases to ncrit and beyond. The high-density decline is caused by the
increasing excitation of molecules to the J > 1 states. This effect slowly drains the population
of the J = 1 level, eventually forcing it down to the LTE value. The calculation here ignores
the fact that many of the emitted 1 → 0 photons can themselves excite CO molecules instead of
leaving the cloud. Inclusion of this radiative trapping would cause the peak in emission to be
achieved at densities somewhat less than ncrit.

Figure 5.7 concerns a parcel of gas with uniform density ntot. Along any line of sight
through a molecular cloud, the true density will vary, with most material being at some mini-
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mum “background” value. If this ambient gas has an ntot well below ncrit for the transition of
interest, it will not contribute appreciably to the emission. On the other hand, we have seen that
the emissivity declines for ntot far above ncrit, where there is often little material in any case.
The conclusion, valid beyond the specific case of CO, is that observations in a given transition
are most sensitive to gas with densities near the corresponding ncrit. This fact should be borne
in mind when interpreting molecular line studies.

5.3.2 Vibrational Band Emission

In gas that is being heated by nearby young stars, the upper vibrational levels of CO become
significantly populated. Equation (5.8) still gives the level energies to fair accuracy, but un-
derstanding the observed complex spectra requires that we consider the next higher correction.
Specifically, the picture of CO oscillating in a parabolic potential well must break down at large
amplitude, where the molecule is eventually torn apart. Thus, Evib does not increase precisely
as v + 1/2, but contains a relatively small negative term proportional to (v + 1/2)2. As a con-
sequence, the frequencies of photons emitted by the transitions with v = 1 → 0, 2 → 1, etc.,
decrease slowly with the starting v-value. Such fundamental vibrational transitions have the
largest A-values. Other overtone transitions with ∆v = −2,−3, etc. also occur. Figure 5.8
shows the system of first overtones observed toward the BN object in Orion. Here, the vibra-
tional levels are collisionally excited in a gas with kinetic temperature near 4000 K.

The emission spikes in Figure 5.8 are actually bands consisting of many closely spaced
lines. Each band corresponds to a pair of vibrational quantum numbers, say v′ and v′′, while
the lines within a band are individual rovibrotional transitions. The spacing between these
lines gradually decreases toward higher frequency. Eventually, the lines merge in a band head.
Let us see how this behavior, evident in the higher-resolution spectrum of Figure 5.9, can be
understood in physical terms.

For downward dipole transitions within the same vibrational state (J → J − 1), equa-
tion (5.6) predicts that ∆Erot is proportional to J , so that the lines are equally spaced. However,
a CO molecule in a higher v-state has a slightly larger average separation between atoms. Its
moment of inertia, Iv , is therefore greater and its rotational constant, Bv , is lower. If v′ and v′′

again denote the upper and lower vibrational states, respectively, then the J → J − 1 transition
now yields an energy of

∆E (v′, J → v′′, J − 1) = ∆Ev′v′′ + (Bv′ + Bv′′) h J + (Bv′ − Bv′′) h J2

≈ ∆Ev′v′′ + 2Bv′ h J + (Bv′ − Bv′′) h J2 .
(5.15)

Here J = 1, 2, 3, etc. and ∆Ev′v′′ is the energy difference between two J = 0 states. Note that
J = 0 → 0 dipole transitions do not exist, so that the band contains a gap at the corresponding
frequency. Since Bv′′ is slightly greater than Bv′ , equation (5.15) shows that the frequencies
of the J → J − 1 lines, known collectively as the R-branch of the band, increase, reach a
maximum, and then begin to decline with higher J . For the fundamental v = 1 → 0 band, this
maximum is reached at λ = 4.30 µm, while it occurs at 2.29 µm in the first overtone v = 2 → 0
band. Figure 5.9 shows the v = 2 → 0 band head in SSV 13, an embedded infrared source
driving a molecular outflow.
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Figure 5.8 Near-infrared spectrum of the BN object in Orion, shown at three different observing
times. The relative flux is plotted against the wave number k, defined here as 1/λ.

Figure 5.9 High-resolution near-infrared spectrum of the embedded stellar source SSV 13. The
structure of the v = 2 → 0 band head in 12C16O is evident. The smooth curve is from a theoretical
model that employs an isothermal slab at 3500 K. Note that the spectrum here represents only a
portion of the R-branch.
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For the CO molecule, J can change by either −1 or +1 between different rovibrational
states. The lines from J − 1 → J fall on the other side of the central gap, which lies to the right
of the spectrum shown in Figure 5.9. The energies in this P -branch are

∆E (v′, J − 1 → v′′, J) = ∆Ev′v′′ − (Bv′ + Bv′′) h J + (Bv′ − Bv′′) h J2

≈ ∆Ev′v′′ − 2Bv′ h J + (Bv′ − Bv′′) h J2 ,
(5.16)

where, again, J = 1, 2, 3, etc. Because of the sign change from equation (5.15), the frequency
falls below the gap for any J . The spacing between successive lines widens, and there is no
convergence to a band head.

Populating the upper electronic levels of CO requires even more energetic environments.
The first excited electronic level lies at an equivalent temperature of 9.3× 104 K above ground.
Downward rovibrational transitions give rise to bands in the ultraviolet regime. Fewer lines
now separate the band head from the gap, since the difference Bv′ − Bv′′ in equation (5.15)
is significantly greater. If enough energy is available, CO dissociates. As in H2, collisional
dissociation is direct, while photodissociation occurs through a two-step process. That is, the
molecule must first be excited by line absorption to a higher electronic level, from which it can
either relax to the ground state or else fall apart into separate carbon and oxygen atoms.

5.4 Ammonia (NH3)

We have seen how the lowest rotational levels of CO saturate in population as the cloud density
climbs above ncrit for that species. The molecule then ceases to be a useful observational gauge
of ntot. Additionally, we have noted that photons from a given CO molecule are absorbed and
reemitted many times by other, identical molecules before leaving the cloud. In other words,
the cloud becomes optically thick to this radiation, a condition that sets in first for the lowest
transitions of the main isotope 12C16O. The detected radiation is then only sampling conditions
in the sparse, outer regions of the cloud.

Since its discovery in 1969, interstellar ammonia has been one of the most widely used
probes for higher-density molecular regions. Formed through a network of gas-phase reactions,
the polyatomic NH3 has a much more complex set of transitions than CO and is therefore a more
sensitive diagnostic of cloud conditions. Many useful transitions fall within a narrow frequency
range, thus greatly reducing relative errors in instrumental calibration.

5.4.1 The Symmetric Top

Let us consider first the rotational transitions of this molecule, a pyramid in which the hydrogen
atoms form an equilateral triangle (Figure 5.10). In classical mechanics, the kinetic energy of a
three-dimensional rotator is found from a generalization of equation (5.5):

Erot =
J2

A

2 IA
+

J2
B

2 IB
+

J2
C

2 IC
. (5.17)

Here, IA, IB , and IC are the moments of inertia about the principal axes of rotation, while JA,
JB , and JC are the corresponding projections of the total angular momentum vector J . The
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Figure 5.10 Molecular structure of NH3, showing
the three principal axes of rotation.

Figure 5.11 Torque-free motion of NH3. The molecule rotates about the axes perpendicular to
the plane of hydrogen atoms, with associated angular momentum JA. The latter vector in turn
precesses about the axis lying along the total angular momentum J .

principal axes for NH3 are also shown in Figure 5.10. The molecule is a symmetric top, where
two of the axes, here labeled B and C, have identical moments of inertia. Note that IA < IB ,
i. e., the molecule is a prolate (as opposed to oblate) rotator. In the absence of external torques,
a symmetric top rotates about its symmetry (A) axis, which in turn precesses about the fixed
vector J (Figure 5.11). The scalars J and JA are therefore both constants of the motion.

To find the quantum mechanical energy levels, we first use the equality of IB and IC to
rewrite equation (5.17) as

Erot =
J2

2 IB
+ J2

A

(
1

2 IA
− 1

2 IB

)
. (5.18)

Since J and JA are conserved classically, the generalization of equation (5.6) is

Erot = B h J (J + 1) + (A − B) h K2 . (5.19)
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Figure 5.12 Rotational levels of NH3. Those levels lying on the lower border constitute the
rotational backbone.

Here, A and B are the two rotational constants, while J and K are quantum numbers that
measure, respectively, the magnitude of the total angular momentum and its component along
the symmetry axis. For a given value of J , the possible K-values range from −J to +J . Since,
according to (5.19), states with ±K have the same energy, it is conventional, when labeling
states, to restrict K to values greater than or equal to 0.

The total set of rotational levels is conveniently arranged into columns of fixed K-value
(Figure 5.12). Within a given column, the state of lowest energy has J = K. Downward
transitions from (J, K) to (J − 1, K) occur very rapidly, with typical A-values from 10−2 to
10−1 s−1. By symmetry, the molecule’s electric dipole moment vector µ lies along the central
axis. Classically, rotation about this axis can therefore produce no dipole radiation. Correspond-
ingly, quantum-mechanical dipole transitions with nonzero ∆K are forbidden. States along the
lower border in the diagram consitute the rotational backbone. Downward quadrupole transi-
tions along this border, (J, K) → (J−1, K−1), do occur, but with A-values of order 10−9 s−1.
Thus, the states along the backbone are metastable.

5.4.2 Inversion Lines

The most useful spectral lines from NH3, as we shall demonstrate in Chapter 6, arise from
inversion, the oscillation of the nitrogen atom through the hydrogen plane. In most molecules,
vibrational transitions yield infrared photons of much higher frequency than those from ro-
tational modes. The inversion transition of NH3, however, produces microwave photons, in
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contrast to the far-infrared rotational lines. The reason is that, from the classical viewpoint, the
nitrogen atom does not have sufficient energy to cross the central plane, i.e., there exists a barrier
in the potential well (Figure 5.13). In quantum mechanics, the atom’s wavefunction can tunnel
through this barrier, given sufficient time. Oscillation thus occurs, but at a far lower rate than
in a simple parabolic potential well. To produce the low-frequency emission, each rotational
level (J, K) with K > 0 is split into two sublevels with an energy separation of order 10−4 eV
(Figure 5.14). The transition from the upper to the lower sublevel yields the main line of the
NH3 microwave spectrum. For the (1,1) state, this line has a wavelength of 1.27 cm.

Additional effects further split the two inversion states. The nitrogen nucleus has a non-
spherical charge distribution and an electric quadrupole moment. It can therefore be torqued in
the presence of an electric field gradient. The system energy depends on the relative orientation
of the nuclear spin and the total angular momentum vector of the electrons, which in turn varies
with the rotational state of the molecule. Consequently, each inversion state splits into three
sublevels, as illustrated in Figure 5.14. When the appropriate selection rules are enforced, the
allowed transitions between the upper and lower levels give rise to a total of five lines – the
original main line and two pairs of satellite lines, separated from the main line by about 1 MHz.

Finally, even weaker, magnetic interactions between the spins of the various nuclei split the
lines again, with typical separations of 40 KHz. The net result is that the observationally im-
portant (1,1) and (2,2) rotational states each produce a total of 18 lines. The original main line,
now split into 8 closely spaced components, has about half the total intensity of the inversion
transition, while each cluster of satellite lines carries roughly equal intensity.

5.5 Water (H2O)

The water molecule has a relatively large dipole moment, almost 20 times that of CO. Here, the
associated vector µ is directed along the symmetry axis through the oxygen atom (Figure 5.15).
Within the ground vibrational state are a large number of allowed rotational transitions at far-
infrared and millimeter wavelengths. Excitation of these levels followed by prompt radiative
decay provides an important cooling mechanism in shock-heated clouds, where accelerated
chemical reactions produce a relatively high abundance of the molecule. Absorption by atmo-
spheric water is an impediment that has prevented H2O from becoming a primary diagnostic of
cloud conditions. Spaceborne observations, first by the SWAS satellite, have yielded an upper
bound to the H2O abundance in quiescent clouds (Table 5.1). A number of higher transitions
had previously been detected, starting with the important 22.2 GHz (1.35 cm) line discovered
in 1969. This line, along with others subsequently found, are actually maser transitions, in
which an enhanced population of the upper state creates extraordinarily strong emission. We
will discuss water masers and their application in Chapter 14.

5.5.1 The Asymmetric Top

The rotational emission spectrum of H2O is more complex than that of NH3 because the mol-
ecule is an asymmetric top, with three unequal moments of inertia along its principal axes
(Figure 5.15). Classically, the quantities conserved during rotation are the total vector angu-
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Figure 5.13 left panel: The inversion of NH3, as the nitrogen atom tunnels through the plane of
hydrogens. right panel: The potential energy of the molecule, shown as a function of the nitrogen
atom’s distance from the hydrogen plane. Note the central energy barrier.

Figure 5.14 Splitting of the inversion line in the NH3 (1,1) state. The various frequency differ-
ences are indicated, along with allowed transitions.
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Figure 5.15 Molecular structure of H2O, showing
the three principal axes and the electric dipole mo-
ment µ.

lar momentum J and its projection along an axis fixed in inertial space, but not the projection
along any axis tied to the molecule itself. Thus there is no second quantum number beyond J to
parametrize the rotational energy. This energy may be expressed as a complicated function of
J and the rotational constants A, B, and C, which correspond to the three principal axes in Fig-
ure 5.15. It is conventional to order the constants so that A > B > C. Since B is numerically
closer in value to C than to A, the molecule is more prolate than oblate.

Generalizing from the JK notation for symmetric tops, the rotational states are labeled with
three numbers in the form JK−1,K1 . The first subscript is the K-value of that prolate symmetric
top state obtained if the rotational constant B were changed to C. Similarly, K1 is the subscript
for the oblate configuration created by letting B tend toward A. 2 The dipole selection rules
allow J to change by 0 or ±1, while K−1 or K1 can each change by ±1 or ±3. The so-
called eo states, i. e., those with even K−1 and odd K1, can only change into oe states and vice
versa, while ee and oo states are similarly linked. Physically, these two separate classes are
distinguished by the sign change of the molecular wave function under a 180◦ rotation about
the symmetry axis.

Any given rotational state has a number of equal-energy sublevels corresponding to different
orientations of the spins of the two hydrogen nuclei. This degeneracy is three times greater for
the eo and oe (“ortho”) class of states, which are correspondingly more populated than the ee
and oo ( “para”) class. The energy-level diagram of Figure 5.16 displays separately the lower
ortho- and para-rotational states. These are arranged so that states with a common J-value
occupy the same column.

5.5.2 Observed Rotational Lines

The water molecule’s large dipole moment implies that many downward transitions have rel-
atively high A-values, particularly those between levels with the same J and neighboring K-
values. As a consequence, it is rather difficult to excite the higher levels collisionally. For
example, the 110 → 101 transition has A = 3.5 × 10−3 s−1 and a collisional deexcitation rate
of 2.0×10−10 cm−3 s−1 at Tkin = 20 K. The corresponding value of ncrit is 2×107 cm−3. This
is far greater than densities in quiescent clouds, but attainable in shocked regions near massive

2 The rather cumbersome notation for the subscripts reflects the fact that a standard parameter measuring molecular
asymmetry tends toward −1 for prolate configurations and toward +1 for oblate structures.
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Figure 5.16 Rotational levels of H2O. Two maser transitions, 616 → 523 and 414 → 321, are
indicated on the right.

stars. At lower densities, rotational levels can still be excited by infrared continuum photons
from heated dust grains.

Whatever their source of energy, the excited molecules tend to cascade downward to the
rotational backbone, consisting of the states 101, 212, 303, etc. Inspection of Figure 5.16 reveals
only two allowed transitions among the ortho-states, 414 → 321 and 616 → 523, by which
molecules can leave the backbone without dropping directly to the next lower backbone level.
The levels 321 and 523 thus accumulate molecules, but remain underpopulated relative to their
adjacent backbone states. In fact, both transitions in question are observed as masers, the second
being the 22.2 GHz line.

Like CO and NH3, H2O forms through gas-phase reactions. Within shocked cloud regions,
the major sequence is

H2 + O → OH + H
OH + H2 → H2O + H .

(5.20)

As we noted in §5.1, such neutral-neutral reactions are inoperative within cold, dark clouds.



158 5 Molecular Transitions: Basic Physics

Here, ion-molecule reactions can still proceed. The formation of H2O involves the chain

H+
3 + O → H2 + OH+

OH+ + H2 → OH+
2 + H

OH2
+ + H2 → H3O+ + H

H3O+ + e− → H2O + H .

(5.21)

The last reaction is an example of the dissociative recombination process introduced in
equation (5.2). Such reactions proceed very quickly given an adequate supply of free electrons.

5.6 Hydroxyl (OH)

We saw in Chapter 3 how molecular clouds are threaded by the magnetic field lines that perme-
ate interstellar space. Compression of this field creates an effective pressure that partially sup-
ports clouds against gravitational collapse. To measure B accurately, a molecular probe should
have a relatively large magnetic moment. Especially important in this regard are molecules with
one unpaired electron and therefore a nonzero electronic angular momentum. Classified chem-
ically as free radicals, such compounds are violently reactive in the laboratory, but can survive
for long periods in the rarefied environments of molecular clouds. The most widely used species
of this kind is OH.

5.6.1 Nature of Rotational Motion

The rotational levels of OH again have energies given by equation (5.6). However, it is the more
finely spaced hyperfine transitions that have found application in magnetic field measurements.
A given rotational state, again labeled by the quantum number J , is split into two sublevels
of nearly equal energy by a phenomenon known as Λ-doubling. Here, Λ� is the projection
of the orbital angular momentum of the unpaired electron along the molecule’s internuclear
axis. The molecule is rotationally symmetric about this axis, so there are no torques to alter
the corresponding component of the angular momentum. It follows that Λ is a valid quantum
number. Since a state with −Λ, i. e., with the orbital motion reversed, has almost the same
energy as the +Λ state, the label Λ is conventionally restricted to nonnegative integer values.
The projection of the electronic spin angular momentum along the internuclear axis is another
good quantum number, denoted Σ. Since OH has only one unpaired electron, Σ is restricted in
value to ±1/2. The projection of the electron’s total angular momentum, a quantity denoted Ω,
is given by |Λ + Σ|.

We emphasize that it is only the axial projections of the electronic angular momenta that
are constants of the motion. In a semi-classical description, the spin and orbital angular mo-
mentum vectors, denoted S and L respectively, are not fixed in space, but undergo a complex
motion (Figure 5.17). First, the unpaired electron is attracted toward the internuclear axis by
the powerful electrostatic force of the chemical bond. The resulting torque causes L to precess
rapidly about this axis. Second, the electron sees, in its own reference frame, a magnetic field
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Figure 5.17 Torque-free motion of
OH. The vectors L and S, represent-
ing respectively the unpaired elec-
tron’s orbital and spin angular mo-
mentum, have projections Λ and Σ
along the internuclear axis. Both L
and S precess rapidly about this axis.
Meanwhile, the internuclear axis it-
self, and the associated nuclear an-
gular momentum O, precess slowly
about the total angular momentum J .

from the motion of the nuclei and remaining electrons. The field creates a torque on the mag-
netic moment associated with S. (Recall the discussion of the hydrogen atom in § 2.1.) As a
result of this spin-orbit coupling, S also precesses quickly about the internuclear axis. Finally,
the axis itself tumbles slowly end over end, through rotation of the O and H nuclei. Note that
the angular momentum associated with this rotation, denoted O, lies perpendicular to the axis,
since the atomic nuclei have negligible moments of inertia about the line joining them.

Regardless of these internal torques, the angular momentum J , formed by adding vectorially
S, L, and O, is very nearly constant in magnitude and direction. We may picture the vector
O and the projection of S + L along the internuclear axis both precessing about the fixed J
(Figure 5.17). The motion is analogous to that of a symmetric top. (Recall Figure 5.11.)3 Thus,
J is another good quantum number, whose possible values are given by Ω, Ω + 1, Ω + 2, etc.
This sequence is a generalization of J = 0, 1, 2, etc. for molecules without electronic angular
momentum.

The rotational states of the molecule are thus labeled, not only by J , but also by the quantum
numbers Λ and Ω. In addition, one must specify S, the magnitude of the electronic spin. This
number, fixed for all rotational states, is here equal to 1/2. In spectroscopic notation, the ground
state for OH is symbolized 2Π3/2 and has J = 3/2. The Π denotes Λ = 1, while the subscript is
Ω. Since Σ = +1/2 for this state, Ω = |1+1/2| = 3/2. Figure 5.18 shows the rotational ladder
of 2Π3/2 levels with J = 3/2, 5/2, 7/2, etc. The superscript in the spectroscopic symbol is
the multiplicity, equal to 2S + 1. In this case, the multiplicity of 2 indicates that there exists
another state with the same Λ, but with the unpaired electron’s spin oriented oppositely, i. e.,
with Σ = −1/2 and therefore Ω = 1/2. Any state with these values of Λ and Ω is denoted

3 The precession of angular momentum vectors described here applies only to the lower rotational states of OH. In
states of higher J , the spin-orbit coupling can no longer effectively lock S to L directly.
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Figure 5.18 Rotational states of
OH. The two ladders correspond to
opposite orientations of the unpaired
electron’s spin. The splitting of the
levels due to both Λ-doubling and
the magnetic hyperfine interaction
is shown schematically. Also in-
dicated are the allowed transitions
within the ground rotational state.

2Π1/2; the lowest one has J = 1/2. Figure 5.18 includes the separate ladder of 2Π1/2 states
with J = 1/2, 3/2, 5/2, etc.

5.6.2 Λ-Doubling

Focusing again on an individual rotational state, we saw how the motion of the internuclear axis
causes the axial projection of S + L to precess about J . Such precession by itself would not
affect the molecule’s energy. However, the nuclear rotation also distorts slightly the electron’s
orbital motion. Figure 5.19 depicts two orthogonal probability distributions for the electron in
the plane perpendicular to the internuclear axis. Because of the molecule’s symmetry about
the axis, the two cases (a) and (b) might be expected to have identical energy. However, the
molecule as a whole rotates about the perpendicular axis indicated in the figure. This rotation
induces a centrifugal force, so that the distribution in (a) has higher energy than in (b), where
the electron is, on average, farther from the rotation axis.

This splitting of the previously degenerate ±Λ levels constitutes Λ-doubling. Note that the
actual wavefunctions for the two eigenstates (known as the + and − states) are linear combina-
tions of those corresponding to orthogonal directions of electronic rotation. Since the nuclear
rotation of the molecule is very slow compared to the electron’s orbital speed, the resulting
perturbations to the energy are slight. Figure 5.18 shows schematically that the energy split in-
creases going up the rotational ladder to states of higher J , i. e., to faster molecular rotation. For
the 2Π3/2 (J = 3/2) state, the temperature equivalent of the energy difference is 8.0× 10−2 K.
A photon emitted during the transition between sublevels has a frequency of about 1700 MHz
and a wavelength of 18 cm.
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Figure 5.19 Physical origin of Λ-doubling in OH.
The molecule’s energy depends on whether the sym-
metry axis of the unpaired electron’s orbital motion
(a) coincides with the internuclear axis, or (b) lies or-
thogonal to that axis.

5.6.3 Magnetic Hyperfine Splitting

Each of the sublevels of the 2Π states is further split by an interaction between the spins of the
unpaired electron and the hydrogen nucleus. With reference to Figure 5.17, the result is that
even J is not strictly constant, but precesses with I , the proton angular momentum, about their
sum, the grand total angular momentum F . The new interaction arises because the magnetic
field from the spinning electron at the position of the proton depends on the relative orientation
of the two spin axes. Thus, in Figure 5.19, the electronic angular momentum S appears parallel
to I in both panels. However, the magnetic field from the electron is actually parallel to I in (a)
and antiparallel in (b). Reversing the direction of I would result in two other distinct states.

The net effect of this magnetic hyperfine splitting is quantitatively small; each sublevel of
the ground 2Π3/2 state is split in frequency by only about 60 MHz. The F -values of the final
states are given in Figure 5.18. Transitions that connect states of the same F are said to produce
main lines, while the others emit satellite lines. The reader may recall from Chapter 2 that the
same magnetic interaction is responsible for the famous 21 cm line of atomic hydrogen. The
split in energy, corresponding in that case to a frequency of 1420 MHz, is larger than in OH
because the average separation of the electron and proton is less.

The short vertical line segments in Figure 5.18 indicate the allowed radiative transitions
within the 2Π3/2 (J = 3/2) ground state of OH. Historically, the 1963 detection of the four lines
at 1612, 1665, 1667, and 1720 MHz constituted the first radio identification of an interstellar
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molecule. In this case, the lines appeared in absorption against the radio source Sgr A∗. Their
relative intensities were close to the theoretically predicted values in an optically-thin medium,
with the strongest lines being the main ones at 1665 and 1667 MHz. Soon after, observers found
three of the four lines in emission, but the one at 1665 MHz was far brighter than the others.
This line, initially dubbed “mysterium,” was also much narrower than expected and strongly
variable. What was seen, in fact, was the first instance of an interstellar maser.

Chapter Summary

Even in the cold environments of dark clouds, one finds a great variety of molecules. Most
are created when an ion of one species polarizes a nearby, electrically neutral atom, increasing
their mutual attraction. A significant exception is H2 itself, which forms on the surfaces of dust
grains. It is puzzling that these grains do not promptly sweep up other molecules within a cloud
and remove them from the gas phase. Apparently, there are processes that liberate molecules
from grains, but they are poorly understood at present.

Rotational, vibrational, and electronic transitions of molecules require increasing energy for
excitation. A given transition radiates strongly when the ambient density is critical, i. e., just
high enough to offset radiative decay through collisonal pumping. In most molecular clouds,
H2 is undetectable, so observers principally utilize the rotational lines of CO. Denser cloud
material may be traced through a complex of microwave NH3 lines that arise from quantum
mechanical tunneling of the nitrogen atom. The high temperatures and densities created by
shocks can overpopulate rotational levels of H2O, leading to maser emission. Finally, rotation
of OH subtly affects the motion of this molecule’s unpaired electron. The resulting quartet of
lines near 18 cm is a valuable diagnostic of interstellar magnetic fields.
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6 Molecular Transitions: Applications

Having acquired some physical understanding of the most important molecular transitions, we
next examine how these lines are employed in practice. The infrared emission from H2 requires
more energetic conditions than are present in quiescent clouds. Hence, these lines are not useful
as general diagnostics. Note, however, that the 2.12 µm line has proved effective in tracing
shocks and stellar jets. The potentially important rotational transitions of H2O are obscured
by atmospheric absorption; some of these lines have now been detected by satellite. Of the
molecules we have considered previously, the most heavily used are CO, NH3, and OH. As we
consider each species in turn, we focus on just a few of its common applications. We defer
treatment of the maser emission from H2O until Chapter 14.

6.1 Carbon Monoxide

Because its critical density is relatively low, CO has most often been used for studying mas-
sive clouds, rather than the dense cores within them. In these larger regions, the J = 1 → 0
transition of 12C16O is almost always optically thick, while the same line from rarer isotopes is
frequently not. The issue of optical thickness plays a key role when interpreting observations
from this molecule.

6.1.1 Observed Profiles

Figure 6.1 shows three representative J = 1 → 0 line profiles, all from the same region in
Taurus-Auriga. As usual, we plot the antenna temperature TA instead of Iν itself, and the
line-of-sight velocity Vr in place of the frequency ν. The 12C16O profile in the figure has a
flat-topped or saturated appearance, the characteristic sign of optical thickness. Any photon
emitted near the line center ν◦ is very quickly absorbed by nearby 12C16O molecules. Because
the absorbers have a finite relative velocity, the reemitted photons are slightly Doppler-shifted
in frequency. As this process is repeated a number of times, photons diffuse in frequency into
the line wings, i. e., the original emission profile is broadened.

Most molecules in the cloud have a small relative speed. Thus, 12C16O photons are still
optically thick over some frequency range centered on ν◦. Within this range, the cloud radiates
from its surface like a blackbody. The observed intensity Iν is proportional to the Planckian
function Bν evaluated at the excitation temperature near the surface (see Appendix C). This
function varies little over the relatively narrow frequency range in which the radiation is op-
tically thick. Hence, the profile appears flat. Sufficiently far from line center, there are few
enough absorbing molecules that the photons can escape, and the intensity drops.

For more optically-thin transitions, such as the 13C16O and 12C18O lines also shown in
Figure 6.1, the profile is reduced in amplitude and more sharply peaked. In these cases, every
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Figure 6.1 Intensity profiles of the J = 1 → 0 line in three CO isotopes, observed toward
Taurus-Auriga.

molecule along the line of sight contributes to the emission, so that the intensity integrated
over all frequencies (or, equivalently, TA integrated over Vr) is proportional to the total column
density of the isotope in question. It is important to understand that this proportionality cannot
hold for 12C16O, whose radiation emanates only from the cloud’s surface layers.

To see the matter more quantitatively, consider the ratio of the column densities of the
two species 12C16O and 13C16O. Since the oxygen nuclei are identical, this number in nearby
clouds should approximately equal the terrestrial value for the ratio of carbon isotopes, which
we denote as [12C/13C]∗. This ratio is measured to be 89. We do not expect the equality to be
exact, because a number of chemical reactions in clouds slightly favor the rarer isotope. Since
13C16O is more tightly bound than 12C16O by 3.0×10−3 eV, i. e., by an equivalent temperature
of 35 K, such chemical fractionation is significant at molecular cloud temperatures. In warmer
clouds, the inferred values of [12C/13C] do fall reasonably close to the terrestrial figure, although
there is evidence for a systematic decline toward the Galactic center. For the example shown in
Figure 6.1, however, the measured ratio of

∫
TAdVr for the two lines is only 2.2, much too small

to be caused by chemical fractionation alone. The true explanation is that, for the optically-thick
12C16O emission,

∫
TAdVr does not trace the full column density, which must be inferred by

other means.

6.1.2 Temperature and Optical Depth

The general problem we are addressing is how to use the received intensity of any spectral line
to deduce the physical conditions within a cloud. Let us focus first on temperature and density
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as the quantities of interest. A key relation, derived in Appendix C, is the detection equation:

TB◦ = T◦ [f(Tex) − f(Tbg)] [1 − exp(−∆τ◦)] . (6.1)

Here, ∆τ◦ and TB◦ are, respectively, the cloud’s optical thickness at line center and the re-
ceived brightness temperature at the same frequency. As discussed in Appendix C, TB(ν) is
related to the directly observed TA(ν) through the beam efficiency and the beam dilution factor.
The quantity Tbg in (6.1) is the blackbody temperature associated with any background radia-
tion field, assumed here to be approximately Planckian in its energy distribution. Finally, the
function f(T ) is defined by

f(T ) ≡ [exp(T◦/T ) − 1]−1
. (6.2)

Here T◦ is the equivalent temperature of the transition, i. e., T◦ ≡ hν◦/kB .
Let us apply the detection equation to the profiles in Figure 6.1. For this particular observa-

tion, both the beam efficiency and dilution factor happen to be close to unity, so that TB ≈ TA.
Consider first the 13C16O line. While T 13

B◦ is known directly from the observed profile, equa-
tion (6.1) still contains, beside Tbg, the two unknowns T 13

ex and ∆τ13
◦ ; here we use the super-

script to specify the carbon isotope. Interpretation of the 13C16O profile clearly requires more
information. For the optically-thick 12C16O line, however, it is generally true that ∆τ12

◦ � 1,
so that the rightmost factor in (6.1) reduces to unity. We then have, to a good approximation,

T 12
B◦ = T 12

◦
[
f(T 12

ex ) − f(Tbg)
]

. (6.3)

Assuming the radiation source behind the cloud to be the cosmic microwave background, we
set Tbg equal to 2.7 K. We also know that T 12

◦ is 5.5 K. We may now use equation (6.3) to
solve for T 12

ex in terms of the observed quantity T 12
B◦ . For our profile, T 12

B◦ = 5.8 K, so we find
that T 12

ex = 9.1 K. The 12C16O line is usually so optically thick that the J = 0 and J = 1 level
populations can be taken to be in LTE, even if the ambient density is less than ncrit (see § 6.2
below). We therefore have a measure of the interior kinetic temperature:

Tkin = T 12
ex . (6.4)

It is also of interest to evaluate the optical thickness of the cloud to the observed spectral
lines. In the case of 13C16O, its collisional and radiative transition rates per molecule, and
therefore also its value of ncrit, are very close to those of 12C16O. At a fixed ambient density
ntot, one must obtain Tex by considering not only ncrit but also the local radiation intensity (see
Appendix B). In the absence of a detailed model, it is difficult to assess the amount of radiative
trapping, but it is generally safe to take the lower levels of 13C16O to be in LTE if 12C16O is
very optically thick. The relative populations in such levels for the two isotopes are then the
same, so that we have

T 13
ex = T 12

ex . (6.5)

This equality finally allows us to apply the detection equation to 13C16O. With T 13
B◦ known from

the observation to be 4.1 K, and T 13
◦ = 5.3 K, we find ∆τ13

◦ = 1.2. The fact that the 13C16O
line is only marginally optically thin is consistent with the profile’s appearance in Figure 6.1,
where we can see the beginning of saturation broadening.
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To estimate the optical thickness of the 12C16O line, we first note that both ∆τ12
◦ and ∆τ13

◦
must be proportional to the total column densities of their respective isotopes:

∆τ12
◦

∆τ13◦
=

N12
CO

N13
CO

. (6.6)

We have already seen, however, that

N12
CO

N13
CO

= γ

[
12C
13C

]∗
. (6.7)

Here γ is a number less than unity, representing both chemical fractionation and the lesser
effect of photodissociation by ambient ultraviolet radiation. At a cloud temperature near 10 K,
γ ranges from 0.1 to 0.3, with higher values occurring at greater optical depths. Combining
(6.6) and (6.7), we solve for ∆τ12

◦ :

∆τ12
◦ = γ

[
12C
13C

]∗
∆τ13

◦

= 89 γ ∆τ13
◦ .

(6.8)

For our sample observation, we use γ = 0.3 to derive ∆τ12
◦ = 27.

There are many variations on the basic method we have outlined. For example, an observer
wishing to obtain higher angular resolution may prefer to use the J = 2 → 1 line of 12C16O at
1.3 mm instead of J = 1 → 0. In this case, the optical depth will generally not be high enough
for equation (6.3) to hold. Suppose, however, that the analogous line in 13C16O is still optically
thin. Then one may observe another, even higher transition in 12C16O. One writes equation (6.1)
for all three lines and solves for the unknowns Tex, ∆τ13

◦ , and ∆τ12
◦ . These optical depths refer

to the J = 2 → 1 transition only, since the higher one can be obtained through the assumption of
LTE. We will encounter a practical application of this technique in Chapter 13, when discussing
the temperatures within molecular outflows.

6.1.3 Column Density

Let us now consider the determination of the cloud volume density, ntot. Here the idea is first
to evaluate column densities along each line of sight. An optically-thin transition is clearly the
optimal choice for this purpose. Although 13C16O often only marginally fulfills the requirement,
it is much more easily detected than rarer isotopes, such as 12C18O, that are unequivocally
optically thin. Accordingly, many CO-based estimates of ntot start with the column density
N13

CO.
We have already used the fact that the column density of any species is proportional to the

optical thickness of an emitted spectral line. The actual proportionality constant between N13
CO

and ∆τ13
◦ follows in a straightforward manner from the transfer equation for spectral lines.

From Equations (C.15) and (C.16) in Appendix C, we find

N13
CO =

8πν2
◦∆ν13Q13∆τ13

◦
c2A10

(
g0

g1

) [

1 − exp
(

−T 13
◦

T 13
ex

)]−1

. (6.9)
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Figure 6.2 Steps in deriving the relationship between the 13C16O and the total hydrogen column
densities.

Here ∆ν13 is the observed full-width half-maximum of the J = 1 → 0 line. The deriva-
tion of equation (6.9) assumes this width is intrinsic and neglects any saturation broaden-
ing. The quantity Q13 is the partition function for the rotational levels. Equation (C.18)
implies that Q13 = 2 T 13

ex /T 13
◦ . Returning once more to our example, the observed velocity

width, ∆V 13
r ≡ (∆ν13/ν◦) c, is 1.5 km s−1. Having already determined ∆τ13

◦ , we deduce that
N13

CO = 8.8 × 1015 cm−2.
For a given abundance of CO relative to hydrogen, N13

CO should be proportional to the total
hydrogen column density NH ≡ NHI + 2 NH2 . Knowing NH will not give us, of course, the
local volume density at interior points. However, if the cloud is well mapped, we may be able to
estimate the physical depth of the cloud along our line of sight at a number of points. Dividing
the column density by this depth then gives the average hydrogen number density nH in the
appropriate column.

6.1.4 Relation to Hydrogen Content

How, then, do we obtain the hydrogen column density from the CO data? The usual procedure
is to invoke an empirical NH − N13

CO relationship. As this relationship, or analogous ones in-
volving other CO isotopes, underlies the mass and density estimates for many molecular clouds
and cloud complexes, we should understand its derivation. The essential steps, which rely on
observations from ultraviolet to millimeter wavelengths, are shown schematically in Figure 6.2.

We recognize at the outset that the desired relationship cannot be established simply from
measurements of quiescent molecular clouds, where it is impossible to observe NH directly. We
saw in Chapter 2, however, that O and B stars located behind diffuse clouds can yield estimates
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of NHI through photo-excitation of the Lyα transition. A similar procedure, but employing Ly-
man band excitation, may be used to obtain H2 column densities in front of early-type stars. In
this manner, we may estimate the total NH for clouds that have both atomic and molecular hy-
drogen. Unfortunately, the clouds for which the procedure works are not detectable in 13C16O.
What we must do is relate the column density to some other parameter that can be observed in
both diffuse and molecular clouds. Such a parameter is AV . This is obtained from the color
excesses of the same background O and B stars used to determine hydrogen column densities.
In fact, stellar absorption dips and color excesses were used to establish the linear NH −EB−V

relation of equation (2.46). We then used equation (2.16) to establish the proportionality of
NH and AV in equation (3.2). Although derived from observations of diffuse clouds, this latter
equation can safely be extended to molecular clouds, as long as the composition of embedded
dust grains is not significantly different.

The final step is to establish a connection between N13
CO and AV . Returning to molecular

clouds, we have already seen how the first quantity can be obtained from the measured intensity
of the J = 1 → 0 emission line. If a cloud is not too opaque, we may estimate AV by con-
sidering the obscuration of background stars. Consider for simplicity a uniform distribution of
identical field stars, with spatial density n∗ and a single absolute visual magnitude MV . Sup-
pose further that a molecular cloud, subtending a solid angle Ωc, exists between distances r1

and r2, and provides the only source of visual extinction (see Figure 6.3). Then the apparent
magnitude of any star located at r > r2 is larger by AV than it would have been without the
cloud. Conversely, the radial distances of these background stars, considered as a function of
mV , are uniformly lower. According to equation (2.12), these distances increase with mV as

∆log r = 0.2 ∆mV . (6.10)

This linear relation holds only in front of the cloud or beyond it. In between, there must be a
kink.

There is no practical value to writing the full equation relating log r to mV , since the first
quantity is not observed directly. Within any radial interval ∆r, however, the number of stars
included in Ωc is

∆N∗ = n∗ Ωc r2 ∆r

= 2.3 n∗ Ωc r3 ∆log r .
(6.11)

Thus, if N represents dN∗/dmV , the observed number of stars per interval of apparent magni-
tude, Equations (6.10) and (6.11) imply that N is proportional to r3 for r < r1 or r > r2. Thus,
logN = 3 log r to within an additive constant. A plot of the two observable quantities logN
and mV should therefore show the same features as the log r − mV relation– a smooth initial
rise, a temporary break in slope between two magnitudes m1 and m2 corresponding to r1 and
r2, respectively, and then a resumption of the initial slope. Figure 6.3 indicates how AV may be
read directly from such a plot.

In practice, one does not have the luxury of observing identical stars with a uniform spatial
distribution. However, a generalized method based on the same principal does establish the
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Figure 6.3 Procedure for obtaining AV toward a molecular cloud through star counts.

N13
CO − AV relation. This is found to be

N13
CO

AV
= 2.5 × 1015 cm−2 mag−1 . (6.12)

Equations (3.2) and (6.12) finally yield the connection between the hydrogen and CO column
densities:

NH = 7.5 × 105 N13
CO . (6.13)

Here, there is an estimated uncertainty of 50 percent in the proportionality constant. Returning
one last time to our Taurus example, we derive NH = 6.6 × 1021 cm−2.

One should bear in mind that the correlations underlying equation (6.13) represent an av-
erage within the solar neighborhood. Under a variety of circumstances, such as the exposure
of a cloud to intense ultraviolet emission from nearby stars, the concentration of CO relative
to hydrogen changes. Moreover, a given cloud might well have substantial optical thickness
even to 13C16O. The derivation of ∆τ13

◦ through equation (6.1) is then no longer feasible. To
apply equation (6.13), one must first observe the cloud in a rarer CO isotope and then relate the
new column density to that of 13C16O through the natural abundance ratios of the respective
isotopes.

6.1.5 The X-Factor

As one considers more distant clouds within the Milky Way, or those in other galaxies, the
emission from 13C16O becomes too feeble for practical use, even if equation (6.13) still applies
in principle. Observational surveys on the largest scales revert to 12C16O and utilize only the
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velocity-integrated profile. If we again assume beam dilution and efficiency factors of unity, the
hydrogen column density follows from the simple empirical relation:

NH = X

∫
T 12

A dVr . (6.14)

The proportionality constant X is currently estimated at 2 × 1020 cm−2 K−1 km−1 s, again
with a 50 percent uncertainty in either direction. Satellite observations of γ-rays have played
a major role both in establishing equation (6.14) and in setting the value of X . We will see
in Chapter 7 that cosmic-ray protons penetrating molecular clouds produce these high-energy
photons through collisions with hydrogen nuclei. With sufficient knowledge of the cosmic-ray
flux, the γ-radiation provides a direct measure of NH , to be compared with 12C16O observations
of the same region.

What is the theoretical basis for equation (6.14)? Earlier, we emphasized that the optical
thickness of 12C16O implies that its integrated intensity should not be proportional to the col-
umn density along any line of sight. However, this statement refers to a well-resolved cloud
region. The emission at great distances actually stems from an ensemble of many clouds. For
equation (6.14) to hold, this diffuse collection must radiate, in some sense, as if it were optically
thin, even if each individual cloud is not.

This viewpoint presupposes a certain degree of uniformity among all the radiating entities,
at least in a statistical sense. To elucidate the underlying assumptions, let us crudely estimate
the integral in equation (6.14) as T 12

A◦∆Vr, where T 12
A◦ is the antenna temperature at line center

from a single, unresolved cloud, and ∆Vr is the cloud’s observed line width. Equations (6.3)
and (6.4) together imply that T 12

A◦ depends only on the local gas kinetic temperature. From the
discussion in § 3.3, we may relate ∆Vr to the virial velocity in equation (3.20). This velocity,
in turn, is proportional to n

1/2
H L. Here, nH and L represent mean values within the smallest

radiating unit, which, for large-scale surveys, could be an entire cloud complex. We conclude
that the “constant” X in equation (6.14) is actually proportional to n

1/2
H /T 12

A◦ . It is hardly
surprising, then, that careful studies have indicated variations in X across our own and external
galaxies, with a significant decline close to the galactic centers. Nevertheless, the figure quoted
above serves as a reasonable first approximation in many circumstances.1

6.2 Ammonia

In using ammonia to determine cloud densities and kinetic temperatures, one takes advantage
of the many observable lines associated with a single inversion transition. The basic idea is to
alter the guessed density and temperature until the observed spectrum is reproduced. In this
section, we shall explore this method in some detail, as the molecule has played a key role in
determining the properties of dense cores.

1 When observing an external galaxy, the telescope beam usually contains many unresolved clouds. The line width,
set by the intercloud velocity, is much greater than ∆Vr for a single object. We assume, however, that these entities
are so sparsely distributed that they do not shadow one another. Then the integrated antenna temperature is what it
would be for a collection of static clouds, with the same total column density. Thus, our scaling argument for X still
holds.
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Figure 6.4 Cloud geometry assumed for deriving
the NH3 inversion spectrum.

6.2.1 Modeling the Inversion Lines

The fact that the states along the rotational backbone are metastable means that we may effec-
tively treat each one as an isolated two-level system. That is, we lump together all the levels
on either side of the inversion transition into two fictitious “super-levels.” Using such a model,
one successful strategy has been to determine first the excitation temperature and optical thick-
ness for both the (1,1) and (2,2) backbone states by matching theoretical and observed emission
spectra. Next, one solves the rate equations governing the super-level populations within each
backbone state, in order to relate the previously derived quantities to the cloud density and
kinetic temperature.

Let us follow this procedure, covering the essential steps. For simplicity, we take the cloud
to be a uniform-density sphere of radius R, and we consider a line of sight that passes through
its center (Figure 6.4). We focus on the transfer of radiation through molecules that are in a
specific backbone state, e.g., (1,1). Referring to the figure, the path length for radiation ema-
nating from the cloud’s far side is ∆s = 2 R. The corresponding optical thickness is therefore
∆τν = 2 ρ κνR, where ρ and κν are the cloud’s mass density and opacity, respectively. We now
apply the detection equation (6.1), generalized to a frequency off line center:

TB(ν) = (Tex − Tbg) [1 − exp (−∆τν)] . (6.15)

In writing (6.15), we have used the Rayleigh-Jeans approximation to the function f , i. e., we
have assumed T◦ � Tex and T◦ � Tbg. This approximation is, in fact, only marginally
applicable because T◦ for the inversion transition is about 1 K, while Tex and Tbg are between
3 and 20 K.

To generate theoretical spectra from equation (6.15), we must somehow account for the
complex line structure. Within our two-level model, we let the opacity κν peak at discrete
frequency intervals. Specifically, we represent ∆τν as a sum:

∆τν = ∆τ tot
◦

N∑

i=0

αi exp

[

−
(

ν − ν◦ − ∆νi

∆ν

)2
]

, (6.16)

where the index i runs from 0 for the most intense central line to N = 17. Each line, assumed
to be a Gaussian of identical width ∆ν, is displaced in frequency by ∆νi from the i = 0 line
centered at ν◦. The coefficients αi are the relative absorption probabilities for each hyperfine
transition. These probabilities are known from theory. Finally, ∆τ tot

◦ is the sum of the optical
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Figure 6.5 Theoretically derived emission spectrum of the NH3 (1,1) transition in the L1489
dense core. The observed spectrum is shown below, along with the difference between the two.

thicknesses at all the line centers. Equation (6.16) implies that the central optical thickness of
the i = 0 line is

∆τ◦ = α◦ ∆τ tot
◦ , (6.17)

where the probability α◦ is 0.23.
Assuming a background temperature Tbg of 2.7 K, Equations (6.15) and (6.16) give a spec-

trum, TB(ν), for each choice of the three parameters Tex, ∆τ tot
◦ , and ∆ν. The idea is to tune

these parameters for the (1,1) and (2,2) states until their observed emission spectra are matched.
Figure 6.5 shows a pair of observed and calculated (1,1) spectra of the dense core L1489. No-
tice again that the independent variable is Vr rather than ν. Thus, for obtaining the theoretical
spectrum, the quotient (ν − ν◦ − ∆νi) in (6.16) is replaced by (Vr − ∆Vi)/σ. Here ∆Vi is the
shift of each satellite from the i = 0 line and σ is the common velocity width of each Gaussian
profile. Note also that the figure displays the antenna temperature TA, which may be converted
to TB through the beam efficiency and the filling factor. These numbers are here 0.25 and 0.60,
respectively. The best match to the spectrum then corresponds to Tex = 6.6 K, ∆τ tot

◦ = 14, and
σ = 0.23 km s−1.

6.2.2 Radiative Trapping

The next step is to relate Tex and ∆τ tot
◦ for the two backbone states to the values of ntot and

Tkin. Physically, we need to find that unique density and temperature that produces, through
both radiation and collisions, the observed excitation of the two inversion transitions. We there-
fore solve, within the framework of our highly simplified model, the coupled equations of ra-
diative transfer and statistical equilibrium.
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According to equation (B.3) in Appendix B, the populations nu and nl of the upper and
lower super-levels within a single backbone state remain constant in time if collisional and
radiative effects balance:

γlu ntot nl + Blu J̄ nl = γul ntot nu + Bul J̄ nu + Aul nu . (6.18)

The quantity J̄ is related to the mean intensity Jν of the ambient field through equation (B.1):

J̄ ≡
∫ ∞

0

Jν φ(ν) dν . (6.19)

We take the absorption profile φ(ν) to have the same frequency dependence as ∆τν in equa-
tion (6.16):

φ(ν) = φ◦
N∑

i=0

(αi/α◦) exp

[

−
(

ν − ν◦ + ∆νi

∆ν

)2
]

. (6.20)

In this relation, φ◦≡φ(ν=ν◦) is determined by the requirement that the profile be normalized
to unity: ∫ ∞

0

φ(ν) dν = 1 .

Our solution to equation (6.18) will assume, for simplicity, that all quantities are spatially
constant. We obtain J̄ by starting with the exact solution of the radiative transfer equation for Iν

(Appendix C). We then evaluate the specific intensity at the center of the sphere in Figure 6.4.
Equations (C.3) and (C.8) together imply

Iν =
2 ν2

◦ kB Tbg

c2
exp

(

−∆τν

2

)

+
2 ν2

◦ kB Tex

c2

[

1 − exp
(

−∆τν

2

)]

. (6.21)

Here we have set the optical thickness αν∆s in equation (B.3) equal to ∆τν/2 and have again
applied the Rayleigh-Jeans approximation. Since Iν at the center is isotropic, Jν = Iν . To
obtain J̄ , we use Equations (6.19) and (6.20). Writing ∆τν in (6.21) as ∆τ◦φ(ν)/φ◦, we find

J̄ =
2 ν2

◦ kB

c2
[β Tbg + (1 − β) Tex] , (6.22)

where

β ≡
∫ ∞

0

dν φ(ν) exp
[

−∆τ◦ φ(ν)
2 φ◦

]

. (6.23)

Note that the parameter β is small for large optical thickness ∆τ◦ and approaches unity as ∆τ◦
goes to zero. This quantity is therefore a measure of the escape probability for a photon with
frequency near ν◦.

Returning to equation (6.18), Appendix B derives the level populations for arbitrary J̄ .
Equation (B.10) casts this solution in terms of Tex and the radiation temperature Trad asso-
ciated with J̄ . Additionally, equation (B.7) implies that the parameter fcoll of Equations (B.10)
and (B.11) reduces, in the Rayleigh-Jeans limit, to

fcoll ≈
(

1 +
ncrit Trad

ntot T◦

)−1

.
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According to equation (6.22), Trad = βTbg + (1 − β)Tex in the same limit. After substituting
these results into equation (B.10) and expanding the exponentials, we find

Tbg

Tex
+

ntot

β ncrit

(
T◦
Tex

− T◦
Tkin

)

= 1 . (6.24)

We recall that ncrit ≡ Aul/γul, so that the dimensionless quantity ntot/β ncrit in (6.25) mea-
sures the relative rates of collisional and radiative deexcitation. The factor β modifies the net
emission rate to account for the sphere’s finite optical thickness.

It is instructive to rewrite equation (6.24) in the form

Tex = α Tbg + (1 − α) Tkin , (6.25)

where

α ≡
(

1 +
ntot T◦

β ncrit Tkin

)−1

. (6.26)

We see that Tex is a weighted average of Tbg and Tkin. Under conditions such that

ntot

β ncrit
� Tkin

T◦
,

we have α � 1 and LTE applies: Tex ≈ Tkin. In an optically-thin environment, i.e., when
β � 1, this condition is fulfilled once the density of colliders ntot exceeds ncrit by a sufficient
amount. Conversely, when collisions are relatively rare, α ≈ 1 and the two-level system comes
into thermal equilibrium with the background radiation field: Tex ≈ Tbg. Notice, finally, that α
can be much less than unity at any density ntot, provided β is sufficiently small. In other words,
large optical thickness drives the level populations into LTE, even if the ambient density is
subcritical. This effect of radiative trapping, illustrated here for the specific case of a two-level
system, is of general importance in molecular clouds.

Suppose we know both Tex and ∆τ tot
◦ for the (1,1) system through matching to the ob-

served hyperfine spectrum. With φ(ν) given by equation (6.20), we may calculate the escape
probability β from (6.23), after finding ∆τ◦ from (6.17). We then substitute the values of β
and Tex into equation (6.24) to yield a relation between ntot and Tkin. If we now repeat the
procedure for the (2,2) system, we obtain a second such relationship, from which the density
and kinetic temperature follow. For the representative dense core in Figure 6.5, this method
yields ntot = 2.5 × 104 cm−3 and Tkin = 10 K.

6.3 Hydroxyl

In quiescent clouds far from any luminous stars, it is difficult to excite the rotational states of
OH. Referring again to Figure 5.18, the energy gap between the ground and first excited level
of the 2Π3/2 ladder has an equivalent temperature of 120 K, while the jump to the ground state
of the 2Π1/2 ladder is 180 K. We may therefore restrict our attention to the four ground-state
hyperfine transitions depicted in the figure. The Einstein A-coefficient for the strongest line at
1667 MHz (F = 2+ → 2−) is quite low at 7.2 × 10−11 s−1. Hence, the critical density for
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Figure 6.6 Molecular line observations
of the B1 cloud in Perseus, along with
the central embedded star. Two contours
are shown for each line, an inner one
near the peak intensity and an outer one
at half that value.

collisional deexcitation of the line is also low, and OH serves as a tracer only of rather diffuse
material. Figure 6.6 provides one example, the well-studied B1 cloud in Perseus. Here, the OH
map covers a region almost as extended as that seen in the more abundant 13C16O. Both species
saturate in intensity outside the densest central region. The (2,2) transition of NH3, on the other
hand, is seen only near the embedded star.

6.3.1 Zeeman Splitting

The main utility of OH is not as a tracer of cloud gas but as a probe of the local magnetic field
strength. The physical basis for these measurements is the Zeeman effect.2 The energy of an
OH molecule situated in a magnetic field B depends on the relative orientation of the field and
the molecule’s magnetic moment µ:

Emag = −µ·B . (6.27)

Since the magnetic moment of OH arises principally from the presence of an unpaired elec-
tron, proper evaluation of Emag requires a perturbative analysis of the electronic wave function.
Such analysis shows that µ has contributions from both the electron’s orbital and spin angular
momenta:

µ = µl + µs . (6.28)

The first term is
µl = − e

2mec
L , (6.29)

where −e and me are, respectively, the electronic charge and mass. The reader may verify that
equation (6.29) would also result classically if the electron’s magnetic moment arose from the

2 Magnetic fields in the atomic envelopes of molecular clouds are observed through the Zeeman effect in HI.



6.3 Hydroxyl 177

current associated with the particle’s orbital motion. Since the orbital angular momentum is �

in order of magnitude, it is convenient to rewrite (6.29) as

µl = −gl µB (L/�) . (6.30)

Here gl is a dimensionless number called the Landé g-factor, equal to unity in this case. The
quantity µB is the Bohr magneton, given by

µB ≡ e�

2mec

= 5.8 × 10−3 eV µG−1 .

(6.31)

The spin contribution µs obeys an equation analogous to (6.30), but with a value for gs of 2.0.
Given µl and µs, we may use Equations (6.27) and (6.28) to evaluate Emag. However, in

the usual representation of the molecular wavefunction, neither the component of L nor of S
in the direction of B has an associated quantum number. As we saw in § 5.5, both L and S
precess rapidly about the internuclear axis because of the torque exerted on the electron by the
magnetic field of the nuclei and remaining, paired electrons. Within each Λ-doubled rotational
state shown in Figure 5.15, the precise energy depends on the relative orientation of B and the
grand total angular momentum F . Let us denote by ∆Emag the perturbation of the state energy
from its value at B = 0. Then ∆Emag depends on all the quantum numbers characterizing the
state (Λ, Ω, S, J , I , and F ), and on the additional quantum number MF . The latter represents
the projection of F along B and can take on 2F + 1 integer values, ranging from MF = −F
to +F . The final expression for the energy perturbation is then

∆Emag = −g µB MF B . (6.32)

Here the full Landé g-factor is again of order unity and is a function of all the quantum numbers
except MF .

Dividing equation (6.32) by h, we obtain the splitting in terms of frequency. We may write
the result as

∆νmag =
(

b

2

)

B . (6.33)

The factor 1/2 is convenient because the frequency splitting is symmetric with respect to the un-
perturbed line. For the dominant 1665 and 1667 MHz transitions, the constant b has the values
3.27 and 1.96 Hz µG−1, respectively. The actual ∆νmag for typical cloud field strengths is there-
fore relatively small (∆νmag/ν◦ ∼ 10−8). Nevertheless, it is much greater than in molecules
lacking an unpaired electron. Here, Λ-doubling is absent, and the magnetic interaction that splits
each rotational state involves the spins of two nucleons, rather than an electron and a nucleon.
From equation (6.31), the nuclear magneton µN is smaller than µB by the electron-nucleon
mass ratio of 1/1836. The b-values of NH3 and H2O, for example, are only 7.2 × 10−4 and
2.3 × 10−3 Hz µG−1, respectively.

6.3.2 Polarized Lines

Figure 6.7 shows schematically the full splitting of the ground rotational state in the presence of
an external B-field. The various possible lines can be classified according to the corresponding
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Figure 6.7 Zeeman splitting of the ground rotational state of OH. The multiplicity of levels arises
from Λ-doubling, internal spin-orbit coupling, and the effect of an external magnetic field. The 7
possible transitions near the 1665 MHz line are shown.

values of ∆MF . Selection rules limit the possibilities to ∆MF = 0, +1, and −1, which
are designated π-, σR-, and σL-transitions, respectively. The symbols pertain to the state of
polarization of the radiation, i. e., the manner in which the electric field vector oscillates.

Let us focus on the cluster of lines near 1665 MHz; the seven allowed level transitions (com-
prising only three distinct lines) are shown in Figure 6.7. The observed pattern of line splitting
and polarization depends on the angle θ between the magnetic field and the line of sight (see
Figure 6.8). When θ = π/2, three separate lines appear: a π-transition at the original frequency
ν◦, and two weaker σ-lines at ν◦±∆νmag. Here the frequency shift is that in equation (6.33). As
shown in the figure, all three lines are linearly polarized, with the electric field vector oscillating
in a direction parallel to B for the unshifted line, and perpendicular for the two σ-components.

When B is pointing directly toward the observer (i. e., θ = 0), Figure 6.8 indicates that only
two lines appear. The σR line, at a frequency of ν◦ + ∆νmag, has right-handed circular po-
larization, i. e., the electric vector rotates counter-clockwise from the observer’s point of view.3

3 We follow the IEEE definition, in which right circular polarization is clockwise rotation of the electric field vector as
seen by the transmitter of the radiation, i. e., counter-clockwise to the observer.
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Figure 6.8 Intensity and polarization state of the
three OH lines near 1665 MHz. The pattern is
identical to that predicted by classical electromag-
netic theory for an electron both oscillating in the
direction of B and revolving in the perpendicular
plane.

Conversely, the σL line at ν◦ − ∆νmag, has left-handed circular polarization. For an arbitrary
inclination angle θ, each line at ν◦ ±∆νmag is an admixture of linearly and circularly polarized
components, i. e., it is elliptically polarized. Moreover, the intensity of the circularly polarized
component at each frequency varies as cos θ.

It is interesting that this splitting and polarization of the 1665 MHz line is in precise agree-
ment with a naïve classical model of electromagnetic radiation arising from an oscillating elec-
tron. Here, the unshifted line is produced by the electron’s motion along the direction of B,
while the two σ-components arise from circular motion in the plane perpendicular to the mag-
netic field (see Figure 6.8). When B lies along the line of sight, the central component disap-
pears, since an oscillating charge does not radiate in its direction of motion. However, this agree-
ment between the classical and quantum accounts is fortuitous. The 1612 MHz (F = 1+ → 2−)
line, for example, splits into more than three lines for any B-field orientation. The reader may
verify, incidentally, that the frequency shifts in the classical picture correspond to a Landé g-
factor of exactly unity.

6.3.3 Measurement of B-Fields

Since, for any line, the pattern of splitting depends on the angle θ, it would seem straightforward
to read off both B‖, the field component along the line of sight, and the orthogonal component
B⊥. However, our discussion has thus far assumed an idealized spectral line of zero width. In
fact, outside of maser environments, each OH line is at least broadened thermally, i. e., by the
Doppler shifts resulting from the molecules’ random motion. The magnitude of such broadening
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is, from Appendix E,
∆νtherm

ν◦
≈ vs

c
, (6.34)

where vs is the sound speed in the cloud. The estimate here is good to within a factor of
order unity. The quantity vs is (RTkin/µ)1/2, where R is the ideal gas constant and µ, the
mean molecular weight relative to hydrogen, is about 2. Comparing this line broadening to the
magnetic line splitting in equation (6.33), we find

∆νmag

∆νtherm
≈ b B

ν◦

(
c

vs

)

≈ 10−3

(
B

µ G

) (
Tkin

10 K

)−1/2

.

(6.35)

Apart from masers, the actual B-values of interest range in magnitude from roughly 10 µG in
cold, quiescent molecular clouds to 100 µG near HII regions. Hence, the well-separated lines in
Figure 6.8 are generally not seen, and a more indirect approach is necessary.

The mechanism of thermal broadening operates identically on all polarization components
of the radiation. Imagine viewing the 1665 MHz line, for example, through two circularly
polarizing filters of opposite helicity. The two profiles, IR(ν − ν◦) and IL(ν − ν◦), would
be identical in shape, but shifted in frequency by ∆νmag (see Figure 6.9). This fact suggests
that we consider the difference of the two profiles. In general, the electric field vector of any
monochromatic radiation can be decomposed into right- and left-handed circularly polarized
waves. The intensity difference of these components is known as the Stokes V-parameter, one of
three independent scalar quantities that fully characterize the polarization state of the radiation.
In the present case, the radiation is not monochromatic, but IR(ν − ν◦) − IL(ν − ν◦) is still
termed the V-spectrum of the source.4

We noted earlier that both IR(ν − ν◦) and IL(ν − ν◦) are reduced in magnitude from the
total intensity I(ν − ν◦) by cos θ. Hence we may write their difference as

IR(ν − ν◦) − IL(ν − ν◦) = cos θ [I(ν − ν◦ − ∆νmag) − I(ν − ν◦ + ∆νmag)]

≈ −2 cos θ ∆νmag
dI

dν
(ν − ν◦) .

(6.36)

Using equation (6.33) for ∆ν, we have the approximate equality

IR(ν − ν◦) − IL(ν − ν◦) = −b B cos θ
dI

dν
(ν − ν◦)

= −b B‖
dI

dν
(ν − ν◦) .

(6.37)

Equation (6.37) represents a practical means of determining the field component B‖. One
first measures directly the V -spectrum on the left side of the equation. It is best to evaluate the

4 In practice, one measures all three Stokes parameters by employing polarizing filters. One may then define the
fractional polarization of the beam, whether circular or linear, through algebraic combinations of these parameters;
see also equation (2.51).
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Figure 6.9 upper panel: Subtraction of the right- and left-circularly polarized components of an
OH line to yield the V -spectrum. lower panel: Observed I- and V -spectra of the 1665 MHz and
1667 MHz lines in B1.

derivative on the right side using the average of IR(ν − ν◦) and IL(ν − ν◦). Such an average
is equal to one half of the I-spectrum, where the Stokes I-parameter is the sum of the two
circularly polarized components. Finally, one determines B‖ through a fitting procedure. Note
that a negative value of B‖ indicates a field pointing toward the observer.

The first successful application of this procedure in molecular clouds was toward NGC 2024
in the Orion A complex (Plate 1). In this case, the 1665 and 1667 MHz lines appear in absorp-
tion against the continuum radiation from a background HII region, and the derived B‖ is 38 µG.
Thus far, it has proved difficult to extend the technique to dense cores. The OH molecule is cre-
ated through ion-molecule reactions, and the relative abundance of the species diminishes in
very optically thick regions. Nevertheless, there are a handful of relevant observations. Fig-
ure 6.9 shows the Zeeman splitting in OH emission from the central region of the B1 cloud. The
best-fit value for B‖ of −27 µG indicates that the field is providing substantial support against
the cloud’s self-gravity. We will later study in depth this important aspect of cloud structure.



182 6 Molecular Transitions: Applications

Chapter Summary

The rotational transitions of CO effectively measure both cloud temperature and column density
along a given line of sight. Here one may profitably use a combination of optically thick lines,
emanating from the cloud surface, and optically thin lines that probe the interior. For more dis-
tant clouds in our own and other galaxies, only the strongest, optically thick lines from 12C16O
are detectable. In all cases, one must rely on an empirical correlation to find the hydrogen
column density.

Observation of the NH3 inversion lines give access to both temperature and local volume
density. The procedure is to model the collisional excitation and radiative decay of numerous
levels, while including the effect of partially trapped photons. The levels are populated as if the
molecules had a temperature intermediate between that characterizing the background radiation
and that governing their translational motion.

The unpaired electron in OH endows the molecule with a net magnetic moment. Conse-
quently, an ambient magnetic field reveals itself by shifting the frequencies of circularly polar-
ized lines. This Zeeman splitting has proved most useful in clouds of relatively modest density.
In these structures, the magnetic field is strong enough to play a key role in the clouds’ mechan-
ical equilibrium.
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7 Heating and Cooling

A proper understanding of molecular clouds must include an account of how they absorb en-
ergy and reradiate it into space. Our purpose in this chapter is to elucidate the most important
mechanisms. We first cover the heating from interstellar cosmic rays and photons. Included in
the latter are both the diffuse background of radiation and the X-rays from pre-main-sequence
stars. We next describe how clouds cool themselves through emission from their constituent
atoms, molecules, and dust grains.

In each case, our main goal is to provide a physical account of the relevant process, but we
also give the reader practical formulas for heating and cooling rates.1 We limit ourselves to
the case of quiescent clouds, i. e., we ignore any heating from nearby massive stars or internal,
bulk motion of the gas. Both of these topics will be covered in later chapters. For convenient
reference, Table 7.1 lists all the thermal processes discussed here.

7.1 Cosmic Rays

One significant source of cloud heating is a ubiquitous flux of particles whose existence has
been known for almost a century, but whose origin is only now becoming clear. By 1900,
physicists were routinely using ionization chambers to measure minute amounts of emission
from radioactive elements. Even when no substance was introduced, the chambers recorded the
presence of some ionizing agent. Using such a device on board a balloon, V. Hess found, in
1912, that the flux increased with altitude and had no diurnal variation, and therefore was of
extraterrestrial and extrasolar origin. It took several more decades to unravel the detailed nature
of this bombarding stream.

7.1.1 Composition and Energetics

Cosmic rays, we now understand, mostly consist of relativistic protons, with an admixture of
heavy elements and electrons. Their composition is, in fact, roughly solar, but with significant
differences. An over-abundance of the light elements lithium, beryllium, and boron reflects the
creation of secondary particles through nuclear reactions between the protons and the interstel-
lar medium. These secondaries result from spallation, i. e., ejection from more massive target
nuclei. More frequently, cosmic ray protons collide with the slow-moving protons of interstellar
atomic hydrogen. Collision excites the target proton, causing it to emit a π◦ meson. The meson,
in turn, decays into two γ-rays. This process accounts for much of the diffuse background of

1 The formulas we present are simplified, approximate versions of those found in the research literature. Quantitative
rates are trustworthy to about a factor of two, under the conditions specified.
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Table 7.1

Cloud Heating

Process Reaction Equation

cosmic rays on HI p+ + H → H+ + e− + p+ (7.12)

cosmic rays on H2 p+ + H2 → H+
2 + e− + p+ (7.14)

carbon ionization C + hν → C+ + e− (7.16)

photoelectric ejection (7.18)

dust irradiation (7.20)

stellar X-rays H + hν → H+ + e− (7.23)

Cloud Cooling

Process Reaction Equation

O collisional excitation O + H → O + H + hν (7.26)

C+ fine structure excitation C+ + H → C+ + H + hν (7.27)

CO rotational excitation CO + H2 → CO + H2 + hν (7.35)

dust thermal emission (7.39)

gas-grain collisions (7.40)

interstellar γ-radiation found by satellites in the 1960s and 1970s. Protons impinging on molec-
ular clouds produce more localized sources of γ-rays. Observations by the COS-B satellite and,
subsequently, the Compton Gamma Ray Observatory, were useful as an independent means of
tracing the distribution of H2 in giant cloud complexes.

The observed energies of cosmic rays span an enormous range, from 10 to 1014 MeV. Note
that a single proton of 1014 MeV has the kinetic energy of a well-hit tennis ball. From about 103

to 109 MeV, the received particle flux, ΦCR(E), follows a power law: ΦCR(E) ∼ E−2.7. Here,
the flux is measured per unit energy E (see Figure 7.1). At higher energies than those shown
in the figure, the flux declines as E−3. Conversely, ΦCR(E) flattens and then turns over as E
falls below about 103 MeV. This turnover is an effect of the solar wind, that both sweeps out
incoming particles and creates a periodic modulation of the flux in step with the solar activity
cycle.

Where do cosmic rays come from and how do they attain such high energies? With regard to
the latter issue, all the particles are electrically charged and thus subject to magnetic deflection.
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Figure 7.1 The observed particle flux in cos-
mic rays, as measured per unit solid angle and
per unit energy. The flux is plotted as a func-
tion of E, the energy per particle. The straight
line is a power law with slope −2.7.

Indeed, it is the magnetic field within the solar wind that prevents low-energy particles from
reaching the Earth. A time-invariant field cannot alter a proton’s energy, since the Lorentz
force is perpendicular to the velocity vector. A changing magnetic field, however, generates
an electric field that can do work. Thus, as E. Fermi pointed out in 1949, cosmic rays could
be accelerated by the fields frozen into a turbulent interstellar plasma. Fifteen years earlier, W.
Baade and F. Zwicky had proposed that supernovae constitute the basic source of cosmic rays.
In recent decades, these two ideas have merged in a fruitful way. It is now believed that cosmic
rays with energies up to 109 MeV are produced by particle acceleration within the magnetized
shocks created by supernova remnants as they plow through the interstellar medium. More
energetic particles are probably extragalactic in origin.

The energy density of cosmic rays within our Galaxy is about 0.8 eV cm−3, close to that
associated with a typical interstellar magnetic field of 3 µG. This similarity suggests that the
Galactic field is strong enough to contain, at least temporarily, the cosmic rays produced from
within. Any charged particle entering a magnetized region executes circular motion. The size
of the gyroradius, rB , for a particle of mass m, charge q, and velocity v in a field of magnitude
B is

rB =
γ m c v

q B
, (7.1)

where γ is the Lorentz factor (1 − v2/c2)−1/2. Even for a 106 MeV proton in a 3 µG field, rB

is only of order 1015 cm, far less than Galactic dimensions. Thus, the orbit is a tight helix, in
which the velocity is closely confined in the plane perpendicular to the field, but is unconstrained
in the parallel direction (Figure 7.2). Irregularities in the field change the orientation of these
helical orbits and lead to a gradual drift of the particles out of the Galaxy. From measurements
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Figure 7.2 Helical motion of a cosmic-ray proton in a magnetic field.
The gyroradius rB is indicated.

of the isotopic abundances of heavier nuclei, we know that the mean confinement time is of
order 107 yr. Diffusion across field lines also accounts for the high degree of isotropy seen in
the cosmic rays entering our solar system.

7.1.2 Interaction with Clouds

Upon entering a molecular cloud, a gyrating cosmic-ray proton interacts with ambient nuclei
and electrons through both the Coulomb and nuclear forces. The nuclear excitations princi-
pally decay through emission of γ-rays, which promptly escape. Elastic scattering due to the
Coulomb repulsion between the proton and H2 is negligible at cosmic ray energies. Instead, the
proton scatters inelastically, exciting H2 to a higher electronic state that leads to dissociation.
On average, each scattering transfers 1.6 eV to the gas as kinetic energy. The most common
result of proton impact, however, is ionization:

p+ + H2 → H+
2 + e− + p+ . (7.2)

Besides heating the cloud, ionization supplies the electric current that couples the gas to any
internal magnetic field. This coupling occurs even though the net fractional ionization is quite
low. The presence of charged species also serves to initiate the ion-molecule reactions described
in Chapter 5.

It is the secondary electron in (7.2) that actually provides heat through its subsequent inter-
actions with ambient hydrogen molecules. Let us denote the rate of heat deposition in the cloud
per unit volume as ΓCR(H2). We may write this quantity as

ΓCR(H2) = ζ(H2) nH2 ∆E(H2) . (7.3)

Here, ζ(H2) is the ionization rate (probability per unit time) for a single hydrogen molecule,
nH2 is the volume density of these molecules, and ∆E(H2) is the thermal energy added to the
gas as a result of each ionization event.

To obtain ∆E(H2), we must consider the energy of the secondary electron, which naturally
depends on that of the cosmic-ray proton. Protons with energy E � 1 GeV have no heating
effect at all. Instead of ionizing H2, these produce nuclear excitation and γ-rays. One might
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have expected that the electron production and heating from lower-energy protons would peak
and then fall off significantly with diminishing E. However, it is a peculiarity of the long-range
Coulomb interaction involved in the p-H2 collision that the energy of the secondary electron is
very insensitive to that of the incident proton. Thus, we can focus on a “typical” electron of
30 eV, which is produced by a 10 MeV proton.

There are a number of routes this electron can take. One possibility is the further ionization
of ambient molecules:

e− + H2 → H+
2 + e− + e− . (7.4)

This reaction does not itself supply thermal energy, but produces an additional electron that can
heat the cloud. Although the incident electron is much less energetic than the original cosmic
ray proton, the cross section for ionization of H2 by electrons peaks at an energy several times
the threshold value of 15.4 eV. Thus, the process described by equation (7.4) is significant. For
our 10 MeV proton, this reaction enhances the total ionization rate ζ(H2) by a factor of 1.6 over
that from the protons alone.

However it is produced, the electron may elastically scatter off a hydrogen molecule. Such a
collision imparts relatively little kinetic energy to the gas because of the tiny electron-to-proton
mass ratio. The electron may also scatter inelastically, exciting internal energy levels in H2.
If the excited level is a rotational one within the ground electronic and vibrational state, there
is time to transfer energy to neighboring molecules through collisions. More commonly, it is
the higher electronic and vibrational states that are populated. These have such large A-values
that they always decay radiatively rather than collisionally. However, most of these energetic
photons are absorbed by dust. If the emitting H2 molecule is left in a high vibrational level of
the ground electronic state, it continues to decay until it ends up in an excited rotational level
within the ground state. Once again, these higher J-states heat the gas collisionally.

The most important means for the electron to provide heating is dissociation:

e− + H2 → H + H + e− . (7.5)

The energy of the incoming electron beyond that required to dissociate H2 goes into motion
of the two hydrogen atoms. Collisions quickly disperse this energy throughout the gas. After
summing all possible processes with the appropriate branching ratios, we find that ∆E(H2) is
7.0 eV. For comparison, the corresponding figures for 1 and 100 MeV cosmic ray proton are 6.3
and 7.6 eV, respectively.

Within diffuse clouds, the heating of atomic hydrogen by cosmic rays is also important. As
in the molecular case, the most common result of proton impact is ionization:

p+ + H → H+ + e− + p+ . (7.6)

It is again the electron, now ejected at a typical energy of 35 eV, that actually heats the gas, at a
rate

ΓCR(HI) = ζ(HI) nHI ∆E(HI) . (7.7)

In a weakly ionized HI gas, the secondary electron initially slows down by ionization and ex-
citation of additional hydrogen atoms. The effect of secondary ionizations is to increase the
total ionization rate by a factor of 1.7. The excited and ionized atoms quickly radiate away their
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excess energy. Thus, true heating cannot begin until the energy of the electron falls below the
10.2 eV needed to excite hydrogen to its first excited (n = 2) electronic state. From then on,
the electron gradually loses its remaining energy through many elastic collisions. Numerical
calculation reveals that ∆E(HI), the average thermal energy transfer per ionization event, is
6.0 eV.

7.1.3 Hydrogen Ionization Rate

Determining either ΓCR(H2) or ΓCR(HI) still requires measurement of the respective ionization
rates, ζ(H2) or ζ(HI). Here, the main impediment is our ignorance of the interstellar flux of low-
energy cosmic rays. We have noted, however, that the ionizations are the first steps in a network
of ion-molecule reactions that lead to the formation of more complex species. We may therefore
use the observed abundances of selected molecules to infer the ionization rates indirectly.

One such molecule is OH, which, along with hydrogen itself, can sometimes be detected in
diffuse clouds through its ultraviolet absorption lines. In this manner, observers have measured
the typical number density of OH relative to HI as 2×10−7. (Compare Table 5.1.) The sequence
of reactions forming OH from atomic oxygen and hydrogen begins when the H+ created by
cosmic rays encounters an oxygen atom from the ambient gas:

H+ + O → O+ + H . (7.8)

Note that the H+ may also recombine with free electrons before such charge exchange can
occur. We will simplify the analysis by ignoring this possibility. As illustrated in Figure 7.3, the
production of O+ initiates a chain of reactions with H2:

O+ + H2 → OH+ + H

OH+ + H2 → H2O+ + H

H2O+ + H2 → H3O+ + H .

(7.9)

The H3O+ formed in the last reaction cannot gain any more hydrogen atoms, and instead un-
dergoes dissociative recombination with two possible outcomes:

H3O+ + e− →
{

OH + H2

H2O + H .
(7.10)

The first reaction in (7.10) is known from laboratory measurements to occur with a relative
probability p1 = 0.75.

Since each ionization of a hydrogen atom by a cosmic-ray proton leads to an OH with
probability p1, the volumetric production rate of OH is p1 ζ(HI) nHI. In steady state, this rate is
balanced by the destruction of OH. The molecule can react with ambient ions such as C+, but
more frequently dissociates from ultraviolet radiation penetrating the cloud interior. Writing the
characteristic photodissociation time as τphoto, we balance creation and destruction to find the
desired expression for the rate of cosmic-ray ionization:

ζ(HI) =
nOH

nHI
(p1 τphoto)

−1

= 2 × 10−17 s−1 .
(7.11)



190 7 Heating and Cooling

Figure 7.3 Reaction sequence forming OH within diffuse clouds. Note the branching ratios for
the two possible outcomes of H3O+ dissociative recombination. The OH itself is either photodis-
sociated or destroyed by ions such as C+.

In the numerical evaluation, we have inserted the theoretical result τphoto = 2 × 1010 s, relevant
for the diffuse clouds of interest. Note that our empirical value of ζ(HI) includes both direct
ionizations by protons and secondary ionizations by ejected electrons. Substituting this value
into equation (7.7), we find

ΓCR(HI) = 1 × 10−13
( nHI

103 cm−3

)
eV cm−3 s−1 (7.12)

It remains to determine the corresponding rates for molecular hydrogen. Theoretical calcu-
lations show that the probability of a hydrogen molecule being ionized by a cosmic-ray proton
is 1.6 times the atomic value. Utilizing the enhancement factors from secondary ionizations, we
have

ζ(H2) =
1.6 × 1.6 × ζ(HI)

1.7
= 3 × 10−17 s−1 ,

(7.13)

so that
ΓCR(H2) = 2 × 10−13

( nH2

103 cm−3

)
eV cm−3 s−1 . (7.14)

Comparison with equation (7.12) gives the simple result that, whether the gas is in atomic or
molecular form, the cosmic ray heating rate is the same as measured per hydrogen atom.

7.2 Interstellar Radiation

A second important heating agent for molecular clouds is the diffuse radiation field that perme-
ates interstellar space. We need to understand in detail how these photons impinging on the gas
create thermal energy. We should also look to stars embedded within the clouds as additional
heating sources.
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Figure 7.4 Mean intensity of the interstellar radiation field, expressed as a function of frequency.

7.2.1 Major Constituents

Figure 7.4 shows the intensity of the interstellar radiation field as a function of frequency. The
form of this distribution is a consequence of the space density and mass spectrum of both stars in
the solar neighborhood and of the gas and dust obscuring their light. Thus, we may reliably use
Figure 7.4 when considering relatively nearby interstellar clouds, but not to describe conditions
out of the plane of the Galaxy or closer to its center. The figure actually plots νJν , where Jν is
the specific intensity averaged over all solid angles in the sky. From the discussion in Chapter 2,
the latter quantity is related to the monochromatic energy density uν by

Jν =
c uν

4 π

Integration of the empirical Jν over all frequencies yields, after using this equation, a total
radiation energy density of 1.1 eV cm−3. This figure is intriguingly close to that for the cosmic
rays.

The energetically dominant components of the radiation field are those at millimeter, far-
infrared, and optical wavelengths, peaking at log νmax = 11.3, 12.4, and 14.5, respectively,
Here each frequency νmax is measured in Hz. The first component stems from the cosmic
background radiation, a blackbody distribution with an associated temperature of 2.74 K. Back-
ground photons heat clouds primarily by exciting the lowest rotational transitions in such abun-
dant molecules as CO. The far-infrared component in Figure 7.4 arises from interstellar dust
warmed by starlight. Molecular clouds are transparent to this radiation, which is therefore not a
heating agent.

The optical component consists of light from field stars. Suppose we crudely model the
energy distribution as arising from a diluted blackbody of temperature T̄ . To estimate this tem-
perature, we identify the peak frequency νmax as that for which the blackbody specific intensity
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Bν(T ) has a maximum. We thus obtain T̄ = hνmax/x◦kB = 5400 K, where we have used the
result from § 2.3 that x◦ = 2.82. This temperature is the surface value for a main-sequence
G3 star. We may regard this spectral type as an average over the A-dwarfs and K- and M-type
red giants that actually dominate the luminosity in the solar neighborhood. A true blackbody
radiation field of temperature 5400 K has a peak value for νBν of 9.3×109 erg cm−2 s−1 sr−1.
To match the observed peak of νJν = 9.1 × 10−4 erg cm−2 s−1 sr−1, the blackbody intensity
at every frequency must be multiplied by a dilution factor of W = 1 × 10−13. This factor is
essentially the fractional solid angle of the sky occupied by stellar surfaces.

Figure 7.4 shows a smaller local maximum in the ultraviolet (log νmax = 15.3). Matching
νmax to blackbody values yields an equivalent temperature of 3.4 × 104 K, with a dilution
factor of 1 × 10−17. To gauge the effect of massive stars on molecular clouds, theorists often
consider an ultraviolet flux that is far above the local background. The convention is to assume
an isotropic radiation field in this regime, but with an intensity distribution that is scaled upward
by some factor, traditionally denoted G◦.

At the highest frequencies, Figure 7.4 displays a contribution in the soft X-ray
regime (16.5 < log ν < 16.8) and a conspicuous lack of data in the extreme ultraviolet
(15.5 < log ν < 16.5). Radiation of both types was first observed through rocket experiments
in the 1960s and 1970s. The ultraviolet spectrum was later explored by the EUVE (Extreme
Ultraviolet Explorer) satellite. A diffuse gas with temperature of order 106 K can emit photons
in these regimes. Within the context of the three-phase model of the interstellar medium, such a
hot plasma gains its energy from supernova remnants and fast winds from massive stars. Note
that the stars themselves produce extreme ultraviolet photons. However, this contribution is
mostly absorbed through its ionization of hydrogen and helium in the stars’ own HII regions
or in intervening clouds. To avoid such absorption, the inferred 106 K gas must be relatively
nearby, probably within a distance of order 100 pc.

7.2.2 Carbon Ionization

The ultraviolet component of the radiation field is too weak at energies above 13.6 eV to sig-
nificantly ionize the hydrogen or helium in molecular clouds. However, a number of heavier
elements have lower ionization potentials. Of these, atomic carbon (C I) is the most abundant,
with a number density relative to hydrogen of nC/nH = 3 × 10−4 (see Table 2.1). Any pho-
ton more energetic than 11.2 eV will eject an electron from C I. Since the kinetic energy of
this electron quickly disperses to surrounding atoms through collisions, carbon ionization is an
effective heating mechanism. The volumetric heating rate, which we denote as ΓCI, is then

ΓCI = ζ(C I) nC ∆E(C I) . (7.15)

Here, ζ(C I) is the ionization rate of a single carbon atom and ∆E(C I) the average energy of
the ejected electron.

The evaluation of both ζ(C I) and ∆E(C I) entails an integration over frequency of the
radiation intensity Jν , weighted by the ionization cross section of C I. The result is that
ζ(C I) = 1 × 10−10 s−1 and ∆E(C I) = 1 eV. Substituting these values into equation (7.15)
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along with the carbon abundance, yields

ΓCI = 4 × 10−11
( nH

103 cm−3

)
eV cm−3 s−1 . (7.16)

Note that our result implicitly assumes that carbon is still mostly in neutral form. In practice,
the element can be largely ionized in cloud regions where the heating is significant, and one
must reduce ΓCI appropriately.

7.2.3 Photoelectric Heating

Ultraviolet photons also eject electrons from interstellar dust grains; these electrons heat sur-
rounding gas. The energy required to separate a single electron from the neutral grain surface,
i. e., the analog of the ionization potential, is known as the work function and is about 6 eV for
standard grain composition. The photons actually liberate liberate electrons about 100 Å inside
the grain (see Figure 7.5). Only about 10 percent of these make their way to the surface. Those
that do must still overcome the work function and end up leaving the grain with energies of only
about 1 eV. Comparing with the typical photon energy of 10 eV, we see that the net energy effi-
ciency εPE is only about 0.01. The photoelectric process is nevertheless a major heating source
for the gas because of the large grain cross section. We may write the associated rate ΓPE in
terms of the grain number density and geometric cross section:

ΓPE = 4π nd σd εPE

∫
FUV

Jν dν . (7.17)

The frequency integration extends over the far-ultraviolet regime above 6 eV, while the factor
4π comes from geometric considerations. For an isotropic specific intensity, Jν = Iν , the flux
impinging on a planar surface element would be

∫
JνµdΩ = 2π

∫ 1

0
Jνµdµ = πJν . However,

we picture standard grains as being (roughly) spherical in shape. The additional factor of 4 in
equation (7.17) is simply the ratio of the surface area of a sphere to the cross-sectional area
which that sphere presents to a plane-parallel flux. The quantity σd is the cross section in the
latter sense.

We saw in Chapter 2 how Σd ≡ ndσd/nH is determined, through a combination of em-
pirical and theoretical steps, to be 1.5 × 10−21 cm2. The quantity 4π

∫
FUV

Jν dν is estimated
from observations to be 1.6 × 10−3 erg cm−2 s−1, a figure traditionally known as the “Habing
flux.” Using a representative εPE of 0.01 in equation (7.17), we find that ΓPE has the value
2 × 10−11 (nH/103 cm−3) eV cm−3 s−1. This estimate, however, ignores the influence of very
small grains, including PAHs. For these, the ejected electrons can more easily reach the sur-
face, i. e., the efficiency factor is higher. In addition, the number density of such grains is
relatively high. Recall that the abundance of 10 Å grains exceeds that of 0.1 µm particles by
(10−7/10−5)−3.5 = 107. Despite the small cross section of each PAH, their cumulative effect
is thus appreciable. By integrating over a realistic grain size distribution, we arrive at a final
heating rate of

ΓPE = 3 × 10−11
( nH

103 cm−3

)
eV cm−3 s−1 . (7.18)
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Figure 7.5 Interaction of ultraviolet photons with interstellar grains. The electron that is ejected
sometimes escapes from the grain surface, but more often deposits its energy to the lattice, which
in turn radiates infrared photons.

This figure assumes that each grain is electrically neutral, a condition that is violated in suffi-
ciently strong ultraviolet radiation fields. We will consider the resulting alteration to ΓPE when
we discuss the photodissociation regions near massive stars in Chapter 8.

7.2.4 Irradiation of Grains

The liberated electrons that do not leave a grain impart their energy through collisions to the
lattice (Figure 7.5). Most of the ultraviolet radiation, therefore, serves to raise the grain temper-
ature Td. Somewhat more dust heating is provided by the stronger flux of optical photons, which
also excite internal electrons. Counting only this visible component, the total dust heating rate
per unit volume is

Γd = 4π nd σd

∫
VIS

Qν,absJνdν . (7.19)

Here the grain absorption efficiency Qν,abs is proportional to ν in the visual regime. As before,
we model Jν as arising from a diluted blackbody at the characteristic temperature T̄ and peak
frequency νmax. Equation (7.19) then becomes

Γd = 4π W nd σd Qνmax

∫ ∞

0

(
ν

νmax

)
2hν3/c2

exp(hν/kBT̄ ) − 1
dν ,

where W is the dilution factor. We define the nondimensional variable x ≡ hν/kBT̄ and find

Γd =
8π W Qνmaxnd σd kB T̄ ν3

max

x4◦ c2

∫ ∞

0

x4

ex − 1
dx .

The nondimensional integral has the numerical value 24.9. We next use the relation between
ndσd and nH , and set Qνmax equal to 0.1, the value appropriate for the optical peak frequency
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of νmax = 3 × 1014 s−1. (Recall equation (2.40) and Figure 2.10.) The expression for Γd then
becomes

Γd = 2 × 10−9
( nH

103 cm−3

)
eV cm−3 s−1 . (7.20)

We emphasize that this relation governs the heating of the dust grains, not the gas. The grains
can transfer energy to the gas only at cloud densities high enough for good collisional coupling
between the two components.

We have not yet mentioned the effect of interstellar radiation on the dominant constituent
of star-forming clouds, molecular hydrogen itself. As we saw in Chapter 5, the absorption of a
photon with energy hν greater than 11.2 eV promotes H2 to an excited electronic state. Most
often, the excited molecule drops to the electronic ground state and then cascades down the
rovibrational levels within that state. In quiescent molecular clouds, this decay occurs through
the emission of ultraviolet and infrared photons, but the energy can be given to other colliding
species at the high densities and temperatures behind shocks. If the excited H2 instead dissoci-
ates, it emits a photon of energy hν − ∆Ediss − ε and imparts kinetic energy ε to the separate
atoms. On average, ε is about 2 eV. This energy quickly spreads into the gas through collisions.

In a quiescent cloud of molecular hydrogen exposed to the full interstellar radiation field,
this secondary effect of H2 dissociation would completely dominate the heating. As we have
already noted, however, such a cloud cannot exist. Molecular hydrogen is only found at a
depth below the cloud surface where the ultraviolet flux has already been severely attenuated
by excitation and dissociation of the outer H2 molecules and by dust absorption. Consequently,
heating by dissociation is relegated to a minor role.

7.2.5 Stellar X-Rays

Molecular clouds are also heated by the radiation from new stars they create. Inside a large
complex, the densest regions are dispersed by winds and outflows generated from within, but
lower-density gas can remain. High-mass stars emit copiously in the ultraviolet. This radiation
heats nearby dust by direct absorption and gas through the grain photoelectric effect. The G◦-
factor measuring the enhancement of the ultraviolet flux above interstellar may be as high as
106 for a cloud neighboring an O or B star. In contrast, low-mass pre-main-sequence objects,
i. e., T Tauri stars, emit most of their luminosity at optical and near-infrared wavelengths. This
radiation is readily absorbed by dust grains, at a rate given by equation (7.19), but with an
appropriately enhanced Jν . At the typical densities of molecular cloud interiors, the grains
radiate away this energy before they can transfer it to the gas through collisions.

About 10−4 of the luminosity from low-mass stars is in X-rays, which do heat the gas
directly. X-rays interact with molecular cloud gas by ionizing its constituent atoms. Photons
with energy below about 0.5 keV mostly ionize hydrogen and helium, while more energetic
ones eject the innermost ( K-shell) electrons from heavy elements. The total cross section for
photoionization, σν , falls approximately as ν−3, apart from upward jumps whenever the photon
energy matches some ionization threshold. Recall from Chapter 2 that this falloff with frequency
contrasts directly with the behavior of infrared and optical photons encountering interstellar
dust.
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Figure 7.6 Mean intensity of X-rays at a distance of 0.1 pc from a pre-main-sequence star. The
star has a total X-ray luminosity of LX = 1 × 1030 erg s−1. The radiation is assumed to be
thermal bremsstrahlung from a plasma with temperature TX = 1 × 107 K.

The X-rays in T Tauri stars originate from a hot plasma of temperature TX ≈ 1 × 107 K,
or a value of kBTX near 1 keV. It is the acceleration of the randomly moving electrons in
this plasma that actually provides the radiation; this emission mechanism is called thermal
bremsstrahlung. Very few of these electrons have kinetic energies far above kBTX . Con-
sequently, the mean intensity Jν produced by the plasma, which is nearly independent of
frequency for ν � νX ≡ kBTX/h, falls off rapidly at higher frequencies. Figure 7.6 shows
νJν from thermal bremsstrahlung, as would be detected close to a typical low-mass pre-main-
sequence star. This intensity plot ignores any interstellar absorption. In fact, stellar X-rays
emitted into a cloud of density nH deposit most of their energy within a characteristic distance
rX given by

rX ≡ (nH σX)−1

= 2
( nH

103 cm−3

)−1

pc .
(7.21)

Here, σX , is the absorption cross section of each hydrogen atom at νX , or 2 × 10−22 cm2 for
kBTX = 1 keV.

Consider now the volumetric heating rate within a sphere of radius rX surrounding a star
with total X-ray luminosity LX (Figure 7.7). Absorption causes the specific intensity at any
frequency to fall exponentially with distance. Taking the intrinsic Jν to be flat for ν ≤ νX , the
flux of photons Fν∆ν at radius r with frequency between ν and ν + ∆ν must be

Fν∆ν =
(

∆ν

νX

)
LX

4πr2
exp (−τν) .
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Figure 7.7 Cloud heating by stellar X-rays. Photons with the
maximum frequency νX can penetrate out to a maximum radial
distance rX . Photons with frequency ν < νX see a larger cross
section. At any interior radius r, some of these are absorbed
and the rest stream outward.

Here the optical depth τν is given by nHσνr, where the cross section σν is σX (νX/ν)3. Let
us assume that the energy of each ionizing photon is converted entirely to heat. Then to obtain
the volumetric heating rate at distance r, we first multiply the flux by nH σν . Integrating over
frequency, we find

ΓX =
nH LX

4π r2 νX

∫ νX

0

dν σν exp(−τν) . (7.22)

To evaluate this last expression, we first let τX represent the optical depth to r at ν = νX ,
i. e., τX ≡ nHσXr. From this definition, we also have τν = τX (νX/ν)3. We next define a new
variable y ≡ ν/νX , so that equation (7.22) becomes

ΓX =
n3

H σ3
X LX

4π τ2
X

∫ 1

0

dy y−3 exp(−τXy−3) .

The exponential that appears on the righthand side, and therefore ΓX itself, vanishes for dis-
tances well beyond rX , i. e., for τX � 1. To evaluate ΓX interior to this radius, we first note
that the integrand goes to zero for both small and large y, and peaks at y◦ = τ

1/3
X . We may

crudely approximate the function as a Gaussian centered at y = y◦, with the correct height and
curvature at that point. It is then convenient to extend the integration limits from y = −∞ to
y = +∞. The heating rate then reduces to

ΓX =
1

6e
√

2π

LX

τ
8/3
X r3

X

= 2 × 10−13
( nH

103 cm−3

)1/3
(

LX

1030 erg s−1

) (
r

0.1 pc

)−8/3

eV cm−3 s−1 ,

(7.23)

We stress that this formula only applies for r < rX . The reader may verify that a volume
integration of ΓX out to this radius yields a total heat input rate of

√
2π/e LX , close to the

correct value of LX .

7.3 Cooling by Atoms

We now turn our attention to the mechanisms by which molecular clouds lose energy to in-
terstellar space. Within a quiescent cloud, neither hydrogen nor helium can radiate away an
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appreciable fraction of the total thermal energy content. Hence, any cooling of the gas is neces-
sarily indirect and relies on the presence of minor constituents that do act as effective radiators.
Hydrogen and helium collide inelastically with ambient atoms, molecules, and dust grains, ex-
citing internal degrees of freedom. These excitations decay through the emission of photons.

7.3.1 Density Dependence

Consider first a simplified atom with only an upper and lower energy level, separated by ∆Eul.
If this species is excited by collisions with hydrogen at the rate nHγlu per atom, what is Λul, the
volumetric rate of cooling? We know that, for nH 	 ncrit ≡ Aul/γul, each upward collisional
excitation is followed promptly by a downward radiative transition. In this low-density regime,
therefore, the cooling rate by hydrogen impact is

Λul (nH 	 ncrit) = nl nH γlu ∆Eul

=
gu

gl
nl nH γul ∆Eul exp(−T◦/Tg) ,

(7.24)

where nl is the population of the lower level. Here, we have used equation (B.4) to relate γlu

to the less temperature-sensitive rate γul through the gas temperature Tg ≡ Tkin. Since only a
small portion of the atoms or molecules is excited at any time, the product nlnH appearing in
(7.24) is quite accurately given by the product of n2

H and the fractional number abundance of
the coolant.

At higher densities, nH � ncrit, each upward collisional excitation is usually followed by
collisional deexcitation rather than by radiative decay. Under these conditions, the two level
populations are in LTE, and no longer depend on nH . The cooling rate is the product of nu and
Aul∆Eul, the energy loss rate from the upper level:

Λul (nH � ncrit) = nu Aul ∆Eul

=
gu

gl
nl Aul ∆Eul exp(−T◦/Tg) .

(7.25)

We see that Λul in this supercritical regime may formally be obtained from the subcritical result
by replacing nH with ncrit. It is therefore often said that collisions “quench” atomic cooling.
This terminology is somewhat misleading, as Λul still rises with increasing density, albeit at a
slower rate.

7.3.2 Fine-Structure Splitting

These general considerations find practical application in the fact that many atoms have low-
lying fine-structure levels that are prone to collisional excitation. The existence of such levels
stems from the spin-orbit interaction. Following our discussion of the hydrogen atom in § 2.1,
the relative motion of any orbiting electron and a charged nucleus creates a torque on the mag-
netic moment associated with the electron’s intrinsic spin. The electrons of hydrogen and helium
are described by single-particle wavefunctions that have no associated orbital angular momen-
tum (l = 0). Hence, the electronic ground states of these atoms lack the internal torque and
exhibit no fine-structure splitting. We must turn to oxygen, the next most abundant element.
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Figure 7.8 Fine-structure splitting of the electronic ground states of O I and C II. The far-infrared
lines associated with transitions between these levels are indicated. Also shown in the case of O I
are the optical transitions from the first excited electronic state. No optical lines arise from the
analogous transition in C II.

Oxygen exists in neutral, atomic form (O I) throughout large regions of molecular clouds.
In its electronic ground state, O I has four p-electrons (l = 1). Their individual orbital angular
momenta combine vectorially to yield a total orbital quantum number L = 1, while the electron
spins add together to S = 1. Although other values for L and S are possible, all result in greater
Coulomb repulsion between the electrons and hence higher energy. The electronic ground state
of O I is symbolized spectroscopically as 3P , where the symbol P denotes L = 1 and the
superscript is equal to 2S + 1. As sketched in Figure 7.8, the first excited state, corresponding
to L = 2 and S = 0, is denoted 1D.

The figure also shows that the 3P state is actually a multiplet of three different levels of
slightly different energy. Each level is distinguished by its degree of spin-orbit interaction. One
may picture the orbital and spin angular momentum vectors, L and S, precessing about their
fixed sum, J = L + S. (Compare the discussion of the OH molecule in § 5.5.) The spin-orbit
energy is proportional to L·S, which remains constant during precession. By convention, each
level is labeled with the subscript J , the magnitude of the total angular momentum. This number
can take the values 0, 1, or 2 for the 3P state, but is restricted to 2 for the first excited (1D) state.
The 3P2 level of O I is the true ground state, while the 3P0 level is highest in energy. This
ordering of energies within the multiplet is called inverted, since, in the semi-classical model,
L and S prefer to be antiparallel, implying that J is normally minimized in the ground state.2

2 In the electron’s reference frame, the nucleus creates a magnetic field B parallel to L. For an electron with spin
magnetic moment µs, the lowest energy occurs when µs is parallel to B, and hence to L. Because of the electron’s
negative charge, µs is antiparallel to S. Therefore, L and S are expected to be antiparallel.
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7.3.3 Emission from O I and C II

The energy difference between the 3P1 and 3P2 levels of O I is 2.0×10−2 eV, corresponding to
a temperature T◦ of 230 K. The upper level can be collisionally excited in the warmer regions
of a molecular cloud and decays with an associated A-value of 9.0 × 10−5 s−1. Note that all
the downward fine-structure transitions are “forbidden” by the electric-dipole selection rules of
quantum mechanics and therefore occur through slower magnetic dipole interactions. For the
3P1 → 3P2 transition of O I, the emitted spectral line is symbolized [O I] 63 µm, where the
braces denote a forbidden transition. Except in the very densest cloud regions, this far-infrared
radiation readily escapes and provides an important source of cooling. The deexcitation rate
γul from hydrogen impact has the value 4 × 10−11 cm3 s−1 at the temperatures of interest
(Tg � 40 K), so that ncrit = 2 × 106 cm−3. We may therefore evaluate ΛOI, the volumetric
cooling rate, from the subcritical expression, equation (7.24). Using a number density of oxygen
relative to hydrogen of 4 × 10−4 (Table 2.1) and noting that the degeneracy of each J-state is
2J + 1, we find

ΛOI = 2 × 10−10
( nH

103 cm−3

)2

exp
(
−230 K

Tg

)
eV cm−3 s−1 . (7.26)

This expression would need to be modified in denser regions, where much of the oxygen is in
CO or grain mantles. In such locales, however, other cooling mechanisms dominate (Chapter 8).

Fine-structure cooling is also available from carbon, which has an elemental abundance
comparable to oxygen. As we have seen, atomic carbon can be readily ionized by the ultraviolet
component of the interstellar radiation field, so that it is actually C II that provides most of the
cooling. The ion has only one p-electron, and the spin-orbit interaction splits its ground state
into 2P3/2 and 2P1/2 levels. Figure 7.8 shows that, in this case, the energy ordering is normal,
i. e., the 2P1/2 level is actually the ground state. The energy difference between the levels is
7.93 × 10−3 eV, corresponding to a T◦ of 92 K and a photon wavelength of 158 µm.

The appropriate value of γul is now 6 × 10−10 cm3 s−1, and Aul is 2.4 × 10−6 s−1. Thus,
the critical density is only 3 × 103 cm−3, a value often reached in molecular clouds. However,
most of the carbon is locked into CO at higher density, so that the subcritical cooling rate is still
appropriate. We find

ΛCII = 3 × 10−9
( nH

103 cm−3

)2

exp
(
−92 K

Tg

)
eV cm−3 s−1 . (7.27)

Both Equations (7.26) and (7.27) have assumed that promotion to upper fine-structure levels
occurs only through impact with ambient hydrogen atoms. In fact, the levels are much more
easily excited by free electrons. It is only because the fractional ionization throughout quiescent
molecular clouds is very low that we may safely ignore the electronic contribution.

7.4 Cooling by Molecules and Dust

Turning from atoms to molecules, it is the closely spaced rotational levels that are readily pop-
ulated through collisions. At subcritical densities, these excitations decay quickly through ra-
diation, but the emitted photons may suffer absorption within the cloud. We need to account
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carefully for this radiative trapping to assess the net energy loss. Another important cloud con-
stituent is the dust, which can either heat or cool the gas.

7.4.1 Trapping in CO Lines

Although a number of molecules, such as H2O and O2, act as cooling agents, the dominant one
is CO. Here, the J = 1 → 0 rotational transition is always optically thick in molecular clouds.
The relevant cross sections are so large, in fact, that a number of higher transitions are also
optically thick. Internal trapping reduces the emission in any given line, while enhancing the
populations of the higher levels above those attainable through collisions alone.

Consider now an idealized cloud of spatially uniform density and temperature. What is the
optical depth at line center for the J = 1 → 0 transition? By using equation (6.9), now applied
to the main isotope 12C16O, we may write τ10 in terms of the column density NCO:

τ10 =
(

g1

g0

)
A10 NCO c3

8π ν3
10 Q ∆V

[
1 − exp

(
− hν10

kBTg

)]
. (7.28)

Here we have denoted the line-center frequency by ν10 and have set Tex equal to Tg. As we re-
marked in § 6.2, this LTE assumption is justified once the line radiation becomes optically thick.
In writing (7.28), we have also assumed that the broadening of the spectral line is mainly due
to bulk motion in the cloud interior. Thus, we have set the line width ∆ν10 equal to ν10 ∆V/c,
where ∆V is the internal velocity dispersion. For the partition function Q, we have used equa-
tion (C.18) to write Q = 2kBTg/hν10. After expanding the exponential, whose argument is
less than unity, we may evaluate τ10 numerically as

τ10 = 8 × 102

(
NH

1 × 1022 cm−2

) (
Tg

10 K

)−2 (
∆V

1 km s−1

)−1

. (7.29)

This expression assumes that nearly all the carbon, with its number abundance of 3 × 10−4

relative to hydrogen, is in the form of CO.
Despite the very large value of τ10 under typical cloud conditions, the optical depth for

higher transitions, τJ+1,J , falls quickly with increasing J . The reason is the decline in NJ , the
column density in the J-level. To quantify the trend, we generalize equation (7.29), utilizing
the result for quantum mechanical rotators that AJ+1,J scales as (J + 1)/(2J + 3) ν3

J+1,J .
Applying the LTE assumption to NJ and using equation (5.6) to obtain the J-dependence of
νJ+1,J , we find

τJ+1,J = τ10

(
J + 1
2J + 1

)
1 − exp[−(J + 1)/θ]

1 − exp(−1/θ)
exp

[
−J(J + 1)

2θ

]
. (7.30)

Here, θ is a dimensionless temperature:

θ ≡ kB Tg

hν10
=

Tg

5.5 K
. (7.31)
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Figure 7.9 Plot of J∗, the highest CO rotational level creating an optically thick line, shown as
a function of gas temperature. Also plotted is the volumetric cooling rate Λ∗

CO. Here we have
displayed J∗ as a smoothly varying real number, to avoid artificial jumps in the associated cooling
rate.

At fixed θ, the presence of the Boltzmann factor exp[−J(J + 1)/2θ] ensures that τJ+1,J

falls to unity at a modest J-value, which we denote as J∗. We may find this critical level by
solving

exp
[
J∗(J∗ + 1)

2θ

]
= τ10

(
J∗ + 1
2J∗ + 1

)
1 − exp[−(J∗ + 1)/θ]

1 − exp(−1/θ)

=
3 A10 NCO c3

16 π ν3
10 ∆V

(
J∗ + 1
2J∗ + 1

)
1 − exp[−(J∗ + 1)/θ]

θ
.

(7.32)

In the second form of this equation, we have inserted the expression for τ10 from (7.28). Fig-
ure 7.9 shows J∗ as a function of temperature, computed for a cloud with ∆V = 1 km s−1,
nH2 = 1 × 103 cm−3, and a diameter of 1 pc, i. e., with an associated hydrogen column den-
sity of NH = 6 × 1021 cm−2. In this example, NCO = 2 × 1018 cm−2. The rise in J∗ with
temperature demonstrates the increasing importance of radiative trapping.

7.4.2 CO Cooling

All those transitions with J � J∗ are both optically thick and have level populations in
LTE. Deep within the cloud, the photons at these frequencies transport energy by diffu-
sion from one region to another, but only escape at the cloud surface. Here, the flux is
FCO(J + 1, J) = πBν(Tg)∆νJ+1,J , where the Planckian specific intensity Bν(Tg) is evalu-
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ated at line center. That is,

FCO(J + 1, J) =
2 π hν4

J+1,J

c3

1
exp (hνJ+1,J/kBTg) − 1

∆V . (7.33)

After rewriting νJ+1,J in terms of ν10, we find

FCO(J + 1, J) =
2πhν4

10

c3

(J + 1)4

exp[(J + 1)/θ] − 1
∆V

= 4 × 10−20 (J + 1)4

exp[(J + 1)/θ] − 1

(
∆V

1 km s−1

)
eV cm−2 s−1 .

(7.34)

At fixed Tg and ∆V , equation (7.34) shows that FCO(J + 1, J) is a function only of the
variable α ≡ (J + 1)/θ. The cooling flux initially rises as α3, peaks at α ≈ 4, and there-
after declines. It would seem, then, that the peak flux might emanate from that transition with
J ≈ 4θ − 1. In practice, however, this line is always optically thin, with associated level pop-
ulations so far below LTE that it contributes little to the net cooling. The true maximum in
emission occurs at the lower value J∗ given implicitly by equation (7.32) and depicted in Fig-
ure 7.9. Because of the steep rise in emission with α (or J∗), much of the total CO cooling
arises from this single, critical line.

To obtain the luminosity from the J∗ + 1 → J∗ transition, we multiply the flux in equa-
tion (7.34) by the cloud surface area. Alternatively, since the line is only marginally optically
thick, we may calculate a volumetric cooling rate Λ∗

CO. This form is more convenient when
comparing the rate to that from other sources. For the volumetric form, we may employ our
previous results for two-level atoms. Assuming that radiative trapping can maintain the J∗ + 1
level in LTE, we use equation (7.25) to find

Λ∗
CO =

f(J∗) ∆E10 A10 nCO

2θ
exp

[
− (J∗ + 1)(J∗ + 2)

2θ

]

= 5 × 10−12 f(J∗)
θ

exp
[
− (J∗ + 1)(J∗ + 2)

2θ

] ( nH

103 cm−3

)
eV cm−3 s−1 ,

(7.35)

where

f(J∗) ≡ (J∗ + 1)5

2J∗ + 1
.

The reader may verify that Λ∗
CO, when multiplied by the cloud volume, yields a luminosity

which matches that implied by equation (7.34) to within a factor of order unity.
In summary, the volumetric cooling rate from a cloud with given NH , Tg, and ∆V may

be found by first estimating J∗ from equation (7.32). We then obtain the radiative emission
from the dominant J∗ + 1 → J∗ line by using equation (7.35). For a more accurate assessment
of ΛCO, the total CO cooling, one should add the emission from several optically thick lines,
i. e., those with J < J∗. Here one needs to specify the cloud surface area. Figure 7.9 plots, in
addition to J∗, Λ∗

CO as a function of gas temperature for the same cloud parameters. Notice how
the cooling rate increases exponentially with Tg , as radiative trapping excites more molecules
into the critical J∗-level.
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7.4.3 Thermal Effect of Dust

Interstellar dust grains also serve as important coolants. In this case, collisions with gas atoms
and molecules lead to lattice vibrations, which decay through the emission of infrared photons.
As we have seen, the same grains are also heated through the absorption of optical and ultravi-
olet photons. Thus, the grain temperature, Td, is generally different from the gas temperature
Tg.

Let us first consider Λd, the volumetric cooling rate due to emission from the grains them-
selves. Note that a volumetric rate is appropriate here since the cloud is usually optically thin
to these infrared photons. We may determine Λd from the general formula for thermal emission
in equation (2.30), after replacing ρκν,abs by the equivalent ndσdQν,abs. Integrating (jν)therm

over all solid angles and noting that the radiation is isotropic, we find

Λd = 4π nd σd

∫ ∞

0

Qν,abs Bν(Td)dν . (7.36)

For a typical grain temperature of 30 K, Bν(Td) peaks at a wavelength of about 100 µm,
much greater than grain dimensions. As we noted in Chapter 2, the absorption efficiency Qν,abs

at long wavelengths tends to the quadratic form

Qν,abs = Qνmax(ν/νmax)2 . (7.37)

Using this last relation in equation (7.36), along with nd σd = Σd nH , we find

Λd =
4π Qνmax Σd nH

ν2
max

∫ ∞

0

ν2 Bν(Td)dν

=
8π Qνmax Σd nH k6

B T 6
d

h5 c2 ν2
max

∫ ∞

0

x5

ex − 1
dx .

(7.38)

To evaluate Λd numerically, we also recall from Chapter 2 that Qνmax may be written in
terms of the corresponding opacity as µmH κνmax/Σd. Here, µ is the mean mass per par-
ticle relative to the atomic hydrogen value mH (see Equations (2.2) and (2.38)). For the
opacity, we employ the theoretical result that κ = 0.34 cm2 g−1 at a wavelength of 100 µm
(νmax = 3.0 × 1012 s−1). Using µ = 1.3 for an HI gas and noting that the nondimensional
integral has a value of 122, we find

Λd = 1 × 10−10
( nH

103 cm−3

) (
Td

10 K

)6

eV cm−3 s−1 . (7.39)

In writing the last equation, we have implicitly assumed that grains of all size have the same
temperature. This cannot generally be true. A grain bathed by ultraviolet light, for example, has
an absorption Q that is independent of the grain radius a, as long as the grain diameter exceeds
the incident wavelength. On the other hand, this same grain emits in the infrared, where the
associated Q varies as a. Smaller grains therefore need to be warmer in order to compensate
for their lower intrinsic emission rates. In practice, however, the range in temperature is modest
enough that an average Td is still a useful concept.
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Finally, we discuss gas cooling by collisions with grains. We stress that this process repre-
sents the transfer of energy between two components within a cloud, rather than a direct loss to
interstellar space. Knowledge of this rate, which we denote Λg→d, is often essential to estab-
lishing the temperature of both gas and grains. A single grain is struck by a hydrogen molecule
once in the time tcoll given in equation (5.9), where we now replace each HI subscript by H2.
The impacting molecule brings with it translational kinetic energy (3/2)kBTg, which it imparts
to the grain lattice.3 Assuming there is time for the molecule to reach thermal equilibrium with
the lattice before departing, it leaves with energy (3/2)kBTd. The net cooling rate for the gas is
therefore

Λg→d =
3
2

kB (Tg − Td)
nd

tcoll

=
3
4

kB Σd n2
H vH2 (Tg − Td)

= 2 × 10−14
( nH

103 cm−3

)2
(

Tg

10 K

)1/2 (
Tg − Td

10 K

)
eV cm−3 s−1 .

(7.40)

Chapter Summary

The most important external source of gas heating for opaque clouds is cosmic rays. Relativistic
protons ionize H2, liberating electrons which then dissociate other, still intact molecules. The
creation of ions within a cloud facilitates reactions that produce most molecules. One of these
is OH, measurement of whose abundance allows one to determine empirically the cosmic-ray
ionization rate.

Ultraviolet radiation is another source of thermal energy. The flux from field stars readily
ionizes carbon in HI clouds. Again, it is the ejected electron that actually provides heating. The
same radiation can also liberate electrons directly from the surfaces of dust grains. Those pho-
tons absorbed internally by the dust serve to raise its temperature to a value generally different
from that of the gas. The ultraviolet radiation from a massive star can warm gas out to a great
distance. Low-mass stars, on the other hand, provide heating through their X-rays. Here, the
effect is more localized.

It is the minor constituents within a cloud, rather than the hydrogen itself, that emit energy
into space. Hydrogen collides with O I and C II, exciting fine-structure levels that decay through
far-infrared lines. The most important coolant in molecular clouds is CO. Photons from the
lowest-lying rotational transitions become trapped inside the cloud, while those from higher
levels escape from its surface. Finally, gas transfers energy by collisions to dust grains. These,
in turn, radiate into the infrared continuum.

3 The average kinetic energy a molecule imparts to the grain surface is actually 2 kB Tg , since faster molecules, while
rarer, hit more often. We ignore this correction, as well as the finite probability that molecules bounce instead of
sticking to the grain.
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8 Cloud Thermal Structure

The physical processes we have just detailed enable us to reexamine, in a more quantitative
manner, the structure of molecular clouds. In this chapter, we focus on the variation of gas
and dust temperatures, and on the dissociation and ionization of the constituent molecules and
atoms. We consider both quiescent clouds and those subjected to the strong ultraviolet radiation
fields and shocks generated by nearby, massive stars. In the quiescent case, we analyze in some
detail the process of self-shielding, which governs the transition from atomic to molecular hy-
drogen. We also investigate the residual ionization within molecular gas, as this feature controls
the dynamical influence of magnetic fields. These fields, we show, strongly modify the shocks
that arise from stellar winds. Note that our treatment of clouds themselves is based largely on
the application of thermal and dissociative equilibrium. Thus, we can say little at this point
concerning mechanical issues, such as the internal distribution of density. To make progress on
that front, we must also invoke force balance, as we shall do in Chapter 9.

8.1 The Buildup of Molecules

Figure 8.1 depicts, in a schematic fashion, the generic molecular cloud that will be our object
of study. With reference to Table 3.1, the entity shown could represent an individual dark cloud
or a massive clump within a giant complex. The outermost region is the atomic envelope, in
which ultraviolet photons from the interstellar radiation field or nearby massive stars promptly
dissociate any molecular hydrogen that forms. As we discussed in Chapter 3, 21 cm observa-
tions of HI have established such a tenuous component around at least some giant complexes
(recall Figure 3.3), but have yet to map the analogous structure on smaller scales. Some clumps
that are especially embedded may lack this outer layer. In any case, most of the cloud mass is
taken up by the molecular interior. This is the region principally observed through various CO
isotopes. Inside it we find dense cores, a few of which are sketched here. Some of these cores,
in turn, contain young stars. Our present goal is not to explain this hierarchical structuring,
but to explore the interior run of temperature and chemical composition as one passes through
regions of successively higher density.

8.1.1 The Atomic Envelope

Let us begin our analysis with the outermost region. In the absence of X-rays from nearby young
stars, the gaseous component here is heated mainly by cosmic rays, at a volumetric rate given by
equation (7.12), and by the grain photoelectric effect (equation (7.18)). The additional heating
mechanism of carbon ionization (equation (7.16)) is unavailable, since that element is already
fully ionized throughout the envelope. The gas cools through emission of infrared photons from
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Figure 8.1 Sketch of a molecular cloud, including
dense cores with and without interior stars.

the fine-structure transitions of atoms and ions. The most effective coolants are the 63 µm line
of O I (equation (7.26)) and the 158 µm line of C II (equation (7.27)), both of which are optically
thin at typical envelope densities of nH � 103 cm−3.

Comparing the magnitudes of the various rates, we find that ΛCII exceeds ΛOI at subcritical
densities, so that the requirement of thermal balance is effectively

ΓPE = ΛCII . (8.1)

The photoelectric heating rate varies linearly with the density nH , while the fine-structure cool-
ing rate is proportional to n2

H . Thus, equation (8.1) yields immediately the desired temperature-
density relation:

Tg =
40 K

2.0 + log (nH/103 cm−3)
. (8.2)

Figure 8.2 plots this relation as the upper solid curve. The steady decline in Tg at higher density
stems from the increasing efficiency of fine-structure cooling.

From the last equation, we may derive a representative density and temperature at the cloud’s
outer boundary. We discussed in Chapter 2 how the various components of the interstellar
medium, including molecular clouds, all appear to be roughly in pressure balance. In a self-
gravitating molecular cloud, this ambient pressure applies at the edge, but climbs higher within
the deep interior. To determine conditions at the boundary, we use equation (8.2) as one relation
between nH and Tg. For a second relation, we equate the product nHTg with the empirical
figure of 3000 cm−3 K. In this way, we obtain a density of 56 cm−3 and a gas temperature of
54 K. The open circle in Figure 8.2 indicates this pair of boundary values.

The gas in the envelope is too rarefied to be thermally coupled to the dust, so we must
independently determine the temperature of the latter. The visual extinction through the enve-
lope is relatively small. Thus, optical photons can heat the dust at the rate Γd given in equa-
tion (7.20). Dust cooling occurs through the emission of far-infrared radiation at the rate Λd

(equation (7.39)). Since both Γd and Λd vary linearly with nH , equating the two yields a unique
temperature, here equal to 16 K. The dashed curve in Figure 8.2 shows this uniform distribution
of Td.
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Figure 8.2 Temperature profiles in the lower-density region of a molecular cloud. The solid curve
represents the gas temperature, while the dashed line refers to dust grains. The lower, dotted curve
results from balancing cosmic-ray heating and CO cooling in the gas.

8.1.2 Destruction and Formation of H2

The transition from the atomic envelope to the molecular interior occurs through the process
of self-shielding, i.e., the progressive loss through H2–absorption of those interstellar photons
capable of dissociating the molecule (see Figure 8.3). To gain a more quantitative understanding
of the buildup in H2, let us consider the key elements in the theory. The basic idea is to equate,
at each location, the rates of dissociation and recombination of H2, thereby obtaining the spatial
variation of the molecular fraction fH2 ≡ 2 nH2/nH .

We shall denote by σi(ν) the cross section for a photon of frequency ν to promote H2 into
one of the levels – each labeled by the index i – within the first or second excited electronic states
(recall Figure 5.5). Note that our generic index i really stands for some combination (v, J) of
vibrational and rotational quantum numbers. We further denote by βi the probability that the
subsequent decay from such an excited level actually leads to dissociation of the molecule.
Summing over all available levels, we find the volumetric dissociation rate to be

DH2 = 4π nH2

∑

i

βi

∫
Jν

hν
σi(ν) dν . (8.3)
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Figure 8.3 Photodissociation of H2 at the surface of a cloud. The initial absorption of far-
ultraviolet photons is at frequencies close to line center for each rovibrational transition. Ab-
sorption in the line wings occurs further inside, where the radiation intensity is lower and most
atoms are recombined.

Here, Jν is the average specific intensity of the local radiation field. If we first use the interstel-
lar field, then equation (8.3) gives us tdiss, the characteristic H2 dissociation time in unshielded
regions. This time may be found from

t−1
diss = 4π

∑

i

βi Jνi

hνi

∫
σi(ν) dν , (8.4)

and has a numerical value of 400 yr. Here, νi denotes the line-center frequency of each elec-
tronic transition. In going from equation (8.3) to Equation (8.4), we have used the fact that the
most rapid frequency variation is in each σi(ν). The integral of σi(ν) is proportional, through
atomic constants, to the oscillator strength of the transition, a quantity that has been calculated
quantum mechanically for all the relevant lines. Note that one may determine the oscillator
strengths, and hence tdiss, without knowledge of the line-broadening mechanism, i. e., the pre-
cise functional form of σi(ν). For the transitions of interest, νi is typically 3 × 10−15 s−1 and
the integrated cross section is about 1 × 10−4 cm2 s−1.

We next equate DH2 with RH2 , the recombination rate given in equation (5.10). Ap-
plying this procedure first at the envelope boundary, we set Vtherm in that equation equal to
(3RTg/2µ)1/2, where Tg = 54 K and µ = 1.3. The latter value is appropriate for an HI region.
After further equating ndσd to nHΣd, we find the boundary value of the molecular hydrogen
fraction:

fH2 = γH Σd nHI Vtherm tdiss

= 3 × 10−5 .
(8.5)
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Here we have set the HI boundary density to 56 cm−3. Thus, the actual molecular hydrogen
density, nH2 , has the very low value of 9 × 10−4 cm−4.

8.1.3 Photon Penetration

Proceeding inward, we must modify DH2 in equation (8.3) to account for the absorption of
ultraviolet photons. Dust provides some of this absorption, as does the electronic excitation
of H2. Thus, a hydrogen column density NH , with a molecular component NH2 , corresponds
to an optical depth of NHΣd + NH2σi(ν). Here, we are neglecting dust scattering and using
the fact that a grain’s cross section for absorbing the far-ultraviolet photons that dissociate H2

is essentially its geometrical area. (The latter statement fails for the very smallest grains and
PAHs.) A proper determination of the new average radiation intensity at each radius would
entail a numerical calculation in spherical geometry. We adopt instead the simpler prescrip-
tion, valid in a plane-parallel slab, of reducing the boundary intensity at each frequency by
exp[−NHΣd − NH2σi(ν)], where both column densities are measured radially inward from
the cloud boundary. The destruction rate now becomes

DH2 = 4π nH2 exp [−NHΣd]
∑

i

βi Jνi

hνi

∫
σi(ν) exp [−NH2σi(ν)] dν . (8.6)

Evaluation of the integral in equation (8.6) requires that we specify the form of σi(ν). We do
so through use of the normalized line profile function φ(ν−νi), introduced in Appendix B. The
cross section σi(ν) is proportional to the profile function. Here the constant of proportionality
is the oscillator strength, as we see by applying the normalization condition of equation (B.2):

σi(ν) = φ(ν − νi)
∫

σi(ν′) dν′ . (8.7)

We may now rewrite equation (8.6) in the form

DH2 = 4π nH2 exp [−NHΣd]
∑

i

βi Jνi
δi

hνi

∫
σi(ν) dν . (8.8)

Here, δi is the penetration probability for a line photon to reach the column density NH2 in the
presence of self-shielding:

δi ≡
∫

dν φ(ν − νi) exp
[
−NH2φ(ν − νi)

∫
σi(ν′)dν′

]
. (8.9)

Note that δi for a given line, being an integral over all frequencies, depends only on NH2

and decreases as the column density rises. Note also that, apart from a change in notation,
equation (8.9) is identical to equation (6.23) for the photon escape probability β in a spherical
medium.

Suppose that the lines are broadened by Gaussian turbulent motion (Appendix E). Then
all photons with frequencies within a Doppler width ∆νD of νi are quickly absorbed through
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electronic excitation. At the shallow depths where this absorption occurs, the molecule frac-
tion is still small. The large cross section, however, compensates to give a rapid falloff in the
incident flux. Referring to equation (8.9), the peaking of the profile function in the line core
greatly diminishes the exponential factor, even for modest NH2 . For a velocity dispersion ∆V
of 1 km s−1, ∆νD = νi ∆V/c = 9 × 109 s−1. Now the fraction of photons at frequency ν
absorbed in column depth NH2 is NH2σi(ν), or NH2

∫
σi(ν)dν/∆νD averaged over the line

core. Conversely, the initial, line-core absorption is essentially complete within a column den-
sity ∆NH2 = ∆νD/

∫
σi(ν)dν = 9 × 1013 cm−2. Even with our low boundary value for nH2

of 9 × 10−4 cm−3, this column is reached in the relatively short distance of 1 × 1017 cm.
At greater depths, the only penetrating photons are those in the line wings, with a frequency

differing from νi by more than ∆νD. Referring again to equation (8.9), the relatively small value
of the profile function in the exponential means that the penetration probability now diminishes
slowly with column density. To follow this decline, we use the result from Appendix E that the
profile in the line wings is

φ(ν − νi) =
γi/4π2

(ν − νi)2 + (γi/4π2)2

≈ γi

4π2(ν − νi)2
.

(8.10)

Here the damping constant γi equals the Einstein A-value for the transition. The second, ap-
proximate form of (8.10) assumes |ν − νi| � γi. Substituting this profile into equation (8.9)
and performing the resulting integration, we find

δi =
(

Ni

NH2

)1/2

. (8.11)

The column density Ni sets the scale for δi, and is given by

Ni ≡ γi

4π
∫

σi(ν) dν
. (8.12)

For a typical γi of 2×109 s−1, we find that Ni is 1×1012 cm−2. We now have a more complete
picture of the aborption process. Once the photons have traversed the initial column density
∆NH2 , equation (8.11) indeed shows that their subsequent penetration probability decreases
gradually with depth, as N

−1/2
H2

. This behavior, in turn, stems from the gentle decline with
frequency of the absorption cross section in the line wings.

8.1.4 Appearance of H2 and CO

Most of the buildup in H2 actually occurs within this interior region, i. e., at a column den-
sity above ∆NH2 . Accordingly, we may follow the transition explicitly by employing equa-
tion (8.11) for δi in equation (8.8). After equating DH2 and RH2 , equation (8.4) allows us to
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write

nH2

tdiss

〈Ni〉1/2

N
1/2
H2

exp [−NHΣd] =
1
2

γH Σd nH nHI Vtherm

=
1
2

γH Σd nH (nH − 2nH2) Vtherm .

(8.13)

The angular brackets on the lefthand side denote an average over the various lines.
Our purpose, again, is to obtain the distribution of the molecular fraction fH2 . Both NH and

NH2 are integrals of volume density over the depth ∆r ≡ R − r. Here, R and r are the radial
positions of the cloud surface and the point of interest, respectively. It is clear that we need the
functional form of nH(∆r) before we can solve equation (8.13) for fH2 . For simplicity, let us
consider the case of a spatially uniform nH . Then we may recast equation (8.13) into

NH2 =
∫ ∆r

0

nH2 d(∆r) =
4 〈Ni〉 exp(−2nHΣd∆r)

[γH tdiss Σd Vtherm (nH/nH2 − 2)]2
. (8.14)

We introduce a nondimensional parameter η◦, defined as

η◦ ≡ 4 〈Ni〉
γ2

H t2diss Σd V 2
therm n2

H

, (8.15)

and a dust “optical” depth at far-ultraviolet frequencies: τ ≡ nH∆rΣd = NHΣd. If we further
change the dependent variable to h ≡ (1 − fH2)

−1, then equation (8.14) becomes
∫ τ

0

(
h − 1

h

)
dτ =

η◦
2

(h − 1)2 exp(−2τ ) .

Differentiation of this equation with respect to τ and rearrangement finally yields

dh

dτ
=

1
η◦h

exp(2τ ) + h − 1 . (8.16)

After solving (8.16) numerically, we may recover the fraction fH2 . Figure 8.4 shows the
spatial variation of this fraction. Here we have set nH to 100 cm−3 and the temperature (needed
to compute Vtherm) to 30 K. We see how dust attenuation of ultraviolet photons ensures that fH2

reaches unity by a depth of ∆r � 2 (nHΣd)−1, i. e., by a visual extinction AV from the surface
of about 2. This result continues to hold in a more detailed treatment of the problem.

The change from atomic to molecular hydrogen occurs in step with another important tran-
sition, the buildup of CO. Like H2, CO is dissociated by ultraviolet photons through electronic
excitation. This molecule, however, does not form out of neutral atomic components, via grain-
surface catalysis. Instead, it builds up through ion-molecule reactions in the gas phase. The
essential ingredient in these reactions is the ionized species C II, which quickly reacts with ei-
ther atomic or molecular hydrogen. For example, one major pathway to CO production in the
surface region is

C+ + H2 → CH+
2

CH+
2 + e− → CH + H

CH + O → CO + H .

(8.17)
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Figure 8.4 Buildup of H2 inside the cloud surface. Plotted is fH2 , the fraction of hydrogen atoms
bound into molecules, as a function of the dust optical depth at far-ultraviolet frequencies.

Figure 8.5 Chemical transformations in molecular gas exposed to interstellar far-ultraviolet radi-
ation. The changes are indicated as a function of the visual extinction AV , measured inward from
the surface. Extinction values are appropriate for Orion-like conditions, i. e., for an ultraviolet
enhancement factor G◦ ∼ 105.

It happens that carbon’s first ionization potential of 11.2 eV closely matches the excitation
energy of the Lyman band of H2. Throughout the envelope, therefore, photons of higher energy
are depleted by both elements, and H2 and C I concurrently grow in abundance. It is important
to remember, however, that H2 is dissociated through absorption in discrete spectral lines, while
any continuum photon with frequency above 11.2 eV is capable of ionizing C I. Thus, even when
hydrogen has nearly all recombined and the intensity at each line center νi is essentially zero,
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there are still enough energetic photons at intermediate frequencies to maintain an appreciable
abundance of C II. The ion-molecule reactions continually use this C II to form CO, sometimes
by first producing C I. Once formed, CO then shields itself in a manner similar to H2. Essentially
all of the gas-phase carbon is thus transformed, with increasing depth, from C II to CO, with
an intermediate layer of C I generally present, as well. The remaining free oxygen persists in
neutral, atomic form (O I) even deeper inside. In this case, the relatively small O2 dissociation
energy of 5.1 eV renders the molecule susceptible to even a small remnant of the incident
ultraviolet flux. Figure 8.5 sketches the major chemical transformations in the cloud, here one
bathed in a relatively strong radiation field. The transitions are shown as functions of AV ,
measured from the surface.

8.2 The Molecular Interior

As we move inside the atomic envelope, we enter a region that is at least partially shielded
from the external radiation field. The ambient temperature accordingly falls, as we noted ob-
servationally in the case of B335 (Figure 3.21). Despite this drop, and the concurrent rise in
density, there is still some nonzero level of ionization. We need to gauge this level carefully, as
it determines the influence of any internal magnetic field.

8.2.1 Temperature Profile

Consider first the run of temperature in the molecular interior. Since the grain photoelectric
effect relies on ultraviolet photons, it can no longer heat the gas within the molecular interior.
We are left with cosmic rays as the principal heating agent. Almost all the carbon is in CO,
which now becomes the major coolant. The gas temperature in this region therefore follows
from

ΓCR(H2) = ΛCO , (8.18)

where equation (7.14) gives the cosmic-ray contribution. The rising curve in Figure 8.2 is the
temperature-density relation implied by equation (8.18). This behavior of Tg(nH) stems from
the fact that ΛCO is rather insensitive to density in this regime. Thus, the rise in ΓCR with
density can only be offest by an increase in temperature.1 Considering the decline of Tg in
the envelope, it is clear that the gas temperature must reach a minimum at some point. This
location conveniently demarcates the boundary with the molecular interior. For simplicity, we
have shown the minimum lying at the intersection of the two curves, but its true position, as
well as the local temperature profile, depend on the detailed falloff of the ultraviolet flux with
increasing depth.

The visual extinction AV as we enter the molecular interior is of order unity, so that the
grains are still heated mostly by optical interstellar photons. Since the dust cools by infrared
emission, its temperature retains the envelope value of 16 K in our representative model. Ac-
cording to the rough profile in Figure 8.2, the gas temperature dips temporarily below this value

1 Here we have used, for the volumetric CO cooling rate, Λ∗
CO from equation (7.35). Additional flux from optically

thick CO lines can raise the total rate by as much as a factor of 5 for typical cloud densities and sizes. The rising
temperature profile shown in Figure 8.2 would consequently be lowered by about 30 percent.
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at the envelope-interior boundary before resuming its climb. For values of nH in excess of
about 104 cm−3, we enter the regime of dense cores. Here, gas-dust collisions become frequent
enough that significant heat transfer occurs between the two components. If the dust grains
are relatively cold, this exchange acts to cool the gas, at the volumetric rate Λg→d given by
equation (7.40).

The condition of thermal equilibrium of the gas now reads

ΓCR(H2) = ΛCO + Λg→d . (8.19)

Because of the coupling term, we cannot solve this equation without simultaneously determin-
ing Td. At these high densities, the typical value of AV is so large that optical photons no longer
penetrate to heat the dust. There is also a rapid decline in the flux of interstellar mid-infrared
photons, which could potentially heat the grains because of the spike in opacity at 10 µm. (Re-
call the discussion in § 2.3.) Photons of even longer wavelength are provided by the outer,
heated dust. If we neglect this component of the radiation field, then the interior dust is heated
principally by its collisional coupling to the gas. We denote the associated heating rate by the
new symbol Γd→g, although its magnitude is just given by the negative of equation (7.40). As
long as the column density NH is not so high that it prevents the escape of even far-infrared
radiation, the cooling rate is still Λd in equation (7.39). The dust temperature then follows from

Γd→g = Λd . (8.20)

For a given value of nH , we may solve Equations (8.19) and (8.20) simultaneously for Tg

and Td. As seen in Figure 8.6, the previous rise in Tg has now stopped, and the gas cools because
of increasing thermal contact with the very cold dust. Thus, Λg→d, which is already twice ΛCO

at nH = 104 cm−3, rapidly increases in importance because of its quadratic dependence on
density. The dust itself is also considerably colder than in the envelope because of the cutoff
of interstellar radiation. Proper accounting of this extinction and the reradiation of incident
photons at longer wavelengths would result in a smoother decline in Td and turnover in Tg from
the outer region.

Despite the simplifications we have made, the generic temperature profiles in Figures 8.2 and
8.6 are at least broadly consistent with those derived empirically from continuum and molecular-
line studies of individual clouds. Our discussion in Chapter 6 makes it clear that mapping the
density and temperature with good spatial resolution is still highly problematic. Hence, while
more careful theoretical calculations exist, systematic comparisons of these with observations
are still lacking. Note finally that we have extended Figure 8.6 to densities higher than those in
typical dense cores to emphasize the point that Tg and Td must eventually approach a common
value. Physically, thermal contact between the two components becomes so strong that they can
be considered a single species, whose temperature is determined by

ΓCR(H2) = Λd . (8.21)

Here we have used the fact that ΛCO becomes insignificant in this limit. Equation (8.21) can be
solved to yield the unique temperature of 4 K.

Thus far, our discussion has centered on a relatively isolated cloud. When embedded within
other cold molecular gas, such as the interior of a giant complex where there are no nearby,
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Figure 8.6 Temperature profiles in the higher-density region of a molecular cloud. As in Fig-
ure 8.2, the gas (solid curve) and dust (dashed curve) are shown separately.

massive stars, a cloud receives less ultraviolet flux than the interstellar field assumed here. Thus,
both ΓPE and the envelope values of Tg diminish. Moreover, the buildup of H2 and CO occurs
at lower column density. The net result is that the cloud’s envelope shrinks relative to its interior.
The thermal properties of the dense core, which is shielded from the interstellar radiation, are
unchanged.

8.2.2 Measuring the Ionization Level

As we will discuss in Chapter 10, dense cores evolve by the slippage of gas through the ambient
magnetic field. This process, in turn, depends critically on the ionization fraction, since it is
only the charged species that sense the field directly. Let us now examine how this fraction is
actually determined empirically. We will then look at the theory that allows us to follow the
ionization up to densities much higher than those presently observed.

We focus on the relative density of free electrons: [e−] ≡ ne−/nH . Since electrons are the
dominant negative species, charge neutrality dictates that their density nearly equals the total for
positive ions. The idea is to relate [e−], which cannot be observed directly, to the concentration
of another species that can. One practical choice is HCO+, a relatively abundant molecule
which, along with CO, is detected through its rotational transitions (see Table 5.1).

Figure 8.7 depicts the principal creation and destruction pathways for HCO+ in dark clouds
or dense cores. The process begins with the generation of H+

2 by cosmic-ray impact of H2. The
ionized molecule then reacts with neutral H2:

H+
2 + H2 → H+

3 + H . (8.22)
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Figure 8.7 Principal reactions creating
and destroying HCO+ in dark clouds or
dense cores.

We designate the associated rate constant as k1, with units of cm3 s−1. The H+
3 produced

usually undergoes dissociative recombination:

H+
3 + e− → H2 + H . (8.23)

Less frequently, H+
3 reacts with CO to form HCO+:

H+
3 + CO → HCO+ + H2 , (8.24)

where we denote as k2 the reaction rate.2

The HCO+ formed through this reaction sequence is itself destroyed by dissociative recom-
bination:

HCO+ + e− → CO + H . (8.25)

Let kdr(HCO+) be the recombination rate. In equilibrium, the number density of HCO+ is

[HCO+] =
k2 [H+

3 ] [CO]
kdr(HCO+) [e−]

, (8.26)

where the square brackets again signify the density relative to nH . To determine [H+
3 ], we

similarly use Equations (8.22) and (8.23), now ignoring equation (8.24) as a quantitatively in-
significant depletion channel. We find

[H+
3 ] =

k1 [H+
2 ]

kdr(H+
3 ) [e−]

. (8.27)

Here, kdr(H+
3 ) is the reaction rate corresponding to equation (8.23). Finally, we obtain [H+

2 ]
by balancing cosmic-ray ionization, at the volumetric rate ζ(H2) nH2 , against destruction by
neutral hydrogen molecules:

[H+
2 ] =

ζ(H2)
k1 nH

. (8.28)

2 The dissociative recombination rate of H+
3 in equation (8.23) is still uncertain. So too, therefore, is the relative

importance of destruction by CO.
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We now combine Equations (8.26), (8.27), and (8.28) to obtain the desired expression for
[e−] in terms of known and observable quantities:

[e−]2 =
k2 ζ(H2)

kdr(H+
3 ) kdr(HCO+)

[CO]
[HCO+]

1
nH

. (8.29)

For numerical evaluation, we use k2 = 2 × 10−9 cm3 s−1, within the range of current exper-
imental values. For a temperature of 10 K, we also have kdr(H+

3 ) = 4 × 10−6 cm3 s−1 and
kdr(HCO+) = 3 × 10−6 cm3 s−1. We see, from Table 5.1, that the number density of HCO+

is typically 10−4 that of CO. Thus, at a representative dense core nH of 104 cm−3, equa-
tion (8.29) indicates that [e−] is of order 10−7.

8.2.3 Theoretical Derivation

How are we to understand this number from a theoretical perspective? Species such as HCO+

are important practically, but constitute only a fraction of the cloud’s ions. The majority are
singly charged atoms, chiefly Na+, Mg+, Ca+, and Fe+. Most heavy elements within a dense
core are actually locked up in solid grains, and only a few percent by mass exist in the gas phase.
Nevertheless, the density of the gaseous component is sufficiently high that the condition of
overall charge neutrality is, to good accuracy,

ne− = nM+ . (8.30)

Here, M+ signifies a metal ion. The right side of this relation is actually a sum over all such
species.

Metallic ions are created when neutral atoms undergo charge exchange with molecular ions,
such as H+

3 and HCO+. Denoting the molecules generically as m, we may symbolize this
process as

m+ + M → m + M+ , (8.31)

and write the associated reaction rate as kce. A metal ion can be destroyed when it encounters
a free electron. However, the rate for such radiative recombination is negligible for the elec-
tron fractions of interest (recall § 5.1). Of greater significance are collisions with dust grains.
The latter have a small negative charge (equivalent to one or two free electrons), so the sticking
probability in these collisions is high. Recalling that the dust grain number density nd is propor-
tional to nH , we may write the volumetric collision rate as kdM nH nM+ . The coefficient kdM,
properly averaged, has the value 5 × 10−17 cm3 s−1 near a temperature of 10 K. The metallic
ion abundance follows by equating the creation and destruction rates:

kce nM nm+ = kdM nH nM+ . (8.32)

Turning to molecular ions, these form when cosmic rays bombard H2, which then undergoes
charge exchange with other species. Their depletion partially stems from charge exchange with
neutral metallic atoms. We have also noted that they undergo dissociative recombination with
free electrons, as in equation (8.25). Their abundance in steady state therefore obeys

ζ(H2) nH2 = kce nm+ nM + kdr nm+ ne− , (8.33)
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Of the two means for depleting molecular ions, dissociative recombination is faster provided
that the electron abundance is not too low. We expect [e−] to fall with rising nH , since higher
density promotes recombination. The practical condition for ignoring the first righthand term in
equation (8.33) is nH � 108 cm−3. Within this regime, we may eliminate nm+ between (8.32)
and the simplified equation (8.33). After utilizing equation (8.30), we find

ne− =
[
ζ(H2) kce nM

2 kdM kdr

]1/2

. (8.34)

Here, we have also set nH equal to 2 nH2 . Since the number density of metals is proportional to

that of hydrogen, equation (8.34) predicts that [e−] varies as n
−1/2
H . A more careful treatment,

summing over the various metallic and molecular species, gives the same result and supplies the
numerical coefficient:

[e−] = 1 × 10−5 n
−1/2
H . nH � 108 cm−3 (8.35)

This relation is consistent with the values of [e−] obtained empirically through the abundance
of HCO+ and other tracers. Equation (8.35) is frequently recast as

ρi = C ρ1/2 , (8.36)

where the constant C is 3 × 10−16 cm−3/2 g1/2 at a temperature of 10 K.
The last two equations do not accurately track the ionization level within a collapsing cloud,

where the density climbs to very large values. For nH � 108 cm−3, charge exchange with
metals becomes the dominant mode of destroying molecular ions. We again eliminate nm+

between Equations (8.32) and (8.33), and use (8.30) to find

ne− =
ζ(H2)
2 kdM

. nH � 108 cm−3 (8.37)

After using equation (7.14) for ζ(H2), we find that ne− has the constant value of 0.3 cm−3. In
this regime, therefore, [e−] is proportional to n−1

H .
As nH reaches even higher values, the number density of electrons and ions eventually falls

below that of the charged grains. From equation (2.47), the grain number fraction is

nd

nH
=

Σd

π a2
d

= 3 × 10−12 ,

(8.38)

where the numerical estimate uses a grain radius ad of 1×10−5 cm. Thus, from equation (8.37),
[e−] falls below nd/nH for nH larger than 1 × 1011 cm−3. In fact, deviations from equa-
tion (8.37) appear a bit earlier, for nH � 1010 cm−3. Once the grains themselves become the
dominant carriers of both positive and negative charge, their collisions with neutral gas govern
the slippage of the magnetic field. As the density continues to rise, cosmic rays become at-
tenuated, and the dominant source of ionization shifts to radioactive elements (chiefly 40K) or
to X-rays from the central star. Finally, once temperatures exceed about 103 K, energetic colli-
sions among the gas particles supply most of the free electrons. Metallic atoms are again the first
species to be ionized. The electron fraction in the streaming gas starts to increase dramatically,
and coupling to the local magnetic field becomes much stronger.
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8.3 Photodissociation Regions

The most significant modification of cloud thermal structure is from nearby stars. Those born
in the center of a dense core radiatively heat a large volume of the surrounding dust. As we
will discuss in future chapters, it is this warm dust that has actually provided the best means for
identifying embedded young stars. Molecular gas is also heated by the shocks associated with
stellar winds.

We have already seen how O and B stars, although rare in number, wreak havoc with vast
quantities of molecular gas, to the point of dispersing the giant complexes into which they are
born. The effects here are both mechanical, through the impact of powerful stellar winds, and
thermal, through radiative and shock heating of cloud material. In this section, we consider in
detail the radiative effect. The theory has wide applicability. For example, infrared emission
from hot dust has been the principal tool for locating star formation regions in distant galaxies.

8.3.1 Grain Heating and Emission

Massive stars emit the bulk of their energy in the ultraviolet region of the spectrum. A molecular
cloud near such a star receives an ultraviolet flux orders of magnitude greater than from inter-
stellar radiation. Consider, for example, a main-sequence star of spectral type B0 embedded
within a giant complex. This star has an effective temperature of 3 × 104 K, equal to the value
of T̄ characterizing the ultraviolet component of the interstellar radiation field, and a bolometric
luminosity of L∗ = 5 × 104 L�. The star emits photons at all energies up to 13.6 eV; those of
higher energy are absorbed in the surrounding HII region before reaching cloud gas. If located a
distance D from a clump within the complex, the star bathes the cloud face with a flux F∗ equal
to L∗/4πD2. On the other hand, the interstellar radiation contributes a flux Fint = π

∫
UV

Jνdν.
For F∗ to equal Fint, the star must be at a distance

D =
(

L∗
4π Fint

)1/2

= 50 pc .

(8.39)

Here, we have estimated the integral of Jν over the ultraviolet range to be twice that for the
far-ultraviolet range of 6 eV and above. Since the latter is known empirically from the Habing
flux, we have

π

∫

UV

Jν dν ≈ 2π

∫

FUV

Jν dν = 8 × 10−4 erg cm−2 s−1 .

Some clumps within the complex will indeed be at a distance of order 50 pc. On the other
hand, we will see in Chapter 15 that molecular gas can persist as close as 0.1 pc from the star
in question. This neighboring gas, located just outside the star’s HII region, receives a flux
enhanced over the interstellar value by the factor G◦, here equal to (50/0.1)2 = 2 × 105.

Such an intense radiation field disturbs the physical and chemical equilibrium of the cloud
to great depths. Since all the molecules in the outer layers are promptly dissociated, the affected
area is known as a photodissociation region, a term coined by A. Tielens and D. Hollenbach in
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1985. Photodissociation regions are seen not only near massive stars, as in the Orion (M42) and
Omega (M17) Nebulae, but also in planetary nebulae and the nuclei of external galaxies.

What is the fate of the ultraviolet radiation? The answer is clear from the observations,
which show that photodissociation regions all emit copiously in the infrared. The nearest and
best studied example, the Orion Nebula, has a far-infrared luminosity estimated at 3 × 105 L�.
This prodigious energy output can only stem from dust heated by stars in the region, both the
visible members of the Trapezium and others hidden from view by this same dust. The cooling
rate of dust grains, given by Λd in equation (7.39), rises steeply with the dust temperature
Td. Conversely, Td responds sluggishly to large increases in the incident radiative flux. For a
quantitative assessment, we must first evaluate Γd(UV), the dust heating rate in the ultraviolet.
Employing the enhancement factor G◦, this rate is given by the appropriate modification of
equation (7.19):

Γd(UV) = 4π G◦ nd σd

∫

UV

Qν Jν dν

= 4π G◦ Σd nH Qνmax

∫

UV

Jν dν

= 2 × 10−9 G◦
( nH

103 cm−3

)
eV cm−3 s−1 .

(8.40)

In the second form of this equation, we have pulled Qν out of the integrand because it varies
slowly in the ultraviolet. We used a value of 0.7 for Qνmax , corresponding to an opacity κ
of 500 g cm−2 at the peak frequency νmax = 2 × 1015 s−1 of the interstellar field. Equating
Γd(UV) to Λd, we find

Td = 16 G
1/6
◦ K . (8.41)

In our example of the B0 star, Td would be raised to 120 K. A blackbody at this temperature
emits at a peak wavelength of 30 µm.

8.3.2 Fine-Structure Cooling

The cloud matter near O and B stars is also observed to radiate in atomic fine-structure lines,
principally those of O I and C II. Figure 8.8 shows the 158 µm C II emission from the famous
Horsehead Nebula in Orion. The Nebula lies at the edge of a heavily obscured region, about
1◦ south of the Belt star ζ Ori (see Figure 1.3). The O9 star, and the equally massive σ Ori to
the west, illuminate the cloud edge with ultraviolet light, providing an equivalent G◦ of about
100. In Figure 8.8, the optical image of the Nebula is shown in the negative, while the contours
represent the 158 µm intensity distribution. We have grown accustomed to thinking of clouds
being delineated by their CO emission, but the luminosity in C II is here far greater.

The strong atomic line emission from photodissociation regions, which itself totals only
about 1 percent of the continuum infrared luminosity, stems from hot gas located alongside
the dust. The fraction of 1 percent can be neatly explained if we assume that, as in quiescent
clouds, the gas is heated primarily through the grain photoelectric effect. As we have seen,
εPE, the efficiency with which an ultraviolet photon converts its energy to heating the gas, as
opposed to the dust, is indeed about 0.01. The fine-structure luminosity from regions of massive
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Figure 8.8 Negative optical photograph of the Horsehead Nebula in Orion. The white contours
show emission in the 158 µm fine-structure line of C II.

star formation is so large that it is here, rather than in quiescent clouds, that the transitions were
first detected in space. Thus, the 63 µm emission of O I was found in M42 and M17, with
luminosities in the line of 600 and 3000 L�, respectively.

Previously we argued, using Equations (7.26) and (7.27), that the cooling from C II should
dominate that from O I in cloud envelopes. When these lines are seen toward dense photodis-
sociation regions, O I is generally stronger. Let us see how this reversal comes about. Equa-
tions (7.26) and (7.27) were derived assuming nH , the density of colliding hydrogen atoms, to
be below the critical values for both transitions. This assumption is safe enough in the envelopes
of quiescent molecular clouds, but not in the gas surrounding massive stars, where shock com-
pression can lead to much higher densities. Consider, then, the fine-structure emission from
cloud material with arbitrary nH , bathed in an increasing ultraviolet flux. The two fiducial den-
sities to bear in mind are 3 × 103 cm−3, which is ncrit for the C II line, and 5 × 105 cm−3,
the corresponding value for the 63 µm line of O I at a typical gas temperature of 300 K, where
γul = 2 × 10−10 cm−3 s−1.

For a cloud density below 3×103 cm−3, both ΛOI and ΛCII are still given by equation (7.24),
and their ratio is

ΛOI

ΛCII
= 0.07 exp

(
−138

Tg

)
, (8.42)

which is indeed less than unity. The emission in the dominant C II line relative to that from the
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dust is
ΛCII

Λd
=

ΓPE

Γd(UV)
= 0.01 , (8.43)

where we have scaled up ΓPE in equation (7.18) by the factor G◦ and have used equation (8.40)
for Γd(UV). The gas temperature follows by equating ΓPE to ΛCII. The appropriate modifica-
tion to equation (8.2) for quiescent envelopes is then

Tg =
40 K

2.0 + log (nH/103 cm−3) − log G◦
. (8.44)

Notice that this last equation, if evaluated at an nH of 103 cm−3, formally yields an infinite
Tg for G◦ greater than the modest value 102.0 = 100. The true situation is that the photoelectric
heating rate is self-limiting. As G◦ climbs above unity, Tg at the cloud edge does rise at first
and can reach several hundred K, as predicted by equation (8.44). However, if electrons are
ejected from grain surfaces too rapidly, the resulting buildup of positive charge creates a strong
electrostatic force. This attractive force inhibits further ejection, effectively lowering εPE until
thermal balance can be once more achieved. From this point on, further increase of G◦ actually
lowers Tg at the cloud edge.

For densities between 3 × 103 cm−3 and 5 × 105 cm−3, ΛOI remains unchanged,
but ΛCII must now be found from equation (7.25), which effectively reduces the rate by
(3 × 103 cm−3/nH). The ratio of ΛOI to ΛCII is now

ΛOI

ΛCII
= 2 × 10−2

( nH

103 cm−3

)
exp

(
−138

Tg

)
, (8.45)

so that ΛCII still dominates at lower densities. However, the two cooling rates become com-
parable at the highest nH because of the quadratic increase of ΛOI with density. It should be
remembered here that we are only discussing local rates. The emission from the entire cloud
favors O I even more, since neutral oxygen persists to greater depths. Regardless of which line
dominates, our derivation of equation (8.43) makes it clear that the ratio of fine-structure to dust
cooling remains about 0.01, as long as we can ignore the lowering of εPE.

Finally, for cloud densities above 5 × 105 cm−3, both O I and C II are in the supercritical
regime and we find

ΛOI

ΛCII
= 11 exp

(
−138

Tg

)
. (8.46)

Since all the level populations have now reached LTE, it is the product Aul∆Eul, the emis-
sion rate per atom from the upper level, which now governs both cooling rates. This product,
weighted by the relative chemical abundances and degeneracy factors, is higher for the O I tran-
sition. Although clumps with nH � 5 × 105 cm−3 may indeed exist around massive stars, the
radiation in both lines can be optically thick in such environments. The relevant cooling rate
for both species is then a surface flux, given by the appropriate modification of equation (7.33).
The ratio of the two fluxes is

FOI

FCII
=

(
230
92

)4 exp (92/Tg) − 1
exp (230/Tg) − 1

, (8.47)

so that the O I line dominates for any Tg greater than 40 K.
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The basic chemical transformations within photodissociation regions are just those found in
quiescent cloud envelopes. Indeed, the various recombinations also occur at similar AV -values,
since the greater G◦ tends to compensate for the higher ambient density. In the surface region,
the ultraviolet flux not only dissociates H2, but also ionizes those atoms, such as carbon, with
ionization potentials below 13.6 eV. Carbon still becomes CO within the molecular interior,
where it again acts as a principal coolant of the gas. The other important thermal processes
also remain the same, except in clouds of the very highest densities and G◦-values, in which
infrared radiation from hot dust can excite the fine-structure lines and thus warm the gas. The
temperature structure of both gas and dust is thus qualitatively similar to the quiescent case
(Figure 8.2), with both Tg and Td scaling upward as G◦ increases, and with Tg always exceed-
ing Td by a wide margin at the cloud edge. One significant difference is that Tg always climbs
initially before turning over and undergoing its characteristic slow decline within the envelope.
This temporary increase stems from the rise in εPE accompanying the attenuation of the ultra-
violet flux. For G◦-values near 105, the peak gas temperature can exceed 103 K. Deeper in the
cloud, increasing thermal contact between the gas and dust again drives them toward a common
temperature that is relatively insensitive to the external ultraviolet flux.

8.3.3 Heated H2

Let us finally consider observations of molecular hydrogen. We earlier noted that photodis-
sociation through excitation of the Lyman and Werner bands is an inefficient process, as the
excited molecule usually relaxes intact to its ground state. The fluorescent emission accom-
panying such relaxation is another important signature of photodissociation regions. Radia-
tion from the lower rovibrational transitions occurs at near-infrared wavelengths accessible to
ground-based telescopes. If the ambient density nH is subcritical with respect to these transi-
tions (ncrit ∼ 106 cm−3), the branching ratios during fluorescent cascade depend only on the
transition rates for radiative decay, i. e., on internal molecular constants. Thus, the relative in-
tensities of the various lines are also determined, although the absolute intensities still vary with
G◦ and nH . Referring back to Figure 5.4, consider the 1 − 0 S(1) and 2 − 1 S(1) lines, which
are transitions between the same rotational sublevels for v = 1 → 0 and v = 2 → 1, respec-
tively. Since the A-values of the two transitions are nearly identical, it is not surprising that
the theoretical fluorescent intensities are also close, with the 1 − 0 S(1) line predicted to be 1.8
times as strong.

In fact, the observed relative line intensities often differ considerably from the predicted
fluorescent values. To quantify the difference, we recall that the volumetric emission rate asso-
ciated with any transition from an upper to a lower state is given by

Λul = nu Aul ∆Eul . (8.48)

If we express the level population nu using the generalized Boltzmann relation of equa-
tion (5.14), then equation (8.48) becomes

ln (Λul/gul Aul ∆Eul) = C◦ − ∆Eu/kB Tex . (8.49)

Here C◦ is a nondimensional number depending on nH2 , Tex, and molecular constants, and
∆Eu is the energy of the upper level above ground. In an optically-thin environment, the ob-
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served intensity Iul is proportional to Λul. Now if the region in question were in LTE, Tex

would equal the gas temperature Tg. Then a plot of ln(Iul/guAul∆Eul) versus ∆Eu for all the
observed H2 lines would yield a straight line with slope −1/kBTg. Of course, the molecular
hydrogen in a photodissociation region of subcritical density is not in LTE, so that such an exci-
tation diagram should not exhibit a unique slope. In some cases of observed H2 line emission,
this is true. In others, however, the diagrams clearly do indicate a single temperature.

Figure 8.9 shows an example of each type. In the first panel is an excitation diagram for
NGC 2023, a reflection nebula illuminated by a B star in the molecular cloud L1630. The open
and closed circles symbolize, respectively, the “para” and “ortho” forms of H2. (In classical lan-
guage, the two proton spins in parahydrogen point in opposite directions.) From the observed
intensities, no single slope is evident, although there is a pattern of slopes, and therefore excita-
tion temperatures, among subgroups of lines. In particular, the 1 − 0 S(1) and 2 − 1 S(1) lines,
distinguished by additional outer circles in the figure, have an intensity ratio of 3.7. Since this is
larger than 1.8, the region exhibits collisional pumping of the levels, in addition to fluorescent
decay. The observed ratio yields, after applying equation (8.49) to each line and subtracting, a
Tex of 3600 K. Such a “vibrational temperature” is useful information, but it does not necessar-
ily correspond to any actual Tg.

The second panel shows results from the area of peak emission in the Orion BN-KL region;
this area coincides with the infrared source IRc2. Here, a single slope evidently does fit the data.
The 1 − 0 S(1) to 2 − 1 S(1) intensity ratio is now much higher, about 10, and the best-fit Tex

using all the points is 2000 K. This figure probably does represent a gas kinetic temperature.
In a photodissociation region, however, such high gas temperatures are only attained in cloud
envelopes exposed to the largest G◦-values, where very little H2 could survive. What then is
the excitation mechanism? It is generally agreed that all such regions, of which Orion BN-KL
was the first example discovered, represent gas that previously passed through a shock, became
violently heated as a result, and is now cooling back down to normal cloud temperatures. For
the H2 levels to be maintained in LTE through collisions, the ambient density must be very high,
at least 106 cm−3. In the present example, the shock creating the emission is generated where
the wind from a massive star strikes nearby cloud gas. The generation of shocks, however, is
associated with stars of all mass and enters so many aspects of stellar formation that we should
explore the phenomenon from a broader perspective.

8.4 J-Shocks

Shocks are sharp transitions generated in a fluid when it is subjected to a large pressure gradient.
O and B stars, for example, create shocks in two different ways. The wind from such a star
encounters a stationary shock front, i.e., a sudden, adverse pressure gradient, when it impacts a
molecular cloud. At greater distances, the star creates as HII region, an extended volume heated
and ionized by ultraviolet radiation. The pressure of this hot gas on the surrounding material
generates supersonic motion and a moving shock wave, which compresses and heats the cloud
gas ahead of it as it propagates away from the star. Of course, shock “waves” can always be
viewed as stationary “fronts” by an appropriate change of reference frame; we shall henceforth
employ that special frame for our discussion.
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Figure 8.9 Excitation diagrams for
H2 emission in (a) the reflection neb-
ula NGC 2023, and (b) the Orion BN-
KL region. The observed intensity is
plotted as a function of the energy in
each line above the H2 ground state.
Groups of lines corresponding to the
v = 1 → 0 and v = 2 → 1 transi-
tions are indicated separately.

The properties of the shock transition depend on the preshock density and speed. The latter
is known as the shock velocity and will be designated Vshock. A shock arises only when Vshock

exceeds the local sound speed. A moving fluid element then has no time to be “warned” by
sound waves of the approaching high-pressure region. It therefore undergoes a sudden change
created by direct contact with the hotter and denser postshock gas. We will later examine rela-
tively slow shocks where this change can occur more gradually. For now, we focus on the faster
J-shocks, in which all fluid variables jump to their postshock values.

8.4.1 Temperature and Density Changes

From a kinetic viewpoint, shocks convert much of the ordered, bulk motion of the preshock gas
into random, thermal motion. For sufficiently high shock speeds, the hot postshock gas radi-
ates, and this radiation further heats more distant gas both upstream and downstream from the
front itself. Figure 8.10 shows the temperature and density profiles associated with a modestly
strong shock in a molecular cloud. The horizontal axis represents distance on either side of
the front, as measured by the column density NH . In Figure 8.10a, preshock gas with number
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Figure 8.10 Gas temperature and hydrogen number density in a shocked molecular cloud, where
Vshock = 80 km s−1. The graph actually displays log (Tg) and log (nH) − 3. Both quantities are
shown as functions of hydrogen column density (a) upstream from the shock front, and (b) behind
it. The reference frame is that for which the front is stationary.

density nH streams to the right at velocity Vshock, here equal to 80 km s−1. Meanwhile, the
gas temperature Tg is increased by the radiation emitted just downstream from the front. The
warmed preshock region is known as the radiative precursor. The front itself is the transition
layer in which the actual thermalization of motion occurs through collisions between the pre-
and postshock atoms and molecules.3 The thickness of this layer is roughly one particle mean-
free-path in the postshock gas. For the example shown in the figure, the relevant mean-free-path
pertains to collisions between ions and electrons, and is 4 × 1010 cm. This distance is so small
compared to the length scale for variations outside the front that the fluid essentially undergoes
a discontinuous change in its properties. The temperature, density, and pressure jump upward,
while the velocity is reduced to a value that is subsonic with respect to the local sound speed.
Downstream from the front, the gas temperature falls, first quickly and then more slowly, in an
extended relaxation region (Figure 8.10b). It is the radiation generated in this cooling zone that
has provided our knowledge of shocks in star-forming environments.

The changes in the gas properties across the shock are independent of the thermalization
mechanism within the front and are readily determined through conservation of mass, mo-
mentum, and energy. We derive the corresponding set of Rankine-Hugoniot jump conditions
in Appendix F. We also derive the ratios of various post– to preshock quantities in terms of
the upstream Mach number M1 ≡ Vshock/a1. Here, we let the subscripts 1, 2, and 3 repre-
sent far upstream, immediate postshock, and final, downstream quantities, respectively. For

3 Such momentum exchange through interparticle collisions underlies ordinary fluid viscosity. For this reason, J-shocks
are also known as viscous shocks.
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the case of a strong (M1 � 1) shock in a perfect gas with γ = 5/3, equation (F.16) tells us
that T2/T1 = (5/16) M2

1 . The adiabatic sound speed a1 is equal to (5kBT1/3µmH)1/2, so the
postshock temperature is

T2 =
3 µ mH V 2

shock

16 kB

= 2.9 × 105 K
(

Vshock

100 km s−1

)2

.

(8.50)

In the second form of this equation, we have assumed µ = 1.3 (neutral preshock gas) and have
used, as a fiducial Vshock, the typical wind speed for a low-mass young star. Note that the
massive stars we have been discussing can have wind speeds exceeding 1000 km s−1. In any
case, we see that wind-generated shocks in molecular clouds create temperatures far in excess
of any we have encountered thus far.

The hot postshock gas both decelerates and cools. Once the velocity is well below the local
sound speed, the pressure within the relaxation region no longer changes with depth. Hence the
density, which is proportional to P/Tg in a perfect gas, can increase considerably by the time
the temperature has relaxed to its undisturbed value T3 (see Figure 8.10b). This increase is, in
practice, limited by the rise of magnetic pressure within the gas. Nevertheless, the compressive
effect of shocks plausibly underlies the very high densities seen in such regions as Orion BN-
KL.

We may also employ the conservation relations to express the total rate of energy loss from
the relaxation region. Applying equation (F.17) from Appendix F to a perfect gas, we have

[
1
2

v2 +
γ

γ − 1
P

ρ

]3

1

= − 2 Frad

ρ1 Vshock
, (8.51)

where v is the fluid velocity relative to the front, and Frad is the flux emitted in either direction.
For a strong shock, the term (1/2)V 2

shock dominates all others on the left side, and we have
simply

Frad ≈ 1
4

ρ1 V 3
shock . (8.52)

Thus, Frad increases sharply with the shock speed.

8.4.2 Hydrogen Ionization

The intense radiation from a strong shock can easily destroy any molecules in the preshock
flow. In addition, the photons radiated by the postshock gas can have energies exceeding the
13.6 eV limit from HII regions. If their energies also exceed 15.4 eV, the photodissociation of
H2 proceeds not by the usual excitation of the Lyman and Werner bands, but rather through
direct ionization followed by radiative recombination:

H2 + hν → H+
2 + e−

H+
2 + e− → H + H .

(8.53)
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Consider now the spatial variation of the ionizing flux through the precursor, i. e., for
x < x◦, where x◦ denotes the shock front location. Let Frad(x) denote this flux, as measured in
photons cm−2 s−1. If we assume that all photons are eventually absorbed, then Frad(x) starts
at zero and increases to some finite value at the front itself. For preshock gas whose hydrogen
is initially all molecular, each two H atoms produced in this manner absorb one ionizing photon
from the radiation field generated at the front. An additional two photons are required to ionize
both atoms. Thus, over a small distance interval ∆x within the precursor, the increase in flux is
related to the changes in atomic and ionized hydrogen number density by

∆Frad = Vshock

(
1
2

∆nHI +
3
2

∆nHII

)
.

At the shock front, we therefore have

Frad(x◦)
(nH)1 Vshock

=
1
2

fHI(x◦) +
3
2

fHII(x◦) . (8.54)

Here, (nH)1 is the incoming number density, while fHI and fHII are, respectively, the num-
ber fractions of atomic and ionized hydrogen. In order to completely ionize the precursor flow
(fHI = 0, fHII = 1), the outgoing photon flux must be a factor 3/2 larger than the incoming
particle flux. Determination of the actual emitted spectrum requires detailed numerical calcula-
tions. These find that a shock speed of 120 km s−1 is necessary to meet this critical ionization
condition. At even higher shock velocities, HI is converted to HII at an ionization front which
stands off from the shock at some fixed location xi < x◦.

Implicit in our discussion is the assumption that the electrons ejected from both H2 and HI
do not have time to recombine before the preshock gas is swept into the front. The focusing
effect of the Coulomb force causes recombination cross sections to vary with electron velocity
as v−2. At the high temperatures of concern, these cross sections are sufficiently small that
the assumption is justified. By the same token, the hydrogen just inside the front also cannot
recombine promptly, since its density is only increased by at most a factor of 4 (see Appendix F).
The initial ionization state of the postshock gas is therefore inherited from the precursor and is
not set by the local density and temperature, as it would be in LTE. This statement also applies if
the incoming gas is lightly ionized. Consider, for example, a shock with (nH)1 = 105 cm−3 and
Vshock = 80 km s−1. Calculations show that the hydrogen crossing the front is only 1 percent
ionized in this case. On the other hand, the postshock temperature, from equation (8.50), is
2 × 105 K, which would result in essentially complete ionization in LTE.

8.4.3 Nonequilibrium Cooling

The manner in which the postshock gas radiates away its internal energy depends sensitively
on its ionization state. Since the latter can differ significantly from LTE, the gas is said to
undergo nonequilibrium cooling. Much of the radiation behind the front follows the excitation,
by electron impact, of electronic levels within relatively abundant heavy elements, such as C, N,
and O. Their initial ionization states depend on the character of the shock-generated radiation
field and therefore Vshock. Once excited, the higher electronic levels decay very rapidly, through
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allowed electric-dipole transitions. The resulting ultraviolet photons are those which actually
ionize the precursor.

Whatever hydrogen survives in atomic form can also be excited collisionally. Here, the
emitted photons are quickly absorbed by neighboring hydrogen atoms, which most often reemit
a photon of the same energy. This process of resonant scattering continues until an excited
atom drops first to an intermediate level before reaching the ground state. The lower-energy
photons produced scatter until most of the original radiation is converted into the Lyα line
emitted during the n = 2 → 1 transition. This line, together with additional ultraviolet photons
from heavy ions, constitutes most of the shock’s total radiative output.

The hydrogen further downstream at first becomes increasingly ionized through both colli-
sions and the ion-produced radiation field. Meanwhile, the gas temperature falls until, at about
104 K, recombination begins to offset photoionization. The cooling of the gas is now largely
due to electron collisions with HI, followed eventually by Lyα emission. This cooling is highly
sensitive to temperature, since lower electron thermal velocities cannot excite hydrogen’s elec-
tronic levels. Hence, the temperature maintains a plateau near 104 K, which extends until all the
shock ultraviolet photons more energetic than 13.6 eV are absorbed and recombination is com-
plete (see Figure 8.10b). Note that nonequilibrium cooling dominates also in the plateau, but
that the hydrogen ionization fraction is now greater than LTE because of the relative slowness
of recombination.

Since HI by itself is a poor cooling agent, the end of hydrogen recombination allows the
emission to be dominated once more by the metals. These are neutral or at most singly ion-
ized. The ambient temperature is now too low for collisions to populate those levels within
metal atoms corresponding to permitted transitions. However, any levels lying roughly kBTg

above ground, i. e., about 1 eV for Tg ≈ 104 K, can still be excited. Such metastable states
actually exist in abundance. An important example is the 1D2 state of O I. This is the level,
characterized by total electronic quantum numbers L = 2 and S = 0, that we encountered
when discussing fine-structure splitting (recall § 7.3 and Figure 7.8). Electric-dipole transitions
to the ground state (L = 1, S = 1) are forbidden, but the decay can still occur through a “semi-
forbidden,” magnetic-dipole transition. Here, the associated A-value is 6.3 × 10−3 s−1. The
emitted [OI] 6300 Å line is an important tracer of wind-generated shocks from young stars.

8.4.4 Molecule Formation

The excitation of metastable states allows the postshock temperature to fall steeply once more,
until the familiar fine-structure transitions dominate the cooling. Of particular importance is the
[OI] 63 µm line, which here overwhelms [CII] 158 µm emission because of the high temperature
and density. Once the temperature has dropped to several 103 K, molecules start to reform and
thereafter control both heating and cooling. First to appear is H2, initially produced by the
H− formed out of the residual electron supply (recall equation (5.11)). After the electrons
are exhausted, H2 formation continues through grain-surface catalysis. The new molecules are
vibrationally excited when first injected back into the gas phase. If nH at this point is at least
105 cm−3, decay of these levels occurs collisionally. Under these conditions, the formation of
H2 becomes the major heating source for the gas, stabilizing Tg at a second plateau of about
500 K until all the hydrogen becomes molecular. This feature is also evident in Figure 8.10b.
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Other molecules also form, through purely gas-phase processes. The low ionization level
and prolonged temperature elevation of the plateau are conducive to neutral-neutral reactions. A
network of such reactions is activated which yields a variety of species, including the important
coolants CO, OH, and H2O. The latter two form mainly through

H2 + O → OH + H
OH + H2 → H2O + H .

(8.55)

The far-infrared and millimeter rotational emission from these molecules, together with increas-
ing thermal contact with the relatively cold dust, allow the cloud gas finally to settle back down
to its original, undisturbed temperature. Note that the total postshock cooling time is only a few
years for shocks impacting molecular clouds. In the example shown in Figure 8.10, the distance
covered by the relaxation region is of order 1013 cm.

8.4.5 Dust Heating and Destruction

For deeply embedded shocks, very little of the optical and near-infrared emission produced be-
hind the front can escape the cloud. As in photodissociation regions, most of this radiation, ex-
cluding the ionizing component, is absorbed by dust and reemitted at far-infrared wavelengths.
The absorption heats the dust grains, particularly those which actually enter the shock front.
Such a grain receives an energy per unit time of σdFrad. Here, Frad is given by equation (8.52),
and σd is the geometrical cross section, appropriate for ultraviolet radiation. To estimate Td, we
may equate the volumetric heating rate σdndFrad = ΣdnHFrad, to Λd in equation (7.39). For
nH = 103 cm−3 and Vshock = 100 km s−1, we thus find Td = 190 K.

The thermal effect on dust entering high-velocity shocks is minor compared to the mechani-
cal effect associated with collisions in the postshock region. Grain-grain collisions drive shocks
inside the solid material that vaporize it once the deposited energy exceeds several times the
binding energy of the lattice. The latter is typically 5 eV per atom. Such collisions can also
shatter the grain directly. Most importantly, fast-moving ions from the gas phase chip away
the grains’ surface layers. This phenomenon of sputtering effectively destroys most incoming
grains for shock speeds in excess of 200 km s−1. Sputtering by the shocks associated with
supernova remnants is the principal destruction mechanism for dust throughout the interstellar
medium.

We mentioned previously that the emissivity of the postshock gas is sensitive to its state of
ionization. For increasing shock velocity, first hydrogen and then the heavy elements become
completely ionized and therefore ineffective as coolants. Suppose that the depth of the relax-
ation region is limited by some constraint, such as the geometrical thickness of the shocked
cloud. Then there exists a critical shock speed above which the postshock gas cannot cool in
the available flow time. The energy injected by the preshock gas thus remains trapped for an
extended period. Such nonradiative shocks are created, for example, by the impact of O- and
B-star winds on surrounding cloud matter, a circumstance we shall consider in Chapter 15.
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8.5 C-Shocks

We finally consider shocks in which the fluid variables do not undergo a discontinuous jump, but
change smoothly and continuously. This possibility was first conjectured theoretically. Later,
observations of heated molecular hydrogen seemed to call for just such a transition. Subsequent
studies have confirmed the idea and demonstrated its applicability in star-forming regions.

8.5.1 Maximal Compression

The rovibrational transitions of H2 supply most of the copious emission from the Orion BN-
KL region. Figure 8.9 demonstrates that, despite the presence of highly luminous sources, the
molecule is not fluorescing, but is in LTE at a temperature near 2000 K. As we stated earlier,
the ultimate source of energy is likely to be a wind-driven shock. This hypothesis is bolstered
by the presence of the [OI] 63 µm line, which should indeed be a major postshock coolant. On
the other hand, it is not clear how the excitation of H2 actually occurs. Even a moderately fast
shock dissociates the molecule, which only later reforms on grain surfaces farther downstream.
At this point, the ambient temperature is about 500 K, well below that observed. One could
invoke a shock so weak that H2 passes through the front without being dissociated. However,
the resulting infrared emission would then be too low. Increasing the preshock atomic density
nH does raise the collisional excitation rate of H2, but also leads to the rapid formation of other
molecules like H2O, which then dominate the cooling.

How is it possible, then, for molecular hydrogen to pass through the shock front intact and
yet be heated enough to radiate away much of the incoming energy flux? The answer is that
the preshock gas in this case contains a relatively strong magnetic field. As we shall detail
in Chapter 9, magnetized interstellar gas in motion effectively carries along its internal field.
Passage through the front compresses both the gas and the magnetic field. Field compression
absorbs some of the incoming momentum. The postshock gas pressure, as well as the kinetic
temperature, is lower than for a nonmagnetized fluid entering with identical velocity. The re-
duction in temperature prevents molecular dissociation. On the other hand, if the shock speed is
high enough, even the diminished postshock temperature is sufficient for H2 and other species
to emit strongly.

The cushioning effect of the magnetic field also limits the density increase attainable by
matter as it traverses the shock. Suppose that the pressure associated with the field, B2/8π,
is negligible in the preshock state, as compared to the initial ram pressure, ρ1v

2
1 . Crossing the

shock both compresses the gas and raises the magnetic pressure, since the field is frozen into the
matter. Indeed, the postshock magnetic field strength, B2, is related to the preshock value by

B2

B1
=

ρ2

ρ1
. (8.56)

This relation applies only when the field is perpendicular to the direction of the flow, as in
Figure 8.11.
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Figure 8.11 Shocks in a magnetized fluid. De-
picted are the magnetic field, along with the
neutral and ion velocities. Here the field is per-
pendicular to the flow, and the reference frame
is again that in which the shock front is sta-
tionary. Upper panel: At low field strengths,
the neutrals undergo a J-shock after crossing the
magnetic precursor. Lower panel: For stronger
fields, the neutral velocity declines smoothly. In
all cases, both the field strength and ion speed
change smoothly. The net change in the field is
always governed by equation (8.56) in the text.

Maximal compression occurs when the postshock value of B2/8π greatly exceeds both the
thermal and ram pressures. In this limiting case, momentum conservation implies that

B2
2

8 π
= ρ1 v2

1 . (8.57)

Combining Equations (8.56) and (8.57), we find
(

ρ2

ρ1

)

max

=
√

8πρ1 v1

B1

=
√

2
(

v

VA

)

1

.

(8.58)

Here, VA is the Alfvén velocity, defined as

VA ≡ B√
4πρ

. (8.59)

We shall later demonstrate that VA represents the speed at which disturbances propagate along
the magnetic field. The ratio of fluid to Alfvén velocities is known as the Alfvénic Mach number.
Equation (8.58) tells us that the largest possible compression is

√
2 times this ratio, evaluated in

the preshock state.
It is instructive to compare our result with that for an unmagnetized gas. In this case, the

compression is the square of the ordinary Mach number, i. e., the ratio of the fluid velocity to
the local sound speed (see Appendix F). Here it is assumed that the postshock temperature
has fallen to its preshock value, the circumstance allowing the highest shock compression. The
Alfvén velocity within interstellar clouds generally exceeds the sound speed by an order of
magnitude. Hence, for any given fluid speed, the ordinary Mach number exceeds the Alfvénic
one. We see, then, that the presence of the field severely limits the degree of shock compression.
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8.5.2 Magnetic Precursor

The field has another important effect on shock structure. It is only the ions and electrons
within the fluid that are subject to the Lorentz force. These charged species then transit the
force to the neutral fluid via ion-neutral and, less significantly, electron-neutral collisions. At
the very low ionization levels of molecular clouds, the ion-electron fluid and the neutrals may
have substantially different speeds. In particular, the magnetic field may decelerate the charged
species before the neutrals can significantly alter their speed. The neutral velocity eventually
undergoes a sharp jump at an ordinary J-shock, i. e., one meditated by collisions among neutral
atoms and molecules. The region of gradually increasing field strength and declining ion speed
ahead of the J-shock is known as the magnetic precursor.

No fluid can shock unless it is moving faster than the speed of internal pressure disturbances.
In the neutral component of the gas, this signal speed is the sound velocity. Now the collisions
between neutrals and ions in the magnetic precursor not only transmit momentum, but also raise
the temperature within the neutral gas, and hence the sound speed. Since the incoming velocity
is less supersonic, the density enhancement across the J-shock is reduced. For a sufficiently
strong field, the J-shock disappears altogether, and neither fluid undergoes a sharp discontinuity.
We call the transition in this case a C-shock, where the prefix denotes “continuous.” The smooth
deceleration of the neutrals stems from collisional drag with the relatively slow ions. 4

In summary, there are two possible types of shocks within a magnetized gas (see Fig-
ure 8.11). If the field is relatively weak, the neutral matter still undergoes a J-shock, char-
acterized by a sharp increase in temperature and density, and a corresponding drop in velocity
from supersonic to subsonic values. Upstream is the extended magnetic precursor, in which the
field strength builds and the velocity of electrons and ions declines. If the ambient magnetic
field is stronger, there is no viscous shock at all. The fluid temperature and density increase
smoothly, with the rise in density being limited by equation (8.58). The neutral velocity still
falls, but the decline is again gradual, and the velocity itself remains supersonic through the
transition region.

Figure 8.12 displays numerical results for the structure of a C-shock in a molecular cloud.
As in the previous figure, gas enters the stationary front from the left. In this particular exam-
ple, the preshock cloud density is nH = 104 cm−3, while Vshock is 25 km s−1. The preshock
magnetic field strength, B1, is 100 µG. If the shock were propagating at the same speed into a
nonmagnetic cloud, equation (8.50) would give a postshock temperature of 3.4 × 104 K. De-
tailed calculations confirm that, at a preshock density of 104 cm−3, all the molecular hydrogen
would be dissociated. Figure 8.12 shows, however, that the actual peak temperature is only
1200 K, and the dissociation is negligible. The figure also demonstrates that the ions are the
first to decelerate, while the neutral velocity is only later reduced. Eventually, however, all
species are comoving again. The whole C-shock in this case spans a distance of 3 × 1016 cm.

4 The incoming neutrals are moving faster than either the sound speed or VA, as given in equation (8.59). However,
the signal speed in the ion-electron fluid is a modified Alfvén velocity, obtained by replacing ρ in equation (8.49) by
the total density of ions and electrons, ρi + ρe ≈ ρi � ρ. Since the actual ion velocity is always well under this
new signal speed, the charged species decelerate smoothly, creating a drag on the neutrals.
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Figure 8.12 Structure of a C-shock in a molecular cloud. Here, Vshock = 25 km s−1,
nH = 104 cm−3, and B = 100 µG, where nH and B refer to the preshocked state. Displayed
are the gas temperature Tg , the neutral velocity vn, and the ion velocity vi. The shock is station-
ary in the adopted reference frame.

8.5.3 Heating and Cooling Mechanisms

Within a J-shock, the immediate postshock temperature follows from the Rankine-Hugoniot
jump conditions, while the subsequent decline in the relaxation region is due to the various
cooling mechanisms already discussed. In a C-shock, both the temperature rise and decline are
smooth and, as we have seen, cover a larger total distance. The temperature profile depends
sensitively on both the internal heating and cooling. Nevertheless, the jump conditions may still
be used to relate upstream and downstream material outside the interaction region, i. e., in which
both charged and neutral species have a common speed and kinetic temperature. Heating within
the shock mainly stems from the differential velocity between the ions and neutrals. This slip
generates random motion in the neutral atoms and molecules, as a result of repeated scattering.

Interstellar grains similarly impart thermal energy through collisions, although their temper-
ature remains well below that of the gas. Additionally, the dust effectively transfers momentum
between the neutrals and ions. The reason is that individual grains carry an electrical charge,
even within quiescent clouds. (Recall § 8.3 for the situation near massive stars.) The charged
bodies, like ions and electrons, gyrate about the local magnetic field. Their collisions with the
neutrals then exert a drag force on this fluid.

Much of the cooling is from molecular lines, all in the infrared regime. We have already
mentioned the rovibrational transitions of H2. Rotational lines from CO, OH, and H2O are also
significant, and sometimes paramount in the energy balance. Note that the CO lines include
much higher levels (e. g., J = 15 → 14) than in quiescent clouds. Cooling by H2O does not
dominate until the preshock density is about 106 cm−3. Atomic fine-structure lines also con-
tribute, principally [OI] 63 µm. Notably absent are the ultraviolet and optical transitions that
characterize J-shocks. In the example of Figure 8.12, the initial temperature rise reflects the



8.5 C-Shocks 237

dominance of ion-neutral heating over O I cooling. The peaking and decline of the temperature
occur once H2 cooling begins to take over. In addition, the neutrals eventually decelerate to the
ion speed, so the velocity slip is no longer a heat source.

Thus far, we have described C-shocks as a phenomenon occurring when the ambient mag-
netic field exceeds a certain strength. We may alternatively consider a fixed ambient field and
ask what happens when we change the preshock flow velocity. It now becomes apparent that
efficient cooling is fundamental for the existence of C-shocks. As long as the ambient field
strength is above some threshold value, modestly supersonic velocities give rise to these con-
tinuous transitions. For too large a speed, the increased heating from ion-neutral slippage over-
whelms the available cooling, and the molecules begin to dissociate. However, the molecules
themselves supply much of the cooling. Hence the effect is catastrophic. Even a small amount
of dissociation lowers the cooling and raises the temperature, leading to further dissociation,
and eventually ionization. The temperature approaches T2, as given in equation (8.50), and we
have a J-shock, albeit with a magnetic precursor. Where this transition occurs depends not only
on the field strength, but also on the preshock degree of ionization. Numerical studies involving
magnetic fields with reasonable field values and ionizations for molecular cloud environments
find that the critical shock velocity lies between 40 and 50 km s−1.

8.5.4 The Wardle Instability

Returning to the Orion BN-KL region, the H2 emission has features that remain problematic, at
least for the simplest C-shock models. The individual lines tend to be quite broad, with velocity
widths often exceeding 100 km s−1. A planar C-shock normal to the flow can yield emission
over a range of velocities, depending on the actual speed of the preshocked gas. The total range
of velocities, however, cannot exceed the upper limit to Vshock of about 50 km s−1. On the other
hand, suppose that gas enters the planar shock obliquely. Then the velocity component parallel
to the front is preserved. This component could easily exceed 100 km s−1, depending on the
wind speed and the orientation of the shock relative to this flow. Broadened lines could then be
produced by the superposition of many such oblique shocks, each with a different orientation;
i. e., from a curved, rather than planar, shock front. Over part of the curved surface, the impact
speed could be high enough to result in a J-shock, while the rest could have a C-type character.

We shall detail in Chapter 13 how curved shock fronts naturally arise whenever collimated,
jet-like winds impact molecular clouds, and how the fronts indeed yield broad emission lines.
In the Orion region itself, infrared observations of high spatial resolution have found numerous
small arcs glowing in H2. These appear to be individual bowshocks, produced when a wide-
angle spray of material from IRc2 impacts surrounding cloud gas. Whether all of the hydrogen
emission from the region can be modeled in this way remains to be seen.

Even the simplest, planar C-shock must be, on purely theoretical grounds, an idealization.
Consider the forces acting on a typical ion. In the lower panel of Figure 8.11, the drag force
arising from collisions with neutrals acts to the right and is proportional to the velocity differ-
ence vn − vi. The ions are also subject to the Lorentz force, which in turn is proportional to
j × B. In the case shown, j points out of the page, so that j × B opposes the drag. In fact,
the Lorentz force is the larger of the two and leads to the deceleration of the ions as the flow
proceeds to the right.
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Figure 8.13 Origin of the Wardle instability. When the magnetic field is straight and perpendicu-
lar to the flow, the drag force on the ions and the Lorentz force are antiparallel. When the field is
bent, the two forces cannot be collinear, and ions build up and deplete at alternate locations.

Suppose now that we impose a sinusoidal ripple on the magnetic field. Then, as illustrated
in Figure 8.13, the Lorentz force must still be locally perpendicular to each field line and so
changes direction spatially. Since the velocities vn and vi are as yet unaltered, the drag force is
still horizontal. It is evident from the figure that vn − vi may have a component along the field
line, which cannot be opposed by j × B. The result is that ions slide together along the field,
increasing the density at some points and decreasing it at others. However, an increased density
leads to greater drag on the neutrals, which in turn pull the ions farther in the flow direction,
warping the field even more.

There are a number of mitigating factors that can stifle growth of the perturbation. If, for
example, the initial ripple has too short a wavelength, the sharp rise in magnetic tension straight-
ens the field again. Nevertheless, there exists a range of wavelengths for which even a tiny
perturbation grows to large amplitude, provided the Alfvénic Mach number is sufficiently high.
Numerical simulations of this Wardle instability find that gas tends to collect in thin sheets lying
along the flow direction and oriented perpendicular to the magnetic field. In the final, steady-
state pattern, the increased drag within the sheets is offset by bending of the distorted field. The
density within a sheet is much higher than our estimate in equation (8.58). Despite this com-
plexity, most excitation of molecular lines occurs upstream of the region where the sheets start
to form. The observed flux, therefore, differs little from that of an idealized, planar C-shock.

Chapter Summary

Clouds exposed to interstellar radiation have an outer envelope of atomic hydrogen. Further
inside, the atoms recombine on grain surfaces to form H2. The newly formed molecules, along
with ambient grains, absorb ultraviolet photons and thereby shield other molecules from disso-
ciation. In the absence of nearby, massive stars, buildup of H2 is essentially complete by a depth
corresponding to AV = 2.

Gas in the molecular interior is heated principally by cosmic rays. Even in the highest-
density regions, this penetrating flux maintains a small ionization level. Molecular ions thus
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created transfer their positive charge to metal atoms, which in turn stick to grains. The equilib-
rium abundances of ions and free electrons may be calculated theoretically and agree with those
obtained indirectly through the detection of species such as HCO+.

Ultraviolet radiation from massive stars forms photodissociation regions in cloud gas. These
are mainly seen through their far-infrared emission, produced by heated dust. Electrons ejected
from grains also heat the gas, so that it radiates in the 63 µm and 158 µm lines of O I and
C II, respectively. Any H2 directly exposed to the ultraviolet photons emits a characteristic
fluorescent spectrum of infrared lines.

Massive stars also produce strong winds. A wind impacting lightly magnetized cloud matter
creates a J-type shock. Matter crossing the front is suddenly heated and emits radiation that can
fully ionize the upstream gas. Grains may also be destroyed in the shock through their mutual
collisions. Gas further downstream cools until molecules eventually reform. If the cloud is
strongly magnetized, the wind creates a C-type shock, at least below some limiting speed. All
properties of the incoming fluid now vary smoothly because of ion-neutral friction. This friction
creates heat, but the temperature rise is relatively shallow. Any ripples in the shock front become
amplified, so that gas collects in sheets oriented along the flow direction. Observationally,
J- and C-type shocks coexist in some environments, including the Orion BN-KL region.
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9 Cloud Equilibrium and Stability

We now turn our attention to the dynamical theory of star formation. In doing so, we shift
emphasis from the thermal properties of molecular clouds to their mechanical behavior, both as
static entities prior to stellar birth (the present chapter), and during the collapse process itself
(Chapter 10). The theoretical considerations presented here, in combination with our previous
empirical survey, will make it clear that the formation of stars is not simply the result of giant
clouds breaking apart into tiny, dense substructures. The onset of collapse is rather a highly
localized occurrence within large complexes, and the character of that collapse dictates the
structure of the nascent protostar (Chapter 11). Having said this, it is also true that individual
collapses can occur over extensive regions of a complex. Chapter 12 examines the empirical
data and main theoretical ideas concerning the formation of stellar groups.

Since most molecular gas is apparently not in a state of collapse, it is important to under-
stand first the balance of forces allowing clouds to persist over long periods of time. Support
against gravity arises partially from thermal pressure, but also from the interstellar magnetic
field, especially on the largest scales. The latter portion of this chapter accordingly discusses
aspects of magnetic support. The presentation in these sections is at a higher technical level
than in previous chapters. Nevertheless, the reader equipped with a basic, working knowledge
of electromagnetic theory should find no essential difficulty in following the various arguments.

9.1 Isothermal Spheres and the Jeans Mass

We begin by analyzing a simplified cloud that maintains equilibrium only through the forces of
self-gravity and thermal pressure. We further ignore any internal temperature gradients, i. e., we
specify an isothermal equation of state. From our discussion in Chapter 8, this last condition is
inappropriate for modeling the larger molecular clouds, but can serve as a useful first approx-
imation in the case of dense cores and Bok globules (see Figures 3.21 and 8.6). One should
also recall the empirical finding that mechanical support from MHD waves, as evidenced by
enhanced molecular line widths, diminishes only at these smallest scales (Chapter 3). Never-
theless, we shall find that some of the lessons drawn from purely pressure-supported, isothermal
configurations shed light even on the giant cloud complexes.

9.1.1 Density Structure

The reader has already encountered the mathematical expression of hydrostatic equilibrium
(equation (2.4)), as well as the equation of state for an ideal, isothermal gas (equation (2.6)), both
originally framed in the context of HI clouds. Generalizing to arbitrary chemical composition,
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we have

−1
ρ

∇P − ∇Φg = 0 , (9.1)

and
P = ρ aT

2 , (9.2)

where aT , the isothermal sound speed, is (RT/µ)1/2. The gravitational potential Φg in (9.1)
obeys Poisson’s equation (2.8), with the righthand side now referring to the density of the cloud
itself:

∇2Φg = 4πGρ . (9.3)

Initially, we limit ourselves to spherically symmetric clouds. Quite generally, equations (9.1)
and (9.2) together imply that the sum (ln ρ + Φg/a2

T ) is a spatial constant. For the spherical
case, we thus write

ρ (r) = ρc exp
(
−Φg/a2

T

)
. (9.4)

Here, we have set Φg equal to zero at the cloud center (r = 0), where the density is denoted as
ρc. Equation (9.3) now becomes

1
r2

d

dr

(
r2
dΦg
dr

)
= 4πGρ (9.5a)

= 4πGρc exp
(
−Φg/a2

T

)
. (9.5b)

It is useful to recast equation (9.5b) into dimensionless form. We define a new dependent
variable ψ as Φg/a2

T and a nondimensional length ξ by

ξ ≡
(

4πGρc
a2
T

)1/2

r . (9.6)

Equation (9.5b) then becomes the isothermal Lane-Emden equation:1

1
ξ2

d

dξ

(
ξ2
dψ

dξ

)
= exp (−ψ) (9.7)

One boundary condition for this equation has already been specified: ψ(0) = 0. To derive a
second condition, we note that the dimensional gravitational force per unit mass is −GM(r)/r2,
whereM(r) is the mass interior to r. Since this mass, in turn, approaches (4π/3)ρcr3, it follows
that the force, and therefore ψ′(ξ), must vanish as ξ goes to zero.

The dashed curve in Figure 9.1 displays the function ψ(ξ), as obtained by numerical in-
tegration of equation (9.7). Of greater interest is the ratio ρ/ρc (solid curve), which, from
equation (9.4), is given by exp(−ψ). Notice how the density, and hence the pressure, drop
monotonically away from the center. This fall in pressure at every radius, a characteristic of
all hydrostatic configurations whether isothermal or not, is necessary to offset the inward pull

1 The generic Lane-Emden equation, which was of great historical importance in the development of stellar structure
theory, governs the structure of spherical polytropes. These are hydrostatic configurations in which P is proportional
to ρ1 + 1/n, where n is a constant. Equation (9.7) applies in the limit n → ∞.
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Figure 9.1 Nondimensional gravitational potential (dashed curve) and density (solid curve) in a
spherical, isothermal cloud. Both quantities are plotted as a function of nondimensional radius.

of gravity. At large distances (ξ � 1), ρ/ρc asymptotically approaches 2/ξ2. The reader may
verify that the corresponding potential ψ = ln (ξ2/2) in fact satisfies equation (9.7) but not the
boundary conditions at ξ = 0. The dimensional density in this singular isothermal sphere is

ρ(r) =
a2
T

2πG r2
, (9.8)

and is frequently useful for estimating cloud properties.
In any actual cloud, the pressure does not fall to zero, but to some value P◦ characterizing

the external medium. Suppose we fix P◦ and aT . How does Figure 9.1 tell us the properties of
the cloud, given these constraints? From equation (9.2), we know the density at the edge, ρ◦.
Suppose we further specify that the cloud have a certain density contrast from center to edge,
ρc/ρ◦. Then we may read off from Figure 9.1 the nondimensional radius ξ◦. The corresponding
dimensional radius r◦ follows simply by inversion of equation (9.6). To summarize, Figure 9.1
actually describes an infinite sequence of models, conveniently parametrized by ρc/ρ◦.

Let us now consider the dimensional mass M for each model. Integration over spherical
shells gives

M = 4π
∫ r◦

0

ρ r2 dr

= 4π ρc

(
a2
T

4πGρc

)3/2 ∫ ξ◦

0

e−ψ ξ2 dξ .
(9.9)

Using equation (9.7) and the boundary condition ψ′(0) = 0, the last integral is equal to
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Figure 9.2 Nondimensional mass of pressure-bounded, isothermal spheres. The mass is shown
as a function of the density contrast from center to edge.

ξ2 dψ/dξ, evaluated at ξ◦. If we define a nondimensional cloud mass m by

m ≡ P
1/2
◦ G3/2M

a4
T

, (9.10)

our final result is that

m =
(

4π
ρc
ρ◦

)−1/2 (
ξ2
dψ

dξ

)

ξ◦

. (9.11)

The value of ξ◦ is known for each ρc/ρ◦. Thus, the last factor on the right side of (9.11)
may be read from the ψ(ξ) curve in Figure 9.1. Figure 9.2 displays the function m (ρc/ρ◦)
obtained in this manner. At the beginning of the sequence, ρc/ρ◦ = 1 and ξ◦ = 0, implying
that m = 0. With increasing density contrast, m first rises to a maximum value of m1 = 1.18,
attained at ρc/ρ◦ = 14.1. The mass then drops to a minimum of m2 = 0.695, eventually ap-
proaching in an oscillatory fashion the asymptotic limit m∞ = (2/π)1/2 = 0.798. The reader
may verify directly from equation (9.8) that m∞ represents the nondimensional mass of the
singular isothermal sphere.

9.1.2 Gravitational Stability

It should be apparent by now that all the physical characteristics of isothermal spheres follow
from integration of the single equation (9.7). However, only a limited subset of the full model
sequence is gravitationally stable. In all other clouds, an arbitrarily small initial perturbation in
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the structure grows rapidly with time, leading ultimately to collapse. The issue of gravitational
stability is central in star formation theory, so we should examine it with some care.2

For a stable cloud, any increase of P◦ creates both a global compression and a rise of the
internal pressure, where the latter acts to re-expand the configuration. Let us verify both these
effects for clouds of relatively low density contrast, i. e., those near the start of the curve in
Figure 9.2. We begin with the internal pressure. If we hold the dimensional mass M fixed, then
equation (9.10) implies that any increase in P◦ (at constant aT ) causes m to rise. According to
Figure 9.2, ρc/ρ◦ must increase as well, provided this ratio does not initially exceed 14.1. Since
P is proportional to ρ and decreases monotonically outward, we see that both the central and
volume-averaged pressure rise above P◦ as the latter is increased.

Figure 9.1 shows that this increase in ρc/ρ◦ is accompanied by a rise in ξ◦. To see how the
physical radius r◦ varies, we employ a Taylor series expansion for ψ(ξ) in equation (9.7). We
find that, for small values of ξ,

ψ(ξ) =
ξ2

6
+ O

(
ξ4

)
, (9.12)

so that ρc/ρ◦ = exp (−ψ) ≈ 1 − ξ2◦/6 is the density contrast for a cloud of nondimensional
radius ξ◦. Using these results in Equations (9.11) and (9.12) leads to

M ≈ ξ3◦
6π1/2

a4
T

P
1/2
◦ G3/2

. (9.13)

Equation (9.6) can be recast as

ξ3◦ = (4π)3/2
(
ρc
ρ◦

)3/2
P

3/2
◦ G3/2 r3◦

a6
T

, (9.14)

where we may set ρc/ρ◦ to unity in the regime of interest. After making this approximation and
eliminating ξ3◦ between (9.13) and (9.14), we have finally

r3◦ ≈ 3M a2
T

4π P◦
. (9.15)

We conclude that r◦ indeed shrinks as P◦ increases. Moreover, the product of P◦ and the cloud
volume (4π/3) r3◦ remains constant. Equation (9.15) is thus a restatement of Boyle’s law for an
ideal, isothermal gas.

The fact that the constant G does not appear in equation (9.15) means that clouds of low
density contrast are mainly confined by the external pressure, and not self-gravity. This situation
changes as we progress along the curve in Figure 9.2 to models of higher ρc/ρ◦. In such gravity-
dominated configurations, it is more difficult for the central regions to expand after application

2 A variety of instabilities occur in astrophysical fluids. The gravitational type is one example of dynamical instability,
characterized by rapidly growing internal perturbations. Other examples we shall soon encounter are rotational and
convective instability. In Chapter 2, we discussed thermal instability of diffuse interstellar gas, a wholly different sort
not involving dynamical motion. Finally, we will see in Chapter 10 that magnetized molecular clouds are secularly
unstable, since they slowly evolve to lower-energy configurations through frictional dissipation.
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of an enhanced P◦. Referring again to Figure 9.2, all clouds with ρc/ρ◦ > 14.1, i. e., those to
the right of the first maximum, are gravitationally unstable. The critical value of M is known as
the Bonnor-Ebert mass:

MBE =
m1 a

4
T

P
1/2
◦ G3/2

. (9.16)

To understand better the significance of MBE, let us broaden our perspective of the stability
issue. The perturbation of any cloud in equilibrium creates internal oscillations. In a normal
mode, the sinusoidal variation of any physical quantity at a given location occurs with the same
frequency and phase throughout the volume; only the amplitude of the disturbance varies spa-
tially. Mathematically, one writes each dependent variable as the sum of its static, equilibrium
value and a small oscillatory component. Thus, if we consider spherically symmetric oscilla-
tions of our isothermal clouds, the density is the real part of

ρ (r, t) = ρeq (r) + δρ (r) exp (i ω t) , (9.17)

where ρeq(r) is the unperturbed function. The amplitude δρ (r) is complex, to allow for a rela-
tive phase between the oscillations of different variables. The frequency ω, on the other hand,
is identical for all variables. One introduces such perturbations into the basic Equations (9.2)
and (9.3), as well as the mass continuity relation (3.7) and the non-magnetic version of the
momentum equation (3.3):

ρ
Du

Dt
= −∇P − ρ∇Φg . (9.18)

Retaining only terms that are linear in the various amplitudes, one solves the perturbation equa-
tions to obtain both the eigenfunction δρ (r) and the eigenvalue ω2 for each mode of interest.
If ω2 > 0, the density and all other physical quantities undergo oscillations of fixed amplitude.
On the other hand, ω2 < 0 implies that the perturbation can grow exponentially.3

For any equilibrium cloud model, there exists an infinite sequence of normal modes, each
with its own value of ω2. These may be ordered by the number of nodes, i. e., the radii where
the amplitude of the perturbed fluid displacement is zero. The first, or fundamental, mode
has no displacement nodes. Here the perturbed cloud “breathes” in and out as a whole. The
fundamental mode also has the lowest associated value of ω2. The first harmonic has one node
and the next higher (more positive) ω2-value.

Suppose that we again fix P◦ and aT , and consider, as in Figure 9.3, two clouds of the same
mass m near one of the extrema of the curve in Figure 9.2. These models have differing radii
and central densities, as sketched here. However, since their masses are identical, the small
displacements that connect each fluid element in one model to the corresponding element in the
other can be regarded as a normal mode of zero frequency. By this reasoning, each time we
pass a maximum or minimum along the mass curve, some normal mode undergoes a stability
transition.

3 Our discussion assumes that ω2 is real. In the detailed analysis, this fact follows from the radial symmetry of the
perturbations. Modes that are asymmetric about some central axis have complex values of ω2, corresponding to
oscillations that grow or decay in time. Growing oscillations can also occur in the outer regions of stars, as we shall
discuss in Chapter 18.
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Figure 9.3 Stability transition in isother-
mal clouds. The sketch shows a turnover
in cloud mass as a function of density con-
trast. Models on either side of the peak can
be viewed as the extremal states in a zero-
frequency oscillation, as sketched below.

The fact that clouds of the lowest density contrast are stable means that all their normal
modes have positive values of ω2. Just at the Bonnor-Ebert mass, the fundamental mode be-
comes unstable. Successively higher modes undergo this transition at the other extrema of the
mass curve. The singular isothermal sphere is thus unstable to all spherically symmetric normal
modes. However, since perturbations are inevitable in a realistic interstellar environment, the
presence of even one unstable mode guarantees that the underlying equilibrium model is not
viable. Linear theory allows either expansion or contraction of the unstable cloud. In practice,
an initially expanding cloud can never draw in sufficient energy to disperse itself to infinity, so
the presence of an unstable mode always leads to gravitational collapse.

9.1.3 Critical Length Scale

We have focused thus far on spherical clouds, but the phenomenon of gravitational stability
is more general. For example, one reinterpretation of the result embodied in equation (9.16)
is that a certain size scale of isothermal gas is prone to collapse, regardless of the specific,
three-dimensional configuration. To illustrate this latter viewpoint, let us follow Jeans’ classic
analysis of self-gravitating waves propagating through a uniform, isothermal gas of density ρ◦.
In place of equation (9.17), which prescribes a standing-wave perturbation, we employ a plane
traveling wave:

ρ (x, t) = ρ◦ + δρ exp [i(kx − ωt)] , (9.19)

where x is the direction of propagation and k ≡ 2π/λ is the wave number. By assumption,
the small velocity induced by the perturbation is also in this direction. We substitute analo-
gous traveling-wave forms for all variables into Equations (3.7), (9.2), (9.3), and (9.18). After
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linearizing in the amplitudes and canceling the exponentials, we find

−i ω δρ + i k ρ◦ δu = 0 (9.20a)

δP = δρ a2
T (9.20b)

−k2 δΦg = 4πG δρ (9.20c)

−i ω ρ◦ δu = −i k δP − i k ρ◦ δΦg . (9.20d)

Multiplying (9.20a) by −iω, (9.20d) by +ik, and subtracting yields

−ω2 δρ = −k2 δP − k2 ρ◦ δΦg
= −k2 a2

T δρ − k2 ρ◦ δΦg ,
(9.21)

where we have further used (9.20b) for δP . If we now substitute from equation (9.20c) for δΦg
and cancel δρ throughout, we find

ω2 = k2 a2
T − 4πGρ◦ . (9.22)

Equation (9.22), the dispersion relation governing the propagation of the waves, is dis-
played as Figure 9.4. Here we plot the dimensionless variables ω/ω◦ and k/k◦, where
ω◦ ≡ (4πGρ◦)1/2 and k◦ ≡ ω◦/aT . For sufficiently short wavelengths (large k), ω ≈ kaT . In
this limit, the disturbance behaves like a sound wave, traveling at the phase velocity ω/k = aT .
This is the usual isothermal sound speed associated with the background medium. However,
both ω2 and the phase velocity pass through zero when k = k◦. The corresponding wavelength
λJ ≡ 2π/k◦ is

λJ =
(
π a2

T

Gρ◦

)1/2

= 0.19 pc
(

T

10 K

)1/2 ( nH2

104 cm−3

)−1/2

.

(9.23)

Perturbations with wavelength exceeding this Jeans length have exponentially growing ampli-
tudes. To compare with our previous discussion, the reader may verify that a uniform sphere of
diameter λJ contains about twice the mass given by equation (9.16), provided we identify ρ◦
as P◦/a2

T . Indeed, when written in terms of density and sound speed (or temperature), MBE is
more commonly known as the Jeans mass, a nomenclature we shall also follow. Adopting the
new symbol MJ , we recast equation (9.16) into the form

MJ =
m1 a

3
T

ρ
1/2
◦ G3/2

= 1.0 M�

(
T

10 K

)3/2 ( nH2

104 cm−3

)−1/2

.

(9.24)

Our numerical versions of Equations (9.23) and (9.24) show that typical dense cores and
Bok globules are close to the edge of gravitational instability. In fact, those with internal stars
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Figure 9.4 Dispersion relation (solid curve) for plane waves in a self-gravitating, isothermal gas.
The dashed curve is the relation for sound waves.

have already crossed this threshold, and at least some of these ought to show signs of ongoing
collapse. We shall revisit this observational issue in Chapter 11. Conversely, structures with
measured masses substantially less than MJ or with sizes less than λJ could be stable, given
sufficient external pressure. Alternatively, they could be temporary configurations of positive
total energy that will soon cool or disperse. Material passing through shocks provides an ex-
ample of such transient structures. Thus, consider the patch of H2 emission near IRc2 in Orion
(§ 8.2). Using T = 2000 K and nH2 = 106 cm−3, we findMJ = 280M� and λJ = 0.41 pc. In
contrast, the observations show the emission arising from a sheet-like structure whose thickness
is estimated at only 1013 cm, or 3 × 10−6 pc.

At the other extreme in both mass and size are giant molecular clouds. As we have seen, the
complexes themselves appear to be self-gravitating swarms of more coherent clumps. Employ-
ing typical clump parameters of nH2 = 103 cm−3 and T = 10 K in equation (9.24), we find that
MJ = 3M�, two orders of magnitude below the actual masses. To put the matter another way,
the internal temperature of a 200M� clump would have to be about 100 K for it to be supported
entirely by thermal pressure. Since measured temperatures are much lower, at least throughout
most of the interior, and since the clumps are apparently not undergoing global collapse, an
extra source of support is necessary. The most plausible source is the interstellar magnetic field,
whose dynamical effect we shall explore starting in § 9.4.

9.2 Rotating Configurations

As the next step toward a more complete theoretical description of molecular clouds, we allow
for internal rotation. We saw in Chapter 3 that many dense cores have measured rotation rates,
as determined from the relative Doppler shifts of the 1.27 cm line of NH3 and other tracers.
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Figure 9.5 Coordinate system used for study-
ing rotating clouds. The origin lies at the cen-
ter of the cloud, and the z-axis points along the
direction of rotation. Two fluid elements are
shown – one at the point r of interest, and a
second at some other point r′ that contributes
to the total gravitational potential at r.

On the scale of giant molecular clouds, CO mapping at high spatial and spectral resolution fre-
quently reveals a systematic gradient in radial velocity. The southernmost portion of Orion A,
for example, is blueshifted with respect to the northern tip near the Trapezium. The inferred
mean velocity gradient of 0.1 km s−1 pc−1 is twice the typical observed value in other com-
plexes. In this and most other examples, the direction of this gradient coincides with the cloud’s
long axis, which itself lies roughly parallel to the Galactic plane. This fact suggests that the
complexes spun up during condensation from the differentially rotating gas in the disk.

9.2.1 Poincaré-Wavre Theorem

How does rotation affect cloud morphology? In the preceding section, we were able to obtain
spherical structures because the supporting thermal pressure is inherently isotropic. If we now
consider the cloud to be rotating about a fixed axis, the associated centrifugal force on each
fluid element points away from that axis, distending the equilibrium structure accordingly. It
is natural, then, to erect a cylindrical coordinate system whose z-axis lies in the direction of
rotation (see Figure 9.5). We suppose that each fluid element has a certain steady velocity uφ
about this axis, but has no motion in the z- or �-directions. Here, � ≡ r sin θ denotes the
cylindrical radius. We further suppose that the cloud is axisymmetric, so that all φ-gradients
vanish, and that it has reflection symmetry about the z = 0 equatorial plane.

A physical quantity of key importance is j ≡ �uφ, the specific angular momentum about
the z-axis. Written in terms of j, the centrifugal force per unit mass on each element is j2/�3.
This term must be incorporated into equation (9.1) for hydrostatic equilibrium. If we again posit
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Figure 9.6 Illustration of Poincaré-Wavre
theorem. The specific angular momentum
j is constant along cylinders that are cen-
tered on the rotation axis. For rotational
stability, the value of j must increase out-
ward, as indicated.

an isothermal equation of state, then force balance in the �- and z-directions requires

−a
2
T

ρ

∂ρ

∂�
− ∂Φg

∂�
= − j2

�3
(9.25a)

−a
2
T

ρ

∂ρ

∂z
− ∂Φg

∂z
= 0 . (9.25b)

An important consequence of these equations is that the specific angular momentum can only be
a function of �. That is, both j and uφ must be constant along cylinders centered on the z-axis
(Figure 9.6). To see why, we differentiate equation (9.25a) with respect to z, equation (9.25b)
with respect to �, and subtract the two. After canceling cross-derivatives, we find

− 1
�3

∂j2

∂z
=

a2
T

ρ2

[
∂ρ

∂z

∂ρ

∂�
− ∂ρ

∂�

∂ρ

∂z

]

= 0 ,

so that the assertion is proved. The reader may check that the same result would follow if the
gas pressure were an arbitrary function of density. This more general statement constitutes the
Poincaré-Wavre theorem.

The fact that j is independent of z allows us to reformulate force balance in a more concise
manner. We define a centrifugal potential Φcen, also a function of � alone:

Φcen ≡ −
∫ �

0

j2

�3
d� . (9.26)

We may then express both parts of equation (9.25) as

−a
2
T

ρ
∇ρ − ∇Φg − ∇Φcen = 0 . (9.27)

Extending the non-rotating case, we see that (ln ρ + Φg/a2
T + Φcen/a

2
T ) is now a spatial

constant. We thus write

ρ (r) = ρc exp
[
−Φg − Φcen + Φg(0)

a2
T

]
. (9.28)
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Here, Φg(0) is the central value of the gravitational potential, which we no longer set to zero.
Instead, we obtain Φg at any position r by integrating over all source points r′ (Figure 9.5):

Φg(r) = −G
∫

ρ(r′)
|r − r′| d

3x′ . (9.29)

In writing equation (9.26), we have allowed the specific angular momentum j to be an ar-
bitrary function of �. However, clouds in which j decreases outward are rotationally unstable.
To see the origin of this dynamical instability, we first note that the cloud’s axisymmetry pre-
cludes any internal torques. Thus, if we imagine displacing a fluid element outward by a small
amount, say from �0 to �1, j is a constant of the motion. The new centrifugal force, j2/�3

1 ,
is therefore greater than that acting on an unperturbed element already located at �1. The per-
turbed element feels a net force that impels it to move outward even more, rather than return to
�0. Avoiding this instability and the rapid internal motions it generates requires that j(�) be
monotonically increasing (see Figure 9.6).

9.2.2 Numerical Models

Beyond this general constraint, there is little guide to the proper form of j(�). Certainly, exist-
ing measurements of cloud rotational velocities are too crude to be of much help. This ignorance
should not deter us from exploring the main characteristics of rotating equilibria. Suppose, for
simplicity, that we imagine our cloud to have contracted from a larger, homogeneous sphere of
the same mass M and initial radius R◦. Suppose further that this spherical cloud rotates with
angular speed Ω◦. Then, if M� is the mass contained within cylindrical radius �, j is given by

j(M�) = Ω◦R2
◦

[

1 −
(

1 − M�

M

)2/3
]

, (9.30)

within the uniform-density sphere. By angular momentum conservation, the same functional
form must hold in the equilibrium state of interest. We fix R◦ by requiring that the spherical
cloud have an internal pressure P◦ that matches the background value.

Construction of the equilibrium cloud now proceeds through the simultaneous solution of
Equations (9.28) and (9.29), along with the auxiliary relations (9.26) and (9.30). The most
widely used numerical approach is the self-consistent field method. One initially guesses a
density distribution ρ(r) and immediately obtains Φg(r) and Φcen(r) from (9.29) and (9.26),
respectively. Substituting these potentials into equation (9.28), one obtains a new density dis-
tribution which differs from the initial guess. This new density then becomes the source for
updated potentials, which in turn generate yet another density distribution. Iterations continue
until the density used to compute the potentials differs negligibly from that emerging from the
hydrostatic balance equation (9.28).

As was the case for spherical clouds, it is best to formulate the problem in terms of nondi-
mensional variables constructed from aT , P◦, and G. Having done this, every equilibrium
model falls into a continuous sequence, but one now characterized by two independent parame-
ters. One parameter is again the density contrast from center to edge, ρc/ρ◦ = ρc a

2
T /P◦. The

second, traditionally denoted β, pertains to the degree of rotation. It is convenient to define β as
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Figure 9.7 (a) Isodensity contours in one quadrant of a rotating cloud that is gravitationally
stable. (b) Contours in an unstable cloud with the same nondimensional mass m and rotational
parameter β.

the ratio of rotational kinetic to gravitational potential energy in the spherical reference state.
Thus, we have

β ≡ Ω2
◦R

3
◦

3GM
. (9.31)

The reader may verify that β = 1/3 corresponds to breakup speed in the spherical cloud. Hence
β may range, at least in principle, from zero to that upper limit.

Figure 9.7a shows the isodensity contours for a model with a β-value of 0.16, i. e., about
half the maximum. The figure displays only one quadrant of the entire cloud, which is evidently
flattened as a result of rotation about the z-axis. This particular model has a density contrast of
15.9 and a nondimensional mass m (as defined in equation (9.10)) of 2.35. Recall that spherical
(β = 0) clouds are unstable to collapse for a density contrast in excess of 14.1. Nevertheless,
the model in Figure 9.7a is actually stable, as we will show. Throughout the cloud volume,
the main supporting force is the gradient of the internal pressure, while self-gravity supplies
most of the confinement. In models of smaller m, gravity fades in importance, and the force
balance is largely between the internal and external pressures. Such low-mass models have
small density contrasts (as was also true for β = 0) and closely resemble Maclaurin spheroids,
i. e., configurations of uniform density in solid-body rotation.
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Figure 9.8 Nondimensional cloud mass as
a function of density contrast in rotating,
isothermal clouds. The two curves corre-
spond to the indicated values of the rotational
parameter β.

9.2.3 Susceptibility to Collapse

If we keep β fixed at 0.16 and consider models of increasing density contrast, the mass m first
rises and then turns over (Figure 9.8). As before, the peak marks the onset of gravitational
instability. To see why, we again select two models with the same m-value close to, but on
either side of, the maximum. At fixed aT and P◦, these clouds have the same dimensional mass.
Hence, the spherical reference states from which they contracted had the same radius R◦ and,
from equation (9.21), the same Ω◦. It follows from equation (9.30) that their j-distributions are
also identical. The two clouds are thus the extreme states in an oscillation of zero frequency.
We see from Figure 9.8 that the model with ρ/ρc = 34.0 and m = 2.42 is just on the edge
of instability. Hence the one pictured in Figure 9.7a is indeed stable, although not by much.
Figure 9.7b shows the unstable model with the same β and m, but with the higher density
contrast of ρc/ρc = 100. If we were to use this configuration as the initial state in the full
dynamical equations, rather than just those for hydrostatic balance, the cloud would collapse
within a few free-fall times.

Figure 9.8 also shows the mass variation for β = 0.33. It is apparent that all such curves
exhibit a similar stability transition. A useful means of summarizing these results is to plot the
peak mass, which we will denote mcrit, as a function of β (Figure 9.9). The quantity mcrit, a
generalized, nondimensional Jeans mass, starts at the Bonnor-Ebert value m1 = 1.18 for β = 0
and monotonically rises with β. This steady increase demonstrates quantitatively how rotation
tends to stabilize a cloud against gravitational collapse. The most massive stable cloud, that
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Figure 9.9 Critical, nondimensional cloud
mass in rotating equilibria. The mass is
shown as a function of the rotational pa-
rameter β.

with a β of 1/3, has a mass m = 4.60, a density contrast near 200, and an equatorial radius
about three times the polar value.

Although we constructed clouds under the rather artificial assumption that they contracted
from homogeneous, rigidly rotating spheres, the main characteristics of the models are not
sensitive to the detailed form of j(m�). In particular, significant flattening in the polar direction
does not occur unless Trot/|W|, the ratio of rotational kinetic to gravitational potential energy, is
greater than about 0.1. In our model sequence, Trot/|W| is approximately equal to the parameter
β, which measures the same ratio in the spherical reference state.

This link between cloud energetics and geometry shows unequivocally that the cloud elon-
gations observed in molecular line maps do not arise principally from rotation. Consider first
dense cores, which have an aspect ratio of about 0.6 (recall § 3.3). In equation (3.31), we esti-
mated the typical Trot/|W| as only 10−3. Additionally, we adduced statistical evidence that the
cores are actually prolate configurations. Turn now to giant molecular clouds. If their average
velocity gradient of 0.05 km s−1 pc−1 represents solid-body rotation, then a 200 M� clump of
diameter 2 pc also has Trot/|W| ∼ 10−3, according to equation (3.31). Once again, centrifugal
force cannot account for the observed departures from spherical symmetry.

Negative results can be useful. Here, they lead to further questions that probe more deeply
into star formation dynamics. For example, the low rotation rates of dense cores prompt us to
ask if angular momentum is indeed conserved during their initial condensation, as our naïve
model assumed. Unfortunately, neither the theoretical account of cloud formation nor empirical
measurements of rotation are adequate to address this issue. We indicated earlier that larger
clouds must be supported against collapse mostly by internal magnetic fields. These fields, we
will see, exert torques that inhibit spinup during cloud contraction. Thus the observed Ω-values
could actually be the result of rotational locking of dense cores to the surrounding gas.

9.3 Magnetic Flux Freezing

We have seen that neither their internal, thermal pressure nor centrifugal force are strong enough
to support most clouds against collapse. We therefore turn our attention to the interstellar mag-
netic field. A promising indication that magnetic forces are generally adequate for the task
comes from a simple virial theorem analysis. As we noted in Chapter 3, the typical fields in
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giant complexes are sufficiently strong that the terms M and W in equation (3.18) are compa-
rable in magnitude. It is interesting that the same rough equality appears to hold in all clouds
thought to be self-gravitating objects.

9.3.1 Observed Field Strengths

To elaborate this last point, we summarize in Table 9.1 the magnetic field measurements in
a number of different environments, ordered by increasing gas density. Besides the standard
cloud types covered in Chapter 3, entries include the dense clump of molecular gas sandwiched
between the outflow lobes in S106 (Plate 2), a disk at the Galactic center (Sgr A West), and a
powerful source of OH maser emission in Cygnus (W75 N). In all cases, it is the line-of-sight
component B‖ that is actually observed, through Zeeman splitting of either the 21 cm HI line
or the hyperfine OH lines near 18 cm. With the exception of W75 N, all the measurements refer
to lines seen in absorption against background continuum sources. When estimating the virial
term M for each object, we may multiply B‖ by a factor of two in order to obtain the median
value of the total B for a randomly oriented field.

The general tendency, apparent from Table 9.1, for B to rise with density is an indication
that the field lines in a cloud can be compressed along with the gas. We will shortly provide
the theoretical basis for this observation. At the low-density end, the cloud in Ursa Major is an
elongated object, some 3 pc in width, with a mean nHI of only 15 cm−3. Such a rarefied region
is not expected to be self-gravitating. Indeed, careful integration across the cloud surface shows
that |W| is about a factor of 60 lower than M, which in turn is comparable to the kinetic energy
term T in the virial theorem. The kinetic term, derived observationally from the broadening of
molecular lines, represents disordered motion of the gas. The rough equality of T and M hints
at the presence of MHD waves in the cloud interior.

As we consider denser objects, the terms M, T , and |W| all become comparable. In the
central region of B1, to which the value in Table 9.1 refers, the observed line widths contribut-
ing to T are largely thermal. With its density of nH2 = 2 × 104 cm−3 and diameter of 0.24 pc,
this region resembles other dense cores, for which thermal and magnetic pressure both resist the
strong self-gravity. The physical situation is less clear in the exotic environment of Sgr A West,
part of a clumpy disk or ring of high density (nH2 ∼ 106 cm−3) and small radius (1.5 pc) that
surrounds the radio source Sgr A∗. Here T represents distinctly nonthermal motion, including

Table 9.1 Zeeman Measurements of Magnetic Fields

Object Type of Region Diagnostic B‖(µG)

Ursa Major Diffuse Cloud HI +10
L204 Dark Cloud HI +4
NGC 2024 GMC Clump OH +87
B1 Dense Core OH −27
S106 HII Region OH +200
Sgr A/West Molecular Disk HI −3000
W75 N Maser OH +3000
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rapid streaming that could result from disruption of clouds by a central black hole. The molec-
ular gas in W75 N is perhaps a factor of ten higher in density and is associated with a compact
HII region containing the observed maser lines.

On energetic grounds, therefore, internal magnetic fields are important in counteracting
gravity, wherever the latter actually provides the main cohesive force. In many environments,
the magnetic force derives at least partially from dynamic waves in both the field and the gas.
However, such waves may sometimes be subdued or even absent, as in the most quiescent dense
cores. It is an important result of MHD theory that a purely static field, with no associated waves,
can also support a self-gravitating cloud, although not for an indefinite period of time.

The physical basis for this mechanical support, as well as for the observed increase of B
with density, is the phenomenon of flux freezing. Qualitatively, magnetic field lines behave
as if they were tethered to the gas. Hence, any clumping of the latter brings together adja-
cent field lines, resulting in a larger B-value. Mathematically, the two magnetic terms in the
force equation (3.6), representing field tension and the magnetic pressure gradient, both rise. In
concert with an increased gradient in the thermal pressure, these forces can effectively oppose
self-gravity.

9.3.2 MHD Equation

To see how flux freezing arises, we depart from equilibrium models per se to consider a cloud
with internal motion. Any magnetic field threading this object is generated by a current density
j, related to B through Ampère’s law:

∇ × B =
4π
c

j . (9.32)

Note that we have neglected the displacement current term on the right, c−1∂E/∂t, for the low
frequencies of interest. The true current remaining in (9.32) is carried by the minor fraction of
charged species in the cloud. These, as we saw in Chapter 8, include free electrons, ions, and
grains. Although the grains are negatively charged, their number density is so low that they
contribute negligibly to the current, which is therefore given by

j = ni eui − ne eue

= ne e (ui − ue) .
(9.33)

Here, ne and ni are the electron and ion number densities, while ui and ue are the respective
velocities. Equation (9.33) utilizes the fact that most ions are singly charged species (such as
Fe+ and Mg+), so that charge neutrality demands equality of ni and ne.

We next invoke a phenomenological relationship describing how the current is actually gen-
erated by the local field. The familiar Ohm’s law, stating that j is proportional to E, applies
only in a medium at rest. (Moving a copper wire through a magnetic field creates a current
even with zero applied voltage.) To obtain the proper generalization, we temporarily shift to a
reference frame moving at the local velocity of the neutral matter, u, where we have dropped
the subscript used in Chapter 8. Adding primes to all quantities in this frame, we have

j′ = σE′

= j ,
(9.34)
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where σ is the electrical conductivity. The second equality in (9.34) follows from equa-
tion (9.33), once we see that neither ne nor the relative velocity ui − ue can change in the
new frame. Here we are neglecting relativistic corrections of order (u/c)2. To the same accu-
racy, the new field E′ is

E′ = E +
u

c
× B . (9.35)

Equations (9.34) and (9.35) imply that the generalized Ohm’s law in the original reference
frame is

j = σ
(
E +

u

c
× B

)
. (9.36)

Using this result, we can now replace j in equation (9.32), obtaining a relation between the
fields alone:

∇ × B =
4π σ
c

(
E +

u

c
× B

)
. (9.37)

Finally, we may eliminate E by using Faraday’s law:

∇ × E = −1
c

∂B

∂t
. (9.38)

Multiplying (9.37) through by c/4πσ and taking the curl of both sides, we combine the result
with (9.38) to yield the fundamental MHD equation for the magnetic field:

∂B

∂t
= ∇ × (u × B) − ∇ ×

(
c2

4πσ
∇ × B

)
. (9.39)

9.3.3 Estimating the Conductivity

The second righthand term in equation (9.39) represents the effect of Ohmic dissipation and
vanishes as the conductivity becomes very large. In the present context, suppose L is the char-
acteristic length over which B varies. This will be some appreciable fraction of the cloud diam-
eter. We can neglect Ohmic dissipation– and obtain flux freezing– only if the quantity σL2/c2

is much greater than any time scale of interest. We now show, by deriving an approximate
expression for σ, that this is indeed the case for most molecular clouds.

Let us first consider in more detail the motion of the conduction electrons. The quantity
ue includes both the tight, helical gyrations about B and a much smoother drift component.
The latter changes abruptly and stochastically due to collisions with other species, chiefly H2

molecules. Such collisions, which occur only after many helical orbits, exert an effective drag
on the electrons. This drag opposes the acceleration from the ambient electric field, establishing
the steady-state drift velocity in a relatively brief time.

With this physical picture in mind, we return to our previous comoving reference frame and
write an approximate equation of motion for the electrons, valid over time scales longer than
that of individual collisions. Under steady-state conditions, the acceleration is small, and we
have

0 = −e ne (E′ +
u′
e

c
× B′) + ne f ′

en . (9.40)
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The first term represents the Lorentz force, while f ′
en in the second term is the drag exerted on

each electron by the sea of neutrals. For simplicity, we have ignored the relatively rare electron-
ion encounters. In any single collision with a neutral, the massive atom or molecule barely
moves. If the electron scatters in a random direction, then it must, on average, transfer its full,
original momentum to the neutral. That is, the electron gains the negative momentum −me u′

e.
In terms of the neutral density n, the number of collisions per unit time is n〈σenu

′
e〉, where σen

is the collision cross section, and where the angular braces denote an average over magnitude
and direction in the thermal distribution of electron velocities. Note that the braces include σen

because the cross section also depends on velocity.4 We thus have

f ′
en = −nme 〈σen u

′
e〉u′

e . (9.41)

Turning to the ions, we may write, after using ni = ne, an equation of motion analogous to
(9.40):

0 = +e ne

(
E′ +

u′
i

c
× B′

)
+ ne f ′

in . (9.42)

It is now the ions themselves, with their average mass of 28mH , that are the heavier species
in collisions with neutrals. In the ion rest frame, the momentum transfer must be the mass of a
neutral, mn, times its incoming velocity. In the present frame comoving with the neutrals, each
collision thus imparts −mn u′

i, on average, to an ion. The drag force is therefore

f ′
in = −nmn 〈σin u

′
i〉u′

i . (9.43)

The components of u′
e and u′

i which concern us lie along the common direction of E′ and the
drag forces. (The other components do exist and give the conductivity a directional dependence
that need not concern us.) Projecting (9.40) and (9.42) in this direction, the cross products in-
volving B′ both vanish. After applying (9.41) and (9.43), we generate two expressions relating
u′
e and u′

i, respectively, to E′. Subtracting these and using (9.33) in our comoving frame, we
find

σ =
ne e

2

n

[
1

〈σen u′e〉me
+

1
〈σin u′i〉mn

]
. (9.44)

Here the term 〈σenu
′
e〉 has the value 1.0 × 10−7 cm3 s−1 in a molecular cloud of solar compo-

sition, while 〈σinu
′
i〉 is 1.5 × 10−9 cm3 s−1.

Returning to the dissipative term in equation (9.40), we can now evaluate σL2/c2. Consider
a clump within a giant molecular cloud, where L ∼ 1 pc and n ∼ 103 cm−3. At this density,
ne/n is about 4 × 10−7, according to equation (8.32). Despite the very low level of ionization,
σL2/c2 is of order 1017 yr. This time is enormous, of course, and will remain so even after a
more refined treatment of σ. In the cloud environments of interest, therefore, Ohmic dissipation
can certainly be neglected.

4 Recall the discussion in § 5.1 of ion-molecule reactions, for which the cross section varies inversely with relative
velocity.
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Figure 9.10 Proof of flux freezing. The closed loop C moves to become C′ over the time interval
∆t. Its enclosed surface S becomes S ′ during this time. Meanwhile, the small length ds, moving
at velocity u, sweeps out the shaded area ds × u. The area vector’s direction coincides with the
outward normal direction of the patch.

9.3.4 Field Transport in Ideal MHD

If we drop the second righthand term, equation (9.39) reduces to the ideal MHD equation:

∂B

∂t
= ∇ × (u × B) . (9.45)

This equation is the mathematical expression of flux freezing. To see why, imagine a closed
loop C comoving with the gas (Figure 9.10). At time t, the magnetic flux ΦB through this loop
is given by a two-dimensional integral over an interior, comoving surface S:

ΦB(t) =
∫

S
B(t) · n d2x ,

where n is a unit vector normal to the surface. At time t+∆t, both the loop and surface change,
becoming C′ and S ′, respectively. Our goal now is to demonstrate that ∆ΦB , the change in flux
through the moving surface, vanishes if equation (9.45) holds. Consider first the total flux,
evaluated at t+∆t, through the closed surface consisting of S, S ′, and the side walls generated
by the loop’s motion. Maxwell’s equation ∇ · B = 0, in conjunction with Gauss’ theorem,
implies that the flux through any closed surface vanishes. Referring to the figure, we have

∫

S
B(t+ ∆t) · n d2x −

∫

S′
B(t+ ∆t) · n d2x − ∆t

∫

C
B(t+ ∆t) · (ds × u) = 0 .

Note that the last term, a line integral around C, represents the contribution from the side walls.
Here, |ds × u|∆t is the elemental area indicated by the shading in Figure 9.10.
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Supplied with this result, we may evaluate ∆ΦB as

∆ΦB ≡
∫

S′
B(t+ ∆t) · n d2x −

∫

S
B(t) · n d2x

=
∫

S
B(t+ ∆t) · n d2x −

∫

S
B(t) · n d2x − ∆t

∫

C
B(t+ ∆t) · (ds × u)

≈ ∆t
[∫

S

∂B

∂t
· n d2x −

∫

C
B(t) · (ds × u)

]
,

where the approximation neglects errors of order ∆t2. If we now assume that equation (9.45)
holds throughout the cloud, then we may invoke Stokes’ theorem to transform the last line of
the above equation. We thus obtain

∆ΦB = ∆t
[∫

C
(u × B) · ds −

∫

C
B · (ds × u)

]

= 0 ,

where we have used invariance of the triple product under cyclic permutation.
Flux freezing signifies both that the magnetic field is tied to the motion of the fluid and that

the gas itself is constrained by the field configuration. Which is the more apt description of a
given cloud environment depends on the relative energy densities in magnetic field and fluid
motion. Since the virial terms M and T are comparable in most clouds, the field and gas exert
a strong mutual influence. Thus, the stratified appearance of many giant cloud complexes could
well indicate alignment along the large-scale ambient field, as could the prolate shapes of dense
cores. There is no doubt that flux freezing plays a key role in the structure and evolution of
clouds on all scales.

It is equally certain, however, that the ideal MHD approximation must break down before
stars are formed. Consider, for example, a 1M� sphere within the central region of a dense core
with nH2 = 104 cm−3. Suppose this sphere, of radius R0 = 0.07 pc, is threaded by a uniform
magnetic field of strength B◦ = 30 µG. Suppose further that the sphere is destined to become
a T Tauri star. Its radius will then decrease to R1 ≈ 5R� = 3 × 1011 cm. If flux freezing
held during stellar formation, the product BR2 would remain constant. Here we assume, for
simplicity, that the final field is also uniform throughout the star’s spherical volume. Thus, the
stellar field would beB1 = 2 × 107 G, a figure that exceeds by at least four orders of magnitude
the observed values or upper limits in T Tauri stars (Chapter 17).

This simple example illustrates the magnetic flux problem in the theory of protostellar col-
lapse, a puzzle which has not yet been completely solved. The difficulty really lies in the details,
since it is clear that two well-studied processes can reduce the flux by a large amount. Prior to
the onset of collapse itself, a dense core undergoes ambipolar diffusion. Here, electrons and
ions remain tied to the field lines, while the dominant neutral species slip past and allow con-
traction to proceed. Once collapse is underway, entanglement of the field can lead to strong
Ohmic dissipation through magnetic reconnection. In essence, the kinking of B reduces the
length scale L in equation (9.45) until the dissipative term in the MHD equation (9.39) becomes
substantial. We shall return to consider both these effects in Chapter 10.
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Figure 9.11 One quadrant of a magneti-
cally supported cloud (schematic). The in-
ner field line, when rotated about the axis,
generates a surface that encloses flux ΦB

and penetrates the cloud surface a height
Zcl above the midplane. A neighboring
line encloses an additional flux ∆ΦB and
mass ∆M . The field curvature creates an
outward magnetic force, as shown.

9.4 Magnetostatic Configurations

The freezing of field lines during cloud contraction means that the investigation of magnetic
equilibria can proceed in a manner similar to that for rotating, nonmagnetized structures. Thus,
the internal distribution of magnetic flux is inherited from an earlier, more rarefied environment,
just as the run of specific angular momentum was previously. Suppose we now picture the cloud
condensing from a state where the magnetic field B◦ is everywhere straight and parallel. For
convenience, we will employ a coordinate system whose origin is at the cloud center and whose
z-axis lies in this direction. During contraction, matter can slide freely along field lines, until
it is halted by the buildup of thermal pressure. Gas moving in the orthogonal direction, toward
the axis, tugs on the field and is retarded by pressure (both thermal and magnetic), as well as by
magnetic tension, i. e., bending of the field lines. Thus, within the final equilibrium state, there
is an additional outward force roughly similar to that arising from rotation (Figure 9.11).

In more detail, however, the magnetic-rotational analogy breaks down in a significant way.
The centrifugal force in a rotating, equilibrium cloud points exactly in the�-direction, implying
that the specific angular momentum is constant along cylinders. If the analogy were exact, the
equilibrium magnetic flux would also be constant within cylinders, which is not the case. As
we have noted, field lines are curved by the inward tug of the gas. The new equation for force
balance is

0 = −a2
T ∇ρ − ρ∇Φg +

j

c
× B , (9.46)

where we again specify an isothermal equation of state. If the cloud does not rotate while
contracting, the equilibrium B-vector is poloidal, i. e., it lies within the �-z plane. Ampère’s
law then implies that the current j is toroidal, pointing in the φ-direction. It follows that the
magnetic force per unit volume, j × B/c, must be a poloidal vector with both �- and z-
components, unlike the centrifugal force. In summary, the fact that B can remain distorted in
the equilibrium state precludes a magnetic analogue to the Poincaré-Wavre theorem and renders
the actual calculation of equilibria more difficult.
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9.4.1 Construction of Models

To proceed, we assume once more that our configuration has both reflection symmetry about
the z = 0 plane and is axisymmetric about the central axis. Our first task is to change from the
cumbersome vector variable B to a more convenient scalar quantity, the magnetic flux ΦB . As
illustrated in Figure 9.11, ΦB is the flux contained within the surface generated by rotating any
field line about the axis. The relation ∇ · B = 0 allows us to recast B in terms of the magnetic
potential A:

B = ∇ × A .

Let S be any two-dimensional surface centered on the axis and bounded by a circle of radius�.
Then

ΦB =
∫

S
(∇ × A) · d2x

= 2π�Aφ .

The vector field A need have only a nonzero φ-component in order to generate an arbitrary
poloidal B-field. Employing the unit vector êφ, we write

B = ∇ × (Aφ êφ) (9.47a)

= − êφ
�

× ∇ (�Aφ) (9.47b)

= − êφ
2π�

× ∇ΦB . (9.47c)

The reader may wish to check (9.47b) through component expansion. From Equation (9.47c),
we confirm that ∇ΦB · B = 0, so that ΦB cannot vary along a field line.

Our next task is to construct the analogue of equation (9.28), i. e., to use the force balance
equation (9.46) to find a relation between ρ and Φg. Since the magnetic force cannot be ex-
pressed simply as the gradient of a potential, a single, global relation does not exist. However,
hydrostatic balance along field lines implies that the product ρ exp

(
Φg/a2

T

)
is conserved in

that special direction. The actual value of this quantity must change from one field line to the
next. To quantify the change, we define a new scalar q, having the dimensions of a pressure:

q ≡ ρ a2
T exp

(
Φg/a2

T

)
. (9.48)

Recalling that j has only a φ-component, we then use equation (9.47) to rewrite (9.46) as

exp
(
−Φg/a2

T

) ∇q =
jφ

2π� c
∇ΦB .

Dotting both sides of this equation with B, we find that B · ∇q = 0. Thus q is constant along
field lines and is a function of ΦB alone. The equation of force balance reduces to the scalar
relation

jφ
2π� c

=
dq

dΦB
exp

(
−Φg/a2

T

)
. (9.49)
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An additional relation between jφ and ΦB comes from Ampère’s law, equation (9.32). Ex-
panding the curl of equation (9.47c) and utilizing (9.49), we arrive at a field equation for ΦB:

∂

∂�

(
1
�

∂ΦB
∂�

)
+

1
�

∂2ΦB
∂z2

= −32π3�
dq

dΦB
exp

(
−Φg/a2

T

)
. (9.50)

We now seek the analogous relation governing the gravitational potential Φg . This quantity
is, of course, generated from the mass distribution through Poisson’s equation. Replacing the
density ρ in equation (9.3) by q through equation (9.48), we have

1
�

∂

∂�

(
�
∂Φg
∂�

)
+
∂2Φg
∂z2

=
4πG
a2
T

q exp
(
−Φg/a2

T

)
. (9.51)

Equations (9.50) and (9.51) are two of the fundamental relations of the problem, to be solved
for ΦB and Φg. Doing so requires that we specify the function q(ΦB), which entails knowledge
of the magnetic flux distribution. We also need a description of the medium surrounding the
cloud. Here the common practice, as before, is to imagine the cloud immersed in a hypothetical
gas of zero density and finite pressure P◦. We again require the surface pressure of our config-
uration to match P◦. Since the sound speed is infinite in the external medium, equation (9.48)
implies that q becomes the constant P◦. From equation (9.49), the current jφ therefore vanishes.
Thus, we continue to solve Equations (9.50) and (9.51) outside the cloud, but replace both right-
hand sides by zero. At some appropriately large outer boundary, we impose the conditions that
the magnetic field have its original value B◦ and that Φg be that due to the total cloud mass.

Our next task is to derive an expression for q(ΦB) in terms of the flux distribution. We first
letM(ΦB) denote the cloud mass contained within the field line associated with flux ΦB . From
Figure 9.11, the small amount of mass ∆M between ΦB and ΦB + ∆ΦB is

∆M = 2
∫ Zcl(ΦB)

0

dz

∫ �(Zcl,ΦB+∆ΦB)

�(Zcl,ΦB)

d� 2π� ρ ,

where Zcl (ΦB) is the cloud boundary. The second integration is trivial once we replace the
independent variable � by ΦB . After further substituting for ρ in terms of q, we obtain an
integral expression for the latter:

q =
a2
T

4π
dM

dΦB

[∫ Zcl(ΦB)

0

dz �
∂�

∂ΦB
exp

(
−Φg/a2

T

)
]−1

. (9.52)

Once this expression has been evaluated, the term dq/dΦB in equation (9.50) follows by nu-
merical differentiation. Note that, since � in the integrand of (9.52) is a function of both z and
ΦB , the function q(ΦB) depends on the detailed spatial configuration of the field. Thus, one
must solve (9.50), (9.51), and (9.52) simultaneously, through an iterative procedure analogous
to the self-consistent field method.

9.4.2 Flattened Equilibria

It remains only to select the flux distribution, dM/dΦB . In principle, one could utilize observa-
tional results on individual clouds and their embedded fields, but the existing data are much too
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sparse for this purpose. As an alternative, we resort to an admittedly simplified physical model
and study the dependence of the equilibrium configurations on the model parameters. Proceed-
ing as in the rotational problem, we imagine the cloud to have contracted from a uniform-density
sphere threaded by the background field B◦. If ρi and R◦ are the density and radius of this
sphere, respectively, then

dM

dΦB
=

2 ρiR◦
B◦

(
1 − ΦB

Φcl

)1/2

ΦB ≤ Φcl

= 0 ΦB > Φcl ,

(9.53)

where Φcl ≡ πB◦R2
◦ is the total flux threading the cloud. Assuming that flux freezing holds

during contraction of the reference sphere, equation (9.53) also gives the function dM/dΦB to
be used in equation (9.52) for q(ΦB).

It is convenient, for numerical solution, to recast all variables into nondimensional form,
using the four basic quantities aT , P◦, G, and B◦. If the reference sphere had an internal
pressure equal to P◦, the problem would have two free parameters, just as in the rotational case.
One is the density contrast ρc/ρ◦, where the cloud surface density is again P◦/a2

T . A second
parameter, the equivalent of the rotational β, is the ratio of magnetic to thermal pressure in the
background medium:

α ≡ B2
◦

8π P◦
. (9.54)

In practice, it is customary to let the reference sphere’s internal pressure vary as well. Thus, we
require a third free parameter, which could be ρi/ρ◦, but is generally taken to be the nondimen-
sional radius of the initial sphere:

ξ◦ ≡
(

4πGρ◦
a2
T

)1/2

R◦ . (9.55)

Note the difference in this definition from equation (9.6), which employed the central density
instead.

Figure 9.12a displays the isodensity contours and field lines for a representative model, with
parameters ξ◦ = 2.4, α = 1.0, and ρc/ρ◦ = 10. Note that the unit of distance here is R◦. The
flattening of the cloud in the polar direction is evidently quite similar to that obtained through
rotation. In the present example, the equatorial radius is still 90 percent of its value in the
parent sphere, while the polar radius has shrunk by some 40 percent. If we consider a model
of much greater density contrast (ρc/ρ◦ = 103; Figure 9.12b) but identical values of ξ◦ and α,
the equatorial radius shrinks a bit more, while the central region contracts by a large amount,
pulling the field with it. The polar radius decreases as well, giving the whole structure a concave
appearance. This central dip, found also in rotating clouds, results from the higher gravity along
the pole, where the force is unopposed by magnetic tension.

Flatter clouds also result if we raise either α or ξ◦. In the first case, we have increased the
ambient magnetic pressure relative to the thermal value. With a higher retarding force in the
horizontal direction, the cloud needs more mass to achieve a given central density. The resulting
increase of gravity draws in the polar zone. In the second case, the larger parent cloud contains
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Figure 9.12 (a) Isodensity contours (thick solid curves) for one quadrant of a gravitationally
stable, magnetized cloud. (b) Contours for an unstable cloud, with identical ξ◦ and α, but higher
density contrast. The thin, solid curves are magnetic field lines.

more magnetic flux, again leading to a higher mass in the equilibrium state. Thus, a cloud with
ξ◦ = 2.4, α = 50, and ρc/ρ◦ = 10 has a ratio of equatorial to polar radii of 2.0, while this ratio
is 4.5 for ξ◦ = 4.8, α = 1.0, and the same density contrast.

9.4.3 Critical Mass and Surface Density

Given a set of calculated models, we are in a position to examine the run of nondimensional
cloud mass m versus density contrast, this time at fixed ξ◦ and α. Figure 9.13 shows three such
mass curves. In all cases, m first rises monotonically from zero, when ρc/ρ◦ = 1, then reaches
a maximum before declining at greater density contrast. The turnover indicates, as before,
that the fundamental mode of oscillation is becoming dynamically unstable, i. e., it reveals the
onset of gravitational collapse. The actual value of the peak mass, which we again denote as
mcrit, is higher with a stronger internal field, since the latter helps stave off collapse. Thus, in
Figure 9.13, we can see thatmcrit goes from 2.0 at ξ◦ = 2.4 and α = 1.0, to 5.1 at ξ◦ = 4.8 and
α = 1.0, and reaches 8.9 for ξ◦ = 4.8 and α = 5.0. These results prove that the model depicted
in Figure 9.12a is gravitationally stable, since its density contrast is lower than that for mcrit at
the appropriate ξ◦ and α. Conversely, the model in Figure 9.12b is unstable. A good fit to the
numerical values of mcrit over a wide range of ξ◦– and α–values is

mcrit ≈ 1.2 + 0.15 α1/2 ξ2◦ . (9.56)

The physical meaning of equation (9.56) becomes apparent once we convert it back into
dimensional form. Multiplying through by a4

T /P
1/2
◦ G3/2, we recognize the first term as the

Bonnor-Ebert mass from equation (9.16). Recall that this is the marginally stable value in the
absence of any magnetic field, i. e., with α = 0. Thus, we may rewrite equation (9.56) more
suggestively as

Mcrit ≈ MBE + MΦ . (9.57)
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Figure 9.13 Critical, nondimensional mass in magnetized equilibria. The mass is plotted as a
function of the density contrast, for the three indicated combinations of ξ◦ and α.

Here, the second term is

MΦ = 0.15
α1/2 ξ2◦ a

4
T

P
1/2
◦ G3/2

(9.58a)

= 0.15
2√
2π

B◦ π R2
◦

G1/2
(9.58b)

= 0.12
Φcl

G1/2
. (9.58c)

The quantity MΦ represents the critical mass for a cloud so cold that its thermal energy is neg-
ligible compared to its gravitational and magnetic contributions. We have derived the important
fact that this mass is simply proportional to the total magnetic flux threading the cloud.

The gravitational stability of magnetized clouds differs qualitatively from the purely thermal
case covered in § 9.1. Consider slowly squeezing an initially stable configuration of mass M by
increasing P◦. In the absence of magnetic fields and rotation, the spherical cloud will naturally
shrink. Assuming the temperature remains fixed, equation (9.16) implies that the critical mass
MBE will decline. This decline will continue until MBE = M , at which point the cloud will
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collapse. Now imagine the same process for a stable cloud supported additionally by a magnetic
field. Any increase in P◦ will also lead to a smaller configuration. In equation (9.57) for Mcrit,
the term MBE still falls, but MΦ remains constant, as long as flux freezing applies. Thus, if
the cloud has such low mass that M <MΦ initially, it will always remain stable and cannot be
driven into collapse.

Any magnetized cloud of sufficiently low mass has a unique equilibrium configuration and
is always gravitationally stable. Here, we are assuming a fixed internal flux distribution, such
as that given by equation (9.53). Figure 9.13 shows that, for given values of α and ξ◦, two
equilibria may share the same mass but have different central densities. It is only for masses
below some transition value (dependent on α and ξ◦) that there is a unique state. In dimensional
terms, the transition mass is given approximately by 0.59MBE + MΦ. Here, the first term is
the dimensional version of m2, the first minimum in the thermal mass curve of Figure 9.2. For
masses above the transition, the state of higher ρc is always gravitationally unstable. Finally,
clouds with M >Mcrit have no equilibria and are collapsing from the start.

It is worth remarking that the numerical coefficients 0.15 and 0.12 in Equations (9.56) and
(9.58) refer to the rather arbitrary flux distribution posited in equation (9.53). In models con-
structed with other forms for dM/dΦB , these numbers can increase or decrease significantly.
However, for MBE 
MΦ, all equilibrium configurations resemble flat slabs, at least in their
densest, inner regions. In this limit, the mass range for which two equilibria are possible is
relatively small, and the criterion for stability becomes simply M < MΦ. Given the slab-like
geometry, it makes more sense to recast the stability criterion in terms of Σc, the cloud’s sur-
face density along the axis and Bc, the magnetic field value at the center. Detailed numerical
calculations show, in fact, that these highly magnetized clouds are stable as long as

Σc
Bc

< 0.17G−1/2 . flat–slab limit (9.59)

The numerical coefficient is now independent of the assumed flux distribution.
The criterion in equation (9.59) is so simple that we should try to understand it in a more

direct, physically appealing manner. Figure 9.14 depicts a slab of surface density Σ◦, pierced by
a uniform, perpendicular field B◦. Consider now a disk of radius �◦, located within the slab;
this disk has mass πΣ◦�2

◦. If its radius contracts by the fractional amount ε, then the additional
inward gravitational force per unit mass at the disk edge is FG ≈ 2πεGΣ◦�2

◦/�
2
◦ ≈ 2πεGΣ◦.

This force is opposed by the magnetic tension created by pulling in the initially straight field
lines. The associated outward force per unit mass is FB = JBz/cΣ◦, where the surface current
J is the usual volume current density j integrated over the vertical thickness. Note that this
current, which arises from the bending of the field lines, flows azimuthally within the disk.
Integrating Ampère’s law, equation (9.32), over the disk height, we find J = c|B�|/2π, where
B� is the small, radial field component generated by the contraction. As seen in Figure 9.14,
B� actually reverses sign across the disk; our expression for J refers to the value just above
the surface. To within a factor of order unity, we thus have FB ≈ |B�|Bz/2πΣ◦.

The task now is to evaluate B� . Assuming a very low material density outside the slab, the
Lorentz force associated with the magnetic field must vanish, implying also that the current is
zero. That is, ∇ × B = 0 above and below the slab. Thus we have |∂B�/∂z| = |∂Bz/∂�|.
Let ∆z be the vertical distance above the disk over which the field relaxes back to its original,
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Figure 9.14 Gravitational stability of a cold slab embedded in a uniform magnetic field B◦.
The lateral compression of a small disk, with initial radius �◦, generates extra gravitational and
magnetic forces, as indicated. The external field relaxes to its uniform, vertical configuration by a
height ∆z above the slab.

straight configuration. As a result of flux freezing, Bz at the disk center increases by about
2εB◦. We therefore have B� ≈ 2εB◦(∆z/�◦). On the other hand, ∇ · B = 0 implies that
|∂B�/∂�| = |∂Bz/∂z|. Hence we also have B� ≈ 2εB◦(�◦/∆z). Combining these state-
ments, we find that ∆z ≈ �◦ and B� ≈ 2εB◦, so that FB ≈ εB2

◦/πΣ◦. For the magnetic
tension to exceed gravity, we need FB > FG, or Σ2

◦/B
2
◦ < 1/(2π2G). This result reproduces,

to within a factor of two, the criterion of equation (9.59).

9.4.4 Comparison with Observations

How do the theoretical models we have presented compare with actual molecular clouds? First,
let us revisit the basic problem of gravitational stability, introduced at the end of § 9.1. There, we
noted that the larger cloud fragments, such as the clumps within giant complexes, have observed
masses that greatly exceed the critical value MBE (or MJ ). On the other hand, numerical
evaluation of equation (9.58c) tells us that the maximum stable mass for a cold, magnetized
cloud is

MΦ = 70M�

(
B

10 µG

) (
R

1 pc

)2

, (9.60)

where B is here the mean field threading the cloud of radius R. Since the critical mass for a
magnetized cloud with finite temperature is approximately MBE +MΦ, we see that the basic
problem has been largely resolved (recall Table 3.1). That is, most dark clouds can plausi-
bly be stabilized against collapse by their internal magnetic fields alone. Dense cores, on the
other hand, have M ≈MΦ ≈MBE. These statements are consistent with our previous discus-
sion based on the virial theorem. The reader may verify that the empirical relation M ≈ |W|
implies that cloud masses over a substantial range do not fall much below MΦ.
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Unfortunately, more detailed comparison between theory and observation is less encourag-
ing. As we have noted, the spectral line widths of larger clouds all indicate the presence of
MHD waves, in contrast to the smooth, static fields assumed in the models. With this signifi-
cant caveat in mind, we first ask what the theory predicts for clouds with MBE 
M � MΦ.
By substituting for ρ◦ and R◦ in terms of P◦, aT , and M , we may rewrite the nondimensional
radius ξ◦ as (M/MBE)2/3 times a numerical coefficient, equal to 2.3. Similar manipulation
allows us to recast the parameter α in equation (9.54) as 2.1 (M/MBE)2/3 (M/MΦ)−2. Thus,
a marginally stable dark cloud with M/MBE ≈ 10 would have ξ◦ ≈ 5 and α ≈ 10. A more
stable cloud would have higher α. From our description of the numerical results, such a model
would have an equatorial radius at least 5 times its polar value. Only a small fraction of dark
clouds exhibit such extreme aspect ratios. Moreover, there is no convincing evidence that these
are indeed flattened structures seen edge on, as opposed to elongated spindles.

Turning to dense cores, the near equality of M , MBE, and MΦ implies that the appropriate
values of ξ◦ and α are closer to unity. In addition, the observed line widths are nearly thermal,
so that a static magnetic field is more plausible. Thus, the model depicted in Figure 9.12a, for
which M/MBE = 1.1 and M/MΦ = 1.5, should serve as a representative choice. The model
density contrast of ρc/ρ◦ = 10 is in accord with observations, and the equatorial-to-polar aspect
ratio of 1.6 is also within the range of those found from maps in NH3 and other high-density
tracers. Unfortunately, the statistical argument presented in § 3.3 shows that the cores are more
likely to be prolate configurations.

Assuming that future studies confirm this finding, we are faced with a direct contradiction
between theory and observation. Clearly, the weakest element in the theoretical framework
is the flux distribution dM/dΦB . The specific form adopted, equation (9.53), was obtained
from a picture in which the cloud of interest contracted from a larger, spherical parent, itself
embedded in a zero-density medium of finite pressure. No such medium exists, of course. More
realistically, the present dense cores grew in both mass and size as they accreted surrounding
material of only slightly lower density. To obtain prolate configurations, the function dM/dΦB
needs to be more strongly peaked near ΦB = 0 than in equation (9.53). Whether a revised
picture of core formation can naturally yield such a result is still an open question. We will
return to this issue in the next chapter, when we discuss cloud evolution through ambipolar
diffusion.

9.5 Support from MHD Waves

Optical and near-infrared polarization studies indicate that cloud magnetic fields are well or-
dered but have significant local deviations. Thus the magnetostatic structures we have consid-
ered, while useful as first approximations, need refinement. The observed substructure in B
could be a manifestation of internal waves. Because of flux freezing, any impulsive disturbance
to a fluid element is transmitted to its embedded magnetic field. Such kinking of the field is
resisted by magnetic tension. In acting to remove the local distortion in B, tension also causes
the disturbance to propagate along the field line, much as elastic tension sends traveling waves
down a plucked string. These MHD waves have long been detected, through spacecraft obser-
vations, in the solar wind. They can also be seen propagating away from sunspots and large
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flares. Indeed, the entire solar photosphere is in a continual state of turbulent motion as a result
of subsurface convection. This motion generates MHD waves that may aid in heating the outer
gas to temperatures in excess of 106 K. Similar activity is at least partially responsible for the
strong optical, ultraviolet, and X-ray emission from T Tauri stars (Chapter 17).

Within molecular clouds, the gas motion associated with MHD waves is not seen directly,
but may well underly the super-thermal broadening in spectral lines of CO and other molecular
tracers. As we will see, the inferred amplitudes are large enough that the waves could, at least in
principle, provide substantial support against gravitational collapse. The fundamental question
of how these disturbances ultimately arise is still unanswered. We mentioned in § 3.3 that
individual dense cores containing stars, while largely quiescent, have greater line widths than
their starless counterparts. It is unlikely, however, that stellar outflows generate the much larger-
scale turbulence in cloud complexes. An important counterexample is Maddalena’s Cloud.
This complex, at a distance of some 2 kpc, has spawned no massive stars, while its infrared
luminosity limits star formation quite generally to a relatively low level. Nevertheless, CO
observations show high internal velocities consistent with other clouds of its size and mass.
Other tracers reveal a rich substructure, including both massive clumps and embedded dense
cores.

Our understanding of how wave-like motions help to counteract the self-gravity of a large
cloud is still schematic. Quantifying this idea will probably require such basic data as the wave-
length dependence of the internal energy. Such information is not yet accessible to observation.
It is hardly surprising, then, that there are no detailed cloud models incorporating wave sup-
port. We therefore limit ourselves in this section to a derivation of the essential properties of the
waves and to a general description of their dynamical effect. We shall briefly revisit the issue of
wave generation at the end.

9.5.1 Perturbation Analysis

We begin by considering small perturbations of a hypothetical, uniform gas, much as we did
in § 9.1 when deriving the Jeans criterion. The background medium now contains a uniform
magnetic field B◦. We also take the wavelength of the perturbation to be much smaller than λJ ,
so that we can ignore self-gravity in the waves themselves. Finally, we assume that the period
of the disturbance is long enough that the gas remains isothermal. 5 Imagine, then, a traveling-
wave perturbation characterized by the vector wave number k, which points in the direction of
propagation. If we take this direction to be arbitrary, then the generalization of equation (9.19)
for the perturbed density is

ρ(r, t) = ρ◦ + δρ exp[i(k · r − ωt)] . (9.61)

We adopt similar forms for the perturbed velocity u(r, t) and magnetic field B(r, t), where
the amplitudes δu and δB are also constant. As before, the velocity is taken to be zero in the
background state.

5 This last assumption breaks down for MHD waves in stars, where an adiabatic approximation is more appropriate.
The practical result is that the isothermal sound speed aT should be replaced by the adiabatic speed aS in such
formulas as equation (9.63).
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Beginning with mass continuity, equation (3.7), the generalization of equation (9.20a) is

−i ω δρ + i ρ◦ k · δu = 0 . (9.62)

The perturbed equation of state (9.20b) remains the same. For momentum conservation, we
employ equation (3.3), but drop the gravitational term. Using the isothermal assumption for P
and equation (9.32) for the current j, we have

ρ
Du

Dt
= −a2

T ∇ρ +
1

4π
(∇ × B) × B . (9.63)

Linear perturbation of this last equation gives

−i ω ρ◦ δu = −i a2
T δρk +

1
4π

(ik × δB) × B◦ . (9.64)

Finally, we incorporate the condition of flux freezing, equation (9.45). After application of the
perturbation, we have

−i ω δB = ik × (δu × B◦) . (9.65)

9.5.2 Alfvén and Sonic Waves

If we dot k into equation (9.65), we find that k · δB = 0. Thus, the disturbance in the magnetic
field is normal to the direction of propagation. The other properties of the MHD wave depend
on the relative directions of k and B◦. Suppose first that these two vectors are parallel, i. e.,
that the wave propagates along the background field lines. Within this framework, we also
wish to examine separately transverse and longitudinal waves. In the former case, the velocity
disturbance δu is perpendicular to k, while it is parallel in the latter. Taking the transverse
mode first, equation (9.62) tells us that δρ = 0, i. e., that the density is unaltered. This property
of transverse waves is true generally, for any propagation direction.

To proceed with the case at hand, we expand the triple vector product in equation (9.65) to
find

−ω δB = (k · B◦) δu − (k · δu) B◦ . (9.66)

The product k ·B◦ is positive, by assumption, while k ·δu again vanishes for a transverse wave.
Thus, δu is antiparallel to δB, and their magnitudes are related by

δu = −ω δB
k B◦

. (9.67)

The vector relations are illustrated in Figure 9.15a, where we have taken k to lie along the x-
axis, and δu to point in the positive y-direction. Turning to the momentum equation (9.64),
the first righthand term vanishes, while the triple product also lies along the y-axis. We find,
therefore,

δu = −k δB B◦
4π ω ρ◦

. (9.68)
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Figure 9.15 Relationships between the propagation vector k, the underlying field B◦, its pertur-
bation δB, and the induced fluid velocity δu in MHD waves. For each mode, the density and field
perturbations are also sketched. If k and B◦ are parallel, the mode can be (a) transverse or (b)
longitudinal. (c) If k and B◦ are perpendicular, the mode must be longitudinal. (d) In the most
general case, the wave is neither purely transverse nor longitudinal.

Eliminating δu between (9.67) and (9.68) yields the dispersion relation:

ω2

k2
=

B2
◦

4π ρ◦
. (9.69)

For any plane wave, ω/k gives the phase velocity. In our particular case (k parallel to B◦,
transverse mode), this quantity is VA, the Alfvén velocity introduced in Chapter 8:

VA ≡ B◦√
4π ρ◦

= 0.5 km s−1

(
B◦

10 µG

) ( nH2

103 cm−3

)−1/2

.

(9.70)
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This disturbance is known as an Alfvén wave. Since ω and k are linearly related, VA also equals
dω/dk, the group velocity governing the motion of wave packets. Furthermore, the absence of
the sound speed from the dispersion relation shows that the restoring force in this case is simply
magnetic tension. Thus, the transverse disturbance corresponds to a sinusoidal rippling of the
background field line (Figure 9.15a).

Longitudinal waves propagating along the background field have δu parallel to both k and
B◦ (see Figure 9.15b). The product δu × B◦ thus vanishes in equation (9.65), so that δB = 0.
Since only the gas is effected, these perturbations must be indistinguishable from ordinary sound
waves. Equation (9.64) gives, after projection along the x-axis,

δu =
a2
T k δρ

ω ρ◦
. (9.71)

Similarly, we deduce from equation (9.62) that

δu =
ω δρ

k ρ◦
. (9.72)

Elimination of δu between (9.71) and (9.72) now gives

ω2

k2
= a2

T . (9.73)

As anticipated, this is the usual dispersion relation for sound waves, in which thermal pressure
alone constitutes the restoring force.

9.5.3 Magnetosonic Waves

We next consider waves propagating orthogonally to the ambient field. In Figure 9.15b, we keep
k in the x-direction, but let B◦ point up the y-axis. The first thing to notice is that transverse
waves cannot exist under these conditions. We have already seen that all such waves have
δρ = 0, so that gas pressure cannot contribute to the restoring force. On the other hand, motion
of the gas along B◦ also encounters no opposition from magnetic pressure or tension. We
reach the same conclusion mathematically by noting, from equation (9.65), that the vanishing
of δu × B◦ implies δB = 0. Equation (9.64) then gives δu = 0, as well.

Longitudinal waves, however, do still exist. In fact, the compression is now resisted by both
thermal and magnetic forces. Looking at equation (9.66), k · B◦ = 0, while k · δu > 0, so that
δB is antiparallel to B◦, and related in magnitude to δu by

δu = −ω δB
k B◦

. (9.74)

Equation (9.62) also implies that

δu =
ω δρ

k ρ
. (9.75)
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In equation (9.64), we now have (k × δB) × B◦ = +k B◦ δB êx. Projecting (9.64) along the
x-direction and using (9.74) and (9.75) gives the dispersion relation

ω2

k2
= a2

T +
B2

◦
4π ρ◦

, (9.76)

in which the combined effect of thermal and magnetic pressure is evident. As illustrated in
Figure 9.15c, the disturbance – known as a magnetosonic wave – consists of alternating com-
pression and rarefaction of the ambient field and gas, with no bending of B and hence no
magnetic tension. We shall denote the phase velocity obtained from equation (9.76) as Vmax,
since it is the maximum attainable by an MHD wave:

Vmax =
(
a2
T + V 2

A

)1/2
. (9.77)

In the most general case, k is tilted with respect to B◦ at some angle θB , neither 0 nor π/2
(see Figure 9.15d). Three types of waves are possible, as we now show. After substituting for
δρ from (9.62) and δB from (9.65), equation (9.64) contains only the small amplitude δu:

ω2 δu = a2
T (k · δu) k +

1
4π ρ◦

{k × [k × (δu × B◦)]} × B◦ .

Expansion of the second righthand term leads to a rather lengthy expression for δu in terms of
k and B◦:

(
ω2 − |B◦ · k|2

4π ρ◦

)
δu =

[
a2
T (δu · k) − (δu · B◦)(B◦ · k)

4π ρ◦
+ V 2

A (δu · k)
]

k

− (δu · k)(B◦ · k)
4π ρ◦

B◦

(9.78)

Dotting this equation with k leads to the simpler scalar relation

(ω2 − V 2
max k

2) (δu · k) = − (δu · B◦)(B◦ · k) k2

4π ρ◦
, (9.79)

while dotting equation (9.78) with B◦ gives

a2
T (B◦ · k) (δu · k) = ω2 (δu · B◦) . (9.80)

One solution of Equations (9.79) and (9.80) has both δu · k = 0 and δu · B◦ = 0. In this
transverse mode, a generalized Alfvén wave, δu is perpendicular to the plane defined by B◦
and k. From equation (9.78), the dispersion relation may be written:

ω2 =
|B◦ · k|2
4π ρ◦

= k2 V 2
A cos2 θB ,

(9.81)

so that the phase velocity is VA cos θB . From equation (9.66), δB is again antiparallel to δu,
and the restoring force is solely magnetic tension.
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The other two modes have δu lying in the B◦–k plane. The field perturbation δB also lies
in this plane and, as always, is normal to k. However, δu is neither perpendicular nor parallel
to k, resulting in waves that are neither purely transverse nor compressional, but partake of both
characteristics. To derive the dispersion relation, we divide equation (9.79) by (9.80), obtaining

ω4 − ω2 k2 V 2
max + a2

T V
2
A k

4 cos2 θB = 0 . (9.82)

This gives for the phase velocity

ω

k
=

1
2

[
V 2

max ±
√
V 4

max − 4V 2
A a

2
T cos2 θB

]1/2

. (9.83)

Thus, the two additional modes propagate at distinct phase (and group) velocities, and are desig-
nated fast and slow magnetosonic waves. For any angle θB , the Alfvén velocity VA lies between
these two speeds. As k approaches B◦ in direction, the fast mode becomes an Alfvén wave,
with δu lying orthogonal to that in the transverse mode. In this same limit, the slow mode
degenerates into a sound wave. As k becomes orthogonal to B◦, the fast mode becomes a
magnetosonic wave, while the slow mode does not propagate.

Which of these three wave modes actually exist within molecular clouds? Inside a hypothet-
ical, nonmagnetized cloud supported only by thermal pressure, any fluid element in supersonic
motion eventually forms a shock. Indeed, shocks also arise from ordinary sound waves, through
the process of nonlinear steepening. Consider a solitary, low-amplitude pressure disturbance,
traveling through the cloud at speed aT . As this wave passes any point, the associated compres-
sion raises the gas temperature slightly, an effect we have ignored in our isothermal approxima-
tion. The sound speed increases with temperature as T 1/2. Hence, any disturbances within the
temporarily heated region propagate slightly faster than the original waveform. The resulting
pileup increases the pressure gradient until the traveling front becomes a true shock. Heating of
matter as it crosses a shock front leads to radiative loss of energy. Thus, both supersonic motion
and internal sound waves rapidly dissipate.

This situation changes with the addition of an internal magnetic field. The extra source of
pressure makes shocks more difficult to form. For B◦ oriented perpendicular to a flow, the
criterion is now that the fluid element must be traveling faster than Vmax in equation (9.77).
From equation (9.70), larger clouds typically have Vmax greatly exceeding aT , which is only
0.2 km s−1 at a temperature of 10 K. The supersonic velocities deduced from molecular line
widths are sometimes sub-Alfvénic, at least if the telescopic beam lies within a single clump
(recall equation 3.21). Such motion can survive longer than the characteristic crossing time of
L/VA, which is 2×106 yr for L = 1 pc, nH2 = 103 cm−3, and a mean field of 10 µG. However,
both the fast and slow magnetosonic waves undergo steepening, as they involve compression of
the gas. If the observed motion indeed represents MHD waves, it is the transverse, Alfvén mode
that survives, at least until it damps through mode conversion (see below) or ambipolar diffusion
(Chapter 10).

9.5.4 Effective Pressure

Let us now see how MHD waves create extra pressure. At any fixed location traversed by such
a wave, the physical variables undergo rapid sinusoidal fluctuations. Averaging over a cycle,
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it is not obvious how a steady force could result. The key is that the extra force depends on
products of oscillating variables, and such products can have a non-zero average. To develop
this point quantitatively, we start again from the momentum equation (9.63). Expanding both
the convective derivative on the left and the triple vector product on the right, we recast this
equation in component notation:

ρ
∂ui
∂t

+ ρ uj
∂ui
∂xj

= −a2
T

∂ρ

∂xi
− 1

8π
∂

∂xi
(BiBj) +

1
4π

Bj
∂Bi
∂xj

, (9.84)

where we have utilized the Einstein summation convention for repeated indices. The conti-
nuity equation (3.7) and ∇ · B = ∂Bj/∂xj = 0 enable us to write the foregoing equation in
“conservation form”:

∂

∂t
(ρ ui) = −∂Πij

∂xj
. (9.85)

Here the pressure (or momentum flux) tensor Πij is

Πij = ρ ui uj + a2
T ρ δij +

1
8π

Bk Bk δij − 1
4π

BiBj . (9.86)

To obtain the force due to the waves, we substitute into the right side of (9.85) the perturba-
tion form (9.61) for all variables, but generalized to include amplitudes and wave vectors that
vary smoothly in space. We then integrate over a wave cycle to obtain the average incremental
force. Within Πij , only equilibrium terms and those with a quadratic dependence on fluctuating
variables survive the integration. The cycle-average of cos2 �t is 1/2, so we find the perturbed
part of the pressure tensor to be

Πwave
ij =

1
2
ρ◦ δui δuj +

1
16π

δBk δBk δij − 1
8π

δBi δBj . (9.87)

The force per unit volume due to the waves is then

Fwave
i = − ∂

∂xj
Πwave
ij . (9.88)

For the generic MHD wave, Equations (9.87) and (9.88) indicate that the wave pressure tensor
is anisotropic, so that the force in any one direction partially depends on gradients in orthogonal
directions. Extending our earlier, mechanical analogy, this is the type of behavior one would
expect from an elastic membrane, in which stresses arise from both stretching and shearing
deformations. For an Alfvén wave, however, we recall that δu and δB are antiparallel. From
Equations (9.67), (9.69), and (9.70), their components are related by

δui
VA

= −δBi
B◦

. (9.89)

Substitution of this result into equation (9.87) leads to cancellation of the off-diagonal elements
of Πij . Reverting to vector notation and changing to subscripts, we may write the force as
gradient of a scalar:

Fwave = −∇Pwave , (9.90)
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where the wave pressure is now

Pwave =
1

16π
|δB|2 . (9.91)

The term Fwave may be added to the right side of equation (9.46) to give a more complete
account of force balance. If waves are present over a range of wavelengths, their individual
pressures should be calculated according to (9.91) and then summed to give the total contribu-
tion.

As mentioned previously, our knowledge of the wave amplitudes is still too imprecise for the
construction of detailed models. Generally speaking, however, the existence of the extra pres-
sure alleviates the problem of cloud structure, at least for the larger clouds exhibiting nonther-
mal motion. If the amplitude of a wave were to decrease in the direction of B◦, equation (9.91)
shows that the associated force would also point in that direction. Thus, the prediction of severe
flattening for relatively cold, magnetostatic clouds need no longer hold. In essence, the clouds
are warmer than their gas temperatures would indicate.

Let us pursue this idea a bit further. In order for the extra pressure to be effective against
gravity, the equivalent “sound speed” must be comparable to the virial velocity. Is this the case?
The measured line widths of the larger clouds give internal velocities that are roughly Alfvénic.
From equation (9.89), this means that |δB| ≈ B◦, the result already indicated by the polarization
studies. This latter relation implies, from equation (9.91), that the wave “sound speed,” given
by (Pwave/ρ◦)1/2, is close to VA. Finally, the empirical finding that M ≈ |W| means that
VA ≈ Vvir. Assuming that the disturbances seen are typical of those occurring throughout the
interior, this chain of reasoning implies that Alfvén waves do exert a force comparable to self-
gravity and hence should be capable of altering cloud shapes.

Throughout this discussion, we have utilized plane waves as a convenient tool for deriving
important physical results. However, a wave front within a clumpy molecular cloud will actu-
ally advance faster in some regions than others, depending on the local Alfvén velocity. The
resulting distortion of the front is well documented in laboratory plasmas, where it is called
phase mixing. Inhomogeneities in cloud density also lead to reflection of waves and to mode
conversion, i. e., the transfer of energy into both fast and slow magnetosonic waves.

These inevitable complexities to the simple wave picture suggest that it may be more ap-
propriate to consider a model of MHD turbulence. Many numerical simulations have explored
this idea in some detail. One introduces random velocity perturbations into a computational box
enclosing magnetized gas. The results are a dramatic illustration of mode conversion. What-
ever the character of the initial disturbance, energy soon appears in magnetosonic waves. These
steepen and dissipate through shocks. Additional losses occur through viscous heating.

The volumetric rate of energy decline for turbulent eddies of characteristic size L and ve-
locity V is of order ρ V 3/L, where ρ is the region’s mass density. Each eddy is therefore losing
its entire kinetic energy in about one turnover time, L/V . All told, the simulations find that
the decay of impressed turbulence in a fluid does not depend sensitively on whether the fluid is
magnetized at all.

There are at least two ways to interpret these findings. On the one hand, they may indicate
that the real perturbations are not of a fully turbulent nature. Perhaps the motion is more orga-
nized, so that internal shocks are effectively avoided. If, on the other hand, turbulence is indeed
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present, then it must be continually pumped by some external energy source to prevent rapid
decay. The nature of that source is unknown. But even if disturbances exist in the more diffuse
gas just outside the cloud, it is not obvious that this energy will efficiently penetrate, instead of
being reflected at the cloud surface. It does appear, in any case, that neither random turbulence
nor an ensemble of plane waves provides a fully satisfactory description of the interior state.

Chapter Summary

A simple theoretical model for a molecular cloud consists of a uniform-temperature sphere sup-
ported by internal pressure against self-gravity. Such an object has a maximum possible mass,
the Bonnor-Ebert (or Jeans) value. Clouds with masses exceeding this limit, either because they
are too cold or too dense, are not in force balance, and undergo gravitational collapse.

Rotation is a stabilizing influence that raises the Jeans mass at fixed temperature and back-
ground pressure. Numerically constructed cloud models are flattened along the central axis if
their rotational kinetic energy is an appreciable fraction of the gravitational potential energy.
However, actual molecular clouds are rotating too slowly for their aspherical shapes to arise by
this means.

All observed clouds larger than dense cores have masses exceeding the Jeans limit, yet are
generally not collapsing. Additional support comes from the interstellar magnetic field, which
is effectively frozen into the cloud matter. The field thus increases at higher density, providing
both magnetic pressure and tension. Detailed magnetostatic models are flattened structures that
become thin slabs in the strong-field limit. Again, the model shapes do not match those inferred
from radio mapping.

Magnetized gas can sustain periodic disturbances of various kinds. Fast and slow mag-
netosonic waves alternately expand and compress both the field and gas, and are eventually
dissipated as shocks. Alfvén waves are transverse disturbances in the field that do not compress
the gas. Wave pressure in the gas, especially from the Alfvén mode, can provide additional
mechanical support and alleviate the problem of cloud shapes.
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10 The Collapse of Dense Cores

The detection of infrared point sources within many dense cores shows unequivocally that these
cloud structures form stars. In this chapter and the next, we confront the central issue of how
this transition actually occurs. Here we study, again from a theoretical perspective, the collapse
process itself. Chapter 11 will then examine the properties of the nascent star and its infalling
envelope of gas and dust.

In our study of equilibria, we remarked that no single model has self-consistently incorpo-
rated the combined effects of gravity, thermal pressure, rotation, and magnetic fields. The same
statement applies to the problem of cloud collapse, apart from calculations that assume a disk-
like geometry (see § 10.1 below). Even if more general results were available, they would be
difficult to appreciate without the necessary background. Accordingly, we follow our previous
approach of building up the reader’s intuition through simplified models that include only a sub-
set of the relevant effects. Our first order of business, however, is to see how an initially stable
cloud, like the observed starless dense cores, can evolve to the point where collapse becomes
inevitable.

10.1 Ambipolar Diffusion

The magnetostatic equilibria we have studied resist self-gravity through both thermal pressure
and magnetic forces. More precisely, it is the charged species within a cloud that actually sense
the magnetic field. Electrons and ions, gyrating rapidly around B, collide with the neutrals, and
the resultant drag on the latter helps to counteract gravity. As we saw, the drag force per unit
volume between any charged component and the neutrals involves the product of the density
and relative velocity of that species (recall equations (9.41) and (9.43)). If the cloud’s level
of ionization is sufficiently low, these relative speeds become appreciable. The neutrals then
gradually drift across magnetic field lines in response to gravity. With the consequent loss of
magnetic flux, the cloud contracts until it eventually becomes unstable to true collapse, i. e., to
the attainment of free-fall speeds. In the notation of Chapter 9, the mass Mcrit decreases until it
becomes lower than the actual cloud mass M .

10.1.1 Ion-Neutral Drift

In order to follow the flux loss in detail, we first note that the electrons and ions must be moving
at very nearly the same velocity. That is, if L is a mean cloud diameter, thenL/|ui−ue| is much
longer than the time over which the cloud evolves. We may see this by taking the magnitude of
the vector equation (9.33), which expresses j in terms of the relative velocity. Using Ampère’s

The Formation of Stars. Steven W. Stahler and Francesco Palla
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40559-3

The Formation of Stars
Steven W. Stahler and Francesco Palla

© 2004 WILEY-VCH Verlag GmbH & Co.



10.1 Ambipolar Diffusion 283

law, equation (9.32), for j, we have

L

|ui − ue| =
ne eL

|j|
=

4π ne eL
c |∇ × B|

∼ 4π ne eL2

cB
.

(10.1)

For a dense core with L = 0.1 pc, B = 30 µG, nH2 = 104 cm−3, and ne = 5 × 10−8 nH2 =
5 × 10−4 cm−3, the time L/|ui − ue| is of order 1010 yr. We may therefore consider the
electrons and ions to be effectively a single plasma drifting relative to the neutrals.

Our determination of vdrift ≡ ui − u starts with the equations of motion for the electrons
and ions. Recall that (9.40) and (9.42) are written in the reference frame comoving with the
neutrals. Adding the two equations together, we find

0 = e ne (u′
i − u′

e) × B′/c + ne (f ′
in + f ′

en)
= j × B/c + ne (f ′

in + f ′
en) .

(10.2)

Here we have used the results that j = j′ (equation (9.34)) and B = B′ for nonrelativistic
neutral velocities. We next apply the expressions for the drag forces in equations (9.41) and
(9.43). The near equality of u′

e and u′
i, together with the fact that u′

i ≡ ui − u = vdrift, allows
us to write (10.2) as an expression for vdrift in terms of j × B/c. After again using Ampère’s
law for j, we find

vdrift =
(∇ × B) × B

4π nne [mn〈σin u′i〉 + me〈σen u′e〉]
≈ (∇ × B) × B

4π nne [mn〈σin u′i〉]
.

(10.3)

In making the last approximation, we have used the fact that the numerical values for 〈σinu
′
i〉

and 〈σenu
′
e〉 indicate a dominance by ion-neutral collisions, just the reverse of the situation for

the conductivity σ (recall equation (9.44)). Our previous estimate of σ, in fact, needs correction,
since a finite vdrift alters j for given external fields. More significantly, the existence of vdrift

forces us to reevaluate the physical meaning of flux freezing. Reviewing the derivation in § 9.3,
we note that the first form of Ohm’s law, equation (9.34), really holds in the rest frame of the
plasma. Thus the velocity appearing in equations (9.35)–(9.39) should be ui. In the modified
form of (9.39), it is still true that the final term, representing Ohmic dissipation, is small. Using
ui = u + vdrift, equation (9.45) is now replaced by

∂B

∂t
= ∇ × (ui × B)

= ∇ × (u × B) + ∇ × (vdrift × B) .
(10.4)

In summary, flux freezing still holds if the conductivity is large enough, but implies that the
electrons and ions are tied to B, while the neutral atoms and molecules in the cloud slip past.
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How important quantitatively is this slippage? Let us apply our previous technique of esti-
mating the relevant time scale, here L/|vdrift|. Using equation (10.3), we have

L

|vdrift| ≈ 4π nnemn〈σin u
′
i〉L

|(∇ × B) × B|

≈ 3 × 106 yr
( nH2

104 cm−3

)3/2
(

B

30 µG

)−2 (
L

0.1 pc

)2

,

(10.5)

where we have incorporated equation (8.32) for the ionization fraction. Comparing this result
to our estimate for cloud lifetimes in Chapter 3, we see that vdrift is indeed significant. It is
believed, in fact, that ambipolar diffusion is the main process setting the rate at which dense
cores evolve prior to their collapse.

We now see that the magnetized structures discussed in § 9.3 are actually quasi-static. Both
the gas and magnetic field move, but so slowly that the clouds can be viewed as progressing
along a sequence of equilibria. Thus, in the full momentum equation (3.3), the velocity u is
subsonic (and therefore sub-Alfvénic), so that the term ρDu/Dt is relatively small and can
safely be ignored. As such a cloud secularly evolves, it becomes more centrally condensed. The
influence of gravity increases until the fluid velocity becomes substantial, at least within the
deep interior. Once |u| approaches the sound speed aT , the quasi-static description fails, and
the cloud begins hydrodynamic collapse.

10.1.2 Magnetic Flux Loss

More precisely, the sequence of cloud equilibria is characterized by a continuous alteration of
the function dM/dΦB . The drift velocity is proportional to, and lies in the same direction as,
the drag force exerted by ions on neutral matter. As illustrated in Figure 10.1, vdrift points
outward wherever the field lines are compressed toward the central axis. At just those places,
u − ui = −vdrift points inward, i. e., neutral matter crosses field lines from the outside. The
result is that M(ΦB) at fixed ΦB increases with time. If n is the outward normal vector to a
flux tube (as in Figure 10.1), then

(
∂M

∂t

)

ΦB

=
∫
ρvdrift · n d2x . (10.6)

Here the surface integral is over the area of the tube.
For numerical calculations, we may use the definition of q(ΦB) in equation (9.48), together

with the force balance equation (9.46), to write

vdrift =
exp(−Φg/a2

T ) ∇q

n nemn 〈σin u′i〉
, (10.7)

where we have again neglected the electron-neutral collision term. We then recast ∇q as
(dq/dΦB)∇ΦB . Note that ∇ΦB is parallel to vdrift and n, which are themselves parallel
vectors (see Figure 10.1). We may write the element of area entering equation (10.6) in terms
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Figure 10.1 Ambipolar diffusion in a
magnetized cloud. The drift velocity of
ions relative to neutrals points away from
the axis, in the same direction as the out-
ward normal vector to the flux tube. Neu-
trals drift across the field in the opposite
direction. Calculating the area of the flux
tube requires summation of small distance
increments ∆z.

of the increment dz and the field-line slope (∂�/∂z)ΦB
. We may also use this slope to express

the magnitude of ∇ΦB . In this way, we find

∇ΦB · n d2x = 2π� dz
∂ΦB
∂�

[
1 +

(
∂�

∂z

)2

ΦB

]
.

Finally, we use mn = µmH , together with equation (8.32) for ne/n, to find
(
∂M

∂t

)

ΦB

=
4π µmH

C 〈σin u′i〉
dq

dΦB

·
∫ Zcl(ΦB)

0

dz �

ρ1/2

∂ΦB
∂�

[
1 +

(
∂�

∂z

)2

ΦB

]
exp

(−Φg/a2
T

)
.

(10.8)

The integral in this relation is to be evaluated at each value of ΦB . Recall that we obtain dq/dΦB
by numerical differentiation of equation (9.52). As time progresses, one must continually update
M(ΦB) using equation (10.8). The range of ΦB containing the total mass diminishes, as flux
gradually leaks out of the cloud (Figure 10.2). At each time, moreover, we may numerically
differentiate equation (10.8) with respect to ΦB in order to obtain ∂2M/∂ΦB∂t, which is also
the temporal derivative of dM/dΦB . After an interval ∆t, we then have an updated form for
this function that can be used in constructing the next equilibrium model, via the procedure in
§ 9.4.

One important feature of ambipolar diffusion is that it proceeds fastest toward the cloud
center. To see why, note first that gravity and the magnetic force largely balance each other in
the �-direction, particularly in the outer regions. At a point with coordinates (�, z), we thus
have

1
4π

|(∇ × B) × B| ≈ GM ρ

�2
, (10.9)

whereM is here the cloud mass interior to the point. If we model this interior region as an oblate
spheroid, then M ≈ (4π/3)G ρ̄�2 z, where ρ̄ is the mean interior density. The diffusion time
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Figure 10.2 Flux loss from a quasi-statically
contracting cloud (schematic). The amount of
mass enclosed by a given flux tube increases
with time. Since the cloud mass is constant, the
total flux diminishes.

�/|vdrift| is then
�

|vdrift| ≈ 3ne 〈σin u
′
i〉

4πG ρ̄

(�
z

)
.

Since ne is proportional to ρ1/2, this time varies as ρ−1/2 (ρ/ρ̄)�/z. For an initially mod-
est density variation, the characteristic time increases outward, since ρ−1/2� climbs in that
direction. At this stage, the contrast in diffusion rates is not yet strong.

On the other hand, a compact inner region eventually forms. If Minner denotes the mass of
this region, we now have

1
4π

|(∇ × B) × B| ≈ GMinner ρ

�2
. (10.10)

In this case, the diffusion time becomes

�

|vdrift| ≈ ne 〈σin u
′
i〉�3

GMinner
.

Since the product ne�3 increases outward rather steeply, the segregation of time scales is
greater. These admittedly crude arguments suggest that the cloud’s increase in central density
should be an accelerating process.

10.1.3 Contraction of Flattened Clouds

Numerical simulations, which follow the motion of the fluid from the outset, have confirmed
this effect and provided many more interesting details. Note that such calculations generally
neglect the acceleration of the ions and electrons, as we implicitly did in equation (10.2). One
only solves for the momentum of the neutrals, through equation (3.3) in conjunction with Am-
père’s law, equation (3.5). We stress that the Lorentz force that helps determine the neutral
motion depends only on the instantaneous configuration of the magnetic field. To update that
configuration, we employ the drift speed from equation (10.3) and the evolution equation (10.4).
Poisson’s equation (9.3) then supplies the gravitational potential.
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Figure 10.3 Numerical simulation of a contracting, magnetized cloud. The four panels corre-
spond to times (a) 1.02× 107 yr, (b) 1.51× 107 yr, (c) 1.60× 107 yr, and (d) 1.61× 107 yr after
the initial collapse. Light curves are magnetic field lines, heavier ones are isodensity contours,
and arrows indicate relative fluid velocities. The thickest solid curve in each panel corresponds to
ntot = 300 cm−3.

The four panels of Figure 10.3 display results from one evolutionary study. Here the initial
reference state is a uniform-density cylinder, instead of the spheres discussed in § 9.4. During
the calculation, the cylindrical boundary is held fixed, and gas is not allowed to enter or leave the
interior volume. The initial, uniform field strength is 30 µG, the number density is 300 cm−3,
and the half-height and radius of the cylinder are both 0.75 pc. In the terminology of Chapter 9,
the parameter α is 87, while ξ◦ in equation (9.55) is 1.4, provided we use the cylindrical radius
�◦ in place of R◦.



288 10 The Collapse of Dense Cores

Figure 10.4 Rise of central density in the con-
tracting cloud of Figure 10.3.

Because the height of the cylinder exceeds the Jeans length, the uniform gas immediately
goes into collapse. According to equation (3.15), the free-fall time in this case is 4×106 yr. The
initial ratio of column density to field strength is less than the critical value in equation (9.59).
Hence gravity cannot squeeze B toward the axis during this early phase, and the flow occurs
down essentially rigid field lines toward the z = 0 plane. By 6 × 106 yr, nearly all of the cloud
has settled into the oblate configuration shown in the figure. Note that the thickest contour in
each panel corresponds to the original ntot of 300 cm−3. During the subsequent evolution,
remnant material of lower density continues to rain down on the surface but has negligible
dynamical effect. Note also that the upward velocity vectors in panel (a) represent a transient
pulse generated by the cloud bouncing at the equatorial plane during its collapse.

When the stable equilibrium structure first forms, its central density is only 8 times the value
in the uniform cylinder. The density thereafter increases as the result of ambipolar diffusion in
the inward, lateral direction. As seen in Figure 10.4, this rise is initially very gradual. By
1.5 × 107 yr, however, Σ/B along the central axis has surpassed the critical value, and the
condensation process picks up speed. From then on, the contracting deep interior effectively
separates from the more slowly evolving outer portion of the cloud, where ambipolar diffusion
is much slower. Figure 10.3 shows how the thickness of the cloud near the axis diminishes
with the rise in central density. At the same time, the partially frozen magnetic field is dragged
inward, and the central value of B increases by several orders of magnitude.

Such explicit tracking of the vast increase in density possible through ambipolar diffusion
is impressive, and the numerical calculations have provided a wealth of information. We defer
until the next section any further consideration of the innermost material undergoing collapse.
First we return to the issue of the large-scale evolution of dense cores and ask how well the
current simulations accord with existing observations.

Referring again to Figure 10.3, the total mass of the cloud is 46 M�, so the calculation
actually follows the formation of a dense core within a larger structure and the approach to
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collapse of that interior object. The relatively high mass of the parent cloud explains why it is so
much flatter than the magnetostatic configurations we encountered before (recall Figure 9.12).
Since there is nothing observationally or theoretically that singles out the larger mass scale, the
calculated properties of the parent cloud, as well as its history prior to stabilization, must be
viewed as rather arbitrary.

We focus, then, on that portion of the cloud with ntot � 104 cm−3. The progressive narrow-
ing of that structure toward the central axis is not an artifact of this particular calculation, but is
an inevitable outcome of gravitational contraction, assuming the cloud has a slab-like geometry.
To see why, note that the thickness of a slab at any point is equal, to within a factor of two, to
the Jeans length λJ , where we should use the local midplane density in equation (9.23). Thus,
any process that allows such a cloud to settle toward higher densities must result in structures
that become thinner, both temporally at a fixed radius (e. g., at the center), and spatially, since
the midplane density always increases toward the pole. The calculation depicted in Figure 10.3
follows the evolution to a central number density of 3 × 108 cm−3. From equation (9.23), the
central thickness of the dense core is then about 0.0017 pc (500 AU), while its equatorial radius
(i. e., where ntot = 104 cm−3) is 0.15 pc. Do extraordinary structures like these, pinched to
essentially zero thickness at the center, actually exist?

At the 140 pc distance of Taurus-Auriga, a length of 500 AU subtends an angle of 4′′,
within the resolution of current millimeter-wave interferometers. Hence, our question could be
answered by direct mapping in the future, but for now must be addressed through statistical and
other indirect means. We presented, in fact, a statistical argument in Chapter 3 that dense cores
are most likely elongated objects. We also noted in Chapter 9 that theoretical cloud models
of even modest density contrast are already oblate. We now see that the discrepancy is only
exacerbated once the cloud contracts through ambipolar diffusion.

One shortcoming of current theoretical calculations is that they artificially restrict mass flow
along magnetic field lines. Thus, the cloud in Figure 10.3 is confined within a rigid cylindrical
boundary. In the static models of § 9.4, the cloud has a flexible boundary, but is surrounded
by a medium of zero density. For a real molecular cloud, however, there is a vast reservoir of
low-density gas that can potentially be drawn in during contraction. Evolutionary calculations
that utilize a more porous outer boundary may well achieve elongated structures. Flow along
field lines must also play a key role in the approach to collapse, as we discuss in § 10.3 below.

10.1.4 Damping of Alfvén Waves

The temporal sequence in Figure 10.3 depicts the quiescent contraction of gas over a total dis-
tance exceeding 1 pc. However, we know from molecular line studies that clouds of this size
are traversed by MHD waves. The wave amplitudes and associated kinetic energies are so large
that the quasi-static assumption is surely violated. On the other hand, the same studies indicate
that dense cores are not greatly agitated by waves. Apparently, the waves are unable to affect
gas over lengths of roughly 0.1 pc or less. It is encouraging that MHD theory, once it includes
ambipolar diffusion, predicts that Alfvén waves are rapidly damped below a critical wavelength.
Moreover, this wavelength is indeed of order 0.1 pc, as we now show.

Recall that Alfvén waves represent the periodic, transverse displacement of a magnetic field
line together with its attached fluid element. Of course, it is the gyrating ions and electrons that
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actually move with the field, and these drag along the neutrals through collisions. If the field
displacement is too rapid for such collisions to occur, the neutrals respond only sluggishly and
with reduced amplitude. In effect, the wave has been damped through ambipolar diffusion.

To obtain this result qualitatively, we rederive the wave dispersion relation ω(k), but now
account for the coupling between the neutrals and charged plasma. We again consider per-
turbations of the form exp[i(k · r − ωt)] imposed on a static, uniform background, and we
include both the neutral velocity amplitude δu and its ion counterpart δui. As before, our basic
equations include mass continuity, equation (3.7), and the isothermal equation of state (9.2).
Neglecting gravity, the momentum equation for the neutral component is

ρ
Du

Dt
= −a2

T ∇ρ − ni fin . (10.11)

Here the drag force fin is identical to f ′
in in equation (9.43), since we can ignore the relative

acceleration (as opposed to the velocity) of the ion-electron plasma. The equation of motion
for this plasma, from (10.2), is

0 = j × B/c + ni fin

=
1

4π
(∇ × B) × B + ni fin ,

(10.12)

where we have ommitted the relatively small electron-neutral drag. Finally, the magnetic field
obeys the MHD equation, in the form (10.4).

After applying the perturbations and subtracting off the equilibrium conditions, mass conti-
nuity and the equation of state again follow equations (9.62) and (9.20b), respectively. Substi-
tution of (9.43) for fin into (10.11) leads to the perturbed neutral momentum equation:

−i ω ρ◦ δu = −i a2
T δρk + (ni ρ)◦ 〈σinu

′
i〉 (δui − δu) . (10.13)

For the product of the ion and neutral densities, we retain only its equilibrium value (ni ρ)◦, as
its perturbation generates terms of order δ2. To derive the perturbed momentum equation for
the plasma, we again write fin in terms of velocities, obtaining

0 =
1

4π
(ik × δB × B◦) − (ni ρ)◦〈σinu

′
i〉 (δui − δu) . (10.14)

Finally, application of the perturbation to the first form of equation (10.4) leads to

−i ω δB = ik × (δui × B◦) . (10.15)

If we dot the last equation with k, we again see that δB · k = 0. Moreover, expansion of
the triple product leads to the analogue of equation (9.66):

−ω δB = (k · B◦) δui − (k · δui) B◦ . (10.16)

Rather than consider the most general wave mode, we specialize immediately to a “pure” Alfvén
wave, in which B◦ is parallel to k, while both δu and δui are perpendicular. Under these
conditions, equation (10.16) leads to a relation between the amplitudes δui and δB:

δui = −ω δB
kB◦

. (10.17)
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The equation of state and mass conservation together imply that δP = δρ = 0 for this trans-
verse mode. Hence, equation (10.13) becomes

−i ω ρ◦ δu = (ni ρ)◦ 〈σinu
′
i〉 (δui − δu) , (10.18)

which we recast as

δu = δui

(
1 − i ω

ni〈σinu′i〉
)−1

. (10.19)

We recognize ni〈σinu
′
i〉 as the frequency with which a given neutral atom or molecule is struck

by ions. Equation (10.19) shows that the neutral velocity amplitude δu only equals δui for ω
much smaller than this collisional frequency, and that δu falls as ω climbs much higher. The fact
that the denominator in equation (10.19) is complex means that the neutral and ion velocities
also differ in phase.

Turning to the perturbed plasma momentum equation (10.14), we expand the triple prod-
uct and use equation (10.18) to write the ion-neutral velocity difference in terms of δu alone.
Algebraic manipulation then leads to

δui = −
(

1 − i ω

ni〈σinu′i〉
)
k B◦ δB
4π ω ρ◦

. (10.20)

Equations (10.17) and (10.20) are two expressions for δui in terms of δB. After eliminating δui
and canceling δB in the resulting equation, we arrive at the desired dispersion relation:

ω2

k2
=

B2
◦

4π ρ◦

(
1 − i ω

ni〈σinu′i〉
)
. (10.21)

The new relation is a clear generalization of equation (9.69) and demonstrates how the latter
is only valid at relatively low frequencies. If we let k be a real number, then equation (10.21)
implies that ω is complex. Writing ω = ωR + iωI , where ωR and ωI are both real, we have

exp[i(k · r − ω t)] = exp(ωI t) exp[i(k · r − ωR t] .

The perturbation consists of a plane wave that travels at phase velocity ωR/k and has an ampli-
tude that increases or decays exponentially in time, depending on the sign of ωI .

These considerations motivate us to solve equation (10.21) explicitly for ω. Introducing the
Alfvén velocity VA via equation (9.70), we recast (10.21) as a quadratic equation in ω:

ω2 +
i V 2

A k
2

ni〈σinu′i〉
ω − V 2

A k
2 = 0 .

We thus obtain

ω = − i V 2
A k

2

2ni〈σinu′i〉
± VA k

2

√
4 − V 2

A k
2

n2
i 〈σinu′i〉2

. (10.22)

In order for the perturbation to have any propagating component, the quantity inside the square
root must be positive. If we rewrite this condition in terms of the wavelength λ ≡ 2π/k, we find
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that propagation requires λ > λmin, where

λmin ≡ π VA
ni〈σinu′i〉

= 0.06 pc
(

B◦
10 µG

)( nH2

103 cm−3

)−1

.

(10.23)

The critical length λmin is intriguingly close to the observed dimensions of dense cores.
This result lends support to the idea that the cores form in relatively quiescent, wave-free envi-
ronments, but does not by itself aid in understanding the formation process. Note also that even
waves with λ < λmin have changing amplitudes. Inspection of equation (10.22) reveals that, in
this case, both ω-values are negative and imaginary, corresponding to decay. The characteristic
damping time is the reciprocal of |ωI |, which is roughly

τdamp ≈ ni〈σinu
′
i〉

V 2
A k

2

= 1 × 104 yr
(

λ

0.06 pc

)2 (
B◦

10 µG

)−2 ( nH2

103 cm−3

)3/2

.

(10.24)

We see that waves with λ up to about 30λmin must be periodically regenerated if they are to
survive for parent cloud lifetimes of order 107 yr.

10.2 Inside-Out Collapse

One major difficulty in modeling gravitational collapse is that the process spans an enormous
range of distances. Physical understanding is best achieved by considering regimes where dif-
ferent effects predominate. Thus, the interstellar magnetic field strongly influences cloud mor-
phology on the largest relevant scales (L ∼ 1017 − 1018 cm). Much closer to the relatively tiny
protostar, i. e., for L ∼ 1011 − 1014 cm, cloud material is moving at high speed, but is being di-
verted by the centrifugal force (§ 10.4). In between lies the regime where gas is being released
from thermal and magnetic support, and is entering a state of free fall. The collapse here has an
inside-out (or nonhomologous) character. That is, the region of infall slowly spreads into static,
more rarefied gas.

10.2.1 The Spherical Problem

We may elucidate this spreading process, as well as other key elements of collapse, by focusing
on a highly simplified model. Ignoring momentarily both magnetic and rotational effects, let
us follow the evolution of a perfectly spherical cloud supported solely by thermal pressure. It
goes without saying that such objects exist only in the theorist’s imagination. But we can learn
much by probing their dynamics, just as we did through analysis of their hydrostatic structure
and stability in § 9.1.

Within a spherical cloud, a fluid element at radial distance r from the origin only senses the
gravitational force from the mass interior to it. Suppose we designate this interior mass as Mr,
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a function of both r and t. That is, we define

Mr ≡
∫ r

0

4π r2ρ dr . (10.25)

Our goal is to use Mr as a dependent variable in a system of differential equations. From
(10.25), it follows that

∂Mr

∂r
= 4π r2ρ . (10.26)

To evaluate ∂Mr/∂t, we differentiate under the integral sign in equation (10.25) and utilize the
spherical version of the continuity equation (3.7):

∂ρ

∂t
= − 1

r2
∂(r2ρ u)
∂r

, (10.27)

to find
∂Mr

∂t
= −4π r2ρ u . (10.28)

Finally, we need the full momentum equation (3.3) with zero magnetic field. Adopting the usual
isothermal approximation and noting that the gravitational force per unit mass is −GMr/r

2, we
have

∂u

∂t
+ u

∂u

∂r
= −a

2
T

ρ

∂ρ

∂r
− GMr

r2
. (10.29)

For a given set of initial and boundary conditions, we may numerically solve equa-
tions (10.26)–(10.29) for the variables Mr, ρ, and u as functions of r and t. Note that positive
u-values indicate expansion, and negative ones contraction. Choosing the initial state to be one
of the spherical equilibria of § 9.1 would only give the uninteresting result that u = 0 for all
time, i. e., the cloud would simply remain in force balance. Of course, we can always specify
a cloud that is slightly perturbed from equilibrium, e. g., one with small (subsonic) velocities
throughout its interior. If the equilibrium were stable, the cloud would proceed to oscillate in
a superposition of normal modes. If unstable, the object would either collapse or disperse. An
unstable initial state is difficult to realize in practice, since such a cloud could not have existed
for any substantial time prior to its collapse. Although it is instructive to consider a range of
starting states, the most relevant one physically is the equilibrium model that is marginally sta-
ble. Within the sequence presented in § 9.1, this is the cloud with the Bonnor-Ebert mass, given
by equation (9.16).

The simplest and most widely used boundary conditions are either constant pressure at
the edge or constant volume. In the first case, the cloud shrinks in time to compensate for any
density (and therefore pressure) drop in its outer region. In the second, one sets the fluid velocity
to zero at a fixed radius, where the density and pressure do eventually fall. Neither choice is very
satisfactory. The treatment of the boundary should ideally reflect physical conditions beyond
the realm of the calculation. Since there is no adequate way to describe, in a spherical model,
the anisotropic force of magnetic support or its loss through ambipolar diffusion, one is forced
to these rather ad hoc prescriptions. However, once the inside-out collapse is established, the
boundary condition has little effect until the end of the calculation.
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Figure 10.5 Velocity profiles in a collapsing, isothermal sphere, shown as a function of nondi-
mensional radius ξ. The four times, measured in units of tff and relative to the instant of protostar
formation, are t1 = −0.0509, t2 = −0.0026, t3 = −0.0001, and t4 = 0. Here, tff is the free-fall
time associated with the cloud’s initial central density.

On the other hand, numerical results for the earliest phase are heavily influenced by both ini-
tial and boundary conditions. Figure 10.5 shows the evolution of the velocity u(r), as obtained
in a calculation of the constant-pressure type. Notice that the radial distance is the nondimen-
sional one defined by equation (9.6). The initial configuration is the marginally stable (Bonnor-
Ebert) state, but with the density increased everywhere by 10 percent. The cloud is therefore
too massive to be in force balance and begins to collapse. Starting at the outer edge, the velocity
profile grows until every mass shell is accelerating inward. The figure tracks this change over
a time interval of 0.05 tff , where tff is the free-fall time associated with the cloud’s initial cen-
tral density (recall equation (3.15)). At the last instant shown, 44 percent of the cloud mass is
moving supersonically.

This rapid, inward motion leads to shock formation and strong compression of the central re-
gion. Following this process is technically challenging and demands continual refinement of the
spatial grid used in the numerical computation. An alternative is simply to collect all infalling
matter into a central “sink cell.” One keeps track only of the mass in this cell, recognizing that
a separate, interior calculation is needed to resolve the details within this small volume. The
increasing mass accurately represents the total being accumulated by the protostar, even though
the size of the cell vastly exceeds stellar dimensions.

10.2.2 Mass Accretion Rate

A quantity of prime importance, then, is the increase per unit time of the sink-cell mass. This
mass accretion rate, denoted Ṁ , largely determines the properties of the growing protostar
(Chapter 11). Mathematically, we want the inner limit of ∂Mr/∂t:

Ṁ ≡ lim
r→0

−4π r2ρ u . (10.30)
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Figure 10.6 Evolution of mass accretion rate in two collapsing, isothermal spheres. Time is
measured after the start of protostar formation, and is again in units of tff . Each cloud has the
initial density contrast indicated.

Figure 10.6a shows the evolution of Ṁ(t) for the same calculation as the previous figure, but
for times after protostar formation. Notice that the rate is written in units of a3

T /G, which is the
only combination of relevant constants with the proper dimensions. The time is again relative
to tff at the initial central density.

Soon after the protostar forms, Ṁ is relatively high, as the material previously set into mo-
tion reaches the center. The rate then quickly falls and starts to level off before it abruptly drops
to zero. This final truncation represents the collapse of the cloud boundary into the sink cell.
Since the surrounding matter is assumed to have zero density, Ṁ vanishes. Such a prescription
for the environment is as unrealistic here as it was for magnetized configurations. In both cases,
there is no reason why additional mass should not be drawn in by the falling pressure.

Just prior to the termination of collapse, the function Ṁ is approaching

Ṁ = m◦
a3
T

G
, (10.31)

where m◦ is a number of order unity. This asymptotic behavior is highlighted if we start with
a more centrally condensed equilibrium model. The curve in Figure 10.6b shows Ṁ(t) for an
initial state with density contrast ρc/ρ◦ = 220. Since the central tff is now shorter, the elapsed
nondimensional time t/tff increases. The accretion rate still drops rapidly at first, but main-
tains a modest m◦-value over a longer period before the final truncation. The more condensed
cloud is dynamically unstable, so we must view this result with caution. Nevertheless, the com-
parison demonstrates that, while the initial behavior of Ṁ is sensitive to the precise starting
configuration (including the manner of its perturbation), the final leveling off is not.

Many other calculations, although differing in detail, give essentially the same result. For
example, one may start with a uniform-density sphere. If one applies a constant-volume bound-
ary condition, the density just inside the rigid outer surface immediately drops. The consequent
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fall in pressure retards the flow of gas in this region, while the density at the center builds up
more quickly. In this manner, the cloud attains a peaked density profile similar to the marginally
stable case, but bypasses the large velocities prior to protostar formation. The mass accretion
rate then settles to a roughly steady value without the early, transient burst.

How, then, are we to interpret equation (10.31)? Once the protostar forms, nearby gas is
in a state of free fall. That is, the retarding effect of thermal pressure is small compared to
gravity, and the speed of a fluid element is nearly equal to Vff ≡ (2GM∗/r)1/2. Here, M∗
is the growing protostellar mass, equal to Ṁt for a steady accretion rate.1 With increasing
distance from the protostar, the gravitational force weakens until the effect of pressure becomes
appreciable. The transition to free-fall collapse thus occurs at the radius Rff where Vff ≈ aT ,
i. e., where GṀt/Rff ≈ a2

T . We may rewrite this latter condition as

Ṁ ≈ a2
T Ṙff

G
, (10.32)

where we have used Rff/t ≈ dRff/dt ≡ Ṙff .
From this last equation, we deduce that Ṙff > 0 as long as Ṁ > 0. That is, the region of free

fall spreads in time as the mass and gravitational influence of the protostar increase. Beyond the
infalling region, the cloud is still in hydrostatic balance. A given mass shell only starts to fall af-
ter it loses pressure support. Once this occurs, inward motion of the shell weakens its support of
the next shell beyond it. The initiation of collapse through pressure erosion is thus a progressive,
wave-like phenomenon (see Figure 10.7). Indeed, the boundary of the infall region constitutes
a rarefaction wave, a phenomenon encountered generally in fluid dynamics. Both rarefaction
and sound waves represent the propagation of small disturbances in the ambient pressure, and
both travel at the sound speed, here aT . Setting Ṙff equal to aT in equation (10.32), we recover
equation (10.31) for Ṁ .

10.2.3 Thermal Effects

Equation (10.31) states that, to within a factor of order unity, the asymptotic accretion rate de-
pends only on the ambient temperature. To some extent, this simple result reflects our omission
of magnetic support prior to collapse. However, the effect of the additional force is subtle. As
we shall discuss in § 10.3, the cloud portion that finally collapses is that which was not magnet-
ically supported, and equation (10.31) remains our best quantitative estimate. This important
relation thus sets the basic time scale for the protostar phase. Supplying numerical values, we
have

Ṁ ≈ 2 × 10−6M� yr−1

(
T

10 K

)3/2

. (10.33)

Thus a protostar of 1 M� accumulates its mass in about 5 × 105 yr. Within the scope of stellar
evolution, this period is exceedingly brief, even compared to the 3 × 107 yr pre-main-sequence
contraction time for a star of the same mass.
1 The free-fall velocity Vff should not be confused with the similar virial velocity Vvir, introduced in equation (3.20).

The former refers to a test particle falling toward a point mass, while the latter is the characteristic speed within a
distributed volume of self-gravitating gas.



10.2 Inside-Out Collapse 297

Figure 10.7 Rarefaction wave in inside-out collapse (schematic). An interior region of diminished
pressure advances from radius r1 at time t1 to r2 at t2. Within this region, gas falls onto the central
protostar of growing mass.

The freely falling portion of the cloud has a structure determined by the strong gravity of
the protostar, rather than by conditions prior to collapse. If we focus on some fixed volume
relatively close to the star, gas crosses this region in an interval brief compared with the evolu-
tionary time scale, M∗/Ṁ . Since there is no chance for appreciable mass buildup in any such
volume, we may ignore the left-hand side of the continuity equation (10.27) and conclude that
r2ρu is a spatial constant throughout the collapsing interior. Setting u = −Vff and utilizing
equation (10.30), we solve for the density to find

ρ =
Ṁ r−3/2

4π
√

2GM∗
. (10.34)

For comparison, we recall from § 9.1 that all spherical equilibria have ρ declining as r−2 in
their outer regions. Thus, both the density and pressure profiles become flatter in the region of
collapse, as illustrated in Figure 10.7.

The numerical calculations we have discussed assume spherical symmetry not only in the
initial configuration, but at all subsequent times. It is not difficult to relax the second restriction.
That is, one still begins with a spherical, thermally supported cloud, but now follows its collapse
with the full, three-dimensional equations of mass continuity (3.7) and momentum conservation
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(3.3), together with Poisson’s equation (9.3) for the gravitational potential. The result is that the
cloud evolution is virtually unchanged. In three dimensions, small, localized density enhance-
ments inevitably arise. Once these enter the collapsing region, however, the straining motion
induced by the protostar’s gravity (i. e., the increase of |Vff | with decreasing r) tends to pull them
apart. Inside-out collapse is thus stable against fragmentation. The situation is quite different
for clouds that are initially far out of force balance, as we discuss in Chapter 12.2

One reason that pressure is ultimately ineffective in halting collapse is that the gas tempera-
ture has been assumed constant. Building up an adverse pressure gradient thus requires a steep
inward rise of density. High density, on the other hand, only enhances the effect of self-gravity.
It is for this reason, of course, that isothermal equilibria can only tolerate a modest density
contrast before they are unstable to collapse.

How realistic, though, is the isothermal assumption? In the case of hydrostatic configu-
rations, we have seen that the temperature responds rather sluggishly to cosmic-ray heating
because of efficient cooling by CO and dust grains (recall Figure 8.6). A fluid element within
a collapsing cloud has two additional sources of energy input. One is the compressional work
performed by the surrounding gas. Here, the power input per unit volume is

Γcomp =
P

ρ

Dρ

Dt

=
P u

ρ

∂ρ

∂r
,

(10.35)

where we have assumed steady-state flow in the second form of this relation.
Suppose we now utilize ρ(r) from equation (10.34) to evaluate Γcomp. Then, at radii where

this rate is appreciable, we find it is overwhelmed by the second new source of energy, the radi-
ation from the protostar and its surrounding disk. This luminosity stems from the kinetic energy
of infall and is generated at the stellar and disk surfaces (Chapter 11). It is the dust grains within
the flow that are actually irradiated and they respond, as usual, by emitting their own infrared
photons. The temperature of the infalling envelope does not climb steeply until the ambient
density is large enough to trap this cooling radiation. As we will see in § 11.1, such trapping
occurs at a radius of roughly 1014 cm. The gas at this distance is already traveling at such high
speed that the infall process cannot be impeded. Thus, the departures from isothermality, while
both interesting physically and critical observationally, do not affect the overall dynamics of
inside-out collapse.

10.3 Magnetized Infall

Within the sequence of spherical equilibria discussed in § 9.1, there is only one marginally un-
stable model. We have argued that a dense core approaches the point of collapse quasi-statically,
i. e., without ever being far removed from force balance. The implication is that the object must

2 Detailed analysis reveals that nonspherical perturbations within the free-fall region do grow, but very weakly. The
density contrast over the background increases as (t◦ − t)1/3, where t◦ is the time at which the unperturbed fluid
element would reach the origin.
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eventually reach the unique, Bonnor-Ebert configuration just before it collapses. This statement
is true regardless of the core’s prior history. Unfortunately, this simplicity vanishes with the
addition of a magnetic field.

10.3.1 Origin of Dense Cores

The reason for the new complication, from a mathematical perspective, is that an additional
function, dM/dΦB , now enters the equations. Instead of one critical state, we now have an
infinite number, each characterized by its own flux distribution. Since, moreover, dM/dΦB
changes as a result of ambipolar diffusion, the problem of selecting the correct marginally stable
state cannot be separated from the issue of prior history. Strictly speaking, one must trace the
origin of dense cores in order to understand their collapse.

Stated in this manner, the collapse problem sounds virtually intractable. There is little ob-
servational evidence bearing on dense core origins, although the current millimeter-wavelength
maps of low-mass, starless configurations are clearly a step in the right direction. On the theo-
retical front, we will need to understand better the mechanical support provided by MHD waves
before we can calculate the growth of quiescent substructures. The word “quiescent” is the
operative one here. A viable theory must explain the appearance and survival until collapse of
regions that are distinct, in this important sense, from their environment.

As an aside, we note that computer simulations of fully turbulent clouds, mentioned briefly
at the end of Chapter 9, often find clumpy substructure. In a typical calculation, one again im-
poses a random velocity field on an initially uniform gas. Self-gravity is at first omitted from the
simulation. Unless the stochastic velocity disturbance is maintained continually, the turbulence
rapidly decays. If it persists, density inhomogeneities develop throughout the magnetized fluid.

At this point, self-gravity is introduced within the dynamical equations. Compressed sites
immediately go into collapse. That is, their density quickly climbs, as their size shrinks below
the spatial resolution of the code. A snapshot of the computational box shows a collection of
small lumps within a turbulent background. The visual impression is similar to what one thinks
may be occurring in a cluster-forming molecular cloud.

Even the prolate structure of observed cores can be obtained in these numerical studies.
However, the resemblance is only superficial. The simulated entities are fully dynamical from
the start. That is, they have internal velocities comparable to the local free-fall value. To what
state are they collapsing? With even higher resolution, we would witness opposing gas streams
colliding and shocking. The resulting cooling would indeed lead to denser structures. But the
buildup of a true star, with its vastly higher density, requires inside-out collapse, which we do
not expect under these circumstances.

10.3.2 Flux Loss During Collapse

Return now to the case of a structure initially closer to force balance. Its evolution must embody
certain key features. One is ambipolar diffusion. This drift of cloud matter across field lines sets
the time scale for contraction, allowing gravity to compress the gas without excessive buildup
of opposing magnetic forces. The inevitable result is that the function dM/dΦB rises near
the central axis (ΦB = 0), regardless of its initial form. This development proceeds until the
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cloud becomes gravitationally unstable, and it continues during the subsequent collapse. The
actual form of dM/dΦB at the point of marginal stability is hardly likely to be the illustrative
one in equation (9.53). If the current numerical models were correct and dense cores become
increasingly flatter structures, then equation (9.59) for thin slabs would apply. The sequence in
Figure 10.3 indeed exhibits the onset of rapid, central contraction once dM/dΦB at the center
(which equals Σc/Bc) approaches the limit in equation (9.59). The thin-slab approximation
is not valid, however, for a more spherical or prolate configuration. Here, M � MBE prior to
collapse, so that equality of M and MΦ does not mark the stability transition.

Another general result from theory is that the nature of the support against gravity varies in
different regions of the cloud. Thermal pressure is strongest in the dense, central part, where the
magnetic flux has diffusively leaked out. In the farthest reaches of the cloud, i. e., at distances
greater than λmin in equation (10.23), Alfvén-wave support is significant, while ordinary gas
pressure is not. Also important here are tension and pressure from the static, ambient field. This
static force must predominate throughout much of the intermediate region.

Finally, the collapse itself should proceed in an inside-out fashion, at least after the formation
of the central protostar. The reason is that the force of gravity toward the star increases too
steeply to be opposed by thermal pressure. Thus, as we have seen, the growth in stellar mass
must be accompanied by a spreading of the infall region. This spreading sets into collapse that
part of the cloud originally supported by pressure.

Figure 10.8 sketches a conception of dense core evolution that incorporates these three basic
elements. Panel (a) depicts a region of relatively uniform gas and magnetic field, presumably
the environment out of which the cores originate. Any incipient density enhancement, such as
the one shown, attracts additional mass through its gravity. The incoming matter either diffuses
across the field or else slides down it. Both types of motion occur. However, the gas will tend
to accumulate along the field, i. e., in the direction where it meets the least resistance. Thus, it
forms the elongated structure shown in panel (b). Meanwhile, the cross-field drift also distorts
B, in the manner depicted. This distortion occurs through the collisional drag exerted on the
gyrating ions and electrons by the inflowing neutral gas, and results in a buildup of magnetic
tension.

As the central density grows, the field continues to pinch together until it reaches a configu-
ration like the one sketched in panel (c). Here we are approaching a “split monopole” structure.
The field lines diverge nearly radially from the center, but their direction reverses across the
equatorial plane. Thus, the net flux through any surface enclosing the origin still vanishes, as
required by ∇ · B = 0. The split monopole has effectively divided the cloud into two types of
regions. In the pinched columns above and below the center (labeled A and A′ in the figure), the
pull of gravity is counteracted almost entirely by the thermal pressure gradient. In the extended
equatorial zone B, which wraps around the axis by azimuthal symmetry, magnetic tension and
pressure take up this role, with the former increasing toward the origin. Finally, wave support
dominates in the outermost regions, not depicted here.

In the course of time, the columns A and A′ grow as mass settles from the more turbu-
lent, wave-supported exterior. Rapid contraction, and ultimately collapse, begin once the linear
extent of a column exceeds the Jeans length λJ , evaluated at the unperturbed density and tem-
perature. As the protostellar mass grows, the zone of infall works its way out in the columns,



10.3 Magnetized Infall 301

Figure 10.8 Origin of dense cores (schematic). A small region of enhanced density slowly grows
by accruing external matter, simultaneously pulling in the ambient magnetic field. At the last
epoch shown, severe field pinching has created two columns separated from a broad equatorial
zone.

with the front of the associated rarefaction wave moving at the local sound speed.3 Thus, equa-
tion (10.31) is still a reasonable approximation for the mass accretion rate Ṁ , despite the fact
that the geometry is substantially altered from spherical. The protostar’s gravity also pulls on
the matter in the equatorial region. This tug can be resisted in part by increased field curvature
and tension, so that inward mass flow is not as large as from the two columns.

Existing collapse calculations generally start with unstable clouds of restricted mass that
quickly flatten, as exemplified by Figure 10.3. Such prompt, global collapse to the equatorial
plane is quite different from the sequence we have sketched, which involves slow buildup along
field lines followed by inside-out collapse. Nevertheless, these more detailed studies continue
to provide insight. One point, already mentioned, is that ambipolar diffusion must continue
even during the collapse. Figure 10.9 shows the evolution of M(ΦB) from another numerical
investigation of a collapsing cloud. The initial flux distribution corresponds to equation (9.53),
i. e., it represents a uniform field threading a spherical cloud. As the collapse proceeds, M(ΦB)
increases for relatively small ΦB-values. That is, the innermost flux tubes gain mass at the
expense of the outer ones. Notice that the flux here is measured relative to the total cloud value
Φtot, which itself diminishes with time, as sketched in Figure 10.2.

Within the framework of our evolutionary picture, ambipolar diffusion occurs chiefly in the
equatorial region B. One should also bear in mind that Figure 10.9 was obtained by assuming
that the electron fraction everywhere declines as n−1

H . As we saw in Chapter 8, such a falloff
only occurs at relatively high densities, where ions and electrons recombine on grain surfaces.
For lower densities, the n−1/2

H falloff in equation (8.32) applies, and ambipolar diffusion is less
efficient. The flux in the outermost part of the equatorial zone cannot decrease greatly during
collapse, even though diffusion proceeds rapidly in the deeper interior.

To quantify matters, we may compare the magnitude of vdrift with the local speed of the
neutrals. Once collapse is underway and the protostar has formed, we may crudely approximate
the latter as the free-fall speed Vff . We assume, moreover, that the magnetic force is comparable
(though less than) gravity. Note that the first approximation becomes more accurate as we

3 Strictly speaking, the traveling front is an MHD wave in this case. Since the disturbance is longitudinal and k is
nearly parallel to B, the phase velocity is close to aT , as in equation (9.73).
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Figure 10.9 Magnetic flux loss in a
collapsing cloud. As in Figure 10.2,
the mass enclosed within a given
flux increases. The total flux thread-
ing the cloud, Φtot, diminishes with
time.

approach the star. On the other hand, the second assumption eventually breaks down in this
same limit, so we are restricted to some intermediate region of the cloud. Equations (10.3) and
(10.10) then imply that

|vdrift|
Vff

≈ Vff

2ne〈σinu′i〉�

= 0.02
( nH

104 cm−3

)−1/2
(

�

0.1 pc

)−3/2 (
M∗

1 M�

)1/2 (10.36)

within the appropriate region. Here we have substituted M∗ for Minner in equation (10.10),
and have replaced r by � in the definition of Vff . The numerical estimate further employs the
ionization law of equation (8.32).

Equation (10.36) confirms that |vdrift|/Vff is less than unity at large distances. Here, where
wave-like motion is still prevalent, the matter and field are tied together. However, the velocity
ratio is appreciable even in this region and increases as the gas approaches the star, since the
product nH�3 declines. Once the two speeds become comparable, the neutral material effec-
tively decouples from the field. In the absence of a reliable density distribution in the equatorial
region, it is difficult to be more quantitative. However, the conclusion seems inescapable that
the contracting gas in this zone soon leaves the magnetic field behind. 4

10.3.3 Magnetic Reconnection

Despite this slippage, the infalling matter retains some magnetization. What becomes of this
residual field? Thus far, our discussion has neglected the role of Ohmic dissipation. That is,
we have continued to assume that the ion-electron plasma acts like a perfectly conducting fluid,
even as this fluid and its embedded field move relative to the neutral matter. This assumption,

4 This slippage occurs even before a true protostar forms. As soon as the cloud becomes substantially condensed, the
interior fluid velocity is approximately Vff , where the relevant mass is that of the central lump. Such early loss of
magnetic support is consistent with the decoupling of Alfvén waves over distances comparable to the sizes of dense
cores; recall equation (10.23).
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Figure 10.10 Topology of mag-
netic reconnection (schematic).
Field lines of opposite direction
press together, creating a small re-
gion (dashed rectangle) of high
Ohmic dissipation. Pressure on
this region expels fluid laterally, as
indicated.

too, eventually breaks down. At sufficiently high densities, the field being dragged in under-
goes magnetic reconnection. This process effectively destroys magnetic flux before it can be
transported onto the star and its disk.

Reconnection occurs whenever field lines of opposite direction are pressed together. His-
torically, the phenomenon was first invoked to explain the large luminosities seen in impulsive
solar flares. Here, as in all reconnection events, the outburst represents energy liberated from the
magnetic field. Since B reverses sign, its magnitude must go through zero (see Figure 10.10).
The magnetic pressure thus has a local minimum, and the field on either side of the interface
presses inward. Concurrently, fluid is expelled sideways, as indicated in the figure. The field
lines then crowd in more tightly, and the local gradient continues to rise. Magnetic energy is
dissipated as heat within a restricted region, indicated by the dashed rectangle in the figure.
Here, antiparallel lines annihilate one another, changing the field topology. From a mathemat-
ical perspective, the final, Ohmic term in the MHD equation (9.39) increases until it becomes
dominant, regardless of the specific conductivity value.

These considerations are clearly applicable to protostellar collapse, where any residual field
eventually develops large gradients. Figure 10.8, for example, indicates that the equatorial B
becomes severely pinched as matter flows toward the protostar. Such pinching cannot continue
indefinitely without bringing opposing field lines so close that reconnection ensues. The result-
ing change in topology is shown in Figure 10.11. Here we see the interior field being pulled to
the left before breaking off into a closed loop. This latter configuration, known as an “O-type
neutral point,” gradually shrinks as the enclosed current dies away. Outside the loop is a re-
connecting “X-type neutral point,” similar to that depicted in Figure 10.10. Even farther to the
right, B reattaches to the largescale equatorial field.

The analytical study underlying Figure 10.11 does not include the back-reaction of the
stressed field on the contracting matter. It also neglects rotation of the gas, which further tangles
B (see § 10.4). Accounting for such complications, along with the slippage due to ambipo-
lar diffusion, has thus far prevented any detailed calculations of protostellar reconnection. In
fact, the underlying theory of reconnection itself is still incomplete. For example, it is unclear
whether the opposing fields near an X-type point annihilate within a single region or over a
patchy network of smaller zones. Referring again to Figure 10.10, the second possibility arises
if the fields being pressed together have small wiggles, so that dissipation is greater at some
locations than at others. In the end, however, such issues may have little bearing on the net
energy dissipation rate, which could be determined solely by the inward transport of magnetic
flux.
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Figure 10.11 Distortion of field
lines in a contracting cloud. Mat-
ter flowing to the left pulls on the
field until it pinches off, creating
both an O-type neutral point and
a reconnecting X-type point.

As we have indicated, increased magnetic tension in the equatorial region should retard infall
from this direction. What terminates collapse along field lines, i. e., from the columns A and A′

in Figure 10.8, is far less clear. Eventually the rarefaction wave must enter the more turbulent
region supported by Alfvén waves. The drop in thermal pressure created by passage of the wave
would then no longer trigger fresh infall. Lacking a more detailed picture of wave support, we
can say little about how this transition actually occurs. In Chapter 13, we will adduce evidence
from stellar evolution theory that supports equation (10.31) as a reasonable estimate for the
time-averaged Ṁ(t). The same calculations indicate that the decline in accretion cannot occur
too gradually, as the resulting, optically revealed stars would then have radii smaller than those
inferred from observations. In this sense, the cutoff in new cloud material for the star must be
rather efficient.

10.4 Rotational Effects

Thus far, we have neglected entirely the centrifugal force. We previously considered, but ulti-
mately discounted, its effect in cloud equilibria, citing the observed low rotation rates for dense
cores. During collapse, however, the initial angular rotation speed Ω◦ of a fluid element orig-
inally located at cylindrical radius �◦ increases to Ω◦(�◦/�)2 once the element reaches the
smaller radius �. The centrifugal force therefore increases as �−3, faster than the �−2 rise in
gravitational attraction toward any fixed interior mass. If the ratio of the two forces is initially
of order 10−3 (recall equation (3.31)), it will reach unity once � has decreased by the same
factor. Thus, rotation must play a key role in the deep interior of a collapsing cloud.

This reasoning is qualitatively correct but overly simplified. First, the mass interior to an
infalling fluid element is not fixed, apart from the idealized case of spherical collapse. Second,
we have tacitly assumed that every element strictly conserves its specific angular momentum.
This statement is true in an axisymmetric, nonmagnetic fluid medium, where the absence of az-
imuthal gradients precludes any torques about the central axis. Indeed, we used angular momen-
tum conservation in Chapter 9 to generate models of rotating clouds. An embedded magnetic
field, however, introduces torques and angular momentum transfer even if the configuration re-
mains perfectly axisymmetric at all times. The reason is that B is anchored in the more rarefied
medium outside the cloud proper. Any spinup during collapse therefore twists the field and
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Figure 10.12 Rotational twisting of a field line (schematic). The
azimuthal fluid velocity, pointing into the page, bends the field and
creates a resisting tension force FB .

Figure 10.13 Derivation of magnetic torque. An el-
emental slab, of thickness ∆s and top and bottom ar-
eas A+ and A−, respectively, is located a distance�
from the axis, and subtends the azimuthal angle ∆φ.
Two neighboring, poloidal field lines are tangent to
the edges of the slab. The azimuthal field component
points into the page, as indicated.

increases the local magnetic tension (see Figure 10.12). This tension in turn creates a braking
torque on the element that counteracts the spinup and lowers the specific angular momentum.

10.4.1 Magnetic Braking

To assess magnetic braking more quantitatively, we adopt the cylindrical coordinate system
from Figure 9.5. We consider a magnetic field with components in all three directions and
designate as Bp ≡ √

B2
� +B2

z the poloidal contribution, i. e., the projection of the full B
onto a meridional plane of constant φ. Figure 10.13 shows two neighboring poloidal field lines.
Between them, lying a distance� from the axis, is a small fluid element in the form of a patch of
thickness ∆s. Here, s measures the distance along a poloidal field line. The element is wedged
between two meridional planes that span the small angle ∆φ, also indicated in the figure.

Assuming that both the fluid configuration and the field are axisymmetric, the only nonvan-
ishing component of magnetic torque on the element is in the z-direction. This component, as



306 10 The Collapse of Dense Cores

measured per unit volume, is γz = �fφ, where the volumetric magnetic force is given by

fφ =
1

4π
[(∇ × B) × B]φ

=
1

4π

[
B�
�

∂(�Bφ)
∂�

+ Bz
∂Bφ
∂z

]
.

(10.37)

Here, we have again invoked axisymmetry to set all φ-derivatives equal to zero. The torque is
therefore

γz =
1

4π

[
B�

∂(�Bφ)
∂�

+ Bz
∂(�Bφ)
∂z

]

=
1

4π
B · ∇p (�Bφ) ,

where ∇p ≡ (∂/∂�, ∂/∂z) is the poloidal gradient. It is convenient to recast the last equation
as

γz =
1

4π
Bp

∂(�Bφ)
∂s

. (10.38)

The actual torque Γz exerted on the element is given by the product of γz and the small
volume:

Γz =
1

4π
BpA ∂(�Bφ)

∂s
∆s , (10.39)

where A is the surface area of the patch. In Figure 10.13, there are actually two relevant areas,
A+ and A−, which differ slightly. A similar consideration applies to Bp, which also varies
across ∆s. However, ∇ · B = 0 implies that the total magnetic flux entering the small vol-
ume must equal that leaving it. Axisymmetry guarantees that this condition is met for the flux
penetrating the side walls, i. e., that contributed by Bφ. For the outer and inner faces, we need

(BpA)+ = (BpA)− .

Hence, we may rewrite equation (10.39) as

Γz =
1

4π
[
(�BφBpA)+ − (�BφBpA)−

]
. (10.40)

10.4.2 Torsional Alfvén Waves

This form of the equation suggests another interpretation of magnetic braking. We view the
twisted field itself as transporting a certain flux of angular momentum FJ along the poloidal
direction. The net torque exerted by the field on our patch is then the rate at which angular
momentum enters the inner face minus its efflux from the outer one. This interpretation corre-
sponds to equation (10.40) provided we identify

FJ = − �

4π
BφBp . (10.41)
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Remember that it is the z-component of angular momentum which is actually being transported.
The minus sign in equation (10.41) means, for example, that this component is flowing upward
in Figure 10.12, where Bφ is negative near the fluid element.

Suppose we now take some closed, two-dimensional surface S to represent the boundary
of the rotating cloud. Then the total outflow of angular momentum due to magnetic braking
is found by integrating equation (10.41) over this surface. Since Bp = B · n, where n is the
outward normal vector, the angular momentum gain is

J̇ =
1

4π

∫

S
�BφB · n d2x . (10.42)

This is again negative if Bφ points in the opposite direction as the rotation. The angular mo-
mentum leaving the cloud flows into the surrounding medium. That is, the twist imposed by
the rotating cloud propagates along field lines through the associated magnetic tension. The
propagation speed is the local value of VA. The evolving field configuration is thus known as
a torsional Alfvén wave, although it is quite distinct from the waves we have previously dis-
cussed.5

The net effect of magnetic braking on a dense core is to enforce corotation with the sur-
roundings. As we have emphasized, one cannot cleanly distinguish the formation of a dense
core from its later contraction once magnetic fields are involved. The braking phenomenon
must operate from the earliest times, as gas condenses along field lines and begins to create the
equatorial pinch illustrated in Figure 10.8. Over the bulk of the cloud, corotation should be a
good approximation even during collapse, i. e., the internal, local Ω should equal Ω◦ in the more
rarefied exterior. The reason is that the braking process propagates at VA, a quantity close to
the sound speed aT . Hence, the time required to enforce corotation over a characteristic radius
�◦ is roughly equal to the sound-crossing time, which, in turn, is close to tff for the cloud as a
whole. (In virial-theorem language, this latter statement is equivalent to U ≈ |W|; recall § 3.3.)

The actual degree of twisting required to maintain corotation is rather small. To see this,
consider a highly idealized cylindrical cloud of constant density ρ◦, oriented along the z-axis
and embedded in an initially static external medium (see Figure 10.14). A uniform magnetic
field B◦ also lies in the z-direction. If, at t = 0, the cloud is set rotating uniformly with angular
speed Ω◦, the braking action will propagate downward, as sketched by the shading in the figure.
Meanwhile, a torsional Alfvén wave travels upward, setting the medium into rotation. Suppose
that, after an interval ∆t, a cloud segment of length ∆z has ceased rotating. If �◦ is the cloud
radius, the change in angular momentum up to that time is

∆J = −π ρ◦�4
◦ Ω◦ ∆z .

5 The plane-polarized Alfvén waves introduced in § 9.5 are small-amplitude disturbances in which δB and k remain
fixed in direction, at least over many wavelengths. In torsional waves, δB can be arbitrarily large, but must have a
component that twists around the propagation direction. Note finally that one can form circularly polarized Alfvén
waves by adding together two plane-polarized waves whose δB-vectors are spatially orthogonal and oscillate 90◦
out of phase. These disturbances, like the plane-polarized ones, carry no angular momentum.
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Figure 10.14 Magnetic braking of a rotating cylinder.
A straight magnetic field B◦ is frozen in the cylinder
of radius �◦, when the cylinder begins to rotate with
angular speed Ω◦. A torsional Alfvén wave propagates
upward, while a portion of the cylinder with height ∆z
(shaded region) has ceased rotating.

Next consider J̇ from equation (10.42). Letting Bφ be the radius-averaged azimuthal field
component at the cloud face, we have

J̇ ∆t =
B◦Bφ

6
�3

◦ ∆t .

We now equate ∆J to J̇ ∆t. Noting that ∆z/∆t = VA = B◦/
√

4πρ◦, we find

|Bφ|
B◦

=
3�◦ Ω◦

2VA

= 0.1
(

�◦
0.1 pc

) (
Ω◦

10−14 s−1

) (
B◦

30 µG

)−1 ( nH2

104 cm−3

)−1/2

.

(10.43)

10.4.3 Centrifugal Radius

These considerations indicate that magnetic braking is both rapid and efficient. On the other
hand, the braking must fail within the deeper interior of a more realistic, collapsing cloud. As
the density climbs, the matter and field decouple because of the drop in ionization fraction. In
addition, much of the remaining field is left behind once it is severely pinched and reconnects.
Thus, the matter inside some volume of the equatorial region indeed conserves angular momen-
tum and spins up as it approaches the central protostar. Since the centrifugal force rises faster
than gravity, each fluid element inevitably veers away from the geometrical center of the cloud.
Whether or not this element lands on the protostar or misses it and joins the equatorial disk
depends in part on its specific angular momentum j.

In fact, a range of specific angular momenta is present in the infalling matter at any time.
Those elements with the highest j-values depart from radial trajectories earliest and ultimately
land farthest from the center. The maximum impact distance in the equatorial plane is known
as the centrifugal radius, here denoted �cen. As we will see in § 11.3, �cen also sets the scale
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Figure 10.15 Parabolic orbit in rotating infall.
A fluid element, with instantaneous polar coor-
dinates (r, ψ) in the orbital plane, falls into the
radial distance req, where it impacts the disk. If
the disk were absent, the element would have
reached the smaller distance rmin before swing-
ing back out.

of the circumstellar disk. The inside-out nature of collapse implies that fluid elements arriving
at some later epoch begin falling from more distant locations within the cloud. These regions
include higher j-values (recall Figure 9.6), so that some new elements cross the plane even
farther from the center than before. In other words, �cen increases with time.

Exploring this idea more quantitatively requires that we determine the actual fluid trajecto-
ries. Suppose the magnetic field has effectively decoupled and the velocity is supersonic, so that
thermal pressure is no longer significant. Then only gravity and rotation affect the infall. The
former is supplied mostly by the protostar and its disk, which we may lump together as a point
mass for our purposes. Under these conditions, the trajectory must be an ellipse, i. e., the conic
section corresponding to a bound orbit of negative energy. In practice, both the gravitational
potential and kinetic energies at the start of infall are tiny compared to their magnitudes when
the element nears the star or equatorial plane. The trajectory is thus closely approximated as a
zero-energy conic section, i. e., a parabola.6

Figure 10.15 shows a typical parabolic orbit, with the protostar located at the focus. Here,
we have specified the instantaneous location of the fluid element through the radius r and angle
ψ. The angle starts at π and decreases to π/2 by the time the element reaches the plane, when it
is a distance req from the protostar. At this point, the fluid velocity normal to the plane abruptly
goes to zero, as the element either collides with a pre-existing disk or else with a streamline
approaching from the opposite direction. We will consider both these possibilities further in
Chapter 11. In any case, the dashed portion of the parabola, corresponding to ψ < π/2, is never
actually traversed.

The functional relation between r and ψ is

r =
req

1 + cos ψ
. (10.44)

6 Notice that we are neglecting any increase in the protostar or disk mass during the relatively brief time a fluid element
crosses the distance of interest. The same qualification applies to equation (10.34), which pertains to spherical col-
lapse. In both cases, we are making a steady-state approximation for the interior region of the flow. Mathematically,
we ignore the explicit time derivative ∂/∂t in the fluid equations and solve for the spatial variation of all variables.
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In order to write req in terms of constants of the motion, we pretend for a moment that the orbit
actually extends to the minimum radius rmin, also shown in Figure 10.15. At this point, the
zero-energy condition implies that

V 2
max =

2GM∗
rmin

.

Here, Vmax is the maximum orbital speed, i. e., that which would be attained at rmin, while M∗
is the combined mass of the protostar and disk. If jn denotes the specific angular momentum
normal to the orbital plane, then

j2n = r2min V
2
max = 2GM∗ rmin ,

which we can solve for rmin. But the element would have reached rmin at ψ = 0, so equa-
tion (10.44) implies that rmin also equals req/2. From these facts, we deduce that

req =
j2n

GM∗
. (10.45)

Within the larger parent cloud, the orbital plane of any element is tilted at some angle θ◦ with
respect to the rotation axis (see Figure 10.16a). Knowing this angle helps us determine where
the element originated, and therefore the proper jn to use in equation (10.45). As explained
previously, the specific angular momentum must increase with time, even at a fixed θ◦. The
centrifugal radius �cen, also shown in Figure 10.16a, is then the maximum value of req at any
time, corresponding to the highest jn.

For the limited purpose of supplying a function jn(θ◦, t), let us employ the simplest cloud
model exhibiting both rotation and inside-out collapse. Thus, we choose the density distribu-
tion before collapse to be that of the singular isothermal sphere (equation (9.8)) and impose a
uniform angular speed Ω◦. Aside from the issue of dynamical stability, such a model is not
even self-consistent, since a rotating configuration cannot be spherically symmetric. Neverthe-
less, the pattern of infall close to the protostar and disk should not change greatly with a more
realistic parent cloud.

Figure 10.17a depicts a side view of the orbital plane inside the collapsing sphere. Each
element begins its infall at the rarefaction wave, a distance R from the center, and at the angle
θ◦ from the axis. The orbital velocity around the axis prior to the wave’s arrival is Ω◦R sin θ◦.
Thus, the normal angular momentum vector, whose direction is indicated, has magnitude

jn = R2 Ω◦ sin θ◦ . (10.46)

Since the wave travels at the local sound speed, we also have

R = aT t
′ . (10.47)

Here, t′ is the time at which the element begins to fall, as measured after the initial accumulation
of the central protostar.

The time t′ is naturally less than that elapsed when the element crosses the equatorial plane.
Denoting the latter by t, we can deduce its relation to t′ by first noting that the rarefaction wave
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Figure 10.16 (a) Orientation of the orbital plane within a collapsing cloud. The plane is tilted
from the rotation axis by the angle θ◦. A fluid element has the instantaneous polar angle θ relative
to the axis and crosses the equatorial plane at a radial distance req, less than the maximum value
�cen. (b) Near the position of the fluid element, mass continually flows downward through the
shaded patch.

engulfs an incremental volume 4πR2aT∆t′ during the small interval ∆t′. Using equation (9.8),
the corresponding mass swept up is

∆M =
2 a3

T ∆t′

G
.

All the matter in this shell eventually reaches the star and disk, over an interval ∆t. We now use
equation (10.31) for the mass accretion rate, where we take m◦ to be a strict constant. Then we
also have

∆M =
m◦ a3

T ∆t
G

.

Comparing these two expressions for ∆M , we deduce that ∆t′ = m◦∆t/2. Since both times
are zero at protostar formation, we find

t′ =
m◦
2
t . (10.48)

We have finally assembled all the ingredients for evaluation of req. Combining equa-
tions (10.45)–(10.48), we conclude that

req =
m3

◦ aT Ω2
◦ t

3 sin2 θ◦
16

. (10.49)

Here we have also replaced M∗ in equation (10.45) by Ṁt, where Ṁ is again taken from
equation (10.31). We see that fluid elements falling at greater inclination angles θ◦ land farther
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Figure 10.17 (a) Side view of orbital plane within the rotating cloud. Gas begins to fall after
passage of the rarefaction wave, shown by the interior circle. This falling gas conserves its specific
angular momentum vector jn, which lies normal to the plane. (b) Near the head of the rarefaction
wave, mass flows inward through the shaded patch.

from the center, since their jn-values are larger. We obtain the centrifugal radius by setting
θ◦ = π/2 in equation (10.49). The result is

�cen =
m3

◦ aT Ω2
◦ t

3

16

= 0.3 AU
(

T

10 K

)1/2 (
Ω◦

10−14 s−1

)2 (
t

105 yr

)3

,

(10.50)

where we have used m◦ = 1 in the numerical expression. As expected, �cen is an increasing
function of time.

10.4.4 Interior Structure

It is also of interest to obtain the spatial distribution of density and velocity within the deep
interior of the cloud. The former should be a generalization of equation (10.34) for spherical
collapse, and the latter some angle-dependent modification of Vff for each of the velocity com-
ponents. We will want to express all physical quantities as functions of the usual spherical polar
coordinates (r, θ, φ), rather than the set (r, θ◦, ψ) we have been using until now. First, we must
establish a geometric relation between three angles: the spherical coordinate θ, the tilt of the
orbital plane θ◦, and the angular displacement within that plane, ψ (recall Figure 10.15). By
projecting the fluid element in Figure 10.16 onto both the z-axis and the axis of the parabola,
the reader may show that

cos θ = − cos θ◦ cos ψ . (10.51)
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We insert this relation into the orbital formula (10.44) and use the subsequent equations to find

r

�cen
=

sin2 θ◦ cos θ◦
cos θ◦ − cos θ

(10.52)

along a fluid trajectory. This last equation may be solved numerically to give the orbital in-
clination angle θ◦ at any point (r, θ) within the collapsing portion of the cloud. Note that the
resulting θ◦ also depends on time, through the term �cen.

In order to derive the velocity components, we first observe, from Figure 10.17a, that the
z-component of specific angular momentum is jn sin θ◦. Equating this to r sin θ uφ and using
(10.44), (10.45), and (10.51), we find

uφ =
(
GM∗
r

)1/2 sin θ◦
sin θ

(
1 − cos θ

cos θ◦

)1/2

. (10.53)

This equation must be supplemented by (10.52) for θ◦ in order to give the spatial dependence
of uφ. Turning to the other components, we employ ur = ṙ, where the temporal derivative
is applied to equation (10.44), considering req to be effectively constant. Similarly, we use
uθ = r θ̇ and thus establish the ratio

uθ
ur

=
cos θ − cos θ◦

sin θ
. (10.54)

The zero-energy condition for the parabolic orbit implies that the sum of the squared compo-
nents must be V 2

ff . Combining this fact with equations (10.53) and (10.54), we find

ur = −
(
GM∗
r

)1/2 (
1 +

cos θ
cos θ◦

)1/2

(10.55)

uθ =
(
GM∗
r

)1/2 (
cos θ◦ − cos θ

sin θ

)(
1 +

cos θ
cos θ◦

)1/2

. (10.56)

Finally, the density distribution follows by invoking mass conservation. Referring to Fig-
ure 10.17b, we see that the area of a small patch normal to the rarefaction wavefront is
R∆θ◦ ·R⊥∆φ, where R⊥ ≡ R sin θ◦. The mass per unit time entering the patch is this area
times the flux Ṁ/4πR2. Similarly, Figure 10.16b demonstrates that the patch area normal to
the parabolic trajectory is ∆r · r⊥∆φ, where r⊥ ≡ r sin θ. Here, the relevant mass flux is ρ uθ.
If we equate the two rates of mass transfer, we find

Ṁ

4π
sin θ◦
sin θ

= ρ uθ r

(
∂ r

∂ θ◦

)

ψ

,

where we note that the derivative is at fixed orbital angle ψ. Applying this derivative to equa-
tion (10.44) and utilizing (10.45), (10.46), and our expressions for the velocity components, we
solve for the density and find

ρ = − Ṁ

4π r2 ur

[
1 +

2�cen

r
P2(cos θ◦)

]−1

. (10.57)



314 10 The Collapse of Dense Cores

Figure 10.18 Fluid streamlines (solid curves) and isodensity contours (dashed curves) within a
collapsing, rotating cloud. The values of density on successive contours differ by a factor of 2,
and adjacent stream lines enclose equal mass flux.

Here, we have introduced the Legendre polynomial

P2(cos θ◦) ≡ 3
2

cos2 θ◦ − 1
2
.

Figure 10.18 plots the streamlines and density contours in a meridional plane for this rotating
accretion flow. Note that both spatial coordinates are measured relative to �cen. Thus, as time
progresses, the entire set of curves expands as t3, without suffering any distortion. Since the
angle θ◦ is constant on a streamline, each trajectory can be obtained by solving equation (10.52)
for r/�cen as a function of θ. The value of rdθ/dr at each point is then equal to the velocity
ratio uθ/ur. For display purposes, the θ◦-values in Figure 10.18 were selected so that any two
adjacent streamlines enclose an equal mass flux onto the origin.

At distances such that r � �cen, the density contours gradually become spherical, corre-
sponding to purely radial infall. Notice, from equations (10.55) and (10.57), that ρ varies as
r−3/2 in this regime, as in spherical collapse (recall equation (10.34)). Conversely, the density
has an r−1/2 radial variation deep inside �cen. In this region, the streamlines bend and the
density contours flatten. From equation (10.57), the density formally diverges on the equatorial
plane (θ◦ = π/2) at r = �cen. The figure shows that this blowup results from the crowding of
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streamlines, as the infalling gas is repelled by the centrifugal force. We shall describe in the
next chapter how �cen becomes the boundary of a disk that builds up around the star.

Chapter Summary

Magnetic forces within a cloud are transmitted by collisions from charged particles to the neutral
gas. Dense cores have such a low ionization fraction that there is appreciable slip between ions
and neutrals, and the cloud gradually loses magnetic flux. Quasi-static evolution mediated by
this ambipolar diffusion is the likely precursor to gravitational collapse. However, the cloud
shape problem remains. Magnetostatic structures initially flattened perpendicular to the field
become even flatter with time, contrary to observation. Alfvén waves cannot disturb clouds on
the scale of dense cores, since these perturbations are damped through ambipolar diffusion.

The fundamentals of protostellar collapse are well illustrated by the idealized case of a
spherical, nonmagnetic cloud. Infall occurs first at the center, then spreads out at the sound
speed. The rate at which mass accrues onto the central protostar depends mostly on the temper-
ature in the parent dense core. How in detail collapse proceeds in a more realistic, magnetized
cloud is less clear. While the outermost material is perturbed strongly by MHD waves, the field
decouples from the matter in the more quiescent, infalling region. Any residual field undergoes
violent reconnection closer to the nascent star.

A rotating, magnetized cloud emits torsional Alfvèn waves that efficiently brake the cloud’s
angular speed. This mechanism explains the observed slow rotation of dense cores. Interior
matter decoupled from the field enters parabolic trajectories. As infall continues, this gas im-
pacts the equatorial plane at increasingly large distances from the central star. The result is a
rapidly growing circumstellar disk.
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11 Protostars

Thus far, we have viewed the protostar within a collapsing cloud simply as a mass sink and
source of gravity for the surrounding, diffuse matter. We now examine more closely the proper-
ties of this object, utilizing the tools of stellar evolution theory. We shall also want to consider
that inner portion of the cloud significantly heated by the luminous, central body. It is this region
which holds the most promise for observational detection, both through its thermal emission and
inward motion. When we then delve into the structure of protostars per se, we emphasize the
role of deuterium fusion in subsolar masses. The steady release of energy from this reaction,
while adding little to the star’s surface luminosity, nevertheless exerts a powerful and lasting
influence.

One cannot properly discuss the evolution of protostars without including their surrounding
disks. Such disks have been observed around older, optically visible stars, and are the sources
of planetary systems. Section 3 of this chapter concerns the theory of their origin and early
growth. Returning to stars, we then extend the previous structural analysis to the intermediate-
mass regime, thereby laying the groundwork for a theoretical understanding of Herbig Ae/Be
stars. Finally, we depart from theory to assess the ongoing effort by infrared and millimeter
observers to detect protostars in nearby star-forming regions.

11.1 First Core and Main Accretion Phase

How does a protostar initially form? In answering this question, we should bear in mind that
the cloud environment at this time is one characterized by slow contraction and not violent
collapse. We have seen how ambipolar diffusion mediates this contraction by gradually eroding
the cloud’s internal, magnetic support. We have also noted that the leakage of flux proceeds
more quickly in denser regions. The accelerating density increase exemplified by Figure 10.4 is
thus bound to occur, even if the quantitative details are not fully known. However, the structure
that arises is not yet a bona fide protostar, but a temporary configuration known as the first
core. Let us briefly trace its growth and rapid demise. Of necessity, our treatment is based on
spherically symmetric calculations that omit the important elements of rotation and magnetic
support. We accordingly limit ourselves to describing general features of the evolution that
should not change markedly even after more complete studies become available.

11.1.1 Early Growth and Collapse

A key point of departure from our previous analysis of clouds is that the isothermal approxi-
mation, which served us well in describing larger-scale equilibrium and dynamics, now breaks
down entirely. As its density climbs, the central lump quickly becomes opaque to its own
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Figure 11.1 Evolution of central tem-
perature in the first core. The temper-
ature is plotted as a function of central
density.

infrared, cooling radiation. Further compression then causes its internal temperature to rise
steadily. The enhanced pressure decelerates material drifting inward, which settles gently onto
the hydrostatic structure. The settling gas can still radiate rather freely in the infrared, at least
before it is smothered by successive layers of incoming matter. This energy loss from the outer
skin then further enhances compression. The calculations show, in fact, that the core eventually
stops expanding and begins to shrink, even as fresh material continues to arrive. The total com-
pressed mass is still small at this stage, about 5 × 10−2 M�, but the radius is large by stellar
standards, roughly 5 AU (8 × 1013 cm).

The interior of the central object, like its surroundings, consists mostly of molecular hydro-
gen. This fact alone seals the fate of the first core and ensures its early collapse. To see why,
let us first estimate the mean internal temperature, utilizing the virial theorem in the version
of equation (3.16). The object builds up from that portion of the parent cloud that was least
supported rotationally and magnetically. We therefore tentatively ignore both the bulk kinetic
energy T and the magnetic term M in the virial theorem. We further approximate the grav-
itational potential energy W as −GM2/R, for a core of mass M and radius R. The internal
energy becomes

U =
3
2

∫
P d3x

=
3
2
RT

µ
M ,

(11.1)

where T and µ are the volume-averaged temperature and molecular weight, respectively. Ap-
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plying equation (3.16) and solving for the temperature, we find

T ≈ µ

3R
G M

R
(11.2a)

= 850 K
(

M

5 × 10−2 M�

) (
R

5 AU

)−1

. (11.2b)

Here we have set µ equal to 2.4, the value appropriate for molecular gas.
The internal temperature, while very low compared to true stars, is higher than in quiescent

molecular clouds, as is the average mass density, which is now of order 10−10 g cm−3. With
the addition of mass and shrinking of the radius, T soon surpasses 2000 K, and collisional dis-
sociation of H2 begins. At this point, the temperature starts to level off. The effect is evident
in Figure 11.1, which tracks the temperature as a function of density at the center. Viewing
the situation energetically, we note that the number of H2 molecules in the core is XM/2mH ,
where X = 0.70 is the interstellar hydrogen mass fraction. From equation (11.1), the thermal
energy per molecule is therefore 3kBT/X , or 0.74 eV when T = 2000 K. This figure is small
compared to the 4.48 eV required to dissociate a single molecule. During the transition epoch,
therefore, even a modest rise in the fraction of dissociated hydrogen absorbs most of the com-
pressional work of gravity, without a large increase in temperature.

As the density of the first core keeps climbing, the region containing atomic hydrogen
spreads outward from the center. We recall from § 9.1 that purely isothermal configurations can
tolerate only a modest density contrast before they become gravitationally unstable. The reason
is that the compression arising from any perturbations can no longer be effectively opposed by
a rise in the internal pressure, once the temperature is held fixed. The interior temperature of
the first core is not a fixed constant, but its rise is severely damped by the dissociation process.
Hence, the partially atomic region can only spread and increase its mass by a limited amount
before the entire configuration becomes unstable and collapses. This event marks the end of the
first core.

11.1.2 Accretion Luminosity

The collapse of the partially dissociated gas takes the central region to much higher density and
temperature. Indeed, the latter is now sufficient to collisionally ionize most of the hydrogen.
The true protostar that emerges is not susceptible to another internal transition and remains dy-
namically stable. With a radius of several R�, a protostar of 0.1 M� has, from equation (11.2a),
a mean internal temperature above 105 K. Such a value, coupled with a mass density of order
10−2 g cm−3, places the object within the stellar regime.

Gas that approaches the protostellar surface is now traveling essentially at free-fall velocity,
which is considerably greater than the local sound speed. The steady rise in the protostellar
mass gradually inflates this supersonic infall region, so that the cloud collapse proceeds in the
usual inside-out manner. By this point, the protostar is said to have entered the main accretion
phase. For now, we will continue to describe the main characteristics of this period as if the
collapse were spherically symmetric. We will soon indicate, in varying detail, the alterations
introduced by rotation and magnetic fields. To date, however, the spherical calculations have
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provided by far the most complete information and are still the only studies to have evolved the
protostar to interestingly high masses.

Let us first consider the gross energetics of the main accretion phase. A protostar of mass M∗
and radius R∗ forms out of cold, nearly static cloud material whose dimensions are enormous
compared to R∗. Thus, we may effectively set the initial energy, both mechanical and thermal,
to zero. The star itself, however, is a gravitationally bound entity with a negative total energy.
Some of the energy difference is radiated into space during collapse, while most of the rest goes
into dissociating and ionizing hydrogen and helium. We denote this latter, internal component
as ∆Eint, where

∆Eint ≡ X M∗
mH

[
∆Ediss(H)

2
+ ∆Eion(H)

]
+

Y M∗ ∆Eion(He)
4 mH

.

Here, ∆Ediss(H) = 4.48 eV is the binding energy of H2, ∆Eion(H) = 13.6 eV is the ioniza-
tion potential of HI, and ∆Eion(He) = 75.0 eV is the energy required to fully ionize helium.
The protostar’s thermal energy U is equal to −W/2 by the virial theorem. Approximating W
as −GM2

∗/R∗, we may write

0 = −1
2

G M2
∗

R∗
+ ∆Eint + Lrad t , (11.3)

where Lrad is the average luminosity escaping over the formation time t.
Suppose that we first take the extreme step of ignoring Lrad entirely. Then equation (11.3)

yields the maximum radius Rmax which the protostar could have at any mass M∗. We readily
find

Rmax =
G M2

∗
2 ∆Eint

= 60 R�

(
M∗
M�

)
.

(11.4)

This numerical estimate would change slightly with a more careful treatment of the gravitational
energy W . In any case, we know that Rmax is considerably greater than the true radii of solar-
type protostars. Their immediate descendants, the youngest T Tauri stars, are smaller by an
order of magnitude, as we shall see in Chapter 16.

Since R∗ � Rmax, the final term in equation (11.3) is actually comparable to the first one.
Setting Ṁ = M∗/t, we conclude that Lrad is close to the accretion luminosity, given by

Lacc ≡ G M∗ Ṁ

R∗

= 61 L�

(
Ṁ

10−5 M� yr−1

)(
M∗

1 M�

) (
R∗

5 R�

)−1

.

(11.5)

We will later justify our representative numerical values for Ṁ and R∗. The important quantity
Lacc is the energy per unit time released by infalling gas that converts all its kinetic energy into
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radiation as it lands on the stellar surface. Despite the approximations entering our derivation,
Lrad is very nearly equal to Lacc throughout the main accretion phase, regardless of the detailed
time dependence of Ṁ . Moreover, this equality holds even if the gas first strikes a circumstellar
disk, then subsequently spirals onto the star (see § 11.3 below). The only stipulation is that each
fluid element’s thermal plus kinetic energies be relatively small once it joins the protostar. For
example, the star cannot be rotating close to breakup speed. The T Tauri observations indicate,
in fact, that this latter condition is safely met (Chapter 16).

The accretion luminosity, although a product of cloud collapse, is mostly generated close
to the protostar’s surface. Additional radiated energy comes from nuclear fusion and the quasi-
static contraction of the interior. However, these contributions are minor compared to Lacc for
low and intermediate masses. It is therefore conventional to define a protostar as a mass-gaining
star whose luminosity stems mainly from external accretion. This radiation is able to escape the
cloud because it is gradually degraded into the infrared regime as it travels outward. Infrared
photons can traverse even the large column density of dust lying between the stellar surface
and the outer reaches of the parent dense core. Observationally, then, protostars are optically
invisible objects that should appear as compact sources at longer wavelengths.

Figure 11.2 shows in more detail how the radiation diffuses outward. The figure also indi-
cates the major physical transitions in the cloud material that is freely falling onto the protostar.
Most of the radiation is generated at the accretion shock. Since matter further inside is settling
with relatively low velocity, the shock front itself constitutes the protostar’s outer boundary.
Note how the figure suggests a turbulent state for the deeper interior. Such turbulence is in-
duced by nuclear fusion at the center, as we will describe shortly.

11.1.3 Dust Envelope and Opacity Gap

The gas raining down on the protostar originates much farther away, in the outer envelope. This
is the infalling region where, as we noted in § 10.2, the gas temperature rises sluggishly with
density as a result of efficient cooling by dust. Despite the nomenclature, we recall that the
matter here does not fall until it is inside the rarefaction wave gradually spreading throughout
the cloud. Most of this expanding volume is nearly transparent to the protostellar radiation.
However, as the infalling gas continues to be compressed, the radiation eventually becomes
trapped by the relatively high opacity from the grains. Inside the dust photosphere, located
at Rphot ∼ 1014 cm, the temperature rises more quickly. The sphere with radius Rphot is the
effective radiating surface of the protostar, as seen by an external observer.

We define the dust envelope to be the region bounded by Rphot that is opaque to the proto-
star’s radiation. Once the temperature here climbs past about 1500 K, all the hot grains vaporize.
The precise temperature depends on the adopted grain model, but the qualitative effect is always
the same. Inside this dust destruction front (Rd ∼ 1013 cm), the opacity is greatly reduced. The
infalling gas, which also collisionally dissociates above 2000 K, is nearly transparent to the
radiation field. The region of vaporized grains is therefore known as the opacity gap. Even
further inside, collisional ionization of the gas, and an attendant rise in the opacity, occur in the
radiative precursor, immediately outside the accretion shock itself. We recall from Chapter 8
that such layers are ubiquitous features of high-velocity, J-type shocks.
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Figure 11.2 Structure of a spherical protostar and its infalling envelope. The relative dimensions
of the outer regions have been greatly reduced in this sketch. Note the convection induced by
deuterium burning in the central, hydrostatic object. Note also the conversion of optical to infrared
photons in the dust envelope.

Simple arguments suffice to demonstrate the vast difference in the character of the radiation
field near the shock and at the dust photosphere. Gas approaches R∗ with speeds that are close
to the surface free-fall value Vff . This is

Vff =
(

2 G M∗
R∗

)1/2

= 280 km s−1

(
M∗

1 M�

)1/2 (
R∗

5 R�

)−1/2

.

(11.6)

Setting Vff equal to Vshock in equation (8.50), we see that the immediate postshock temperature
(called T2 in Chapter 8) exceeds 106 K. Such hot gas emits photons in the extreme ultraviolet
and soft X-ray regimes (λ ≈ hc/kBT2 � 100 Å). The emission here is mainly in lines from
highly ionized metallic species, such as Fe IX. In any case, the material in both the postshock
settling region and the radiative precursor is opaque to these photons. The protostar therefore
radiates into the opacity gap almost as if it were a blackbody surface. The effective temperature
of this surface, Teff , is found approximately from

4 π R2
∗ σB T 4

eff ≈ Lacc . (11.7)
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Substituting for Lacc from equation (11.5) and solving for the temperature, we obtain

Teff ≈
(

G M∗ Ṁ

4 π σB R3∗

)1/4

= 7300 K

(
Ṁ

10−5 M� yr−1

)1/4 (
M∗

1 M�

)1/4 (
R∗

5 R�

)−3/4

.

(11.8)

The quantity Teff characterizes, at least roughly, the spectral energy distribution of the radi-
ation field. We see that the opacity gap is bathed by optical emission similar to that emanating
from a main-sequence star of similar mass. Throughout this volume, the characteristic temper-
ature of the radiation does not vary markedly, although the outward, frequency-integrated flux
Frad falls off as r−2. The gas temperature also declines slowly, from a value at the precursor
that is not far below Teff .

11.1.4 Temperature of the Envelope

This situation changes dramatically upon crossing the dust destruction front. The infalling mat-
ter is now highly opaque to optical radiation, and the dominant photon frequencies shift down-
ward through multiple absorptions and reemissions. In such environments, the temperature,
which is identical for both matter and radiation, is related to Frad through the radiative diffusion
equation (see Appendix G). Setting Frad equal to Lacc/4πr2 and changing the temperature
gradient to ∂T/∂r (where the differentiation is at fixed time), equation (G.7) becomes:

T 3 ∂T

∂r
= − 3 ρ κ Lacc

64 π σB r2
. (11.9)

This relation governs the fall of the temperature throughout the dust envelope. Here, the density
ρ follows equation (10.34). The Rosseland-mean opacity κ is dominated by the dust contri-
bution. In the temperature regime of interest, from about 100 to 600 K, this quantity may be
represented approximately by a power law:

κ ≈ κ◦

(
T

300 K

)α

, (11.10)

where κ◦ = 4.8 cm2 g−1 and α = 0.8. Note that the power-law behavior stems from the fact
that the monochromatic opacity varies as λ−α (see equation (G.9)). In any case, dimensional
analysis of equation (11.9) then tells us that T (r) falls off as r−γ . Here, γ is another constant:

γ ≡ 5
2 (4 − α)

, (11.11)

which has a value near 0.8 in the present case.
The steady temperature decline continues until the gas becomes transparent to the infrared

radiation. Roughly speaking, this transition occurs when the mean free path of the “average”
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photon, given by 1/ρκ, becomes comparable to the radial distance from the star. At this point,
the entire dust envelope emanates as if it were a blackbody of radius Rphot and temperature
Tphot. Our two conditions are therefore

ρ κ Rphot = 1 (11.12a)

Lacc = 4 π R2
phot σB T 4

phot . (11.12b)

With ρ given by equation (10.34), Lacc by equation (11.5), and κ by (11.10), these constitute
two equations in the unknowns Rphot and Tphot. For Ṁ = 10−5 M� yr−1 and M∗ = 1 M�,
numerical solution yields Rphot = 2.1 × 1014 cm and Tphot = 300 K.

We emphasize that the last two relations are rather crude approximations, even within the
context of our idealized, spherical protostar. Strictly speaking, there is no unique, photospheric
boundary, since the medium becomes transparent to photons of varying wavelength at differ-
ent radii. The same is true, of course, in a stellar atmosphere, but there a much sharper falloff
in density pinpoints the boundary. It is best to visualize Rphot as the radius where a photon
carrying the mean energy of the spectral distribution escapes the cloud. Our numerical result in-
dicates that the wavelength of this photon is typically λ ≈ hc/kBTphot = 49 µm, falling within
the far-infrared regime.

Moving beyond our simplified description to a more precise determination of the radiation
field and the matter temperature is technically demanding, since one must include both highly
opaque and nearly transparent regions. Deep inside the dust photosphere, the specific intensity
Iν is nearly isotropic and close to Bν(T ). Within the opacity gap, however, Iν is highly aniso-
tropic and peaks in the direction away from the central protostar. The intensity also becomes
outwardly peaked in the more tenuous region close to the dust photosphere.

The most accurate numerical calculations solve for the radiation and matter properties in
an iterative manner. Within the dust envelope, for example, one might first guess the spatial
distribution of the temperature Td, which nearly equals Tg. This guess provides, through equa-
tion (2.30), the emissivity jν at every grid point. Knowledge of this function allows one to
integrate the radiative transfer equation (2.20) for the specific intensity Iν , both as a function of
radial distance and angle. Given the radiation field, equation (7.19) yields the heating rate of
the grains. Equating this rate to the cooling (equation (7.36)) then gives a new estimate for Td.
One repeats the procedure until the calculated and guessed temperatures throughout the dust
envelope agree to sufficient accuracy. The situation is more complicated once one includes the
opacity gap, where photons arrive from both the radiative precursor and the hot dust just outside
the destruction front.

In spite of these difficulties, theorists are providing increasingly accurate descriptions of the
protostellar environment. Figure 11.3 shows the temperature profile from one numerical study
incorporating a detailed radiative transfer calculation. Here, the central protostar is represented
as a point source of luminosity, where Lrad = 26 L�. The density in the dust envelope follows
equation (10.34), with M∗ = 1 M� and Ṁ = 2 × 10−6 M� yr−1. Note that this equation gives
the total density; the dust fraction is taken to be 1 percent by mass. To model the opacity gap,
the envelope encloses a central, evacuated cavity, whose radius of 0.2 AU is the position where
Td = 1500 K. Although the temperature falls swiftly just beyond this point, its subsequent
decline is rather shallow and roughly follows a power law.
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Figure 11.3 Temperature in the dust envelope of
a spherical protostar of 1M�. The independent
variable is radial distance from the star.

As expected, the envelope becomes transparent to outgoing radiation once its temperature
falls below several 100 K. In this regime, the behavior of Td follows from a simple energy
argument. The radiative flux from the star falls off as r−2. In addition, the emissivity of the
dust grains varies as T 6

d , according to equation (7.39). It follows that Td declines as r−1/3. This
optically thin profile is generally useful for modeling the observed emission at far-infrared and
millimeter wavelengths from any dust cloud with an embedded star. (Recall the discussion of
reflection nebulae in § 2.4.)

Returning to protostars per se, it is interesting to gauge the effect of rotation on the tem-
perature distribution. Here, we may utilize the rotating infall model of § 10.4 and assign the
nonspherical density distribution of equation (10.57). We replace both the protostar and its disk
by a single point source whose radiation propagates through this envelope. The point-like rep-
resentation is now more suspect, as the disk radius can easily extend past the dust destruction
front (see § 11.3). On the other hand, most of the accretion luminosity still originates either on
the stellar surface or within the inner region of the disk.

Figure 11.4 shows the temperature contours from a calculation of this type. Here, the pa-
rameters are Lrad = 21 L�, M∗ = 0.5 M�, and Ṁ = 5 × 10−6 M� yr−1, while the adopted
cloud rotation rate is Ω◦ = 1.35 × 10−14 s−1. The figure also displays the appropriate isoden-
sity contours. The reader may verify, using equation (10.50) with m◦ set equal to unity, that
the centrifugal radius is 	cen = 0.4 AU, which indeed extends past the dust destruction front.
The latter, shown by the innermost contour in the figure, corresponds to Td = 1050 K, the sub-
limation temperature for the silicate grains that predominate in this model. Notice the slight
oblateness of the inner cavity wall. The broadening stems from the infall density buildup near
the centrifugal radius, which partially blocks outgoing radiation and increases the local dust
temperature. Conversely, this ring-like enhancement in dust shadows the outer region and leads
to modestly prolate temperature contours. It will be interesting to see how these results change
once a circumstellar disk is included in the calculation. In any case, the contours in temperature
should remain elongated in the polar direction, where the optical depth is relatively low.
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Figure 11.4 Two-dimensional distribution of temperature (solid contours) in a rotating, proto-
stellar envelope. The temperature contours decrease outward from 1050 K in 50 K intervals. The
dashed contours represent the density and are similar to those in Figure 10.18.

11.2 Interior Evolution: Deuterium Burning

Let us now shift our attention from the matter surrounding a protostar to the structure and
evolution of the central object itself. As before, the emphasis is on theoretical, rather than
observational, results. We want to present the underlying arguments with some care, as they
will recur often in other contexts. Here, we will see that theory has provided a view of protostars
almost as detailed as those for later evolutionary stages.

11.2.1 Stellar Structure Equations

The last point bears repeating. Protostars can, and should, be examined with the same compu-
tational techniques as red giants, white dwarfs, or main-sequence stars themselves. Since they
accumulate at the center of a collapsing cloud, it is possible to include protostars as part of a
numerical solution for the large-scale hydrodynamic flow. However, this procedure is both cum-
bersome and, given the realities of finite-difference calculations, prone to inaccuracy. One gains
both physical insight and numerical precision by utilizing the stellar structure equations on the
material inside the accretion shock front. One may then match conditions at the protostellar sur-
face with those in the infalling envelope, where the latter is obtained through a hydrodynamic
calculation.

The mechanical stellar structure equations are simply a restatement of hydrostatic balance.
If we continue to neglect internal rotation, then a convenient spatial variable in our spherical
protostar is the mass coordinate Mr, defined by equation (10.25). The radius r then acts as a
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dependent variable, whose variation with Mr is governed by the inversion of equation (10.26):

∂r

∂Mr
=

1
4 π r2 ρ

. (11.13)

As before, we take the derivative at fixed time. Equation (9.1) now expresses force balance and
becomes

∂P

∂r
= −G ρ Mr

r2
(11.14)

in spherical symmetry. Dividing (11.14) by (11.13), we derive the alternate form

∂P

∂Mr
= −G Mr

4 π r4
, (11.15)

which again utilizes Mr as the independent variable. The pressure itself obeys the equation of
state for an ideal gas:

P =
ρ

µ
RT . (11.16)

Here the mean molecular weight µ depends on the state of ionization and dissociation of the
gas, and is therefore a function of ρ and T . One may either calculate this function ab initio, by
invoking statistical equilibrium, or obtain it from prior tabulations.

We turn next to the thermal stellar structure equations. Since the protostar’s interior is highly
opaque, the transport of radiation is governed by the diffusion equation (11.9). Replacing the
luminosity variable by the internal value Lint and again utilizing (11.13), we have

T 3 ∂T

∂Mr
= − 3 κ Lint

256 π2 σB r4
. (11.17)

The Rosseland mean opacity κ is again a function of ρ and T . Like µ, it is available in numerical
form (see Figure G.2).

Finally, we consider the spatial variation of Lint. Recall that the latter is the surface integral
over a spherical shell of |Frad|, where the flux points radially outward. In general, a fluid
element gains heat either by being irradiated externally or from internal nuclear reactions. Let
ε (ρ, T ) represent the rate of nuclear energy release per unit mass. Both this rate and Frad enter
as source terms in the heat equation:

ρ T
∂s

∂t
= ρ ε − ∇ · Frad , (11.18)

where s is the entropy per unit mass of the fluid. For a spherical star, it is convenient to recast
this relation as

∂Lint

∂Mr
= ε − T

∂s

∂t
. (11.19)

Equations (11.13), (11.15), (11.17), and (11.19) are the desired stellar structure equations
for the dependent variables r, P , T , and Lint. They must be supplemented by the equation of
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state (11.16) and by knowledge of µ, κ, ε, and s as functions of ρ and T . In practice, tabulations
of the entropy utilize the Second Law of Thermodynamics:

T ∆s = cv ∆T − P ∆ρ/ρ2 , (11.20)

which governs small changes of the state variables. Here, cv is the specific heat at constant
volume. Knowing this latter quantity (or, equivalently, the specific internal energy) as a function
of ρ and T allows one to integrate equation (11.20) along some convenient path in the ρ − T
plane and numerically obtain the function s(ρ, T ). Note that a purely monatomic gas would
have cv = (3/2)R/µ, where µ is now a constant. In this case, we may integrate equation (11.20)
analytically to obtain

s =
R
µ

ln
(

T 3/2

ρ

)
+ s◦ , (11.21)

where s◦ is an arbitrary constant. Equation (11.21) is often a useful approximation in stellar
interiors, where the gas is fully ionized and µ = 0.61.

11.2.2 Boundary Conditions

Solution of the stellar structure equations requires specification of four boundary conditions.
Two of these are the statements that both r (Mr) and Lint (Mr) vanish at the center of the
configuration:

r (0) = 0 (11.22a)

Lint (0) = 0 . (11.22b)

A third condition is that P (Mr) must equal the appropriate postshock value when Mr = M∗.
This value is the ram pressure due to infalling matter, given by ρu2. Using equation (10.34) for
ρ just outside the shock and (11.6) for u = −Vff , we find

P (M∗) =
Ṁ

4 π

(
2 G M∗

R5∗

)1/2

. (11.23)

The fourth boundary condition concerns the surface value of the temperature and its relation
to the luminosity. For a main-sequence star, this relation would be the standard photospheric
one given by equation (1.5). The total luminosity of a protostar, however, is that released by
accretion plus the amount radiated from the interior:

L∗ = Lacc + Lpost . (11.24)

Here, Lpost is the value of Lint obtained by integration of equation (11.19) from Mr = 0 to M∗,
and refers to the inner border of the postshock relaxation region (recall Figure 8.10). Let Tpost

denote the corresponding temperature, as found by outward integration of (11.17). Note that
this value is much higher than that indicated in Figure 8.10, which concerns the surface layers
of molecular clouds rather than optically thick stars. In any case, our task now is to relate Tpost

to Lpost and Lacc.
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Figure 11.5 Contributions to the luminosity of a low-mass protostar. The two regions in front of
and behind the accretion shock front (thick vertical line) have been separated for clarity. The net
surface luminosity, called Lpost in the text, is the sum of Lout, the outward contribution from the
interior, and inward contributions in X-rays and optical photons from the hot, postshock gas and
radiative precursor, respectively.

We first remark that Lpost is actually the sum of inward and outward contributions, as il-
lustrated in Figure 11.5. It is only the outward luminosity, stemming from the deeper interior,
that is given by the blackbody formula 4πR2

∗σBT 4
post. This contribution is denoted Lout in the

figure. The hot gas immediately behind the shock emits its soft X-rays isotropically. Thus, the
inward contribution to Lpost includes Lacc/2 in X-rays. Additionally, there are optical photons
stemming from the precursor. Assuming that this layer, which completely absorbs the X-rays
entering it, also radiates equally in both directions, the postshock point receives an additional
Lacc/4 in optical photons.1 In summary, we find that

Lpost = 4 π R2
∗ σB T 4

post − 3 Lacc/4 , (11.25)

which is the desired boundary condition.

11.2.3 Mass-Radius Relation

The final ingredient needed to construct protostar models is the mass accretion rate Ṁ . This
quantity enters the boundary conditions of equations (11.23) and (11.25), and tells us, of course,
how much to increase M∗ from one time step to the next. Ideally, one should take this rate
directly from collapse calculations, such as the ones depicted in Figure 10.6. Thus far, however,
the most detailed studies of protostar interiors have considered only constant rates, effectively
treating Ṁ as a free parameter. The range of this parameter follows by inserting plausible cloud
temperatures (or, equivalently, sound speeds), into equation (10.31). For cloud temperatures
from 10 to 20 K, one finds that Ṁ should span an order of magnitude, from about 10−6 to
10−5 M� yr−1.

1 In low-mass protostars, the precursor is opaque to X-rays generated behind the shock, but transparent to the optical
photons emitted locally. Thus, equation (11.8) provides only a rough approximation to the gas temperature in this
region. The precursors in higher-mass protostars are opaque to both the X-rays and to their own cooling radiation.
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Figure 11.6 Mass-radius relation for
spherical protostars with different initial
radii. The accretion rate in all cases is
1 × 10−5 M� yr−1. The open circle marks
the onset of a fully convective interior.

In practice, we may solve the four structure equations at any time t by guessing central
values for T and P , using equation (11.22) for r (0) and Lint (0), and integrating outward.
Along the way, we keep track of the specific entropy s (Mr). We subtract, at each Mr-value,
the corresponding entropy in the previous model for time t − ∆t. We thus generate the temporal
derivative ds/dt on the right side of (11.19). In general, equations (11.23) and (11.25) will not
be satisfied when the integration reaches Mr = M∗. We therefore alter our guesses for the
central temperature and pressure until these two conditions are met.

The procedure just outlined allows us to follow in detail the evolution of spherical proto-
stars. The initial state, corresponding to the beginning of the main accretion phase, is somewhat
arbitrary, reflecting our meager knowledge of this earliest epoch. Fortunately, the choice here
has little impact on subsequent evolution. Figure 11.6 illustrates this point graphically, by show-
ing the protostellar radius as a function of mass for M∗ ≤ 1 M�, assuming a constant accretion
rate of 1 × 10−5 M� yr−1. The three curves each have different values for R∗ at the initial
mass, here taken to be 0.1 M�. By the time M∗ has doubled, the curves are nearly identical.

To understand the rapid convergence of R∗(M∗) as well as its subsequent, steady rise, it
is helpful to view the accreting protostar as a collection of nested mass shells. Each new shell
represents matter that has just passed through the shock front and settled onto the hydrostatic
surface. As was the case for the first core, a settling fluid element is quickly smothered by over-
lying layers, i. e., we have Lpost � Lacc. In the absence of nuclear burning, equation (11.18)
tells us that the specific entropy s for that mass shell ceases to fall and reaches a constant
value. The protostar is thus characterized by its entropy profile s (Mr), which in turn reflects
the changing conditions at the accretion shock front.

Since the specific entropy represents the heat content of the associated mass shell, an in-
crease of s with Mr results in a protostar that swells as mass is added. An entropy profile of this
character arises naturally, as the accretion shock generally becomes stronger with time. Thus,
any increase in the gravitating mass M∗ raises the incoming velocity Vff . Consequently, the
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Figure 11.7 Criterion for radiative stability. A
fluid element, initially with the same density as its
surroundings, moves a distance ∆r opposite to the
gravitational acceleration g. In the case shown, the
interior density ρint, while decreasing, is nonethe-
less greater than the exterior value ρext, so that the
element will fall back down.

postshock temperature T2 also goes up, as does the settled value Tpost and the corresponding
entropy. In summary, a stronger accretion shock leads to a monotonically increasing s (Mr) for
the interior. The tendency for such a profile to develop accounts for the ultimate rise of R∗ (M∗)
in Figure 11.6.

Suppose, however, that the initial radius were very large, for whatever reason. Then Vff

would be correspondingly low, and the shock would be weaker. With the addition of mass shells,
the entropy profile would dip, and the radius shrink. Conversely, a very small initial radius
would result in such a strong shock that s (Mr) would rise steeply. The resultant swelling of the
radius is also evident in Figure 11.6. Despite our ignorance of the initial state, these calculations
provide strong evidence that the natural evolution consists of a gentle increase of radius with
mass, as shown by the middle curve in the figure.

11.2.4 Onset of Convection

The rising entropy profile is also of fundamental importance for convective stability. Imagine,
as in Figure 11.7, that we displace a fluid element with internal density ρint by a small distance
∆r in the direction opposite to the local gravitational acceleration g, i. e., toward the surface
of the protostar. We know from our study of hydrostatic equilibria that the pressure always
declines in this direction. Hence our fluid element, if it is to maintain pressure balance with
its surroundings, must expand, and its density falls from (ρint)0 to the lower value (ρint)1. The
salient question is whether this drop in density makes the element so buoyant that it continues to
travel upward. If so, the protostar is convectively unstable in that region, and the upward motion
becomes an important means of transporting heat. If, on the other hand, displacement makes the
element denser than its surroundings, it will sink back down. The protostar is then radiatively
stable. We now prove that this latter condition holds as long as s (Mr) is an increasing function.

We proceed by comparing (ρint)1 to (ρext)1, the external, background density at the same
location. If the small displacement occurs so quickly that the element loses negligible heat
through radiation, its specific entropy cannot change. Then a rising entropy profile in the ex-
ternal medium implies that (sint)1 < (sext)1. Recall that the internal and external pressures are
equal at this location. It is a property of ordinary gases that the density falls with increasing spe-
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cific entropy at fixed pressure, i. e., that (∂ρ/∂s)P < 0. 2 For a monatomic gas, the reader may
verify this fact by combining equation (11.21) with the equation of state (11.16). In any event,
we have now demonstrated that (ρint)1 > (ρext)1, so that a rising entropy profile implies radia-
tive stability. Our condition for stability, ∂s/∂Mr > 0, is one expression of Schwarzschild’s
criterion, which figures prominently in stellar structure theory.

Returning to our protostar, we now see that the strengthening accretion shock leads to a
structure in which heat is transported outward by radiation, rather than the convective motion of
fluid elements. We already assumed such a state, in fact, when we adopted the radiative diffusion
equation (11.17). However, this situation cannot last forever. As is evident from Figure 11.6, the
initial swelling of the radius does not keep pace with the growth of M∗. That is, the ratio M∗/R∗
inexorably rises. The interior temperature also climbs, as can be seen from equation (11.2)
after an appropriate change of µ. Nuclear reactions eventually begin near the center, where the
temperature peaks. Their effect is to increase the central entropy until the profile overturns,
i. e., until ∂s/∂Mr becomes negative. Mathematically, the term ε in equation (11.19) grows
large near Mr = 0. Since Lint is kept relatively small by the high optical depth, the derivative
∂s/∂t increases, as well. The important, physical consequence is that the protostar becomes
convectively unstable.

The first nuclear fuel to ignite is a small admixture of the hydrogen isotope deuterium (2H).
Consisting of a proton bound to a single neutron, the deuteron is a product of primordial nucle-
osynthesis, forged during the universal cooling and expansion minutes after the Big Bang. Once
incorporated into stars, the isotope is destroyed by fusion with protons:

2H + 1H → 3He + γ . (11.26)

This reaction is exothermic by ∆ED ≡ 5.5 MeV. As in many nuclear processes, the associated
rate is highly sensitive to the local temperature. Deuterium fusion first becomes appreciable
near 106 K. Close to this temperature, calculations show that the energy generation term in
equation (11.19) may be approximated by

εD = [D/H] ε◦

(
ρ

1 g cm−3

) (
T

1 × 106 K

)nD

. (11.27)

Here, ε◦ = 4.19 × 107 erg g−1 s−1, nD = 11.8, and [D/H] is the interstellar number density
of deuterium relative to hydrogen. This latter ratio must be obtained from observation and has
been the object of considerable study. Analysis of the absorption lines of stars lying behind
diffuse clouds gives a mean [D/H] of 2× 10−5, with the apparent variation being about a factor
of two.

Convection begins in protostars because deuterium fusion produces too much luminosity to
be transported radiatively through the highly opaque interior. Instead, discrete “cells” of fluid
rise buoyantly toward the surface. Since ∂s/∂Mr < 0, the rising fluid is now both underdense
and hot relative to its surroundings, and eventually transfers the excess heat to this medium.

2 We may write the partial derivative as (∂ρ/∂s)P = −ρTκP /cP , where κP ≡ [ρ ∂(1/ρ)/∂T ]P is the thermal
expansion coefficient, and where cP ≡ T (∂s/∂T )P is the specific heat at constant pressure. Under all conditions
encountered in stars, both κP and cP are positive, so that (∂s/∂ρ)P is indeed negative.
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Having done so, the cooler and denser cell then sinks back down, and the cycle repeats. Such
rising and falling motion must render protostellar interiors both turbulent and chemically well
mixed.

From a computational perspective, the onset of convection modifies the thermal stellar struc-
ture equations. The luminosity Lint still follows from integration of the heat equation (11.19).
However, the diffusion equation (11.17) is no longer valid and must be replaced by another re-
lation between Lint and the temperature (or entropy) gradient. Because of the turbulent nature
of convection, there is still no generally accepted relation derived from first principles. Instead,
theorists have traditionally relied on a semi-empirical model known as mixing-length theory.
Here, every cell at a given radius r expels its heat after traversing the same distance. This “mix-
ing length” is usually taken to be some factor of order unity times the local pressure scale height,
i. e., the radial distance over which P (r) would drop by e−1. The cell velocity, and hence the
heat flux, follows by assuming a steady, buoyant acceleration over this distance.

The detailed formulation of mixing-length theory need not concern us, but its general con-
sequences are of interest. The main result is that the transport of heat through interior motion is
highly efficient. That is, even when their average upward velocity is well below the local sound
speed, the rising cells need only a slight gradient in the background entropy profile to carry any
reasonable Lint. To good accuracy, therefore, we may replace equation (11.17) by the simpler
relation

∂s

∂Mr
= 0 . (11.28)

We emphasize that convective instability is a local phenomenon, in the sense that some
regions of the star may be unstable while others remain radiatively stable. The computational
procedure must account for this fact by testing for stability at each Mr-value. A convenient
method is to compare Lint with Lcrit, the maximum value that can be carried at that location
by radiative diffusion. To obtain this important quantity, we first divide (11.17) by (11.15), in
order to express the radiative luminosity in terms of ∂T/∂P . Recall that the differentiation here
is performed at constant time. Just at the stability limit, it is the specific entropy which is held
fixed, i. e., ∂T/∂P becomes the thermodynamic derivative (∂T/∂P )s. This latter term may be
found numerically from the equation of state and entropy tabulations. We thus obtain

Lcrit =
64 π G Mr σB T 3

3 κ

(
∂T

∂P

)
s

. (11.29)

In any convection zone, we use equation (11.28) until Lint falls below Lcrit. At that point, we
revert to (11.17). Note that such a transition always occurs at least once before the surface is
reached, if only because the falling density eventually renders convection inefficient. Thus, the
outermost layers of any star are radiatively stable.3

3 Just prior to the onset of radiative stability, convection may become so inefficient that the (negative) entropy gradient
is no longer small. We must then replace equation (11.28) by the full mixing-length relation between ∂s/∂Mr and
Lint. Such super-adiabatic regions are important in the outer portions of pre-main-sequence stars, as we will discuss
in Chapter 16.



334 11 Protostars

Figure 11.8 (a) Protostellar mass-radius relation for three different accretion rates, where the
latter are written in units of M� yr−1. A standard interstellar concentration of deuterium is
assumed. (b) Mass-radius relation for the same accretion rates, but in the absence of deuterium.

11.2.5 Deuterium Thermostat

Once deuterium ignites near the center of a low-mass protostar, the induced convection quickly
spreads. Soon, the whole interior is unstable, apart from a thin, outer settling region of negli-
gible mass. The open circle in Figure 11.6 marks the onset of full convection. By this point,
deuterium burning has significantly increased the protostar’s radius. The degree of swelling
depends somewhat on the assumed accretion rate. Figure 11.8a displays R∗(M∗) for three dif-
ferent Ṁ -values. The increase in radius is a rather transient effect for the lowest Ṁ shown,
while the curves would change slowly for rates above 1×10−5 M� yr−1. Once again, the open
circles indicate where the protostar becomes fully convective.

To emphasize the structural change created by deuterium, Figure 11.8b shows an analogous
set of radius curves, obtained by artificially setting [D/H] equal to zero in the models. The
radius now continues its previous, gentle rise, and the curves are well-separated by their Ṁ -
values. In reality, such a modest radius increase is impossible once deuterium ignites. As we
have seen, the associated climb in M∗/R∗ would raise the central temperature Tc. However, εD

is so temperature-sensitive that it would increase substantially, pumping enough heat into the
protostar to swell the radius and lower Tc. In this manner, deuterium acts as a thermostat, trying
to maintain the central temperature close to the ignition value of 1 × 106 K.

The thermostat is only effective if the protostar has a steady supply of the nuclear fuel. In
addition, the temperature-sensitivity of εD implies that active burning is confined to the central
region. The original deuterium residing here is quickly consumed after ignition. While addi-
tional fuel continually lands on the surface through infall, it cannot reach the deep interior as
long as the protostar is radiatively stable. Once the interior is fully convective, however, turbu-
lent eddies drag this deuterium toward the central furnace. Since this transport time is relatively
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Figure 11.9 Luminosity within a
protostar of 1 M�. The indepen-
dent variable is the mass enclosed
within a spherical shell. An accre-
tion rate of 1× 10−5 M� yr−1 has
been assumed.

brief, the consumption rate approaches that supplied from infall. Thus, the total luminosity LD

generated by deuterium is close to its steady-state value:

LD ≡
∫ M∗

0

εD dMr

≈ Ṁ δ .

(11.30)

Here, δ is the energy available in deuterium per gram of interstellar gas:

δ =
[D/H] X ∆ED

mH
. (11.31)

The steady-state LD is 12 L� for an accretion rate of 1 × 10−5 M� yr−1.
The thermostat would still be ineffective if most of this deuterium-produced luminosity

escaped the protostar. We have already seen, however, that Lpost in the radiatively stable post-
shock layers is relatively small, since this material is smothered by the freshly accreting gas. At
any time, therefore, Lint(Mr) does rise at first to a high level close to LD but then eventually
falls (see Figure 11.9). Equation (11.19) shows that this outward, spatial decline is accompa-
nied by a temporal rise in the nearly uniform, interior entropy. Finally, the protostar’s luminosity
jumps upward across the shock to the accretion value Lacc, which is 60 L� in our sample cal-
culation. In summary, we now see that the entropy increase and swelling of the protostar stem
from two distinct sources – backheating from the accretion shock, providing (3/4) Lacc in lumi-
nosity, and internal heating from deuterium burning, which gives a smaller, but still important
contribution.

11.3 Protostellar Disks

One key simplification in our analysis has been the assumption that fluid elements from the
cloud envelope directly impact the protostar. However, we saw in Chapter 10 that rotation
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distorts the infalling trajectories. Material with sufficiently large specific angular momentum
lands first in a disk and only later spirals to the stellar surface. The protostellar disk is of
considerable interest itself, since it is the medium out of which planets ultimately form. We
therefore want to trace the main theoretical ideas concerning its origin and growth. Along the
way, we discuss the still problematic issue of mass transport onto the central star.

11.3.1 First Appearance

A disk is born when infalling gas begins to miss the protostellar surface. The analysis of ro-
tating collapse in § 10.4 allows us to pinpoint this time, along with the associated stellar mass.
Recall that the centrifugal radius 	cen marks the greatest distance where fluid elements cross
the equatorial plane. Equating this quantity, as given by equation (10.50), to the protostar radius
R∗, we solve for the critical time:

t0 =
(

16 R∗
m3◦ Ω2◦ aT

)1/3

= 3 × 104 yr
(

R∗
3 R�

)1/3 (
Ω◦

10−14 s−1

)−2/3 ( aT

0.3 km s−1

)−1/3

,

(11.32)

where we have set m◦ = 1. The mass of the protostar at this time is then M0 ≡ Ṁt0. Using
equation (10.31) for Ṁ , this is

M0 =
(

16 R∗ a8
T

G3 Ω2◦

)1/3

= 0.2 M�

(
R∗

3 R�

)1/3 (
Ω◦

10−14 s−1

)−2/3 ( aT

0.3 km s−1

)8/3

.

(11.33)

Equation (11.33) gives the reasonable result that the protostar mass at the time of disk for-
mation increases with either a greater aT (i. e., higher infall rate) or a lower Ω◦. Taken at face
value, the numerical figure indicates that many stars could accumulate entirely by direct infall.
However, our uncertainty regarding the proper values of infall and rotation rates is great enough
that we should continue to explore the more general formation mechanism, even for stars at the
lowest masses.

The third factor entering equations (11.32) and (11.33) is the radius R∗, and here the reader
may have already noticed a problem. The “typical” value chosen is indeed compatible with M0,
but only for the spherical protostars considered previously. Protostars forming out of rotating
gas should spin up and be centrifugally distorted, much like the clouds we considered in § 10.2.
However, we know empirically that even the youngest pre-main-sequence objects – those near
the birthline – have low rotation speeds, at least in their outer layers (Chapter 16). This fact
is a strong indication that their antecedent protostars did not simply accumulate the angular
momentum brought in by collapsing cloud matter. Instead, protostars must experience a strong,
braking torque, presumably associated with the shedding of an MHD wind (Chapter 13). We
are therefore justified in picturing them as almost spherical objects, even while discussing the
rapid rotation that characterizes their near environments.
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Figure 11.10 Physical basis of the thin-disk approximation. A fluid element within a low-
mass disk is pulled toward the midplane by the z-component of the gravitational force exerted
by the star.

Another key distinction between stars and disks is their geometrical thickness in the z-
direction. In both cases, the internal force balance is between the upward thermal pressure
gradient and the downward pull of gravity. In the younger disks of relatively low mass, the latter
is simply the z-component of the radial acceleration from the central star (see Figure 11.10).
Vertical force balance for an element located a height z above the midplane thus reads

−∂P

∂z
=

ρ G M∗ z

	3
.

In conjunction with the equation of state (11.16), this relation allows us to estimate the scale
height ∆z of the disk, i. e., the distance over which P falls appreciably:

∆z ≈
(

aT

VKep

)
	 . (11.34)

Here, aT is the average sound speed within the disk interior at radius 	, while
VKep ≡

√
GM∗/	 is the Keplerian orbital speed. Note that VKep is close to Vff at the

radius in question. We already saw, in our discussion following equation (11.6), that typical
values of Vff at R∗ correspond to temperatures of at least 106 K. This is far above the effec-
tive temperature of the precursor radiation field (see equation (11.8)), which largely sets the
inner-disk value of aT . With increasing distance from the star, both the disk temperature and
aT drop even further, and the inequality aT � VKep is always well satisfied. Hence, we may
conveniently adopt the thin-disk approximation, ∆z � 	. The reader should verify that the
condition aT � VKep also implies that the radial pressure gradient |∂P/∂	| is much smaller
than the radial force per unit volume due to either stellar gravity or rotation.

For times greater than t0, an increasing portion of the collapsing gas misses the star. We
stress that this shift has no bearing on the total mass infall rate onto the equatorial plane. The
latter is still given by Ṁ from equation (10.31) and is set by the equilibrium cloud structure at a
much greater distance scale. In any event, the changing pattern of collapse is symmetric above
and below the central plane. A trajectory that misses the star encounters its mirror image with
reversed z-velocity, as depicted in Figure 11.11. The two opposing streams collide at supersonic
speed. Consequently, the accretion shock now covers more than just the protostar and has
effectively broadened to include the whole region inside the expanding centrifugal radius 	cen.
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Figure 11.11 Collision of streamlines during rotating, protostellar collapse. The velocity of any
infalling element consists of vertical and horizontal components. An element within the disk
acquires a horizontal velocity u� from impact of the external streams. The accretion shock now
covers both the protostellar and disk surfaces.

Gas entering this extended front preserves the component of its momentum lying in the
equatorial plane. The accretion shock thus serves to deflect this portion of the infall back to-
ward the protostar (Figure 11.11). Indeed, the mass of the central object continues to grow at
the rate Ṁ , as long as this fluid promptly reaches the protostellar surface. Since there is no
time for matter to build up appreciably in the equatorial plane, the disk during this epoch is a
structure of very low surface density. Note that the infalling material still has a finite angular
momentum about the cloud rotation axis after passing through the shock. Once 	cen grows
large enough, the outermost fluid elements can no longer penetrate to R∗, and the character of
the disk radically changes.

11.3.2 Evolutionary Equations

We may quantify these ideas by first deriving the properties of the flow that impacts the disk
from above and below. Returning to our rotating infall model of Chapter 10, we set θ equal to
π/2 in equation (10.52) to find where any trajectory lands relative to the disk’s outer edge:

	

	cen
= sin2 θ◦ . (11.35)

Similar specialization of equations (10.53), (10.55), and (10.56) yields the three velocity com-
ponents immediately above the disk, while (10.57) gives the density. After transforming to
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cylindrical coordinates, we obtain

u†
� = −

(
G M∗

	

)1/2

(11.36a)

u†
z = −

(
G M∗

	

)1/2

cos θ◦ (11.36b)

u†
φ = +

(
G M∗

	

)1/2

sin θ◦ (11.36c)

ρ† = − Ṁ

8 π 	2 u†
�

tan2 θ◦ . (11.36d)

Here, the † notation distinguishes infall quantities from those within the disk. Note from (11.35)
and (11.36c) that u†

z declines with increasing 	. Thus, the accretion shock gradually weakens
as the disk spreads.

We next employ conservation principles to derive the three basic evolutionary equations
obeyed by the disk matter. Referring again to Figure 11.11, we first note that a total mass per
unit time of −4π	 (ρuz)†∆	 enters the small annulus of radius 	 and width ∆	. If Σ(	)
denotes the disk surface density, the internal rate of mass transport across any radius in the
direction of the star is Ṁd ≡ −2π	Σu�. This quantity is generally a function of 	, and any
change ∆Ṁd represents a small increase in the mass of our annulus. Since the latter is given by
2π	Σ∆	, we find the appropriate expression of mass continuity:

∂Σ
∂t

+
1
	

∂(	 Σ u�)
∂	

+ 2 (ρ uz)† = 0 , (11.37)

where we have again omitted all subscripts on the partial derivatives.
We may derive, in a similar fashion, the conservation laws governing radial and azimuthal

momentum. In the former case, we must generally account for the gravitational force both from
the protostar and from the disk itself. However, for this early phase, we may neglect the disk
self-gravity. Recall that the internal pressure gradient can also safely be ignored. After some
manipulation, we find the radial momentum equation to be

∂u�

∂t
+ u�

∂u�

∂	
=

j2

	3
− G M∗

	2
− 2 (ρ uz)†

Σ
(
u†

� − u�

)
= 0 . (11.38)

The first term on the right side represents the centrifugal acceleration, which depends on the
specific angular momentum j ≡ 	uφ. The final righthand term is the radial force per unit
mass created by impacting gas. The infall also exerts an effective force in the φ-direction that
enters the equation for azimuthal momentum conservation. Written in terms of j rather than uφ,
this latter relation is

∂j

∂t
+ u�

∂j

∂	
= −2 (ρ uz)†

Σ
(
j† − j

)
. (11.39)

At early times, the velocity components u� and uφ are both of order VKep in magnitude.
The internal crossing time for fluid elements is then brief compared to that required for 	cen
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Figure 11.12 Early expansion of a protostellar disk. (a) Before time t1, curved streamlines from
the outer disk impact the protostar directly. (b) After t1, these streamlines converge to form a
dense ring, which transfers mass to an inner disk surrounding the star. At all times, the outer disk
boundary is the growing centrifugal radius �cen.

to increase significantly. We may thus apply a steady-state approximation to our derived rela-
tions. Dropping all explicit time derivatives from (11.37)–(11.39), these become three ordinary
differential equations in the dependent variables Σ, u� , and j, and may be solved by standard
techniques.

11.3.3 Inner and Outer Disks

Figure 11.12a, based on a numerical solution of the steady-state equations, shows several rep-
resentative streamlines in the disk at this earliest epoch. These streamlines trace the inward
motion of fluid elements which, we should remember, are continually gaining mass from the
infalling envelope. The axisymmetry of the infall implies that any one curve can be rotated
about the origin to generate all the others. Note also that the entire spiral pattern expands as t3,
reflecting the similar expansion of 	cen and the infall trajectories (recall Figure 10.18). Thus,
as shown in Figure 11.12b, the streamlines eventually miss the central protostar. This transition
is an inevitable consequence of the disk’s buildup of angular momentum.

Figure 11.12b indicates how each streamline collides with its neighbor inside the tangent
circle, i. e., the radius where u� vanishes. The numerical integration gives a value for this
radius of 0.34 	cen. Thus, the streamline crossing occurs at the time t1, where

t1 = (0.34)−1/3 t0

= 1.43 t0 .
(11.40)

For t � t1, the disk contains a highly dissipative, turbulent region just outside the protostellar
surface. Once the disk expands even more, the fluid well inside the tangent circle should relax to
nearly circular orbits, i. e., to a configuration that eliminates streamline crossing and minimizes
energy dissipation. This inner disk is therefore separated from the low-density outer portion by
a ring of turbulent gas. Figure 11.12b depicts the ring as a relatively narrow region, although its
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Figure 11.13 Mass transport rate
within a protostellar disk. The rate
is displayed as a fraction of the full
Ṁ from the infalling cloud. The in-
dependent variable is the distance to
the origin, measured relative to the
expanding centrifugal radius �cen.

true width has yet to be determined. The boundaries of all three components – the inner disk,
ring, and outer disk – continue to expand as t3.

Within the high-density inner disk, uφ is close to the Keplerian value (GM∗/	)1/2. How-
ever, the orbits here cannot be precisely circular. We must still account for the azimuthal force
arising from the impact of cloud matter, as seen in equation (11.39). Equation (11.36c) indicates
that u†

φ is less than the Keplerian speed at any radius. Hence, the infall exerts a drag on the disk,
causing the orbits to spiral inward. Because the surface density is now high, this drag force is
relatively small, and the spirals are tightly wrapped. The product of Σ and u� entering Ṁd is
nonetheless significant, i. e., mass continues to flow across any radius at a substantial fraction
of the total infall rate.

Mathematical analysis of the inner disk proceeds from the same evolutionary equa-
tions (11.37)–(11.39). Because of the slow radial drift, we cannot employ a steady-state ap-
proximation. However, the first two righthand terms in (11.38) dwarf all others in this equation,
so we have an accurate estimate for j ≈ (GM∗	)1/2. Substitution of this expression into equa-
tion (11.39) yields an algebraic relation between u� and Σ. We are thus able to write the
partial differential equation (11.37) in terms of the surface density alone. The actual solution
for Σ(	, t) requires proper matching to the outer disk across the ring interface.

Figure 11.13, again taken from the detailed integration, shows the variation within the disk
of the mass transport rate. Notice that the radial coordinate here is actually 	/	cen and that
Ṁd is displayed as a fraction of the infall rate Ṁ . At any epoch, 	/	cen extends from some
finite value up to unity at the disk edge. The innermost value of this ratio steadily falls as 	cen

grows. Hence, the figure is also useful for tracing the temporal evolution of the mass transport
rate at this edge.

At t = t0, 	 is identically equal to 	cen (which in turn equals R∗), and Ṁd is zero. There-
after Ṁd at the inner disk edge monotonically rises, as the spreading disk incorporates more
infalling gas, so that less impacts the star directly. A sharp downward plunge in Ṁd occurs
at time t1 and reflects the sudden appearance of the turbulent ring. The ring contains a finite,
and increasing, amount of mass, so that Ṁd is spatially discontinuous for t > t1. At even later
times, the rate of mass transport onto the protostar’s surface steadily falls. The drag from infall
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Figure 11.14 Torquing within a circumstellar disk. Over the time interval ∆t, an inner annulus
transfers angular momentum to an outer one. The first annulus thus contracts, while the second
expands.

is now too weak to affect the inner disk, whose mass climbs nearly linearly with time at the rate
Ṁ . Concurrently, the protostar’s mass rises only slowly, as nearly all the infalling trajectories
fall far outside R∗.

11.3.4 Internal Torquing

The steady increase of the disk mass Md for t > t1 presents a serious problem. Should this
rise continue unabated, Md would soon outstrip M∗. Observed pre-main-sequence stars, how-
ever, always have disks with relatively low masses, typically a few percent of the stellar value.
The theory just outlined makes it clear that such an extreme central concentration of matter in
the star-disk system is not simply the outcome of gravitational collapse, which by itself would
always spread mass more uniformly. This dilemma is one manifestation of the angular momen-
tum problem that pervades star formation theory in much the same way as the magnetic flux
issue. In both cases, naïve application of conservation laws leads to results squarely at odds
with observation.

To avoid the rapid buildup of a massive disk, some process stronger than the drag from infall
must allow material to spiral continually onto the protostar. Consider, as in Figure 11.14, two
neighboring annuli at time t, where the inner annulus has a specific angular momentum j1 and
the outer has j2. (Here, j1 must be less than j2 in order for the disk to be rotationally stable;
recall § 9.2.) During a subsequent time interval ∆t, the inner annulus can contract only if its
specific angular momentum is reduced, say to j1 − ∆j. One way for such a reduction to occur
would be if material with lower specific angular momentum were mixed into the region. Infall,
as we have seen, supplies such material, and the lowering of j1 constitutes the drag from this
source. But a reduction in j1 also happens when the annulus exerts a torque on its neighbor,
raising j2 to the higher value j2 + ∆j. The radius of the outer annulus consequently increases
while the inner annulus is shrinking. Thus, after the drag from impacting matter has diminished,
further inward flow of mass is generally accompanied by outward flow of angular momentum
and concurrent spreading of the disk.

The simplest way to achieve this internal torquing would be through some kind of friction.
Referring again to Figure 11.14, we note that the inner annulus has the higher rotational speed,
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even though it has the lower specific angular momentum. Thus, the presence of any shear
viscosity would indeed cause this annulus to torque up its neighbor, just as required. The idea
is elegant in its simplicity, and quantitative models confirm that inward mass flow is readily
attainable, with the rate proportional to the assumed viscosity. What, then, is the physical
source of this internal friction?

Even after decades of intensive research, there is still no generally accepted answer to this
question, either in star formation or in other studies where disks figure prominently, such as
the accretion in galactic nuclei. For our present purposes, two lessons may be drawn from this
cumulative experience. The first is that disks in isolation have no clearly demonstrated tendency
either to spread or transfer matter to their central bodies. Note the operative phrase in isolation.
Disks in binary systems, for example, evidently do facilitate the mass transfer from one star
to its companion. The second lesson is that the description of internal torquing as an effective
viscosity may be inappropriate. In particular, there is no compelling reason why the torque
should be proportional to the local gradient in azimuthal velocity.4 Of course, a protostellar
disk is not isolated, but gains matter continually from its parent cloud. It is thus sensible to
explore, without being burdened by the viscous analogy, how mass accumulation itself might
promote internal torquing.

11.3.5 Gravitational Instability

Let us return to our evolutionary picture of the growing protostellar disk. We first make the
technical point that any substantial rise in Md invalidates one of our previous, underlying as-
sumptions. We have taken the gravitational force on a fluid element to be that from the protostar
alone, and it is clear that this approximation breaks down. In part, the correction is simple
enough. For any distribution of surface density in the inner disk, we may integrate over all
annuli to obtain the extra force at a fixed radius. The deeper issue, however, is dynamical. Once
the disk’s own mass provides significant binding, the possibility arises that the entire struc-
ture becomes gravitationally unstable. Indeed, this occurrence is inevitable, given our working
hypothesis of a virtually unlimited angular momentum and mass supply from the cloud. The
instability must profoundly affect subsequent evolution and certainly impacts the mass transfer
issue. However, the current understanding of disks during this phase is far from complete.

Before delving into the main issues, let us examine more carefully how the instability arises
in the first place. It is helpful to recall our analysis of magnetized equilibria in Chapter 9 and,
in particular, the discussion of highly flattened configurations in § 9.4. Consider, as before, a
small disk-like element of surface density Σ◦ and radius 	◦, embedded within the much larger
protostellar disk (see Figure 11.15). If we squeeze the small element so that its radius shrinks
fractionally by ε, the additional gravitational force per unit mass toward its center is again
given by FG ≈ εGΣ◦. Conservation of angular momentum (rather than of magnetic flux) now
dictates that the angular rotation speed increase fractionally by about ε, from its initial value
Ω◦. It follows that the extra centrifugal force is FR ≈ ε	◦Ω2

◦. Finally, the increase in thermal
pressure, integrated over the disk height, is about εΣ◦a2

s, where as is the internal sound speed,

4 Nevertheless, the literature is still replete with “α-disk” models. Here, α is a nondimensional parameter that measures
the strength of the viscosity. The traditional practice has been to assign this parameter ad hoc and follow the resulting
evolution of the disk.
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Figure 11.15 Gravitational stability of a rotating disk. A small, interior element of initial radius
�◦ contracts and spins up, thereby inducing extra gravitational, pressure, and rotational forces. In
the case shown, the gravitational force exceeds the sum of the pressure and rotational forces over
a finite range of �◦-values. The parent disk is therefore unstable.

calculated assuming that the squeezing occurs adiabatically. Thus, the rise in the associated
outward force is FP ≈ εa2

s/	◦.
The total repulsive force induced by squeezing the elemental disk is thus

FR + FP ≈ ε	◦ Ω2
◦ +

ε a2
s

	◦
,

while the incremental gravitational force FG is independent of 	◦. For fixed as and Ω◦,
FR + FP diverges at both small and large 	◦. The sum therefore has a minimum value, which
is 2εasΩ◦. If this minimum force is smaller than FG, there exists a finite range of 	◦ over
which the gravitational force dominates and the larger disk is unstable; this case is illustrated
in Figure 11.15. Conversely, we have stability if the repulsive force is larger at all 	◦. This
happens when εGΣ◦ < 2εasΩ◦, i. e., when 2Ω◦as/GΣ◦ > 1. A careful perturbational analysis
of the disk yields substantially the same result. After dropping all subscripts, the more exact
criterion is

Q ≡ κ as

π G Σ
> 1 for stability . (11.41)

Here, Q is the Toomre Q-parameter. If Ω(	) is the rotation speed as a function of cylindrical
radius, then the quantity κ on the righthand side of (11.41) is defined through

κ2 ≡ 1
	3

d(	4 Ω2)
d	

, (11.42)

and is known as the epicyclic frequency.5 The reader may verify that κ approaches Ω if the
latter has a radial falloff close to 	−3/2, the result for Keplerian orbits.

5 Physically, κ represents the frequency of small oscillations for elements displaced slightly from circular orbits. The
terminology is thus a reference to Ptolemaic cosmogony. In modern astrophysics, κ plays a fundamental role in the
theory of galactic structure. Toomre’s criterion, equation (11.41), was first derived in this context.
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This stability criterion, like the one governing convection in stars, is local, since Q is a
function of radius within any particular disk. The actual variation of this parameter is not
very broad in the model corresponding to Figure 11.4, since κ, Σ, and as all decline outward
at comparable rates. Here the fall in as reflects the weakening of both heating agents – the
protostellar flux and the surface shocks – with greater distance. In general, we expect Q at
early times to be high enough everywhere that the relatively hot and small disk is unequivocally
stable. Subsequent cooling and spreading eventually causes the parameter to drop below unity
at some interior radius.

The disk properties at this transition epoch are still not known in detail, but may be crudely
estimated. To obtain the mass, we first let Ω ≈ VKep/	, where VKep is again the local orbital
speed. After further approximating Σ as Md/	2, we find that

Md

M∗
≈ as

VKep
, (11.43)

when Q ≈ 1. But the righthand side, from equation (11.34), is a measure of the relative disk
thickness, which we have seen is small. Hence, the structure begins its self-gravitating phase
with a mass less than M∗; current calculations indicate a fraction of roughly 10 percent. The
rapid growth of both Md and 	cen for t > t1 implies that the latter cannot greatly exceed R∗
when the transition occurs, certainly by no more than an order of magnitude. But the disks
around pre-main-sequence stars are thought to have dimensions of about 100 AU, or 104 R∗.
The outer radius must therefore spread enormously by the time the star is optically revealed.
Meanwhile, the total disk mass has either climbed only slightly or else fallen.

11.3.6 Spiral Waves

Near the location where Q first drops near unity, any transient density rise is no longer damped
out by pressure and rotational forces, but grows rapidly. Instead of separating from the back-
ground, the incipient clump is sheared apart by differential rotation. Within a few orbital peri-
ods, the sheared strands reorganize into a coherent spiral wave pattern. Such waves, whether
they occur in galaxies or protostellar disks, are thus the natural products of self-gravity and
rotation.

Figure 11.16 shows this remarkable process of wave formation in a particular numerical
simulation. Here, the mass of the central star is 0.60 M�, while that of the disk is 0.40 M�.
The outer edge is held rigidly fixed at 230 AU, and the boundary absorbs any fluid elements
impinging on it. The initial distributions in Σ and as are such that Q varies between 1 and 3,
with a minimum near 80 AU.6 Note that the time unit displayed is T ≡ 480 yr, about half the
orbital period at the disk edge. By t = 3 T , a strong, two-armed spiral has developed and begins
to move outward, rotating all the while at a fixed pattern speed. This wave is later absorbed at
the edge, but another is regenerated deeper inside. Several cycles of instability appear over the
total elapsed time of 10 T .

6 The stability criterion in equation (11.41) actually pertains to axisymmetric (ring-like) perturbations. Disks become
unstable to non-axisymmetric modes at somewhat higher Q-values.
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Figure 11.16 Development of a two-armed spiral wave in a protostellar disk, shown at 6 repre-
sentative times. The grey scale indicates the perturbed values of surface density. Initially random
perturbations quickly organize into a coherent, expanding wave pattern.

Figure 11.17 Mass transport in a proto-
stellar disk. For the two times indicated,
the mass contained within a cylindrical
radius � is plotted as a function of �.
This mass is scaled to an arbitrary, fixed
value.

From our perspective, the most intriguing aspect of spiral waves is their ability to transfer
angular momentum. Note that any non-axisymmetric density perturbation would create internal
torques. The spatial distribution of these torques is especially smooth in a “grand design” spiral.
In the particular example shown here, the net flow of angular momentum is outward, and interior
annuli indeed migrate toward the central star. Figure 11.17 demonstrates this shift by displaying
the distribution of M(	), the total mass interior to any radius 	. Notice how M(	) has risen
toward the center by the end of the calculation.
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Results such as these have bolstered the idea that “gravitational torques” can both spread the
disk (perhaps well beyond 	cen) and simultaneously drain infalling matter onto the protostar.
Certainly, these torques can be much stronger than those created by infall. However, we are
still far from a complete, or even self-consistent, evolutionary account. The simulation shown
in Figure 11.15 neglects infall entirely and assumes a disk radius of the same magnitude as
those to be explained. Can gravitational torques actually spread a much smaller initial disk
by the requisite amount? Specifically, does the spiral wave lead to a sustained, outward flow
of angular momentum? Does the wave truly dissipate and regenerate itself periodically, or is
this cycling an artifact of the chosen background state and conditions at the edge? Note that
disks with much lower Q-values grow such strong spiral waves that they break apart into self-
gravitating pieces. What physical effect guarantees that Q will actually hover close to unity, as
implicitly assumed here?

From a practical viewpoint, one impediment to answering these questions is that numerical
simulations can track only a modest number of orbital periods. Recall that the period around a
0.3 M� star is only 21 days at a radius of 0.1 AU; these should be representative values at the
start of the self-gravitating epoch. Protostellar infall, however, lasts some 105 yr. Such a vast
discrepancy between the dynamical and secular time scales appears to doom any direct simula-
tion of the full evolution. The alternative would be an approximation scheme that averages over
many orbits, concentrating instead on the relatively slow changes in the spiral-wave amplitude.

Finally, we return to the protostar itself. Even if gravitational torques do prove capable of
redistributing disk mass over a large area, we must still understand how this material joins onto
the stellar surface. Rapid spinup of the gas demands a highly efficient braking mechanism and
energy sink to allow continued accretion. It is here that twisting of the stellar magnetic field
and the generation of MHD winds probably enter the picture (Chapter 13). We will also see in
Chapter 17 how the innermost disk, coupled to the stellar field, is susceptible to clumping and
turbulent motion that may aid in the accretion process.

We may ask, finally, how a central object accreting partially from a disk differs from the
spherical models considered earlier. The answer is not known in detail, but protostellar evolution
is surely more sensitive to the rate of mass addition than to the detailed spatial pattern of the
infall. Chapter 17 will present evidence that the disks around older, pre-main-sequence stars
have an inner edge at several stellar radii. Disk matter could traverse this gap by flowing inward
along magnetic flux tubes. If protostars also receive mass this way, the total Ṁd is apportioned
into discrete “hot spots” on the surface. In this case, the radiated accretion flux has strong,
localized peaks, but the surface-integrated luminosity Lacc remains the same as in a spherical
model. So does, at least approximately, the specific entropy just beneath the surface. This
entropy rises, as before, with increasing stellar mass, and our evolutionary picture should remain
largely intact.

11.4 More Massive Protostars

The accretion rates used to build up low-mass protostars are those appropriate to parent clouds
that are marginally stable prior to collapse and largely thermally supported, with internal tem-
peratures of roughly 10 to 20 K. We have identified these structures with the well-studied dense
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cores. As we seek to extend the theory to higher masses, the observational situation grows
murkier. Do these stars arise from the collapse of similar clouds, or rather from massive ana-
logues to dense cores? Radio surveys do find systematically larger and warmer molecular frag-
ments in regions such as Cepheus and Orion, already known for their production of high-mass
stars. Some of these cloud entities contain entire infrared clusters while others appear to be
starless, but all tend to have relatively large nonthermal molecular line widths. Those in the
first category contain a larger fraction of high-density gas (n � 105 cm−3), but some of this
compression may stem from shocks induced by stellar winds. Furthermore, it is unclear to what
extent the higher velocity dispersion simply reflects a blending of substructures in relative mo-
tion that have not been spatially resolved. In the case of the Cepheus star formation region, its
distance of 730 pc does severely limit resolution. The massive cores found in Orion A and B
cannot be so easily dismissed. Whatever substructuring exists there should be revealed in the
near future.

For now, our theoretical deliberations on massive protostars must retain this basic uncer-
tainty. We will tentatively assume that the picture of collapse we have developed, including the
range of Ṁ -values, is applicable to all stellar masses, and let the observations indicate when
this hypothesis fails. Here and in Chapter 18, we will see that the resulting models are largely
successful at explaining intermediate-mass objects, i. e., those from about 2 to 10 M�. We will
also see that the admittedly idealized spherical collapse is truly untenable for O stars, because of
their extremely large luminosities. Finally, Chapter 12 revisits the topic of clusters and explores
their possible role in stellar formation at the highest masses.

11.4.1 Return to Radiative Stability

We continue, then, to construct evolutionary models by solving the four stellar structure equa-
tions, regarding Ṁ(t) as a freely specifiable function. Provided we limit ourselves to the same
range of accretion rates as before, we find that M∗ cannot increase far above 1 M� before an
important change occurs. The protostar’s interior, which was fully convective from deuterium
burning, now reverts to a radiatively stable state. It does so because of a decline in the average
opacity, which makes it easier for the interior luminosity to reach the surface. If the protostar
continues gaining mass, it maintains radiative stability until it eventually begins to fuse ordinary
hydrogen.

To see quantitatively why convection must cease, we turn again to the luminosity Lcrit in
equation (11.29). This quantity varies spatially within any given star, but it is useful to gauge
how its overall magnitude scales with stellar mass and radius. Thus, we replace Mr in the
numerator of (11.29) by the full mass M∗ and note, from (11.2a), that the average interior
temperature should be proportional to M∗R−1

∗ . In the same spirit, we set (∂T/∂P )s equal
to T/P . The pressure itself should scale as M2

∗ R−4
∗ , according to equation (11.15). Finally,

the opacity κ is proportional to ρT−7/2 in the relevant density and temperature regime (see
Appendix G). After replacing ρ by M∗R−3

∗ , we combine these results to find that Lcrit scales
as M

11/2
∗ R

−1/2
∗ . The steep mass-dependence largely reflects the sensitivity to temperature of

the Kramers-law opacity.
The lesson here is that the average Lcrit increases so sharply during protostellar accretion

that it eventually surpasses the actual interior luminosity. It is at this point that convection
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Figure 11.18 End of convection in pro-
tostars. The profiles of critical luminos-
ity (dashed curves) gradually approach
the true interior luminosity (solid curve).
Numbers associated with each critical lu-
minosity profile are the protostellar mass
in solar units. The independent variable
is the interior mass relative to the total
protostellar value. The short, vertical ar-
row indicates where the radiative barrier
first appears.

disappears. The true luminosity stems mostly from deuterium fusion, and its peak value is
proportional to Ṁ (recall equation (11.30)). We see, then, that the value of the transition mass
is insensitive to the accretion rate. For the Ṁ -values of interest, this mass falls near 2 M�.

Figure 11.18 shows in more detail how the alteration occurs. Here, the numerical calcula-
tion employs a constant accretion rate of 1 × 10−5 M� yr−1. The dashed curves, representing
Lcrit(Mr), rise quickly as M∗ advances through the values indicated. Meanwhile, the true
interior luminosity (solid curve) has barely changed. In this particular sequence, Lcrit(Mr) in-
tersects Lint(Mr) when M∗ reaches 2.38 M�; the two curves actually touch at Mr = 1.70 M�.
Just at this mass shell, indicated by the vertical arrow in the figure, Lint drops below Lcrit, and
Schwarzschild’s criterion is satisfied. A radiative barrier has now appeared and will quickly
alter the protostar’s thermal structure.

11.4.2 Deuterium Shell Burning

The stable region near 1.70 M� in Figure 11.18 constitutes a barrier because it prevents freshly
accreted deuterium from reaching the center through the turbulent transport associated with
convection. We recall that the convection itself is driven by nuclear fusion. Once the barrier
is established, the residual deuterium inside it is consumed rapidly, and convection disappears
throughout the interior volume. Referring again to Figure 11.18, the peak value of Lint(Mr)
now declines until the luminosity profile falls below Lcrit(Mr) everywhere inside 1.70 M�.

As long as cloud collapse and infall persist, deuterium accumulates in a thick mantle outside
the original radiative barrier. The central temperature of the protostar has been slowly but
steadily rising with time. With the exhaustion of the interior nuclear fuel, the increase of R∗
that began at lower masses virtually stops. Thus, the ratio M∗/R∗ grows faster than before, and
the temperature rise accelerates. Soon, even the base of the deuterium mantle reaches 106 K.
The fuel ignites and induces convection out to the surface. Once again, fresh deuterium arrives
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Figure 11.19 Onset of deuterium shell burning. The luminosity as a function of interior mass
is shown for the indicated values of the total protostellar mass, in solar units. The lowest profile
corresponds to 2.38M�, the protostar mass at which the radiative barrier first appears.

through infall and is quickly advected to the burning layer. Figure 11.19 shows the onset of
this deuterium shell burning, as reflected in the change of interior luminosity. Here we see
the rapid rise of the peak Lint-value, which again approaches the steady-state level given by
equation (11.30).

Figure 11.20 summarizes pictorially the stages of deuterium fusion in protostars. The shift
in the site of active burning from the depleted central region to an overlying shell is reminis-
cent of the progression of hydrogen fusion during post-main-sequence evolution. In both cases,
the establishment of the shell source is accompanied by major structural changes. Here, the
injection of heat raises the specific entropy of the outer layers, and the protostar swells dramati-
cally. This increase is apparent in Figure 11.21, which plots the protostar radius as a function of
mass. The first open circle again signifies the onset of full convection, while the second marks
the appearance of the radiative barrier. In this expanded view, we notice how the first rise in
R∗(M∗) from central deuterium burning occupies a relatively narrow mass range. Nevertheless,
our knowledge of the initial mass function tells us that the majority of protostars are actually in
this interval, while only a small fraction ever attain the second swelling due to shell burning.

11.4.3 Contraction and Hydrogen Ignition

If we continue adding mass to the protostar, both the convection and swelling gradually dis-
appear. The inexorable rise of Lcrit drives both the actively burning layer and its associated
convection zone toward the surface. Now that the star is almost fully radiatively stable, our
derived scaling relation for Lcrit should apply to its actual luminosity, as well. Averaging over
the stellar interior, we find

〈Lint〉 ≈ 1 L�

(
M∗

1 M�

)11/2 (
R∗

1 R�

)−1/2

. (11.44)
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Figure 11.20 The four stages of deu-
terium burning in protostars. Active
burning begins at the center and con-
tinues until a radiative barrier appears.
The entire protostar is then radiatively
stable, and its interior depleted of deu-
terium. The fuel later re-ignites in a
thick shell, inducing convection in the
outermost region.

Figure 11.21 Mass-radius
relation in a spherical pro-
tostar, accreting at the rate
1 × 10−5 M� yr−1. The three
open circles indicate the onset of
full convection, the appearance
of the radiative barrier, and the
second initiation of central con-
vection, as a result of hydrogen
fusion.

We stress that this approximate (and very useful) relation is valid for any radiative star, regard-
less of its evolutionary state. Indeed, we have been able to assign the numerical coefficient from
the fact that the Sun itself is stable against convection throughout most of its volume.

Equation (11.44) indicates that the protostar’s interior luminosity soon outstrips that pro-
duced by steady-state shell burning. For M∗ � 3 M�, the interior contribution amounts to sev-
eral 100 L� and even dominates Lacc. Between 5 and 6 M�, the luminosity surpasses 103 L�.
What accounts for this remarkable climb? The answer is gravitational contraction of the bulk
interior. This energy source has been available from the earliest times, but does not truly come
into play until after the cessation of central deuterium burning. From then on, the influence of
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self-gravity keeps building until it becomes paramount. Figure 11.21 shows how even the large
swelling due to shell ignition is soon reversed, and the star begins a rapid, overall contraction.

Consider the observational and evolutionary status of the star during this period. Our as-
sumption of continuing infall means that the brightening object is obscured at optical wave-
lengths by its dusty envelope. The same holds, of course, for its low-mass counterparts. How-
ever, the fact that most of the luminosity now stems from internal gravitational contraction
violates the definition of “protostar” offered earlier. On the other hand, the star is certainly not
in the pre-main-sequence phase, where any mass addition occurs at a much slower rate than the
stellar contraction. We will continue to refer to the objects of interest as “intermediate-mass
protostars,” while recognizing their rather unique, hybrid nature.

It is important to realize that the accreting star has not entered a state of dynamical collapse
like that which terminates the first core. Velocities interior to the accretion shock remain sub-
sonic, as gravity slowly squeezes the configuration against thermal pressure. The time scale for
R∗ to decrease significantly is therefore much longer than tff , and is set by the magnitude of the
radiative losses. (Recall the definition of tKH in Chapter 1.) We shall examine more carefully
such quasi-static contraction in Chapter 16, when we study pre-main-sequence evolution. For
the present, we simply note two generic features of the process. First, the internal luminosity,
whose average value is given roughly by equation (11.44), now increases outward monotoni-
cally. The local maxima of Lint(Mr) seen in Figures 11.9 and 11.19 have vanished, and the
specific entropy of the deep interior falls with time. Secondly, the decline of R∗ implies an
even faster rise of the interior temperature. Once the central value Tc surpasses 1 × 107 K, the
protostar begins to fuse ordinary hydrogen.

The creation of 4He from four hydrogen nuclei releases sufficient energy (∆E = 26.7 MeV)
to halt the stellar contraction. At this point, the reader may well ask why this reaction only
begins at 107 K, while the prior fusion of deuterons and protons occurred at a much lower
temperature. The answer is that the creation of 4He requires two of the four protons to become
neutrons. This transformation involves the weak nuclear interaction. Consequently, the particle
kinetic energies must be higher for the fusion to proceed at significant rates.

Hydrogen burning in protostars commences when the total mass reaches about 5 M�. Ini-
tially, pairs of protons begin to combine:

1H + 1H → 2H + e+ + ν . (11.45)

The emitted positron annihilates with an ambient electron, while the neutrino escapes the star.
The deuterium produced here almost immediately fuses with another proton to create 3He,
through the much faster reaction of equation (11.26). The subsequent conversion of 3He to
4He proceeds along a number of different pathways, known collectively as the PP chains (see
Chapter 16). All of these reactions operate simultaneously. However, the temperature within
our contracting protostar becomes so elevated that a different mode of fusion soon takes over.
Heavier nuclei begin adding successive protons until they eventually decay, spitting out α par-
ticles (4He nuclei). This process is known as the CNO bi-cycle. As we shall later see, it is the
dominant reaction network in early-type main-sequence stars.
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Figure 11.22 The CN cycle of hydrogen
fusion. The reactions shown correspond to
those in equation (11.46) of the text. Note,
however, that protons are now designated as
p instead of 1H, and that we have employed
a condensed notation for incident and final
particles and photons.

Within protostars just beginning their hydrogen fusion, only a portion of the entire network
is active. This CN cycle consists of the reactions

13C + 1H → 14N + γ
14N + 1H → 15O + γ

15O → 15N + e+ + ν
15N + 1H → 12C + α
12C + 1H → 13N + γ

13N → 13C + e+ + ν ,

(11.46)

and is shown schematically as Figure 11.22. As the figure demonstrates, the sequence of reac-
tions indeed forms a closed cycle. The incident 13C (or any of the other heavy nuclei involved)
acts merely as a catalyst and is regenerated at the end of each loop. Along the way, four protons
are consumed to produce one 4He nucleus. Thus, the net reaction is

4 1H → 4He + 2 e+ + 2 ν , (11.47)

for which the energy output is the same 26.7 MeV as in the PP chains.
The CN cycle predominates once the protostar’s mass is about 6 M� and its central temper-

ature has reached 2 × 107 K. It is clear from Figure 11.21 that the contraction begins to slow at
just this point. While equation (11.44) still governs the total interior luminosity, the contribution
from nuclear burning grows at the expense of that from gravitational contraction. The specific
entropy near the center begins to rise, just as it did after the first deuterium ignition. Soon, the
entropy profile overturns and a central convection zone appears; this event is marked by the
third open circle in Figure 11.21. The zone extends to Mr = 1.3 M� by the time contraction
truly halts, at a protostellar mass near 8 M�. The object is now more accurately described as
an accreting main-sequence star. Infall makes only a minor contribution to the total luminos-
ity of 3.5 × 103 L�, and continues to provide an obscuring screen for the emitted optical and
ultraviolet photons.
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The numerical results we have quoted so far were obtained using a constant accretion rate
of 1 × 10−5 M� yr−1. It is instructive to see the consequences of varying this rate. Suppose,
for example, that we lower Ṁ by a factor of 10. The accretion luminosity bathing the star from
the outside is now diminished, and there is more time for internally generated heat to escape.
At any stellar mass, therefore, the radius is smaller than before. Both the ratio M∗/R∗ and the
internal temperature are consequently higher. Thus, the protostar begins main-sequence hydro-
gen fusion at a mass near 4 M�. This consequence of the lower rate rules it out empirically,
at least as a universal prescription. The well-studied Herbig Ae/Be stars often have masses that
exceed 4 M�. These objects must have originated from protostars that had not yet contracted
and ignited hydrogen (Chapter 18).

Conversely, raising Ṁ to 1×10−4 M� yr−1 results in an evolutionary sequence with larger
radii and lower internal temperatures at every mass. In particular, entry to the main sequence
is now delayed to 15 M�. This case is harder to dismiss out of hand but is probably also
unrealistic. Equation (10.31) tells us that the enhanced Ṁ corresponds to a pre-collapse cloud
temperature over 100 K. Such temperatures are far in excess of those encountered in isolated
dense cores, but are routinely found in cloud fragments exposed to nearby (or embedded) O and
B stars. There is no evidence, however, that Ae/Be stars are found only in regions that earlier
produced even more massive objects. In summary, our adopted order of magnitude for the
accretion rate is plausible, although a range in values and a temporal variation are both naturally
expected.

11.4.4 Effect of Radiation Pressure

A far more problematic issue is the mechanical effect of the protostar’s radiation on its infalling
envelope. Heating of the gas and dust creates a retarding pressure, one that we have so far been
able to ignore. As the star gains mass and its luminosity climbs swiftly, we can no longer afford
this simplification. The new pressure source becomes so strong, in fact, that it must alter the
pattern of collapse. Finding the new pattern is difficult (and has not yet been done), but we may
at least hazard a guess as to the direction of this change.

First we should be more precise about the manner in which radiation impedes the flow.
We have seen that the temperature in the dust envelope climbs steeply toward the protostar.
The grains here emit copiously in the infrared, but these photons are soon absorbed. A grain
that takes up the photon momentum quickly transfers it by collision with a gas-phase atom or
molecule. The radiation and gas thus essentially constitute two components of a single fluid,
each exerting its own partial pressure. The photon contribution is 1/3 of the associated energy
density, as it would be for any gas of relativistic particles. Utilizing the formula for urad from
equation (2.37), we find the radiation pressure to be

Prad =
1
3

a T 4 . (11.48)

Both Prad and the ordinary gas pressure rise with increasing temperature, but the former domi-
nates close to the dust destruction front.

Suppose, as a first approximation, that we continue to ignore the gas pressure. Then the
retarding force per unit volume is −∂Prad/∂r. The transfer of radiation within the dust envelope
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is governed by the diffusion equation. Changing independent variables in equation (G.7) from
z to r, we see that the radiative force is also ρκFrad/c. This result is intuitively appealing, since
the opacity κ represents the effective cross section of the matter for the stream of photons, each
of which carries momentum hν/c. Retardation of the infall begins once ρκFrad/c becomes
comparable to the gravitational force per unit volume. Since the latter is −ρGM∗/r2, and since
Frad may be written as L∗/4πr2, the condition becomes

L∗
M∗

=
4 π c G

κ

≈ 1 × 103 L�
M�

.

(11.49)

Evaluation of the righthand side of this equation requires an opacity, which in turn depends on
the characteristic radiation temperature. Noting that the retarding force is highest just outside
the destruction front, we have used the grain sublimation temperature of about 1500 K. Here,
κ ≈ 10 cm2 g−1, as implied by the standard interstellar extinction curve at near-infrared
wavelengths. Plausible variations in grain composition could alter this value by as much as a
factor of three in either direction.

Even with this uncertainty, the numerical form of equation (11.49) confirms that radiation
pressure is not significant for low-mass protostars. Indeed, the relevant value of L∗/M∗ is high
enough that the star must be one undergoing main-sequence hydrogen burning. Reference to
Table 1.1 shows that the critical ratio occurs at a mass near 11 M�. Thus, accretion should
be largely unimpeded for most intermediate-mass protostars, but is significantly affected for
central objects of greater mass.

Numerical simulations of collapsing spheres corroborate this finding. Here, one deter-
mines the temperature distribution and radiative intensity within the envelope self-consistently,
through the iterative procedure sketched in § 11.1. Because this task is computationally inten-
sive, one is forced to simplify the hydrodynamics through the assumption of spherical symmetry.
The calculations also idealize the protostar itself to be a point source of luminosity. At early
times, the luminosity stems mostly from accretion. During this epoch, infall cannot truly stop,
even after Prad starts to become dynamically significant. The reason is that any deceleration of
the flow diminishes both Ṁ and Lacc, and thus leads to a fall of Prad itself. This lowering of the
retarding force allows both Ṁ and Lacc to increase once more. In practice, one finds that Ṁ(t)
displays oscillatory behavior, without actually reversing. However, once L∗ climbs significantly
above Lacc, the feedback between Ṁ and Prad is cut. Only an inner fraction of the cloud then
collapses onto the star, while the rest disperses to large distances. The driving force behind this
motion stems in part from the trapped infrared radiation. Also significant is the direct impact of
stellar ultraviolet photons on the grains just before they vaporize.

These calculations provide dramatic evidence for the potentially destructive influence of ra-
diation pressure. On the other hand, stars more massive than 11 M� certainly exist. How is this
possible? There is no doubt that the rapidly increasing stellar luminosity carries enough energy
to reverse infall and unbind the parent cloud fragment. Since L∗ exceeds Lacc, this dispersal
could occur over a period less than the accretion time M∗/Ṁ . The real issue is how efficiently
the radiation transfers its energy to the envelope. Here, any departure from the idealized case of
spherical collapse is likely to play a crucial role.
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To see why, recall the asymmetry induced by cloud rotation. We have seen that infalling
elements starting far off the central axis (at large θ◦) follow highly nonradial trajectories. These
elements may strike the equatorial plane at such great distances that their grains are never heated
to the sublimation temperature. Once entering the disk, the fluid would be further shielded from
radiation pressure by the high opacity along the midplane. The disk efficiently absorbs stellar
photons and reradiates them from its faces. Internal torquing then promotes accretion toward
the star. In this manner, a portion of the total infall might continue relatively unperturbed,
even for high values of L∗. 7 The basic requirement is that the disk radius extend past the
dust destruction front in the equatorial plane. This condition should not be difficult to meet, as
Figure 11.4 illustrates.

What of the remainder of the infall? It is inevitable that some fluid elements closer to the
pole will bear the full brunt of the elevated radiation pressure before their grains vaporize. In
spherical geometry, this gas must brake and start to reverse its velocity. In the two-dimensional
rotating collapse, however, the fluid can react to increased pressure by veering off laterally.
Moreover, any strong deceleration of the highly supersonic infall creates a standing shock front.
This would effectively replace the accretion shock in lower-mass protostars, but would be spa-
tially removed from the star and disk, not far beyond the dust destruction front. We may picture
incoming gas entering the shock obliquely, then turning toward the equator within a condensed
shell of postshock matter (Figure 11.23).

Although this picture has appealing features, it is unlikely to provide a full solution to the
problem of high-mass protostars. A shell supported against gravity by radiation pressure may
well be dynamically unstable. Any small, incipient warping will tend to increase, until discrete
portions break off and fall toward the star, while others are promptly blown outward. In addition,
massive stars emit powerful winds from their surfaces. The associated ram pressure should be
effective at clearing the infalling envelope, especially in the polar region.

Our discussion touches on another fundamental and longstanding question. Is there a theo-
retical limit to the mass of a star? Empirically, the upper bound is roughly estimated at 100 M�.
(The most reliable masses are derived spectroscopically, as we will describe in Chapter 12.)
Since the factors delimiting all stellar masses are poorly understood, it is hardly surprising that
the physical basis for this observation is even more uncertain. It may well be that the star forma-
tion process itself cannot yield objects beyond a certain mass. Equation (11.49) indicates that
radiation pressure alone halts spherical collapse even at the intermediate-mass stage. Considera-
tion of nonspherical infall may help the situation. However, for stars of the very highest masses,
the combined effects of radiation and winds are so severe that the picture of collapse from a
quiescent initial state may not apply at all. We will need to understand better any alternate
production mode before we can assess its inherent limitations.

11.5 The Observational Search

Our theoretical account of protostar structure is largely based on physical processes that are
well established from other areas of stellar evolution. We have accordingly been able to explore

7 Note, however, that an exposed O star emits such strong ultraviolet radiation that it quickly evaporates its own disk;
see Chapter 15.
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Figure 11.23 Possible deflection of rotating infall by radiation pressure (schematic). While some
streamlines strike the protostellar disk directly, others first enter a shell, before veering off into
the disk. Visible and ultraviolet radiation from the star is degraded to longer wavelengths after
traversing the shell. The latter is probably dynamically unstable and will not maintain the coherent
structure pictured in this idealized sketch.

several issues, such as the onset of convection and nuclear fusion, in some detail. While the
picture is by no means complete, our empirical knowledge of protostars unfortunately lags far
behind. The problem, of course, is that these objects are still buried in the dense cores that spawn
them. The surrounding dust absorbs virtually all radiation emanating from the accretion shock
and stellar interior. By the time this energy is reemitted at the dust photosphere, the resultant
spectrum largely reflects properties of the grains themselves. Under these circumstances, it has
proved challenging to verify even the presence of infall itself, much less the structural features
of the underlying star or its disk. On the other hand, the detection of protostars remains a high
priority, and several strategies have emerged. We describe here the basic ideas underlying the
most widely employed search techniques, along with a sampling of results. Other topics of
relevance, such as X-ray emission and near-infrared spectroscopy of deeply embedded stars,
will be covered in subsequent chapters.

The most direct means of finding protostars is to compare the emitted fluxes from known
sources with the results one expects in an infalling environment. One must first construct, in the
process, a detailed, quantitative model that reproduces the data of interest. A major difficulty
is that such models are rarely unique; alternative explanations may not involve protostellar
collapse at all. Additionally, it is still not entirely clear which sources are the best candidates
for investigation.
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11.5.1 Nature of Class I Objects

We recall from Chapter 4 that young stars may conveniently be classified according to their
broadband spectral energy distributions. Those in Class II and III have significant optical emis-
sion and are associated with classical and weak-lined T Tauri stars, respectively. Their visual
spectra are modifications, but not radical departures, from those of main-sequence stars. Specif-
ically, they contain the absorption lines that allow accurate determination of effective tempera-
tures. For these sources, the radiation at infrared and millimeter wavelengths can legitimately
be viewed as an “excess” with respect to main-sequence objects of comparable spectral type. In
Chapter 17, we will describe the efforts to model this excess through appropriate distributions
of circumstellar material.

The situation is quite different for the remaining, more embedded sources. In these, emission
at longer wavelengths dominates the energy output, while spectral classification through optical
absorption lines is rarely possible. The majority of the objects therefore cannot be placed in a
conventional H-R diagram. Most common are those in Class I. Here we recall that the product
λFλ is still rising for wavelengths greater than 2.2 µm (Figure 4.3). These sources are invariably
located near the centers of dense cores, but are they actually protostars?

We have seen that the infrared emission of a protostar stems from its dust photosphere.
According to our analysis in § 11.1, this radiating surface is located roughly 10 AU from the star,
with an effective temperature, Tphot, of about 300 K. If the spectrum were a perfect blackbody
characterized by Tphot, λFλ would peak near 10 µm. However, the emitting regions of the
envelope actually include a broad range of temperatures. That portion with values lower than
Tphot occupies a larger volume and is more heavily represented. The net result is that λFλ is
predicted to reach its maximum beyond 10 µm, but should be declining for λ � 100 µm.

This theoretical expectation is in general agreement with the observations of Class I sources.
Consequently, a number of investigators have modeled their spectral energy distributions as
arising from collapsing clouds, assumed to be either spherical or rotating. By adjusting such
parameters as Ṁ and the cloud rotation rate Ω◦, it is often possible to find a reasonable match
to the spectrum shape, over all infrared wavelengths. Unfortunately, the bolometric luminosity
predicted from the dynamical model, i. e., the integral of Fλ over λ, is usually far too high,
sometimes by more than a factor of ten.

Let us explore the discrepancy further. We first recall from equation (11.24) that L∗ for an
object accreting from a protostellar envelope is greater than that for a non-accreting object of the
same mass. A typical Class I source should therefore be more luminous than one of Class II or
III, if the former is indeed a protostar. In principle, one should be able to test this hypothesis from
the data in young clusters, but the total number of embedded sources with measured bolometric
luminosities is still small. The two best-studied cases are Taurus-Auriga and ρ Ophiuchi. In the
first, observers have by now detected almost all stars with Lbol > 0.1 L�. There is no tendency
for the Class I sources to be brighter. Instead, the bolometric luminosity function for this group
is quite similar to Class II (recall Figure 4.13a). Also similar is the typical luminosity of an
individual source at millimeter wavelengths, which reflects the amount of dust warmed by the
star. The implication is that Class I again represents pre-main-sequence objects, but those too
heavily extincted to have optical spectra.
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In the case of ρ Ophiuchi, the Class I population is indeed brighter than Class II (Figure 4.6).
On the other hand, the average Class III luminosity is higher still. How are we to understand
these facts? The first point to remember is that this system contains significantly more stars
than Taurus-Auriga. The relatively small fraction of ρ Ophiuchi sources with measured Lbol

represents the bright tail of a much broader distribution. Such higher-mass cluster members are
simply absent from Taurus-Auriga.

A second distinguishing characteristic of ρ Ophiuchi is its greater column density in molec-
ular gas. Toward the center of the L1688 cloud (Figure 3.17), AV has been roughly estimated
at 60 mag. Correspondingly, the extinction is about 6 mag at K (2.2 µm) and still exceeds unity
at a wavelength of 7 µm. Under these conditions, one must carefully model the cloud envi-
ronment in order to deredden the observed spectra and disentangle the influence of interstellar
from circumstellar dust. What we can say at present is that the Class I objects represent a heav-
ily obscured subset of the brighter stars. Members of even greater mass and luminosity have
evolved further over the cluster age; these are now close to or on the ZAMS. Some are almost
fully revealed optically and appear with Class III spectra. Further observations should find a
significant fraction of lower-luminosity Class I objects, just as in Taurus-Auriga.

Some Class I sources in ρ Ophiuchi may turn out to be protostars, but there is no strong
reason to believe that all are, either here or elsewhere. The data in Taurus-Auriga indicate that
many of its Class I objects are not bright enough to be powered by accretion. In addition, the
very fact that this category appears to be relatively common in embedded clusters makes it
suspect in this regard. At an accretion rate of 1 × 10−5 M� yr−1, a protostar of 1 M� builds
up in only 105 yr. This same object has a pre-main-sequence lifetime of 3× 107 yr. One would
therefore expect the ratio of protostars to pre-main-sequence stars in this mass range to be quite
small, on the order of 1 percent. (We will verify this conclusion through more careful reasoning
in Chapter 12.) Such a figure is difficult to reconcile with the high populations of Class I sources
– from 10 to 30 percent of the stars in Taurus-Auriga and ρ Ophiuchi. These fractions are bound
to shift as observers continue to discover and analyze more embedded sources, but the basic
message is already clear: Class I sources and protostars are not the same.

11.5.2 Modeling Spectral Energy Distributions

A more appropriate model for a Class I source of modest luminosity may thus be a pre-main-
sequence star located inside a residual, dusty envelope. Beyond this, current theory provides lit-
tle guidance, since we do not yet have a detailed picture of the remnant dense core that survives
the main accretion phase. It is nevertheless interesting, from a strictly empirical perspective, to
see the basic elements any model requires to match the observed infrared emission.

Figure 11.24 shows the spectral energy distribution of the IRAS source 04016+2610. This
Class I object, with Lbol = 4 L�, lies at the western edge of the L1489 dense core in Taurus-
Auriga and is shown in the molecular line maps of the core in Figure 3.12. The IRAS satellite
itself contributed the measured fluxes from 12 to 100 µm, while the data at other wavelengths
come from a variety of groundbased and airborne telescopes. The average visual extinction
toward the core, as obtained from 12C18O observations, is about 10 mag. Any field star that
happens to lie behind such a cloud would surely be invisible optically and detectable only at in-
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Figure 11.24 Spectral energy distribution of the Class I source IRAS 04016+2610 in L1489.
(a) The solid curve shows the spectrum from an extincted, background star. (b) The spectrum
from a star embedded within an optically thick dust shell. The dashed curve is the contribution
from attenuated starlight alone.

frared and longer wavelengths. Could the observed source merely represent such a background
star?

The answer is that it could not, and Figure 11.24a demonstrates why. By hypothesis, the dust
within the foreground core is not appreciably heated by the star and thus contributes no thermal
emission to the spectrum. The radiative transfer equation (2.20), with jν set to zero, implies that
the specific intensity at each wavelength decreases exponentially through the cloud, with a total
optical thickness ∆τλ that varies with wavelength according to the interstellar extinction curve
(see also equation (2.21)). Suppose that we represent the star’s emitted spectrum as a perfect
blackbody with Teff = 4000 K. The solid curve in the figure shows this spectrum after partial
absorption by the cloud. Note that both the luminosity and distance of the star, as well as the
cloud extinction (measured by AV ) are arbitrary, provided the combination gives a wavelength-
integrated Fλ equal to the observed one.

It is clear that simply attenuating background starlight yields a broadband spectrum that
is much too sharply peaked and narrow, and that fails in particular to give the relatively high
level of emission observed at longer wavelengths. One may repeat the exercise with different
stellar effective temperatures, but this basic difference remains. The breadth of Class I spectra
indicates that they arise from a wide range of matter temperatures, rather than the single one
characterizing a stellar photosphere. The most plausible origin for the long-wavelength com-
ponent is heated dust grains. This dust must be located relatively close to the star, which is
therefore physically embedded in the cloud.

We are thus led to consider another simplified model in which the star lies at the center
of a spherical, optically thick dust shell. We now presume that the observed Lbol of 4 L�
actually represents the star’s full energy output. Transforming the original flux distribution
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(again assumed to stem from a blackbody with Teff = 4000 K) to infrared wavelengths requires
solving the full radiative transfer equation (2.20). For a detailed study, one must add to the
righthand side an extra emissive term that accounts for scattering of ambient radiation. As
usual, one cannot specify jν without knowledge of the dust temperature, which in turn follows
from energy balance in the grain component. A glance at Figure 3.12 shows that a spherically
symmetric envelope can only serve as the crudest of approximations in this case. Nevertheless,
if the density of the heated dust peaks close to the star, the displacement of the latter from more
diffuse cloud material may not be critical.

For the spatial distribution of matter within our shell, we specify that the density vary in-
versely with radial distance to the star, i. e., ρ(r) = ρout (rout/r). Here, rout is the outer radius
of the shell. This prescription for the density represents a simple compromise between the r−2

behavior in the outer regions of isothermal spheres and the much flatter inner profile expected in
any hydrostatic body (recall Figure 9.1). Of course, a full theoretical solution would find both
the density and temperature profiles self-consistently. Here, we treat rout as a free parameter
and also vary both the fiducial density ρout and the inner radius rin until the resulting emitted
spectrum matches the observations as closely as possible.

The solid curve in Figure 11.24b displays the best model fit, for which rout = 1 × 1017 cm,
rin = 2.5 × 1012 cm, and ρout = 2 × 10−19 g cm−3 (ntot = 5 × 104 cm−3). With this choice
of parameters, the dust temperature rises from 15 K at rout to 1500 K at the inner border.
Inclusion of heated dust as a source of emission has significantly broadened the model spec-
trum. Indeed, the match to the data is remarkably close at most wavelengths. The dashed curve
shows the contribution of attenuated starlight alone, which now comprises only a portion of the
near-infrared flux. The remainder stems from relatively hot grains and from the scattering that
effectively reduces opacities at shorter wavelengths.

Since we did not derive our density profile from considerations of force balance, it should
not be surprising that other models with very different characteristics fit the data equally well.
However, all have certain features in common. First is the presence of heated dust grains, with
a density that rises toward the star. The envelope in our model has an AV of 30 mag along
the central line of sight, far greater than the observed average extinction to the parent L1489
core. An enhanced inner density and AV -value are necessary to block the star’s direct radiation.
On the other hand, if the extinction were too high, the resulting spectrum would be missing its
near-infrared component. A second generic feature is therefore an interior region of relatively
low optical thickness. Sublimation of the grains at high temperature clearly helps in this regard
but is probably not enough, at least according to Figure 11.24b. The gas density itself may also
slow its inward rise even before the dust vanishes. The reader may recall here our discussion in
§ 10.3 concerning the aftermath of magnetized infall. It is tempting (but entirely speculative at
this point) to identify the inner “cavity” with the columns that have already collapsed onto the
star, i. e., with regions A and A′ in Figure 10.8.

11.5.3 Dust Emission in Class 0

Whatever the nature of this interior region, it is apparently smaller for the objects designated
as Class 0. In these, no flux at all is detectable for wavelengths shorter than 10 µm, despite
the presence of a central star within the associated dense core. This star frequently appears
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Figure 11.25 Spectral energy distribution of
the Class 0 source in B335. The solid curve is
the theoretical result for a star in the center of
a spherical dust shell.

as a bright, spatially unresolved peak at centimeter wavelengths. In addition, Class 0 sources
drive well-collimated molecular outflows, which clearly originate from the radio peaks. The
measured velocities are much higher than those near less embedded stars. Searching molecular
clouds for fast CO outflows and for peaks in continuum emission have been the main routes to
discovering these heavily obscured stars.

Their properties suggest that Class 0 objects are in a very early and vigorous phase of evo-
lution. The emitted spectra at infrared and millimeter wavelengths arise entirely from warmed
dust, which must have an even higher column density than in Class I. Here again, millimeter
continuum radiation, for which the dust is transparent, is valuable for probing the interior cloud
structure (recall Figure 3.16). After integrating over the emitting region, one finds that the total
luminosity for λ > 350 µm is indeed higher for Class 0 than for Class I. Specifically, the ratio
of this long-wavelength luminosity to Lbol is typically 1 percent, while it is reduced by at least
an order of magnitude in both Class I and II sources. A relatively larger amount of dust (and
therefore gas) must be located close enough to the star to be warmed.

Let us examine more closely a typical Class 0 source, the embedded star in the Bok globule
B335. Figure 11.25 displays the spectral energy distribution. We see immediately that λFλ not
only peaks at a longer wavelength than in the Class I case, but that the entire distribution is
much narrower. The severe extinction of near- and mid-infrared flux cannot be interstellar, as
the globule itself is a relatively isolated entity within a more extended molecular envelope of
modest optical depth (recall Figure 3.20). Observations of the globule itself in NH3 show that
the star’s location coincides with the peak in gas density.

It is again instructive to model the circumstellar matter as a spherical dust shell with an
r−1 density variation. In this case, the prescribed density law is broadly consistent with the
inner one found from molecular and dust observations (§ 3.3). To match the flux at the longest
wavelengths, we now find that rout should be increased to 2 × 1017 cm. The inner radius, on
the other hand, can remain at 2 × 1012 cm. The biggest change is the increased outer density,
which now corresponds to an ntot of 3 × 105 cm−3 in the best-fit model. The emergent flux
from this model is displayed as the solid curve in Figure 11.25. The value of AV through the
dust shell is now 320 mag, and the optical depth falls to unity only at λ = 80 µm. With such a
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high total column density, the grain absorption feature near 10 µm appears as a deep plunge in
the emergent spectrum.

Our specific parameters for the shell cannot be assigned great weight, considering the
present uncertainty regarding the dust opacity. We recall from Chapter 2 that the problem
becomes especially severe at far-infrared and millimeter wavelengths. This, however, is the
dominant spectral range for all Class 0 sources. In the present example, one could construct a
shell model for B335 with significantly higher optical thickness. Reproducing the observed flux
Fλ would then require a smaller solid angle ∆Ω at each λ (recall equation (2.41)) and hence a
more compact structure. Until the envelope is well resolved at all the relevant wavelengths, one
cannot discount this possibility.

11.5.4 Self-Reversed and Asymmetric Lines

Even considering the range of acceptable shell models, there is no doubt that Class 0 sources
are surrounded by denser envelopes than their Class I counterparts. But are they true protostars?
In the case of B335, the bolometric luminosity is about 3 L�, still low for a star undergoing
accretion at the expected rate. Other sources are more luminous, but the total Class 0 sample
currently numbers only a few dozen. Indeed, the very paucity of these sources argues in favor
of their representing a relatively short-lived phase. The question of whether infall is occurring
during this phase must be addressed through spectroscopic studies. That is, we need to examine
the line profiles of molecular tracers to find any Doppler broadening induced by motion onto
the protostar and its disk. Such broadening should be discernible in the quiescent gas of a dense
core or Bok globule.

Figure 11.26 shows two emission spectra of the B335 infrared source. In the left panel,
the line is the J = 5 → 4 rotational transition of CS (λ = 1.2 mm), while the right panel shows
the J = 3 → 2 transition (λ = 2.0 mm) of the same molecule. The first line is optically thin,
so that the brightness temperature at each velocity represents the contribution from all emitting
molecules along the observed column. Here, some kind of bulk motion in the gas has sym-
metrically broadened the profile about line center, which itself corresponds to the mean cloud
velocity of +8.4 km s−1. This internal motion could conceivably be infall, rotation, or the out-
flow known to exist in the region. In any case, there is evidently an equal amount of material
approaching and receding from the observer at each relative velocity.

The complex structure of the second profile signals the fact that the 2.0 mm line is optically
thick to absorption by CS itself. In Chapter 6, we remarked that the optically thick profiles
of 12C16O often have a flat-topped appearance that we associated with saturation broadening
(Figure 6.1). The profile in Figure 11.26b instead shows a pronounced dip close to line center.
This self-reversal is actually a common feature of optically thick lines, but only in the direction
of embedded young stars. Previously, we noted a similar dip in the 21 cm HI profile of ρ Ophi-
uchi (Figure 3.7). A profile closely resembling Figure 11.26b, but in 12C16O, is seen toward
the Mon R2 association in NGC 2264. In all cases, the central depression reveals the presence
of relatively cold, foreground gas that absorbs photons from warmer material behind it. This
foreground gas does not participate in the bulk motion, but is static, thus accounting for the
position of the dip at line center. The temperature is apparently climbing deeper into the cloud
as a result of irradiation by the embedded star.
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Figure 11.26 Two emission spectra in CS toward B335. The rotational transitions for each line
are indicated. Dashed profiles are from a theoretical model assuming spherical infall.

To explore this picture more quantitatively, we start with equation (C.2) in Appendix C for
the specific intensity of a line emerging from a slab-like cloud of thickness ∆s. After further
employing (C.8) for the source function and converting to optical depth as our independent
variable, we find

Iν = exp (−∆τν)
∫ ∆τν

0

dτ ′
ν Bν◦ (Tex) exp τ ′

ν + Iν(0) exp (−∆τν) . (11.50)

Here, τν is measured from the back face of the cloud, which has total optical thickness ∆τν

at each frequency (see Figure 11.27). The excitation temperature Tex is assumed to fall with
increasing τν . This decline could stem from a corresponding drop in the gas kinetic temperature.
It would also occur if the density were subcritical and falling toward the observer.

We next use equation (C.10) to replace Iν by the brightness temperature TB(ν). Since we
are focusing on millimeter lines, we may employ the Rayleigh-Jeans approximation, T◦ � Tex.
We then find

TB(ν) = exp (−∆τν)
∫ ∆τν

0

dτ ′
ν Tex exp (τ ′

ν) − T◦ f(Tbg) [1 − exp (−∆τν)] . (11.51)

Here the function f in the last term was defined in equation (6.2). Note also that we have
taken the background radiation field to be Planckian at the temperature Tbg and have neglected
its frequency dependence over the line, i. e., we have set Iν(0) equal to Bν◦(Tbg). We may
simplify further by utilizing, as our independent variable, the optical depth measured from the
front surface, tν ≡ ∆τν − τν (Figure 11.27). Close to the line center, we suppose the cloud to
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Figure 11.27 Origin of self-reversal in optically thick emission lines. Shading in the slab indicates
the variation in excitation temperature. At each frequency ν, the slab has a total optical thickness
∆τν , which can be measured either from the rear (τν) or the front (tν ). A photon at line center ν◦
originates relatively close to the front surface, while others come from deeper inside. The result
is a self-reversed profile in the brightness temperature TB .

be very optically thick, ∆τν 	 1. Equation (11.51) then reduces to

TB(ν) =
∫ ∞

0

dt′ν Tex exp (−t′ν) − T◦ f(Tbg) ∆τν 	 1 . (11.52)

The first term in this equation represents a mean value for Tex, evaluated between the cloud’s
front surface and the point where tν ∼ 1. Since the opacity peaks at line center, the depth of this
point increases for ν either greater or less than ν◦. As illustrated in Figure 11.27, the mean Tex

(and therefore TB(ν)) is lowest at ν◦ and rises symmetrically on either side. This rise persists
to frequencies where the optical thickness of the entire cloud is near unity. Even farther from
line center, the cloud is optically thin, and equation (11.51) becomes

TB(ν) = [T̄ex − T◦ f(Tbg)] ∆τν ∆τν � 1 , (11.53)

where T̄ex is now the mean value throughout the cloud. Since ∆τν continues to fall with in-
creasing departure of ν from ν◦, the TB-profile itself declines in this regime.

This model provides a basic account of self-reversed profiles, but it fails in several key
respects. First, the slab is stationary, so that the predicted falloff in the line wings is much too
steep compared to the observations. Even more intriguing is the manifest asymmetry of the
optically thick profile, with the redshifted side depressed relative to the blue. This property
appears not only in B335, but also in the other Class 0 sources exhibiting self-reversed emission
profiles. One possible interpretation of the asymmetry is that the bulk motion in these cases is
actually collapse onto the star.

Figure 11.28 illustrates the essential reasoning behind this idea. Here, the shading close
to the star suggests the rise of Tex in our idealized, spherical cloud. For simplicity, we have
omitted the coldest, static material that gives rise to the self-reversal. Infalling gas from the
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Figure 11.28 Contribution of infall to the asymmetry of molecular emission lines. The shading
indicates the rise of Tex toward the central protostar.

far side emits blueshifted photons, since it is approaching the observer. Conversely, the nearer
side of the cloud contributes to the redshifted portion of the profile. Both types of photons still
suffer extinction from other molecules that have the same velocities as the emitting species.
Blueshifted photons have a greater chance of survival if they originate closer to the cloud’s
center. Here, Tex is higher, so that the corresponding TB is elevated in the profile. Most of the
observed reddened photons, on the other hand, are emitted from the outer region of lower Tex.
The asymmetry in optically thick lines is thus neatly explained.

The dashed curves in Figure 11.26 are theoretical CS spectra derived from a radial infall
model in the spirit of that described in § 10.2. The central portion of both profiles is well
reproduced, but the predicted falloff in the line wings is evidently still too steep, at least in
the righthand panel. It is tempting to associate the extended emission with the outflow. (The
alternative of rapid rotation is inconsistent with the small gradient in radial velocity observed
in this source.) Indeed, the relative contributions to the broadening from infall and outflow are
far from certain. The mystery is deepened by the fact that some dense cores with no central star
at all, such as L1544 in Taurus-Auriga, also exhibit asymmetric profiles. Here, neither collapse
nor winds should be present. Although the effect shown in Figure 11.28 must operate at some
level, the explanation of the presently observed asymmetries may be quite different.

In summary, current observations and theory have not yet established the protostellar na-
ture of any objects, although the ones in Class 0 represent especially attractive candidates. The
most dramatic observational feature in these sources, however, is the presence of strong out-
flows, and it will require more effort to demonstrate unequivocally an additional component of
infalling gas. Improvement in our knowledge of dust opacities and continued high-resolution
mapping at millimeter wavelengths are both necessary to elucidate the physical properties of the
envelopes. Such observational studies, coupled with a better understanding of outflow structure
itself, should eventually disentangle the various contributions to the molecular line profiles.

Chapter Summary

After a short-lived, transient phase, a stable protostar forms at the center of a collapsing dense
core. Cloud matter that impacts the star does so in a strongly radiating accretion shock front.
Shock-generated photons heat the incoming gas, destroying grains out to a radius of order
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0.1 AU. The accretion luminosity diffuses through the dusty envelope to emerge as far-infrared
continuum radiation.

The high energy loss from the shock leads to modest protostellar radii, not much larger than
corresponding main-sequence values. As the object grows in both size and mass, deuterium
eventually ignites and drives convection. Energy from deuterium fusion also tightly constrains
the stellar radius as a function of mass. Convection ceases in intermediate-mass protostars,
while deuterium continues to burn in an interior shell. If accretion continues, the protostar
contracts and heats up until ordinary hydrogen ignites. A truly massive central object, i. e., the
precursor to an O star, would repel its infalling envelope through wind and radiation pressure,
and therefore cannot form in this manner.

Disks arise during protostellar evolution from infalling material with too much angular mo-
mentum to impact the star itself. These geometrically thin structures expand rapidly with time.
Streamlines from the outer disk collide and form a turbulent ring that feeds matter onto the cen-
tral star. Eventually, the disk becomes gravitationally unstable. Spiral waves then create torques
that may facilitate mass transfer and continuing protostellar accretion.

The observed spectral energy distributions of deeply embedded objects attest to the presence
of heated dust. Simple dust-shell models reproduce the relative fluxes in both Class 0 and
Class I sources, but give no clue as to which, if either, are true protostars. Molecular emission
lines seen toward Class 0 objects and starless dense cores are frequently both self-reversed and
asymmetric. The first feature indicates absorption by overlying, cold gas, while the second
appears to signify inward motion.
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Our emphasis in the last two chapters has been on the buildup of individual protostars within
dense cores. Star formation, however, is a group phenomenon. Each of the clusters and associa-
tions we surveyed in Chapter 4 results from the condensation of a large cloud or cloud complex.
Hence, the transition to gravitational instability and protostellar collapse must occur in many lo-
cations at the same time, and over wide expanses of molecular gas. Moreover, a dense core does
not normally give rise to just one star, but at least two. We know this because of the prevalence
of binary systems both in the field and in young stellar populations. The members of binaries
have similar ages, implying a common origin.

Any picture of single star formation is therefore a convenient fiction, the first approximation
in a future, more comprehensive theory. Our findings are trustworthy only to the extent that
interactions between young stars are relatively weak. If, as we shall argue, binaries form as
individual protostars separated by many stellar radii, their mutual gravitational force is indeed
minor compared to the self-gravity of either subcondensation. This is not to say that external
forces play no role in star formation. Winds and supernovae from previously formed stars do
exert a powerful influence. On a much larger scale, the collision of two galaxies triggers the
dramatic starburst phenomenon. In both these cases, however, the probable effect is to alter the
medium out of which new stars arise, rather than the basic collapse process itself.

Why, then, do stars tend to form in groups? Our understanding here is rather limited, at least
compared to the evolution of single stars. The present chapter addresses this question by first
reviewing theoretical results on cloud collapse. We next complete our earlier descriptive survey
of stellar groups, summarizing empirical knowledge of the youngest binaries. This relatively
new field already has a rich phenomenology that informs our subsequent discussion of binary
formation. When turning to the origin of clusters in § 12.4, we delve into the evolution of
luminosity functions and find empirically the stellar production rate within selected groups. We
address, in a qualitative manner, the issue of why some clouds form T associations and others
bound clusters. Finally, § 12.5 revisits OB associations. Again drawing on the observations,
we sketch a view of their history and argue that high-mass stars are likely to form through a
coagulation process near the associations’ crowded centers.

12.1 Dynamical Fragmentation of Massive Clouds

Traditionally, the theory of gravitational collapse has largely concerned itself with the fate of ob-
jects that are too massive to undergo the inside-out evolution studied earlier. Such clouds break
up during the course of their free-fall collapse. Let us first survey the main results concerning
such dynamical fragmentation. As we shall see, the theory is well developed quantitatively and
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has much to teach us about the physics of collapse. On the other hand, we will also see why this
mode of evolution probably does not apply to most star-forming systems.

12.1.1 Role of the Jeans Length

We continue and extend our previous discussion of gravitational collapse by first remarking that
the concept of the Jeans length has subtly entered the theory in two distinct ways. In the orig-
inal analysis of Jeans, presented in § 9.1, λJ characterizes the behavior of small perturbations.
Specifically, one considers isothermal fluctuations in a medium of uniform density and temper-
ature. Those disturbances with length scale less than λJ oscillate periodically, while larger ones
grow in amplitude.

On the other hand, the detailed construction of cloud models reveals a quite different aspect
of λJ . This quantity now represents an approximate upper limit to the size of possible equilibria.
For example, the rotating cloud depicted in Figure 9.7a has equatorial and polar radii that are
both of order λJ . This configuration is also nearly the largest of any member of the β = 0.16
sequence. (Recall that β measures the relative amount of rotational energy.) Models with higher
ρc/ρ◦, such as that in Figure 9.7b, are smaller as a result of their enhanced self-gravity. An even
simpler example is provided by the sequence of isothermal spheres. Equations (9.6) and (9.23)
imply that the dimensional cloud radius r◦ is given in terms of the Jeans length by

r◦
λJ

=
ξ

2 π

(
ρc

ρ◦

)−1/2

. (12.1)

For any density contrast ρc/ρ◦, we may read off the nondimensional radius ξ from Figure 9.1,
which actually displays the inverse, ρ◦/ρc. We find, in this way, that r◦/λJ rises from zero at
ρc/ρ◦ = 1, reaches a maximum value of 0.29 at ρc/ρ◦ = 5.1, and then gradually declines to an
asymptotic value of 0.23.

These two roles of λJ are not only logically independent but contradictory. Given the size
limit from the model studies, it follows that the very large background state assumed by Jeans
cannot exist. This fact becomes clearer once we realize that, in deriving equations (9.20a)–
(9.20d), we implicitly ignored any gradient in the background gravitational potential Φg. The
momentum equation (9.18) apparently justifies this step. In a static (u = 0) medium of uniform
density and pressure (∇P = 0), it is indeed true that ∇Φg vanishes. However, Poisson’s
equation (9.3) implies that Φg cannot be spatially uniform, but must change appreciably, i. e.,
by an amount a2

T , over the characteristic distance (a2
T /Gρ◦)1/2 ≈ λJ . The background pressure

and density also vary over the same distance, which therefore sets the dimension of the entire
system.1

While the derivation of Jeans remains instructive, it is only the second interpretation of
λJ , as the maximum spatial extent for equilibria, that has true physical significance. Larger
structures cannot be in force balance, but must be collapsing ab initio. One can therefore be
confident that static molecular clouds whose size greatly surpasses the Jeans limit, notably the

1 We now see why the original derivation of λJ is sometimes referred to as the Jeans swindle. Of course, the analysis
can be saved if one considers only perturbations with size much smaller than λJ . Such disturbances, however, are
essentially sound waves, for which self-gravity plays no role.
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clumps in giant complexes, are sustained by internal forces beyond gas pressure. We have
identified these forces as arising from the interstellar magnetic field. The formation of small
cores within such entities must proceed through the gradual loss of this extra support and not
through the fluctuations envisaged by Jeans. Finally, the cores themselves grow until their sizes
roughly exceed λJ , at which point they collapse.

What we have said so far is familiar enough. We now wish to explore more deeply the
collapse of clouds larger than λJ (or, equivalently, more massive than MJ ). Historically, this
problem has been the focus of many theoretical studies. The issue has gradually diminished in
importance with increased understanding of the star-forming environment. We have just argued
that clouds with masses above MJ are never in force balance, so it is not obvious how they arise
in the first place. We defer consideration of this important, general issue, as well as the specific
relevance of our inquiry to multiple star formation.

12.1.2 Pressure-Free Collapse

It is natural to begin with the simplest case, a cloud with no internal pressure at all, i. e., with
λJ = 0. If we further postulate that the cloud be initially spherical and of uniform density
ρ◦, then its collapse can be followed analytically. We employ the momentum equation (10.29),
setting aT = 0 on the righthand side. The resulting equation, along with (10.27) for mass
continuity, constitute an Eulerian description of spherical, pressure-free collapse, in which the
independent variables are t and the usual spherical radius r. It will prove more convenient
to employ a Lagrangian description, where the spatial coordinate is tied to the fluid motion.
That is, we replace r by the interior mass Mr. The partial derivatives of Mr, as given by
equations (10.26) and (10.28), can then be used to transform such terms as (∂u/∂r)t. Note that,
in the new description, r is a dependent variable. Its own temporal rate of change is simply the
velocity u:

(
∂ r

∂ t

)
Mr

= − (∂ Mr/∂ t)r

(∂ Mr/∂ r)t

=
4 π r2 ρ u

4 π r2 ρ

= u .

(12.2)

The pressure-free version of the momentum equation (10.29) now becomes

(
∂2r

∂ t2

)
Mr

= −G Mr

r2
, (12.3)

while the continuity equation (10.27) transforms to

1
ρ2

(
∂ ρ

∂ t

)
Mr

= −4 π

[
∂ (r2u)
∂ Mr

]
t

. (12.4)
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Figure 12.1 Collapse of a uniform-density, pressureless sphere. The interior sphere contains mass
M◦ and has a radius r◦ initially. At a later time, this region shrinks, while the velocity vectors
diminish to zero at the origin.

Imagine now a fluid element located at an initial radius r◦ (see Figure 12.1). During col-
lapse, the mass M◦ interior to the element remains constant. After multiplying both sides of
(12.3) by (∂r/∂t)Mr

, we integrate from t = 0 and obtain an expression for the velocity:

(
∂ r

∂ t

)
Mr

= −
√

2 G M◦
r◦

(r◦
r

− 1
)1/2

. (12.5)

Here, the negative sign signifies that the collapse is inward, i. e., that r decreases with time.
To integrate equation (12.5), we convert to nondimensional variables, ξ ≡ r/r◦ and

τ ≡ t/t◦. If we choose the fiducial time t◦ to obey

t2◦ ≡ r3
◦

2 G M◦

=
3

8 π G ρ◦
,

(12.6)

then (12.5) simplifies to

dξ

dτ
= −

(
1
ξ

− 1
)1/2

,

where we have dropped the partial derivative notation. We further let ξ ≡ cos2 α, so that α
goes from 0 to π/2 as ξ goes from 1 to 0. The last equation then becomes

dα

dτ
=

1
2 cos2 α

,

which we integrate to find

α +
1
2

sin 2 α = τ . (12.7)
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Equation (12.7) implies that our fluid element reaches the origin at τ = π/2. Reverting to
dimensional variables, we see that the collapse spans the interval tff ≡ (π/2) t◦. From equa-
tion (12.6), this is also

tff =
(

3 π

32 G ρ◦

)1/2

, (12.8)

which motivates the definition of the free-fall time in equation (3.15). Since this result depends
only on ρ◦, and not the value of the starting radius, all fluid elements reach r = 0 at precisely
the same instant.

The behavior of the density during collapse follows from the continuity equation (12.4). We
first use equations (12.5) and (12.6) to write

r2u = −r3
◦

t◦
cos3 α sin α .

Here, only the term r3
◦ has a spatial dependence. Moreover, its derivative with respect to Mr is

the same at all times: (
∂ r3

◦
∂ Mr

)
t

=
3

4 π ρ◦
.

Suppressing the Mr-subscript on its left side, equation (12.4) now becomes

∂ (1/ρ)
∂ α

= −6 cos5 α sin α

ρ◦

=
1
ρ◦

∂ (cos6 α)
∂ α

,

so that
ρ = ρ◦ sec6α . (12.9)

The density thus remains spatially uniform as it increases without bound during the col-
lapse. Figure 12.2 plots ρ as a function of time, where the latter is the nondimensional value
τ∗ ≡ log [tff/(tff − t)]. This “stretched” coordinate goes from 0 to ∞ as t itself progresses from
0 to tff .

12.1.3 Growth of Perturbations

One interesting aspect of pressure-free collapse is its sensitivity to initial conditions. Rapid
divergence of the evolution from the simple picture just described may occur in a number of
ways. Imagine, for example, that the starting configuration were a very slightly oblate, uniform-
density spheroid. The gravitational force acting on the pole would then be fractionally higher
than that on the equatorial edge. No matter how small the difference, the spheroid would tend to
flatten as a result. The force discrepancy would thereby increase, and the flattening accelerate.
After a total elapsed time that is under tff , the original object would collapse to a flat disk.
Conversely, a cloud that is initially prolate, to whatever small degree, inevitably narrows to a
thin needle along its central axis.
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Figure 12.2 Density as a function of
time in a collapsing, pressureless sphere.
Plotted is ρ/ρ◦, the ratio of the density
to its initial value. The temporal coordi-
nate τ∗ is defined in the text. The dashed
curve is an analytic approximation for late
times.

Even if the collapse were to remain spherically symmetric, any small perturbations within
it would grow in magnitude. Such disturbances could arise either in the cloud’s density or
its velocity field. Their growth stems in part from the convergent nature of the main flow.
Equation (12.5) may be recast as

u = −r◦
t◦

tan α

= − r

t◦
sec2α tan α .

(12.10)

Since α is only a function of time, the collapse velocity decreases linearly toward the origin,
as indicated in Figure 12.1.2 This flow pattern tends to compress internal perturbations. The
situation is very different in a cloud undergoing inside-out collapse. Here, the fluid speed within
the rarefaction wave is approximately the free-fall value Vff , which increases as r−1/2 toward
the center. Small lumps are therefore tidally stretched and prevented from rapidly growing.

An even stronger cause for perturbation growth in the pressure-free case is the self-gravity
within the lumps. Ultimately, this effect causes them to reach high density ahead of the back-
ground flow. We term such runaway condensation of localized regions during collapse dynam-
ical fragmentation. To describe the effect quantitatively, we first derive an explicit formula for
the rise in parent cloud density, using equations (12.7) and (12.9). Toward the end of collapse,
it is appropriate to replace α by another, small parameter:

ε ≡ π

2
− α ,

2 Pressure-free collapse is said to be homologous, since any fluid variable preserves the same spatial dependence at all
times. By the same token, inside-out collapse is nonhomologous; recall § 10.2.
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where ε � 1. A Taylor-series expansion of equation (12.7) then tells us the time corresponding
to any ε-value:

t ≈ tff

(
1 − 4 ε3

3 π

)
.

Similarly, equation (12.9) gives the density as

ρ ≈ ρ◦ ε−6 .

Combining the last two results, we find that

ρ(t) ≈ ρ◦

[
3 π (1 − t/tff)

4

]−2

. (12.11)

The dashed line in Figure 12.2 shows that this approximation is quite accurate by τ∗ ≈ 1, or
t/tff ≈ 0.9.

Imagine now that a central region of the sphere starts with a slightly enhanced density
ρ′(0) = ρ◦ + δρ(0) . From equation (12.8), this portion will collapse to the origin a bit faster,
within a time given approximately by

t′ff ≈ tff

[
1 − δρ(0)

2 ρ◦

]
. (12.12)

Applying (12.11) to the enhanced density, we find its increase over the background:

ρ′(t)
ρ (t)

≈
(

tff − t

t′ff − t

)2

≈
[
1 +

δρ(0) tff
2 ρ◦ (t′ff − t)

]2

≈ 1 +
δρ(0) tff

ρ◦ (tff − t)
.

In the last step, we have assumed that ρ′(t) is still only slightly greater than ρ(t). The density
enhancement δρ(t) ≡ ρ′(t) − ρ(t) thus grows as

δρ(t)
ρ(t)

≈ δρ(0) tff
ρ◦ (tff − t)

. (12.13)

An initial perturbation of 1 percent, becomes a detached fragment (δρ ≈ ρ) only when
t/tff ≈ 0.99, by which time the parent density has climbed by four orders of magnitude.

Disturbances within our collapsing sphere condense in a manner qualitatively different from
the Jeans prediction in Chapter 9. First, the growth of δρ/ρ is slower than the exponential rise
in the (fictitious) static medium. Second, pressure-free collapse is so prone to fragmentation
that perturbations of all sizes grow at the same rate. That is, the small-scale cutoff predicted by
equation (9.22) is absent. This last difference stems from our initial assumption that λJ = 0,
which has precluded any statement about the characteristic sizes or masses of fragments.



376 12 Multiple Star Formation

We can make further progress by considering the evolution of clouds that, while larger than
λJ , have finite pressures from the start. A detailed analysis for spheres of initially uniform
density confirms that disturbances of length λ greater than λJ grow relative to the background,
while internal pressure supports those below this size limit. Even the largest perturbations are
initially retarded to some degree by pressure. However, λJ decreases as ρ−1/2 in an isothermal
medium (recall equation (9.23)), while λ in a lump of fixed mass falls roughly as ρ−1/3. The
ratio λ/λJ therefore rises with time. The growth rate of the perturbation accelerates, until it
approaches that given by equation (12.13).

12.1.4 Numerical Methods

These results apply only to the linear regime of small perturbations. Following collapse to
the point of true fragmentation requires multidimensional numerical simulations. Starting with
small, random perturbations, the analytic results indicate that one must follow the collapse to
relatively high density before fragmentation occurs. This requirement severely taxes a conven-
tional hydrodynamics solver that tracks fluid motion in a fixed, Eulerian coordinate grid. On the
other hand, a purely Lagrangian scheme, such as the one used above, works best in spherical
geometry and cannot easily follow severely distorted condensations.

Two innovative numerical techniques have proved effective in addressing the need to im-
prove spatial resolution in a flexible manner. In smoothed-particle hydrodynamics (SPH), one
replaces the continuum fluid by a collection of moving points. The method derives its name
from the fact that the physical variables associated with each point are smeared out over a small
volume according to some prescribed smoothing function. These regions overlap, so that the
value of a variable and its gradient at any spatial location must be obtained by summing contri-
butions from a number of elements. The particles interact through both pressure, as calculated
from the density and temperature gradient, and through their mutual gravitational attraction.
The computer tracks all the individual orbits simultaneously, just as it would for stars in a sim-
ulated galaxy. In principle, any contracting region can be followed to arbitrarily high density,
provided it contains a sufficient number of particles.

An alternative strategy is to retain the basic picture of continuum hydrodynamics, but to in-
troduce additional coordinate zones as they are required. The most successful programs employ
a flexible nested grid technique. If matter collects in a single cell of the original mesh, that cell
is subdivided into an array of new ones. Each of these new cells may be further partitioned, or
the zoning made coarser, as the evolution proceeds. Note that tff , the characteristic time scale
for gravitational contraction, decreases as ρ−1/2. A highly condensed region within a diffuse
envelope thus evolves much more rapidly than its surroundings. Accordingly, one must track
the fluid for several small time steps within a subgrid, while freezing the motion on larger scales.
Changes accumulated during these short times are then transferred to the parent grid at specified
intervals.

We saw in Chapter 10 how the material within collapsing clouds attains supersonic motion
that can only be arrested in strongly radiating shock fronts. Locating this front is relatively
simple in a spherical or axisymmetric collapse, where it constitutes the boundary of the protostar
and its surrounding disk. In a massive cloud that is undergoing fragmentation, the accurate
tracing of shocks represents a true challenge. The most widely used strategy is to employ some
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form of artificial viscosity. One introduces an internal, frictional force that decelerates the flow
whenever the local velocity gradient becomes too steep. In this way, curved shock fronts can be
identified automatically as they arise, at least within one or two zones. Material before and after
the front obeys the correct shock jump conditions, so that one can also follow the associated
energy losses. On the other hand, the technique is unsuitable for calculating detailed thermal
and chemical relaxation processes close to the front itself.

12.1.5 Oblate and Prolate Configurations

Theorists employing these and other computational tools have been able to follow collapse in
three dimensions over a wide range of initial conditions. Most simulations begin with uniform,
spherical clouds that have a significant degree of rotation. The choice here is a practical one.
Clouds that rotate while collapsing flatten along the rotational axis. For computational purposes,
it is easier to follow the subsequent fragmentation in this extended configuration than in a much
more compact, centralized region. The essential result, however, is the same as that indicated
for the non-rotating sphere. Clouds with a total mass M exceeding MJ break apart into roughly
M/MJ subcondensations.

Of course, this broad generalization glosses over a wealth of interesting details, which we
cannot hope to cover adequately. A few representative studies must suffice. Let us first see what
the simulations have taught us about the primary question whether a cloud undergoes dynamical
fragmentation at all. If the initial configuration is a rigidly rotating sphere of uniform density,
then it may be characterized by a nondimensional mass m and rotational parameter β. Here,
we recall from § 9.2 that m closely approximates the number of Jeans masses. Once this cloud
begins to collapse, it always flattens significantly, within about one free-fall time. Depending on
the values of m and β, the evolution then follows one of two paths. Either the cloud rebounds
to a less flattened shape, or else the flattening continues and the density in the plane rises at
an accelerated pace. Earlier calculations required, for computational convenience, that the fluid
preserve azimuthal symmetry about the original rotation axis. Under this artificial restriction, a
cloud following the second path coalesces into a dense, equatorial ring. If the same collapse is
followed with a fully three-dimensional code, any incipient ring quickly breaks up into two or
more pieces.

The left panel of Figure 12.3 shows one example of such a fragmenting configuration. This
SPH calculation utilized 1000 particles to simulate the isothermal collapse of a sphere with
m = 2.0 and β = 0.3. Note that the latter value is close to the upper limit of β = 1/3,
corresponding to breakup in the initial object. The figure displays the particle distribution in the
equatorial plane at t = 2.3 tff after the onset of collapse. By this time, the cloud has become
highly flattened, with an aspect ratio of 6:1. Three distinct fragments are evident, with the
maximum density being a factor of 4 × 103 greater than that of the parent sphere.

Figure 12.4 summarizes graphically the outcomes of several dozen collapses of rotating
spheres. Each point represents a specific numerical simulation, located in the plane according
to its values of m and β. The filled circles correspond to rebounding collapses. Open circles
denote situations where the equatorial density increases without limit, either through ring for-
mation or more direct breakup. Finally, the solid curve, taken from Figure 9.9, is mcrit(β), the
locus of marginally stable equilibrium configurations. It is evident that nearly all the runaway
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collapses lie above this envelope. Conversely, the other clouds rebound about states that strongly
resemble the stable equilibria with the appropriate values of m and β (see, e. g., Figure 9.7a).
We thus see that collapsing clouds fragment if they have no accessible equilibrium states. That
is, fragmentation occurs only for M > Mcrit, where Mcrit is the rotational generalization of
MJ .

It is especially interesting to follow the evolution of clouds lying only slightly above the
critical line in Figure 12.4. These objects exhibit a runaway growth in density, but without frag-
mentation. In both two- and three-dimensional calculations, they evolve to flattened structures
with a steeply rising central concentration. Their collapse must continue in the nonhomologous,
inside-out fashion that is well studied for the special case of β = 0. Since this type of infall is
not prone to dynamical fragmentation, we now see what limits the process quite generally. Any
cloud, no matter how massive, stops subdividing once individual pieces have significant ther-
mal support. The further collapse of these pieces, each of mass about MJ , can proceed without
additional breakup.

This is not to say that every fragment goes on to form a star. In the very smallest, thermal
support may be high enough to prevent further condensation. The system of three orbiting
bodies in the left panel of Figure 12.3 is probably unstable, in the same manner as a triplet
of stars. Within a few orbital periods, one of the bodies (probably the least massive) is likely
to be ejected, leaving the remaining pair more tightly bound. Fragments may also coalesce,
particularly when a large number are produced. The right panel in Figure 12.3 shows one such
situation, resulting from the collapse of a cloud with m = 5.8. Here, the initial sphere collapsed
to a much thinner disk, with an aspect ratio of 14 : 1. Once the disk had formed, material close
to the center in the equatorial plane was flung out centrifugally, only to crash into additional
matter approaching from farther out. It is at this point that the disk began to fragment, without

Figure 12.3 Collapse of rotating, spherical clouds. The two panels show the density distribution
in the equatorial plane. They correspond to the indicated values of the rotational parameter β and
nondimensional cloud mass.
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Figure 12.4 Outcomes for numerical collapses of rotating spheres. Within the m-β plane, open
circles represent collapses where the central density increased without limit. For closed circles, the
cloud underwent an equatorial bounce. The solid curve traces the maximum mass for equilibria.

ever forming a ring. For the time shown, t = 2.2 tff , eight well-defined fragments are orbiting
one another. Some of these are expected to merge if the calculation were continued.

We mentioned earlier that pressure-free clouds which are even mildly elongated collapse
to ever-narrowing filaments. Endowing the object with a relatively low temperature does not
alter this result, provided the temperature is held strictly constant. More realistically, the deep
interior must eventually heat up because of increasing optical thickness. The added pressure
gradient slows the constriction, giving the cloud time to break up along its axis. Figure 12.5
shows what happens when the elongated object tumbles end over end. In this SPH calculation,
the initial structure was a uniform-density ellipsoid, undergoing differential rotation in the x-y
plane. The ellipsoid was fully triaxial, with axes in the ratio 2 :

√
2 : 1, and with a mass of

about 20 MJ . Collapse again leads to a very narrow filament, but now exhibiting large-scale
bending because of the rotation. By the time depicted, 1.6 tff after the onset of collapse, a chain
of high-density knots has appeared.

Taken as a whole, our examples illustrate two central points. First, the detailed outcome of
any specific collapse is sensitive to initial conditions. The cloud’s shape, internal density vari-
ation, and state of rotation all play a role in determining such results as the spatial distribution
of fragments and their subsequent interaction. On the other hand, the basic issue of whether a
cloud fragments or not is largely independent of these factors. As long as thermal pressure is a
major source of support prior to collapse, the cloud’s fate in this regard is mainly set by its mass
relative to MJ . If this ratio is large, the object is highly susceptible to fragmentation, no matter
which route it takes. Thus, clouds which are initially flattened disks or slabs break up into pieces
with size comparable to the original cloud thickness. Elongated filaments quickly separate into
fragments of roughly the same length as the filament diameter. In either case, thermal support
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Figure 12.5 Collapse of a uniform-density, rotating ellipsoid. Displayed is the density in the
equatorial plane, at a time when the cloud has started to fragment.

is much more important in the newly formed substructures than in the parent body, so that their
subsequent evolution is also qualitatively distinct.

12.2 Young Binary Stars

The foregoing class of calculations helps to constrain the problem of how large clouds give rise
to the many smaller structures destined to become stars. Let us pause in the theoretical develop-
ment and turn to the empirical description of groups. Chapter 4 already described associations
and bound clusters, both in terms of their intrinsic properties and in their relation to molecular
clouds. Here, we complete the picture by treating the simplest of all groups, the binaries. It
has long been known that a typical main-sequence field star is more likely to have an orbiting
companion than to be isolated. The finding that pre-main-sequence stars in some regions have
an even higher proportion of binaries is an exciting development whose implications are still
unclear.

12.2.1 Basic Properties

Figure 12.6a illustrates the kinematics of a binary pair consisting of stellar masses M1 and M2.
Each star follows an elliptical orbit about the system’s center of mass, indicated as a cross in the
figure. The two ellipses have identical eccentricity e, but semi-major axes, a1 and a2, that are
inversely proportional to the associated masses. If ui and ri are the velocity and radial distance,
respectively, of either star at an arbitrary time, then we have

M1

M2
=

u2

u1
=

r2

r1
. (12.14)
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Figure 12.6 Motion of a binary’s com-
ponents (a) within the orbital plane, and
(b) when that plane is seen edge-on. The
stars travel on identical, but rescaled, ellipses
about their center of mass, indicated by the
cross in both panels. Also displayed are the
radial distances and velocities in the center-
of-mass reference frame, as well as the in-
clination angle between the orbital plane and
the line of sight.

In the figure, we have assumed that M1 exceeds M2. For main-sequence objects, the more
massive star is also brighter, i. e., it is the primary in the system. Finally, note that both stars
complete a single orbit in the same period P , given by the generalization of Kepler’s third law
for planetary motion:

P =
2 π a

3/2
tot

(G Mtot)1/2

= 1 yr
( atot

1 AU

)3/2
(

Mtot

1 M�

)−1/2

.

(12.15)

Here, atot and Mtot are

atot = a1 + a2

Mtot = M1 + M2 .
(12.16)

The most direct means of identifying a binary would be to observe the proper motion of both
components. If two stars trace parallel paths across the sky, one can be sure they constitute a
bound system. The orbital period may be so long, however, that both objects simply follow the
straight line corresponding to their center-of-mass velocity. In more favorable cases, one sees
the distortion of both paths from this linear motion. Such visual binaries have periods measured
in decades or centuries. Relatively rare astrometric systems display modulated proper motion
for a single star, whose partner is too faint for detection.

The orbital motion of stars in tighter systems with shorter periods is only discernible through
the changing Doppler shift of spectral lines. These spectroscopic binaries are double-lined if
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one sees both sets of stellar absorption lines; otherwise, they are single-lined. Note that the
Doppler shifts of either star do not track its full velocity u, but only the projection u sin i. As
illustrated in Figure 12.6b, i represents the inclination angle between the orbital plane (here
shown edge-on) and the plane normal to the line of sight. Finally, repeated photometry of a star
in some waveband often reveals periodic dips in its flux. Such minima may indicate rotating
starspots, or else partial occultation by an orbiting companion. In the latter case, the binary is
said to be eclipsing. Of course, these categorizations are not mutually exclusive. An eclipsing
system, for example, usually displays spectroscopic variation, as well.

Binary observations date back to the earliest years of telescopic astronomy, but true surveys
of stellar multiplicity are relatively recent. Here, one must contend with a number of selection
effects that severely bias the raw data. Most apparent is the increasing difficulty of detecting
relatively faint or low-mass companions. In practice, there is a maximum observable difference
in magnitude at any waveband between the members of visual binaries. Companions to the
surveyed stars become more difficult to find as this limit is approached. Similarly, spectroscopic
binaries are only detectable above some threshold amplitude in the radial velocity variation.
Their discovery is thus more problematic as one investigates stars of decreasing mass. On the
other hand, high-mass stars tend to rotate more rapidly. Rotation broadens any absorption line
and makes it difficult to measure a shift in the line center. Finally, a binary system whose orbit
happens to lie in the plane of the sky exhibits no Doppler shift for either star, regardless of their
masses.

Minimizing the bias from such effects requires first that a study be carefully designed. For
example, “magnitude-limited” surveys, such as those observing all objects brighter than a pre-
scribed mV , tend to exaggerate the number of double-lined spectroscopic binaries. These have
secondaries of nearly equal brightness and so are more likely to surpass the magnitude limit than
single-line systems. Setting a maximum distance for the program stars overcomes this difficulty.
It is also prudent to concentrate on a limited range of spectral types, in view of the special diffi-
culties associated with various masses. Even such a restricted, distance-limited sample requires
extensive analysis to correct the results for incompleteness.

12.2.2 Main-Sequence Systems

The best studied group is G-type main-sequence stars within the solar neighborhood. Out of
164 systems closer than 22 pc, the singles, doubles, triples, and quadruples are found to be in
the proportion 57 : 38 : 4 : 1. Thus, 43 percent of the stars have at least one companion.
This figure only includes orbiting stars whose mass is more than 10 percent that of the primary.
After allowing for incompleteness, the true fraction of systems that are multiple (within the
same limiting mass ratio) is estimated to be 57 percent.

The double systems within this local population include spectroscopic, visual, and astro-
metric binaries, as well as pairs of stars with common proper motion. Observations of the latter
do not directly yield periods. However, one may assign masses to both stars from their spectral
types, convert (on a statistical basis) the observed separation to a semi-major axis atot, and then
use equation (12.15) to obtain P . Figure 12.7 displays the distribution of periods in the whole
sample of binaries. The ordinate is the differential binary frequency fB , defined as the number
of binaries per logarithmic period interval divided by total number of systems, both single and
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Figure 12.7 Period distribution of main-sequence binaries in the solar neighborhood. The solid
histogram is the differential binary frequency for G dwarfs, while the filled circles are the results
for M-type stars.

multiple. Note that a triple contributes two binaries, and so on. Figure 12.7 also includes es-
timated entries for the dozen or so systems that are undetected because of selection effects. It
is apparent that the periods span a very broad range, from under one day to several thousand
years. The distribution is also strikingly symmetric, with a broad maximum near 180 yr.

The left panel of Figure 12.8 shows the distribution of the secondary-to-primary mass ratio,
a quantity conventionally symbolized as q. The observations themselves allow an unambiguous
mass determination only for visual binaries and for double-lined spectroscopic binaries that
also happen to be eclipsing (see below). The figure therefore incorporates both a statistical
correction for the orbital inclination angle, as well as the usual extrapolation to account for
undetected systems. Note that the primaries among the surveyed stars have an average mass of
1.3 M�. Hence, the falloff at relatively high q seen in Figure 12.8 resembles the steep decline
in the field-star initial mass function near this mass. We quantify the similarity by displaying, as
the dashed curve, the analytic approximation to the IMF from equation (4.6). Here we recast the
field-star function in terms of q by assuming a primary mass of exactly 1.3 M�. The sequence
of power laws indeed mimics the tail of the secondary mass distribution for q � 0.3, but not
the apparent turnover at lower q-values. On the other hand, a similar flattening is seen in the
more detailed field-star IMF displayed in Figure 4.22. Finally, we note that the distribution of
secondary masses remains essentially unchanged if we consider not the entire G-dwarf sample,
but subgroups in restricted period intervals.

The observed or deduced orbits for these binaries vary from circular to highly eccentric. In
general, there is a trend for systems of longer period to have larger eccentricity. Figure 12.9,
which plots e as a function of P , shows that the long-period systems actually have a wide
range of eccentricity. It is the maximum e-value that steadily increases with P . Interestingly,
there is a well-defined cutoff near 11 days, below which all orbits are circular. Some physical
mechanism must be at work that circularizes close binaries. We will later identify this effect as
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Figure 12.8 Distribution of primary-to-secondary mass ratio in G dwarfs (left panel) and M
dwarfs (right panel). The dashed curve on the left represents the field-star IMF.

the tidal component of the gravitational force, which exerts an appreciable torque both during
the pre-main-sequence phase and later.

About 60 percent of stars in the solar neighborhood are M dwarfs, so it is especially im-
portant to examine this population for multiplicity. A number of observational studies have
searched for companions, employing techniques from visual and infrared imaging to high-
resolution measurements of radial velocity. After correcting for incompleteness, the proportion
of systems that are single, double, triple, and quadruple is 58 : 33 : 7 : 1. In this case, 42 percent
of observed stars have at least one companion. To understand the difference between this figure
and the multiplicity of 57 percent for G dwarfs, consider that the highest mass among the sur-
veyed M stars is only about 0.5 M�. Any secondaries with q � 0.2 would be brown dwarfs that
are especially hard to detect (and were not included in the above correction for incompleteness.)
The true multiplicity of M stars could therefore be significantly higher, and closer to that of the
G dwarfs.

Such a similarity in the populations is also suggested by the period distribution, shown by
the filled circles in Figure 12.7. The points again exhibit a single, broad maximum, now lying
between 10 and 200 yr. However, Figure 12.8 (right panel) shows that the profile of q is much
flatter than for G stars. This apparent difference is again easy to reconcile. Even the highest
q-values for an M-star primary correspond to secondary masses no greater than 0.5 M�, and
most of the masses are substantially lower. The relatively flat q-distribution is therefore at
least broadly consistent with the low-mass turnovers seen in both the G-type binaries and in
Figure 4.22. To summarize, the M- and G-dwarf studies point to the same conclusion. The
masses of both the primaries and secondaries in binaries are apparently distributed according to
the IMF.

This rule is violated in systems where the primary is an O star. If the secondary were indeed
drawn randomly from the IMF, there would be very little chance of it also being an O- or even a
B-type star. Yet such doubly massive pairs are not hard to find. Close examination shows that,
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Figure 12.9 Orbital eccentricity as a function of period for G-dwarf binaries.

in many of the tighter systems amenable to spectroscopic study, the components are exchanging
mass. However, in other massive pairs, the two stars remain separate. Consider S Mon, the
O7 star that is the brightest member of the NGC 2244 cluster. Radial velocity measurements
and interferometry reveal that a detached companion is orbiting with a period of 24 yr. Since
the system is both a double-lined spectroscopic and astrometric binary, one may obtain both
masses, which are 35 and 24 M�.

Apart from the distribution of q, the binaries containing O stars resemble those of lower
mass. The observed and estimated periods again span a very broad range, some 8 orders of
magnitude. There is a severe lack of data for systems that are too wide for spectroscopic de-
tection, yet too close for the components to be spatially resolved. In any case, the fraction of
systems that are visible binaries appears normal, at least within OB associations. It is intriguing
that binaries are uncommon among field O stars outside of associations and even less frequent
among runaways. (Recall the discussion of § 4.3.) We must always bear in mind the severe
difficulty of finding low-mass companions to O stars, considering both the luminosity contrast
with the primary and the greater distance to these systems. It is even possible, in some cases,
that both members in a well-separated pair of O stars are themselves binaries with low q-value.
Sensitive infrared observations may eventually detect such hierarchical systems.

12.2.3 Imaging Methods

Let us now return to low-mass stars and explore multiplicity among the pre-main-sequence
population. Occasional pairing of T Tauri stars has long been noted, ever since the initial clas-
sification of these objects in the 1940s. In undertaking a full census, one immediately faces a
serious problem beyond the usual selection effects. The nearest star-forming regions are much
farther than the limiting distances in the G- and M-dwarf surveys. Consider a typical binary in
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Figure 12.10 Near-infrared array observations of the T Tauri binary system. Each frame is an
image at the indicated wavelength. The lower source is actually a tight binary, unresolved here.

Taurus-Auriga, composed of two solar-mass stars. If, as we shall verify, the period distribution
for such systems resembles that of the dwarfs, then our example is likely to be a visual binary
with a period of roughly 200 yr. From equation (12.15), atot would then be about 40 AU, or
0.′′4 at the Taurus-Auriga distance of 150 pc. Achieving this spatial resolution is technically
challenging.

Another difficulty stems from the fact that the emitted flux from most pre-main-sequence
stars is highest in the near infrared. Optical instruments, while still useful, are therefore not
ideally suited for systematic observations. A significant advance in this regard has been the
introduction of near-infrared arrays. We saw in Chapter 4 how these detectors revolutionized
the study of embedded clusters. The arrays have also led to the discovery of a large number
of close companions to T Tauri stars, ranging in angular separation from about 0.′′7 to 15′′.
On a statistical basis alone, most of these systems must be pre-main-sequence binaries, rather
than chance superpositions in the plane of the sky. Observers have been able to measure relative
proper motions for some pairs; the calculated speeds appear to be consistent with those expected
for gravitationally bound systems.

Figure 12.10 illustrates dramatically the power of near-infrared observations for revealing
low-mass companions. The four frames all center on the star T Tau, the very prototype of the
T Tauri class. Each of these images was obtained using an array detector at the wavelength
indicated. The lower companion object, separated by 0.′′69 or 97 AU, comes clearly into view
at 3.42 µm, but is less apparent at either longer or shorter wavelengths. Additional study has
revealed that this source is itself a tight double. One component is an obscured M-type star.
The other, even more deeply embedded, has a spectral energy distribution that peaks in the near
infrared, as in classical T Tauri stars, but no optical flux at all. Thus, the broadband spectrum
does not comfortably fit into the standard classification scheme. One of these companion objects
is powering an ionized wind and a molecular outflow. Careful observations have disentangled
this outflow from a nearly orthogonal one driven by the upper star.

The two brightest components of the T Tauri system are barely resolvable using conventional
photometry with near-infrared array detectors. Indeed, the companion source, then thought to
be single, was originally found through another technique known as speckle interferometry.
Here, one improves resolution by compensating for the blurring effect of turbulence in the
Earth’s atmosphere. The turbulence manifests itself as intermittent fluctuations in the refractive
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index along any line of sight. This “twinkling” distorts incoming wavefronts. Consequently,
if one images any source over a sufficiently brief time interval, it breaks up into an irregular
distribution of spots, or speckles. For longer integration times, typically 100 ms or greater in the
near-infrared, the spots merge to produce the broader intensity pattern ordinarily encountered.

Each speckle has an angular size close to the diffraction limit of λ/D, where λ is the ra-
diation wavelength and D the diameter of the telescope’s aperture.3 One may recover intrinsic
structural features of the object at this resolution by comparing each brief exposure to that of
a nearby point source, which displays a similar pattern of speckles. In practice, the observer
makes hundreds of target and reference exposures in a single run, and then averages the results
to produce the final image. When implemented with near-infrared arrays, speckle interferom-
etry has allowed detection of binaries with projected separations from 0.′′07 to about 3′′. The
upper bound is set by the array detector’s total field of view.

Even more tightly bound systems are accessible under the right circumstances. The passage
of the Moon’s leading edge across a source creates a rapid falloff in flux that may be monitored
using high-speed photometry. Conversely, there is a brightening associated with reappearance
of the same object. In either case, the source’s intrinsic luminosity distribution influences the
precise character of the transition. Observers have employed this technique of lunar occultation
in the near infrared to probe binary separations from about 0.′′01 to 1′′. Here, the measured
separation is that perpendicular to the lunar limb at the point of occultation.

Figure 12.11 shows the variation in K-band flux from the pre-main-sequence star DF Tau
during a reemergence event. The signal first jumps to a temporary plateau before rising again to
its final, constant value. Such behavior signifies the presence of a binary system. The smooth,
solid curve is the expected result for two point sources emerging 84 ms apart in time. Note the
pronounced “ringing” after the final jump, a result of diffraction across the sharp lunar edge.
The rate of passage of that edge across the sky was 0.′′29 s−1 for this observation. Thus, the
temporal delay in the companion’s appearance translates to an angular separation of 0.′′024, or
to a physical separation of 3.4 AU at the distance of Taurus-Auriga.

12.2.4 Spectroscopic Studies

No current technique can image binaries of much smaller separation. On the other hand, such
pairs may have observable Doppler shifts in their optical spectra. Let us now see more ex-
plicitly how the changing radial velocities allow one to derive important physical properties.
Figure 12.12 shows measurements of Vr from three pre-main-sequence binaries. The velocities
are displayed not as a function of time, but of the orbital phase φ, i. e., the fractional time elapsed
within a single period. To effect this transformation, one first establishes P itself by examining
the temporal record of velocities for periodic behavior.

Figure 12.12a shows data for the single-lined spectroscopic binary 155913-2233. The
primary in this system, for which P = 2.42 days, is a weak-lined T Tauri star in Scorpius-
Centaurus. The dashed horizontal line represents the mean Vr-value, here equal to –2.3 km s−1.

3 Recall the ring-like diffraction pattern of a plane wave impinging on an opaque screen with a circular hole. For hole
diameter D, the angle from the central intensity peak to the first zero is 0.61 λ/D. Doubling this figure gives, by
convention, the ideal, limiting resolution of a telescope with the same aperture diameter. Astronomers refer to the
angular size of a point source obtained in normal photometry as the seeing.
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Figure 12.11 Lunar occultation of the binary DF Tau. Plotted is the temporal variation of the
relative flux in the near infrared, as the system appears from behind the lunar limb. The smooth
curve is a theoretical prediction for two point sources.

This quantity is the center-of-mass velocity along the line of sight and is consistent with other
observed values for single stars in the region. The smooth solid curve is a theoretical fit to the
phased variation of Vr. Its intrinsic shape depends on two parameters – the eccentricity e and
the orientation of the primary’s major axis within the orbital plane.4 One varies both parameters
to achieve the closest match to the data points. In the present case, the resulting curve is very
nearly sinusoidal, corresponding to a circular orbit. Thus, the fitting procedure yields e = 0 to
good accuracy.

This matching of theory to observation also requires that we specify the amplitude of the
velocity change. More precisely, let K1 be half the total range in the primary’s Vr-values. This
quantity is 63 km s−1 in our example. Knowledge of the period and velocity amplitude clearly
gives information about the linear size of the orbit, i. e., the semi-major axis a1. We show in
Appendix H that the projected value a1 sin i obeys

a1 sin i =
K1 P

2 π

(
1 − e2

)1/2
. (12.17)

For the binary in Figure 12.12a, we find that a1 sin i = 0.014 AU.
We have not yet mentioned the stellar masses. Here one must invoke Kepler’s third law,

equation (12.15). If only the primary is observed, as in our example, we can deduce nothing
about either M1 or M2 individually. Knowledge is limited to the composite quantity known as
the mass function f(M), defined as

f(M) ≡ M3
2 sin3 i

(M1 + M2)2
. (12.18)

4 This orientation angle within the plane differs from the inclination i. As mentioned earlier, the latter is the angle
between the orbital plane and that of the sky (recall Figure 12.6b).
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Figure 12.12 Radial velocity as a function of orbital phase for three pre-main-sequence binaries.
The solid curves are the theoretical results for binaries of various eccentricities and orientations.
The lower panel also shows the temporal variation of broadband, visual flux, as measured in the
y-band.

Appendix H also derives an expression for this function in terms of known quantities:

f(M) =
K3

1 P

2 π G

(
1 − e2

)3/2
. (12.19)

Substitution of our present values gives f(M) = 0.064 M�.
More information is naturally available when there is also a spectrum for the secondary star.

Figure 12.12b shows the double-lined spectroscopic binary 162814-2427 in ρ Ophiuchi. First
detected through its X-ray emission, this pair consists of two weak-lined T Tauri stars orbiting
each other with a period of 36.0 days. The phased radial-velocity points now fall along curves
that are far from sinusoidal, so that a substantial eccentricity is present. The fitting procedure
yields e = 0.48. Note that the center-of-mass velocity is –6.1 km s−1 in this case.
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Each velocity curve has its own amplitude, here measured to be K1 = 44 km s−1 and
K2 = 48 km s−1. Application of equation (12.17) to both orbits gives the projected semi-
major axes as a1 sin i = 0.128 AU and a2 sin i = 0.139 AU. These results make it clear that
the primary and secondary masses are nearly equal, but ignorance of the inclination angle still
hampers us. We may recast equation (12.15) as

M1 sin3 i + M2 sin3 i =
4 π2

G P 2
(a1 sin i + a2 sin i)3 , (12.20)

while equation (12.14) implies

M1 sin3 i

M2 sin3 i
=

K2

K1
. (12.21)

Solving these two relations simultaneously for M1 sin3 i and M2 sin3 i gives 1.02 M� and
0.94 M�, respectively. Thus, we may obtain only lower bounds on the component masses.

These constraints are replaced by true mass determinations only when there is some inde-
pendent method for fixing the inclination angle. The observation of eclipses in double-lined
spectroscopic binaries provides such an opportunity. However, the orbital plane must be nearly
edge-on for this effect to occur. Figure 12.12c shows one such fortunate case, the binary
TY CrA. The primary here is a Herbig Be star in the Corona Australis dark cloud complex.
This intermediate-mass object is one of the brightest members of a young cluster located at one
end of the cloud (recall Figure 4.7).

With its period of 2.89 days, the TY CrA binary is another tight system that would escape
direct imaging. The radial-velocity curves are closely sinusoidal, so that the orbital eccen-
tricity is close to zero. The measured amplitudes, K1 = 85 km s−1 and K2 = 165 km s−1,
now indicate that the component masses differ by almost a factor of two. Application of
equations (12.17), (12.20), and (12.21) yields M1 sin3 i = 3.08 M�, M2 sin3 i = 1.59 M�,
a1 sin i = 4.86 R�, and a2 sin i = 9.38 R�. Note again the very small values of the pro-
jected semi-major axes. Careful spectroscopy has revealed the presence of yet a third star or-
biting at much greater distance, roughly 1 AU. This tertiary acts as a small perturbation on the
inner binary and may be ignored for our purposes.

Also displayed in Figure 12.12c is a record of the broadband flux from the system. Here
the apparent magnitude is measured in y, the visual band at 5500 Å in the Strömgren photo-
metric sequence. The sharp plunge at the phase φ = 0.25 marks the primary eclipse. This
decrease occurs when the primary is directly behind its dimmer companion. Half a period later,
at φ = 0.75, the primary blocks the other star entirely. The flux decrease at this secondary
eclipse is much shallower. Note also the slight rise in total flux just before and after this point.
The distance between the stars is small enough that the primary’s radiation significantly heats a
portion of the secondary’s surface. This exposed area comes into view just before the secondary
is occulted, as well as a short time later, accounting for the temporary increases in flux. Careful
modeling of the entire light curve gives the individual stellar radii, luminosities, and effective
temperatures. Most importantly, this modeling also yields the inclination angle i, which is here
83◦. Thus, we finally derive M1 = 3.16 M� and M2 = 1.64 M�.
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Figure 12.13 Period distribution of pre-main-sequence binaries (solid histogram). The dashed
histogram, which is reproduced from Figure 12.7, shows the G-dwarf result for comparison.

12.2.5 Periods and Eccentricities

After collating the data supplied by spectroscopy and the various imaging techniques, observers
have built up a census of the binary population among pre-main-sequence stars. The most com-
plete information is available from the Taurus-Auriga and ρ Ophiuchi regions, but the surveys
are rapidly expanding in scope. Figure 12.13 summarizes the presently known differential bi-
nary frequency. The systems included here are only those with a T Tauri star as the primary
component. Thus the figure omits more massive binaries such as TY CrA. Also shown, for
reference, is the distribution of fB for main-sequence G stars.

Comparing the two groups, it is clear that T Tauri binaries cover a similarly broad range of
periods. Note the apparent gap between 100 days and 10 yr, an interval that lies between the
spectroscopic binaries and those amenable to direct imaging. The greatest fraction of pre-main-
sequence binaries is again between 102 and 103 yr. A striking aspect of Figure 12.13 is that the
overall frequency is higher than for G dwarfs. We should view any direct comparison of optical
and infrared studies with some caution, taking into account such factors as the observational
detection limits. Nevertheless, one possibility suggested by these data is that the binary popu-
lation in a star-forming region may diminish with time. If so, it is not at all clear what might
cause the dissolution of these systems. The alternative view is that the regions contributing to
Figure 12.13 have a different binary population than the ones most heavily represented in the
field.

The evolutionary influence on binaries should gradually become clearer as we continue to
probe the detailed nature of the systems being found. For those discovered through imaging, it is
often problematic to disentangle the individual contributions to the flux at various wavelengths.
Even if this separation can be done, one must also observe the two stars spectroscopically to
obtain accurate effective temperatures. In summary, there are not a great many instances where
we can confidently place both components in an HR diagram. Mass determinations therefore
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Figure 12.14 Orbital eccentricity as
a function of period for pre-main-
sequence binaries.

largely stem from the relatively small number of spectroscopic binaries. This same group pro-
vides the few dozen orbital eccentricities currently available.

Figure 12.14 displays these eccentricities as a function of period, again for T Tauri binaries.
It is immediately clear that the wider systems of longer period tend to have higher e-values.
This trend is strikingly similar to that among the G dwarfs (Figure 12.9). We again note the
appearance of a lower cutoff in period, below which the orbits are circular. In this group of
stars, whose ages cluster near 106 yr, the value appears to be about 4 days. It is interesting
that the analogous figure for the Hyades cluster, with an age of 6 × 108 yr, is 8 days. Recall
from Figure 12.9 that the cutoff was 11 days for our sample of main-sequence G stars and is
19 days for older binaries in the Galactic halo. We conclude that the efficacy of tidal torquing
for circularizing orbits must grow steadily with time.

12.2.6 Infrared Companions and Protobinaries

In extending our search to the very youngest binaries, it is natural to focus on objects with the
greatest infrared emission. We already noted that one star in the T Tau system has no optical
component to its flux. Such pairing of a visible pre-main-sequence star with a highly embedded
(specifically, infrared) one is relatively uncommon but not unique. Observers have found about
a dozen such cases, comprising perhaps 10 percent of the T Tauri binary population. The nature
of the embedded stars, termed infrared companions, is still quite uncertain.

On the one hand, there is little doubt that the heavy obscuration stems from a large column
density of dust. The presence of the 10-µm silicate absorption feature in the T Tau example
bolsters this view. On the other hand, the infrared emission also exhibits pronounced variability,
even in the course of several years. The sharp gradient in extinction from the infrared com-
panion to the lightly obscured T Tauri star further emphasizes the limited spatial extent of the
intervening matter. In summary, there is little indication that the object in question has a younger
age, only a very different circumstellar environment.
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Figure 12.15 Spectral energy distribution for the binary UY Aurigae. In addition to the total flux,
the figure also shows individual contributions from the visible star and the infrared companion.

Infrared companions have similar bolometric luminosities as their optically visible neigh-
bors and provide most of the system’s flux at wavelengths beyond 10 µm. Figure 12.15 shows
the spectral energy distribution of the binary UY Aurigae. Here one may separate the individual
fluxes through speckle interferometry. It is interesting to note that the current infrared compan-
ion was an optically visible object in 1944, when it appeared in the course of an early T Tauri
survey. At present, the flux from this star rises to a broad maximum beyond 10 µm. Following
our discussion of Class 0 and I sources, the breadth of the spectral energy distribution points
to significant heating and reemission by the dust grains. Much of this material may lie within
a disk that orbits this star. There is also direct evidence for a much larger disk surrounding the
entire binary system, as we shall describe in Chapter 17.

Binaries in which both components are heavily embedded may well represent true precur-
sors to the systems we have discussed so far. Radio and infrared studies conducted since the
1980s have begun to find examples. The total number of systems is still too low for any general
characterization of their properties. In no instance, moreover, has it been possible to demonstrate
convincingly gravitational binding of the stars, either through their proper motions or radial ve-
locities. We shall nevertheless apply the term protobinary to any pair of visually obscured stars
that appears likely to be bound.

One search strategy for protobinaries has been to examine the driving sources of molecular
outflows. These extended lobes of moving gas appear to diverge from compact regions that
are luminous in the infrared. Closer scrutiny of these locations with array detectors frequently
reveals tight clusters of point sources. Occasionally the outflow stems from a relatively isolated
stellar pair.
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A case in point in IRAS 16293-2422 in the ρ Ophiuchi region. This source is located at
the center of a complex and powerful outflow system, consisting of two pairs of red- and blue-
shifted lobes. The flow velocities within the lobes are on the high end for molecular outflows,
indicating that the driving star or stars are especially young. Infrared and submillimeter mea-
surements of the central region confirm this suspicion. Despite a total luminosity exceeding
30 L�, the source is undetectable for wavelengths less than 25 µm, and the spectral energy
distribution fits rather neatly into the Class 0 category.

The binary nature of the system only becomes evident with higher spatial resolution. Inter-
ferometric maps at centimeter and millimeter wavelengths reveal two compact sources, sepa-
rated by 840 AU in projection. The centimeter radiation probably stems from a wind-induced
shock (Chapter 13). Winds might be expected here if each source drives a pair of the outflow
lobes. Surrounding one of the stars is a tight grouping of H2O masers, yet another sign of wind
activity. Now the emitted flux in the millimeter continuum, like that in the infrared, originates
from warm dust grains. The associated masses in circumstellar gas are a bit under 1 M� for
each component. These figures represent, of course, only that portion of gas heated by the stars.
There is, in addition, a larger parent dense core or slab, seen by its molecular line emission.
Further study should elucidate the morphology of this object, as well as the linkage of each star
to the molecular outflows extending well beyond the densest gas.

12.3 The Origin of Binaries

The available information on deeply embedded pairs is still too scant to justify any claim that
they represent the precursors to all binaries. While the observational situation continues to
improve, we may also look to the more exposed, pre-main-sequence systems for clues as to
their origin. Later in this section, we will see what theoretical ideas concerning cloud evolution
are likely to be relevant.

12.3.1 Ages of the Components

Any measure of stellar ages is clearly significant with regard to the issue of origins. If these
ages are nearly the same for both components within a binary, then the two must have formed
simultaneously as a gravitationally bound unit. Conversely, widely discrepant ages would imply
that some kind of capture process joined two stars born at very different times and therefore
presumably in different spatial locations. One might imagine such events occurring within a
large parent cluster. However, the observational data has rendered this scenario unlikely, as we
shall now illustrate through specific examples.

We begin with spectroscopic binaries. Obtaining the age of any young star requires placing
it in the HR diagram. We thus need to determine the effective temperature and bolometric
luminosity of each component. For eclipsing, double-lined systems, we have seen that reliable
values for Teff and Lbol follow from careful modeling of the composite light curve. After
locating each star in the diagram, we may read off both its age and mass from the appropriate
pre-main-sequence track. But we have also seen how both masses follow from analysis of the
velocity curves and knowledge of the inclination angle i. There is no reason a priori why these
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spectroscopic values for M1 and M2 should match the photometric ones found from the pre-
main-sequence tracks. Eclipsing binaries therefore present very favorable, and unfortunately
very rare, opportunities both for measuring stellar ages and for gauging the accuracy of the
evolutionary tracks themselves.

The upper panel of Figure 12.16 shows, within the Lbol–Teff plane, the primary and sec-
ondary of TY CrA, the eclipsing binary previously depicted in Figure 12.12c. In the current
representation, the primary appears slightly below the ZAMS, near a mass of 3.0 M�. The
latter value compares reasonably well with the more precise spectroscopic determination of
3.16 M�. The secondary, with a spectroscopic mass of 1.64 M�, indeed falls just above the
1.5 M� evolutionary track. Thus, the two independent methods for obtaining the component
masses are in essential agreement.

What of the stellar ages? Unfortunately, the location of the primary so close to the ZAMS
makes it impossible to assign a reliable contraction age. However, the star illuminates a bright
reflection nebula in the Corona Australis cloud, and the system’s spectral energy distribution
rises in the mid-infrared regime toward longer wavelengths. Thus, the primary is undeniably
young, a typical Herbig Be star situated within both interstellar and circumstellar gas and dust.
Suppose we tentatively assign it the pre-main-sequence age for a 3 M� star just arriving on the
ZAMS, or 2 × 106 yr. Then the corresponding isochrone, shown as the dashed curve, passes
close to the secondary’s position. The components of TY CrA are therefore plausibly coeval,
although the data do not permit a more quantitative assessment.

Age assignments are more trustworthy when both stars lie well above the ZAMS. A handful
of eclipsing binaries of this kind are known, but none with secure properties. However, there
are a number of non-eclipsing, double-lined systems. The lower panel of Figure 12.16 shows
one of these, the weak-lined T Tauri star V773 Tau and its companion. In the absence of
eclipses, one must obtain Teff and Lbol for each star by careful analysis of both the composite
spectral energy distribution and the shifting, narrow-band spectrum. One then finds that the
components of V773 Tau have roughly the same age, which again happens to be about 2×106 yr.
The photometric masses for the primary and secondary in this case are M1 = 1.7 M� and
M2 = 1.2 M�. We may compare their ratio M1/M2 = 1.4 to the value of 1.32 obtained
spectroscopically, through application of equation (12.15). The similarity of these two estimates
is gratifying and further bolsters our confidence in using the tracks to obtain both ages and
masses.

Discerning the relative luminosities from an unresolved pair of stars is no simple matter,
and the foregoing results are subject to some uncertainty. The situation further improves when
we consider wider, spatially resolved binaries. In this case, however, we have no spectroscopic
mass ratios for comparison. Figure 12.17 shows three systems taken from Taurus-Auriga and
Orion. For two of them, the components lie close to theoretical isochrones, while the ages within
WSB 18 apparently differ by about a factor of three. The sampling here is representative in a
statistical sense. That is, roughly, a third of visual, pre-main-sequence binaries have component
ages that do not match.

Some binaries in this category are proving, under closer scrutiny, to be triples or even
quadruples. The nature of the remaining pairs with discrepant ages is still unclear. In any
case, we may be confident that most binaries consist of stars that were born nearly simultane-
ously. No such coincidence would be expected from the random coupling of stars drawn from
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Figure 12.16 Placement in the HR diagram of the components in the spectroscopic binaries (a)
TY CrA and (b) V773 Tau. The birthline, ZAMS, and selected evolutionary tracks are shown.
The dashed curve is the theoretical isochrone corresponding to 2 × 106 yr.
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Figure 12.17 Placement in the HR diagram of the components in three visual, pre-main-sequence
binaries. The ZAMS, birthline, and isochrones are shown, as well as the ZAMS positions for the
indicated masses.

an extended cluster. The typical binary must therefore arise in situ, rather than through capture.
Note, however, that a capture mechanism may still apply to binaries with truly differing ages,
as well as to pairs of massive stars, as we shall discuss in § 12.5 below.

12.3.2 The Fission Hypothesis

What, then, is the actual formation mechanism? Figure 12.17 demonstrates how young binaries
are found throughout the HR diagram, from the birthline down to the main sequence. The
establishment of a bound pair must therefore occur not in the pre-main-sequence epoch, but
in the earlier phase of protostellar infall. Could it be that the components were originally a
single protostar that somehow split apart? One might imagine, for example, that the object
gains so much angular momentum from infalling matter that its rapid rotation leads to gross
deformation, followed by separation into distinct entities. This suggestion is a variant of the
fission hypothesis, a venerable idea that was prominent for many decades before modern binary
research.

It is still not feasible to measure the surface velocities for highly embedded stars, so one
cannot dismiss out of hand the possibility of their rapid rotation. The viability of the fission hy-
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pothesis then rests on the expected physical behavior of stars endowed with increasing angular
momentum. Advocates of fission have drawn inspiration from classic studies of incompressible
fluid configurations. Such rotating liquid masses indeed deform bodily as they spin up.5 Stars,
on the other hand, are highly compressible objects with a large variation of internal density.
Consequently, they undergo a very different kind of transition.

As we increase the angular momentum of a star, the most rapidly rotating fluid elements
experience a centrifugal repulsion that rivals their gravitational attraction to the interior mass.
The equatorial region then begins to detach. Figure 12.18 displays snapshots from a time-
dependent numerical simulation. Here, the object was set immediately into rapid rotation at
t = 0. Since angular momentum is conserved locally, the body becomes differentially rotating
as it evolves. The panels show density contours in the equatorial plane, and the elapsed time
is measured relative to the initial period along the central axis. We see that the object quickly
sheds gas into two, trailing spiral arms. In calculations covering longer times, the ejecta form a
detached ring around the remnant central core.

The ring has a relatively small amount of mass, but contains most of the system’s angular
momentum. This lopsided distribution is a result of efficient gravitational torquing. Equatorial
shedding thus prevents the bulk deformation necessary for fission. In fact, it is doubtful that a
protostar ever spins up enough for this shedding to begin. Even the youngest visible pre-main-
sequence stars have rotation speeds well below breakup, probably as a result of magnetic winds.
There is no reason why such winds should not also operate during the protostar phase. A portion
of the infalling angular momentum would be redirected into the wind, while much of the rest
would be incorporated into the growing protostellar disk.

Could binary companions result from the breakup of these disks? The situation here is
analogous to that regarding stellar fission. Numerical calculations starting with highly unstable
circumstellar disks do find them breaking apart into numerous fragments, each of a size compa-
rable to the local disk thickness. Some of these pieces may subsequently merge, but there is no
indication of their further collapse to stellar density. Moreover, it is unlikely that the assumed
initial conditions ever apply. As we saw in Chapter 11, protostellar disks generate internal spi-
ral waves as they become gravitationally unstable. The torquing from these waves probably
transfers enough mass inward to suppress rapid growth of the instability.

12.3.3 Quasi-Static Fragmentation

One important clue to the origin of binaries is the distribution of secondary masses. We have
seen how the current data, while incomplete, are consistent with the supposition that both the
primary and secondary are drawn from the field star initial mass function. The implication is
that the components form independently but in spatial proximity. The widest visual binaries
have separations of order 0.1 pc, and the vast majority are considerably tighter. We should
therefore explore the possibility that both protostars arise within a single dense core.

5 Consider a sequence of uniform-density, self-gravitating equilibria that are in uniform rotation. Each member of
the sequence may be characterized by the single, nondimensional parameter T /|W|, introduced in Chapter 9. For
low values of this parameter, the stable configurations are the oblate Maclaurin spheroids. For T /|W| > 0.27, the
equilibria are dynamically unstable to disturbances that transform them into tumbling, prolate configurations.



12.3 The Origin of Binaries 399

Figure 12.18 Breakup of a rapidly rotating cloud. Shown are density contours in the equatorial
plane. Times are measured relative to the initial rotation period along the cloud axis.

Our previous treatment of dynamical fragmentation showed how a self-gravitating cloud can
indeed break apart, but only if its mass exceeds MJ or its rotational analogue. We noted further
that such bodies cannot themselves be equilibria. Since their internal forces are unbalanced,
they immediately begin to collapse. While this property makes them convenient for theorists
studying collapse dynamics, it also renders these objects implausible models of dense cores. To
explain the existence of cores not yet containing stars, a phase of mass accumulation must occur
prior to infall. The collapse event terminates the growth of these configurations, each of which
is in dynamical equilibrium.

As we shift our focus to structures closer to force balance, the very concept of fragmentation
changes. We are no longer concerned with prompt breakup accompanying free-fall collapse.
Rather, we want to explore the more gradual emergence of separate density peaks within a
slowly contracting parent body. Each peak evolves independently of its neighbor and eventually
accumulates enough mass to undergo dynamical infall. We dub this entire process quasi-static
fragmentation. While the idea is motivated by theoretical considerations, it is also consistent
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with the higher-resolution maps of dense cores, which display a lumpy substructure. Still lack-
ing, however, is a detailed quantitative treatment. Hence we will need to base our discussion on
plausible extensions of known results.

The new emphasis on equilibrium starting states makes the long tradition of collapse sim-
ulations less directly applicable. On the other hand, these still can supply valuable insight.
Recall, for example, that uniform-density, rotating spheres only fragment if their nondimen-
sional masses exceed mcrit(β), as depicted in Figure 12.4. Lower-mass structures rebound
as stable equilibria, while objects near the critical condition evolve to higher density without
breaking apart. Other collapse studies have demonstrated that spheres with substantial density
contrasts, such as those encountered in true equilibria, remain intact. Thus, even the simplest
theoretical description of quasi-static fragmentation must depart from spherically symmetric
initial conditions.

12.3.4 Elongated Clouds

This last point may strike the reader as rather academic, since observed dense cores are far from
perfect spheres. The real message is that the spatial configuration of a cloud plays a crucial
role in its subsequent evolution. Having accepted that this configuration is nonspherical, we
must also look beyond thermal pressure as the sole supporting mechanism. It is natural to
consider magnetized structures. These, we have noted, may be flattened or elongated relative to
the ambient field direction. We restrict ourselves to the latter case, since it is more favored by
observations.

Theoretical study of elongated cloud equilibria has thus far been limited to the simplest
case of infinite cylinders. Consider first non-magnetic, isothermal cylinders embedded within a
background medium of pressure P◦. As in the spherical and oblate configurations we studied,
these may be characterized by their density contrast from center to edge, ρc/ρ◦. Employing G,
P◦, and the sound speed aT , we may define a nondimensional cylinder radius �◦ in terms of the
fiducial length (P◦ G)1/2/a2

T . Solution of the equations for hydrostatic equilibrium then shows
that �◦ increases from 0 at ρc/ρ◦ = 1, reaches a maximum of 1/

√
2 = 0.71 at ρc/ρ◦ = 4, and

then gradually falls to zero at large density contrast. This behavior is reminiscent of the other
types of equilibria. Structures with small ρc/ρ◦ are confined by the external pressure, while
denser ones constrict under the influence of self-gravity.

Consider next the dynamical stability of a cylindrical cloud. Following Jeans, we may
propagate a sinusoidal traveling wave down the configuration and ask for the minimum wave-
length at which the wave amplitude grows exponentially. Numerical calculations show that the
nondimensional wavelength, which we shall denote as λcyl, again starts at zero for ρc/ρ◦ = 1,
reaches a value of order unity at modest density contrast, and thereafter declines. Note that the
instability in lower-density models does not stem from bulk contraction; it is not present, for
example, in isothermal spheres, which are dynamically stable in that regime. Destabilization of
the low-density cylinders is caused by surface warping associated with the wave propagation.

Finally, let us introduce a uniform magnetic field B◦ lying along the axial direction. The
structure of the equilibrium models is unchanged, since a uniform field exerts no force. If we
assume flux freezing, however, then the field is bent by passage of the wave. Nevertheless,
we find that λcyl is virtually unchanged for models with ρc/ρ◦ � 4. For the cylinder with
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maximum radius, λcyl/�◦ increases from 3.7 in the non-magnetic case to 4.0 for an infinitely
strong field. The reason for this insensitivity is that the waves cause the gas to clump along
the axis, a motion that cannot be opposed by a purely longitudinal field. In contrast, the low-
density cylinders confined by pressure exhibit a dramatic increase in λcyl even for modest field
strengths. Here, magnetic tension effectively prevents the surface corrugation and buckling.

We have remarked that the real utility of the Jeans length or its analogue is not for diagnos-
ing stability in fictitious infinite configurations, but for delimiting the spatial extent of bounded
ones. In this case, we see that a magnetic field can support a long column, provided that the
structure has relatively low density contrast. This result is broadly consistent with the observa-
tions of filamentary clouds, at least in those cases where the magnetic field appears to be axial.
Moreover, the analysis indicates that any embedded, denser structures must have smaller aspect
ratios. But how would any of these entities evolve with time?

The gas within magnetized clouds drifts slowly across the embedded field through ambipo-
lar diffusion. This process sets the basic time scale for quasi-static contraction. We saw in
Chapter 10 how initially flattened structures proceed in this manner to the point of gravitational
collapse. For that geometry, the density maxima began and remained at the cloud center. The
question now is whether two or more off-center peaks could arise in an elongated structure.

No studies have addressed this point directly, so we must turn to analogous, non-magnetic
calculations involving dynamical collapse. We saw earlier how clouds of modest elongation
but containing many Jeans masses constrict in the transverse direction to narrow spindles that
subsequently break up along their major axes (recall Figure 12.5). At the other extreme are
bodies of sufficiently low mass that they are only weakly self-gravitating. These simply deform
into pressure-confined spheres. Thus a fluid element near one of the ends mainly experiences
longitudinal motion either toward or away from the center. The case of most interest is the
intermediate one, where both transverse and longitudinal motion occur.

Numerical simulations in this regime find a variety of outcomes, depending on the pre-
cise initial conditions. Here we restrict our attention to uniform-density objects, which are not
predisposed to fragmentation by virtue of their initial structure. Thus, a collapsing cylinder
promptly forms two subcondensations near its ends. These gather surrounding matter and fall
toward one another. For a large enough total cloud mass, their local density exhibits runaway
growth before the merger event. A tapered configuration of the same mass, such as a pro-
late ellipsoid, does not develop two separate condensation points during infall, but only one
at the center. Here, a rudimentary spindle may emerge, but becomes spherical as the density
climbs. Starting with a larger cloud mass leads to a more robust spindle. This later fragments,
when pressure begins to retard axial constriction. Figure 12.19 illustrates the two basic collapse
modes through snapshots from numerical calculations. Both studies began with identical prolate
ellipsoids of 2:1 aspect ratio that just fit inside the cylindrical borders. The clouds had different
masses, as indicated, and soon diverged markedly in their condensation.

The quasi-static evolution of magnetized equilibria plausibly follows similar routes. Sup-
pose that the embedded magnetic field is tied to a uniform background, as sketched in Fig-
ure 10.8. In situations where the internal pressure is strong, ambipolar diffusion acts to
straighten the field and relieve internal magnetic tension. A cloud of relatively low mass will
thus relax to a sphere threaded by a uniform field. The single-star outcome in Figure 10.8 would
occur with a starting mass that is greater, but too small for a spindle to be maintained. Finally,
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Figure 12.19 The two collapse modes for elongated clouds. The rectangular borders of each panel
are the projections of the cylinders which just encompassed the initial, ellipsoidal configurations.
Displayed are the density contours at similar times after the start of collapse, about 1.1 tff .

a sufficiently massive cloud should again constrict along its axis and develop two or more high-
density centers that eventually undergo collapse. The nascent stars will slowly drift together,
over the diffusive time scale. Note that a direct merger can easily be averted if the cloud has
even a modest degree of rotation.

12.3.5 Influence of Disks

Any primitive binary formed in this manner should be a highly eccentric system with a max-
imum separation exceeding that of most optically visible pairs. Thus, the orbital energy must
somehow diminish. The total angular momentum, Jtot, will also be too large initially, but not
by a huge factor. If the original dense core of mass Mtot rotates with angular speed Ωcloud, then

Jtot ≈ 2
5

Mtot R2
tot Ωcloud

= 2 × 1054 g cm2 s−1

(
Mtot

1 M�

) (
Rcloud

0.1 pc

)2 (
Ωcloud

1 km s−1 pc−1

)
.

(12.22)

Here we have crudely modeled the cloud as a sphere of radius Rcloud, and have taken the
representative angular speed from Chapter 3. Suppose that this cloud eventually becomes a
circular binary of period P , consisting of two identical stars with mass Mtot/2. The angular
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momentum is now

Jtot =
π

2
Mtot a2

tot

P
. (12.23)

Substituting from (12.15) for atot, we find

Jtot =
(

P

128 π

)1/3

Mtot (G Mtot)2/3

= 1 × 1053 g cm2 s−1

(
Mtot

1 M�

)5/3 (
P

200 yr

)1/3

.

(12.24)

Note that our numerical expression has utilized the mean observed period for G-dwarf binaries.
Comparison of equations (12.22) and (12.24) indicates that Jtot must diminish by an order of
magnitude. The orbital energy must decrease even more to account for the closest binaries
observed.

Both the angular momentum and energy will indeed fall as the binary interacts with remnant
gas. Consider, for example, the effect of circumstellar disks. It is plausible that the two stars
approach each other to within a distance comparable to their disk radii. If so, material that
was orbiting outside this periastron separation will be stripped away. Figure 12.20 shows that
even smaller disks are greatly perturbed. Here, a diskless companion star follows the indicated
parabolic trajectory about the star at the center of the frame. The central object’s disk radius
was initially 0.8 times the periastron distance. At the time shown, when the companion has just
crossed the righthand border, over half the disk has been disrupted. Some of this material is
ejected into the broad, expanding tail, while some is captured by the companion to form a new
disk.

For this dispersal of circumstellar gas to affect the orbit significantly, two circumstances
must hold. First, the disk should rotate in the same sense as the companion’s relative velocity, in
order to maximize the interaction. Such prograde motion is likely to occur in a forming binary.
Second, the energy loss will be minor unless at least one of the disks has a mass comparable
to that of its parent star. The observed disks around pre-main-sequence stars comprise only a
small fraction of the stellar mass (Chapter 17). However, we have seen that theory does posit
more massive structures, at least while the central object is in the protostar phase most relevant
here. That is, any star-disk encounter actually occurs within a dense, collapsing envelope.

The continuing infall will preferentially collect near the more massive star, either directly
onto its surface or in orbit around it. Infalling matter of still higher angular momentum lands
farther out to form a circumbinary disk. The stars interact gravitationally with this larger disk,
which can act as a sink for angular momentum and energy. Such torquing is especially strong
near apastron, i. e., when the binary separation is a maximum, and tends to increase the orbital
eccentricity.

In response to the gravitational torquing, the circumbinary disk becomes largely evacuated
close to the binary orbit. Calculations indicate that some disk material also accretes onto the
secondary star. This material generally has higher specific angular momentum than the star it-
self, and its accretion decreases the eccentricity. Apparently, it is this decrease that eventually
predominates, but there is still no theoretical explanation for the correlation of eccentricity and
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Figure 12.20 Disruption of a disk by a passing companion. The parabolic orbit of the point-mass
companion is indicated. The particles represent the gas density in the equatorial plane.

period evident in Figure 12.14. Important aspects of the binary’s evolution can be seen in Fig-
ure 12.21, which displays snapshots from an SPH simulation covering several orbital periods.
Clearing of gas becomes pronounced within one revolution, as the stars generate a wavelike dis-
turbance. We will see in Chapter 17 how high-resolution observations at infrared and millimeter
wavelengths have actually furnished evidence for such centrally evacuated, circumbinary struc-
tures.

12.3.6 Tidal Circularization

We noted earlier that the minimum period for circular orbits within any group of binaries in-
creases steadily with the age of that group. This trend demonstrates that even binaries with no
circumstellar gas at all continue to undergo orbital evolution. The underlying physical effect
is a mutual torquing of the stars created by the tides each raises in the other. The matter is of
relevance for binary origins because the tidal effect is greatest when the stars themselves have
their largest radii, i. e., during the pre-main-sequence phase.

Figure 12.22 illustrates the basic process involved. Here, in a greatly exaggerated represen-
tation, we depict the two tidal bulges created in a primary star of mass M1 by a secondary of
mass M2. The latter, which we assume moves in an eccentric orbit, is shown for simplicity as a
point source of gravity. If the primary were rotating synchronously, so that its rotational period
matched the orbital period of the secondary, the two bulges would point directly along the line
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Figure 12.21 Clearing of a central gap in a circumbinary disk. The particles again represent
density in the equatorial plane, and the time is in arbitrary units.

of centers. In this case, there would be no torque. Any internal friction, however, creates a phase
lag in the primary’s response to the tidal perturbation. The bulges then become misaligned by
the angle α. The result, as depicted in Figure 12.22, is a torque that acts to pull the primary
back into synchronism. Concurrently, the bulges retard the motion of the secondary and reduce
the orbital eccentricity. The system evolves toward a state of lower energy, while conserving
its total (spin plus orbital) angular momentum. The endstate is a binary with synchronous spins
and circular orbits.

The actual rate of evolution varies with both the distance between stars and the magnitude
of the internal friction. On the first point, we note that the bulge is created by the difference
between the gravitational force exerted by the secondary locally and at the primary’s center of
mass. This tidal force, measured per unit mass, has the approximate magnitude G M2 R1/a3

tot.
Here, R1 is the primary’s unperturbed radius and atot is the interbinary separation, defined
in equation (12.16). The potential energy per unit mass associated with this force is about
G M2 R2

1/a3
tot. In the presence of the primary’s own gravitational field, such energy is sufficient

Figure 12.22 Tidal torquing of the primary star within a binary pair. The secondary, represented
as a point mass, creates tidal bulges that are tilted with respect to the line of centers.
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to lift an element from the surface to a height h1, where

G M1 h1

R2
1

≈ G M2 R2
1

a3
tot

. (12.25)

Thus, the characteristic bulge height h1, as depicted in Figure 12.22, is

h1 ≈
(

M2

M1

) (
R1

atot

)3

R1 . (12.26)

The mass contained in the bulge, ∆M1, is proportional to (h1/R1) M1 = (R1/atot)3 M2.
Finally, the magnitude of the synchronizing torque is

Γsynch ≈ G ∆M1 M2 R2
1

a3
tot

sin α , (12.27)

which is proportional to a−6
tot. From Kepler’s third law, equation (12.15), Γsynch varies as P−4.

This sensitivity accounts for the rather sharp cutoff period for circular orbits.
Friction within the primary sets the magnitude of the lag angle α. Inside convection zones,

the turbulent mixing of eddies provides an effective viscosity far greater than that arising from
the random motion of atoms and molecules. Pre-main-sequence stars of low mass are either
partially or fully convective (Chapter 16). Since these objects also have large radii, and since
Γsynch varies as R5

1, the reduction in eccentricity proceeds efficiently. But what of young bi-
naries composed of more massive stars that have no outer convection? Observations show that
these also have circular orbits, at least for short enough periods. In this case, the system’s energy
loss stems from the damping of internal waves generated by the eccentrically orbiting compan-
ion. To summarize, while the tidal theory in both its forms still has significant gaps, it provides
a solid basis for understanding both the early and longer-term evolution of binaries.

12.4 Formation of Stellar Groups

In seeking the origin of populous aggregates such as bound clusters, we turn to the larger cloud
structures that spawn them. These are the clumps within giant molecular clouds or dark cloud
complexes. The detection of numerous infrared sources within such entities has provided a
glimpse of clusters in the making. Empirically, it is only the most massive clumps, generally
those of 103 M� or greater, that harbor an embedded cluster. These bodies are centrally peaked
in density and are gravitationally bound according to the virial theorem. That is, |W| � |T |,
where the kinetic energy term derives from the observed width of the tracer molecule, invariably
a CO isotope. Lower-mass clumps for which this inequality is reversed must be confined by
the ambient pressure within the complex. Systematic observations, particularly in the Rosette
Molecular Cloud, have confirmed that star formation is never present in this latter type.

12.4.1 Parent Cloud Contraction

How does a massive clump evolve to the point of creating a multitude of dense cores and,
ultimately, stars? It is tempting to view stellar groups as somehow arising from the breakup of
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the parent cloud, i. e., from the process of dynamical fragmentation. Over the years, many have
articulated this idea in various forms, with the breakup either occurring promptly or through
a hierarchical series of steps. However, the cumulative results of both observation and theory
cannot be reconciled with such a view. A more appealing picture, we shall argue, is that the
parent cloud undergoes slower, quasi-static contraction. Dense cores accumulate their mass
from this changing background structure.

Dynamical fragmentation fails here for essentially the same reason as it did for binary-
producing dense cores. A massive cloud that is out of force balance ab initio has no precursor
that is a coherent body. Yet giant complexes do contain gravitationally bound clumps with no
infrared sources. These are presumably the analogues of starless dense cores. In the present
context, a portion of these clumps should later evolve to produce internal clusters. Again, this
development plausibly involves contraction, but not global collapse and breakup. We have seen
in the numerical studies that the configurations which fragment by this latter route are either
elongated spindles or flattened slabs, depending on the initial cloud shape. Neither outcome
describes the present-day clumps forming stellar groups, nor the reconstructed configurations
that gave rise to expanding OB associations (recall Figure 4.16).

In our earlier study of cloud equilibria, we noted that massive clumps owe their fully three-
dimensional shapes to the mechanical support from MHD waves. The clouds are in near equi-
librium between wave support and self-gravity, and therefore must contract because of a slight
imbalance between the two. What ultimately drives any such quasi-static evolution is a net loss
of energy, which plausibly results in this case from turbulent dissipation. How this dissipation
arises in detail is not well understood. Certainly the ion-neutral drift we invoked for MHD wave
damping is ineffective over typical clump dimensions. Nor is it clear, as discussed in § 10.3,
how quiescent dense cores separate out from this turbulent medium on relatively small length
scales. Finally, a complete theory must identify which properties of a clump dictate whether it
produces a T association, bound cluster, or OB association.

12.4.2 Development of Luminosity Functions

Let us leave aside momentarily these basic issues associated with the condensation process it-
self, and focus instead on the resulting stellar groups. The very youngest of these are the embed-
ded clusters discovered through near-infrared surveys. We saw in Chapter 4 how observations
in multiple wavebands are beginning to establish the bolometric luminosity functions for these
systems, i. e., the number of objects per (logarithmic) unit of L∗. In any system, this function
must change with time as member stars age. Suppose now that cluster formation indeed occurs
through the collapse of dense cores scattered widely throughout a parent cloud. This basic pic-
ture, we will show, helps us to understand quantitatively the evolution of luminosity functions,
and thus strengthens their role as potential observational tools.

Suppose that the cores, however created initially, are going into collapse at the rate C(t).
This rate starts at zero and is thereafter a smooth function of time. Presumably, the behavior
here depends on the global contraction of the parent cloud. Once a core goes into collapse, it
builds up a protostar at the mass infall rate Ṁ . The cluster membership at any time t consists
of both protostars and more evolved objects past their infall phase. Now theory supplies the
luminosity L∗(M∗, t) at any evolutionary stage of a star. For a specified formation rate C(t),
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we may sum these contributions over mass to obtain the bolometric luminosity function, which
we shall denote as Φ∗(L∗, t).

The most serious impediment to this program is our ignorance of how protostellar infall
ceases. As long as a star is acquiring mass from its core, we may calculate its luminosity
through equation (11.24). During its quasi-static contraction at fixed mass, L∗ follows from
pre-main-sequence theory (Chapter 16). At what point, however, does the transition occur? We
cannot answer this equation from first principles, but observations provide a clue. As the cluster
members continue to age, we know that they will ultimately appear on the main sequence with a
mass distribution that resembles the field-star IMF. This empirical fact tells us when infall ends,
at least in a statistical sense.

Figure 12.23 helps make our reasoning explicit. Let p(M∗, t) ∆M∗ denote the number of
protostars at any time t, with masses between M∗ − ∆M∗/2 and M∗ + ∆M∗/2. Similarly, let
s(M∗, t) ∆M∗ be the number of “post-infall” objects in the same mass interval; these include
both pre-main-sequence and main-sequence stars. Referring to the figure, we see that the infall
process will deplete the central bin of protostars over a time interval ∆t = ∆M∗/Ṁ . Here
we may take Ṁ to be a constant for simplicity. Not all of these protostars, however, become
higher-mass objects. We suppose that a fraction ν(M∗) ∆t cease their accretion. During the
same time interval, the central bin is also partially refilled by protostars from the lower-mass
bin. The fraction of these that shift into the central bin is [1 − ν(M∗ − ∆M∗)] ∆t. The net
change in the protostar population thus obeys

[p(M∗, t + ∆t) − p(M∗, t)] ∆M∗ =
p(M∗ − ∆M∗, t) [1 − ν(M∗ − ∆M∗)∆t] ∆M∗ − p(M∗, t) ∆M∗ .

Taking the limit of this equation for both small ∆M∗ and ∆t, and utilizing ∆M∗ = Ṁ ∆t, we
find (

∂p

∂t

)
M∗

+ Ṁ

(
∂p

∂M∗

)
+ ν(M∗) p(M∗, t) = 0 . (12.28)

Equation (12.28) is subject to the boundary condition that there be no protostars initially:

p(M∗, 0) = 0 . (12.29a)

In addition, the ongoing collapse of new dense cores continually supplies protostars of zero
mass. Since these are displaced to higher-mass bins through infall, we have

[p(0, t + ∆t) − p(0, t)] ∆M∗ = C(t) ∆t − p(0, t) ∆M∗ .

Invoking the same limit as before, we obtain a second boundary condition for equation (12.28):

p(0, t) = C(t)/Ṁ . (12.29b)

It is now straightforward to derive a similar equation for the post-accretion stars. As depicted
in Figure 12.23, such an object arises only from a protostar of the same mass that has ended
infall. Thus, s(M∗, t) is related to p(M∗, t) through

[s(M∗, t + ∆t) − s(M∗, t)] ∆M∗ = ν(M∗) p(M∗, t) ∆M∗ ∆t . (12.30)
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Figure 12.23 Transfer of mass among protostars (p) and pre-main-sequence objects (s) in a
forming cluster. Stars are moved into neighboring mass bins with the indicated probabilities.

In the limit, we find (
∂s

∂t

)
M∗

= ν(M∗) p(M∗, t) .

Finally, we also require that the post-infall population start out at zero:

s(M∗, 0) = 0 . (12.31)

Given the functions C(t) and ν(M∗), along with Ṁ , we may solve equations (12.28) –
(12.31) for the populations p(M∗, t) and s(M∗, t). Whatever its explicit form, C(t) must even-
tually fall to zero, by a time we shall denote as tcutoff . The function ν(M∗) is the probability
per unit time that a protostar stops accreting new mass. Note that we have tacitly assumed that
the relevant physical process depends only on M∗ and not, for example, on the evolutionary
state of the cluster. Such an assumption can only be justified a posteriori, through comparison
of the theory with cluster data. Our procedure, then, is to choose C(t), solve the equations for
arbitrary ν(M∗), and then tune this latter function until the post-infall population follows the
field-star IMF. Utilizing the notation for the latter from § 4.5, we demand that

lim
t�tcutoff

s (M∗, t) = N ξ(M∗) . (12.32)

Here, N ≡
∫ tcutoff

0
C(t) dt is the total number of stars produced.

After obtaining the time dependence of the stellar populations, one multiplies by the ap-
propriate luminosities to derive Φ∗(L∗, t). Figure 12.24 shows the results of a numerical
calculation. Here, C(t) was chosen, for simplicity, to be a strict constant from t = 0 to
tcutoff = 1 × 107 yr. The protostellar infall rate was set to Ṁ = 1 × 10−5 M� yr−1. At early
times, the luminosity function has two distinct maxima. The lefthand one represents the steadily
growing number of pre-main-sequence stars, while that on the right stems from accreting pro-
tostars. The protostellar contribution to the luminosity function is quite sharply peaked because
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Figure 12.24 Evolution of the luminosity function in a model cluster.

Lacc is proportional to M∗/R∗ (equation (11.5)). This ratio, in turn, is held nearly constant by
the thermostatic action of deuterium burning. Hence, the luminosity varies little over a signifi-
cant mass range.

The assumed constancy of C(t) implies that the total cluster population increases linearly
with time. After a brief transient period, this increase occurs entirely within the pre-main-
sequence stars. That is, the total number of protostars saturates to a steady-state level. Recall
here that protostars are both created by the collapse of new cores and effectively destroyed by
infall, which ultimately transforms them into pre-main-sequence stars. If C now denotes an
average of the global formation rate and M̄ the typical stellar mass produced, then the steady-
state protostar number is about C M̄/Ṁ . It follows that the fractional population is

fproto ≈ M̄

Ṁ t
, (12.33)

over the time interval M̄/Ṁ � t < tcutoff . According to the IMF of equation (4.6), M̄ is about
0.2 M�; here we have assumed the IMF to be flat below 0.1 M�. In our model cluster, therefore,
fproto drops to 0.02 by only 106 yr. Quite generally, the small values expected for this fraction
are of clear significance in the observational search for protostars.

Returning to the luminosity function, Figure 12.24 shows how the pre-main-sequence con-
tribution soon dominates. The curve becomes quite broad, reflecting the large spread in masses
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Figure 12.25 Comparison of the theoretical bolometric luminosity function (lighter curve) with
the empirical one (darker histogram) for the ρ Ophiuchi cluster. The theoretical curve is for the
indicated cluster age.

and contraction ages. Although no new protostars appear after 1 × 107 yr, Φ∗(L∗, t) keeps
evolving because of this contraction. The most massive stars reach the main sequence first.
Correspondingly, Φ∗ approaches a featureless curve, beginning at relatively high L∗-values.
This curve is Ψ(L∗), the “initial” luminosity function discussed in § 4.5. Recall that Ψ is ob-
tained by convolving the IMF with main-sequence luminosities. By t = 1 × 108 yr, the upper
portion of Φ∗ is severely truncated, as the most luminous stars evolve off the main sequence. In
the numerical calculation, these were simply deleted from the cluster.

How well does this theory accord with observations? For truly embedded clusters, the frac-
tion of stars with measured bolometric luminosities is still small. Hence, a thorough comparison
remains for the future. Nevertheless, Figure 12.25 shows that the available results are encourag-
ing. Here, we have reproduced the luminosity function from the L1688 cluster of ρ Ophiuchi, as
first presented in Figure 4.6. The smooth curve is Φ∗ from the same sequence as in Figure 12.24.
In this example, we obtain a best fit for a cluster age of 1 × 106 yr. This agreement, moreover,
is only at the highest luminosities. At lower L∗, the empirical function declines steeply, re-
vealing the finite sensitivity of the observations. The theoretical curve, meanwhile, rises to a
much higher level. This hypothetical population consists almost entirely of pre-main-sequence
stars relatively close to the birthline. Such a prediction is certainly reasonable, as near-infrared
surveys indicate a much higher membership than is shown in the histogram.

12.4.3 Age Histograms

More complete luminosity functions are available from systems where a greater fraction of
members are optically revealed. Consider Taurus-Auriga, whose luminosity function we
showed as Figure 4.13a. There we noted that the empirical curve rises above Ψ(L∗) at moder-
ately low luminosities, but before the sensitivity falloff. This excess again stems from young
pre-main-sequence stars and is evident in several of the theoretical curves in Figure 12.24. How-
ever, the evolutionary status of a T association may be gauged in a much more direct and precise
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Figure 12.26 Age histograms for the T associations in (a) Taurus-Auriga, and (b) Lupus.

manner. Since we can place most stars in the HR diagram, it is feasible to read off their ages
individually through comparison with pre-main-sequence tracks. The resulting distribution is a
powerful diagnostic.

Figure 12.26a shows the ages of the Taurus-Auriga population, binned in 106 yr intervals.
Here we have utilized the HR diagram of Figure 4.9a. The crowding of isochrones close to
the main sequence makes it impossible to assign ages to some of the older, more massive stars.
This limitation should always be borne in mind, but is not severe in the present case, where our
figure includes 87 out of the 103 stars in the HR diagram. Scanning the age histogram from
right to left tells us the star formation history of the region. It is apparent that stellar birth began
nearly 107 yr ago and has been accelerating to the present epoch. A similar history is evident in
Figure 12.26b, which shows the Lupus association (recall Figure 4.9b).

We saw in Chapter 4 how main-sequence turnons in the HR diagram allow us to quantify
the onset of vigorous star formation in a region. Age histograms go further by showing in more
detail how this activity progresses. The contraction of any individual dense core, eventually
leading to its collapse, is mediated by self-gravity and local diffusion of the magnetic field.
There is no known way that this process occurring in one location can stimulate contraction in
another several parsecs distant. But Figure 12.26 shows, in effect, an orchestrated pattern of
collapses in many cores. The cores must therefore be evolving in response to an alteration of
their common environment. An accelerated rate of star formation, in particular, suggests again
that the parent cloud is contracting, so that more sites are accumulating mass.

Only a handful of the closest T associations have been examined in enough detail to pro-
duce age histograms, and even these results are bound to change as observations improve. Nev-
ertheless, the pattern shown in our two examples appears to be quite general. It is especially
noteworthy that none of the systems is older than about 5 × 106 yr. That is, any star formation
prior to that time is sporadic and at a low level compared to its current rate. If this feature also
continues to hold, then the maximum inferred age should be a measure of the actual lifetime for
such groups.
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12.4.4 Demise of T Associations

What becomes of older T associations? Note that most of their individual members have con-
traction lifetimes well in excess of 107 yr. A commonly formed 0.3 M� star, for example, takes
2 × 108 yr to reach the main sequence. On a purely statistical basis, it would seem that objects
near this age should outnumber the younger ones actually seen. The scarcity of this older pop-
ulation within T associations is known historically as the post-T Tauri problem. However, the
issue ceases to be problematic if the groups themselves disperse at an earlier epoch. Once this
occurs, the aging pre-main-sequence stars are mingled observationally with the general field
and become much harder to identify.

The projected stellar density of associations does not greatly exceed that of the background.
Hence, the group’s physical size need only increase by a modest factor before it effectively
loses its identity. Accompanying the expansion is dissipation of the parent cloud’s gas. Indeed,
the two phenomena are causally linked. To see this qualitatively, consider the total energy of a
spherical cloud with mass M and radius R. The cloud is composed of both gas and embedded
stars, where the latter comprise a minor fraction of the total mass. We write the energy as the
sum of its kinetic and gravitational potential components:

E =
1
2

M V 2 − η G M2

R
(12.34a)

= −η G M2

2 R
. (12.34b)

Here, V is an average random velocity of the gas and stars, while η is a nondimensional factor
of order unity, whose precise value depends on the distribution of mass. In this highly simpli-
fied model, we take the cloud to be wholly supported by the effective pressure from internal
motion, neglecting both the thermal energy and that associated with a static magnetic field.
Equation (12.34b) then follows by application of the virial theorem.

Suppose now that a small amount of gas is removed from the cloud. During this brief
interval, we assume that neither V nor R changes. However, the energy of the remaining con-
figuration is altered, and both V and R must secularly readjust to maintain force balance. Dif-
ferentiation of (12.34a) yields

dE

dM
=

1
2

V 2 − 2 η G M

R

=
3 E

M
,

(12.35)

where we have again employed the virial theorem result. Using subscripts to denote initial
values, we integrate and find that

E

E◦
=

(
M

M◦

)3

. (12.36)

From equation (12.34b), we finally obtain

R

R◦
=

M◦
M

. (12.37)
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As M falls below M◦, equation (12.37) tells us that the radius continually grows. This
expansion results from weakening of the gravitational binding that the gas provides. From
equation (12.34a), the diminution of M both lowers the kinetic energy and raises the (negative)
potential energy. Since the latter varies quadratically with mass, the net result is that E rises
toward zero, as may also be seen from equation (12.36). Of course, the system mass cannot
truly vanish, since it eventually reaches that of the stellar component. By this point, the stars are
so weakly bound that they are easily dispersed by such external forces as the tidal gravity from
nearby clouds.

The system’s gain in energy stems from whatever agent dispels the gas. Here we touch
upon another critical, but poorly understood, aspect of the picture. It has long been supposed
that the stars within the complex are responsible for its dissolution, presumably through their
strong winds. We will see in Chapter 13 how these winds are collimated into narrow jets,
which in turn stir up ambient gas to produce molecular outflows. In some complexes, such as
NGC 1333 in Perseus, there are an impressive number of jets permeating the region. Other
systems, such as Taurus-Auriga, appear comparatively quiescent, at least in terms of their gross
morphology. Recall, in this latter example, that the molecular gas totals some 104 M�, two
orders of magnitude above the stellar contribution. Individual stars producing outflows only do
so for a period of 105 yr, after which they are replaced by a comparable, new population. Can
this relatively small number of objects disperse the entire complex within a few million years?

The alternative would be an external means of gas dispersal. The cloud morphology again
rules out destruction by the even stronger winds from nearby massive stars. Another possibility
is dissipation through the radiative heating from these same objects. Such photoevaporation
indeed may occur, but only in a cloud that is within several parsecs of the massive star in
question, so that it becomes engulfed in the spreading HII region (Chapter 15). Few, if any of
the parent clouds of T associations are in this situation. More generally, any proposal involving
external heating must face the issue of why the cloud did not evaporate before stars began
forming.

We surmised earlier that the cloud first undergoes quasi-static contraction, both to produce
dense cores initially and to create the subsequent accelerated pace of star formation. This con-
traction results from an energy decrease that we attributed to internal dissipation. Gas dispersal,
whatever its underlying cause, effectively increases the system’s energy. In reality, both effects
occur simultaneously. We may picture the cloud slowly contracting and producing stars, all
the while losing mass to the surrounding medium. Eventually, its mass falls to the point where
contraction ceases. The increasingly rarefied cloud then expands outward until its stars disperse
into the field.

Essential to this picture is our assumption that the total stellar mass is small relative to that
of the gas. If this were not the case, i. e., if the star formation efficiency were high, the cloud
could not re-expand significantly through gas dissipation. As we have mentioned, the clouds
producing T associations appear to do so with roughly 1 percent efficiency. Note also that a
typical dense core of perhaps 3 M� generally creates a star or binary with total mass about 0.1
times that value. Since the ensemble of cores comprises some 10 percent of the parent cloud
mass, our global estimate of the mass fraction is reasonable. On even larger scales, one may
compare the extrapolated masses of OB associations with those of their parent clouds. This
exercise also leads to fractions at the 1 percent level. The two types of associations provide a
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comparable total mass throughout the Galaxy, with T associations being less massive individu-
ally but more common. Our representative efficiency is therefore basic, empirical input for any
general theoretical account of stellar groups.

12.4.5 Open Clusters

Let us now turn to open clusters and see if their origin may be understood through application
and extension of the ideas presented thus far. Note first that most cluster members lie on, or
very close to, the main sequence, so that construction of age histograms is not feasible. In
addition, the present-day morphology of these systems gives little indication of their mode of
production. Recall that the Pleiades, for example, consists of a tight core of relatively massive
stars, surrounded by a distended halo of lighter members. This structure is a manifestation of
dynamical relaxation, which has had ample time to operate even in this system of age 108 yr.
The massive stars have gradually transferred energy, via repeated gravitational encounters, to
lower-mass members, thereby sinking toward the center while inflating the halo. Moreover, the
lightest stars are continually stripped away by the tidal gravitational force from the Galaxy as
the outer region expands.

We might also hope to learn the circumstances of open cluster birth by probing even younger,
embedded groups that seemed destined to be gravitationally bound. The most well known ex-
ample is the cluster in ρ Ophiuchi. Here the very density of the cloud material frustrates attempts
to study its internal structure. Thus, the conventional technique for measuring gas column den-
sity is to utilize an optically thin tracer such as 12C18O. The detection equation (6.1) requires
specification of Tex, which is generally obtained using the optically thick 12C16O (recall equa-
tion (6.3)). Unfortunately, profiles of 12C16O are self-reversed, showing that much of the radi-
ation emanates from a relatively cold, exterior sheath. As a result, both the measured Tex and
the resulting column density are only lower bounds. A more promising tool is the millimeter
continuum emission from warmed dust. Observers have already used this technique to map a
number of dense cores in the region.

Our analysis of the ρ Ophiuchi luminosity function indicated an age of 1 × 106 yr. Within
this period, more stars have been produced than in the entire Taurus-Auriga complex. If this
example is typical, the parent clouds of bound clusters form stars at a relatively high rate. We
may suppose, therefore, that these structures contract more rapidly, though still in quasi-static
fashion. If we further assume that star formation begins at a characteristic density in all clouds,
then faster contraction could reflect a higher initial mass. A more massive cloud presumably
has more vigorous internal motions and thus an elevated degree of dissipation.

As before, we expect that cloud contraction, star formation, and gas dispersal all proceed
simultaneously. The decline in cloud mass is now unable to reverse the contraction, but does
manage to slow it down and prevent runaway growth. Thus, by the time most gas has vanished,
the structure is more compact than initially, but not by a huge factor. The requisite time is
typically several million years, i. e., greater than the inferred ρ Ophiuchi age, but less than the
lifetime of OB associations. Over a much longer interval, the system of stars relaxes dynami-
cally to form the more expansive open clusters seen today.

Furnished with this picture, we begin to see why open clusters are a distinct minority among
stellar groups. In parent clouds of relatively low mass, gas dissipation is the dominant effect.
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That is, contraction occurs initially, but is slow enough to be eventually reversed. In massive
clouds, on the other hand, self-gravity is the strongest influence, and the contraction quickly
accelerates. We shall argue shortly that this circumstance leads, somewhat paradoxically, to
expanding OB associations. Only parent clouds within some intermediate range are able to
contract and lose mass at roughly the same rate, so that they evolve to gravitationally bound
stellar groups.

12.5 Massive Stars and Their Associations

We finally consider the origin of groups containing high-mass stars. As our starting point, we
recall the central fact that nearly all OB associations are found near giant molecular complexes,
which we may take to be their birthplaces. Systems containing high-mass stars therefore emerge
from the greatest aggregates of diffuse material. Looking to even younger environments, it is
also true that embedded clusters with more luminous infrared sources are generally located
within larger and denser molecular clouds. If we are to place OB associations within the family
that includes bound clusters and T associations, then each system must result from the contrac-
tion of an especially massive cloud clump.

12.5.1 The Highest Stellar Masses

How any individual O or B star forms is another matter entirely. We stressed in Chapter 11 the
difficulty extending traditional protostar theory to this regime. In addition, observations have
yet to provide convincing analogues to dense cores, i. e., relatively quiescent structures that
appear destined to form massive stars. Recall that the typical core does not have sufficient gas
to form even a B2 star of 10 M�. We will study in Chapter 15 the entities known as hot cores.
As their name implies, these already contain luminous stars, which are rapidly destroying their
host structures through the combined effects of radiative heating and winds. Younger, more
pristine bodies of the appropriate mass are not yet evident and indeed may not exist.

An especially important characteristic of massive stars is their tendency to form in crowded
environments. Extreme cases have already been noted. The cluster associated with the Trapez-
ium in Orion is among the densest in the Galaxy. Starburst regions in other galaxies harbor
many more O stars and have even greater stellar densities. If the highest-mass stars do not
form through the collapse of isolated, quiescent structures, then this empirical trend may be
of critical significance. Specifically, the stars in question might require high densities to form.
They might even arise, as we will suggest, from the coalescence of previously formed cluster
members. Whether or not this is true, the observations do indicate a more intimate relationship
between the stars and their groups than for low-mass objects.

How massive are the stars within OB associations, and how is such information obtained?
Chapter 4 covered the technique of spectroscopic parallax, which has established distances to
many of these groups. For any star not in a binary, this is the first step toward a mass mea-
surement, since it allows one to convert the object’s apparent magnitude (typically mV ) to an
absolute one. Hence one also obtains the total luminosity, given a reliable bolometric correc-
tion. One could then, at least in principle, derive Teff from a broadband color index. For massive
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stars, however, standard indices such as B − V change little with spectral type and are thus un-
reliable as temperature indicators. The practice instead is to fit a theoretical model of the stellar
atmosphere to the observed narrowband spectrum. Such models contain two free parameters:
Teff and the specific gravity g ≡ GM∗/R2

∗. The star’s mass may then be read off from its posi-
tion within the main sequence in the Lbol−Teff plane. Alternatively, one determines R∗ through
the blackbody relation between Lbol and Teff , equation (1.5). The M∗-value follows by using
the best-fit determination of g from the atmosphere model.

This basic method has revealed extraordinarily high O-star masses, for surveys that cover
sufficiently large volumes. Closest at hand is the complex of associations in Orion. Its most
massive objects reside in the 1b subgroup, with ζ Ori topping the list at 49 M�. In contrast,
the brightest star in the Trapezium is θ1 Ori C, an O6 object of 33 M�. The very high density
in the surrounding Orion Nebula Cluster is rivaled or surpassed in NGC 3603, an HII region
in the Carina spiral arm, at a distance of 7 kpc (Plate 7). Here one finds six stars of roughly
50 M� within a volume less than 0.03 pc−3. The clusters Tr 14 and Tr 16, some 3 kpc distant,
each contain stars classified as O3, with M∗ � 100 M�. Even higher masses are indicated for
a number of objects within the R136 region of 30 Doradus, in the Large Magellanic Cloud
(Plate 8).

12.5.2 Clustering Systematics

An O3 star has a bolometric luminosity of 106 L� and drives a wind with a velocity of several
thousand km s−1. Given its ability to repel ambient material both thermally and mechanically,
such an object may only be able to form through some rapid accumulation event. We have hinted
that the key factor in any emerging theoretical picture will be the density of ambient material,
whether in gas or stars. It is thus important to quantify, as much as possible, the clustering
tendency of massive objects.

One fruitful approach to this question is to examine how often young stars in a given mass
range are surrounded by other objects in close proximity. For O stars, the answer is that most lie
near the centers of associations or dense clusters. Apparent exceptions to this rule are the rela-
tively isolated objects in the field, which, we recall, constitute about 25 percent of the massive
star population. (Many of these, however, could be runaways.) At the other extreme are T Tauri
stars. Here, an individual object may be part of a loose aggregate of similar stars, as we found
in Taurus-Auriga (Figure 4.8). There is no tendency, however, for the star in question to reside
near the density peak of a crowded, and perhaps gravitationally bound, system.

The transition between these two cases must be at some intermediate mass value. Many Her-
big Be stars are situated within groups of several dozen partially embedded objects. Here, we
remember the example of BD+40◦4124 from Chapter 4 (Plate 5). A correlation exists between
the mass of the central Be star and the number of lower-luminosity neighbors. There is even a
rather well defined breakpoint. Thus, Herbig Ae stars are never accompanied by conspicuous
groups. Conversely, rich clusters with stellar densities exceeding 103 pc−3 only appear around
stars earlier than B5, corresponding to a mass near 6 M�.

Could this trend represent an evolutionary effect? The typical Herbig Ae star is at least
several million years old, so the absence of clustering might conceivably reflect prior dispersal.
Indeed, numerical experiments show that groups of modest population disintegrate within a few
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Figure 12.27 Depiction of the Orion Nebula Cluster in molecular gas (left panel) and stars (right
panel). The gas column density is shown as contours of 13C16O, while the stars are represented
by a smoothed surface density. Both maps are centered on the star θ1 Ori C.

crossing times. This is another example of dynamical relaxation, in which the most massive
objects transfer enough energy to lighter members to actually unbind them. The observational
studies, however, find no correlation between the age of a star and the presence of a cluster –
only the mass seems to count.

12.5.3 Orion Revisited

The reason dynamical relaxation does not play a significant role in these systems is the presence
of a sizable quantity of gas. This material can exert a gravitational force on any star comparable
to or greater than that from the other cluster members. More generally, it is the internal cloud
structure which largely sets the distribution of a young stellar population, including those with
massive objects. This important point is well illustrated by the Orion Nebula Cluster. The
left panel of Figure 12.27 shows the ridge-like distribution of molecular gas, as seen through
contours of 13C16O. Here the map covers a region about 4 pc across and is centered on the star
θ1 Ori C. The same area is depicted in the right panel, but now through the surface density of
stars. The isodensity contours are clearly not spherical, as one would have expected for a swarm
of point masses. Moreover, the nested shapes are generally oriented along the molecular ridge.
Notice finally how θ1 Ori C lies at the geometrical center of the stellar system.

It is not easy to discern the properties of individual stars in such a crowded region. Neverthe-
less, observers have managed to assign luminosities to over half of the cluster’s 1600 optically
visible members. The values of L∗ are not directly integrated from fluxes, but rely on a bolomet-
ric correction to I-band observations. Figure 12.28 displays the resulting luminosity function.
Also shown is the theoretical determination for Φ∗ using the statistical method outlined earlier.
For the best-fit cluster age of 2×106 yr, the two curves match over a broad range of luminosity,
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Figure 12.28 Bolometric luminosity function of the Orion Nebula Cluster. The lighter curve is
the theoretical prediction for the indicated cluster age.

but depart for L∗ � 0.1 L�. The falloff in the empirical function again reflects incompleteness
of the survey.

As in the case of ρ Ophiuchi, which has a similar age, the vast majority of cluster members
are predicted by the theory to be contracting pre-main-sequence stars of relatively low mass.
Indeed, additional observations we will discuss shortly confirm that the stellar mass distribution
is similar to the field-star IMF. (This result was assumed, of course, in the theoretical model
for Φ∗.) As a matter of pure statistics, the cluster may be said to contain massive stars simply
because its total population is large enough for the tail of the distribution to be represented. We
stress, however, that such a viewpoint does not aid us in understanding the physical manner by
which such objects form.

The stars indicated in Figure 12.28 are sufficiently revealed to allow study of their nar-
rowband spectra at visual wavelengths. Thus, one may determine spectral types and effective
temperatures for this large population, and place the stars in the usual HR diagram. We show
the result as Figure 12.29. It is evident that the cluster membership spans over two orders of
magnitude in stellar mass, from objects close to brown dwarfs up to O stars. Note the apparent
displacement of the latter from the ZAMS. The offset here is not real, but reflects inaccuracy of
the assigned Teff -values in this regime.

One striking feature of the diagram is the extreme crowding at lower masses. Tallying up all
the stars in the various mass bins confirms that the total distribution roughly follows the IMF.
Of even greater interest are the stellar ages, obtained once more from theoretical isochrones.
Figure 12.30 shows the age histogram for the cluster. Although the numbers involved are much
greater than before, the pattern is a familiar one. The system displays a relatively low level of
star formation activity 107 yr in the past, a gradual acceleration, and finally a steep rise toward
the present epoch. It is now clear that the system “age” of 2×106 yr obtained from the luminos-
ity function is simply a crude measure of the interval covering the most active formation. Thus,
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Figure 12.29 HR diagram of the Orion Nebula Cluster. The birthline, ZAMS, and selected pre-
main-sequence tracks are also shown. Stellar masses for the tracks are given in solar units.

the birthrate function C(t) employed in the statistical model should more properly increase with
time.

The resemblance of Figure 12.30 to our other histograms actually hides an important differ-
ence. Consider again the rather remarkable fact that hundreds of stars close to the Trapezium
are optically visible, despite the extraordinary density of the region. From an observational
view, the extinction AV actually declines as we approach to within a few parsecs of the cluster’s
center. The relatively low density in gas means that there are few, if any, deeply embedded stars,
such as Class I sources. Thus, star formation is no longer occurring. That the age histogram
does not show a corresponding decline is simply a reflection of its limited temporal resolution.
Apparently, the falloff has happened within the last 106 yr.

It is the Trapezium O stars that are responsible for this turn of events. Ram pressure from
their winds, along with ionization and heating from ultraviolet photons, have evacuated the
gas in a rapidly expanding volume. Infrared observations show that vigorous star formation
is continuing in the molecular gas behind the visible cluster. However, production has largely
ceased within the foreground volume. Generalizing from Orion, the creation of objects which
effect such a rapid clearing is clearly a pivotal event in the life of a stellar group.
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Figure 12.30 Age histogram of the Orion Neb-
ula Cluster.

The rise of star formation prior to gas dispersal again indicates that the parent cloud has
undergone bulk contraction, presumably through turbulent dissipation of its wave support. This
contraction proceeds to higher densities than for the lower-mass clouds forming T associations
or open clusters. At any time, moreover, the greatest density is found toward the central region.
In our example of Orion, more detailed study reveals the presence of mass segregation, at least
for stars with M∗ � 5 M�. Numerical N -body simulations confirm that the interior crowding of
higher-mass objects cannot be the result of dynamical relaxation, which takes longer to act than
a few million years. These calculations are highly simplified, as they include no background
gas at all. Nevertheless, their essential conclusion seems unavoidable. The massive stars did not
drift to their present locations, but must have formed in situ.

12.5.4 Birth of OB Associations

Creation of the O stars themselves may therefore be viewed as an event triggered by the at-
tainment of some threshold in the central density. Gas dispersal then leads to expansion of the
system through the loss of gravitational binding. It is instructive to view this process through our
highly simplified model of a spherical cloud supported by turbulent motion. The new feature is
that the dispersion now occurs rapidly compared to the system’s dynamical time scale.

Consider again the cloud’s total energy. Equation (12.34) still holds for the initial value
E◦, if we also append subscripts to M , V , and R. As before, we assume that the latter two
quantities are unable to change during the brief dispersal event. In place of (12.35), however,
we must account for a finite change of mass, ∆M . The energy still increases, and its new
value is

E =
1
2

(M◦ + ∆M) V 2
◦ − η G (M◦ + ∆M)2

R◦

= E◦ +
1
2

∆M V 2
◦ − 2 η G M◦ ∆M

R◦
− η G ∆M2

R◦
.
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Employing equation (12.34) for both E◦ and V◦, we find

E = −η G M2
◦

2 R◦
− 3 η G M◦ ∆M

2 R◦
− η G ∆M2

R◦
(12.38a)

= E◦

(
1 +

∆M

M◦

) (
1 +

2 ∆M

M◦

)
. (12.38b)

The presence of the first factor after E◦ simply indicates that the energy goes to zero if all the
mass were to vanish. (Recall that ∆M < 0.) More interesting is the second factor, which tells
us that E is positive when |∆M | > M◦/2. The system thus becomes gravitationally unbound
if over half its mass disperses rapidly. Under the previous hypothesis of slow dispersal, the
sphere would have remained bound, but doubled in size, under the same net mass loss (recall
equation (12.37)).

To assess the change of radius in the present case, we again invoke mechanical equilibrium
following the dispersal event. Utilizing the virial theorem, as in equation (12.34b), we find that
the energy is proportional to the new value of M2/R, so that

E

E◦
=

(1 + ∆M/M◦)2

R/R◦
. (12.39)

Combining equations (12.38b) and (12.39), we readily find that

R

R◦
=

M◦ + ∆M

M◦ + 2 ∆M
. (12.40)

This relation confirms that the sphere again expands as a result of dissipation. Moreover, the
loss of half the mass leads to the marginally bound state of infinite radius, as expected.

We noted earlier that the global efficiency throughout the Galaxy of converting molecular
gas into stars is only a few percent by mass. We further argued that this figure represents
a plausible estimate for most individual clouds forming stellar groups. Thus, when O stars
rid a system of its gas, the fractional decline in M must generally exceed 50 percent. The
configuration is then left with positive net energy. It expands into space as an OB association,
gradually fading from view over the nuclear lifetime of its luminous members.

The gas dispersal we have invoked depends solely on the massive star content of the parent
cloud. We have ignored the wholly different mechanism operating on those clouds that spawn T
associations and bound clusters. This other form of gas erosion, which may stem from the low-
mass stars, must still be at work, but it has less effect over the shorter contraction period. Here,
we return to our central assumption that more massive parent clouds are subject to enhanced
turbulent dissipation. Faster evolution to a denser central region is the logical extension of our
general picture. The irony is that this circumstance soon leads to unbound, expanding stellar
systems.

But is this indeed the fate of every group containing massive stars? In Chapter 4, we called
attention to the ill-defined boundary between young open clusters and OB associations. There
are certainly observed systems containing massive stars that have a high spatial density. In-
deed, the Orion Nebula Cluster is a prime example. Only accurate measurement of the stars’
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velocity dispersion can answer the question of whether any of these groups are actually bound.
Conversely, some low-mass systems already known to be bound, and residing within OB asso-
ciations, may be remnants of incomplete dispersion. One example might be the α Per cluster
within the Cas-Tau association (Figure 4.14).

12.5.5 Merging Cores and Stars

Let us conclude with some brief remarks on the actual dynamics of massive star formation. The
challenge, once again, is to assemble the star so quickly that it has no opportunity to drive back
its own reservoir of cloud matter. In the language of traditional protostar theory, we require that
the mass accretion rate Ṁ be at least several orders of magnitude above the values appropriate
for the low-mass regime. Equation (10.31) tells us, however, that the sole means to achieve this
is to have a higher sound speed, and thus temperature, in the dense core prior to its collapse.
For example, an Ṁ exceeding 10−4 M� yr−1 would require T � 150 K. Such temperatures
are indeed measured observationally, but only in cloud material being heated by one or more
luminous stars, such as the hot cores already mentioned. This difficulty forces us to consider
alternatives to the standard picture.

The environment from which massive objects arise is already packed with both stars and gas.
Since low-mass star formation is highly active during this time, the gas component includes
numerous dense cores. Global contraction of the background medium implies that the cores
themselves become increasingly crowded. It is therefore plausible that these entities begin to
touch and merge. Any such event does increase the mass of a given dense core. The new object,
however, will face the same problem as before in forming a massive star through collapse. A
promising alternative is that the merging entities are dense cores already containing stars, which
themselves coalesce after their cores have joined. In this manner, we may avoid a prolonged
buildup to stellar densities.

The stars in question are likely to be of low mass. They may either be accreting protostars, or
else very young pre-main-sequence objects still retaining their mantles of molecular gas. Once
two dense cores begin to join, the stars (and any attendant disks) will fall toward each other
under the influence of their mutual gravity. This picture is reminiscent of our earlier description
of close binary formation. In both cases, the stars should enter a highly elliptical orbit that
decays through transfer of energy and angular momentum. The greater core mass in the present
case should exert more dynamical influence and allow true coalescence of the spiraling stars,
rather than formation of a close binary.

Judging from the data on clustering and mass segregation, such an initial merger may pro-
duce stars with M∗ � 5 M�. These intermediate-mass objects, in turn, combine to yield early-B
and O-type objects. The very highest stellar masses would then arise through a rapid cascade
of merging events near the very center of the parent cloud. Whether or not the process con-
tinues to such a point, this innermost region should contain a large proportion of intermediate
and high-mass objects. Such also is the indication from the runaway stars that have left the
area. (Again recall our discussion at the end of § 4.3.) In addition, some spiraling, massive stars
do not complete their merger, but remain in tight orbits. Thus we may account for the doubly
massive binaries observed with some frequency.
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Turning this rough, and admittedly speculative, account into a bona fide theory will require a
great deal of effort and ingenuity. A number of investigations have already attacked the problem
of cloud merger, generally through SPH simulations. Studies of binary orbital decay are also
of relevance. However, the most fruitful approach, at least for the near future, may be to focus
on observational consequences of the picture. One would expect, for example, to find a rise
in binary frequency toward the centers of forming clusters. Finally, the youngest massive stars
may exhibit anomalous spectral or photometric features. These could be a signature of their
unique origin.

Chapter Summary

A hypothetical cloud in which self-gravity overwhelms pressure support collapses promptly,
breaking apart in the process. The specifics of this dynamical fragmentation are sensitive to ini-
tial conditions. Thus, a massive rotating sphere forms a ring-like configuration before breakup,
while an elongated cloud first narrows to a spindle. In all cases, pressure is much more important
in the daughter fragments, which therefore do not collapse in the same way.

Turning from theory to observation, most mature stars have orbiting companions. The sta-
tistical mass distribution of each component within a binary resembles that of field stars. Pre-
main-sequence stars have at least as high a fraction of binaries. The prevalence of circular orbits
in tighter systems demonstrates that the two stars interact tidally as they contract. Some visible
young objects have infrared companions, but double infrared sources, the likely precursors to
binaries in general, are still rare.

The components within a pre-main-sequence binary have similar ages and probably form
within a single dense core. Since this cloud is nearly in force balance prior to collapse, it is not
susceptible to dynamical breakup. A more likely, but still qualitative, scenario is quasi-static
fragmentation, in which the cloud gradually forms two condensations that individually collapse
to protostars. Once formed, these stars are initially surrounded by remnant material, including
disks, that absorb energy and angular momentum from the system, driving it into a tighter orbit.

The existence of starless clumps within giant complexes argues that such clumps also evolve
quasi-statically before producing stellar clusters. Even without access to the details of this
process, one may predict the evolution of a cluster’s luminosity function. Observations generally
agree with this prediction, but also indicate that the rate of star formation accelerates in real
clusters and associations. As the gas in an aging T association begins to dissipate, presumably
through stellar outflows, the entire structure expands into space. A bound cluster may result
when the parent cloud is more massive, so that it contracts even while losing gas. If the cloud is
more massive still, the deeper contraction could lead to O and B stars arising from the merger
of dense cores and previously formed stars. Once a few high-mass objects form, they quickly
disperse the parent cloud, leading to free expansion of the stellar group.
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13 Jets and Molecular Outflows

We now begin a series of chapters describing how newly created stars disturb their surrounding
gas. The influence here is both mechanical and thermal. Cloud material is stirred into turbulent
motion, expelled from the vicinity of a star, or heated to high temperatures. For regions that are
either very dense or at a considerable distance, such activity may be the best, and indeed the
only, means for revealing the presence of the stars themselves. The physical processes we will
study are also of considerable interest in their own right.

One of the surprising discoveries in this field has been the disproportionate effect of low-
mass objects. In the present chapter, we shall see how each such star generates, during its
embedded phase, an energetic outflow extending well beyond its parent dense core. The star also
emits a jet of much higher-speed gas that can travel even farther, entering regions nearly devoid
of cloud material. These striking phenomena were wholly unanticipated by theorists, who are
still struggling to understand the basic mechanisms of wind generation and jet propagation. We
shall introduce the key concepts in both of these developing areas.

Jets are rendered visible by the shocks they produce. If the shocked gas has sufficiently
high density, it may also generate beams of radiation that are intensified through the quantum
phenomenon of stimulated emission. Such interstellar masers have been extensively studied,
both for their intrinsic properties and for what they reveal about the dynamics of the regions
producing them. Chapter 14 is accordingly devoted to this topic. Finally, we turn in Chapter 15
to the highly destructive effects of massive stars. Ionizing photons create HII regions that, along
with stellar winds, disrupt entire cloud complexes. The fluorescent gas also serves as a beacon
for star formation activity, both within our own Galaxy and in others far distant.

13.1 Jets from Embedded Stars

The emission-line surveys designed to locate T Tauri stars have, on occasion, yielded surprising
dividends. In this section, we examine energetic flows that were first discovered in this serendip-
itous manner. It took several more decades, and wholly new detectors, before the remarkable,
collimated nature of these stellar jets were appreciated. Observations by now have revealed very
fine structural detail, which is helping to unravel the remaining mysteries in this field.

13.1.1 Herbig-Haro Objects

Around 1950, G. Herbig and G. Haro independently noted the presence in Orion of two neb-
ulous patches bright in Hα. The two were located within the Orion A Molecular Cloud, close
to the HII region NGC 1999 (see Figure 1.3), an area already known to contain many T Tauri
stars. It was the unusual spectra of the patches that drew attention. In addition to Hα and the
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other Balmer lines, the objects emitted a broad continuum and a number of forbidden optical
transitions: [S II], [N II], and [Fe II], along with [O I], [O II], and even [O III]. The metastable
states giving rise to such lines are collisionally deexcited even at modest densities, so the radi-
ating medium was unlikely to be an interstellar cloud or clump. On the other hand, the presence
of neutral and singly ionized species ruled out an HII region, where the level of ionization is
uniformly high.

We recall from Chapter 8 that the layers just downstream from a strong shock comprise
a wide range of physical conditions, as gas cools from the ionized to the atomic, and then
the molecular state. It thus appeared that the newly discovered Herbig-Haro objects, of which
many more were later found, might arise from the impact of high-velocity stellar winds on
cloud matter. This hypothesis ultimately proved correct, but required another 25 years to verify,
first by comparison of the observed emission spectra with those of known shocks (supernova
remnants), and then through direct, numerical simulations. But what were the exciting stars?
With the advent of infrared astronomy in the 1970s, it became clear that the objects powering
the winds were not located within the original nebulae, but some distance away. By the early
1980s, sensitive CCD photometry had uncovered luminous strands of faint, optical emission
that linked the glowing patches to their driving stars. The Herbig-Haro objects themselves were
seen, in effect, to be tracers of these extended jets.

A modern image of the original HH 1/2 system from the Hubble Space Telescope encapsu-
lates many of these developments (see Plate 9 at the end of this chapter). This photograph is
actually a composite of three that were taken through a broadband red filter, and two narrowband
filters isolating the Hα line at 6563 Å and the doublet [S II]λλ 6716, 6731, respectively. We see
that the two Herbig-Haro objects are located on either side of their driving star VLA 1, invisible
optically but indicated here by the cross. The irregular outer boundaries of the nebulae, each
spanning some 103 AU, indeed resemble the bowshocks created when dense plugs of material
plough supersonically into a more diffuse medium. The broader of the two regions, HH 2, has
a more pronounced substructure. Apparently, the shockfronts are not progressing smoothly, but
are in the process of breaking up, either through some inherent instability, or as a result of the
clumpy nature of the background gas. Rapid evolution of the system is also indicated by its
temporal variability. The optical flux from one prominent HH 2 knot has changed by 3 mag
over a decade.

Little is known of the star VLA 1, which is deeply embedded in a slab-like molecular core.
First discovered through its centimeter radio emission, it was located by carefully tracing back
the proper motions of HH 1 and 2. These studies showed that the two shocked regions are
both retreating from VLA 1 at great speed, with tangential velocities of 350 km s−1. The radial
velocities of the objects, as indicated by Doppler shifts in their emission lines, are much smaller.
It follows, therefore, that the motion occurs nearly in the plane of the sky. Plate 9 shows a small,
reddened jet emanating from VLA 1 and pointing directly toward HH 1; this alignment confirms
the driving nature of the radio source. The less embedded Cohen-Schwartz star, situated about
midway between this jet and HH 1, is thought to be unrelated.

We see in the HH 1/2 system a highly obscured and therefore presumably very young star
creating a nearly symmetric pair of shocked regions. This bipolarity is a fundamental aspect
of the systems containing Herbig-Haro objects. It is evident, on the other hand, that HH 1 and
HH 2 have quite distinct morphologies. We may plausibly attribute such differences to spatial
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variation in the cloud environment over distances of order 0.1 pc. This detail should not distract
us from the central feature of the bipolarity itself, a phenomenon reflecting the nature of the
stellar jet that ultimately creates the emission.

Cloud matter in the vicinity of HH 1/2 has such a high column density that only the most
luminous, outer shocks are visible. Additionally, the relatively faint jet pointing toward HH 1
lacks a counterpart on the other side of VLA 1. In all such “monopolar” cases, Doppler shifts in
the emission lines show the visible portion of the jet to be blueshifted. This material is therefore
advancing toward us, away from the background, obscuring dust. The redshifted portion, which
is either fainter or wholly invisible optically, is retreating deeper into the molecular cloud.

13.1.2 Jet Dynamics and Morphology

Another interesting source from Orion is shown as Plate 10. Here we see the blueshifted portion
of the HH 111 jet. The driving star, located below the jet base, is an infrared object (Class I)
of about 25 L�, embedded within the L1617 cloud of Orion B. At the top, there is a broader
arc-like emission region that shares the bowshock appearance of HH 1 and 2. Connecting this
region to the star is a series of bright knots, some of which appear to be miniature bowshocks.
The average total width of the jet midsection is 0.′′8, or 370 AU at the distance of Orion.

Plate 10 actually depicts, through its color scheme, the spatial variation of the ratio of Hα
flux to that in [S II]. Because of the different energies required to produce the lines, this ratio
is a sensitive diagnostic of shock strength, at least for Vshock � 100 km s−1. Low values of
Hα/[S II] occur in relatively weak shocks. Here, either the incoming speed itself is lower, or
else material is entering a region that is already moving in the same direction, so that the relative
velocity is reduced. Conversely, Hα emission dominates in higher-speed impacts.

The dark blue and black areas of Plate 10 indicate Hα-bright regions. These occur near the
base of the jet, on the rim of each internal knot, and within the broad bowshock. Figure 13.1 also
depicts the variation in shock strength through two long-slit spectra. In one of these, we have
identified the main emission lines. The spectrum in the top panel was obtained by aligning the
slit with the jet’s bright midsection. We again see the overall dominance of the [S II] doublet to
Hα emission, the characteristic signature of weak shock excitation. Conversely, Hα is stronger
in the lower panel, where the slit crosses a wide bowshock occurring after the one in Plate 9.

While most jets are straight, as in this example, some exhibit strong curvature or display
other interesting features. Plate 11 illustrates the variations in morphology. Each photograph
includes only the blueshifted arm of the jet, although there are patches of fainter, redshifted
emission in every case. The driving stars are represented by crosses near the bottom. The
left panel again shows HH 111, now rendered as a composite image in Hα (green) and [S II]
(red). We see how the previously depicted portion of the jet leads eventually to an even broader
bowshock near the upper border of the frame; this is the structure whose spectrum is shown in
Figure 13.1. On either side of the bright midsection, the jet is extremely faint, and its internal
knots grow larger and more diffuse away from the star. In CCD images taken through filters that
exclude the emission lines, the midsection disappears, but a faint image of the top bowshock
remains.

The middle panel of Plate 11 shows the HH 46/47 system, located in the Gum Nebula, about
450 pc away. Here the driving star is only detectable in the infrared and at longer wavelengths,
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Figure 13.1 Two long-slit spectra of the HH 111 jet, with the main emission lines labeled. In the
upper frame, the slit covers the jet’s bright midsection, while the bottom frame corresponds to the
topmost bowshock visible in Plate 11.

and has an estimated luminosity of 15 L�. The bright, central knot (HH 47A) again has a
bowshock morphology, and emits strongly in the [S II] lines. Above it is a much wider and
fainter arc (HH 47D) that only appears here in Hα. The widening of successive bowshocks is
reminiscent of HH 111.

Closer to the star, a broad, parabolic sheath of emission (HH 46) surrounds the jet base. The
rather diffuse and featureless appearance of this region is typical of a reflection nebula. That is,
much of the observed flux is not generated locally at a shock, but originates from the star, and is
then scattered by dust toward the observer. This scattered emission from HH 46 alternately dims
and brightens over intervals of several years. Such variations must originate in the central star.
Quite generally, reflection nebulae in both the optical and near-infrared are common features
near jets, where they also show up as enhancements in linear polarization.
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Figure 13.2 Optical photograph of the HH 46/47 jet and its parent Bok globule. The image shows
emission in both [S II] and Hα. Note the multiple bowshocks in the brighter portion of the jet and
the small counter-jet to the right of the globule.

Both the reflection nebula and the HH 47D arc are again visible in Figure 13.2. This black
and white image, taken through a combination of [S II] and Hα filters, shows the location of the
system within the star’s parent Bok globule. We see how the blueshifted arm of the jet protrudes
beyond the cloud edge. Aligned with this structure, but on the other side of the globule, is
another isolated bowshock. This region marks the place where the receding, redshifted arm of
the jet erupts from the cloud. This striking photograph should also remind us that many young
stars not located near cloud edges may drive jets that are difficult to observe.

In the HH 34 jet, displayed as the right panel in Plate 11, the main body of the structure
is remarkably narrow. There is no discernible gap between this chain of knots and the driving
source, a faint, highly reddened star in the L1641 cloud of Orion A. The knots are also more
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tightly spaced than in the similarly spaced HH 111, while the terminal bowshock is the largest
of our three examples. The apex of this structure emits in the 5007 Å line of [O III]. Here, the
ionization state indicates a relatively high shock speed. The full pattern of emission lines is best
matched by an impact velocity of 120 km s−1, where this figure represents an average over the
curved surface. By comparison, the relative line strengths in HH 47D, in which no [O III] is
apparent, give a value closer to 70 km s−1.

The numerical modeling for HH 34 also yields a preshock number density of 65 cm−3,
well below that surrounding the star. At a shock speed of 120 km s−1, this preshock gas must
be significantly ionized by radiation generated from the front itself. (Recall the discussion of
§ 8.4.) The copious emission in Hα, indicated by the bowshock’s green color in Plate 11, stems
from recombination of the ionized hydrogen further downstream. In contrast, modeling of the
internal shocks associated with the main body of the jet indicates a much lower impact velocity,
typically 30 km s−1. The thin Hα rims seen in these weaker bowshocks stem from collisional
ionization of largely neutral hydrogen encountered by the jet. Finally, we note, from Plate 11,
that the terminal bowshock in HH 34 does contain isolated patches of [S II] emission. The
largest of these is thought to be the Mach disk for the system. This is a separate, lower-velocity
shock occurring behind the main front. Mach disks arise in all wind-driven shocks, and we shall
explore their origin presently.

13.1.3 Spectroscopy of Bowshocks

The spectra of HH 111 shown in Figure 13.1 are valuable for discerning the relative strengths
of emission lines and therefore the distribution of shock strengths. On the other hand, the
wavelength resolution of the observations is too low for studying directly the internal velocities.
Other instruments, such as echelle spectrometers, can provide much greater spectral resolution,
albeit with a more limited total wavelength coverage. Observers may thus examine in great
detail the features of individual lines.

A case in point is HH 32, a chain of knots driven by the T Tauri star AS 353A in Aquila. The
system is unusual in that the driving star is optically visible. Moreover, the brightest Herbig-
Haro object, designated HH 32A, is actually redshifted with respect to the stellar source. Fig-
ure 13.3 shows the Hα emission from this particular knot. Note that the telescope beam encom-
passes all of HH 32A, i. e., the spatial resolution of the observation is not especially high. All
of the emission occurs at positive radial velocity, so that the object is indeed retreating. The line
itself is extremely broad, with a total width of about 300 km s−1. The hydrogen emission occurs
in postshock gas with a temperature of roughly 104 K. The corresponding Doppler width, from
equation (E.26), is only 20 km s−1. Thus, the broadened profile indicates a range of supersonic
velocities in the emitting gas.

Another notable feature of the Hα profile is its double-peaked nature. Both this characteris-
tic and the large total width are neatly explained if the emission stems from a curved bowshock.
To see why, consider first an observer at rest with respect to the shock (Figure 13.4). Ambient
material flows to the right with speed Vshock. After a fluid element crosses the front, its paral-
lel velocity component V‖ is preserved, while the orthogonal component V⊥ drops by about a
factor of 4, according to equation (F.10). The Hα emission does not occur until the postshock
gas has cooled to 104 K. At this point, which is not far inside the bowshock, V⊥ has dropped
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Figure 13.3 Profile of Hα emission from HH 32A, a bowshock driven by the visible star AS 353A.
Radial velocity is relative to the star.

even further. The emitting gas thus has a speed close to V‖ and is nearly moving along the sides
of the curved shock front. Referring again to the figure, an element impacting at a distance �
from the axis is deflected by the angle θ.

Suppose now that the line of sight is straight down the central axis. Denote as V ′
r the radial

velocity of the emitting, postshock element, as detected by the observer. This speed is just the
axial projection of V‖, which is itself Vshock cos θ. Thus,

V ′
r = Vshock cos2 θ . (13.1)

The element in question is really part of an expanding, thin ring, whose current radius is �.
We need to sum the flux from all such rings to obtain the line profile. Those rings with largest
surface area contribute the most. That is, the line intensity is proportional to ∆A ≡ 2π�∆s.
Here, as may be seen in the figure, the arc length ∆s is given in terms of the ring width and
height by ∆s ≡ (∆z2 + ∆�2)1/2.

The geometric contribution to the line profile is thus

φbow =
dA
d V ′

r

=
2π�

Vshock

ds

d cos2 θ

=
π

Vshock

√
1 − cos2 θ

d�2

d cos2 θ
.

(13.2)

To obtain the last form, we have also used the relation dz/d� = cot θ.
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Figure 13.4 Upper panel: Deflection of jet ambient gas by a stationary bowshock. Only the
postshock velocity component V‖ is preserved. The bowshock arc is that described by equa-
tion (13.4). Lower panel: Theoretical emission profile for a line of sight down the jet axis. Here
the shock is retreating from the observer at speed Vshock. Note that the profile function vanishes
for Vr > Vshock.
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The first factor in equation (13.2) indicates that the intensity rises toward the wings of the
bowshock, as the corresponding surface area increases in any fixed interval of radial velocity.
Evaluation of the second factor requires knowledge of the specific bowshock shape. Both hy-
drodynamic simulations and laboratory studies find that the the derivative falls with increasing
obliquity, i. e., as cos2 θ increases. (The reader may verify that this property does not hold for
a parabola, but only for more flared curves.) A simple prescription that mimics the detailed
results reasonably well is

d�2

d cos2 θ
= �2

◦ exp(− cos2 θ) , (13.3)

where �◦ is some fiducial radius. To find the corresponding shape, we integrate this equation
and obtain

cos2 θ = − ln
(

1 − �2

�2◦

)
.

Further rearrangement gives

dz

d�
=

[ − ln(1 − �2/�2
◦)

1 + ln(1 − �2/�2◦)

]1/2

. (13.4)

The bowshock depicted in Figure 13.4 is actually the curve resulting from numerical integration
of this last equation. Substituting (13.3) into (13.2), we derive the line profile. To within a
multiplicative constant, this is

φbow =
1√

1 − (V ′
r/Vshock)2

exp[−(V ′
r/Vshock)2] . (13.5)

Let us now apply this result to the case of HH 32A. Here, the large values of radial velocity
indicate that the jet axis is indeed close to the line of sight. The proper reference frame, however,
is one in which the external medium is at rest, while the bowshock is retreating at speed Vshock.
Thus, the observed radial velocity is given by

Vr = Vshock − V ′
r . (13.6)

The bottom panel of Figure 13.4 shows the profile in equation (13.5) as a function of Vr. Note
that the calculated profile plunges to zero for Vr > Vshock, since V ′

r cannot be negative. Evi-
dently, our purely geometric considerations have captured the essential origin of the two max-
ima. The higher peak, as we already noted, stems from the increase of emitting area toward the
wings. The true emission does not diverge for small Vr, of course, but plunges to zero when
sin θ = aT /Vshock, i. e., when the impact velocity falls to the sound speed aT and the shock
itself dies away. The second, and much weaker, maximum represents material near the apex.
Rings here are of smaller area individually, but have very similar radial velocities (Vr ≈ Vshock).
An important factor we have omitted is the change in postshock emissivity with impact speed
V⊥. The latter is highest at the apex, but declines by intermediate values of Vr. Comparison
with Figure 13.3 indeed shows a pronounced dip in this region. Note finally that our predicted
total line width is Vshock itself, which may indeed be about 300 km s−1 for the present case.
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If we were instead to orient our observer perpendicular to the jet axis, the advancing and re-
treating elements of all rings would contribute equally to the emission. The three jets displayed
in Plate 11 all happen to lie nearly in the plane of the sky. Emission lines from their princi-
pal bowshocks, while still broad, are therefore more symmetric than those in HH 32A. On the
other hand, this face-on orientation does facilitate the measurement of bowshock proper motion.
Using background stars as a reference, the observer compares CCD images over a number of
years. The result is a snapshot of the system’s transverse velocities.

13.1.4 Motion of the Knots

What one actually observes through this technique is the proper motion of individual emission
knots. These are sites of shock excitation and may not follow the bulk motion of the underlying
fluid. The shocks could even be stationary, if they arose wherever the fluid encountered clumpy,
inert obstacles in its path. However, any such picture is ruled out by the observational studies,
which typically find proper motions of several hundred km s−1. These speeds, we shall see,
are comparable to those in stellar winds. It is at least plausible, then, that the knots are indeed
tracing the jet flow.

Returning to HH 46/47, one finds that the proper motion vectors lie along the jet’s sinuous
path. There is a gradual increase of speed from the base to the HH 47A bowshock, followed
by a sudden drop and then a further rise before HH 47D is reached. Interestingly, the radial
velocities, as obtained spectroscopically, exhibit a similar pattern. The latter are also systemati-
cally lower in magnitude, as one would expect in a nearly face-on orientation. Adding the two
velocity components in quadrature, we find that the full, three-dimensional velocity is changing
along the jet path. Thus, the alterations in radial motion are not simply a geometric effect, as
would arise from bending of the structure in and out of the plane of the sky.

The case of HH 34 reinforces this conclusion. Here, the jet is manifestly straight, so that any
change in projection angle should be minor. Yet the radial velocity steadily climbs outward. The
higher, tangential speeds have the same trend, reaching some 300 km s−1 at the main bowshock.
Figure 13.5 displays the proper motion vectors near the jet head. The isolated knots toward the
bottom are too faint to be seen in Plate 11, but have relatively high velocities, oriented nearly
along the main axis. Closer to the wide bowshock, there is evidently more scatter in both the
direction and magnitude of the vectors. The pattern becomes clear in the righthand panel, which
shows the same velocities in the frame of the jet, i. e., after subtracting off a vector representing
the mean, axial flow. With few exceptions, the knots are following the curved sides of the front,
just as predicted by theory.

The reader may have noticed a discrepancy between the very large space velocity for the
main HH 34 bowshock and the more modest shock speed deduced from the pattern of emission
lines. Counting the radial component, the former is 330 km s−1. The estimated shock speed at
the apex, corresponding to Vshock in Figure 13.4, is 140 km s−1, as gauged both from the relative
strengths of the lines and from the widths of their profiles. The difference is even greater for the
jets’ internal knots. These also have spatial velocities of several hundred km s−1, but values of
Vshock lower by an order of magnitude.

Such reduced impact speeds mean that the shocks within HH 34 are not traveling into a
stationary medium, but one already moving in the same direction. The shocks arise when a
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Figure 13.5 Observed proper motion vectors near the main bowshock of the HH 34 jet (HH 34S).
In the jet frame (right side), the vectors lie nearly along the bowshock surface.

fluid element overtakes one ahead of it with smaller velocity. Apparently, the fractional velocity
difference is only of order 10 percent in the main body of the jet. Such relatively weak shocks
travel nearly at the sound speed in the fluid’s rest frame. Since the bulk speed is highly super-
sonic, the knots indeed closely trace the jet’s velocity. The change in velocity is much greater at
the large bowshock, where the medium has a speed of 330 − 140 = 190 km s−1. As we shall
discuss later, the spatial motion of the front in this situation depends on the density contrast
between the pre- and postshock gas.

To summarize, a picture in which the velocity changes along the jet path fits well with both
proper motion and radial velocity data. Most systems, including HH 46/47 and HH 111, display
anomalously low shock speeds and so may be understood within this framework. (One notable
exception is HH 32, where we have seen that Vshock is 300 km s−1 for the brightest knot.) What,
then, is the cause of these velocity changes? Do they originate from interaction of the flow with
the cloud material outside it? Or are they inherited from temporal variations in the driving star
itself?

Although theorists have offered a variety of calculations addressing this issue, the observa-
tions themselves provide a convincing answer. Figure 13.6 is a near-infrared image of HH 212,
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Figure 13.6 Near-infrared (K-band) image of the HH 212 jet. Note the mirror symmetry dis-
played by the innermost knots.

a jet system in the L1630 region of Orion B. The large, terminal bowshocks, separated by 0.6 pc,
resemble those of HH 1/2. As in that case, the morphological difference between the two fronts
reflects their propagation through cloud environments that vary on this length scale. A key
distinction from HH 1/2, however, is the presence of a tight sequence of knots closer to the
invisible, central star. These structures are remarkable for their high degree of symmetry. On
either side of the central star, the chain is irregularly spaced, but essentially the mirror image
of the other. The only plausible explanation for this circumstance is that both sequences were
created by the driving star in an identical manner. Thus, the knots must arise from velocity (or,
more generally, momentum) fluctuations in the underlying stellar wind.

We see that the internal structure of a jet provides a record of the wind activity powering it.
Let us return to the example of HH 111. Plate 10 shows that the main body of the jet contains
knots spaced quasi-periodically. Here, the typical separation is 3000 AU. For an average, mea-
sured space velocity of 300 km s−1, the low-amplitude fluctuations creating these shocks must
recur over an interval of 40 yr. Notice that several of the individual arcs are directed off the
main axis. The implication is that the stellar wind altered its direction slightly while its velocity
was changing. The large bowshock terminating the main jet is 0.1 pc from the infrared source.
This structure was created during a larger velocity increase some 300 yr in the past. Finally, the
even wider arc seen in Plate 11 is 0.3 pc from the star, and moving at 400 km s−1. The event
creating it must have occurred 500 yr before that forming the main bowshock in Plate 10.

The emerging picture is that the anisotropic winds powering jets undergo relatively minor
variations in both speed and direction on a time scale measured in decades. Averaging over these
short-term fluctuations, the velocity still rises or falls systematically, changing in amplitude by
roughly a factor of two over a period of order 103 yr. Note that the sharp discontinuities in speed
across the present-day bowshocks need not have been present in the material actually leaving
the star. Even smooth changes in the highly supersonic wind velocity would steepen naturally
in the course of propagation.

13.1.5 Giant Flows

The examples shown in Plate 11 make it clear that the smaller, internal knots fade relatively
quickly, i. e., over a few centuries. Larger bowshocks, on the other hand, are remarkably per-
sistent and can be seen a considerable distance from the driving star. Beginning in the early
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1990s, observers availed themselves of CCD detectors covering relatively large fields of view,
approaching 1◦ on a side. The resulting images have revealed chains of Herbig-Haro knots that
extend for several parsecs beyond the brighter, more continuous portions of the jets we have
examined thus far. These giant flows trace the stellar wind history over much greater periods of
time.

Figure 13.7 displays the complex of Herbig-Haro objects associated with the HH 34 jet.
Toward the center of this optical photograph is the embedded driving star, HH 34/IRS. The
short segment protruding from the star toward the south is the jet shown in Plate 11. We see
again how the jet leads, after a break, to the “terminal” bowshock, here labeled HH 34S. Directly
opposite the star is an analogous, but fainter structure, HH 34N, created by the invisible counter-
jet. These bowshocks constitute only the innermost pair in a long sequence, ending with HH 88
to the north and the southern HH 33.

The remarkable alignment of the emission knots, stretching over 3 pc, makes it clear that
they are physically related. Velocity measurements confirm the connection. Spectra of the
northern objects reveal that they are all redshifted, while the southern knots are blueshifted. The
same measurements also demonstrate, incidentally, that such features as the large arc north of
HH 34/IRS are not part of the system. Proper motion studies find that each bowshock in the
chain is moving away from the star in the expected direction.

Mapping of the region in CO indicates that the ends of the flow project into regions largely
devoid of molecular gas. What, then, creates the shocks themselves? As before, the answer is
that the shocks arise when gas overtakes slower jet material ahead of it. It is interesting that the
radial velocities associated with these shocks decline systematically away from the star. The
falloff is nearly identical on the two sides and amounts to a factor of three from the central star
to the final knot.

Other patterns are also noteworthy. The linear size of each Herbig-Haro object increases
outward. It may be that the jet is unconfined laterally, so that shocks are spreading out in a
purely ballistic manner. Additionally, structures close to the driving star exhibit the character-
istic bowshock morphology: a well-defined apex pointing along the main flow and wings that
sweep back toward the star. Farther out, the emission regions lose their bowshock appearance
and become more complex, with numerous internal subcondensations and filaments.

These characteristics are all seen, with more or less clarity, in the several dozen giant flows
discovered thus far. Some jets protrude into regions so evacuated that external galaxies may be
seen in proximity. The HH 34 flow in Figure 13.7 has an S-shaped configuration, a feature that
is also common. In these cases, it is apparent that the bipolar jet leaving the star has undergone
a change in direction. Similar examples include the complex driven by the highly variable star
PV Cephei and that associated with the Herbig-Haro object RNO 43 in Orion. The chains
leading from the HH 111 jet, on the other hand, stretch a full 8 pc from end to end and yet show
little bending.

The measured velocities and spacing of the shocks in the HH 34 complex imply that the
major alterations in wind speed recurred every 800 yr or so. Here, the estimate is necessarily
crude, as the observations give us only the bowshock speed and not that of the underlying jet
material. If the latter maintains a velocity of 300 km s−1 out to HH 88 and HH 33, then these
regions were created 5 × 103 yr in the past. This time would be about twice as long if the jet
speed is closer to that of the bowshock and declines outward. In any case, the interval is still
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Figure 13.7 Giant Herbig-Haro flow associated with the HH 34 jet. The main bowshocks are
labeled. The short, contiguous jet pointing toward the south (bottom of the page) is the one shown
in Plate 11. Note the prominent arc labeled HH 222; this is not associated with the HH 34 jet.
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brief compared to the evolutionary time scale of the driving star. Thus, the systematic trends
we have noted must reflect intrinsic alteration of the flow itself, rather than any secular change
in the driving source. For example, the complexity of the outer emitting regions is reminiscent
of that seen in HH 1/2 (Plate 9) and plausibly arises from the intrinsic tendency of the shock
front to break up through rapid cooling. Indeed, HH 1/2 itself drives a giant flow, in which the
terminal regions are even more extended and fragmentary than any shown here. We shall return
to these issues in § 13.5, when we discuss jet propagation from a more theoretical perspective.

13.1.6 Radio Observations

Our treatment of jets has thus far covered only their optical manifestations. Suppose, however,
that we wish to study the region closer to the driving star. Then we must turn to wavelengths
that can penetrate the intervening dust. We already saw one example, in Figure 13.6, of how
near-infrared observations help in this regard. Another fruitful regime is the radio continuum. It
is true that the total radio flux emitted by jets is much smaller than in the optical. On the other
hand, interferometers such as the Very Large Array offer very high angular resolution, of order
0.′′1, at centimeter wavelengths. Let us close this section with a brief look at findings in this
area.

A large fraction of optical jets and Herbig-Haro objects exhibit radio emission from the
vicinity of their driving sources. Indeed, the extraordinary spatial resolution of these observa-
tions frequently provides the most accurate location for the star itself. We noted earlier the case
of HH 1/2, where the central object was first identified through radio studies, in conjunction
with proper motions. Centimeter maps of other systems have picked out the flows’ true sources
among a tight grouping of infrared stars.

Let us return to the example of VLA 1, the embedded object powering HH 1 and 2. Fig-
ure 13.8 is a map of the region at 6 cm. Here we have also indicated the effective beam area of
the telescope. The map is oriented so that the line joining the centers of the Herbig-Haro objects
is horizontal, with HH 1 off to the right. This line also runs through the faint optical jet visible in
Plate 9. It is apparent that the radio-emitting region is elongated in the same direction. The true
aspect ratio of the area cannot be discerned from this image, since the width is still unresolved.
Assuming a distance of 460 pc, the physical length of the configuration is 390 AU. Jet material
traveling at 350 km s−1, the measured speed of the Herbig-Haro objects, thus crosses the region
in under 3 yr.

Other Herbig-Haro complexes, including HH 111 and HH 34, have radio jets. What physi-
cal mechanism underlies this emission? We saw in Chapter 3 how warmed dust grains provide
continuum radiation. (Recall Figure 3.16.) Here, the spectral energy distribution peaks at mil-
limeter or infrared wavelengths, depending on the dust temperature, and would be negligible
in the centimeter regime. Another possible source could be radiation from electrons gyrating
about a local magnetic field. The required field strengths, however, vastly exceed any observed
near young stars.

The remaining, and most plausible, mechanism is thermal radiation from the electrons in an
ionized plasma. This free-free emission stems from impulsive acceleration of the electrons as
they pass close to ions and is identical to the bremsstrahlung creating X-rays in visible T Tauri
stars (Chapter 7). In that context, we noted that the mean intensity is nearly constant up to the
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Figure 13.8 Radio interferometric map at 6 cm of the VLA 1 jet. The effective area of the beam
is shown to the upper right.

cutoff frequency ν ≈ kBT/h, where T is the gas temperature. For a plausible jet temperature
of 104 K, this cutoff is in the optical range, so the radio flux should be almost independent of
frequency. This is observed to be true of all sources. In the case of HH 1/2, for example, the
total flux integrated over the central jet increases by only a factor of two from 2 to 20 cm.

How, then, does the star create the requisite ionization? Most sources of radio jets (also
called thermal jets) have bolometric luminosities under 100 L� and are thus expected to be
low-mass objects. Here, we must insert the significant caveat that these stars are too embedded
for any direct assessment of their evolutionary status. Whether they are in the protostar or
pre-main-sequence phase, however, the ultraviolet component of their emitted spectra would be
relatively small. In particular, we do not expect significant photoionization of ambient gas out to
100 AU. The ionization must rather be created locally, through shock impact of supersonically
moving gas.

For corroboration of this idea, we turn once again to our prototype system. Both HH 1 and 2
exhibit their own radio emission, with spectral characteristics similar to that from the central jet.
Here, the flux is associated with the brightest visual knots in the Herbig-Haro objects and shares
their high proper motions. Since the optical radiation is undeniably shock-generated, the radio
emission plausibly derives from the same mechanism. The observations near VLA 1 indicate
that any strong shock at the base of the jet must begin within a few tens of AU from the star. We
will see in § 13.5 how a stellar wind may indeed encounter such a shock as it narrows to form a
propagating jet.

13.2 Molecular Outflows

A jet represents gas from the star itself that burrows through the surrounding molecular cloud
and even projects into the sparse region beyond. It is remarkable that the relatively narrow
structure maintains itself out to such distances, and the discovery of jets is a triumph of CCD
imaging. Even with a sensitive array detector, however, the brightest inner portion of a jet
cannot be seen unless the driving star is close to the edge of its dense core. This may happen
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because the object migrates there, or because the cloud face has been eroded by nearby, massive
stars. Such erosion, and the accompanying ionization, are evident in the illuminated rim of the
Bok globule containing HH 46/47 (Figure 13.2).

Of course young stars that are not so fortuitously located still emit jets, whose presence
must now be inferred from their effect on ambient matter. Molecular outflows are the turbulent
expanses of cloud gas being pushed out from the vicinity of a stellar source. No special viewing
circumstances are necessary to find them, as even the most deeply embedded object stirs up its
cloud over a considerable distance. Thus, while the total number of contiguous optical jets is
only a few dozen, the tally of molecular outflows is well into the hundreds.

13.2.1 Bipolar Lobes

The first outflow was discovered in 1980, within the L1551 dark cloud of Taurus-Auriga. Over
the preceding decade, radio observers had been using the 2.6 mm line of CO to investigate
the structure and kinematics of such regions. Evidence for rapid motion near young stars was
already clear. The new flow in L1551, however, had a distinctive morphology not encountered
before. The reader should turn back to Figure 1.13, which is a 12C16O map of the area. Notice
how the two lobes are well separated spatially, and how their common axis runs through the
central source IRS 5. Subsequent observations found that this source is a binary, with a total
luminosity under 30 L�. This fact, too, marked a change, as wind-generated motion had been
exclusively associated with much more luminous stars.

The original outflow detection, as well as all subsequent ones, have been made through ex-
amination of CO line profiles. Figure 13.9 shows a portion of the data from L1551/IRS 5. The
upper panel shows the 12C16O (J = 1 → 0) emission at a central position within the lefthand
lobe in Figure 1.13, while the lower panel is from the other side of the outflow. Both profiles
have sharp maxima near Vr = +6.7 km s−1, the average radial velocity of the L1551 cloud.
Most of this peak emission stems from ambient gas either in front of or behind the lobes them-
selves. This material exhibits no systematic motion, but rather a more random velocity field
with a typical speed of several km s−1, judging by the width of the intensity spike.

Other gas, however, is moving in a directed fashion and at a speed well above the environ-
mental level. This component shows up as the extra hump, or “pedestal” feature in each profile.
The reversal of the pedestal relative to the main spike indicates that the motion itself changes
direction. Thus, the leftmost lobe consists primarily of redshifted gas retreating into the plane
of the sky, while the right lobe is mainly blueshifted. Of course, these radial velocity measure-
ments capture only a part of the full spatial motion. One’s visual impression from the map is
that gas is moving out from the central star. Support for this view comes from observations of
two Herbig-Haro objects within the blue lobe. These optical patches have proper motion vectors
that indeed point away from IRS 5.

The L1551 cloud itself is a relatively compact structure, several parsecs in extent, and con-
tains several other active, young stars. The combined length of the outflow lobes from IRS 5
exceeds 1 pc, and each lobe appears to terminate just where the ambient density is falling off.
Thus, the volume of the parent cloud occupied by this single outflow, while not large, is appre-
ciable, roughly 6 percent of the total. Converting the CO measurements into column densities,
one finds that the lobe masses sum to 3 M�, a comparable fraction of the value for the cloud as
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Figure 13.9 Profiles in 12C16O (J = 1 → 0) of the L1551/IRS 5 molecular outflow. The upper
panel shows the redshifted lobe, while the lower one corresponds to the blueshifted portion.

a whole. It follows that the mean volume density of outflow material, about 800 cm−3, is also
similar to that of the environment. This agreement is no accident, but underscores the fact that
outflows are indeed cloud gas, set into motion by a stellar jet buried within.

Observers have by now used radio telescopes, both single-dish instruments and interferom-
eters, to map high-velocity CO in dozens of star formation regions. It appears that virtually
all embedded stellar objects power molecular outflows at some level. The L1551/IRS 5 system
may be regarded as fairly representative, but the observed properties span a broad range. Many
outflows, for example, have lobes that are not as well delineated. In some cases, the outflow
axis is directed more nearly along the line of sight. Here the telescope beam incorporates both
red- and blueshifted material, and the two lobes become difficult to identify. In other cases,
the system is favorably oriented, but the lobes flare out more broadly or less smoothly from
the central star. A lobe may also terminate abruptly in places where the ambient cloud gas is
depleted, perhaps by action of neighboring stars. In especially crowded regions, one observes
numerous fragmentary shells and filaments of CO emission that cannot easily be traced back to
their driving sources.
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Figure 13.10 Map of the IRAS 03282 outflow in Perseus. The heavy contours represent emission
in the J = 2 → 1 line of 12C16O, while the grey-scale image shows NH3 (1, 1) emission. Angular
offsets are measured from the position of the infrared star.

13.2.2 Narrow Outflows

There are also flows narrower than the one seen in L1551. These tend to be produced by stars
more obscured than the binary IRS 5, a Class I source. Figure 13.10 shows, as an example,
the IRAS 03282 outflow in the Perseus Molecular Cloud. Here the exciting star, designated
IRAS 03282+3035, lies in a molecular ridge near B1, the region whose magnetic structure we
previously examined (Chapter 6). The spectral energy distribution of the low-luminosity star is
similar to that of L1448 mm (Figure 4.4) and B335 (Figure 11.25), and identifies it as a highly
embedded, Class 0 object.

The heavy contours in Figure 13.10 represent emission from the J = 2 → 1 line of 12C16O.
Note that the map covers radial velocities less than 0 and greater than +14 km s−1, while the
mean velocity of the ambient gas is +7.1 km s−1. Thus, only the lobes themselves show up.
These have a total length of 0.8 pc and are again cleanly separated kinematically, with the
left lobe now being blueshifted. The average (i. e., mass-weighted) radial speed is 20 km s−1,
several times that of L1551/IRS 5. In fact, the speeds measured in CO attain values as high as
70 km s−1. This rapidly moving gas is located close to the central axis, within a strip no wider
than 0.02 pc.

Superimposed on the CO contours is a grey-scale image of the NH3 (1,1) emission, along
with several intensity contours. We see that IRAS 03282+3035, like other Class 0 and I sources,
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is situated within a dense core. This latter object has the familiar properties: a peak density near
105 cm−3, a diameter between 0.1 and 0.2 pc, and a gas temperature close to 10 K. Notice how
the high-velocity CO emission is at a minimum close to the star, just where the NH3 peaks.
Thus, the jet emitted by the central object stirs up ambient gas in a progressive manner. This
physical influence, manifested as the CO outflow, gradually builds to a maximum well beyond
the borders of the dense core.

Another noteworthy feature of the molecular outflow is its clumpy appearance. We may
readily imagine such a non-uniform matter distribution arising, at least in part, from agitations
produced by the central wind. In the case of L1551/IRS 5, much of the blueshifted lobe contains
diffuse optical light. This relatively faint emission is linearly polarized, and the pattern of
electric field vectors is symmetric about IRS 5. The entire lobe, in effect, serves as a giant
reflection nebula. For this to occur, some visible photons from the star must be able to penetrate
a considerable distance into the outflow region, before being scattered by dusty clumps.

Clumping is also indicated by the actual brightness of the CO emission. In a number of
cases, it is possible to observe a system simultaneously in two isotopes of the molecule. Using
the techniques outlined in Chapter 6, one determines both the excitation temperature Tex and
the optical thickness ∆τ . The former is usually close to the expected gas kinetic temperature of
10-15 K, at least for the broader outflows. As for ∆τ , both the J = 1 → 0 and J = 2 → 1 lines
of 12C16O are generally optically thick at velocities not far from the ambient value. Accord-
ing to equation (6.1), the received brightness temperature, TB , should nearly equal Tex under
these circumstances. Figure 13.9 shows that the antenna temperature for L1551/IRS 5 has the
expected magnitude at its peak, but falls quickly below this on either side. Such dilution is al-
most certainly due to clumpiness of the emitting material (see equation C.12). Finally, we note
that higher-resolution CO mapping of IRAS 03282 reveals a correlation between the degree
of clumpiness and the outflow velocity. The fastest-moving gas mentioned earlier is confined
to discrete parcels, or “bullets,” situated close to the axis. These fragments, measuring only
0.01 pc in size, are grouped in symmetrical pairs about the origin. Thus, they plausibly arise
from traveling pulses in the central jet.

Plate 12 shows an even more extreme case of a high-speed, narrow outflow, as imaged by
an interferometer. Here we see the HH 211 system, buried within the IC 348 cluster of Perseus.
The driving star has a total luminosity near 5 L� and has been detected only at far-infrared and
millimeter wavelengths. White contours trace the J = 2 → 1 line of 12C16O, for Vr less than
+2 km s−1 and greater than +18 km s−1. Since the background material has a radial velocity of
+9.2 km s−1, we are again focusing on the fastest, innermost portion of the outflow. Note the
relatively small extent of this structure, all of which would fit inside the dense core at the center
of Figure 13.10.

It is clear that the molecular gas in the HH 211 outflow is quite close to the stellar jet and
therefore strongly influenced by it. The red contours in this image represent continuum emission
at 1.3 mm. Within this region, some 700 AU in diameter, dust grains are being warmed by the
shock interaction. Even more dramatic manifestation of shocks occurs at the ends of the CO
lobes. Here, the green patches indicate emission in the 1 − 0 S(1) line of H2, at 2.12 µm. This
line is produced by gas with a temperature of roughly 2000 K. The morphology in the present
case suggests that the hot gas traces bowshocks created by the jet. These are regions which
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would have been optical Herbig-Haro objects in a less dense environment. The jet speed must
drop just ahead of each bowshock, accounting for the abrupt cutoff in high-velocity molecular
gas.

13.2.3 Velocity Nesting

If we were to include lower-speed CO in Plate 12, we would find that it forms a thick sheath
around the lobes displayed here. Such velocity nesting is not limited to the narrow structures
produced by Class 0 sources, but is a universal feature of molecular outflows. The falloff in
speed away from the central axis reflects the diminishing influence of the jet itself. To see the
effect most clearly, we utilize channel maps, i. e., images tracing the CO emission within narrow
slices of radial velocity. Consider again the case of L1551/IRS 5. Figure 13.11 is a sequence
of 12C16O channel maps of the blueshifted lobe, with the velocity interval noted in each panel.
Although the elongated morphology is no longer apparent, there is still a well-defined kinematic
structure. Material with radial speed close to the background value of +6.7 km s−1 occupies the
space just within the lobe boundary, while the high-speed gas concentrates within progressively
smaller interior regions.

The total CO emission observed in each channel of higher velocity diminishes rapidly. To
compensate for this effect and reduce the total dynamic range, the relative brightness of the
smaller maps of Figure 13.11 has been artificially enhanced. Suppose now that one’s observa-
tions covered only the most intense, lowest-velocity component within an outflow. The resulting
image would resemble the upper left panel of the figure and would give the impression of an
expansive, shell-like structure with a nearly evacuated interior. Such indeed was the original
interpretation of the CO observations. The idea was that the hollow interior was inflated by a
broad stellar wind pushing out the supposed molecular shell. We now understand that this vol-
ume is actually filled with clumpy gas moving at higher speeds. The stellar wind itself is mainly
confined to the narrow, central jet, as evidenced by the patches of shocked-induced emission
often found along the lobe’s axis. Finally, it should be stressed that the velocity of each cloud
element, discounting the turbulent contribution, is directed parallel to this axis and has no sig-
nificant component normal to the lobe boundary.

Besides occupying a smaller volume, the more rapidly moving gas also tends to be farther
from the driving star. The effect is evident in the panels of Figure 13.11, where the coordinate
origin marks the location of IRS 5. We may also explore this aspect of outflow structure through
a position-velocity diagram. The CO spectrum at a given location is a two-dimensional plot of
specific intensity (or antenna temperature) versus radial velocity Vr. The ensemble of spectra in
a well-defined outflow gives the intensity as a function of three independent variables: Vr and
two spatial coordinates. Suppose now we consider observations taken only along a specified
line, such as the flow’s central axis. Under this restriction, we may picture the intensity as
a surface in three-dimensional space. Along the surface run curves of fixed elevation; these
are the iso-intensity contours. By selecting a number of contours and plotting them in two
dimensions, we create a position-velocity diagram.

Figure 13.12 offers two examples of this useful visualization technique. To the left is the
now familiar L1551/IRS 5, plotted using the J = 2 → 1 line of 12C16O. The righthand panel
shows J = 1 → 0 data from the VLA 1623 system in ρ Ophiuchi. The latter is driven by a
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Figure 13.11 Channel maps of the blueshifted lobe within the L1551/IRS 5 outflow, constructed
from observations in 12C16O (J = 2 → 1). The velocity intervals are shown for each panel.
Angular offsets are relative to the exciting source IRS 5.

Class 0 source of modest luminosity. In both diagrams, the vertical axis measures position along
the outflow’s central axis. The fan-shaped pattern of iso-intensity contours is nearly mirror-
symmetric about some axial position, which marks the location of the driving star. For positions
on either side of the star, the gas is predominantly red- or blueshifted. This separation again
occurs because the outflows both lie nearly in the plane of the sky.

Also evident in each diagram is a thick, vertical ridge. Here the contours representing the
strongest CO emission pack together. (For clarity, the severe crowding has been omitted from
the VLA 1623 diagram.) The ridge occurs at that radial velocity corresponding to the parent
cloud’s bulk motion. Recall that the intense emission here stems from gas behind or in front of
the outflow lobes themselves. The width of the ridge is thus a measure of the velocity dispersion
in the undisturbed cloud environment.

The most intriguing aspect of the diagrams is the spreading of the contours. With increasing
distance from the driving source, both the range of velocities and the maximum observable Vr

initially rise. Eventually, however, the maximum velocity peaks and falls, so that the contours
retreat back to the ridge. This transition, which evidently may be sudden or more prolonged,
marks a general falloff in the CO intensity. That is, the axial position of peak velocity corre-
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Figure 13.12 Position-velocity diagrams of the L1551/IRS 5 and VLA 1623 outflows. Both were
constructed from observations in 12C16O, with the first diagram using the J = 2 → 1 line and the
second J = 1 → 0. Emission close to the background velocity has been omitted for VLA 1623.
Note the very different linear scales for the two panels.

sponds roughly to the lobe boundary in conventional maps. Note finally how the velocities are
uniformly smaller in L1551/IRS 5 than in VLA 1623, which is predictably a more vigorous
system.

What we have found, in effect, is that outflows accelerate outward from the stars that gener-
ate them. Clearly, the molecular gas is not simply coasting on its own momentum, as would the
material in an unconfined stellar wind. Nor is it decelerating by sweeping up ambient gas, as
in an expanding shell. The acceleration is rather a sign that cloud material is being continually
pulled forward by the underlying jet.

We mentioned earlier that most gas within a lobe is moving relatively slowly. Conversely,
the high-speed component represents a minor fraction of the perturbed cloud gas. It is instructive
to quantify this trend, i. e., to measure dM/dVr, the amount of outflowing mass allotted to each
velocity slice. In practice, one must examine in detail each channel map, converting the specific
intensity at each location into a gas column density. The latter process requires some care in
accounting for the optical depth of the CO line.

Figure 13.13 shows the results of this exercise. The left panel includes both L1551/IRS 5 and
the NGC 2071 outflows. The last system originates near the reflection nebula of the same name
in the L1630 dark cloud of Orion B. Near the center of the flow is a knot of infrared sources,
of total luminosity 600 L�, which also power compact HII regions. The actual driving star is
thus presumably more massive than the ones we have encountered so far. Morphologically, the
outflow is at least as broad as L1551/IRS 5 and has extensive 2.12 µm emission near its central
axis.
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Figure 13.13 Total mass plotted as a function of radial velocity, shown for L1551/IRS 5,
NGC 2071, and VLA 1623. All plots display approximately power-law behavior, with an ex-
ponent close to -2.

In the right panel of Figure 13.13 we display separately the red- and blueshifted lobes of
VLA 1623. Note again the change in both mass and velocity in going from the broader outflows
to this Class 0 system. Despite this difference, all three plots are strikingly similar. They reveal
power-law behavior:

dM

dVr
= k

(
Vr

Vj

)−γ

, (13.7)

where the constant k evidently differs from one system to another. Both panels show least-
squares fits to the data, from which we conclude that γ ≈ 2. Note finally that the quantity
Vj , which also varies, represents the time-averaged speed of the underlying jet. The empirical
relation (13.7) is only established for the range V◦ � Vr � Vj , where V◦ is the parent cloud’s
radial speed. In fact, additional measurements indicate that the power law breaks down as the
outflow velocity approaches Vj itself. Nevertheless, we shall argue in § 13.5 that the existence
of such a relationship provides a further clue to the nature of the jet-outflow coupling.

13.2.4 Energy and Momentum

Suppose that we know the angle by which a given outflow is tilted from the plane of the sky. This
information might come from observing both proper motions and radial velocities of embedded
HH objects. One may also infer the angle by matching a geometrical model of the outflow lobes
to an empirical position-velocity diagram. In any case, the inclination allows one to convert
each radial velocity Vr into a fully three-dimensional speed u. From the mass distribution, now
written as dM/du, one may then obtain the outflow’s mechanical luminosity:

Lmech =
1/2

∫ ∞
u◦

du u2 dM/du

tdyn
. (13.8)
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Figure 13.14 Mechanical outflow lu-
minosity as a function of bolometric
stellar luminosity for both Class 0 (filled
circles) and Class I sources (open cir-
cles). The dashed line represents equal-
ity of the two luminosities.

Here, the integral covers all speeds greater than the background value u◦. The dynamical time
tdyn is L/〈u〉, where L is a lobe length and 〈u〉 the mass-averaged speed within that lobe. For
the prototypical L1551/IRS 5, the blueshifted lobe is 0.8 pc long and is inclined by 15◦ out
of the plane of the sky. The mass-averaged speed is 18 km s−1, yielding a dynamical time of
4 × 104 yr.

The mechanical luminosity is a measure of the rate at which the outflow is transporting
kinetic energy. This energy, of course, must ultimately be supplied by the central jet. The
transfer process is not a conservative one, i. e., we expect considerable energy to be lost along
the way. Observations support this view. For example, the L1551 cloud emits copiously in
the far infrared. The relative fluxes at 60 and 100 µm indicate that the dust grains responsible
have been heated to 25 K. Their diffuse radiation, while poorly resolved, follows roughly the
orientation of the outflow lobes centered on IRS 5, which are the dominant ones in the cloud.
The corresponding luminosity, Lrad, is about 7 L� and exceeds Lmech for the outflow by about
a factor of three. We may picture Lrad arising from dissipation of the turbulent motion within
the outflow, although the details are far from clear. This random component of the velocity is
not included, of course, in equation (13.8). The jet must therefore supply energy to the parent
cloud at the total rate Lmech + Lrad.

Since the radiated luminosity is generally unknown, we must rely on Lmech to gauge the
outflow power. It is interesting to compare this quantity with Lbol for the driving star. As
seen in Figure 13.14, there is a clear correlation between the two. In this plot, closed and open
circles represent systems driven by Class 0 and I sources, respectively. Apparently, both types
drive outflows with mechanical luminosities roughly 1 percent of Lbol. This fraction tends to be
higher for Class 0, but the number of observed systems is still low. Note that we are really using
Lbol as a surrogate for the energy transport rate within the jet itself, but this latter information is
more difficult to ascertain (see § 13.5 below). Assuming the two rates are linked, the indication
from Figure 13.14 is that Class 0 sources are more efficient in driving their outflows. We also
have seen that the lobes themselves are narrower in this case, and that 〈u〉 is higher. Since
Class 0 stars are thought to be the youngest, molecular outflows must broaden with time, while
undergoing a progressively greater amount of dissipation.



13.2 Molecular Outflows 453

We may also gauge the momentum content of outflows. The rate of momentum transport
has the units of force, so the expression analogous to equation (13.8) is

Fout =

∫ ∞
u◦

du u dM/du

tdyn
. (13.9)

Here, we again sum the contributions of the two lobes, although their motion is in opposite
directions. Indeed, we expect the total vectorial momentum of the lobes to be nearly zero,
reflecting the symmetry of the underlying jet. The transfer process from jet to outflow is now
conservative, since momentum cannot be dissipated. Thus, the momentum gain in a lobe should
just balance a decline in the outwardly traveling wind material. This effect is not yet evident
in the data on jets. As we saw in § 13.1, the observed velocity changes within sequences of
Herbig-Haro knots are probably dominated by temporal variations of the stellar wind speed. In
addition, the best-observed jets have relatively weak outflows, rendering a detailed comparison
of the momenta impractical.

It is nevertheless encouraging that typical values of Fout are in rough accord with estimates
of the jet momentum transport rate, as we shall later demonstrate. The data cited previously
for L1551/IRS 5 yield Fout = 1 × 10−3 M� km s−1 yr−1. Surveying the ensemble of well-
mapped outflows, the rates are generally lower than this and vary widely. There is again a
tendency for stars with higher Lbol to produce flows with greater Fout. In all cases, the transport
rate exceeds, by one to two orders of magnitude, Lbol/c. The last quantity is the force imparted
by radiation pressure in an optically thin medium. Historically, this inequality was noted early
on, and served to emphasize the fact that the driving agent was mechanical rather than radiative.1

13.2.5 Thermal and Chemical Effects

Returning to energetic considerations, we note that the perturbed cloud radiates over a broad
range of temperatures. In L1551, we find not only the far-infrared continuum emission from
warm dust, but also the 2.12 µm line from molecular hydrogen that has been heated to several
thousand degrees. This near-infrared emission has also been detected in optical jets, sometimes
in conjunction with the 2 − 1 S(1) line at 2.25 µm. Examples include systems we have already
studied: HH 1/2, HH 111, and HH 46/47. Even within molecular outflows containing no visible
Herbig-Haro objects, near-infrared array detectors allow one to pick out embedded shocks with
arcsecond resolution. These hydrogen lines probably account for much of the cloud’s total
energy dissipation.

Outflow gas that is further removed from the jet is also elevated in temperature. As we have
seen, such heating is not apparent in the broader lobes, but it does show up in the narrow flows
driven by Class 0 sources. Here, multi-line observations of CO give excitation temperatures
near 40 K, significantly above the surrounding medium. The rotational lines of SiO and the
inversion transitions of NH3 have also proved useful in this regard.

1 The outflow material is actually opaque to the radiation from the stellar photosphere. Photons therefore diffuse
outward, imparting a force per unit volume of ρκFrad/c. (Recall the discussion following equation (11.48).) To a
crude approximation, the total force is then ∆τLbol/c, where ∆τ is a representative optical thickness. Most of the
radiation that reaches the lobe interior has been degraded to the infrared, where ∆τ is well below the figure of 10 to
100 required for the radiative force to match Fout.



454 13 Jets and Molecular Outflows

Figure 13.15 Map of the L1157 outflow in both the NH3 (1, 1) (left panel) and NH3 (3, 3) (right
panel) lines. The solid and dashed contours on the right show red- and blueshifted emission,
respectively. The Class 0 driving source is located at the central star in each panel.

The NH3 measurements are especially interesting, as the molecule is a sensitive probe of
physical conditions. Consider the high-velocity L1557 outflow, driven by a Class 0 source of
11 L�. Here, there is strong emission both at 1.27 cm, stemming from the NH3 (1,1) rotational
level, and also at 1.26 cm, the inversion transition in the (3,3) state. The observed line width,
both for the main line and satellites, is relatively narrow in the first case, and the peak emission
occurs close to the ambient radial velocity. In contrast, the (3,3) line is both broad and shifted.
Figure 13.15 shows that the lines also arise in different locations. The (1,1) emission originates
within the cold, quiescent dense core surrounding the star itself. As expected, the intensity
peaks near the star. This is just the region avoided by the (3,3) emission, which concentrates
in the two lobes. Analysis of the relative fluxes yields temperatures near 10 K in the core, and
between 50 and 100 K in the outflow.

The same analysis indicates that the fractional abundance of the NH3 molecule is enhanced
by an order of magnitude within the lobes. An even more dramatic increase, amounting to at
least a factor of 104, is found for SiO, which is undetectable in the central core. Interferometric
mapping of the lower rotational transitions reveals that the lobe emission arises from individual
bowshocks centered on the jet axis. Other Class 0 outflows radiate strongly in these SiO lines.
So do a number of massive star formation sites, including NGC 7538, the spectacular HII region
in the Cas OB2 association (Plate 6).

As we mentioned, SiO is not seen toward the dense core from which the L1157 outflow
emanates. Nor has it been detected in the well-studied Taurus core TMC-1 or the Bok globule
B335. These facts together suggest that the molecule is actually created in outflows. There
is good reason to believe that silicon in dense, quiescent environments is locked up in grain
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cores. After all, the 10 µm absorption feature in the interstellar extinction curve originates
in the Si-O stretching mode (recall § 2.4). Within the shocks accompanying stellar jets, both
sputtering and grain-grain collisions will release atomic silicon. We discussed both effects
briefly in § 8.4, where we noted that shock speeds of 200 km s−1 are needed for significant grain
disruption. In a C-shock, however, there is enhanced interaction between charged grains and the
ambient neutrals, which have a different flow speed. Grain mantles are completely destroyed
even for Vshock = 50 km s−1, while the cores are partially eroded. The released silicon reacts
with molecular oxygen and hydroxyl (OH) to produce the observed SiO. The more modest
increase of NH3 could arise from heating and sublimation of the outer grain mantles, which
then eject the molecule intact. Similar activity could account for the enhancement of methanol
(CH3OH) in L1157 and other systems. Note that methanol is the second most abundant species
(after water) in grain ices.

13.2.6 The OMC-1 Outflow

We see that stellar jets and their attendant outflows not only perturb their host clouds dynam-
ically, but even alter their chemical makeup. The shocks erode or destroy grains, while their
heating drives gas-phase reactions that would otherwise be inoperative. All of these activities
increase substantially in the vicinity of massive stars. The variety of ways by which such ob-
jects affect their surroundings will be the topic of Chapter 15. Anticipating this treatment, let us
conclude the present discussion with a look at the well-studied OMC-1 outflow.

The very dense OMC-1 region of Orion A contains both the BN object and the KL infrared
cluster. It is also the site of a vigorous molecular outflow. Within a volume about 0.2 pc in
diameter, gas is moving outward from IRc2, the brightest source (Lbol � 105 L�) in the KL
Nebula. The radial velocity of the material approaches 150 km s−1, but the morphology is only
weakly bipolar. That is, at most positions, the CO profiles contain both red- and blueshifted
material, and any “lobes” are extremely broad. Toward the outskirts of the flow are two regions
bright in shocked molecular hydrogen. (Recall Figure 8.9 and the accompanying discussion.)

Thus far, our discussion might apply to a massive, but otherwise unexceptional, outflow in
which the central axis happens to lie close to our line of sight. However, the extensive additional
observations of this system cast doubt on this interpretation and indicate that the flow is not
driven by a single jet. Toward IRc2 is a compact, hot core of relatively quiescent molecular
gas. High-temperature dust provides copious infrared continuum radiation, while a plethora of
molecular lines emanates from such species as SiO, HCO+, and HCN. The ambient volume
density here exceeds 106 cm−3. From the presence of such high-order NH3 inversion lines as
(10,10) and even (14,14), the gas temperature is at least 400 K. This value falls to about 150 K
within the larger flow.

The most remarkable aspect of OMC-1 is a spray of high-velocity streamers extending be-
yond the main CO outflow. Plate 13 is a color rendition constructed from a mosaic of 2.12 µm
images. Here we see that the molecular hydrogen shoots out in discrete “fingers” from IRc2,
which lies just below the bottom of the frame. The tip of each finger is especially bright in the
1.64 µm line of [Fe II], which is excited at even a higher temperature than the H2 transition.
Gas-phase iron, like silicon, is severely depleted in quiescent environments, and its presence
suggests at least partial dissolution of grain material. Conspicuously absent here are the curved
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bowshocks we saw in other jets. The white contours in Plate 13 trace emission from NH3 (1,1)
and (2,2). These clumpy, dense filaments extend to about 0.5 pc.

At the present time, there is no generally accepted picture that accounts for these diverse
phenomena. One’s visual impression from Plate 13 is of a violent, explosive event, spewing
out a fan of clumps while dispersing and shredding the ambient gas seen in NH3. The shocked
fingers actually lead back, not precisely to IRc2, but to an adjacent radio continuum source.
Apparently, IRc2 itself is a cluster of small patches reflecting starlight from the central object.
Perhaps both the wide-angle CO and the shower of dense fragments result from an especially
high-velocity wind, which cannot cool efficiently after shocking. We shall revisit this issue
later in this chapter, when we examine more closely the dynamics of jets, as well as in Chap-
ter 15. There we shall find that massive outflows quite generally differ from their low-mass
counterparts.

13.3 Wind Generation: Pressure Effects

Let us now turn our attention from the large-scale effects of stellar jets to the physical nature
of the flows themselves. We defer momentarily the question of how these streams attain their
impressive degree of collimation. Instead, we wish to probe the more basic issue of how young
stars produce energetic winds in the first place. These objects are too deeply embedded in cloud
material for direct observation. Hence, we will rely heavily on what is known about winds from
visible, pre-main-sequence stars. Even here, as we shall see, the available information is sparse
and the theory by no means fully developed.

13.3.1 Types of Winds

Stars of every mass and age exhibit winds, i. e., shedding of their atmospheric layers. These
flows vary considerably in observable properties, including both Ṁw, the total rate of mass loss,
and V∞, the coasting velocity attained far from the stellar surface. Along the main sequence,
the highest Ṁw-values (of order 10−5 M� yr−1) stem from early-type stars. Terminal veloci-
ties here are also relatively large, from 600 to 3500 km s−1. At the low end of this range, the
values are close to the driving star’s gravitational escape speed, i. e., Vff evaluated at the stellar
radius R∗. The higher wind velocities are up to 4 times that value. The mass loss rate falls
drastically for late-type dwarfs. It climbs again, however, for the giants and asymptotic branch
stars. A K5 supergiant of mass 16 M� and radius 400 R�, for example, emits a wind with
Ṁw ≈ 10−7 M� yr−1. Curiously, the terminal speeds from such cool, post-main-sequence ob-
jects are less than the corresponding escape value. The winds from the most luminous of these
stars, like our K5 supergiant, show evidence for substantial dust and regular stellar pulsations.
Finally, the far less brilliant pre-main-sequence stars of solar-type mass again exhibit massive
winds (Ṁw ∼ 10−8 M� yr−1), but have V∞-values of several hundred km s−1, i. e., near the
escape speed.

The broad range of wind characteristics throughout the HR diagram indicates that a number
of processes must be at work. In all cases, material leaves the stellar surface with a speed
well below the escape value. Since the initial speed is also less than the local thermal velocity,
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some mechanism is required to accelerate the gas until it becomes supersonic. This mechanism,
which varies from one type of wind to another, largely determines Ṁw. In contrast, the value
of V∞ is mainly set by whatever momentum addition occurs beyond the sonic transition. The
most massive and highest-speed winds, those from O and B stars, owe their existence to the
extreme luminosity of these objects. As we shall describe in Chapter 15, ultraviolet photons are
absorbed and then reradiated by ionized atoms in the flow. Such scattering accelerates the gas
to the sound speed and beyond. Stars along the asymptotic giant branch also drive their winds
radiatively, this time through the pressure exerted on ambient dust grains. For all other stars,
including the young, low-mass ones of most interest here, the winds are mechanically propelled.

By far the best studied wind is that from our own Sun, for which spacecraft have
long provided in situ measurements. The mass loss rate associated with this flow is only
2 × 10−14 M� yr−1, while its velocity at the Earth’s orbit is about 450 km s−1. This latter fig-
ure represents an average of the “quiet” speed of 350 km s−1 usually seen, and the 800 km s−1

that characterizes transient, high-speed streams. For comparison, the Sun’s escape speed is
620 km s−1.

To understand the solar wind, we must first examine the tenuous gas lying outside the pho-
tosphere. This region, by definition, is optically thin to the visible radiation that carries the bulk
of the Sun’s luminosity. On the other hand, it is susceptible to heating by shorter-wavelength
photons and by acoustic and MHD waves propagating from the interior. Such heating explains
why the gas temperature, while it initially declines beyond the photospheric value of 5800 K,
reaches a minimum of 4300 K and then begins to rise. A relatively thin layer, known as the
chromosphere, is bright in emission lines of HI and such ions as Ca II and Mg II. Once the
temperature reaches about 104 K, it climbs much more steeply, increasing by two orders of
magnitude in a very short distance. This transition region marks the beginning of the corona, a
more rarefied and physically extended zone of very hot gas.

The solar wind itself starts near the base of the corona, at a heliocentric radius of 1.25 R�.
Here, the temperature is 1.5 × 106 K, some 250 times the photospheric value. It is the outward
falloff in thermal pressure that accelerates the wind, or at least its quiet component. Note that
the high-speed streams, along with the geomagnetic disturbances they create, recur in 27-day
cycles. This interval is the mean solar rotation period as seen from the Earth. Satellite observa-
tions in the 1970s revealed that the streams come from coronal holes, i. e., regions of diminished
X-ray flux. Within a hole, the magnetic field topology changes from closed loops that leave and
enter the solar surface to open field lines projecting far into space. The additional speed of the
streams may be provided by MHD waves traveling along this open field component.

13.3.2 Thermal Flows

There is good reason to believe that all low-mass stars near the main sequence emit winds
similar to that from the Sun. The evidence here is circumstantial, since the density in all such
flows, including our own, is too low for direct observation of the emitted radiation. Despite this
limitation, there is a solid understanding of how thermal pressure from a hot corona accelerates
a solar-type wind. Let us now examine the underlying physics in more detail. We emphasize
from the start that this thermal driving is not responsible for the stronger winds emanating from
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the youthful counterparts to these stars. The concepts we shall introduce, however, are useful
for our later discussion.

To simplify matters, let us consider a purely radial wind in steady-state motion, with velocity
u(r) and density ρ(r). Here, r measures the distance from the star’s center. The equations of
mass and momentum conservation are

1
r2

d(r2ρ u)
dr

= 0 (13.10)

u
du

dr
= −a2

T

ρ

dρ

dr
− G M∗

r2
, (13.11)

where M∗ is the stellar mass. Here, we have supposed that the wind, which is fully ionized,
conducts heat so efficiently that it remains strictly isothermal, with an associated sound speed
aT . (Recall equations (10.27) and (10.29) for the analogous infall problem.) After expanding
the derivative in equation (13.10), the term dρ/dr may be eliminated in favor of du/dr. The
transformed equation (13.11) then reads
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We now integrate equation (13.12) outward from the initial radius r◦, which represents the
base of the corona. If u◦ is the initial, subsonic velocity at this radius, we find an implicit
relation for the general velocity u(r):
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Here, Rs is the sonic point:
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.

(13.14)

Within the numerical expression for Rs, our representative wind temperature T is an average
from the solar coronal base out to the sonic point. The observed temperature actually falls slowly
with distance, so that it is lower by an order of magnitude at 1 AU (210 R�). In comparison,
the number density in the wind drops by seven orders of magnitude over the same distance.

Figure 13.16 displays the run of velocity for three choices of u◦. Here, we have set Rs/r◦
equal to 10. For the lowest value, u◦/aT = 7.0 × 10−7, the velocity first climbs, peaks at
r = Rs, and then falls, remaining wholly subsonic. As u(r) becomes vanishingly small at
large distance, we see from equation (13.11) that the density ρ(r) rises linearly, contrary to
observations. Equally unacceptable as a physical solution is that for the highest initial speed,
u◦/aT = 1.2 × 10−6. The acceleration now continues until du/dr becomes infinite at a cer-
tain radius, r/r◦ = 6.2. Formally, the solution then doubles back toward smaller r with su-
personic velocity, as shown. Referring to equation (13.12), it is clear that the only realistic
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Figure 13.16 Velocity as a function of
radius in a spherical, isothermal wind
driven by thermal pressure. The initial
values of velocity relative to the sound
speed aT are shown for each curve,
while the radius is displayed in units of
r◦, the value for the coronal base. The
filled circle on the middle curve marks
the sonic point.

situation is when the coefficient of du/dr vanishes just as the righthand side goes through zero,
i. e., for which u(Rs) = aT . This special velocity profile, corresponding in the present case to
u◦/aT = 9.2 × 10−7, is also plotted. The flow now passes smoothly through the sonic point,
represented by the filled circle, while ρ(r) monotonically decreases.

Despite the simplifications in our model, the derivation reveals the essential mechanism of
pressure-driven expansion. The inequality Rs > r◦ is equivalent to the statement that a fluid
element at the coronal base is tightly bound by gravity, even at the thermal speed. Nevertheless,
the element drifts gently and continually outward, impelled by the gradual drop in thermal
pressure. This efflux lowers the pressure even more, inducing layers further inside to expand.
The deeper issue, then, is not what drives the expansion, but what supplies thermal energy to
the corona itself. Our understanding in this area is poor, again reflecting the lack of direct
observations, even in the solar case. Note that the total luminosity required is only of order
10−4 L�. This figure includes not only the power to drive the wind and other, more impulsive
mass ejections, but also to offset the corona’s radiative losses. There is general agreement
that the power originates from turbulent fluid motions within the Sun’s outer convection zone.
It is the transformation of this energy that remains puzzling. The dissipation of outwardly
propagating MHD waves may play a role, as may reconnection in tangled or braided magnetic
flux tubes.

13.3.3 Influence of Alfvén Waves

We mentioned earlier that MHD waves are also implicated in the high-velocity streams ema-
nating from coronal holes. The existence of such waves is incontrovertible in the solar case.
Spacecraft observations reveal that fluctuations in the wind velocity are correlated with those of
the local magnetic field, in just the manner expected for Alfvén waves. We recall from Chapter 9
that the field may also carry fast and slow magnetosonic waves. These, however, create periodic
compression of the plasma, which in turn leads to steepening and the formation of shocks. The
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dissipation of energy in these shocks adds heat to the corona, but only Alfvén waves survive
well past the sonic point.

Alfvén waves propagating in a wind exert an additional force on the gas. From equa-
tion (9.91), the wave pressure at any point is proportional to |δB|2, the squared amplitude
of the field perturbation, and thus to the volumetric energy density of the wave. Within an ex-
panding flow, |δB|2 naturally declines, so that the net force is outward.2 Mathematically, one
may incorporate the wave pressure gradient as an extra term in the momentum equation (13.11).
The net result is to increase the effective temperature of the wind. From equation (13.14), the
generalized sonic point moves inward, closer to the stellar surface. The velocity profile passing
through this point also has a higher V∞.

The enhanced pressure from Alfvén waves provides a natural explanation for the high-speed
component of the solar wind. This effect also plausibly accounts for the far more massive winds
emanating from late-type giants. Even if the parent star has a mass greater than the Sun, its
surface gravity may be smaller by 10−4. Thus, a solar-type flux of Alfvén waves can indeed
produce a very high value of Ṁw. The problem is that the mechanism is too efficient. If the
Alfvén waves indeed persist beyond the sonic point, as they do in the solar wind, they inevitably
create a large V∞. We have noted, however, that the observed terminal speeds in the winds of
giants are relatively small, below the star’s escape velocity.

Giant stars do not exhibit the copious X-rays that would be produced by a hot and massive
corona. Thus, their winds cannot be thermally driven, and the temperatures are probably much
lower than solar, closer to 104 K. Given the relatively high densities, ion-neutral friction should
dampen Alfvén waves. (Recall the discussion of § 10.1.) As long as the waves do not survive
far beyond the sonic point, they can still drive a massive wind, but with a reduced V∞. This
explanation for giant winds is promising, as least qualitatively. Calculations show, however,
that if the damping is even slightly too great, the mass loss rate drops precipitously. Conversely,
too weak a damping gives back unacceptably large values of V∞. If Alfvén waves are indeed
the driving agent, these results hint at the existence of some feedback mechanism that regulates
their production or dissipation. We should also bear in mind that the underlying calculations
are highly simplified. Most assume, for example, a perfectly spherical wind, whereas the solar
example indicates that the flow may be at least partially confined to discrete flux tubes.

How applicable are these ideas to pre-main-sequence stars? Here, the winds comprise a
much larger portion of the energy budget than for either giants or our own Sun. Consider, for
example, a T Tauri star of 1 M� and 3 R�, with a luminosity L∗ = 3 L�. Suppose that this
object emits a wind with Ṁw = 1 × 10−8 M� yr−1. Assuming a terminal speed equal to the
escape value of 360 km s−1, the associated mechanical luminosity is 0.1 L�, or 4 percent of
the stellar value. Such a flow is assuredly not driven by a massive corona, whose X-ray output
would far exceed the star’s optical luminosity, in marked contrast to the observations.

The pressure from Alfvén waves could alleviate this difficulty, at least in principle. Calcu-
lations reveal, however, that generating a wind similar to that in our example would require a

2 The energy of an MHD wave packet is not conserved, even in the absence of dissipation. A perturbation analysis, in
the short-wavelength regime, shows that the conserved quantity is the wave action. This is the energy in the packet
divided by the comoving frequency, i. e., the frequency detected by an observer traveling at the mean wind velocity.
As the wind picks up speed, the comoving frequency declines through the Doppler effect. To conserve wave action,
the energy also falls, reflecting the work done by the wave on the background flow.
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mechanical luminosity in the waves themselves close to L∗. This energy, along with that from
radiation and the background wind, must originate from the star, and a significantly enhanced
total would be difficult to reconcile with pre-main-sequence theory. The essential problem here
is the relatively high gravity near the stellar surface, which makes the outward transport of
wave energy more inefficient than for the bloated giants. Moreover, even if one were to posit a
very high wave luminosity, the resulting V∞ would generally exceed observational limits. One
must then include dissipation of the waves beyond the sonic point, either through ion-neutral
collisions or conversion to the fast and slow wave modes. The whole chain of reasoning is
then subject to the same criticism as for giants, i. e., that conditions must be fine-tuned to give
reasonable results.

Although the Alfvén-wave mechanism does not provide the final answer, our discussion
has introduced two key elements that are likely to remain. The first is the presence of a strong
magnetic field emanating from the star itself. As we shall see in Chapter 17, this prediction
is confirmed empirically, and the finding lends credence to the notion that the field plays an
important role in wind generation. The second idea is that matter leaving the vicinity of the
star is subject to wave-like or perhaps turbulent motion, in addition to its smooth, outward flow
velocity. Observationally, emission lines from T Tauri stars are highly broadened and generally
more complex than in a homogeneous wind.

13.4 Wind Generation: Rotation and Magnetic Fields

Another important clue that magnetic fields are involved with wind production comes from
the extensive data on stellar rotation. As one proceeds down the main sequence toward lower
surface temperatures, one finds an abrupt decrease in rotational speed at F-type stars. This is also
the point at which main-sequence objects develop an outer convection zone. Quite generally,
stellar magnetic fields are thought to arise from dynamo action, i. e., the interplay of rotation
and turbulence within convectively unstable regions. Suppose now that a late-type star ejects
gas that travels out along rotating magnetic field lines anchored to the stellar surface. If the field
maintains its rigidity for some distance, then the ejected matter picks up a high angular velocity
before it is flung into space. Such a centrifugal wind can therefore provide efficient rotational
braking of the star, accounting for the observations. More powerful versions of these winds may
be occurring in younger stars. Indeed, the bipolar anisotropy of flows from embedded sources
plausibly arises from the reflection symmetry of the underlying field.

13.4.1 Configuration of Magnetized Winds

Let us now explore the elements of centrifugal wind theory. Our goal, to be achieved in
equation (13.36) below, will be to derive a relation governing the velocity analogous to equa-
tion (13.13) for pressure-driven flows. Along the way, we shall also gain a better understanding
of wind braking. We assume from the outset that both the wind gas and magnetic field are
azimuthally symmetric about the z-axis of a cylindrical coordinate system, and that this axis co-
incides with the direction of stellar rotation. It is then convenient to split both the field B and the
velocity u into poloidal and toroidal (i. e., azimuthal) components (recall Figure 10.13). Sup-
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pose that the wind material is sufficiently ionized that the ideal MHD equation (9.45) applies.
Assuming the flow to be steady-state, this condition of flux freezing reduces to

∇ × (u × B) = 0 . (13.15)

Matter subject to flux freezing can only slide along field lines or rotate with them around the
z-axis. To develop this picture mathematically, we note that equation (13.15) implies that u×B
is expressible as the gradient of a scalar field. But no quantities, including this scalar, vary
azimuthally. Thus u×B must itself be a poloidal vector. If we now write u = up + uφ and
B = Bp + Bφ, we quickly see that the only toroidal contribution to u×B is up×Bp. For this
to vanish, up must be everywhere parallel to Bp. That is,

up = κ Bp , (13.16)

where κ is a scalar function of position. Within any meridional plane, matter indeed slides along
the unchanging field lines.

Having eliminated the toroidal component of u×B, equation (13.15) is now

∇ × (up×Bφ + uφ×Bp) = 0 . (13.17)

The velocity uφ may be recast as �Ωeφ, where eφ is the unit toroidal vector. Using equa-
tion (13.16) for up, equation (13.18) becomes

∇ × (Bp × α�eφ) = 0 . (13.18)

Here, α is a new scalar quantity:

α ≡ Ω − κ Bφ/� . (13.19)

This equation and (13.16) together imply that

u = κ B + α � eφ . (13.20)

To ascertain the physical meaning of α, we expand the triple vector product in equa-
tion (13.18).3 In axisymmetry, Maxwell’s equation ∇·B = 0 reduces to ∇·Bp = 0, while
∇·(α�eφ) also vanishes. We thus find

α
∂Bp

∂φ
− (Bp·∇)(α�eφ) = 0. (13.21)

Noting that ∂e�/∂φ = eφ and (Bp·∇)eφ = 0, this last equation simplifies to

α B� − Bp·∇(α�) = 0 ,

from which it follows that
Bp·∇α = 0 .

3 The relevant identity is ∇× (C× D) = (D·∇)C − D(∇·C) − (C·∇)D + C(∇·D), for any two
vector fields C and D.
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Figure 13.17 A stellar magnetic field is dragged in the
counterclockwise direction at angular speed α. Depicted
are the projection of the field and gas flow onto the equa-
torial plane. At radial distance �, the material velocity has
poloidal and azimuthal components, as indicated. The for-
mer makes an angle θB with the field vector B. The coordi-
nate s measures distance along the field line.

But Bφ·∇α = Bφ ∂α/∂φ = 0 by axisymmetry, so that finally

B·∇α = 0 . (13.22)

The scalar α is thus unchanging in the direction of B. This quantity represents the angular
speed at which each field line rotates about the z-axis. Equation (13.20) states that the total
azimuthal speed of a fluid element is α� plus κBφ, the slippage along the field itself. These
two contributions are of opposite sign if the field line forms a trailing spiral, as illustrated in
Figure 13.17.

13.4.2 Flow Dynamics

Within the constraints imposed by flux freezing, the wind is accelerated by the ambient pressure,
gravitational and magnetic forces. The governing momentum equation (3.3) becomes, in steady
state,

ρ (u·∇)u = −∇P − ρ∇Φg +
1
4π

(∇× B)× B . (13.23)

Here we have utilized Ampére’s law, equation (9.32) to replace the current j in the final right-
hand term. The toroidal projection of this equation is

ρ [u·∇(�Ω) + u�Ω] =
1
4π

[(∇× B)× B]φ . (13.24)

Since u·∇� = u�, the left side becomes

ρ

�
u·∇(Ω�2) =

ρ κ

�
B·∇(Ω�2) , (13.25)
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while the right side of (13.24) expands to

1
4π�

[
Bz

∂

∂z
(�Bφ) + B�

∂

∂�
(�Bφ)

]
=

1
4π�

Bp·∇(�Bφ)

=
1

4π�
B·∇(�Bφ) .

(13.26)

The combination ρκ appearing in equation (13.25) is also conserved along a field line. To
see this, we invoke the steady-state version of mass continuity, ∇·(ρu) = 0. As usual, the
divergence operates only on up, so that

0 = ∇·(ρup) = ∇·(ρκBp) = ρκ∇·Bp + Bp·∇(ρκ) .

Noting that ∇·Bp = 0 and that the operator Bp·∇ is equivalent here to B·∇ (recall equa-
tion (13.22)), it follows that

B·∇(ρκ) = 0 , (13.27)

as was to be proved.
After combining (13.25) and (13.26), then dividing through by the constant term ρκ, we see

that the azimuthal momentum equation (13.24) is equivalent to

B·∇
[
Ω �2 − �Bφ

4πρκ

]
= 0 .

We may thus write

Ω �2 − � Bφ

4πρκ
≡ J , (13.28)

where J is yet another quantity conserved along each field line. To interpet J , we let A be the
varying cross section of any flux tube. Multiplying equation (13.28) through by the mass flow
rate Ṁ ≡ ρupA = ρκBpA, we find that

J̇ ≡ ρ up AΩ �2 − �BpBφ

4π
A (13.29)

is also conserved. The quantity J̇ is the rate at which the z-component of angular momentum is
transported along any flux tube. The first righthand term in (13.29) is the transport rate due to
axial rotation of wind material, while the second term, from equation (10.41), is the contribution
from the magnetic stress, i. e., from the twisting of the field. It follows that J in equation (13.28)
is the total angular momentum per unit mass within the tube.

We may now use equations (13.19) and (13.28) to solve for both Bφ and Ω as functions of
� and ρ. We find

Bφ =
4πρκ (α� − J /�)

1 − 4πρκ2
(13.30a)

Ω =
α − 4πρκ2J /�2

1 − 4πρκ2
. (13.30b)
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Both denominators vanish at the Alfvén point. At this radius, � ≡ �A, the product 4πρκ2 rises
to unity. From equation (13.16), this condition is equivalent to

u2
p =

B2
p

4πρ
≡ V 2

Ap . at � = �A (13.31)

That is, the poloidal velocity equals the Alfvén speed associated with Bp. Both Bφ and Ω
remain finite at this location provided that

J = α �2
A . (13.32)

The ensemble of Alfvén points for all flux tubes constitutes the Alfvén surface surrounding the
star. Within this volume, the magnetic energy density exceeds that associated with fluid motion,
i. e., B2

p/8π > (1/2) u2
p. The interior field is stiff, despite the inertia of the gas. According to

equation (13.32), we may picture the fluid elements in this region rotating at angular speed α,
right up to the Alfvén surface. Beyond this point, the system sheds angular momentum, and
the field lines are swept back. This is the essence of the braking action provided by centrifugal
winds.

We next consider momentum conservation along the field lines. Starting with equa-
tion (13.23), we use a vector identity to rewrite the lefthand side as

ρ (u·∇)u = ρ ∇(u2/2) + ρu× (∇× u)

= ρ ∇(u2
p/2) − ρ ∇(�2Ω2/2) − ρu× (∇× u) .

(13.33)

We now take the dot product of equation (13.23) with u. After recalling that u·∇ = up·∇ and
using (13.33) above, we find

ρup·∇(u2
p/2 + �2Ω2/2 − GM∗/r + a2

T ln ρ) =
1
4π

u· [(∇× B)× B] . (13.34)

Here, we have recognized that the gravitational potential is essentially that from the star alone,
and we have assumed the gas to be isothermal in evaluating the pressure gradient. Equa-
tion (13.20) for u now shows that the righthand side of equation (13.34) is

α�

4π
[(∇× B)× B]φ =

1
4π

Bp·∇(α�Bφ)

= ρup·∇(αΩ�2) ,
(13.35)

where we have also used equations (13.22), (13.26), and (13.28). In summary, equations (13.34)
and (13.35) tell us that

E ≡ u2
p/2 + �2Ω2/2 − GM∗/r + a2

T ln ρ − α Ω �2 (13.36)

is constant along a field line. This quantity is effectively the energy per unit mass of the wind
matter, with the final term representing the work done by the twisted magnetic field. Of course,
the true mechanical plus thermal energy is not conserved, even in the absence of the field, since
heat must somehow be injected to maintain isothermality of the expanding gas.
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The results we have obtained thus far are all useful, but still insufficient for the full descrip-
tion of any real system. One problem, of course, is that we have said nothing about conditions
at the base of the wind, such as how the field lines rotate near the stellar surface. Of more funda-
mental concern is the balance of forces within the meridional plane, but transverse to the field
lines. This latter issue is difficult enough that it has prevented any general, fully self-consistent
solution to the problem of centrifugal winds. Theorists have been forced to adopt a variety of
stratagems, all of them involving rather severe approximations or physical assumptions.

One route is to posit ad hoc a spatial configuration for the poloidal magnetic field. The
simplest choice, and the first used historically, is the Weber-Davis model. Here one assumes the
field to be a split monopole, and considers the flow only near the equatorial plane. Alternatively,
one could assume a dipole field, at least close to the stellar surface. We shall not pursue any of
these models in more detail, but simply note an interesting feature that they all share.

13.4.3 Critical Points

Suppose that we wish to determine the rate of change of the poloidal velocity in the direction
of the local field. That is, if s represents the distance along any flux tube, we want dup/ds (see
Figure 13.17). This may be read from the momentum equation (13.34) or, alternately, by setting
dE/ds equal to zero in (13.36). The latter operation still does not give us dup/ds directly, since
the equation contains other variables, such as Ω and ρ. To gauge their variation, we similarly
demand that dα/ds, dJ /ds, and dṀ/ds vanish, using the appropriate definitions for each
quantity. The net result may be cast as four equations in the four unknowns dup/ds, dΩ/ds,
dρ/ds, and dBφ/ds.

We may now solve these equations for the derivative of interest. Omitting the rather lengthy
manipulations involved, we may conveniently express the final result as

�

up

dup

ds
=

c1 d�/ds + c2 dr/ds + c3 (�/A)dA/ds

D . (13.37)

The nondimensional terms d�/ds, dr/ds, and (�/A) dA/ds all quantify the degree of bending
and flaring of the flux tube. Their functional forms may be taken from one of the phenomeno-
logical models, and will also result naturally from the eventual, self-consistent calculation. The
three coefficients in the numerator are

c1 ≡ (u2
p − V 2

Ap) u2
φ + 2 up uφ V 2

Ap tan2 θB − 2 u2
p V 2

Ap tan2 θB (13.38a)

c2 ≡ −2 (u2
p − V 2

Ap) a2
T � Rs/r2 (13.38b)

c3 ≡ (u2
p − V 2

Ap) a2
T + u2

p V 2
Ap tan2 θB . (13.38c)

Here, θB is the angle between the poloidal magnetic field and the full vector B (Figure 13.17).
The denominator in equation (13.37) is

D ≡ u4
p − (V 2

A + a2
T ) u2

p + a2
T V 2

A cos2 θB . (13.39)

Note that VA denotes the Alfvén velocity associated with B itself, as in equation (9.70).
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The quantity D vanishes at certain points in the flow. We are reminded of the isotropic,
thermally-driven wind, where the acceleration diverges unless the sound speed is reached pre-
cisely at Rs. We also recall the dispersion relation for magnetosonic waves, equation (9.82).
Dividing the latter by k4, we see that the phase velocity �/k enters the dispersion relation in
precisely the same way as up enters D in equation (13.39). We have found, in other words,
that this denominator vanishes whenever up equals the velocity for fast or slow magnetosonic
waves, where these waves are directed along Bp. At both these points, the numerator of equa-
tion (13.37) must also go to zero.

We saw earlier, in equations (13.30), that Ω and Bφ exhibit similar behavior as up reaches
the Alfvén velocity associated with the poloidal field. Centrifugal winds thus possess three
critical points. These occur physically whenever the velocity matches one of the characteristic
signal speeds in the fluid. The sensitivity of the flow to small disturbances prior to a critical
point reflects the fact that disturbances traveling at the appropriate speed can still propagate back
upstream. Once matter has crossed the point, however, such backward propagation is no longer
possible. The sonic point in a thermally-driven wind is reached when the velocity is aT , which
is the only signal speed in a non-magnetized, isothermal gas. More generally, the velocity field
must pass, in order, through the slow magnetosonic, Alfvénic, and fast magnetosonic critical
points if it is to describe a true wind. Note that the acceleration of the gas is primarily thermal
inside the slow magnetosonic point, while the combined magnetic and centrifugal forces take
over until the Alfvén point is reached.

These considerations also lead to the conclusion that a strongly magnetized wind must be
anisotropic. Even if matter within certain flux tubes accelerates smoothly through the critical
point, gas elsewhere may not. Whether a region participates in the wind or not depends on the
competition between the local field strength and the inertia of the gas. The overall topology of
the flow is therefore sensitive to the magnetic field structure at the wind base.

To illustrate this last point, Figure 13.18 depicts schematically a star whose field is a perfect
dipole close to the stellar surface. Let us ignore the temperature of the external matter, so that
only the Alfvénic critical point applies. At all latitudes, up starts out much smaller than VAp.
Thus, the field is relatively stiff, and gas flow initially follows the dipolar configuration. The
field lines close to the pole diverge quickly enough that the inequality up > VAp is eventually
met. Gas within these flux tubes crosses the Alfvén point and thereafter flows out more radially,
dragging the field with it. Closer to the equator, however, the field lines loop back before the gas
can attain the requisite velocity. The matter here remains in hydrostatic balance along the rigid
field loops. The outer boundary between this dead zone, shaded in Figure 13.18, and the wind
region is labeled A. This point represents the intersection of the wind’s Alfvén surface with the
equatorial plane.

The analogue of the dead zone in solar studies is, of course, the well-observed magnetic
loop structure associated with the corona. Just as the solar loops are sites of enhanced X-ray
emission, one may hope that wave energy pumped into the closed field lines of young stars helps
to account for their own activity in this regime. Whatever the appeal of such ideas, we should
recognize that the dead zone itself is still largely a theoretical construct, with scant empirical
basis. Let us ask, more generally, to what extent the combination of rotation and magnetic
fields is required to explain winds from young stars. With regard to the late pre-main-sequence
history of our own Sun, estimates based on the Weber-Davis model and the current Ṁw-value
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Figure 13.18 Schematic representation of wind flow from a magnetic field that is dipolar at the
stellar surface. Filled arrowheads show the direction of the poloidal field, while open ones depict
the same component of the fluid velocity. Closed field lines intersect the equatorial plane out to
the point A. Within this region is the dead zone, which does not participate in the flow.

give reasonable values for the magnetic braking timescale, i. e., comfortably less than the Sun’s
estimated age. This is an encouraging sign that the observed pattern of rotational speeds along
the main sequence indeed arises from the same cause. However, solar-type winds are still
essentially thermally driven. That is, the measured surface velocities are far too small to aid in
the outward acceleration of gas. The same is true for younger pre-main-sequence stars. With
its typical surface velocity of 10 km s−1, a T Tauri star is rotating at less than 10 percent of
breakup speed, so that the associated centrifugal force is at most a few percent of gravity.

13.4.4 The Role of Disks

What, then, provides the relatively high values of Ṁw for these objects? Faced with the in-
adequacy of thermal and wave pressure, as well as the low stellar rotation rates, a number of
theorists have adopted the view that the lion’s share of Ṁw does not originate from the star at
all, but from its surrounding disk. The idea is that matter spirals in toward the star from this
disk, most of which lies beyond point A in Figure 13.18. As the dead zone is approached, some
of this incoming gas flows along the closed loops toward the stellar surface, while the rest is
ejected as a massive wind. This ejection occurs along open field lines that are anchored in the
disk. The acceleration here may indeed be centrifugal, since the disk gas is already rotating very
close to breakup speed. There is also a relatively minor component of the wind stemming from
the polar regions of the star itself.

For this picture to hold, pre-main-sequence stars must undergo simultaneous inflow and out-
flow of material. We will see in Chapter 17 that emission-line and continuum data indeed show
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that both processes may be occurring, at least in classical T Tauri stars. Even here, however, the
observations of line profiles do not demonstrate a centrifugal flow per se. Nor is there any direct
evidence that the stars’ disks are threaded by strong magnetic fields. Thus far, the only sign
that disks are involved at all is the intriguing fact that the diagnostic signs of winds and infall
are not present in weak-lined stars. The latter, we recall, exhibit little or no infrared excess, the
implication being that they lack circumstellar disks.

It is not our intention to review here the various detailed models that have been offered
for disk-generated winds. We limit ourselves instead to several observations of a more general
nature. Suppose that the central idea is correct, i. e., that disks are indeed magnetized in the
proper way and that pre-main-sequence winds originate mainly from these structures rather than
from the stars. Then our original question has not really been answered, but rather transformed
into another: What accounts for the required mass flow rates through the disks themselves?
Despite much discussion of this point, there is still little understanding of how material orbiting
a T Tauri star might steadily drift toward the central object. Ironically, the situation may be
more favorable in the deeply embedded stars driving jets and molecular outflows. If some of
these sources are true protostars, then a portion of the surrounding infall must strike their disks.
As we saw in Chapter 11, continuing infall onto a disk is expected to create spiral disturbances
that transfer gas inward. This disk would then act as an intermediary between the collapsing
envelope of cloud gas and the ejected spray of matter within. If the same mechanism applies
to classical T Tauri stars, then they, too, must be surrounded by envelopes that continually fall
inward, albeit at a reduced rate. (Recall the discussion of Class I sources in Chapter 11.)

The transfer of matter to the star along closed field lines is one of the most appealing aspects
of the picture, yet also raises a serious concern. To see how the accretion process might operate,
imagine the nearly rigid loops of the dead zone rotating uniformly at the stellar rotation rate
Ω∗. (In this case, the value of α on each closed flux tube would just be Ω∗.) Material far out
in the disk has an angular speed much lower than this. As the gas spirals inward, however,
Ω(�) increases until the two rates match. It is within this corotation radius that accretion
may occur. The magnetic field brakes the incoming gas so that its angular velocity no longer
rises, but remains at Ω∗ until that element lands on the star. Since this braking also reduces the
fluid element’s centrifugal support, the poloidal inflow velocity is a substantial fraction of free
fall. Such high speeds are indicated observationally by the presence of hot spots on the stellar
surface, as we shall discuss later.

The difficulty here is that the specific angular momentum of the gas, Ω�2, initially exceeds
that of the stellar surface. It is true that, once Ω becomes fixed, Ω�2 declines during infall.
However, equation (13.28) tells us that the total specific angular momentum is conserved along
the flux tube. If Bφ is small initially, any subsequent braking of the gas is compensated by
a rising magnetic stress that ultimately torques the stellar surface. In other words, Ω∗ itself
must increase as a result of accretion. But prolonged spinup would violate the observation of
low rotational speeds. The resolution here may simply be that pre-main-sequence stars never
acquire a great deal of additional mass through this accretion process.

Another general difficulty faced by the picture we have outlined is its implicit assumption
of steady-state flow. All numerical simulations of the star-disk interaction via magnetic fields
find that the gas moves both inward and outward in an intermittent, eruptive fashion. Consider,
for simplicity, a purely dipole field emanating from the star and threading a conducting disk.
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If the latter is initially truncated beyond the corotation point, then the field quickly wraps up.
The resulting torque on disk material may well cause it to move inward, as in the steady-state
models. On the other hand, the twisted field is also susceptible to violent reconnection.

Figure 13.19 shows in more detail the sequence of events. In this particular simulation, the
central 1 M� star rotates with a period of 1.8 days, and the disk is truncated at 5.7 stellar radii.
The panels display the poloidal field structure and density distribution at the indicated times.
Even at 1.4 days, before one complete stellar rotation, twisting of the initially dipolar field has
created severe, equatorial pinching. The stressed disk has moved inward toward the star in the
second panel. By 4.2 days, reconnection of the pinched field has created two closed, toroidal
loops. The centrifugal force acting on the rotating plasma impels it to move outward. During
this expansion, some gas on the closed field lines is driven toward the central axis and forms a
jetlike flow. Other gas skims along the disk surface. Following ejection of the toroids, the disk
edge retreats, the now-relaxed stellar field wraps up again, and the process repeats itself.

Such calculations demonstrate how the presence of a disk (or any other circumstellar matter)
greatly complicates the flow, even for a relatively simple stellar field. What happens outside the
star and inner disk is unclear, apart from certain general features of the flow. Any ejected
toroids must eventually decay, so that the wind resumes a spatially smooth, but still anisotropic,
distribution. This outgoing matter drags the weakened field along with it. Since the interior
field is still being wrapped up, the net effect is that B is swept backward, as in the highly
simplified sketch of Figure 13.17. That is, a strong component Bφ is maintained outside the
Alfvén surface, regardless of the precise interior conditions. Ampère’s law then tells us that
there must exist a current j directed along the central axis. The volumetric force acting on the
gas, j/c×B, thus has a radially inward component. In other words, the winding up of the field
creates a magnetic pinch.

Whether the pinch impels most of the gas to turn toward the axis, forming a massive jet,
depends on a number of factors. The inward force must compete against the outward centrifugal
force associated with uφ, as well as the gas and magnetic pressure gradients from fluid closer
to the central axis. A strongly twisted field may also be intrinsically unstable, even if it is not
anchored to a disk. After undergoing reconnection and Ohmic dissipation, the field would relax
to a more open, untwisted structure.

Determining the asymptotic form of the wind launched by the star and inner disk may ulti-
mately prove to be a rather academic exercise. The most active young stars are surrounded by
copious amounts of matter. Indeed, we shall argue in Chapter 17 that the primary emission-line
diagnostics of T Tauri winds arise not from the winds themselves but from their interaction with
circumstellar gas. For the even more embedded stars that drive molecular outflows, it may suf-
fice to know that the wind is launched anisotropically and in a bipolar pattern. We now explore
the processes governing such a flow as it travels to much greater distances within the cloud
medium.

13.5 Jet Propagation and Entrainment

A major question for theory is how jets maintain their remarkable, collimated structure. Ad-
ditionally, we want to know how they interact with cloud matter to produce the much broader
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molecular outflows. Neither problem has a definitive, generally accepted solution. The situation
is akin to that regarding the magnetized collapse of dense cores, as described in Chapter 10. In
both cases, we can describe physical effects that almost certainly play a major role, but cannot
yet tie them together into a fully coherent picture.

13.5.1 Mass Transport Rate

Before tackling these general issues, let us begin with a purely empirical matter: What is Ṁj ,
the actual rate of mass transport along a typical jet? We have seen that the internal speed varies
spatially, and that this change produces the traveling shocks observed. Hence Ṁj must change
as well, and no single value will suffice in a complete description. A spatially averaged transport
rate is still meaningful, however, even if it can only be ascertained with limited precision.

Let V⊥ denote the velocity of material within some observed portion of the jet, as projected
onto the plane of the sky. This quantity is obtained from the proper motion of emission knots.
Similarly, let ∆L⊥ be the projected length of this segment. Then ∆L⊥/V⊥ is the travel time,
independent of the jet’s inclination with respect to the plane of the sky. The transport rate is
simply

Ṁj = ∆Mj V⊥/∆L⊥ , (13.40)

where ∆Mj is the jet mass contained within the segment. Most of this mass consists of hydro-
gen, of course, but we can still find it through the emission of trace species.

A good candidate is atomic oxygen, whose emission via the [O I] 6300 Å line is collisionally
excited by ambient electrons. At the characteristic postshock emission temperature of 8000 K,
the critical density for collisional deexcitation is 2×106 cm−3. Since, as we shall see, the actual
electron density is far less, each collisionally induced upward transition is promptly followed
by photon emission. Hence we may apply equation (7.24) to obtain the volumetric cooling rate,
after replacing nH on the righthand side by ne. Multiplying through by the relevant emitting
volume, we obtain the luminosity in the line:

L[OI] =
gu

gl
Nl(O I) ne γul ∆Eul exp(−T◦/Tg) . (13.41)

Here, as in equation (7.24), u and l denote the upper and lower states, respectively, of the
transition, T◦ is the equivalent temperature of the transition (2.2 × 104 K), and Nl(O I) is
the population in the lower state. Since the fraction within the upper state is relatively small,
Nl(O I) is essentially the total number of oxygen atoms. Thus, if we utilize the known fractional
abundance of the element (see Table 2.1), we may invert equation (13.41) to obtain the desired
mass ∆Mj in terms of the observed luminosity L[OI] and the still unknown electron density ne.

To obtain ne, we consider emission in the doublet [S II]λλ 6716, 6731. The upper levels
here are both excited from the same electronic ground state of S II, again through collisions with
ambient electrons. The critical densities at 8000 K, however, are much lower: 4 × 104 cm−3

for the 6716 Å transition, and 1 × 104 cm−3 for 6731 Å. If the actual ne were far below ei-
ther ncrit-value, equation (7.24) would predict that the ratio of line luminosities would be the
corresponding ratio of the product gu γul, since the energies ∆Eul are nearly identical. Con-
versely, the luminosity ratio would depend on gu Aul in the supercritical case, according to
equation (7.25). One must solve the full set of equations for statistical equilibrium to obtain the
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line ratio in the general case, but the answer will depend only on the kinetic temperature and
ne. Conversely, knowing the temperature to be about 8000 K, we may use the observed ratio to
infer ne itself.

Consider, as an example, the main body of the HH 34 jet (Plate 11). The ratio of fluxes
in the [S II] doublet yields an ne of 650 cm−3, while the knot proper motions indicate
V⊥ = 200 km s−1, over a projected length of ∆L⊥ = 1.4 × 1016 cm. The observed lumi-
nosity in [O I] 6300 Å is 1.2 × 10−4 L�, from which equations (13.40) and (13.41) give an Ṁj

of 1.7 × 10−7 M� yr−1. One obtains a similar value by comparing observed line ratios with
those predicted by detailed numerical models of shock cooling. The latter technique shows,
incidentally, that the total density in the emitting region is 6 × 104 cm−3, so that the ionization
fraction is only a few percent.

Such levels for the mass transport rate exceed, by an order of magnitude, those of optically
visible T Tauri stars (obtained by precisely the same method; see Chapter 17). On the other
hand, the jets from Class 0 sources, such as L1448, appear to have even higher Ṁj-values, of
order 10−6 M� yr−1. Here one cannot rely on optical lines as mass or velocity tracers. One
turns instead to the infrared [O I] 63 µm emission that ultimately provides the bulk of postshock
cooling for all the matter below about Tcool ≡ 5000 K. (Recall the discussion in § 8.4.) That
is, the luminosity in this line should roughly equal Ṁj ∆E, where ∆E = kBTcool. While
individual values for Ṁj from either technique are naturally uncertain, their relative ordering
bolsters the idea that the wind momentum output falls as the driving star becomes more revealed.

13.5.2 The Working Surface

Let us return to the issue of wind variability and to the character of the flow that results. Fig-
ure 13.20 consists of four snapshots from a one-dimensional simulation. Initially, the velocity
profile is a single Gaussian perturbation superposed on a uniform flow. (This base speed is not
shown.) The symmetric character of the profile soon changes, as more rapidly moving elements
overtake slower ones. By t = 1.98 yr, the velocity rises almost linearly to a peak and then
drops sharply, representing the creation of a shock front. By the last panel it is evident that two
shocks have been created from the original smooth fluctuation.

This finding is quite robust. That is, the usual result of continually varying the input ve-
locity is not to produce a train of single shocks, but of traveling shock pairs. To see why,
consider first the idealized case of a jet impacting a perfectly stationary medium head on. The
Rankine-Hugoniot jump conditions give us, from knowledge of the incoming density, velocity
and temperature, the pressure arising just beyond the shock front. If the jet density is not greatly
different from that of the environment, and if the incoming speed is highly supersonic, then
this postshock pressure greatly exceeds the ambient one. Hence their difference drives a second
shock downstream from the first.

The same conclusion holds for the more general and relevant case of a moving preshock
medium, as may be seen by transforming to a reference frame in which that medium is sta-
tionary. Now in a truly one-dimensional flow, like the one in Figure 13.20, the excess pressure
between the fronts eventually forces them to spread apart, and the two shocks concurrently
weaken as they propagate downstream. In a jet of finite cross section, however, any overpres-
sured material is driven sideways from the main flow direction, and the shocks maintain equal
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Figure 13.20 Formation of a double shock within a variable jet. The four frames depict successive
times within a one-dimensional flow. In each, the velocity relative to the base jet speed is shown
as a function of distance, where the latter is always reset to zero at the start of the pulse.

speed. Figure 13.21 illustrates this situation in a highly schematic fashion. We refer to the
entire double-shock structure as the working surface. Incident jet gas of density ρ1, moving at
speed V1, encounters directly not the downstream gas with density ρ2 and lower speed V2, but
intershock material at the elevated pressure Phigh. Impact occurs at the Mach disk, also known
as the jet shock. Gas traversing this front drives into the downstream flow and creates the curved
bowshock on the right. In between the two fronts, material spills out laterally, as indicated in
the figure. This cooling waste gas collecting along the side of the jet is called the cocoon.

The working surface is effectively a single pulse, created by the original change in veloc-
ity, that travels in the flow direction. What is Vpulse, the velocity of the disturbance itself?
Referring again to Figure 13.21, we see that Vpulse must be intermediate between V1 and V2.
To an observer moving with the two shocks, matter flows across the Mach disk with speed
V1 − Vpulse. Additionally, material crosses the bowshock into the high-pressure region with
speed Vpulse −V2. There is thus a continual buildup of intershock material, a gain compensated
by lateral ejection into the cocoon. The pressure between the shocks, Phigh, must match both
the upstream ram pressure ρ1 (V1 − Vpulse)

2 and the downstream value ρ2 (Vpulse − V2)
2. Here

we are neglecting the relatively small effect of the finite gas temperatures outside the shocks.
Equating the two ram pressures, we solve for Vpulse to find

Vpulse =
β V1 + V2

1 + β
, (13.42)

where β ≡ √
ρ1/ρ2. Note that if β 	 1, we have Vpulse � V1. That is, a dense jet plows into
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Figure 13.21 Structure of the working surface in a variable jet (schematic). Gas of density ρ1

and speed V1, emitted by a star on the left, encounters a flow with density ρ2 and lower speed V2.
The large value of pressure Phigh in the intershock region expels material into the cocoon. Both
the Mach disk and the bowshock travel at the speed Vpulse, intermediate between V1 and V2.

the medium ahead of it with virtually undiminished speed. Conversely, the pulse in a rarefied
segment of the jet (β � 1) advances only slowly into the upstream gas, since Vpulse � V2.

High-resolution images of jet knots often show distinctive bowshocks, with only faint Mach
disks. (Recall again the case of HH 34, as seen in Plate 11.) Why should one front within a
working surface be brighter than the other? Our derivation of equation (13.42) assumed equality
of the momentum fluxes. The rate of energy dissipation at a front, however, is proportional to the
incoming density times the cube of the relative velocity. For the case of a heavy jet (large β), we
have V1 − Vpulse < Vpulse − V2. The luminosity of the Mach disk should indeed be smaller in
this circumstance. We conclude that a jet displaying a series of relatively bright bow shocks and
only faint Mach disks must also have an internal density that falls in the downstream direction.

The widest bowshocks observed have a clumpy appearance and display short-term tempo-
ral fluctuations. Here the cloud environment must play some role, particularly in explaining
marked differences between the two lobes in a given system. There is also a thermal effect
of significance. In our idealized description of the working surface, we have treated the inter-
shock material as if it were a homogeneous fluid. One should bear in mind, however, that two
flows with distinct properties enter the region and are unlikely to mix completely. That from
the weaker shock enters at a lower temperature and cools more rapidly, tending to form a dense
shell. Numerical simulations find that this shell breaks apart even as fresh material joins it. Such
rapid, ongoing fragmentation plausibly underlies both the clumpiness and intermittency of the
observed radiation.
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Figure 13.22 (top) The creation of incident and reflected shocks by a jet diverging at the Mach
angle θM . (bottom) A jet of initial speed 100 km s−1 and number density 100 cm−3 converges
at the left, and then flows along the central axis. By the time shown (t = 2070 yr), the jet has
produced incident and reflected shocks at the right. Solid contours represent density and arrows
velocity, for which only the direction is significant. Each tick mark on the boundary corresponds
to 1 × 1016 cm.

13.5.3 Crossing Shocks

Although it is difficult to gauge the temperature between successive pulses, the value cannot fall
much below 104 K in sections of the jet displaying more or less contiguous optical emission.
Since, as we have noted, the internal density is comparable to that in a cloud core, the jet must
be significantly overpressured with respect to its environment in these regions. We are thus led
back to the collimation issue. What creates the narrow structures observed?

The mystery deepens once we realize that even an idealized, parallel jet beam must spread
laterally at the local sound speed aT . That is, a jet moving with average speed Vj diverges at
least with the Mach angle, given by

θM ≡ sin−1 (aT /Vj) . (13.43)

The top portion of Figure 13.22 illustrates the geometric situation. Using a representative Vj of
300 km s−1 and temperature of 104 K yields a value for θM of 2◦. Thus, a jet propagating for
0.1 pc should increase its full width by at least 1200 AU, contrary to observation.

Suppose, however, that the jet were actually to begin expanding in this manner. Then both
laboratory results and theoretical calculations show what would happen. The initial flaring
rapidly lowers the internal density, until the pressure falls to the external value. At this point,
lateral expansion is halted by an incident shock, as sketched in Figure 13.22. A jet streamline
crossing this oblique, curved shock front refracts so that it turns back toward the central axis.
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This converging flow is still highly supersonic. Hence, a second oblique front, the reflection
shock, arises to turn the flow parallel to the axis. In diverting the flow, however, this second
shock elevates the pressure above the environmental value. Hence the initial condition at the
injection point— a well-collimated jet entering at high pressure— is repeated. The jet again
diverges with half-angle θM , and a new set of shocks appears farther downstream. In this way,
a sequence of internal crossing shocks is generated as the jet bores its way into the ambient
cloud.4

The bottom panel of Figure 13.22 is a snapshot from a time-dependent simulation of a su-
personic jet penetrating an initially static medium. In this particular example, the initial high
pressure was achieved by introducing, at the left, a flow converging toward the axis. The con-
vergence sets up the complex pattern of shocks in this portion of the frame, but the net result
is simply an overpressured jet moving to the right. A pair of incident and reflected shocks is
evident just before the main bowshock, which marks the furthest advance of the fluid at this
time.

Given their ubiquitous nature, it is difficult to escape the conclusion that crossing shocks
indeed arise in the astrophysical setting, and that they help to collimate the jet. The theoretical
calculations find that the first incident shock is the strongest, while the others progressively
weaken. Any initial redirection of the wind may occur within an environment so dense that no
optical emission can escape. A strong enough shock, however, would emit free-free radiation
from hot, postshock electrons that can be detected. It is tempting to identify this energetic
output with the radio jets seen at centimeter wavelengths.

Despite such tantalizing hints, there is still no clear identification of crossing shocks in the
less obscured portion of the flow, where they might show up optically. These fronts should be
stationary with respect to the driving star, a feature that distinguishes them from the traveling
shocks generated by velocity fluctuations. There has been little theoretical study, in fact, of
the crossing shocks arising from a time-dependent flow. Apparently, the actual fronts are suffi-
ciently oblique that their emission is quite low. The pressure from the ambient magnetic field
could also help to stem lateral expansion, in which case the crossing shocks would be weaker
still.

13.5.4 Cloud Entrainment

Laboratory and theoretical investigations of steady jets also provide a clue to the origin of molec-
ular outflows. We know that the latter consist of cloud material residing outside the jet proper.
However, even if this environmental gas were initially static, the jet-cloud interface would be
subject to the Kelvin-Helmholtz instability. Any small warping of the boundary between two
fluids in relative motion grows rapidly with time. Here, the result is that streaming jet gas par-
tially intermingles with the cloud medium. In the well-studied terrestrial jets, a turbulent sheath
arises at this border. This mixing layer grows in thickness along the jet direction. The laminar

4 As Figure 13.22 shows, the incident and reflected shocks may not intersect on the central axis, but at a third shock
transverse to that axis. Fluid dynamicists refer to this situation as Mach reflection and to the transverse shock as the
Mach disk. We will follow astronomical convention and reserve the latter term for the first shock within the traveling
working surface created by a variable jet.
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core of the jet concurrently narrows, until the entire flow is eventually turbulent. In this way,
the injected stream of high-speed gas drags forward, or entrains, a portion of its environment.

The idea that molecular outflows represent cloud gas entrained by the central jet is an ap-
pealing one. As indicated in § 13.2, a jet and its outflow do tend to have comparable rates of
momentum transfer. The jet associated with the deeply embedded star HL Tau, for example,
has a momentum flow rate estimated at 2 × 10−5 M� yr−1 km s−1, a bit over twice the value
of Fout for its CO outflow. Of course, such a relation would be expected to hold for any process
that efficiently tapped the momentum of the jet. A more difficult question is whether the specific
kind of turbulent entrainment found in steady jets indeed generates molecular outflows.

One problem with making this identification is that the mixing layers created by steady jets
are narrower than the broad expanses seen in most (but not all) molecular outflows. In addition,
there is no documented case astrophysically where the central jet is choked off, after having
transferred all of its momentum to the cloud gas. The observations of giant Herbig-Haro flows
indicate quite the opposite, that a jet may persist well beyond the borders of its parent cloud.
We have noted that such protruding jets may be diverging ballistically. The most promising
explanation for the width of outflows inside clouds is that, while they are indeed created by
narrow jets, the underlying winds are not steady, but varying with time. A spray is ejected
laterally from each working surface, as sketched in Figure 13.21. This transverse flow could
stir up cloud gas to an appreciable distance. Once again, numerical simulations of variable jets
have been useful for testing this idea.

Returning to the simplified case of steady jets, the entrainment hypothesis helps us to under-
stand the observed systematics of outflow velocities. Within laboratory entrainment flows, the
velocity (suitably time-averaged to eliminate the random, turbulent component) is always high-
est close to the jet. This situation is, of course, reminiscent of the astrophysical one. The spatial
distribution of this velocity is such that it is constant on nested, conical surfaces centered on the
jet axis. Furthermore, most of the volume within the flow is occupied by gas moving at the low-
est speeds. Figure 13.23 illustrates this situation with three velocity values; here V1 < V2 < V3

and V2 − V1 = V3 − V2. We must bear in mind that the actual velocity vectors point not along
the cones, but in the jet direction.

Suppose that an observer positions the telescope beam a distance x1 from the driving star.
Assuming the relevant spectral line to be optically thin, the received intensity within any velocity
interval is proportional to the column density. Then it may be that the outflow material with
V1 < Vr < V2 is detectable, while that between V2 and V3 has too small a column density.
Moving the telescope beam farther out to x2 increases both signals and allows detection of the
higher-velocity gas. A rise in both the maximum and average speeds along the central axis is
just the pattern seen in the data. (Recall Figure 13.12.)

The increase of the top speed is only apparent, as all velocities are actually present at each
position. What, then, is the true spatial distribution of the velocity within an outflow lobe? We
know from equation (13.7) that the total mass traveling at speeds close to any Vr-value falls off
systematically with that speed. Given this information, the spatial distribution must be

Vr = V∗ η−2/(γ−1) . (13.44)

Here V∗ is a fiducial velocity that differs from one outflow system to another. The nondimen-
sional variable η is defined to be �/�◦(x), where � is the transverse distance from the jet axis
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Figure 13.23 The nature of the acceleration within entrained outflows. The velocity is constant
along cones centered on the jet axis; three representative values are shown. A telescope positioned
at x1 detects a finite intensity for V1 < Vr < V2, but none at the higher radial velocity interval
V2 < Vr < V3. Both intervals become detectable at the downstream position x2.

and �◦(x) is the lobe width at each point, i. e., the �-value at which Vr falls to the background
value V◦. (This function is proportional to x itself in the case of a perfectly conical outflow.)
Finally, γ is the empirical exponent introduced in equation (13.7).

To see why equation (13.44) should hold, consider an annular slice of an outflow lying
perpendicular to the axis (see Figure 13.24). Let m(Vr, x) ∆Vr ∆x be the amount of mass
located between x and x + ∆x from the stellar source, and between Vr and Vr + ∆Vr in radial
velocity. Let ρ(x) be the cloud’s mass density. Then we have

m(Vr, x) = −2 π � ρ(x)
(

∂Vr

∂�

)−1

x

. (13.45)

The minus sign accounts for the fact that the partial derivative in radial velocity is negative.
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Figure 13.24 Annular slice of an
outflow lobe. Note the minus sign in
the relation between the width of the
annulus, ∆�, and the corresponding
interval of radial velocity ∆Vr .

After evaluation of this derivative using equation (13.44), we find

m(Vr, x) = κ(x)
(

Vr

Vj

)−γ

, (13.46)

where Vj is an appropriate mean jet speed. The coefficient κ(x) incorporates all x-dependent
factors. Integrating equation (13.46) with respect to x over the length L of the lobe, we recover
equation (13.7), provided we identify the coefficient k in the latter as

k ≡
∫ L

0

κ(x) dx . (13.47)

Let us close this section by discussing, more generally, the role of stellar winds in clearing
away molecular gas to reveal obscured young stars. Take first the dense cores that directly
produce the stars themselves. Theorists have long entertained the notion that their disappearance
may be attributable to the eruption of powerful winds. Empirically, however, we have ample
evidence of dense cores and winds coexisting. All Class 0 and I sources reside within such
cores, and most are associated with CO outflows. It is true that molecular line tracers have
greater widths in those cores containing stars. (Recall Figure 3.13.) In some cases, one sees
that the line shifts in velocity along the same direction as the outflow. Nevertheless, the actual
disruption, whatever its cause, must be more of a gradual erosion than a violent dispersal.

Each molecular outflow extends far beyond the boundaries of the original dense core, so
there is good reason to look for damage on a larger scale. The jet itself may extend even
farther, beyond the individual dark cloud that spawned an entire cluster of cores and their stars.
We should thus picture a molecular outflow as tracing only a portion of the stellar wind. The
momentum in each outflow lobe certainly stems from the jet, perhaps through the intermediary
of ejecta from the working surfaces. This same mechanism should, of course, drain some of the
jet’s momentum even in the absence of a surrounding cloud. The curious deceleration of giant
Herbig-Haro flows may be a manifestation of this process. In any case, there are no plausible
alternatives to jet-driven outflows as the means for removing the molecular gas containing stellar
groups. Progress in understanding will come once we have documented more explicitly clouds
in progressive stages of their demise.



13.5 Jet Propagation and Entrainment 481

Chapter Summary

The winds from embedded, low-mass stars create narrow jets with a bipolar morphology. Within
a few hundred AU from the star, these jets are seen through radio continuum flux arising from
strong shocks. Knotty strands of emission in Hα and other optical lines, also shock-generated,
trace the flow on a scale of 0.1 pc. Each optical knot, or Herbig-Haro object, represents wind
material overtaking slower, previously ejected gas. Wind velocity fluctuations of relatively low
amplitude occur over decades, while the largest changes take millennia. The last sort manifest
themselves as chains of discrete Herbig-Haro objects extending for parsecs from the driving
star.

Far more common than optical or radio jets are another manifestation of winds, molecular
outflows. These are broader regions of cloud gas stirred up and dragged forward by a central jet.
They are mainly identified through millimeter emission lines of CO and again have a clumpy,
bipolar appearance. Deeply embedded Class 0 sources drive outflows that are narrower and
faster than those from Class I stars. The velocity within an outflow lobe is highest near the jet
and falls off laterally, in a way that is characteristic of entrained matter. Shocks driven into the
gas heat it and create new molecules, such as SiO. On a larger scale, the multiple outflows in a
T association help disperse the parent cloud.

Stars of all masses and ages generate winds. The relatively weak flow from the Sun is driven
by thermal pressure in its extended corona. This mechanism is unsufficient to account for pre-
main-sequence winds, as is mechanical pressure from Alfvén waves. However, the magnetic
field is still likely to play a key role. Rotation of a magnetized star bends the field, creating a
torque on gas that flings it outward. Such a centrifugal wind could also arise from the inner
region of a circumstellar disk.

Whatever its specific point of origin, a magnetized, pre-main-sequence wind is at least
weakly bipolar when launched. Such a flow can drive lateral crossing shocks in the surrounding
medium. A sequence of crossing shocks may collimate the jet, as long as it remains within the
parent cloud. Additional shocks, corresponding observationally to Herbig-Haro objects, arise
from wind fluctuations. These weaker fronts, transverse to the flow, eject material sideways
from the jet, facilitating the entrainment of cloud gas into molecular outflows.
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Plate 9 Optical photograph of the
HH 1/2 jet. The image is a com-
posite of Hα (shown in green), [S II]
(red), and a broadband, continuum fil-
ter (blue). Note the driving star VLA 1,
shown by the cross.

Plate 10 Color representation of the
Hα/[S II] intensity ratio in the HH 111
jet. This ratio varies from 0.1 (shown
as red), to 0.3 (green), to a maximum
of 0.8 (dark blue).
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Plate 11 Comparison of the HH 111, HH 46/47, and HH 34 jets. The jets are shown at the
correct relative scale, and their driving stars are indicated by crosses near the bottom of each
frame. The images are composites of [S II] (red) and Hα (green).



486 13 Jets and Molecular Outflows

Plate 12 The jet-like HH 211 molecular outlow. The white contours represent J = 2 → 1
emission of 12C16O, while the central, red contours trace continuum emission at 1.3 mm. Green
patches near the ends show emission from the 2.12 µm line of shocked H2. These patches are
separated by 2100 AU.
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Plate 13 The molecular outflow in OMC-1. The color image shows combined emission in the
2.12 µm line of H2 and the 1.64 µm line of [Fe II]. White contours represent 1.3 cm emission
from the (1,1) and (2,2) inversion transitions of NH3. The area covered is 0.4 × 0.4 pc.



14 Interstellar Masers

One of the basic effects described by quantum theory is that a photon incident on an atom or
molecule may cause it to produce another of identical energy and momentum. Under the proper
conditions, this stimulated emission amplifies an initially weak source of radiation. Although
firmly rooted in theory, the effect found no practical application until 1955, when J. Gordon, H.
Zeiger, and C. Townes developed a method for focusing a beam of excited NH3 molecules into a
resonant cavity. Thus was born the laboratory maser, to be followed later by its optical analogue,
the laser. It is a remarkable historical development that, only a decade after its laboratory
implementation, the maser phenomenon was found to be operating in interstellar space. Here
there are no cavities or mirrors to assist the amplification process. Instead, the radiation intensity
is typically boosted by a factor of 1010 in a single pass through a dense region of molecular gas.
Such regions, with their clusters of luminous spots, occur in the perturbed vicinity of young
stars. They are also found in many other environments, including comets, the atmospheres of
aging giant stars, supernova remnants, and the nuclei of external galaxies.

This chapter provides a brief overview of interstellar masers, i. e., those in star-forming
regions. The effect has now been detected in a variety of molecular lines, so that the ground-
work laid in Chapters 5 and 6 will again prove useful to the reader. We start by describing
the empirical properties that all interstellar masers share. The next two sections delve into the
theory underlying the phenomenon. The essential requirement for amplification is a population
inversion. Such a state is relatively easy to achieve in the low densities of interstellar clouds. Al-
though many features of maser emission are well understood, the detailed mechanism through
which the inversion is maintained remains unclear in some cases. In the chapter’s final section,
we describe how masers within outflows are used to trace the motion of the underlying gas.

14.1 Observed Characteristics

To begin our description of maser activity, we look first at a region of massive star formation.
We examine in some detail the properties of the emission, before comparing with other locales.
Along the way, we will see the variety of physical transitions that give rise to the intense lines.

14.1.1 Masers in W49

Consider W49, the Galaxy’s most conspicuous source of maser emission. This region of prodi-
gious infrared and submillimeter radiation is located in the constellation Aquila, near the Galac-
tic plane, and lies at a distance of 11 kpc. It is completely invisible optically and is associated
with one of the most massive cloud complexes. The complex harbors both a supernova rem-
nant and a highly perturbed region of gas designated W49N, whose total luminosity is nearly
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107 L�. When W49N is imaged with an interferometer, the radio continuum flux arising from
free-free emission reveals a striking pattern of ultracompact HII regions. These localized sites
of ionization, each created by one or more O stars, are strung out along an elliptical ring some
2 pc in diameter. (See the upper panel of Figure 14.1.) Observations in millimeter lines show
redshifted absorption dips, indicating that foreground gas is flowing toward the ring.

The origin of this motion is itself an intriguing problem, but we want to focus on an even
smaller scale. Figure 14.1 shows that one of the small HII regions is significantly brighter
than the others; the bottom panel is an expanded view of that area. This image was made at
a wavelength of 2 cm and spans a linear extent of about 0.5 pc. Near the maximum of 2 cm
emission is an unresolved source of mid-infrared flux. This presumably marks the location of
the massive star.

If we now view the same ionized region at 18 cm, we find a number of strong peaks. These
spots, represented by filled triangles in the figure, represent maser emission from the OH mole-
cule. Aggregates of OH masers are found throughout the elliptical ring, where they concentrate
in the outskirts of each ultracompact HII region. The region shown here, however, also has
maser emission of another kind. These even smaller spots become apparent at a wavelength
of 1.35 cm and cluster tightly near the O star. Each source in this case is maser radiation in a
spectral line of H2O.

Let us examine more closely these 1.35 cm (22.2 GHz) H2O masers. The group shown here
spans about 1′′, or 3 × 104 AU at the W49 distance. A single spot, on the other hand, is only
about 1 AU in size. The emission is also highly localized in the frequency domain. Figure 14.2
is a spectrum in the maser line of the entire W49N region, obtained with a single-dish telescope
that spatially averages over the emission distribution. There is a strong intensity maximum at
a radial velocity Vr of +6.5 km s−1, corresponding to the bulk motion of the molecular cloud.
There are also very sharp peaks on either side, extending to several hundred km s−1 in Vr.
With higher spectral and spatial resolution, one can observe individual components within a
single peak, each of width ∆Vr � 0.5 km s−1. Note that there is a significant distribution of
widths beyond this minimum figure. As a general rule, spectral features closer to the cloud’s
rest velocity tend to be narrower than the rarer spikes found with large Vr-values.

Returning to the spatial maps of W49, comparison of two or more images taken some time
apart gives us the proper motion of individual maser spots. The exceptional resolution of inter-
ferometers allows us to track displacements as small as 0.′′001 per year. These data may then
be combined with the Doppler shifts in Figure 14.2 to yield full, three-dimensional velocities.
Figure 14.3 displays velocity vectors for a large number of the H2O masers. Here, the angular
offset is from a point that coincides with the peak of the radio continuum emission. It is evident
that the crowd of spots is expanding away from that position. Moreover, the underlying flow
is clearly not spherically symmetric, but confined to a limited solid angle. There is also a pre-
dominance of redshifted velocities to the left of the star, and blueshifted velocities to the right.
Thus, the expansion is bipolar.

14.1.2 Intensity of the Radiation

The determination of both proper motions and radial velocities is facilitated by the masers’
extraordinary intensity, which is their salient characteristic. To quantify matters, let us consider
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Figure 14.1 Upper panel: The ring of ultracompact HII regions in W49N, as seen through 6 cm
continuum radiation. Lower panel: The largest of these regions, with H2O masers (filled circles)
and OH masers (filled triangles). Not shown is a clump of dimmer OH spots, close to the radio
continuum peak.
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Figure 14.2 The 22 GHz spectrum of W49N.

Figure 14.3 Three-dimensional motion of the H2O masers in W49N. The cone lengths show how
far each spot would travel in 150 yr. Angular offsets are measured from the dynamical center of
the flow; this coincides with the peak of the 6 cm emission in the lower panel of Figure 14.1.

the brightness temperature of a typical H2O maser in W49. We recall from equation (C.10)
of Appendix C that this quantity is related to the specific intensity at the line center frequency
ν◦ by

TB =
c2 Iν◦

2 ν2◦ kB
, (14.1)

where we have neglected any background emission. According to equation (2.17), Iν◦ is equal
to Fν◦/∆Ω, where Fν◦ is the specific flux and ∆Ω the small solid angle subtended by the spot.
The latter, in turn, is given by ∆Ω = (d/D)2, where d is the spot diameter and D the distance
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to W49. Combining these terms, we have

TB =
c2 Fν◦ D2

2 ν2◦ kB d2

= 3 × 1015 K
(

Fν◦

104 Jy

) (
D

11 kpc

)2 (
d

1 AU

)−2

.

(14.2)

Note that our representative specific flux of 104 Jy is consistent with the spectrum displayed in
Figure 14.2.

How are we to interpret such extreme brightness temperatures? Recall that the definition of
TB comes from the Rayleigh-Jeans approximation to the blackbody formula, equation (2.28).
That equation, in turn, describes the radiative emission from matter in thermal equilibrium.
Whatever the physical processes occurring in W49, they assuredly do not heat regions to 1015 K,
far above the point where all molecules would dissociate. The fact that TB vastly exceeds any
reasonable kinetic temperature signifies that the gas itself is out of thermal equilibrium. In
other words, the relevant level populations of the H2O molecules do not follow a Boltzmann
distribution.

The brightness temperature from a maser is elevated both by the very small emitting size
d and by the high value of Fν◦ . The specific flux, in turn, is so large because energy is being
emitted in an extraordinarily narrow interval in frequency ∆ν or, equivalently, in radial velocity,
∆Vr. Both features are remarkable, and their origin is not readily apparent. The agent that
excites H2O masers in W49 does so over a region spanning 104 AU. How, then, can abrupt
changes in physical conditions occur in just 1 AU? The answer is that interstellar shocks provide
just such a sharp transition. We also recall from Chapter 8 that a number of molecules, including
H2O, are created in the cooling regions behind shocks.

The narrowness of the radial velocity interval ∆Vr is also puzzling. To form H2O, the
temperature behind a shock must fall to a plateau value of some 500 K. The radial velocity
dispersion associated with this temperature is 0.5 km s−1. To this figure, we should add (in
quadrature) the dispersion arising from differential motion of the cloud along the propagation
path of the radiation. Observations of relatively broad CO lines confirm that such motion occurs.
Yet we have seen that the typical velocity width of the H2O maser emission in W49 is only
0.5 km s−1, just the thermal value. How is the additional line broadening suppressed?

These issues remain when we consider the 18 cm OH masers in W49. Here we find generally
similar properties as the 1.35 cm sources, but also some systematic differences. The diameter
of each maser spot, about 1014 cm, is larger by an order of magnitude. Velocity widths of the
spectral features are again low, between 0.6 and 1.5 km s−1. As in the case of H2O, the strongest
peaks in the spectrum occur near the bulk velocity of the cloud. This ubiquitous trend will
prove important when we later consider the geometry of the propagating radiation. The larger
emitting areas of OH masers result in lower TB-values, although the actual figures, near 1013 K,
still greatly exceed any plausible gas temperature. Finally, observation of proper motions in
W3(OH), an HII region much closer than W49, again shows that the masers surrounding a
massive star expand as a group.

There is one characteristic of maser radiation that is especially pronounced in the OH
sources. This is the observed polarization of the beam. The 22 GHz H2O masers are linearly
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polarized to some degree, with the fractional polarization ranging from about 1 to 10 percent
within a given HII region. The 18 cm lines from OH, on the other hand, exhibit nearly total
circular polarization. We recall from Chapters 5 and 6 that the polarization of emitted radiation
from OH arises when an external magnetic field interacts with an unpaired electron. In fact,
observations of Zeeman splitting for both types of masers allow us to probe this field within HII
regions. One finds generally that the H2O masers are associated with field strengths (typically
50 mG) higher by an order of magnitude than those in OH masers, a sign that the latter occur in
lower-density portions of the cloud.

14.1.3 Variability and Spot Clustering

Another important, general feature of masers is that their intensity is strongly time-dependent.
Studies of variability have concentrated mainly on the 22 GHz masers, owing to their higher
brightness. A given spot can rise in intensity, reach its maximum, and then disappear entirely
in a matter of weeks. On the other hand, there are some spots in W49 that have persisted for
a number of years. It is generally true that the highest-velocity features tend also to have the
shortest lifetimes. Even the most transient spots, however, are clustered in “centers of activity”
that have a substantially longer duration. The H2O masers of W49 contain at least three such
centers, which are apparent in the clumping of velocity vectors in Figure 14.3. Note finally
that the flaring of an individual spot does not occur in tandem with any increase of the stellar
luminosity. Whatever creates these changes therefore does so locally.

In fact, the temporal variation in maser emission is broadly consistent with its origin in a tur-
bulent environment. To make this idea more quantitative, consider that the typical emitting size
d divided by the velocity width ∆Vr also yields a characteristic time. Using figures appropriate
for one of the brighter H2O masers in W49, d = 1 AU and ∆Vr = 0.5 km s−1, this period is
10 yr, comparable to the longest observed spot lifetimes. The characteristic time also diminishes
for the higher-velocity features with their greater line widths. This simple exercise hints that it
is velocity gradients within the cloud that are responsible for disrupting maser activity.

Numerous other sites of massive star formation have H2O and OH masers clustered near a
common, luminous source. In both cases, the spots are found within a region about 1017 cm
in diameter, with distinctive subclustering. There is usually some degree of overlap between
the OH and H2O groups. On the other hand, each maser type also has its own, characteristic
distribution pattern. The 18 cm spots from OH are often located near the edges of HII regions,
as delineated by the falloff in radio continuum flux. The HII region itself may have a swept-
back, “cometary” appearance, indicating that the star is ionizing a medium with a strong density
gradient. Here the OH spots tend to occur in the more compressed portion of the ionized gas.

Figure 14.4 shows, as an example, a combined radio continuum and spectral line image of
NGC 6334F, situated at one end of a molecular cloud with high star formation activity. The
OH masers, indicated again by filled triangles, all lie between the star, i. e., the peak in radio
continuum flux, and the main body of the parent cloud. We have already noted that H2O masers
require even higher densities. This may mean, as in Figure 14.1, that they are nested inside
the OH masers. However, the very different situation in Figure 14.4 is also common. Here we
indeed see a few H2O sources near the OH masers, but many more clumped in a linear fashion
well outside the HII region.
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Figure 14.4 The 15 GHz continuum emission (contours) of NGC 6634F, together with H2O
masers (filled circles) and OH masers (filled triangles). Angular offsets refer to a point near the
peak continuum flux.

Further observations of NGC 6334F reveal emission in heated NH3 near the location of
the external H2O spots. The elevated temperature implies that there is a second massive star
responsible for this maser activity, although this deeply embedded object has not yet created its
own HII region. Such findings underscore the fact that the essential ingredient for H2O maser
activity is a high-density shock. The energized gas may be situated within a larger HII region,
or it may arise through the impact of a stellar wind on cloud matter in a neutral environment.

An OH maser, on the other hand, appears to need conditions specific to HII regions or their
immediate surroundings. Examination of low-mass, embedded stars strengthens this view. It
is not uncommon to find H2O masers associated with such objects, but OH masers are entirely
absent. This does not mean that every OH maser appears within a detectable HII region. Maps
at centimeter wavelengths occasionally show an apparently isolated group of OH spots. In such
cases, the radio continuum emission from the ionized region may simply be too weak to be
observed. The gas near the masers and their exciting source is only revealed through infrared
and millimeter studies.

The H2O masers associated with lower-mass stars are situated close to, but not coincident
with, the stellar source. Note that the most accurate position of the star, which is always an
embedded Class 0 or I object, is given by the peak of emission in a radio jet, if one is observed
(§ 13.1). The masers themselves are typically displaced from 30 to 100 AU from the star,
corresponding to a few arcseconds for an object 200 pc away. Emission in the 22 GHz line has
mainly been found for sources that also drive CO outflows, so that the two phenomena – winds
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Figure 14.5 Four low-resolution spectra of H2O masers in SSV 13. Each spectrum was recorded
on the indicated date.

and masers – appear to be linked. As we shall discuss in § 14.3, the arrangement of the spots
often implicates the central, stellar jet as the underlying agent of excitation.

Most of the properties we have discussed for the H2O masers near high-mass stars also
seem to hold, at least qualitatively, for sources of more modest luminosity, say L∗ � 100 L�.
The total intensities of the spot clusters are lower and approximately scale with L∗. This pro-
portionality relation also applies to luminous stars, and with the same coefficient. Not all low-
and intermediate-mass embedded stars have associated maser activity. However, the fraction
that does exhibit 22 GHz emission, with a flux of at least 1.5 Jy, rises steeply with the stellar
luminosity and is close to unity for L∗ � 25 L�.

Observations taken over year-long timescales have established that the H2O masers from
lower-mass stars are again highly variable. In some, usually weaker, sources, there are long
periods of quiescence interspersed with outbursts of maser emission. Other, stronger, sources
display a more continuous level of activity. Figure 14.5 shows one example of the latter type.
Here we see four successive, low-resolution spectra of the source SSV 13. This infrared star in
the NGC 1333 region of Perseus has a bolometric luminosity of about 25 L� and powers, in
addition to the masers, a string of Herbig-Haro objects known as HH 7-11. It is apparent that
the detailed spectral distribution of the 22 GHz emission changes qualitatively within periods
of a month or longer. At all times, the peak intensity is significantly displaced from the ambient
cloud velocity of +7.0 km s−1.
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14.1.4 Molecular Transitions

Thus far, we have said little about the actual transitions giving rise to maser lines. The 1.35 cm
line of H2O stems from the 616 → 523 rotational transition, discussed in § 5.5. There is no
reason, in principle, why other lines of the same molecule should not exhibit maser emission,
provided the levels in question attain a population inversion. The difficulty is really an observa-
tional one. Following the 1969 discovery of the 1.35 cm line, nothing more was seen until the
1980s, when radio probes of the Orion Nebula found maser emission in the 414 → 321 (789 µm)
and 313 → 220 (1.64 mm) lines; note that the latter transition occurs between the less populated
para-rotational states (recall Figure 5.16). The ensuing decade saw the addition of yet more
lines, all within the submillimeter range. These included, among others, 515 → 422 (923 µm)
and 1029 → 936 (934 µm). The last transition is rather unusual in that the upper state does not
lie along the rotational backbone.

The high rotational levels involved in some of the submillimeter H2O masers call for both
elevated densities and temperatures at the site of formation. In our discussion of strong J-
shocks in Chapter 8, we noted that all molecules are initially dissociated as gas passes through
the front. However, H2O and other species reform downstream, once the gas cools below about
500 K. Such conditions adequately account for the 1.35 cm maser line, but not for the ensemble
of submillimeter transitions. For these, we must invoke the C-shocks that arise when a wind
impacts magnetized cloud material. Molecules now pass intact through the extended shock
region, where they are temporarily heated to temperatures that may exceed 2000 K.

Turning to OH masers, the 18 cm “line” is actually a group of four at 1612, 1665, 1667,
and 1720 MHz. All are produced within the rotational ground state of the molecule, through the
processes of Λ-doubling and magnetic hyperfine splitting. The underlying physics, as detailed in
§ 5.6, is that the single, unpaired electron is affected both by the molecule’s overall rotation and
by the magnetic field from the spinning hydrogen nucleus. Maser emission is most commonly
observed in the main lines at 1665 and 1667 MHz, but the two satellite lines are seen, as well.
Finally, observers have found OH masers in other radio lines, including a group near 6 cm.
These arise from analogous transitions within rotationally excited states.

Many other molecules besides H2O and OH display maser radiation. The best studied of
these is methanol (CH3OH), also first seen toward Orion. Observed lines arise from rotation
of the OH bond about the symmetry axis of the CH3 tetrahedron. There are two varieties of
transitions (E-type and A-type), distinguished by the manner in which the OH tunnels through
the complex potential barrier created by the CH3. States are labeled by the notation JK , where
J is the total angular momentum and K its projection onto the axis of the tetrahedron. The
known maser transitions all occur within regions of massive star formation.

The numerous maser lines associated with CH3OH fall empirically into two mutually ex-
clusive categories. Some transitions, designated “Class I,” are always found to be offset from
compact HII regions. Like the external H2O masers in NGC 6334F, they must be powered by
the impact of a wind on dense gas. Other lines of CH3OH, known collectively as “Class II,”
only appear projected against the radio continuum emission from the ionized gas. These, like
OH masers, must be energized by radiation from the massive star. Note that each of these two
classes includes both E- and A-type transitions.
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Table 14.1 summarizes the most easily observed maser lines from OH, H2O, CH3OH, and
several other species. For each transition, we give Eupp, the energy (in temperature units) of
the upper state above ground. This provides a measure of the difficulty in exciting the molecule
to maser emission. We also list characteristic ranges of density and temperature, n and T ,
over which emission occurs. These figures are taken from numerical modeling of the level
populations.1 For CH3OH, the first line falls in the Class I category, the second in Class II. Note
further that the maser lines of SiO stem from adjacent rotational levels. It is also not difficult
to excite rotational transitions within higher vibrational states, so that a rich spectrum of lines
results. Observations of SiO masers in star-forming regions are much less common than in the
envelopes of late-type, evolved stars. Thus far, the only objects, whether young or old, that
appear capable of exciting the emission from this molecule are those of high luminosity. The
same holds for NH3 and H2CO. In the first case, the transition is the usual tunneling of the
nitrogen atom through the plane of hydrogens. Maser emission of H2CO stems from rotation of
this asymmetric top. The level notation here is analogous to that for H2O.

Table 14.1 Prominent Maser Lines in Star-Forming Regions

Molecule Transition Wavelength Eupp/kB n T
(cm) (K) (cm−3) (K)

OH 2Π3/2 (J= 3/2; ∆F = 0,±1) 18 0.08 105 − 107 100 − 200

H2O 616 → 523 1.35 640 107 − 109 300 − 1000

CH3OH 4−1 → 30 E 0.83 29 104 − 105 20 − 100
51 → 60 A 4.49 49 104 − 105 20 − 100

SiO v = 1; J = 2 → 1 0.35 1774 109 − 1010 700 − 1000

NH3 (J, K) = (3, 3) 1.25 122 104 − 105 60 − 150

H2CO 110 → 111 6.3 14 104 − 105 20 − 40

14.2 Maser Theory: Basic Principles

Let us now explore the actual mechanism by which radiation becomes amplified. We will see
that a critical ingredient is maintenance of a certain population of excited molecules. This
insight helps to constrain the excitation process itself, i. e., the physical characteristics of the
regions giving rise to such emission.

1 Note the large disparity between the energy separation of the OH levels and the temperature needed for maser activity.
To excite this activity, the molecule must first be elevated to the next higher rotational level. According to Figure 5.18,
this level (J = 5/2) lies some 120 K above ground.
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Figure 14.6 The excitation temperature in a
two-level system, shown as a function of the
population ratio nugl/nlgu. Note how the tem-
perature becomes negative once this ratio ex-
ceeds unity.

14.2.1 Level Populations

The high intensity of maser spots results when photons of a certain frequency stimulate a mole-
cule to emit others of the same frequency and direction. This augmented group of photons then
creates even more stimulated emission, so that the amplification is exponential. As we shall
see, the entire process hinges on the fact that there are more molecules in the upper state of the
transition than the lower. Recall that we have defined the excitation temperature of a two-level
system through the relation

nu

nl
=

gu

gl
exp

(
− ∆E

kB Tex

)
. (14.3)

Here, nu and nl are the number densities of the upper and lower levels, respectively, gu and gl

are the degeneracies, and ∆E is the transition energy. In a population inversion, the necessary
condition for maser amplification, we have nu/gu > nl/gl. The system therefore has a negative
excitation temperature along the path of the emission buildup.

We see once again that the region in question cannot be in a state of thermal equilibrium,
where the excitation temperature would equal the local, gas kinetic value. Figure 14.6 uses equa-
tion (14.3) to plot the actual value of Tex (in units of T◦ ≡ ∆E/kB) as a function of nugl/nlgu.
As the latter ratio approaches unity from below, Tex goes to positive infinity and then plunges
to large negative values for a slight inversion. If nugl/nlgu becomes very high, Tex is still
negative, but of diminished amplitude.

Maintaining a population inversion costs energy. In maser theory, the process that accom-
plishes this task is known as the pump. For microwave lines and typical kinetic temperatures
of several hundred degrees, we have T◦ � Tkin. Thus, nu/gu ≈ nl/gl even in thermal equi-
librium. The actual shifts in population required for maser emission are relatively minor and
apparently not difficult to attain within interstellar clouds. Many pumping mechanisms have
been proposed for the various types of observed masers. We shall briefly discuss two of them at
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Figure 14.7 Physical pro-
cesses governing the level
populations in a maser tran-
sition.

the end of this section. First, however, we should quantify the degree of inversion as a function
of ambient conditions.

Whatever its detailed nature, the pump takes molecules from other levels and adds them to
the two which actually interact with the maser radiation.2 We therefore define the pump rate
Pu as the number of additional molecules brought to the upper level per unit time, and per unit
volume. The analogous rate Pl applies to the lower level (see Figure 14.7). Having postulated
a link between our two-level system and a reservoir of background states, we further recognize
that transitions can occur both ways. That is, molecules in either of our two levels can decay
back into the reservoir. The number of such transitions per unit time must be proportional to the
current population of the upper or lower level. Hence, we let nuΓu and nlΓl be the respective
loss rates, again measured per unit volume.

The level populations also change through collisions with ambient molecules. Employing
the notation of Appendix B, we let ntot be the number density of the background gas, while γlu

and γul are the collisional excitation and deexcitation coefficients. Finally, we must account for
the presence of the radiation field, which we characterize through J̄ , the frequency-integrated
mean intensity (see equation (B.1)). The steady-state population of each level follows by sum-
ming all the rates to zero:

0 = Pu − nuΓu − (nuBul − nlBlu)J̄ − (nuγul − nlγlu) ntot − nuAul (14.4a)

0 = Pl − nlΓl + (nuBul − nlBlu)J̄ + (nuγul − nlγlu) ntot + nuAul . (14.4b)

We also know that the two Einstein B-coefficients are related through equation (B.8b). There is
a more complex relation, equation (B.4), between γul and γlu. Since, however, T◦ � Tkin, the

2 Appendix B shows that Tex within an isolated, two-level system lies between Tkin and Trad, both of which are
positive quantities. To obtain a negative Tex, the two levels must be connected physically to others.
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latter reduces to γulgu ≈ γlugl. We then have

0 = Pu − nuΓu − (nu − nlgu/gl)(BulJ̄ + γul ntot) − nuAul (14.5a)

0 = Pl − nlΓl + (nu − nlgu/gl)(BulJ̄ + γul ntot) + nuAul . (14.5b)

14.2.2 Degree of Inversion

Our goal is to derive an expression for the population difference. To this end, we now adopt
two more simplifying assumptions. First, we neglect the spontaneous emission term in equa-
tion (14.5a), which is always relatively small in practice, i. e., Aul is negligible compared to
either Γu or Γl. (We shall soon have to include the A-coefficient, however, when consider-
ing the radiative transfer.) Second, we shall assume that the two loss rates are equal, i. e., that
Γu = Γl ≡ Γ. Accounting for separate rates is not difficult, but only complicates the algebra
without adding physical understanding.

After simplifying equations (14.5a) and (14.5b) as indicated, we now solve them for the
level populations nu and nl. We find

nu =
(Pu − Pl) + (Pu + Pl) [1 + (2gu/gl)(BulJ̄ + γulntot)/Γ]

2Γ + 2(1 + gu/gl)(BulJ̄ + γulntot)
(14.6a)

nl =
(Pu + Pl) [1 + 2(BulJ̄ + γulntot)/Γ] − (Pu − Pl)

2Γ + 2(1 + gu/gl)(BulJ̄ + γulntot)
. (14.6b)

We may describe the population inversion through a quantity ∆n:

∆n ≡ nu/gu − nl/gl

=
Pu/gu − Pl/gl

Γ + (1 + gu/gl)(BulJ̄ + γulntot)
.

(14.7)

This equation shows that inversion requires a higher pump rate per sublevel into the upper state
than the lower: Pu/gu > Pl/gl.

It is also convenient to consider ∆n◦, the inversion that would hold in the absence of any
radiation field. This is

∆n◦ ≡ n◦
u/gu − n◦

l /gl

=
Pu/gu − Pl/gl

Γ + (1 + gu/gl)γulntot
.

(14.8)

Here, n◦
u and n◦

l are the level populations obtained by setting J̄ = 0. Combining equa-
tions (14.7) and (14.8), we find

∆n =
∆n◦

1 + J̄/J̄s
, (14.9)

where

J̄s ≡ Γ + (1 + gu/gl)γulntot

(1 + gu/gl)Bul
. (14.10)
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Equation (14.9) tells us that, for J̄ < J̄s, the radiation hardly affects ∆n. On the other hand,
if J̄ is ever amplified so much that it exceeds J̄s, then the population difference will decline
significantly. But it is this very difference that increases J̄ , through stimulated emission from
the upper level. Thus, maser amplification is a self-limiting process.

14.2.3 Gain and Saturation

To describe this quenching effect, known as saturation, as well as the amplification that precedes
it, we turn to the equation of radiative transfer. In the notation of Appendix C, we have:

dIν

ds
= −αν Iν + jν . (14.11)

Utilizing equations (C.4) and (C.7) for the emission and absorption coefficients, respectively,
the transfer equation becomes

dIν

ds
=

hν◦
4π

∆n gu Bul φ(ν) Iν +
hν◦
4π

nu Aul φ(ν) . (14.12)

Here, ν◦ is the frequency at line center. The normalized profile function φ(ν) gives the pro-
portion of molecules that emit or absorb a photon at each frequency. This function does not
describe the frequency dependence of Iν , which is generally different. We shall assume that
φ(ν) is the Doppler profile at the ambient gas temperature. From equation (E.23), we have an
expression for φ(ν◦):

φ(ν◦) =
1√

π ∆νD
, (14.13)

which we shall use presently. Here ∆νD is the Doppler width, given in terms of the kinetic
temperature and molecular mass by equation (E.24). We now integrate equation (14.12) over
frequency. Defining I ≡ ∫

Iν φ(ν) dν, we obtain

dI

ds
=

hν◦ ∆n◦ gu Bul

4π ∆ν (1 + J̄/J̄s)
I +

hν◦ nu Aul

4 π ∆ν
. (14.14)

Note that we have used equation (14.9) to insert the dependence of ∆n on the radiation intensity.
We have also defined an effective bandwidth for the maser radiation ∆ν by

∆ν ≡
∫

Iν dν

I
. (14.15)

If the line is narrower than the Doppler width, as is often the case, then it follows from equa-
tion (14.13) that ∆ν ≈ √

π ∆νD. For now, we shall neglect any spatial variation of ∆ν.
Our goal is to integrate equation (14.12) and thereby obtain I(s). First, we require some

prescription for J̄ , as well as for nu, the upper-level population. On the first point, the small
spot sizes of masers indicate that the radiation is tightly beamed. Let ∆Ω be the small solid angle
into which the photons propagate, taken to be constant along the beam. Then the definition of
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Jν , equation (2.19), tells us that Jν = Iν ∆Ω/4π. Evaluating J̄ through equation (B.1), we
find J̄ = I ∆Ω/4π, and thus write

J̄

J̄s
=

I

Is
, (14.16)

where Is ≡ 4π J̄s/∆Ω.
The second righthand term in equation (14.14) represents the effect of spontaneous emis-

sion. This contribution is quickly overwhelmed by the shower of photons arising from stimu-
lated emission. However, there is no other initial source of radiation in the absence of a back-
ground source. Hence, our strategy is to keep the relevant term in equation (14.14), but replace
the nu multiplying Aul by n◦

u, the population at I = 0.
After incorporating this change, we may manipulate the transfer equation to read

dI

ds
=

I

L (1 + I/Is)
+ β

Is

L
. (14.17)

Here L, the unsaturated growth length, is

L ≡ 4π ∆ν

hν◦ ∆n◦ gu Bul
. (14.18)

The dimensionless quantity β is

β ≡ n◦
u

gu ∆n◦

(
∆Ω
4π

)
Aul

Bul J̄s
. (14.19)

Note that the quantity gu ∆n◦/n◦
u is a measure of the efficiency of the inversion process, before

the level populations are changed by maser radiation. For viable pump models, this efficiency
is not much less than unity, so that the inverse, which appears in equation (14.19), is not a very
large number. The final term in this expression may be rewritten with the aid of equation (14.10)
as

Aul

Bul J̄s
=

(1 + gu/gl) Aul

Γ + (1 + gu/gl)γulntot
, (14.20)

and is always small. Since ∆Ω is also small, we expect β � 1.
Equation (14.17) is readily integrated to yield an implicit expression for the intensity I(s).

In the limit of small β, we find

I(s)
Is

− I(0)
Is

+ ln
[
I(s)/Is + β

I(0)/Is + β

]
=

s

L
, (14.21)

where I(0) represents the background source. Figure 14.8 plots this result. At the beginning of
the amplification process, we are in the unsaturated regime. Here, I � Is, and the logarithmic
term in equation (14.21) dominates the lefthand side. We thus have the approximate solution

I(s) = I(0) exp (s/L) + β Is [exp (s/L) − 1] . unsaturated (14.22)
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Figure 14.8 The amplification of in-
tensity in a maser. Here, we have
set β = 10−4 and I(0) = 0 in equa-
tion (14.21). Note that I(s) first
rises linearly, before the exponential
growth takes hold. The rise becomes
linear again after saturation.

The growth becomes exponential in this regime, whether the initial flux is supplied by the back-
ground or just by spontaneous decay. In the former case, the quantity ln [I(s)/I(0)], commonly
referred to as the maser gain, increases linearly with path length.

The rapid growth of intensity continues until the stimulated emission begins to drain the
upper level. In this saturated regime, we have I � Is and the logarithmic term in (14.21) is
small. Since the transition between the two regimes occurs at I ≈ Is, we have approximately

I(s) = Is + Is

(
s − s1

L

)
. saturated (14.23)

Here the transition length s1 may be found by setting I(s) = Is in equation (14.22).
Once saturation has begun, the intensity itself climbs only linearly with path length. Equiv-

alently, the gain varies only logarithmically. Equation (14.5a), along with the definition of ∆n
in (14.7), tells us that the volumetric rate at which the upper level produces maser photons is
R = gu ∆n Bul J̄ . Using equation (14.9) for ∆n, we see that R approaches a finite limit:

R ≈ gu ∆n◦ Bul J̄s

=
Pu − Pl gu/gl

1 + gu/gl
.

(14.24)

Thus, the asymptotic photon production rate is proportional to the difference of the two pump
rates per sublevel. Every molecule injected into the upper level is potentially able to create
a maser photon, while every new molecule added to the lower level can absorb one. Note,
however, that the actual population inversion tends to zero in the saturated regime, whatever the
difference in pump rates. That is, from equation (14.9), ∆n vanishes for J̄ � J̄s.
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14.3 Maser Theory: Further Considerations

Their high brightness temperature is but one property of observed masers. We now turn to other
puzzling characteristics, beginning with the remarkably narrow line widths. We also need to
address the small apparent sizes of the spots themselves. This last feature relates to the basic
issue of how masers are pumped.

14.3.1 Line Narrowing

The relative narrowness of maser lines suggests that some process reduces the line width in the
course of propagation. It is easy to see that the strong amplification in the unsaturated regime
has just such an effect. Returning to the frequency-dependent transfer equation (14.11), we note
that the absorption coefficient αν is proportional to φ(ν), as explicitly shown in (14.12). Since
we are assuming a Doppler absorption profile, we may write

αν = α◦ exp
[
− (ν − ν◦)2

∆ν2
D

]
, (14.25)

where α◦ is the coefficient at line center.
Suppose that we ignore the final term in equation (14.11) representing spontaneous emis-

sion. Then, after propagation through a path length s, the background specific intensity Iν(0)
amplifies to

Iν(s) = Iν(0) exp (ανs) ,

so that
Iν(s)
I◦(s)

=
Iν(0)
I◦(0)

exp [(αν − α◦)s] . (14.26)

The background is presumably some continuum source, for which Iν(0)/I◦(0) is close to unity.
Then equations (14.25) and (14.26) tell us that the propagated intensity falls to e−1 of its central
value at a frequency shift ∆ν∗ such that

1 − exp
[
− (∆ν∗/∆νD)2

]
=

1
α◦ s

. (14.27)

Expanding the exponential yields an approximate solution for ∆ν∗

∆ν∗ = ∆νD (α◦ s)−1/2
, (14.28)

which succinctly describes the narrowing as a function of path length.
In more detail, the line can only narrow by a finite amount before the central portion begins

to saturate. Since the wings are still growing exponentially, the line begins to broaden and even-
tually becomes fully saturated. Beyond this point, dIν/ds is given by ανIs rather than ανIν . 3

Here the absorption coefficient αν still has the frequency dependence given by equation (14.25).
Thus, the amplification is linear at all frequencies, and the profile retains a constant, Doppler
width from then on.
3 To prove this statement, one must consider not the full level populations, as in equation (14.5), but only that subset

which responds to each frequency. One finds that the population difference relevant for the radiative transfer, which
appears as ∆n φ(ν) in equation (14.12), declines as Is/Iν in the saturated regime. (Compare equation (14.9).)
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Figure 14.9 Maser beaming in (a) unsaturated spheres,
(b) partially saturated spheres, and (c) filaments. The thick-
ness of the horizontal lines indicates the amplification for rays
moving to the right. Here we ignore the linear growth follow-
ing saturation. Notice in (b) and (c) how strong amplification
ceases once a ray leaves the unsaturated core, shown in white.

14.3.2 Geometric Beaming

We next consider the geometric pattern of the radiation field. The linear sizes of observed
maser spots are so small that the intensity would not be amplified substantially along such a
length. Thus, the spots represent the termini of narrow, elongated paths directed away from the
observer. There is nothing physically constraining the photons to follow such a tube-like path.
However, even radiation traveling through a broader region has a tendency to become more
centrally peaked in the course of propagation. This process, analogous to the narrowing in the
frequency domain, is known as beaming.

The simplest illustration of beaming is provided by a spherical region emitting maser radi-
ation (see Figure 14.9a). Here, we suppose that the seed photons are supplied by spontaneous
emission within the sphere. We further suppose, at least initially, that the region is wholly un-
saturated. That is, the integrated intensity J̄ reaching any point is not sufficient to affect the
population inversion, which is maintained by an unspecified, internal pump. The only rays
observed are those emanating from the near side of the sphere, and which have the proper di-
rection. The intensity I(s) of all such rays grows exponentially along their respective chords.
As illustrated in the figure, the gain is greatest along the sphere’s diameter and falls off severely
to either side. The observed spot size is clearly less than the full angle subtended by the sphere.

Most interstellar masers are bright enough that their intensity must have saturated. To in-
corporate this element into our picture, we may imagine weakening the pump throughout the
sphere. That is, we lower the rates Pu and Pl, both still presumed to be spatially uniform. The
first region to become saturated is the outer boundary, where the radiation, originating from
the whole interior, has been amplified the most. As we continue turning down the pump rates,
the saturated region advances inward. The sphere now consists of a saturated mantle and an
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unsaturated, central core (Figure 14.9b). The strongest rays observed are now those which pass
through this core, since they undergo at least some exponential growth. Moreover, the path
along the core’s diameter still provides more amplification than its neighbors. We see that the
apparent angular extent of the maser is even smaller under these more general conditions.

Our example of a perfectly spherical maser has no observational or theoretical basis. How-
ever, the fully saturated paths in Figure 14.9b have such weak intensities that they hardly con-
tribute to the observed pattern. The original sphere may thus be replaced by a cylindrical, or
filamentary emitting region, as illustrated in Figure 14.9c. Such a geometry is, in fact, quite
plausible. The filament is distinguished from its surroundings not by a contrast in density, but
by its internal velocity coherence. Given the differential motion expected in all clouds, maser
amplification is only possible if the emitting and absorbing molecules share essentially the same
velocity, i. e., if they have a relative Doppler shift no greater than ∆ν∗ in equation (14.28). Our
idealized filament then represents a path along which the velocity vectors happen to have the
correct orientation and magnitude. Even such limited coherence is only temporary. Under the
action of the differential motion, the vectors become misaligned, and the maser spot fades away.
As we remarked in § 14.1, such a view is consistent with the observed temporal fluctuations.

14.3.3 Pumping of H2O and OH

Velocity coherence naturally plays a role in any detailed account of maser pumping. We noted
earlier that the 1.35 cm H2O masers seem to require a high density. This fact indicates that the
masers could be collisionally pumped, a supposition that is verified by detailed calculations.
Molecules attain their excited state through impact with ambient species, predominantly H2.
The ultimate energy source is the bulk motion of gas, specifically that associated with high-
velocity stellar winds. In contrast, OH masers do not require as high a density, but only appear in
the vicinity of massive, luminous stars. It is reasonable to suppose, therefore, that the inversion
in this case is maintained by either stellar or ambient photons, i. e., that the masers are radiatively
pumped.

The basic tendency for population inversions in H2O is not difficult to understand. Referring
again to Figure 5.16, we recall the unique status of the backbone states, i. e., the lowest levels
at each J-value. The fastest radiative deexcitation and collisional transition rates are between
these states, and between those sharing the same J . Thus, molecules in a level above the back-
bone quickly decay to it. For transitions along the backbone itself, the relatively large Einstein
A-values mean that the emitted photons are easily trapped. Frequent upward and downward
collisions are therefore more effective than radiation in facilitating these transitions. At any
time, then, most of the H2O molecules are found along the backbone, where they communicate
with each other via collisions. Any other level, such as 523, is fed by the relatively infrequent
radiative decays from the nearest backbone state (here 616) and has a lower population.

How, then, are molecules pumped to relatively high levels within the backbone? Table 14.1
shows that the 616 state lies 640 K above ground. Strong J-shocks, as we noted in Chapter 8,
produce H2O in their postshock cooling regions. The temperature at which this formation oc-
curs is about 400 K. Slower C-shocks also give H2O emission. Here, somewhat paradoxically,
the molecule may be at a significantly higher temperature. In any case, the interface between
stellar winds and clouds is an attractive environment for collisional excitation of maser emis-
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sion. Numerical models confirm that the cloud material must be compressed to densities of
order 107 cm−3 for the excitation to occur. Note that the calculations assume a preshock den-
sity also of this order, significantly higher than typical cloud values. The actual pumping of
H2O is due to collisions with energetic H2, which itself either comes from the cloud material
(C-shocks), or is reformed downstream on grain surfaces (J-shocks).

Linear strings of H2O maser spots, like those seen in Figure 14.4, indicate that the relevant
shocks lie close to the central axis of a collimated jet. We also saw how, in W49N, the spots
are organized into longer-lived centers of activity. The typical size of a center, 1014 cm, may
represent the diameter of a discrete clump of density 108 to 109 cm−3, heated and compressed
by passage of the shock. Individual spots are the endpoints of transient, velocity-coherent paths
within each clump. These paths reside in the relatively thin layer of heated gas created by
the sheet-like, propagating shockfront. Indeed, the typical observed spot diameter of 1013 cm
matches the expected thickness of the postshock region where H2O is both produced and colli-
sionally excited.

Turning to OH masers, the observed intensities again require that the excitation occur within
a gas of elevated density, n ∼ 107 cm−3. This figure exceeds by two orders of magnitude the
average internal density of ultracompact HII regions like those in W49N and W3(OH). We have
noted that clusters of 18 cm spots appear toward the outer boundaries of their parent HII regions,
whenever the latter are detectable through radio emission. These findings together imply that
the masers arise in a condensed shell surrounding the ionized gas. Theory indeed predicts the
existence of just such a zone. As we shall describe in the next chapter, an expanding HII region
drives a shock front into the surrounding gas, compressing it in a relatively thin layer.

Figure 14.10 illustrates how the path of maser amplification lies along the tangent to the HII
region, here idealized as a perfect sphere of radius R. Suppose we identify the observed spot
size d with the thickness of the outer shell. Then the chord shown has a length l, where

l = 2 (R + d) sin θ

= 2 (R + d)

[
1 −

(
R

R + d

)2
]1/2

≈ 23/2
√

R d .

(14.29)

Here the final approximation has utilized d � R. Substituting representative values for R and
d of 5 × 1016 cm and 1 × 1014 cm, respectively, we find that l is 6 × 1015 cm. This figure
provides an upper limit to the maser amplification path, which occurs within some velocity-
coherent portion of the chord. That is, the emitting filament has an aspect ratio of at most 60:1.
Clusters of spots presumably arise because a realistic HII region is significantly warped and so
has a number of closely spaced tangent surfaces.

What pumps OH masers? For those associated with post-main-sequence giants, the answer
is known with confidence. The stars classified as Mira variables fluctuate regularly in lumi-
nosity, over a time scale of about a year. Masers located outside the stars undergo identical
variation in their intensity, proving that stellar radiation is the underlying energy source. A
similar situation holds for the longer-period OH/IR stars, which are also losing mass at a prodi-
gious rate. What actually excites the molecules in both cases is diffuse, far-infrared radiation
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Figure 14.10 Amplification of OH masers within the postshock shell of an HII region. The HII
region has radius R and thickness d, and is surrounded by molecular gas. The maser is amplified
along the chord of length l, which subtends an angle 2θ at the region’s center.

from heated dust grains. The photons promote OH to higher rotational levels, whose subsequent
decay through both collisions and radiation leads to the ground-state inversion needed for 18 cm
maser emission.

The same mechanism may well hold for OH masers associated with HII regions, but a
fully self-consistent picture is not yet available. Unfortunately, the massive stars in question
do not display regular variability. The actual fluctuations in maser brightness are also more
sporadic and probably stem from turbulent motion, as in H2O emission. One encouraging sign
is that diffuse, far-infrared luminosity and the intensity of 1665 MHz spots are correlated over
a large sample of HII regions. Level population calculations that produce inversions for all four
transitions require dust and gas temperatures near 150 K. Whether these inversions, created
by the ambient radiation field, can be maintained over sufficient paths to yield strong maser
emission remains to be seen.

Finally, we emphasize that 18 cm maser emission is only found near ultracompact HII
regions, i. e., those of diameter 1017 cm or less. The older, and more commonly observed,
regions of much greater size rarely exhibit maser activity, either from OH or any other species.
This trend is also consistent with our theoretical expectation. As an HII region expands, its
internal pressure falls. Once this pressure reaches the ambient value, the bounding shock front
disappears. We see again how maser emission is a transient, relatively brief phenomenon in the
early life of stars.

14.4 Tracing Jets and Outflows

Let us now examine more closely the observed link between masers and outflowing gas. We
begin with jets, before turning to the broader molecular outflows associated with low- and high-
mass stars. In the latter category, masers generated in the BN-KL region of Orion have been



14.4 Tracing Jets and Outflows 509

particularly well studied. Finally, we see how the geometric expansion of outflowing masers
provides a useful technique for gauging the source distance.

Before launching into the descriptive survey, we remark that the velocity structure of masers
is linked to their mode of production. If OH maser activity indeed occurs in the manner illus-
trated by Figure 14.10, then the observer should see no radial velocity offset of the emission
spike relative to the systemic velocity of the source. Of course, the radiation from each fila-
ment diverges with a finite angle, so that the filament need not lie precisely on the tangent for
its emission to be detectable. Paths that are more offset from the tangent yield lower-intensity
spikes, but with finite radial velocity offsets. In summary, the highest-amplitude features within
the full line profile should have radial velocities near that of the parent cloud, and the intensity
should generally decrease for more red- or blueshifted spikes.

Such indeed is the character of observed OH maser profiles. Our description applies equally
well to 1.35 cm H2O emission, as is evident in Figure 14.2. Here, too, we are dealing with
outflowing material whose emission is strongly beamed laterally, i. e., in a plane perpendicular
to the local velocity direction. For both types of masers, we have identified this plane with a
geometrically thin layer of compressed gas.

14.4.1 Jets and HII Regions

We begin by probing the smallest accessible size scale, that of radio jets. Recall that these
structures trace the innermost portions of collimated stellar winds and cover a distance less than
103 AU from the driving star. Their continuum luminosity represents the free-free emission
from powerful, wind-induced shocks. This picture is corroborated by the finding that H2O
masers may be situated within the same region.

Consider W75N in Cygnus. This active center of massive star formation, about 2 kpc distant,
is as embedded as the more extensive W49N, but has a much smaller infrared luminosity, closer
to 105 L�. There are several areas of especially strong radio continuum flux. Figure 14.11 is
an interferometric map of one of these, designated VLA 1 (not to be confused with the driving
source for HH 1-2 in Orion). The contours display flux at 1.3 cm. It is evident that the emitting
area is elongated about the local peak, which marks the position of the massive, driving star.
The centimeter radiation spans a length of some 800 AU. A line bisecting this radio jet roughly
coincides with the central axis of a parsec-scale CO outflow.

The filled circles in Figure 14.11 represent the 1.35 cm H2O masers. These are located
close to, but not coincident with, the jet axis and have a mean separation from the line of about
100 AU. The elongated distribution of spots is reminiscent of Figure 14.4, where the masers are
located much farther from the ionized gas. With a few exceptions, the radial velocities of the
spots in Figure 14.11 are near the cloud value of +10 km s−1. Thus, the jet in this case may lie
close to the plane of the sky. It is also possible that the masers are not indicating the speed of
the wind itself, as we shall discuss shortly.

The W75N area contains several other radio-emitting regions with associated H2O masers.
In one of them, designated VLA 2, the dozen or so spots are more isotropically distributed.
Here, the radio continuum region is too small to be resolved. A third region, VLA 3, is more
spherical than VLA 1. Both VLA 2 and VLA 3 are extreme examples of ultracompact HII
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Figure 14.11 Jet-like configuration of H2O masers in W75N. The contours represent 1.3 cm
continuum emission, while the filled circles show the maser positions.

regions, with diameters less than 1016 cm. It is apparent that H2O masers can also arise in such
environments, where the ionization is spreading through especially dense gas.

Strings of H2O masers are found not only outside HII regions, but are also generated by
low-mass stellar winds. We previously discussed, in § 14.1, the variability of the spots outside
the embedded star SSV 13. Consider also the Class 0 source L1448/mm, whose spectral en-
ergy distribution we showed in Figure 4.4. This star drives a vigorous molecular outflow, with
relatively narrow CO contours and high internal velocity. As seen in Figure 14.12, patches of
emission in the 2.12 µm line of shocked H2 lie along the outflow’s central axis. Radio obser-
vations reveal a handful of 1.35 cm masers situated on either side of the star and spanning a
total distance of about 100 AU. A line joining the masers has the same orientation as the much
larger (104-AU) jet delineated by the 2.12 µm emission. Moreover, the radial velocities of the
maser spots are now offset from the cloud value, and in the expected sense. Thus, the upper two
masers within the inset of Figure 14.12 are blueshifted, while the lower three are redshifted.

Yet another instructive example is the HH 212 outflow, whose remarkably symmetric knots
in shocked H2 were previously shown as Figure 13.6. Here, the several dozen observed H2O
masers lie within 70 AU of the star and close to the jet axis inferred from both H2 and from a
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Figure 14.12 Molecular outflow and H2O masers in L1448. The solid and dashed contours
show, respectively, the blue- and redshifted emission from the J = 2 → 1 emission of 12C16O,
while the dark patches are the 2.12 µm emission of H2. The filled circles within the in-
set show positions for the 5 brightest H2O masers. The angular offsets are measured from
α = 3h22m34s, δ = 30◦33′35′′.

broader CO outflow. Radio interferometric observations taken several months apart reveal that
the maser spots are moving away from the central star. All these features are highly variable
in their intensity. Some of them lie along an arclike structure that mimics the larger H2 bow-
shocks. This latter observation is especially important, as it bolsters the idea that H2O masers
are energized through the shocking of wind gas.
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14.4.2 Clumpy Outflows

The L1448 and HH 212 outflows are hardly unique, or even unusual, in displaying maser ac-
tivity. Examination of over a hundred molecular outflows finds that at least 50 percent have
1.35 cm emission, above a flux level of 1.5 Jy. Moreover, the observed maser spots are invari-
ably located close to the driving star. Some of the latter, like L1448/mm, are Class 0 sources,
which have especially high cloud density in this region. Many of the outflows, however, are
driven by less embedded objects. The preshock density of 107 cm−3 required for maser excita-
tion is greater than that in cloud cores and must be associated with individual, wind-generated
clumps.

Whatever process in the wind actually forms these clumps and shocks them only operates
within 100 AU or so from a low-mass star. It is natural to relate this vigorous activity to that
powering the free-free emission in the same region. There is, in fact, a good correlation between
the total luminosity in the 1.35 cm maser line and the radio continuum. For massive stars, on
the other hand, we have seen from the example of NGC 6334F that H2O masers may be situated
far from any ionized gas, although still relatively close to their own source of hot gas and wind
momentum.

The study of such environments has made it clear that H2O masers appear extremely early in
the life of a massive star, before any HII region at all can be detected. The dense gas surrounding
the star and containing the masers is known as a hot core; we shall be returning to this topic in
Chapter 15. In older regions, ionized gas has spread outward from the star. Since no molecules
can survive within the high temperature of an HII region, it may seem puzzling that H2O masers
persist, as in the example of W49N. High-resolution observations reveal, in this case, that the
ionization is patchy, and that the maser activity occurs only within neutral regions that are
presumably shielded from the destructive ultraviolet photons.

Returning momentarily to NGC 6334F and Figure 14.4, surveys have found this geometric
situation to be quite common. That is, cometary HII regions frequently have clumps or linear
strings of H2O masers lying beyond the apex of the curved arc. This arc tells us where ionization
has been stalled because of a steep density rise in the surrounding material (Chapter 15). On the
opposite side of the star, ionization spreads unimpeded. The H2O masers project from their own
massive star, as we know from the presence of heated molecules in their vicinity. The associated
hot core must stifle local ionization, preventing any detectable HII region from arising. On the
other hand, this more deeply embedded star is clearly powering a jet-like flow that penetrates
the hot core.

Precisely how dense gas actually collimates a wind is no better understood for massive stars
than for their low-mass counterparts. In both situations, we have a much better hope of sorting
out the dynamics if the shocked gas is actually moving at the local wind velocity. We argued
in Chapter 13 for the plausibility of this assumption with regard to Herbig-Haro objects. In that
case, the internal knots represent low-amplitude shocks that travel nearly at the jet speed. For
masers, however, the precise nature of the shock interaction is not yet known. The high densities
required by the pumping models indicate, as we have noted, that emission is activated by the
collision of internal clumps, each of which could be moving more slowly than the wind that is
pushing them.
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Figure 14.13 Velocity of H2O masers in W49N as a function of angular distance from their
common center of expansion. The velocity component shown is that directed along the radius to
the center. The smooth curve is an analytic fit to the data.

An important clue in this regard is the magnitude of the observed, radial velocities them-
selves. For the broader flows of maser spots, these speeds are indeed much lower than in a
plausible stellar wind. Figure 14.13 displays the H2O maser speeds in W49 as a function of
angular distance from the center of expansion. What is actually shown is ur, the velocity pro-
jected onto the radial direction from that center. Out to an angle of about 1′′, corresponding
to a physical distance of 1 × 1017 cm, the speed is nearly constant. Its average magnitude of
17 km s−1 is only a few percent of the wind speed from an O-type star. Equally striking is
the dramatic acceleration for large radii. There is no generally accepted explanation for these
peculiar features. They strongly suggest, however, that the observed velocities represent not
the wind as it is launched from the star, but the turbulent and clumpy flow created when that
high-speed gas enters the surrounding cloud.

14.4.3 The Orion Masers

Acceleration similar to that in W49 occurs within the ultracompact HII region W3(OH) and at
other sites, as well. One particularly well-studied example is the BN-KL region of Orion. In
this case, there is only a tiny HII region surrounding the powerful infrared source IRc2. (For the
morphology of this area, recall Figure 1.7.) Yet there is strong evidence for an expanding flow
centered on that position. In this case, the ambient density is apparently high enough to suppress
the growth of ionization, but not to collimate the especially strong wind. Proper motions of H2O
masers, combined with Doppler velocities, show that the spots are moving away from IRc2 in
an anisotropic, roughly bipolar fashion. The measured speed is nearly constant out to a radius of
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2 × 1017 cm. Here, the magnitude is 18 km s−1, remarkably close to the W49N value. Clumps
of masers, analogous to the W49N centers of activity, are seen within the interior region. Farther
out, the flow is more isotropic and faster, with the velocity eventually surpassing 100 km s−1.

Observers have closely examined the BN-KL region in many other molecular lines. Their
findings both support the picture of an accelerating outflow and lend credence to the supposi-
tion that H2O masers are moving at the local gas speed, even if it is not the pure wind value.
Activity in SiO masers is seen very close to IRc2, within a distance of order 1015 cm. Emission
comes from vibrationally excited (v = 1 and v = 2) SiO, indicating an ambient temperature
near 2000 K. The Doppler shift of the line yields a modest velocity, consistent with that found
from H2O. At a radius of some 1016 cm, SiO emission is thermal (i. e., non-maser) and comes
from the ground vibrational state. The measured radial velocity is again consistently low. So too
is that derived from strong, narrow emission in several inversion lines of NH3. At even greater
distance from IRc2, the millimeter emission from CO indicates that the velocity has climbed by
an order of magnitude. Toward the outskirts of the CO, at a distance exceeding 1017 cm, are the
peaks in the 2.12 µm line of H2. The high-speed gas in this region has an elevated temperature
that signifies internal energy dissipation through shocks. (Recall Figure 8.9.) Some of these
shocks appear as the protruding fingers in Plate 13.

The observations of SiO maser emission in Orion are an object lesson in how the prevalent
physical interpretation of a phenomenon may change markedly with improvements in imaging
capability. The v = 1 (J = 2 → 1) line from the BN-KL region is the strongest in the Galaxy
and was detected as early as 1974. The line had two distinct peaks, well separated in radial
velocity. Judging from similar observations of OH masers associated with post-main-sequence
stars, it appeared that the radiation emanated from an expanding shell, whose front and back
sides were being viewed simultaneously.

By 1980, interferometry had revealed that the SiO signal was associated with IRc2. Sub-
sequent observations showed that the two peaks actually came from separate areas on either
side of this source. Each region, in fact, appeared to trace part of an elliptical arc. From the
1980s through the late 1990s, this emission was generally ascribed to a rotating, expanding
ring. However, with even higher, sub-milliarcsecond resolution, what had appeared to be arcs
broke up into more dispersed collections of numerous spots (see Figure 14.14). All the spots
on one side of the source are redshifted with respect to IRc2, while those on the opposite side
are blueshifted. The overall impression is now of a wide-angle outflow that participates in the
larger one seen through H2O masers.

14.4.4 Expanding Cluster Parallax

The fact that the H2O masers in Orion appear to be streaming away from a common source
offers a practical means to determine the distance to that source, i. e., to IRc2 itself. Suppose
one constructs a three-dimensional model of the spot motion. That is, one writes down an
analytic expression for the velocity components at any position as a function of the distance
to the center of expansion, where the precise location of the latter is left momentarily as an
unknown parameter. The observational data include coordinates in the plane of the sky for all
maser spots, as well as their line-of-sight velocities, Vr. From the model, one can predict the
transverse velocities, V⊥, of these same spots. But one also observes proper motions of the
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Figure 14.14 Clumps of SiO masers in the Orion BN-KL region. Filled circles represent masers
that are blueshifted with respect to IRc2; open circles are redshifted. The crosshairs show the
centroid and position uncertainty of a feature within IRc2 known as Source I. Angular offsets are
measured from α = 5h35m14.s5, δ = −05◦22′36.′′3.

masers. These angular displacements may also be converted to transverse velocities, provided
one knows the distance. One therefore adjusts both the assumed center of expansion and the
distance until the two sets of transverse velocities best agree.

It is apparent from our description that this technique of expanding cluster parallax is akin
to the moving cluster method used to set the Hyades distance (Chapter 4). In the case of the
H2O maser stream in Orion, the parallax method yields a distance of 480 pc, close to the value
obtained by other means. The expanding crowd of spots in W49N is also amenable to such
study. Here, the derived distance to the system is 11.4 kpc. The method has also been applied
to the H2O masers in Sgr B2/North, the star-forming cloud situated close to the Galactic center
(Figure 5.3). The inferred distance of 7.1 kpc is somewhat less than the accepted value of
8.5 kpc for the Galactocentric radius.

We close this chapter by stressing that the nature of the motion being revealed by masers
is the subject of ongoing study and remains problematic in some cases. The situation is com-
plicated by the variability of maser emission, which can make it difficult to discern a stable
pattern of spots. On occasion, the string of H2O masers close to a star is found not to be aligned
with the axis of a radio jet or CO outflow, but is instead more orthogonal to that axis. If the
masers also exhibit a significant gradient in radial velocity, one is tempted to place them in a
circumstellar disk, presumably one seen nearly edge-on. Certainly the requisite high densities
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would be plausibly attained in such an environment. It is by no means clear, however, how the
masers could be collisionally pumped, especially if the wind itself is predominantly normal to
the disk plane. We must await future, high-resolution observations, including proper motion
data, to elucidate the true conditions.

Chapter Summary

Embedded young stars create flickering spots of high-intensity radio emission. These masers
arise when either the stellar wind or radiation field energizes molecules within a dense gaseous
environment. The two most commonly observed types of masers are the 1.35 cm rotational
transition of H2O and the hyperfine OH lines near 18 cm. However, numerous other molecules
exhibit the effect. In all cases, the spots are not only extraordinarily bright, but also small in
size and narrowly confined in frequency.

Maser emission occurs when some external energy source overpopulates the upper level of a
transition. Stimulated emission then causes the intensity to rise exponentially along some path
where the molecules are aligned in velocity. The rapid intensity growth creates geometrical
beaming into ever narrower spots and decreases the width of the line. Ultimately, the radiation
intensity becomes so high that it begins to depopulate the upper level, and the amplification
saturates.

Shocks associated with stellar winds provide the energy for H2O masers. These shocks
occur within dense clumps created by the wind. Strings of H2O masers are found near both high-
and low-mass stars, and are often aligned with radio continuum jets or shocked H2 emission.
The observed spatial velocities of the spots trace the flow pattern of the underlying wind. In
contrast, OH masers arise in the outskirts of HII regions exclusively surrounding massive stars.
The pump in this case may be far-infrared radiation from heated dust. Both types of mechanism
power the various maser lines of CH3OH, which trace dense gas in or near compact HII regions.
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We now conclude Part IV by exploring more systematically the various ways in which stars of
the highest mass influence surrounding matter. The salient characteristic of any massive star
is its extreme energy output, much of which is at ultraviolet wavelengths. It is appropriate,
therefore, to begin with a general discussion of HII regions. After presenting the essential
theory of ionization fronts, we describe the observed features of both mature HII regions and
the younger, ultracompact variety, whose nature is not as well understood. We next turn our
attention to the hot cores surrounding the very youngest, massive stars. Here the gas density is
so high that it slows the spread of ionization. While the detailed structure and dynamics of the
cores themselves is not established, infrared observations and maser studies have nevertheless
provided valuable information.

Powerful winds are another feature of massive stars and are intimately linked to their high
luminosities. The winds, in fact, are driven outward by the momentum of ultraviolet photons,
an acceleration mechanism wholly different from that pertaining to low-mass objects. After
describing this physical process, we also show how the high-velocity gas generates both radio
and X-ray emission. We then broaden our scope to encompass the large molecular outflows as-
sociated with individual massive stars and clusters. The outflow morphology broadly resembles
that of lower-mass analogues, but there are interesting, qualitative differences.

Our last two topics concern the disruption and clearing of gas by high-mass stars. We start at
the smallest scale, with the photoevaporation of circumstellar disks and the erosion of compact
clouds within HII regions. The latter are bodily compressed by ambient radiation; the enhanced
density may then lead to more stellar production. Finally, we describe how supernovae eject
high-speed shells that both crush and vaporize nearby gas. We examine critically the possibility
that the associated gas compression spawns a new generation of stars.

15.1 HII Regions

Consider a massive star buried within the cloud material from which it was born. For simplic-
ity, let us suppose that the cloud is composed initially of pure molecular hydrogen. Energetic
photons streaming from the stellar surface both dissociate the H2 and ionize the resulting HI.
At the same time, electrons and protons in this plasma recombine, creating new atomic hydro-
gen. Since each ionization event deletes a photon from the beam, a star with a fixed output in
ultraviolet radiation can only ionize a limited region in the surrounding cloud. If this matter
has uniform density, the ionization spreads isotropically and fills out a volume known as the
Strömgren sphere. Let us first derive the properties of this simplest of HII regions.
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15.1.1 The Strömgren Sphere

We begin by noting that the condition of ionization balance holds at each location within the
region. That is, the volumetric rate at which any parcel of gas is being ionized just offsets
the recombination rate of free electrons and protons in the same parcel. Integrating over the
whole sphere, the total number of ionization events per unit time equals the total rate of re-
combinations.1 But the former must be N∗, the rate at which the star emits ionizing photons,
i. e., those with energy E above 13.6 eV. The minimum frequency here is the Lyman limit
of ν1 ≡ 3.29 × 1015 s−1, corresponding to λ1 = 912 Å. Table 15.1 lists values of N∗ for
stars spanning a range of spectral types. The table also gives these stars’ far-ultraviolet output
(6 < E < 13.6 eV), a figure that will enter our later discussion (§ 15.4).

Table 15.1 Ultraviolet Radiation from Massive Stars

Spectral Mass log N∗ log NFUV

Type (M�) (s−1) (s−1)

O4 70 49.9 49.5
O5 60 49.4 49.2
O6 40 48.8 48.8
O7 30 48.5 48.6
O8 23 48.2 48.4
O9 20 47.8 48.2
B0 18 47.1 48.1
B1 13 45.4 47.5
B2 10 44.8 47.1

To describe recombinations qualitatively, we introduce αrec(T ), the recombination coeffi-
cient. This quantity, with units of cm3 s−1, is a function only of the ambient temperature within
the HII region. The volumetric rate at which free electrons and protons combine to produce
atomic hydrogen is then written as

R = ne np αrec(T )

= n2
e αrec(T ) ,

(15.1)

where the last expression uses charge neutrality in the ionized plasma.
The total rate of recombinations within the sphere follows by integrating R over the volume.

Assuming, for simplicity, that both ne and T are spatial constants, we balance total ionizations
and recombinations to find

N∗ =
4 π

3
n2

e α′
rec(T ) R3

s . (15.2)

The quantity Rs is the Strömgren radius. Note that the recombination coefficient, written here
with a prime, differs from the one in (15.1). The latter includes recombinations to all possible

1 The assumption of global ionization balance fails if the ambient density is sufficiently low, or if the cloud gas is
clumpy. Ionizing photons that escape from porous HII regions may be the energizing source for the warm neutral
medium; recall § 2.1.



520 15 Effects of Massive Stars

levels of HI, including the ground (n = 1) state. But in considering global ionization balance,
we should neglect recombinations to n = 1. Each such event produces another ionizing photon
that is promptly absorbed nearby.

We shall later show that the ionization spreads so quickly to the Strömgren radius that the
original cloud density is not able to change appreciably. Thus, we may equate ne in equa-
tion (15.2) with n0

H , the number density of hydrogen atoms external to Rs. (Since the cloud
is presumed to be molecular, n0

H is twice n0
H2

, the number density of H2.) We then solve
equation (15.2) for Rs to find

Rs =
[

3N∗
4 π α′

rec (n0
H)2

]1/3

= 0.4 pc
( N∗

1049 s−1

)1/3 (
n0

H2

103 cm−3

)−2/3

.

(15.3)

In the numerical expression, we have used an N∗-value of 1049 s−1, corresponding to an O6
star. We have also adopted a temperature of 104 K for the purpose of evaluating α′

rec, which
is then 2.6 × 10−13 cm3 s−1. The characteristic temperature of an HII region, in other words,
is of the same order as, but lower than, the surface value for the central star. We shall indicate
presently how this figure is derived.

When the hydrogen within the HII region is exposed to the flux of Lyman continuum photons
from an O or B star, the probability per unit time of ionizing an atom is far greater than the
probability for a proton to recombine with any of the free electrons in its vicinity. For the
volumetric rates to match, therefore, the number density of neutral atoms has to be very much
smaller than the density of protons (or electrons). In other words, the interior of the HII region
is nearly completely ionized. The neutral density becomes significant only when the photon flux
becomes attenuated by the ionizations it is creating. The transition to neutrality at the boundary
of an HII region thus occurs over some multiple of the photon mean free path within the fully
neutral medium, i. e., over ∆r, where

∆r =
1

n0
H σν1

. (15.4)

Here σν1 is the photoionization cross section of a ground-state hydrogen atom, evaluated at the
Lyman limit. Using σν1 = 6.8 × 10−18 cm2 and our representative n0

H of 2 × 103 cm−3, we
find that ∆r = 7.4 × 1013 cm, or about 5 × 10−5 of Rs itself. Thus, HII regions tend to be
very sharp-edged.

15.1.2 First and Second Expansions

So far, we have treated the Strömgren sphere as if it were a static entity. In fact, the zone of
ionization expands with time. At the earliest stages, no HII region at all exists around the star,
a situation we shall presently explore. Later, the region spreads, first quickly to the Strömgren
radius, and then more slowly beyond. Let us follow the sequence of events in more detail.
For now, we retain our simplifying assumption that the parent molecular cloud has a spatially
uniform density.
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The moving edge of the HII region is known as the ionization front. From our earlier re-
marks, the true boundary has a finite width, but is narrow enough that we may treat the front
as a sharp discontinuity. When, at early times, the front radius R is less than Rs, the total rate
of recombinations within the HII region is insufficient to match the star’s output of ionizing
radiation. Thus, surplus photons reach the front itself; these ionize additional gas beyond it. In
this way, the front expands.

Figure 15.1 shows in more detail how the spreading occurs. Let F∗(t) be the flux of ionizing
photons reaching R at time t. Over a subsequent interval ∆t, the front advances a distance
∆R, engulfing n0

H2
∆R hydrogen molecules per unit area. Every one of these molecules is

first dissociated during ∆t, creating 2 n0
H2

∆R neutral atoms. Each of these atoms is then also
ionized. The number of photons crossing the front is F∗ ∆t. We recall from Chapter 5 that direct
dissociation of a hydrogen molecule requires a single photon with energy exceeding 14.7 eV.
An additional two photons of energy greater than 13.6 eV are needed to ionize both hydrogen
atoms. In summary, three photons create two ionizations. Thus

F∗ ∆t

2 n0
H2

∆R
=

3
2

,

so that
dR

dt
=

F∗
3 n0

H2

=
2 F∗
3 n0

H

.

(15.5)

Here, we have implicitly assumed that the fraction of the star’s energy output above either 13.6
or 14.7 eV is essentially the same.

Consider next the recombinations occurring within the spreading HII region. The total rate
of such events leading to n ≥ 2 hydrogen levels is now (4π/3) n2

e α′
rec R3. Assuming that

ionization balance still holds, this figure also represents the number of stellar photons lost to
ionization per unit time. But the rate at which the surviving photons cross the ionization front
is 4πR2F∗. We thus find

N∗ = 4πR2F∗ +
4π

3
(n0

H)2 α′
rec R3 , (15.6)

where we have again equated ne with n0
H .

By combining equations (15.5) and (15.6), we arrive at an equation of motion for the ion-
ization front:

dR

dt
=

N∗
6 π n0

H R2
− 2

9
n0

H α′
rec R . (15.7)

We define a nondimensional radius λ as R/Rs and a nondimensional time τ ≡ t/trec. Here,
trec is the recombination time within the HII region:

trec ≡ 1
n0

H α′
rec

= 61 yr
(

n0
H2

103 cm2

)−1

.

(15.8)
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Figure 15.1 Spreading of the ionization front into a cloud with hydrogen number density n0
H .

For every three ultraviolet photons crossing the front at R, one dissociates a hydrogen molecule
and two more ionize the resulting atoms.

Cast in these new variables, equation (15.7) becomes

dλ

dτ
=

2
9 λ2

− 2 λ

9
. (15.9)

The solution obeying λ(0) = 0 is then

λ = [1 − exp (−2τ/3)]1/3 . first expansion (15.10)

Equation (15.10) shows that the front races out at high speed (formally infinite at the start)
and then slowly creeps toward the Strömgren radius, at which point the speed ostensibly van-

ishes. Specifically, R reaches a fraction
(
1 − e−1

)1/3 = 0.86 of Rs in a time 3 trec/2, or
91 yr for our canonical parameters. Over this interval, the average speed is very high, about
6 × 103 km s−1.

Our analysis has proceeded under the assumption that the mass density within the HII re-
gion matches the exterior value. This simplification is justified at early times, when the front’s
velocity exceeds the isothermal sound speed a1 within the ionized region. Note that this speed
is 11 km s−1 in an ionized gas at 104 K. Since a1 represents the velocity at which small pressure
disturbances propagate, the density has no time to readjust. However, the pressures inside and
outside the HII region are vastly different. With its temperature near 104 K, the interior has
a pressure greater by three orders of magnitude. Once R approaches Rs and the front speed
begins to diminish, the pressure difference is able to drive a second phase of expansion for the
HII region. Moreover, because the difference is so large, the ionization front is preceded by a
shock wave that first expands into the ambient cloud (see Figure 15.2).

The second phase begins when the velocity of the ionization front declines to the internal
sound speed. At that point, pressure disturbances from within the HII region are able to cross
the front and create an expanding shock. External matter traversing this shock is compressed
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Figure 15.2 Second expansion phase
of a spherical HII region. The ion-
ized volume surrounding the massive
star has the relatively low density n1

H .
It is bounded by a thin shell of neutral
matter. This shell advances supersoni-
cally into the surrounding cloud of den-
sity n◦

H , creating an expanding shock
front.

into a relatively thin, neutral shell that bounds the HII region. Both the shock and the ionization
front move out at a common speed that soon falls below a1. The mass of ionized gas continues
to rise, as ultraviolet photons impinge on the inner side of the shell. Meanwhile, expansion
allows the interior density to fall. Thus, the system gradually approaches pressure equilibrium.

Gas within the shell has the low, cloud temperature at the leading edge and is heated close to
104 K approaching the HII region. Material toward this inner surface emits strongly in various
infrared transitions, such as [C II] 158 µm and [O I] 63 µm. Observationally, these areas appear
as the photodissociation regions we studied in § 8.3. The most famous example is the Orion
Bar (Figure 1.5). Here, a variety of atomic and molecular lines are seen ahead of the visible
ionization front, i. e., away from the Trapezium stars.

To derive the motion of the shell, we use the fact that postshock cooling is so efficient that
the shock may be regarded as isothermal. The reader may verify, using Appendix F, that the
pressure inside the shell equals n0

HmH(dR/dt)2, where mH is the hydrogen atom mass. But
this pressure matches that inside the HII region, which is n1

HmHa2
1. Here, n1

H is the interior
number density of hydrogen atoms, which now falls below n0

H . We thus have

n1
H a2

1 = n0
H (dR/dt)2 . (15.11)

During the expansion, nearly all the stellar ionizing photons are still consumed by the HII
region, with only a small residual eroding the neutral shell.2 We thus modify equation (15.3) to
read

R =
[

3N∗
4 π α′

rec (n1
H)2

]1/3

. (15.12)

2 Photons leaving the HII region with energy between 11.2 and 13.6 eV can dissociate H2 by first exciting it into the
Werner band. (Recall § 5.2.) A mantle of HI gas created by this means surrounds both the shock and ionization fronts
for much of the second expansion; see Chapter 18.
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Elimination of n1
H between (15.11) and (15.12) gives the equation of motion during the second

expansion: (
dR

dt

)2

=
a2
1

n0
H

[
3N∗

4 π α′
rec R3

]1/2

. (15.13)

The velocity of the shell is thus a1(R/Rs)−3/4. To find the radius at all times, we again let
λ ≡ R/Rs. However, we define a new dimensionless time as τ ′ = a1t/Rs. Equation (15.13)
then becomes

dλ

dτ ′ = λ−3/4 . (15.14)

Since the initial approach to the Strömgren radius takes relatively little time, we adopt the initial
condition λ(0) = 1. Integrating equation (15.14) then yields

λ =
(

1 +
7 τ ′

4

)4/7

. second expansion (15.15)

15.1.3 Champagne Flows

In the final, equilibrium state, n1
H must fall to (a0/a1)2n0

H , i. e., far below the external density.
It follows from equation (15.12) that the final radius Rf is

Rf = (a1/a0)4/3 Rs . (15.16)

Written in terms of temperature, the expansion factor is (2T1/T0)2/3, so that the radius swells
by two orders of magnitude. In practice, such a large inflation never goes to completion. The
expansion time may become so long that the star itself dies before equilibrium is achieved.
More realistically, the ionization front reaches the boundary of the parent molecular cloud. That
is, the HII region is density bounded rather than ionization bounded. The pressurized HII gas
bursts out of the cloud into the surrounding medium, creating a champagne flow.

The simplest case to consider is when the star is located within one Strömgren radius from
the cloud edge. We suppose that beyond this edge is a medium of much lower density and cor-
respondingly higher temperature. The initial expansion of the HII region occurs just as before.
However, once a portion of the ionized volume crosses the edge into the lower-density gas,
equation (15.7) shows that the front velocity increases. This part of the HII region, therefore,
fans out rapidly into a plume-like structure (see Figure 15.3). The density within the plume ini-
tially matches that of the external medium. Hence, there is a large pressure discontinuity within
the ionized gas. A shock rushes outward, accelerating material behind it to velocities exceeding
the sound speed. Simultaneously, this efflux of gas creates a rarefaction wave, which travels
inward from the now disrupted cloud edge, back toward the star.

The solid curves in Figure 15.3 represent isodensity contours in a simulated champagne
flow. In this particular calculation, the parent cloud is cylindrical; its boundary appears as two
vertical lines. The original ionization front has nearly traversed the cylindrical radius, while the
low-density portion of the front has spread far beyond this. Note how the outflowing, ionized
gas reaches its maximum speed about midway to the expanded front. This gas consists of both
material from the cloud and the original, unperturbed medium.
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Figure 15.3 Numerical simulation of a champagne flow. The O star, with N∗ = 8 × 1048 s−1,
was originally located at the edge of a cylindrical cloud; the star’s present location is indicated by
an asterisk. Density contours and velocity vectors are shown 7 × 105 yr after the star turns on.
The contour nearest the star corresponds to ρ = 1 × 10−22 g cm−3. Successive contours fall by
∆log ρ = -0.5 until the density levels off at ρ = 3 × 10−24 g cm−3.

Figure 15.4 shows one observed case, the HII region S88B. The upper panel is an optical
image taken in the Hα line at 6563 Å. The sharp boundary of the visible emission demarcates
clearly the edge of the parent molecular cloud. The glowing gas has fanned out from this edge
to the right. In this direction, the radial velocity of Hα increases beyond the cloud value by more
than 7 km s−1. Solid contours represent radio continuum emission at 6 cm. The hemisphere on
the left is radiation from the cavity hollowed out of the cloud by the HII region; the emission
here peaks at the star itself. Contours to the right of the edge again arise from the outward flow.

The lower panel of Figure 15.4 shows S88B as viewed in H92α, a radio recombination line
of hydrogen. Such lines, like Hα itself, arise during the downward cascade following photo-
ionization. In this case, the transition is between the n = 93 and n = 92 levels. The very high n-
values mean that the resulting emission is in the radio regime, here 3.6 cm. Recombination lines,
including also those from helium and carbon, are especially useful for mapping radial velocities.
The isovelocity contours in the figure show how ionized matter picks up speed as it flows to
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Figure 15.4 The HII region S88B. The upper panel is an Hα image, with 6 cm radio contours
superimposed. Note how ionized gas flows to the right, away from the dense cloud. The contours
in the lower panel show the radial velocity of the gas, as viewed by the hydrogen recombination
line H92α at 3.6 cm. The velocity unit is km s−1.
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the right from the cloud, for which the radial velocity is 22 km s−1. Other recombination line
studies have effectively measured the distances to HII regions, by comparing their average radial
velocities with the known pattern of Galactic rotation. The HII region map of Figure 2.3 was
obtained by this means.

15.1.4 Emission Characteristics

The Hα line has traditionally been the principal tool for detecting optically visible HII regions.
Radio continuum and line emission are also important as diagnostics of physical conditions, as
we shall detail shortly. However, most of the region’s thermal energy is not lost through these
processes. Metallic ions of oxygen, nitrogen, and carbon provide the lion’s share of the cooling.
Even these most common ions are relatively low in abundance, but they all have metastable
electronic states lying a few eV above ground. Impact by ambient electrons can readily generate
forbidden line emission, the same cooling process we studied in Chapter 7.

The explanation of why this line emission is so strong is that, with an ambient temperature
near 104 K, the typical electron within the nebula has an energy of about 1 eV, not much below
that of the metastable transition itself. The cross section for excitation of the line is therefore
relatively large, orders of magnitude above that for electron-proton recombination. For the same
reason, emission during the recombination cascade of hydrogen, another cooling process one
might think would dominate, is also not very significant.

All of the forbidden optical and ultraviolet lines stem from multiply ionized species, such
as O II, O III, N II, and C IV. Conspicuously absent here are the neutral atoms that radiate from
stellar jets. For stars with effective temperatures of about 4× 104 K or less, the single strongest
cooling line is the doublet [O II]λλ 3726, 3729. For hotter stars, the emission is primarily from
[O III]λλ 4959, 5007. Note that the critical electron density for all these lines is 103 cm−3 or
greater. Thus, at the lower densities encountered in visible HII regions, typically 102 cm−3,
each electron collision results in a downward, radiative transition.

It is straightforward to apply the results of Chapter 7 and derive a quantitative expression
for the bulk cooling through forbidden line emission. Consider a case in which the [O II] lines
dominate. Equation (7.24) gives the subcritical rate when the impact is due to ambient hydrogen.
Hence, we should substitute ne for nH , but the two are nearly the same within the fully ionized
nebula. The ratio of degeneracies gu/gl, is 1 for the 3726 Å line and 3/2 for 3729 Å, so we
adopt an average value of 1.25. The transition energy is 3.4 eV, corresponding to a temperature
of 3.9 × 104 K. Assuming that all of the oxygen is in the form of O II and using a fractional
abundance relative to hydrogen of 7 × 10−4, we find

ΛOII = 7 × 10−7
( nH

102 cm−3

)2

exp
(
−3.9 × 104 K

T

)
eV cm−3 s−1 . (15.17)

To maintain overall energy balance, this cooling from the HII region must offset heating
from the central star. In fact, equating the two gives us the internal temperature of the neb-
ula. Each photoionization of a hydrogen atom ejects an electron with some nonzero kinetic
energy. Collisions between this electron and ambient species are the heating agent. If ∆E is
the average electron energy, then the total heating rate throughout the nebula is just N∗ ∆E.
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Employing the condition of ionization balance, equation (15.2), we see that the volumetric rate
is n2

H α′
sec(T ) ∆E.

The energy of the ejected electron is that provided by the photon in excess of 13.6 eV. But the
ionization cross section σν falls off swiftly above this threshold. Thus, the extra energy is rela-
tively small and depends on the spectral energy distribution of the star. Calculation reveals that
∆E ≈ kB Teff , where Teff is the stellar effective temperature. (Note that kBTeff � 13.6 eV.)
We thus derive an expression for the volumetric heating rate due to photoionization:

ΓPI = 9 × 10−9
( nH

102 cm−3

)2
(

Teff

4.1 × 104 K

)
eV cm−3 s−1 . (15.18)

Here we have used the effective temperature of our canonical O6 star. Equating the heating and
cooling rates, we find that the temperature of the HII region is 8900 K for this case, in good
agreement with a more exact determination.

As we indicated earlier, HII regions also emit continuum radiation. Some of this is in the
optical and represents light from the central star scattered by dust grains. Dusty cloud gas
is conspicuous in photographs, where it partially blocks nebular light. Long, optically thick
columns known as “elephant trunks” may protrude into the HII region from the outside. A
spectacular example is M16 or the Eagle Nebula, shown as Figure 15.5. Most grains that are
immersed within such ionized gas are promptly destroyed. An outer mantle of dusty gas, in
which the grains are typically heated to some 30 K, often surrounds the HII region. The emission
from this structure at mid- and far-infrared wavelengths has been another observational tool of
value.

Within the radio regime, the recombination lines mentioned earlier are superposed on a
broad continuum. The latter stems from free-free emission, i. e., the radiation from thermally
excited electrons accelerating in the vicinity of ambient protons. We have already encountered
this process twice – in the jets close to embedded stars (Chapter 13) and in the X-ray production
of pre-main-sequence objects (Chapter 7), where the mechanism is known as bremsstrahlung.
As before, the emissivity jν is nearly independent of frequency up to the cutoff value, given
by kBT/h. Since ν � kBT/h at centimeter wavelengths, jν indeed has a modest frequency
dependence over the observed range.

A region generating free-free emission may become optically thick to its own radiation. It
is a curious fact that this occurs at lower, rather than higher, frequencies. To see why, we recall
from Kirkhoff’s law governing thermal emission that the absorption coefficient, αν , is given by
jν/Bν(T ). (See equation (E.20), where αν is called ρκν .) In the radio regime, the Rayleigh-
Jeans approximation holds, and Bν(T ) is proportional to ν2. (See equation (C.11) and below.)
Since jν is nearly frequency-independent, αν varies as ν−2. The frequency at which the HII
region becomes optically thick often falls in the observable range. Below this value, the specific
intensity Iν is simply Bν(T ) and is thus proportional to ν2. The observed slope provides a
direct estimate for the temperature of the HII region. At higher frequencies, Iν reverts to the
optically thin form and actually declines slowly for increasing ν.

Within this optically thin regime, the flux observed must be proportional to the product of
electron and proton densities, and also to the path length L, i. e., the diameter of the HII region.
In other words, the flux is proportional to n2

e L, a quantity known as the emission measure. Here
the constant of proportionality depends only on the temperature, which, we have seen, may be
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Figure 15.5 Elephant trunks in the HII region M16. The columns in this optical image represent
dense gas that has not yet been dissipated by ultraviolet radiation. Note the glowing ionization
fronts at the top of each structure.

extracted from the optically thick portion of the spectrum. If the HII region is spatially resolved,
then one also obtains L, from which ne follows.

15.2 Ultracompact HII Regions and Hot Cores

Optically visible, or classical HII regions, such as the Orion Nebula, have diameters of order
1018 cm or larger, and relatively low electron densities, ne � 104 cm−3. There is also consid-
erable interest in their precursors – HII regions that are wholly invisible at optical wavelengths
because of the high column density of surrounding gas and dust. The smallest of these, already
introduced in Chapter 14, are dubbed ultracompact. These have diameters L � 1017 cm and
electron densities ne � 105 cm−3. At far-infrared wavelengths, they are the most luminous ob-
jects in the Galaxy. This emission, as we have seen, stems from heated dust within the ionized
gas.
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Figure 15.6 Spectral energy distribution of the ultracompact HII region G5.89-0.39. Note the
turnover near λ = 3 cm and the sharp maximum near λ = 100 µm.

15.2.1 Morphology of the Radio Emission

Figure 15.6 is a combined radio and infrared spectrum of the ultracompact HII region
G5.89−0.39, at a distance of 2 kpc. The ionized area has a diameter of 0.05 pc and is em-
bedded within a molecular cloud of mass 30 M� and diameter 0.2 pc. Starting at the left,
we see how the radio flux from free-free emission first climbs with frequency in the optically
thick regime. After the turnover at a wavelength of about 3 cm, the flux remains nearly flat,
as predicted by theory. The subsequent steep climb to the pronounced maximum near 100 µm
represents the infrared contribution from dust. Note the sharp dip at 10 µm due to silicate ab-
sorption. The total luminosity, which stems almost entirely from the infrared contribution, is
3 × 105 L�, indicating a central star of spectral type O6. Numerical modeling of the infrared
spectral energy distribution suggests that the grains are distributed in a thick shell, with outer
radius of about 0.5 pc and an inner hole with a radius smaller by an order of magnitude. The
hole is necessary in the model to limit emission in the near infrared.

It is gratifying that this spatial structure, deduced entirely from the broadband spectrum, at
least qualitatively matches that seen in the radio continuum. The upper left panel of Figure 15.7
is a map in 6 cm of the same region. Here we see clearly the shell-like morphology. Measure-
ments spanning several years find the shell to be expanding at a velocity of about 30 km s−1. Of
the many ultracompact HII regions that have been spatially resolved at centimeter wavelengths,
only about 5 percent have a similar structure. Roughly 25 percent exhibit a core-halo morphol-
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Figure 15.7 Morphology of ultracompact HII regions. Shown here are 6 cm radio continuum
maps of representative cases. Most common are the cometary structures.

ogy, as seen by the example G43.18−0.52 in the upper right panel. The single largest group,
about 30 percent of the total, are the cometary nebulae. We have already seen one example,
NGC 6334F, in Chapter 14. The lower left panel in Figure 15.7 gives another, G34.26+0.15.
The remainder of the ionized regions are classified as irregular. Some, like the example in the
lower right panel, exhibit more than one peak in emission.

Radio interferometric maps, such as those in Figure 15.7, have allowed us to examine se-
lected ultracompact HII regions in extraordinary detail. It is their powerful infrared emission,
however, that signals their presence, even to the far ends of the Galaxy. In practice, one identi-
fies such regions by their steeply rising spectrum from near- to mid-infrared wavelengths. With
the possible exception of the double-peaked regions, each is presumably powered by a single O
star. Surveying the Galaxy, we find that about 2000 O stars are in this deeply embedded phase.
The figure represents some 10 percent of the total number of O stars. Most of these are found
outside the confines of molecular clouds, although there is usually gas nearby.



532 15 Effects of Massive Stars

This valuable comparison tells us that a typical O star spends about 10 percent of its main-
sequence lifetime in the embedded phase. Since this lifetime is 4 × 106 yr, we conclude that
an ultracompact HII region lasts for some 4 × 105 yr. The difficulty is then to understand their
small sizes. If we assume that each region is in the second expansion phase, then the ionization
front advances at roughly the internal sound speed, or about 10 km s−1. To cover the maximum
observed size of 0.1 pc, therefore, would require only about 103 yr. To put the matter another
way, there are far too many ultracompact HII regions for their youthful dynamical state.

The problem is in part alleviated by the observation that a number of ultracompact HII
regions reside within larger ionized structures. This broader emission, again seen in the radio
continuum, may extend over a linear size of order 1 pc. The contribution to the total radio
emission from this component dominates that from the central source, sometimes by as much
as an order of magnitude. Such larger ionized volumes are, of course, more consistent with a
longer lifetime for the system as a whole. However, it remains unclear how the compact, central
region maintains its integrity over this period.

15.2.2 Stifling Ionization

One possibility is that there is a continuous supply of neutral matter being introduced to the
region. Since the Lyman continuum photons are consumed through ionizing this fresh matter,
the first expansion of the HII region is stalled. As an example, the O star may be surrounded by
a massive disk. Photoevaporation of the disk, a process we shall later consider in more detail,
would then eject material into the circumstellar environment.

The neutral matter may also enter through infall, i. e., through the gravitational collapse of
the parent cloud containing the nascent star. We discussed previously how the picture of inside-
out collapse developed for low-mass stars may not be applicable to their massive counterparts.
Additionally, halting the ionization through infall yields an unstable equilibrium, in which hot
parcels of gas continue to escape. (Recall the discussion accompanying Figure 11.23.) It is
interesting, nevertheless, that the mass accretion rate needed to (at least partially) stifle the HII
region is not much greater than typical low-mass values.

Consider, then, an HII region within a spherical accretion flow. We recall from Chapter 10
that the density in such a region varies as r−3/2. We may thus write for the electron density

ne = n∗ (r/R∗)
−3/2 , (15.19)

where n∗ and R∗ refer to the stellar radius. To gauge the size of the Strömgren sphere under
these circumstances, we generalize equation (15.2) to read

N∗ = 4 π α′
rec(T )

∫ Rs

R∗
n2

e r2 dr , (15.20)

from which we find
N∗ = 4 π α′

rec(T ) n2
∗ R3

∗ ln (Rs/R∗) . (15.21)

A slight modification of equation (10.34) gives us an expression for the mass infall rate:

Ṁ = 4 π
√

2GM∗ mH n∗ R
3/2
∗ . (15.22)
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We may thus eliminate the product n2
∗R

3
∗ between equations (15.21) and (15.22). Solving the

resulting expression for Rs, we find

Rs = R∗ exp
[
8 π m2

H N∗ G M∗
α′

rec (Ṁ)2

]
. (15.23)

In summary, there is a critical Ṁ -value, above which Rs hovers close to the stellar radius. This
is given by setting the argument of the exponential equal to unity:

Ṁcrit =
[
8 πN∗ G M∗ m2

H (α′
rec)

−1
]1/2

= 6 × 10−5 M� yr−1

( N∗
1049 s−1

)1/2 (
M∗

30 M�

)1/2

.

(15.24)

The essence of the argument here is that increasing Ṁ raises the density within the HII
region. Consequently, the volumetric recombination rate climbs. To maintain ionization balance
with a fixed output of Lyman continuum photons, the entire volume must shrink. The actual
dynamics of infall plays no direct role. Indeed, any increase of the external density will also
limit the HII region’s growth. Recall that the second expansion phase ends once the internal
pressure falls to the ambient value. If this pressure is much greater than we have supposed, the
endpoint will be reached at a correspondingly smaller value of Rs.

We shall see momentarily that the external density may in fact exceed our canonical
103 cm−3 by three orders of magnitude. The environmental temperature T0 is also higher,
typically 40 K. Using the density enhancement, equation (15.3) tells us that the Strömgren ra-
dius is reduced considerably, to only 1× 1016 cm. To obtain the radius at the end of the second
expansion, we rewrite equation (15.16) as

Rf =
(

2 T1

T0

)2/3

Rs . (15.25)

The internal temperature T1 is now closer to 5000 K, since the higher electron density gives
greater cooling. We thus find that Rf = 40 Rs, or about 0.1 pc. This figure is indeed within
the observed range. The HII region still takes less than 104 yr to attain this radius, but is then
presumably halted for an extended time.

15.2.3 Properties of the Densest Gas

The new assessment of physical conditions in the environments of the youngest massive stars
has come from molecular line studies. Observers have utilized the high infrared luminosity of
ultracompact HII regions as a signpost to guide their search for line emission. Water masers
have also served this purpose. The detection of high-level rotational transitions in such species
as 12C34S and CH3CN attests to both elevated temperatures and densities.

From such studies, we know that many ultracompact HII regions are situated within molec-
ular cloud clumps, roughly a parsec in diameter. The derived number density and temperature in
such regions are close to the values just quoted, i. e., n0

H ∼ 106 cm−3 and T0 ∼ 40 K. Note that
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Figure 15.8 Hot core near the
HII region G29.96-0.02. The dot-
ted contours show 1.3 cm contin-
uum emission from the HII re-
gion. Solid contours represent
2.7 mm line emission from a high
rotational transition of CH3CN.
Filled circles are H2O masers.

the density value is similar to that reconstructed for the gas surrounding the Trapezium cluster
in Orion. It is becoming apparent, then, that massive stars are born into environments vastly
different from those probed by CO measurements.

An even more dramatic illustration of this fact comes when we examine smaller length
scales. The same molecular line observations reveal the existence of hot cores, compact,
infrared-bright regions with densities of about 107 cm−3 and temperatures of 100 K or higher.
Each hot core has a diameter of order 0.1 pc and a total mass of several hundred solar masses.

Given their means of discovery, it is not surprising that many of these objects are situ-
ated close to ultracompact HII regions. Figure 15.8 shows one example. Here, the HII region
G29.96−0.02 appears to the left as the cometary structure seen in 1.3 cm emission. The hot
core on the right is revealed through contours of CH3CN (J = 6 → 5) at 2.7 mm. Near the
core’s center is a cluster of H2O masers, indicated by the filled circles. What is not seen, in this
and numerous other cases, is conspicuous radio continuum emission within the molecular line
contours. That is, many hot cores lack an internal HII region.

It is clear, on the other hand, that a hot core does contain its own massive star. Sensitive
probes such as the inversion line of NH3 (4,4) at 1.25 cm show that the gas temperature in-
creases toward the center. In the example of Figure 15.8, the total infrared emission exceeds
105 L�. The absence of a resolvable HII region again indicates that the ionization front has
been stalled because of the extraordinary density. Finally, we notice, as we did in Chapter 14,
that the cometary arc of the well-detected HII region directly faces the core, a clear sign that the
ionization has difficulty penetrating this region.

The juxtaposition of two massive stars that we see in Figure 15.8 is not uncommon and
illustrates the important fact that such entities are rarely born in isolation. In this case, the two
stars are apparently at different evolutionary stages. That associated with the hot core is still
surrounded by the dense gas that was present at its formation. Its neighbor, on the other hand,
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has had time to begin clearing its own remnant matter through ionization and heating, so that
the average internal density has dropped by two orders of magnitude.

Investigation of hot cores through molecular lines has been aided by the distinctive chemical
makeup of these regions. There is an abundance of hydrogenated species, such as H2O, NH3,
CH3OH, and H2S. The enhancement of NH3 is especially convenient, as it facilitates use of
this valuable tracer, even at the higher-level inversion transitions. In addition to H2S, sulfur-
bearing molecules such as SO, SO2, and CS have increased concentrations. Numerous addi-
tional species, including organics, are observed, and there are indications of differentiation in
relative abundances between neighboring regions. The general pattern of molecular enrichment
is reminiscent of that we encountered in the Orion BN-KL region (Chapter 5). Evaporation of
grain mantles in these heated environments is almost certainly a major factor in their chemical
history.

The H2O masers associated with the cores act as tracers of wind-induced velocity. Fig-
ure 15.9 shows an interesting example, the infrared source IRAS 20126+4104. In the upper
panel, the exciting star itself, which has a luminosity of about 104 L�, is indicated by the cen-
tral cross inside the contours of 3.6 cm emission. Three clumps of H2O masers are also shown
(filled circles). They span a total distance of some 2000 AU. The hot core itself is delineated by
emission in CH3CN (J = 12 → 11) at 1.3 mm, displayed here by the open circles. In this case,
therefore, the jet erupts at an oblique angle with respect to the core. The bottom panel displays,
on a larger scale, contours of H13C16O+ (J = 1 → 0) at 3.46 mm, as well as the 2.12 µm emis-
sion from H2. The contours delineate a bipolar structure extending over some 20′′, or 0.2 pc at
the 1.7 kpc distance of this source. The patches of excited H2 are similarly aligned on an axis
that must trace the internal jet.

Hot cores appear to represent the earliest environment of high-mass stars. However, to
answer fully the question of how such stars arise, we shall eventually have to find gaseous
structures that do not yet contain luminous, central sources. These presumably reside near the
crowded centers of stellar clusters. The clouds in question may be the cold analogues of the
presently known hot cores, i. e., entities of similar density, but with relatively low temperatures.
On the other hand, it may be that the formation proceeds so rapidly once the molecular density
climbs, that one can only find less compact structures, perhaps already containing intermediate-
or lower-mass stars. Molecular line studies of the densest regions within clusters should even-
tually clarify the issue.

15.3 Winds and Molecular Outflows

The foregoing example of a jet-like flow emanating from a young, massive star is hardly unique.
On the other hand, one rarely finds strings of optically visible Herbig-Haro objects in these
environments. The ambient density, and therefore the extinction, are simply too high, especially
close to the star itself. We shall see in this section, nevertheless, that there is ample evidence for
outflowing gas, both in the form of high-velocity winds and entrained cloud matter.
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Figure 15.9 Hot core surrounding the embedded star IRAS 20216+4104. Within the upper panel,
solid contours show 3.6 cm continuum emission, open circles are 1.3 mm line emission from
CH3CN, and filled circles are clumps of H2O masers. The infrared star itself is shown by the cross.
In the lower panel, solid and dashed contours are blue- and redshifted emission, respectively, at
3.46 mm from H13C16O+. The greyscale patches show 2.12 µm emission from H2. Note the
different scales of the two panels.
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Figure 15.10 Resonant scattering of an ul-
traviolet photon from a moving ion. The
photon initially has frequency ν◦(1 + u/c),
where hν◦ is the transition energy and u is
the ion velocity. After absorption and reemis-
sion, the new photon has frequency ν′, while
the ion has velocity u′.

15.3.1 Radiative Acceleration

We discussed in Chapter 13 how the launching of winds from low-mass stars proceeds through
the combined effect of centrifugal and magnetic forces. Massive stars also rotate, but are radia-
tively stable in their outer layers. Hence, they do not have the internal dynamo action needed
to generate a magnetic field.3 Instead, material is lifted off the surface and accelerated through
radiation pressure exerted by ultraviolet photons. The momentum transfer is rather inefficient,
in the sense that the wind momentum transport rate, ṀwV∞, falls below L∗/c. Let us now
examine in more detail how the process occurs.

The atoms directly affected by the radiation are actually ions of the most common heavy
elements, such as carbon, nitrogen, and oxygen. To impart momentum, a photon must first
be absorbed. That is, its energy must coincide with that of an internal transition, which is an
electronic one at ultraviolet frequencies. Especially important in this regard are resonance lines,
in which the lower level is the ground state.

The full interaction is a scattering event. After absorbing the photon, the ion emits another
in a random direction. Suppose the ion is initially moving radially outward and is struck by a
photon moving in the same direction (Figure 15.10). Calculation shows that, after both absorp-
tion and reemission, the ion’s outward momentum increases, on average, by hν◦/c. Here, hν◦
is the transition energy. It is important to realize that ν◦ is not the frequency of the incident
photon as seen by an outside observer. This is ν◦(1 + u/c), where u is the wind (and therefore
ion) velocity. The ion sees the photosphere recede, so that the photon frequency becomes red-
shifted back to ν◦. The star actually emits few photons at ν◦ itself, because of prior absorption
within deeper layers. Thus, the frequency shift exposes the ion to a larger flux and increases the
acceleration.

The wind velocity u(r) is some monotonic function of radius, starting near zero at the stellar
surface, quickly becoming supersonic, and eventually reaching the terminal value V∞. At each
position r, the condition

ν = ν◦ [1 + u(r)/c] (15.26)

tells us which frequency ν emanating from the photosphere interacts with the ion through a
transition of energy hν◦. Having gained the momentum hν◦/c, the ion then shares this added
momentum with neighboring ions through mutual collisions. The species that provide most

3 Nevertheless, some radiative stars are magnetic. A subclass of A-type stars, designated Ap, exhibit strong surface
fields and anomalous chemical abundances. (The “p” in Ap stands for “peculiar.”) The magnetic field in this case
may be fossil, i. e., trapped in stellar material during the formation epoch.
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of the acceleration typically constitute only about 10−4 by mass of all the wind gas (recall
Table 2.1).

Equation (15.26) assumes implicitly that the line in question has negligible width. In fact,
there is a finite probability for absorption even if ν and ν◦ do not obey the relation precisely.
This probability is the familiar profile function φ(ν), which governs the frequency dependence
of the line opacity κν (see, e. g., equation (C.7)). Using the normalization of φ, we may write

κν = φ(ν)
∫ ∞

0

κν′ dν′ . (15.27)

Note that φ(ν) does not peak at ν = ν◦, but at ∆ν = 0, where ∆ν ≡ ν − ν◦[1 + u(r)/c].
We now wish to determine the force due to a single line. Consider first the associated optical

thickness, from the photosphere out to a radius r. This is

τν(r) =
∫ r

R∗
ρ(r′) κν dr′

=
∫ ∞

0

κν′ dν′
∫ r

R∗
ρ(r′) φ(ν) dr′ .

Within the second integral of the last line, we change independent variables from r to ∆ν and
find

τν(r) =
∫ ∞

0

κν′ dν′
∫ ∆ν

∆ν∗
ρ(r′) φ(∆ν′)

(
∂∆ν′

∂r′

)−1

d∆ν′ ,

where ∆ν∗ ≡ ∆ν(ν, R∗), and where r′ is now a function of ν and ∆ν′. Evaluating the partial
derivative, we have

τν(r) =
c

ν◦
ρ(r1)

(
du

dr

)−1

r1

Φ(∆ν)
∫ ∞

0

κν′ dν′ . (15.28)

Here, r1 is the radius for which, at a given ν, ∆ν vanishes. We have used the fact that φ sharply
peaks when ∆ν′ = 0 to extract from the integral the product of density and velocity gradient.
The function Φ(∆ν) in (15.28) is

Φ(∆ν) ≡
∫ ∆ν∗

∆ν

φ(∆ν′) d∆ν′ , (15.29)

and is positive since ∆ν < ∆ν∗ at fixed ν. For all frequencies of interest, the point r1 is situated
outside the stellar surface. That is, ∆ν∗ is positive. Then Φ is unity for negative values of ∆ν,
zero for positive values, and makes a rather abrupt transition near ∆ν = 0. In summary, we
may write

τν(r) = τ1(ν) Φ(∆ν) , (15.30)

where

τ1(ν) ≡ c

ν◦
ρ(r1)

(
du

dr

)−1

r1

∫ ∞

0

κν′ dν′ . (15.31)
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To calculate the force per unit mass at a given radius, we must account for the reduction of
the flux Fν(r) because of the optical thickness. Let F◦(r) denote the unattenuated continuum
flux in the neighborhood of ν◦. Then, as in our previous treatment of H2 dissociation (Chapter
8), we assume a simple exponential law:

Fν(r) = F◦(r) exp[−τν(r)] . (15.32)

In any volume V of the gas, the total rate of energy absorption per unit frequency is ρκνFν(r)V.
From our previous discussion, we multiply by 1/c to obtain the corresponding rate of momentum
deposition. Dividing by the mass ρV and integrating over frequency yields the force:

frad =
1
c

∫ ∞

0

κν Fν(r) dν . (15.33)

We now utilize equations (15.27), (15.30), and (15.32) within the integrand of (15.33). We
find

frad =
1
c

F◦(r)
∫ ∞

0

κν′ dν′
∫ ∞

0

dν′′ φ(ν′′) exp[−τν′′(r)]

=
1
c

F◦(r)
∫ ∞

0

κν′ dν′
∫ ∞

0

dν′′ φ(ν′′) exp [−τ1(ν′′)Φ(∆ν′′)] .

Since φ within the integral again peaks at ∆ν′′ = 0, we may evaluate τ1 at r itself. We then use
equation (15.29) to obtain

frad =
1
c

F◦(r)
∫ ∞

0

κν′ dν′
∫ 1

0

dΦ exp [−τ1 Φ]

=
1
c

F◦(r)
∫ ∞

0

κν′ dν′ 1 − exp(−τ1)
τ1

.

(15.34)

If the line is thermally broadened, then
∫ ∞
0

κν′ dν′ ≈ κ◦ ∆νD, where ∆νD is the Doppler
width and κ◦ is the opacity at line center. We then have

frad ≈ 1
c

κ◦ F◦(r) ∆νD
1 − exp(−τ1)

τ1
(15.35a)

τ1 = κ◦ ρ ∆Vtherm

(
du

dr

)−1

. (15.35b)

Here, ∆Vtherm is the one-dimensional velocity dispersion associated with thermal motion (see
equation (E.24)).

Our derivation has assumed that the scattered ultraviolet photon promptly escapes from the
wind region. This is a reasonable supposition, since the relative motion between neighboring
ions suppresses further absorption. However, there is a finite probability that the photon is
absorbed by another ion in a different spectral line. Including such multiple scattering enhances
the force by at most a factor of two. In a full calculation of wind acceleration, one must sum
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the contributions from several thousand lines. One then adds the total frad to the right side
of the momentum balance equation (13.11), where this equation applies within the isothermal
approximation.

The solution to the equation of motion exhibits the same general character we saw in the
purely thermal wind. That is, arbitrary choices of the initial velocity at the stellar surface cause
u(r) either to remain small and decline asymptotically or to have a divergent gradient at some
radius. Only a single choice leads to a velocity that continuously and monotonically increases.
For this to occur, the flow must pass smoothly through a critical point analogous to Rs in
equation (13.14). The actual speed is well above aT at this location, since the radiative force
exceeds the thermal pressure gradient.

The total radiative force depends on the optical thickness τ1, where the latter incorporates a
generalization of the opacity κ◦. Since τ1 is proportional to ρ, the critical solution also dictates
both the density variation of the wind and the mass transport rate, Ṁw. In the thermal case, the
force per unit mass is independent of the density, and the equation of motion yields only u(r)
(recall equation (13.13)). One finds the density by first specifying it at the coronal base and then
invoking mass continuity.

A final technical note is of interest. The density ρ varies as 1/(r2u) for a steady-state
wind. From equation (15.35b), τ1 then depends on the combination (r2u) du/dr. But frad is
proportional to F◦(r), which falls off as r−2. The stellar gravity declines in the same way. Once
the radiative force exceeds that from thermal pressure, we see that (r2u) du/dr depends on τ1,
which in turn is a function of the same quantity. The only possible solution is that (r2u) du/dr
is a spatial constant. Integrating, we find that the wind speed varies as

u(r) = V∞

√
1 − R∗

r
, (15.36)

in the supersonic regime.

15.3.2 Optical and Radio Emission

Observationally, the presence of winds near massive stars is revealed by optical and ultraviolet
emission lines. Analysis of the line profiles gives not only the terminal velocity V∞, but also
the mass transport rate Ṁw. Derived values of these quantities for typical O or early B-type
stars are 2000 km s−1 and 10−6 M� yr−1, respectively, with substantial variation according to
spectral type. The ultraviolet emission lines stem from multiply ionized species, confirming that
the wind temperature is high, roughly equal to that of the stellar photosphere, or about 105 K.

Such observations concern relatively mature stars that are not cloaked in high column den-
sities of dusty gas. The same objects sometimes display excess continuum radiation at infrared
and radio wavelengths. In more embedded stars, this emission would stem from the associated
HII region. Nevertheless, it is instructive to consider the longer-wavelength contribution from
exposed stars, to see how it signals the existence of an ionized wind.

Figure 15.11 shows the radio spectrum of ζ Puppis, an O4 star with a luminosity of
8 × 105 L� and an estimated mass of 70 M�. This object is located in the Gum Nebula,
about 450 pc distant. Note again that the radio fluxes shown in the figure represent emission
above that from the normal photospheric values. The luminosity and effective temperature of
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Figure 15.11 Excess radio emission from the supergiant ζ Pup. The straight line with the indi-
cated slope is a best fit to the three data points.

ζ Pup place it close to, but not precisely on, the zero-age main sequence. The star is actually a
more evolved supergiant. Such objects undergo considerably greater mass loss than their main-
sequence counterparts, facilitating detection of the free-free emission. In this case, the relatively
few available measurements indicate a slope of αradio ≡ d log Fν/d log ν = 0.71. This value
differs from that expected from an HII region, either in the optically thick (αradio = 2) or opti-
cally thin (αradio � 0) regimes.

How does an ionized wind explain the altered slope? The key difference between a wind
and an HII region in terms of their emission properties is the steep density falloff in outflowing
gas. Suppose that the radio flux comes from a portion of the flow where the gas has already
attained its terminal velocity. Then, in steady state, the density ρ declines as r−2. If we further
assume that we are observing the optically thick (i. e., long-wavelength) portion of the spectrum,
then the rapid density variation implies that different frequencies emanate from substantially
different locations within the flow.

To quantify this idea, let Rν be the effective radius producing photons of frequency ν. This
radius is located where the optical depth, integrated from the outside, reaches a value of order
unity. The luminosity at the same frequency, Lν , is then given by

Lν = 4 π R2
ν Fν . (15.37)

Here, the specific flux Fν is πBν(T ) evaluated at the radiating surface. (See equation (2.34) for
the analogous relation involving Fλ.) Since the temperature gradient is small, and since Bν is
proportional to ν2 in the Rayleigh-Jeans approximation, we see that Lν varies as R2

ν ν2.
It remains to determine how Rν changes with frequency. We have already seen, arguing

from Kirkhoff’s law, that αν for free-free emission varies as ν−2 and is also proportional to the
product of electron and ion densities, i. e., to ρ2 in a fully ionized medium. Given the spatial
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variation of density, we find that αν ∝ ν−2 r−4. The integrated optical depth thus varies as
ν−2 r−3. We conclude that the value of Rν decreases with rising frequency, as ν−2/3. Using
this result in equation (15.37), we see that Lν ∝ ν−4/3 ν2 = ν2/3. A slope of 0.67 for the
spectral energy distribution is in reasonable agreement with the empirical findings, such as
those in Figure 15.11.

15.3.3 X-Ray Production

Satellite observations of the 1970s found that the brightest optically visible stars also emit in
X-rays. The total luminosity in this component is relatively small, typically 10−7 of the Lbol-
value. Nevertheless, the inferred temperature of the emitting plasma is so high, of order 107 K,
that some very energetic process is called for. It is natural to invoke the stellar wind. The
temperature of the wind gas is much too low, but its kinetic energy content is interestingly
high, provided it can be tapped through shock dissipation. According to equation (8.50), a fully
ionized wind (µ = 0.61) traveling at 2000 km s−1 produces, upon shocking, a temperature of
5 × 107 K.

The top panel of Figure 15.12 shows the broadband X-ray spectrum of ζ Pup, as observed
by ROSAT. While a range of energies is present, the distribution peaks near 1 keV, i. e., in the
soft X-ray regime. The solid curve in the figure is a theoretical result, obtained by assuming
that a dilute component of temperature 6 × 106 K is mixed into the relatively cold wind gas.
If shocks indeed create the X-ray emission, then the observations show they must vary in time,
and in a periodic manner. The bottom panel of the figure displays this variation in detail. Here
the X-ray intensity within the indicated energy range fluctuates with 6 percent amplitude over a
period of 16 h. The emission in Hα also varies, with identical period but a different phase.

What creates the shocks? Part of the answer is that radiatively accelerated winds are intrin-
sically unstable. That is, any small perturbation in the flow tends to amplify. Once a disturbance
becomes sufficiently large, it shocks and produces the high temperatures and X-ray emission.

To understand the nature of the instability, let us idealize the wind as being driven by a single
line which is optically thick. Assuming τ1 � 1 in equation (15.35a), we see that the radiative
force is proportional to the velocity gradient du/dr. Figure 15.13 illustrates why the wind is
unstable in this circumstance. In the lefthand panel, we have superposed a small perturbation
on the underlying, steady-state velocity field, which itself is represented as the dashed curve.
Material at point A has an abnormally high velocity and velocity gradient. After a time interval
∆t, it thus travels farther and has an even greater velocity relative to the corresponding fluid
element in steady state. Conversely, point B starts out with a smaller velocity and du/dr-value.
It therefore travels less distance in ∆t and its velocity deficit increases. Finally, the element
at point C is accelerating faster, but begins at a lower speed. This element also travels less
distance, but ends with a velocity closer to the steady-state value. The net result at time t + ∆t,
as sketched in the righthand panel, is that the velocity perturbation grows.

Wind instability by itself, however, cannot be the whole story. If it were, then even random
initial perturbations would amplify and shock. We have seen, however, that both the Hα and
X-ray fluxes of ζ Pup vary periodically. Similar results apply to θ1 Ori C, the brightest star
of the Trapezium. Optical, ultraviolet, and X-ray fluxes all vary, but this time with a 15-day
period. Circular polarization of the optical light indicates the presence of a magnetic field. This
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Figure 15.12 Upper panel: Observed X-ray emission from ζ Pup. Shown is the detector count
rate per unit energy as a function of that energy. The solid curve shows the theoretical result for a
gas at a temperature of 6 × 106 K. Lower panel: Temporal variation of the X-ray emission from
0.9 to 2.0 keV. A phase interval of unity corresponds to a time of 16 h.

field may be channeling the wind into some anisotropic pattern and generating shocks through
the collision of gas streams. Radiating shocks would then sweep past the observer with each
rotation of the star.

15.3.4 Massive Outflows

Let us now return to the younger stars of more direct interest. There is every reason to believe
that these emit the same powerful winds as their more exposed counterparts. The reason is,
first, that one does occasionally find both H2O masers and Herbig-Haro objects associated with
the star, indicating directly a shocked and collimated wind. Second, we observe cloud gas
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Figure 15.13 Instability of a radiatively driven wind. The dashed curve in both panels represents
the unperturbed, steady-state velocity profile. At some initial time t (left panel), we apply a
perturbation to this profile. By the later time t + ∆t (right panel), the velocity profile is more
distorted, with the fluid element at A moving to A′, etc.

surrounding the embedded object that has been stirred up and dragged outward as a molecular
outflow.

We already saw, in the case of IRAS 20126+4104 (Figure 15.9) how a luminous star
may excite molecular-line emission over a substantial distance. In this case, the H13C16O+

(J = 1 → 0) flux displays the bipolar pattern familiar from low-mass examples. The alignment
of the outflow axis with centrally located H2O masers reinforces the notion that the cloud gas is
entrained by an interior jet.

Given the large distances and heavy obscuration of young, massive stars, it is not surprising
that optical manifestations of such jets are hard to find, at least close to the star. On the other
hand, there a few examples of shock emission extending well beyond the molecular-line con-
tours. Figure 15.14 is a composite image of the G192.16-3.82 system. The optical photograph
at the top, taken in [S II], shows distended, irregular Herbig-Haro objects lying on either side
of the central nebulosity. From end to end, the complex of emission knots spans over 10 pc.
The central region, magnified in the lower inset, contains a highly structured and bipolar CO
outflow. Near its intense peak lies a dense core and an even smaller region of heated dust, seen
here through 2.6 mm continuum flux.

The central star is an infrared source of total luminosity 3×103 L�. Assuming the object to
be on the main sequence, this figure identifies it as having a spectral type between B2 and B3,
and a mass of 9 M�. Such a star cannot create widespread ionization, although there is a small,
central region of radio continuum emission. The system of optical knots naturally reminds us
of the giant Herbig-Haro flows driven by low-mass stars (§ 13.1). In both cases, the underlying
wind penetrates well beyond the parent molecular cloud gas into relatively empty space. A
difference is that the shocked regions projecting from the B star are less collimated. Thus, the
jet itself is either intrinsically broader, or else creates a greater lateral spray of shocked gas.

This observation is systematic of a larger trend. Not only do B stars drive wider jets, but
objects of even greater mass have winds that seem to resist collimation altogether. No source
with luminosity 105 L� or greater (i. e., with M∗ � 20 M�) is known to drive a true optical
jet. Of course, one must be cautious in drawing conclusions from the relatively small number of
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Figure 15.14 Upper panel: Optical photograph in [S II] of the massive outflow G192.16-3.82. Notice the
Herbig-Haro knots on either side of the box. Lower panel: Molecular outflow within the central region.
The inset shows a 2.6 mm continuum image of a dense core lying near the peak CO intensity.

embedded O stars. The OMC-1 outflow, nevertheless, continues to provide an example of what
may happen generally in this mass regime. Optical radiation, along with shock emission from
[Fe II] and NH3, occurs at the tips of the many elongated “fingers” protruding from the vicinity
of IRc2 (recall Plate 13). While the wind is uncollimated in a global sense, it is assuredly not
isotropic and homogeneous.

Although optical jets disappear, molecular outflows persist even to the highest stellar
masses. Here, too, there is a tendency toward lower collimation. Again we recall OMC-1,
where the blue- and redshifted lobes in CO almost completely overlap. That this result is not a
simple projection effect is attested by other examples. The aspect ratio of the outflows, includ-
ing the lowest-velocity CO, rarely exceeds 2:1. In particular, we do not find analogues of the
very narrow outflows driven by Class 0 sources.

The outflows from embedded, luminous sources have systematically more mass than
those driven by solar-type stars. Thus, the lobes of G192.16-3.82 broadly resemble those of
L1551/IRS 5 (Figure 1.13), but contain about 100 M�, a figure larger by two orders of magni-
tude. The DR 21 outflow in Cygnus has a mass exceeding 103 M�. For all systems, if we divide
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Figure 15.15 Mass transport rate in molecular outflows, as a function of the luminosity of the
driving star. The smooth curve is an approximate fit to the data.

the estimated mass by the dynamical time tdyn, we obtain a measure of Ṁout, the net outward
transport rate of mass. Figure 15.15 shows Ṁout, plotted as a function of the stellar luminosity.
While the transport rates are indeed higher for the brighter (and hence more massive) central
stars, the values continue a smooth rise that was already evident in the lower-mass systems.

In part, the increases in both the outflow mass and Ṁout may be due to the wider dispersion
of the underlying wind. Another factor must be the higher speeds of these winds, as seen in
the proper motions of associated Herbig-Haro objects, which can exceed 1000 km s−1. Further,
indirect, evidence comes from the greater V∞-values measured for optically exposed O and B
stars. Within a given outflow, the distribution of mass with speed obeys the falloff documented
in Figure 13.13, but exhibits a much steeper (negative) slope at higher velocities. That is, the
exponent γ in equation (13.7) rises above 2. All these developments suggest that the basic
interaction between wind and cloud may be qualitatively different.

There is at least one hint from theory why such a change occurs. Underlying the picture
of wind collimation through crossing shocks (Figure 13.22) is the assumption that postshock
cooling is relatively efficient. Thus, much of the wind’s energy is radiated away, while its
momentum in the jet direction is preserved. The faster winds from massive stars, however, give
rise to higher postshock temperatures. Here, cooling becomes more difficult. The radiation no
longer stems from forbidden transitions, such as [O II]λλ 3726, 3729, but from resonance lines
within higher ionization states. The Einstein A-values are now much greater, and it is harder to
maintain an excited population. For shock speeds exceeding 2000 km s−1, the only cooling is
from the relatively weak bremsstrahlung associated with free electrons.

The net result of diminished cooling is that massive outflows tend to be energy-conserving
rather than just momentum-conserving. That is, shocking of the wind powers a hot, postshock
region that itself expands outward by thermal pressure. This expansion should create a second,
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outer shock and compressed outer layer, just as in an overpressured HII region (Figure 15.2).
However, massive outflows, like their low-mass analogues, are filled with turbulent cloud gas,
and the majority are still bipolar. Even in the case of OMC-1, the complex morphology shows
that a spherical picture is not applicable in any detail. Nevertheless, the basic idea that suffi-
ciently fast winds create bubbles of hot gas should still hold. Perhaps the fingers of the OMC-1
flow result from such material erupting at numerous locations into the surrounding, ionized
medium.

15.4 Photoevaporation of Gas

Ionization of the parent cloud surrounding a newborn massive star creates added pressure that
tends to drive away the gas. A similar expansive effect also occurs for more compact material
near exposed, luminous sources. Thus, the lifetime of a circumstellar disk around a massive
star is limited by its eventual photoevaporation. The same holds for disks associated with low-
mass stars that happen to be near one producing ionizing radiation. Indeed, any discrete clump,
whether it contains its own star or not, will begin to dissipate once engulfed by an HII region.

15.4.1 Disk Irradiation

The destruction of a disk around an O or B star is a rather hypothetical situation, as there is
still little evidence for such entities. When introducing embedded clusters in Chapter 4, we
cited the case of S106, a bipolar HII region within a massive cloud. Here, two ionized lobes
are separated by a ridge of extinction (Plate 2). While it is tempting to identify this feature as
a disk, the associated thickness would be enormous, some 1016 cm. A much smaller system
with a similar morphology is MWC 349 in Cygnus. The illuminating, B-type star has a heavily
reddened optical spectrum that is rich with emission lines. A radio continuum map at 2 cm
(Figure 15.16) shows two distinct lobes and a pinched waistband, reminiscent of S106. Indeed,
the latter also has an hourglass shape in this wavelength regime.

The appearance of MWC 349 again seems to call for a planar configuration of dusty gas.
Note, however, that radio emission can penetrate dust without suffering extinction. The mor-
phology of Figure 15.16 indicates rather a lack of ionizing gas in the equatorial region. A large
column of dust would indeed absorb stellar photons and thus halt the advance of ionization.
The enhanced absorption could arise from a slab or disk, a view that has been bolstered by the
detection of near-infrared radiation from this central region. Note also that an ionized wind is
present in the extended lobes, since the integrated radio flux has a spectral index αradio of 0.6,
close to that predicted by theory. The wind velocity, gauged from the width of emission lines,
is surprisingly low, only 50 km s−1.

These examples refer to exceptional objects whose interpretation is not yet clear. Pending
additional study, let us accept provisionally that disks may indeed be present around massive
stars, perhaps as a result of their formation process. How would such a structure respond to the
onslaught of ultraviolet photons?

The top panel of Figure 15.17 shows schematically the expected result. At small radii, the
upward, expansive force due to stellar heating is effectively opposed by the downward com-



548 15 Effects of Massive Stars

Figure 15.16 Radio emission from the embedded star MWC 349. The contours represent flux in
2 cm continuum radiation. Note the hourglass morphology.

ponent of gravity. Thus, evaporated material forms a static atmosphere above and below the
disk. Farther out, the vertical gravity becomes so weak that ionized gas flows off as a thermally
driven wind. The transition occurs at the gravitational radius, �g. To find it, we first note that
the atmosphere’s scale height at any radius � is approximately

∆z ≈
(

a1

VKep

)
� , (15.38)

according to equation (11.34). Here, a1 is the isothermal sound speed within the atmosphere,
where the temperature is expected to be nearly uniform and similar to that in an ordinary HII
region. Since VKep is proportional to �−1/2, we see that the scale height increases radially
as �3/2. The wind begins at the point where ∆z grows equal to � itself. Thus, a convenient
definition is

�g ≡ G M∗
a2
1

= 5 × 1015 cm
(

M∗
40 M�

) ( a1

10 km s−1

)−2

.

(15.39)

Note the similarity in the definitions of �g and the sonic point in a spherical, isothermal wind
(equation (13.14)).
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Figure 15.17 Photoevaporation of a disk around a massive star. If the stellar wind is weak (upper
panel), gas flows out from the gravitational radius �g to the disk edge at �d. Inside �g is a static
atmosphere. For a strong wind (lower panel), the atmosphere is suppressed, and the flow begins
at the larger radius �w. The total mass flow rate from the disk is Ṁdw.

Material in the disk atmosphere is optically thick to the star’s radiation. That is, while stellar
ultraviolet photons bathe the atmosphere’s upper layers, it is the internal, diffuse field that pro-
vides the true heating. This radiation arises from hydrogen recombinations to the ground state.
The situation, once more, is analogous to a spherical HII region, where heating is also provided
by internal recombinations. In both cases, cooling stems mainly from metallic forbidden lines.
Assuming the disk atmosphere to be strictly isothermal, the reader may demonstrate that the
density falls off vertically as a Gaussian. (Recall the discussion preceding equation (11.34).)
For the full distribution of density, we need to know its value at the base of the atmosphere, i. e.,
close to the disk surface. We shall return to this question momentarily.

The intensity of the diffuse radiation field within the atmosphere falls nearly to zero at the
disk surface. If it did not, more gas would be lifted off the disk, and the local column would be
too massive to be supported against gravity. An appropriate fraction of the gas would then settle
back down. The actual diminution of the radiative intensity occurs when photons are absorbed
by the small fraction of neutral hydrogen atoms.

In contrast, a finite ultraviolet intensity impinges on the disk for � � �g. Since direct
starlight is largely absorbed by passage through the atmosphere, the ambient radiation is again



550 15 Effects of Massive Stars

Figure 15.18 Inside the ionization
front of a disk surrounding a massive
star. Diffuse radiation from the wind
impinges on the neutral disk. In re-
sponse, gas flows upward and is ion-
ized. The flow speed and density of this
matter as it leaves the disk are u1 and
n1, respectively.

the diffuse component, both from the upper reaches of the wind and from the atmosphere near
� = �g. Note that the wind interior is still nearly isothermal at a temperature similar to that
of an HII region. The disk surface coincides with an ionization front, which slowly advances
toward the midplane. As neutral disk gas is engulfed by the front and ionized, it flows away
rapidly. The post-front velocity, we now demonstrate, is about equal to the sound speed in the
ionized gas, or roughly 10 km s−1.

15.4.2 Efflux of Disk Gas

Consider, as in Figure 15.18, the situation in the reference frame of the ionization front. Within
the front itself, the equations of mass and momentum conservation, together with the heat equa-
tion, read

ρ u = C1 (15.40a)

P + ρ u2 = C2 (15.40b)

ρ T
Ds

Dt
= Γ − Λ . (15.40c)

Here, all variables are functions of the vertical coordinate z. The quantities C1 and C2 are spatial
constants, while Γ and Λ are the volumetric heating and cooling rates, respectively. To evaluate
the specific entropy s, we apply the second law of thermodynamics in the form

T
Ds

Dt
=

D

Dt

(
3 P

2 ρ

)
− P

ρ2

Dρ

Dt
, (15.41)

where we have used the fact that the internal energy per unit mass in a monatomic gas is
(3/2)P/ρ. That is, the ultraviolet radiation can excite no internal degrees of freedom, but only
translational motion, which is reflected in the pressure.

In a steady-state flow, the convective derivative D/Dt is just u d/dz. After differentiating
(15.40b) with respect to z and using equations (15.40a) and (15.41), the heat equation becomes

ρ u
d

dz

(
1
2

u2 +
5 P

2 ρ

)
= Γ − Λ . (15.42)
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The quantity in parentheses is the enthalpy per unit mass, which we denote by h. Just in-
side the ionization front, h rises sharply, since the ionization heating dominates cooling from
metallic forbidden lines or hydrogen recombinations. Further downstream, Γ and Λ nearly
balance, and h settles to a more constant value. The peak h-value is close to the net thermal
energy gained from ionization, again measured per unit mass. This quantity, in turn, is about
kB Teff/mH , where Teff is the stellar effective temperature. (Recall the discussion preceding
equation (15.18).)

On the other hand, mass and momentum conservation also imply a maximum possible value
for h. Dividing equation (15.40b) by (15.40a) yields

a2
T

u
+ u = C3 , (15.43)

where a2
T ≡ P/ρ is the isothermal sound speed, and C3 is another constant. We may thus write

the enthalpy as

h =
5
2
C3 u − 2 u2 . (15.44)

The maximum value of h is 25 C2
3/32, attained when u = 5 C3/8. Our previous argument then

tells us that C3 is given by

C3 =
(

32 kB Teff

25 mH

)1/2

. (15.45)

Equation (15.43) implies finally that

aT

u
+

u

aT
=

(
32 kB Teff

25 mH a2
T

)1/2

. (15.46)

Using aT ≡ a1 ≈ 10 km s−1 in the post-front region and our representative Teff of 3.8×104 K,
we find a numerical value close to 2 for the nondimensional quantity on the righthand side. The
post-front Mach number, u1/aT , is then near unity, as claimed.

The total rate at which mass leaves the disk as a wind is given by

Ṁdw = 4 π mH u1

∫ �d

�g

n1(�) � d� . (15.47)

Here, �d is the outer disk radius, while n1(�) is the number density of electrons (or protons)
just outside the disk surfaces. At any radius smaller than �g, the ionizing flux falls to zero at
the surface. To determine n1(�), then, we may utilize equation (15.3) for the Strömgren radius,
replacing Rs by � and solving for the density. We find

n1(�) =
(

3N∗
4 π α′

rec �3

)1/2

. � � �g (15.48)

Beyond �g, the density falls more rapidly. The ionizing flux no longer vanishes at the disk, but
liberates electron-proton pairs that flow off as the wind. Here, the radiation originates mainly
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from recombining atoms located near �g. A numerical calculation finds that the associated
flux declines roughly as �−4. The first factor of �−2 is the usual one from a point source.
One extra factor of �−1 accounts for the increasing obliquity of the disk to radially outward
photons. Finally, the flux attenuates even faster because of absorption by the small amount of
hydrogen in the wind itself.

It is actually the divergence of the flux that provides the photons needed to ionize the disk.
Taking the divergence introduces yet another factor of �−1, so that the local ionization rate
declines as �−5. We equate this to the recombination rate, which is proportional to n2

1. Thus,
we write the density as

n1(�) = ng

(
�

�g

)−5/2

, � � �g (15.49)

where ng is found by setting � = �g in equation (15.48). We next substitute equation (15.49)
into (15.47) and do the integral. In the limit �d � �g, we find

Ṁdw = 8 π mH u1 ng �2
g

= 1 × 10−4 M� yr−1

( N∗
1049 s−1

)1/2 (
M∗

40 M�

)1/2

.
(15.50)

To obtain the second form of this equation, we have assumed precise equality of u1 and a1,
which then cancel in the final expression.

The calculation previously mentioned, which includes a solution of the radiative transfer
in both the disk atmosphere and wind, confirms the dependence of Ṁdw on N∗ and M∗ given
by equation (15.50), but yields a numerical coefficient lower by a factor of 3. In any case, we
now see why extended disks, i. e., those with � � �g, should not be present around observed,
massive stars. A large circumstellar structure of 1 M� surrounding a 40 M� star survives only
for a time of order 104 yr, or about 1 percent of the central object’s main-sequence lifetime.
The erosion of disk material inside �g has not been considered in detail, but the stellar wind
must play a major role. If this wind carries sufficient momentum, as it does for a star of 40 M�,
it sweeps away the disk atmosphere. (See the lower panel of Figure 15.17.) Launching of the
disk wind now starts at a radius �w > �g. At this point, the outward ram pressure of the stellar
wind falls to a value comparable to the thermal pressure of evaporating material. We will not
analyze this case further, but simply note that Ṁdw is increased, since ionizing photons from
the star itself are no longer attenuated by an atmosphere and can reach the outer disk directly.

15.4.3 Proplyds in Orion

Besides dispersing its own circumstellar disk, a massive star can also affect those around other
stars. This circumstance arises because of the tendency for high-mass objects to be born near the
centers of crowded stellar groups. Not surprisingly, the best-studied case is the Orion Nebula
cluster associated with the Trapezium. The structures being photoevaporated by the Trapezium
stars are called proplyds, a contraction of “protoplanetary disks.”

Evidence for the Orion proplyds accumulated gradually. Optical imaging during the 1970s
revealed a number of small patches clustered near θ1 Ori C. These regions emitted strongly
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in such lines as Hα and [O III]λ 5007. Thus, they appeared to represent ionized gas, but were
weaker in the low-excitation lines characterizing Herbig-Haro objects. Subsequent radio contin-
uum observations with the VLA interferometer resolved the original group of emission objects
and revealed dozens of others. Near-infrared surveys then found that almost all these structures
contained their own low-mass stars. Since the regions could not be ionized locally, the obvious
culprit was θ1 Ori C and, to a lesser extent, the other Trapezium members. But what reservoir
supplied the neutral matter to be ionized? The very detectability of the low-mass, central objects
indicated that this matter was not distributed isotropically around each such star. A geometri-
cally thin disk, on the other hand, could both provide ample material for ionization and yet leave
its central star visible in the optical or near-infrared.

With the deployment of the Hubble Space Telescope in the 1990s, optical images with a res-
olution better than 0.′′05 became available. These spectacularly confirmed the disk hypothesis.
At the same time, the images revealed a variety of morphological types that had been largely
unsuspected. Figure 15.19 shows two outstanding examples, selected from the more than 100
objects now documented. The upper photograph, taken in Hα, illustrates the teardrop-shaped
emission associated with many proplyds. Here, the elongated tail points directly away from
θ1 Ori C, which lies at a projected distance of 4 × 1017 cm. The disk itself is the dark slab
located inside the teardrop. In this case, the disk does obscure the central star, at least in Hα.
The bright crescent at the top is the main ionization front, arising where ultraviolet photons
from θ1 Ori C encounter neutral matter flowing off the disk. Other photons from the ambient
HII region heat the disk from the rear and create a flow away from θ1 Ori C. This neutral gas
is hit nearly broadside by Lyman continuum radiation. The resulting ionization front assumes a
tapered configuration.

Our description highlights an important difference between a disk around a massive star
and one that is photoevaporated externally. In the first case, the ionization front coincides with
the disk surface. In the second, the reduced flux of Lyman continuum photons is generally
unable to penetrate to that depth. Instead, far-ultraviolet radiation with photon energies between
6 and 13.6 eV impinges on the disk, heating its surface layers to about 103 K. The heated
gas moves out as a wind, until it meets the Lyman continuum radiation and forms the bright
ionization rim (see Figure 15.20). For the proplyd shown in the top panel of Figure 15.19,
this rim stands off from the disk with a separation of 6 × 1015 cm, or about twice the disk
diameter. The same heating process occurs at the backside of the disk, but initiated by diffuse,
far-ultraviolet radiation. On both sides, the neutral wind can only flow at disk radii exceeding
�g in equation (15.39). Here, M∗ refers to the low-mass, central star, while a1 ≈ 3 km s−1

is the sound speed in the heated, neutral matter. Table 15.1 lists, for convenient reference, the
far-ultraviolet output of massive stars.

For proplyds situated much closer to θ1 Ori C, the gap between the leading ionization rim
and the disk becomes narrower, while the tapered backside grows into a long and slender tail.
Conversely, a proplyd lying farther from the massive star may have an ionization front so weak
that it is dimmer than the background HII region. The lower panel of Figure 15.19 shows such a
case. In this remarkable image, taken through a continuum filter centered on 5470 Å, the disk is
seen clearly in silhouette. The bright patch above the structure and the much fainter one below
are reflected light from the central, low-mass star.

It is interesting that the diameter of this quiescent disk, 1.5 × 1016 cm, exceeds that of the
one undergoing heavy photodissociation. This trend is general and indicates that the evaporation
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Figure 15.19 Two examples of proplyds in
Orion. The top Hα image is of the proplyd
182-413. Note the dark interior disk and the
bright ionization rim. The bottom image, taken
through a filter centered at 5470 Å, is of the
114-426 proplyd. Here we see both the disk
silhouette and scattered light from the star.

process first destroys the outermost region of lowest surface density. To estimate the total rate
of mass loss, we again invoke equation (15.47). However, we no longer expect the base density
n1(�) to be a steeply declining function of radius. The neutral region interior to the ionization
front is heated by the broad flux of far-ultraviolet radiation from the massive star. Taking n1 to
be a spatial constant in equation (15.47), we integrate to find

Ṁdw = 2 π mH u1 n1 �2
d , (15.51)

where we have again used �d � �g.
The thickness of the neutral region is set by the condition that the far-ultraviolet flux di-

minish significantly close to the disk surface. The attenuation here is due to interstellar grains.
Of course, the flux cannot vanish entirely, since photoevaporation would then cease. In sum-
mary, the neutral column density at each disk radius must be such that the optical depth to
far-ultraviolet photons is a bit larger than unity. But this column density, N1, is roughly n1�d,
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Figure 15.20 Photoevaporation of gas from a proplyd. Far-ultraviolet flux penetrates to the disk
surface, where it creates an outward, neutral flow. Matter leaves the disk surface at speed u1 and
density n1, then encounters the ionization front caused by extreme-ultraviolet photons. As gas
crosses the front, its velocity increases to u2 and its density falls to n2.

where n1 again refers to the base of the expanding flow (Figure 15.20). Note finally that the
optical depth condition forces N1 to be of order 1021 cm−2. (Recall equations (2.43), (2.44),
and (2.47), with Qλ ≈ 1.) We thus have

Ṁdw = 5 × 10−8 M� yr−1

(
N1

1021 cm−2

) ( �d

1015 cm

)
, (15.52)

where we have employed a u1-value of 3 km s−1. Molecular-line observations show that the
disks themselves have masses of order 0.01 M�. According to equation (15.52), the proplyd
evaporation time is then 105 yr. Bearing in mind our rather uncertain estimate of Ṁdw, the Orion
proplyds could not have survived for the Nebula age of 2×106 yr (Chapter 12). The implication
is that θ1 Ori C and the other Trapezium stars were relative latecomers, as we suggested earlier.

15.4.4 Destruction of Globules

The asymmetric appearance of the proplyds closer to θ1 Ori C, with their brightest ionization
rims facing the massive star, attests to a corresponding anisotropy in the radiation field. Al-
though the objects in question are deep within the HII region, most of the ionizing photons
stream directly from θ1 Ori C and not from recombinations in the immediate, surrounding vol-
ume. In other HII regions, there are larger amounts of interior gas than in the Orion Nebula,
often concentrated in clumpy, molecular form. We saw previously the dramatic elephant trunks
protruding inward toward the O stars of M16. The bright rims that top each structure, conspic-
uous in Figure 15.5, clearly have a similar origin as the ionization fronts bounding the Orion
proplyds. Individual globules engulfed by an HII region also glow in this manner. A prime ex-
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Figure 15.21 Optical photo-
graph in Hα of a cometary glob-
ule (designated Globule 1) in
the Rosette Nebula. Notice the
bright ionization rim on the right
and the bifurcated tail to the left.

ample is the structure surrounding the HH 46/47 jet and outflow (Figure 13.2). Here, radiation
from the supergiant ζ Pup has eroded enough of the cloud to bring the low-mass, embedded star
driving HH 46/47 close to the surface.

Still other self-gravitating clouds are more strongly distorted by the radiation field. A strik-
ing example is shown in the Hα image of Figure 15.21. This cometary globule lies at the edge
of the Rosette Nebula HII region, at a distance of 1.5 kpc. The structure consists of a rather
flattened head and a bifurcated tail, which can be traced for 2′ (1 pc). The bright ionization rim
at the head faces the five O stars that power the HII region. The entire structure is reminiscent
of some proplyds, but, like other globules, consists of dense molecular gas. We may picture the
object being sculpted out of the inhomogeneous medium surrounding the newly formed O stars.
The first material to be dispersed is the relatively sparse gas between the clumps. Matter that
lies in the shadow behind these clumps, i. e., shielded from the direct stellar flux, will survive
longer. This selective evaporation may account for the elephant trunks and could also fashion
cometary globules out of more isolated structures.

The bright rim of a globule advances slowly into the gas, eventually leading to its complete
dispersal. How fast does the process occur? In principle, one could use equation (15.5) to
determine the rate of advance of the ionization front. The difficulty is that the flux incident on
the globule is no longer that emitted by the massive star. Evaporated material streaming off the
cloud quickly recombines, becoming optically thick to the ultraviolet photons. Consequently,
only a small fraction of the stellar flux F∗ actually reaches the ionization front at any time.

We may use this very fact, however, to obtain a simple estimate for the evaporation rate.
If an idealized, spherical globule of radius R emits a wind over half its surface, the associated
mass loss is

Ṁgw = π mH u1 n1 R2 . (15.53)
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Figure 15.22 Photoevaporation of a spherical globule.
The stellar flux F∗ causes the cloud, of mass M and
radius R, to emit a wind over half its surface. This wind
has a uniform velocity u1 and a base density that varies
with the polar angle θ. Recoiling from its own wind,
the globule moves away from the star with velocity V .

As usual, the subscript denotes values just downstream from the ionization front, in this case,
at the base of the wind where it leaves the polar radius (θ = 0 in Figure 15.22). We assume
that the velocity is uniform over the hemisphere, but that the base density varies as cos θ, i. e.,
as the projected area of the globule exposed to the stellar flux. The numerical coefficient in
equation (15.53) then follows by averaging cos θ over the hemisphere.

Let us now suppose that the stellar flux incident at the globule’s polar axis is entirely ab-
sorbed. If d is the distance to the star, this condition is

N∗
4πd2

=
∫ ∞

R

n2
gw α′

rec dr , (15.54)

where ngw is the density in the wind along θ = 0, and where the upper limit of the integral
reflects the fact that d � R. We assume for simplicity that the velocity maintains the value
u1 throughout the wind. Then the requirement of mass continuity dictates that ngw fall with
distance from the globule center as

ngw = n1

(
R

r

)2

, (15.55)

so that

N∗
4πd2

=
(n1)2

3
α′

rec R . (15.56)
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We solve this last relation for n1 and substitute into equation (15.53) to find

Ṁgw =
√

3π

2
mH u1

(N∗ R3

α′
rec d2

)1/2

= 2 × 10−5 M� yr−1

( N∗
1049 s−1

)1/2 (
R

0.1 pc

)3/2 (
d

1.0 pc

)−1

.

(15.57)

Here we have assumed u1 = 10 km s−1.
Equation (15.57) indicates that a globule of several solar masses disappears relatively

quickly once engulfed by an HII region. If the object had already begun internal, protostel-
lar collapse or were on the verge of doing so, it might disperse before completing the process.
On the other hand, most cometary globules seem to have masses larger by an order of magni-
tude, according to CO measurements. These should last longer, and indeed many have infrared
stars embedded within their heads.

15.4.5 The Rocket Effect

There is another factor that tends to prolong the life of the clouds. We have described how
the ionization of a globule creates a wind that, somewhat paradoxically, flows back toward the
luminous star. In order to conserve momentum along this direction, the globule must suffer a
recoil (Figure 15.22). The net result is that the wind-emitting cloud accelerates away from the
star. This rocket effect can, in principle, drive structures out of the HII region entirely, so that
they become protected from further photoevaporation.

To quantify this idea, we first note from Figure 15.22 that the wind velocity in the stellar
direction is u1 cos θ. At the same latitude, the local mass loss rate is also proportional to cos θ,
and the product of this rate and u1 cos θ is the differential contribution to the thrust. After
integrating over the hemisphere, we find that the total thrust on the globule is (2/3) Ṁgw u1. If
M and V denote, respectively, the globule mass and velocity, we then have

M
dV

dt
=

2
3

Ṁgw u1

= −2
3

dM

dt
u1 ,

(15.58)

which immediately integrates to

M = M0 exp
(
− 3 V

2 u1

)
. (15.59)

Here, M0 is the initial value of the mass. The globule’s starting velocity is taken to be zero.
The next step is to rewrite equation (15.57) in terms of the initial values of Ṁgw, d, and M :

dM

dt
= −Ṁ0

d0

d

(
M

M0

)1/2

. (15.60)
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We have assumed here that the globule radius varies as M1/3, which is true for isothermal
spheres of modest density contrast. (Recall equation (9.15) and the accompanying discussion.)
Combination of equations (15.58), (15.59), and (15.60) yields

dV

dt
=

2 u1

3
d0

d

Ṁ

M0
exp

(
3 V

4 u1

)
. (15.61)

We now recast the lefthand side as the change of velocity with respect to distance. If we define
w ≡ V/u1 and z ≡ d/d0, then the nondimensional form of (15.61) is

w
dw

dz
=

β

z
exp

(
3 w

4

)
, (15.62)

where

β ≡ 2 d0 Ṁ0

3 u1 M0
. (15.63)

Notice, from equation (15.57) for Ṁgw, that β depends on N∗, as well as the globule’s initial
mass and radius, but not on the displacement d0.

Integration of equation (15.62) gives an implicit solution for the velocity:

4
3

(
w +

4
3

)
exp

(
−3w

4

)
=

16
9

− β ln z . (15.64)

Figure 15.23 plots, as a function of z, both w and the dimensionless mass
m ≡ M/M0 = exp(−3w/2). Here we have selected representative β-values of 1.0 and
0.5. With β = 1.0, the cloud accelerates and its mass falls by a large amount before the struc-
ture can move appreciably from its initial location. Changing β to 0.5 (equivalent, for example,
to quadrupling the starting mass at fixed radius and N∗), we find that the cloud reaches three
times its initial distance before the mass drops by a factor of ten. At this point, the velocity is
1.5 u1, or about 15 km s−1. The rocket effect can therefore account for a relatively low-mass
globule outside an HII region, but only if that object exhibits a substantial velocity.

15.5 Induced Star Formation

We mentioned earlier that the heads of cometary globules frequently contain one or more em-
bedded stars. In some cases, there is no doubt that these objects are indeed young, as several
drive molecular outflows and Herbig-Haro jets. An interesting question is whether the stars were
born prior to the arrival of the HII region, or whether their formation was somehow induced by
ionizing radiation impinging on the neutral globule. The analogous question arises regarding
the supernova explosions that end the life of massive stars. Could the high pressure in the
accompanying blast wave similarly trigger ambient clouds to form new stars?

Certainly there is no indication that all, or even most, lower-mass objects in the vicinity of
massive stars form either way. We have already seen that the hundreds of pre-main-sequence
stars in the Orion Nebula Cluster are probably older on average than the Trapezium itself. Nev-
ertheless, are there instances where clouds engulfed by an HII region or supernova remnant
indeed produce stars as a result?
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Figure 15.23 Acceleration and mass
loss of a globule due to the rocket ef-
fect. Shown as a function of nondi-
mensional distance z are the dimen-
sionless mass m and velocity w, as
defined in the text. Curves are dis-
played for indicated values of the pa-
rameter β.

15.5.1 Radiative Effects

Consider first the evidence for radiation-driven formation. Figure 15.24 is an optical image of
a cometary globule in the HII region S199, at a distance of 1.9 kpc. The large cross represents
a far-infrared source of total luminosity 1300 L�, while the smaller crosses are near-infrared
stars of lesser brightness. Two features are noteworthy. First, nearly all the embedded stars are
situated close to, but behind, the prominent ionization rim. Second, the cluster members tend to
lie between the far-infrared source and the rim, but not on the far side of the source.

A number of other cometary globules exhibit the same pattern. The presence of lower-mass
objects close to an intermediate-mass one is familiar enough from our discussion of clusters and
their production of higher-mass stars (Chapter 12). It is the asymmetry of the cluster distribution
that stands out, and suggests a causal role for the external radiation field. After all, it is this
same radiation that created the distinctive morphology of the globule in the first place. We
are reminded of the swept-up appearance of some dark clouds within the ρ Ophiuchi complex
(recall Figures 3.17 and 4.15). It is just these regions, lying adjacent to the Upper Scorpius OB
association, that account for the most concentrated stellar production in the molecular complex.
The important lesson is that massive, luminous stars can promote further star formation by
increasing the density in nearby gas. Within individual globules, most of this pileup occurs in
the swept-up material just inside the ionization rim, although there may be a secondary peak at
the location of any intermediate-mass star.

It is clear that ultraviolet radiation does more than just erode a cloud through photoevapo-
ration. It also exerts a mechanical pressure on that object, one that may radically alter its struc-
ture. The basis of this effect is surface heating by Lyman continuum photons. If we imagine
the massive star suddenly turning on near a pre-existing globule, this heating causes a compres-
sional wave to move inward toward the cloud’s center. Meanwhile, the object is both losing
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Figure 15.24 Optical image of
Globule 13 in the HII region S199.
The large cross near the center rep-
resents a bright, far-infrared source,
and the smaller crosses are dim-
mer, near-infrared stars. These ob-
jects appear preferentially in the
compressed region between the far-
infrared source and the bright ioniza-
tion rim.

mass through evaporation and accelerating away from the massive star. The readjustment of
the cloud to dynamical equilibrium results in a new morphology that, as we have seen, is often
markedly asymmetrical, even if the initial object were more spherical. Additional influence is
exerted by the massive star’s wind, whose ram pressure acts similarly to the radiation field, but
is generally less important.

Numerical simulations of globule irradiation begin with a cloud already immersed in a hot,
tenuous medium. The object is initially not self-gravitating, but confined by the background
pressure. Once the radiation is switched on, an ionization front covers much of the surface.
The compressional wave inside the front steepens into a shock and forces material toward the
symmetry axis. A calculation illustrating this effect is displayed as Figure 15.25. The short-
lived implosion phase is followed by a partial rebound, after which the compressed central
object settles into its equilibrium, cometary structure. How, then, does an interior cluster form?
The conventional view has been that star formation happens when the globule’s mass and added
pressure are so large that the object cannot find an equilibrium, but instead goes into dynamical
collapse.

This view, however, runs contrary to our ideas on both cloud stability and cluster formation.
Suppose the initial globule had significant support from an internal magnetic field. Then, from
the discussion in § 9.4, no increase of the external pressure is enough to render it gravitationally
unstable. On the other hand, the magnetic field may be negligible, and the globule may initially
be in pressure balance with the background. Once the object is subjected to a high enough ex-
ternal pressure to cause collapse, the situation is essentially equivalent to starting with a cloud
mass that exceeds the Jeans limit. In either case, the structure is out of force balance and under-
goes dynamical fragmentation. It splits into a number of lower-mass clouds that are themselves
gravitationally stable, and therefore incapable of producing stars.

Any induced star formation must therefore arise from a static or, at best, quasi-statically
evolving entity. In the present case, this entity is a cometary globule molded by the radiation
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Figure 15.25 Numerical simulation of a globule subject to ionizing radiation. The times at the top of
each panel are in units of 1 × 106 yr. Line segments are velocity vectors and represent the distance
traveled by fluid in 2 × 104 yr. Exposed to radiation from below, the initially spherical cloud of mass
20 M� first collapses toward its symmetry axis, then partially reexpands, before reaching a final, elongated
configuration at a much later time. The radiative flux corresponds to that from an O5 star at 10 pc.

field within an HII region. The structure may exist for a substantial period before it spawns
interior dense cores, which in turn lose magnetic flux through ambipolar diffusion and collapse
to stars. Precisely how the swept-up morphology stimulates core growth remains unknown.
There is no reason to suspect, however, that the mechanism differs fundamentally from that in
any other cluster-forming region. In any case, future observations that place a globule’s stars
within the HR diagram should help elucidate the chain of events.
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15.5.2 Dynamics of Supernova Remnants

There is another way by which massive stars exert a dynamical influence on nearby clouds. This
is the pressure increase associated with a supernova. As discussed in Chapter 1, all stars heavier
than about 8 M�, i. e., those of spectral type B3 and earlier, undergo this violent explosion as
their central region collapses to form a neutron star. Lower-mass objects that become white
dwarfs also detonate if they gain sufficient mass from a binary companion. The latter event is
termed a Type Ia supernova, as distinguished from the Type Ib, Ic, and Type II supernovae, all
of which originate from high-mass stars. (This classification scheme is based on the spectral
appearance of the optical light.) Spiral galaxies like the Milky Way produce several supernovae
per century, with Type Ia events occurring less frequently than the others. Within our own
Galaxy, the complex of glowing gas in Taurus known as the Crab Nebula is the most conspic-
uous example of a supernova remnant, the swept-up gas racing away from the explosion site.
As we shall see presently, there are observational signatures of such remnants interacting with
giant molecular clouds. Some of the ejected gas creates huge shells and bubbles, and eventually
escapes the Galaxy entirely.

Most of our understanding of supernova remnant dynamics is based on consideration of an
idealized, uniform background, just as in the corresponding analysis of HII regions. Following
the detonation near the star’s center, a shock wave propagates outward and ejects a few percent
of the stellar mass. The initial speed of this gas is enormous, typically 1 × 104 km s−1, or
3 percent the velocity of light. Long before this event, the cloud material in the stellar neigh-
borhood had already inflated to some degree because of the stellar radiation field. In any case,
the sparse ambient gas offers little resistance to the massive and dense envelope. Through its
expansion, however, the remnant continually sweeps up external matter. Once its total mass
has risen appreciably, the envelope begins to decelerate. For a representative initial envelope
mass of 0.2 M�, the initial, constant-velocity phase lasts about 100 yr, assuming a background
number density of ntot = 1 cm−3. The outer edge of the remnant now lies a parsec or so from
the explosion site.

This advancing boundary is a shock front, through which ambient gas flows.4 Although the
front slows down, its velocity is at first so high that the shocked gas cannot efficiently cool.
(Recall, for comparison, the discussion concerning massive outflows at the end of § 15.3.) The
expansion at this time, the so-called Sedov-Taylor phase, is therefore an adiabatic one. In fact,
since the moving gas does little mechanical work on its surroundings, the total energy of the
system maintains its initial value, i. e., that imparted by the explosion itself. Both kinetic and
thermal contributions are significant, arising from the bulk and random motions, respectively,
of the mass-gaining remnant. Note that it is the pressure of shocked, interior gas that drives the
expansion.

To assess the actual rate of deceleration, a simple dimensional argument suffices. Let Rshock

denote the radius of the leading shock front, which travels at the speed Vshock into the static
environment. Since the total energy is fixed, the volumetric energy density of the remnant falls

4 The expansion speed in a young supernova remnant is so high, and the background density sufficiently low, that
interparticle collisions are too infrequent to mediate the shock transition. Instead, the ambient magnetic field takes up
this role, resulting in a collisionless shock. The tangled field within the front is believed to be responsible for cosmic
ray acceleration.
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as R−3
shock. But the average interior pressure of any nonrelativistic gas is just 2/3 of its energy

density. Let us further suppose that the immediate postshock pressure is itself proportional to
this average value. (A detailed analysis shows it is about twice the average.) The postshock
pressure varies as V 2

shock, as we showed, for example, in equation (8.50). Combining these

results, we conclude that Vshock falls as R
−3/2
shock. Since Vshock = dRshock/dt, it also follows

that Rshock is proportional to t2/5, as opposed to the linear increase with time during the initial,
free expansion phase.

Suppose that the remnant, initially traveling at 1 × 104 km s−1, swells to a radius of 1 pc
in 100 yr, at which point the velocity begins to fall. The postshock temperature also declines.
When it reaches about 5 × 105 K, radiative cooling by metallic ions comes into play. Equa-
tion (8.50), with µ set equal to 0.61, implies that the required shock velocity is 200 km s−1. This
velocity is attained when the radius increases by a factor of (5000/200)2/3 = 9. Here we have
crudely accounted for prior deceleration by setting the initial velocity at the Sedov-Taylor phase
to 5 × 103 km s−1. The elapsed time during this adiabatic period is longer by (5000/200)5/3,
yielding 2 × 104 yr. The accumulated mass, which is proportional to the swept-up volume, is
100 M�.

Rapid postshock cooling now leads to increased compression behind the moving shock
front. As a result, the remnant becomes essentially a thin shell, which accumulates mass as
it continues to inflate. During this final, snowplow phase, the expansion is momentum-driven.
By our previous reasoning, the total mass is proportional to R3

shock. But conservation of mo-
mentum requires that the mass is also inversely proportional to Vshock. It follows that Vshock

varies as R−3
shock and that Rshock itself increases only as t1/4. Once the velocity becomes com-

parable to the random speed characterizing the interstellar medium, the shell merges into the
background. The total elapsed time is about 1 × 106 yr for our example, and the final radius is
23 pc. Here, we have assumed an ambient velocity dispersion of 10 km s−1, appropriate for the
warm, neutral gas that occupies most of the interstellar volume.

A shell-like structure for the remnant is often apparent at radio wavelengths, which have
provided the means for detecting several hundred such objects across the Galaxy. The spec-
tral energy distribution in the radio regime differs qualitatively from that of HII regions, in that
the intensity declines rather steeply with frequency. It is clear that the underlying mechanism
is not bremsstrahlung, but a nonthermal process. The emission, which is often highly polar-
ized, represents synchrotron radiation. It arises from relativistic electrons spiraling about an
internal magnetic field that expands along with the gas. These electrons, originating in the am-
bient medium, are accelerated by the advancing shock wave. Far more important in cooling
the remnant are X-rays, which indeed stem from bremsstrahlung in the shocked gas. Images
taken by X-ray satellites, starting in the 1970s, have provided much of our knowledge concern-
ing physical conditions in this material. Finally, many remnants, ranging from the 300 yr old
Cassiopeia A to the Cygnus Loop with an age of 4 × 104 yr, exhibit bright optical and ultravi-
olet emission in a system of extended, clumpy filaments. Both Hα and such familiar lines as
[O III] λ 5007 and the [S II] λλ 6716, 6731 doublet attest to the shock origin of this component.
In contrast, continuum emission in the optical is again strongly polarized and stems from the
synchrotron process.
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15.5.3 Blast Waves and Clouds

We are concerned primarily with how the blast wave affects ambient cloud material. If the
supernova progenitor is an O star, it has already driven away molecular gas from a large volume,
at least 15 pc in radius, during its main-sequence lifetime. This dispersal occurs via thermal
expansion of the relatively diffuse, interclump component, together with photoevaporation and
the rocket effect acting on the clumps themselves. After the explosion, the shock associated with
the supernova remnant is thus considerably weakened before it runs into molecular material. In
contrast, stars of spectral type B3 to B0, i. e., from 8 to 12 M�, directly impact the original
cloud complex once they detonate.

Observational examples of supernova-cloud interactions are actually quite rare. Of those
remnants that have been studied in molecular lines, only a handful exhibit highly perturbed,
dense gas. The best case is IC 443, a 104 yr old remnant in the Gem OB1 association, at a
distance of 1.5 kpc. The left panel of Figure 15.26 shows, in the negative, an optical photograph
taken through a red filter. Such an image is dominated by Hα emission from postshock gas. Here
we see two partial shells whose radii of curvature are manifestly different. The implication is
that cloud material to the upper left has a relatively high density, so that the associated shock is
advancing more slowly. Notice the filamentary arcs protruding from the righthand shell, whose
radius is 13 pc. A symbol in both panels marks the position of a strong, point-like X-ray source
that is presumed to be the actual neutron star.

The lefthand panel also displays heavier contours of 2.12 µm H2 emission, which is very
high in this source. Morphologically, the arc of shocked molecular hydrogen neatly continues
the lefthand shell, presumably into cloud regions that are too dense to be visible in Hα or other
optical lines. This supposition is confirmed by observations in CO, which show a broad swath
of clumpy, molecular gas cutting the remnant diagonally, between the optical arcs. Numerous
other emission lines, from such species as OH, HCO+, and SiO, are detected in this region.
All the lines are relatively broad, with radial velocity widths up to 90 km s−1. Additionally,
the transitions are from both low-lying levels and more elevated ones. Clusters of maser spots
are seen in the 1720 MHz line of OH. All of these molecules are being excited and set into
motion by a shock traveling about 40 km s−1 into gas that was already clumpy. This material
still partially surrounds the middle portion of the expanding remnant.

In the right panel of Figure 15.26, we display, again as an overlay on the optical image,
contours of diffuse X-ray emission. The morphology is clearly different from that in the optical
or near infrared. There is no longer any indication of a rim-like structure, but a more uniform
distribution of hot gas throughout the interior volume. The original Sedov-Taylor solution pre-
dicts that both the density of the gas and its emitted X-ray radiation should indeed peak toward
the shock boundary. That they do not suggests that significant amounts of material have been
injected within the volume and heated to somewhat above 106 K. A natural assumption is that
this matter represents initially cold, molecular clumps that were overrun by the blast wave. The
smaller of these clumps were initially squeezed by the greatly enhanced ambient pressure. After
partially re-expanding and establishing dynamical equilibrium, the clumps then evaporated and
merged into the background gas.
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15.5.4 Bubbles and Shells

An individual supernova remnant typically spans a few tens of parsecs and cools significantly
after 106 yr or so. On the other hand, there are much larger regions in our Galaxy, with di-
ameters ranging from 102 to 103 pc, that display a similar morphology. That is, they consist
of a hot, tenuous interior surrounded by a thick surface layer of relatively cold and dense gas.
Judging from the measured velocity of the outer component, expansion has been proceeding
for some 107 yr. The process must be driven by multiple supernova explosions occurring in a
quasi-continuous manner over the entire epoch. A single giant molecular cloud survives for the
required length of time and could develop numerous sites of massive star formation over this
period.

Our own solar system is immersed in just such a hot, expanding region. When discussing
the interstellar radiation field in Chapter 7, we noted the existence of a component in the soft
X-ray regime. Photons here originate from a 106 K plasma with an estimated diameter of
100 pc. This Local Bubble is also noteworthy for its low HI density compared to surrounding
regions. Indeed, 21 cm observations reveal the presence of an exterior shell of atomic hydrogen,
commonly referred to as Lindblad’s Ring. Radio data are consistent with an elliptically shaped
band of gas expanding within the Galactic plane (see Figure 15.27). Although the original shell
may have been launched isotropically, the outward motion within the plane becomes sheared
by the same gravitational field that produces the differential rotation of the stars. Figure 15.27
depicts how placement of the solar system just inside the Ring’s border yields a pattern of radial
velocities that matches the 21 cm observations.

If we compare Figure 15.27 with Figure 4.14, we see that the oval contour of Lindblad’s
Ring strikingly resembles Gould’s Belt. This extensive system of bright stars, we recall, con-
tains a number of prominent OB associations, including those of Orion and Scorpius-Centaurus.
A precise comparison between the two structures is inappropriate, since the underlying ring cal-
culation ignores such factors as deceleration of the HI shell from its encounter with external
mass. Nevertheless, the similarity in both the spatial configuration and the expansion velocities
is surely no coincidence. The generally accepted picture is that supernovae began detonating
about 6 × 107 yr ago in the now largely dispersed Cassiopeia-Taurus association. Shock heat-
ing from multiple expanding remnants created the Local Bubble and also swept up gas into
both Lindblad’s Ring and the molecular complexes of Scorpius-Centaurus, Orion, Perseus, and
ρ Ophiuchi. More recent OB associations, such as Ori OB1 and Per OB2, later arose within
this gas, and now comprise Gould’s Belt. We emphasize that the causal link from the original
Cas-Tau supernovae to the present-day O stars is indirect, with the former helping to shape the
environment within which the usual star formation processes have been operating.

Numerous other shells throughout the Galaxy are discernible from spatial maps at 21 cm.
The atomic hydrogen away from the Galactic plane tends to be concentrated in filamentary arcs;
many of these are likely to be parts of closed, nearly spherical structures. Within the plane, one
needs to examine maps constructed in narrow slices of radial velocity, in order to minimize
contamination by foreground and background gas. Such images display both arcs and com-
plete shells. In some cases, the systematic variation of the shell diameter with radial velocity
demonstrates convincingly and quantitatively an expansive motion. Utilizing the Galactic rota-
tion curve, one may assign distances to the structures and convert angular to physical radii. The
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Figure 15.27 Expansion of Lindblad’s ring. Data points in the upper panel are observed radial
velocities in HI as a function of Galactic longitude. The smooth curve shows the expected dis-
tribution of radial velocity if the HI gas were expanding as shown below. The elliptical shape
represents an initially isotropic expansion into the Galactic disk, after 6 × 107 yr of evolution.
Calculated velocities refer to the indicated solar system position inside the ring.

latter range in magnitude from the resolution limit to values even larger than that for Lindblad’s
Ring, about 250 pc. At the top end of the scale are shells whose estimated mass (over 106 M�)
and size would seem to require an explosion energy above 1053 ergs. The latter exceeds the
energy from a single Type I supernova by at least two orders of magnitude. However, the un-
derlying assumption in this estimate is that injection occurs instantaneously. Less total energy
would be needed for the shell to attain a given radius if that energy were instead added in a con-
tinuous fashion. Thus, the observed supershells can plausibly be formed through the combined
action of winds and supernovae from large OB associations.

Within a supershell is a superbubble, and these too are seen, through X-ray observations.
A well-studied example is the Cygnus Superbubble, located at a distance of 1.3 kpc. Here, a
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large region of X-ray emitting gas, some 13◦ (or 300 pc) in diameter, is bifurcated by a thick
ridge of heavy obscuration. Within the latter is the highly luminous Cygnus OB2 association,
thought to be energizing the entire structure. (See Figure 4.14 for the location of this stellar
group.) The area surrounding the X-ray region contains shock-heated filaments glowing in Hα
and coincides with an HI supershell. Four discrete OB associations are also found along this
border. At one extremity lies Cygnus OB7, which the reader may also find in Figure 4.14. The
Hipparcos satellite has provided proper motions for numerous stars in this peripheral region,
showing them to be in a state of global expansion.

Bubbles and their surrounding shells constitute a large fraction by volume of the interstellar
medium. In particular, the diameter of a supershell is comparable to the scale height of HI gas.
That portion of the shell normal to the Galactic plane feels an additional retardation from the
gravity of the local disk. The shell contour thus begins to flatten, an effect that is sometimes
apparent in the 21 cm maps. With continued expansion, the interior bubble bursts from the
disk entirely. Hot gas spews outward as a Galactic fountain. Once this matter cools, it may
return to the disk at a location well removed from its injection point. Observed clouds of atomic
hydrogen that are approaching the plane with speeds from about 30 to 100 km s−1 may represent
this reentry component.

15.5.5 Supernova-Induced Collapse

Supernovae are thus primary agents for both heating and mechanically stirring gas on the Galac-
tic scale. Assessing their collective effects is essential for understanding the interstellar medium.
Our present concern, however, is to explore the means by which new stars may form as a re-
sult of these energetic events. Aside from the indirect route, i. e., the compression of ambient
gas into relatively dense molecular clouds, is it possible for an individual supernova to provoke
collapse in a nearby globule?

From a theoretical perspective, the answer is clear and affirmative. Figure 15.28 displays
snapshots from a three-dimensional numerical calculation simulating the impact of a planar
shock front on an isolated globule. The 1 M� object was initially spherical and nearly in hydro-
static equilibrium. As the shock enters from the right, the cloud flattens and the front distorts
into a broad, concave structure. The associated pileup eventually drives some of the cloud gas
into the center, raising the density there substantially. The local velocity increases toward this
location, a sign that collapse is imminent.

The particular simulation of Figure 15.28 employed a shock speed of 25 km s−1, not far
below the 40 km s−1 inferred for the supernova remnant IC 443. Other experiments find that a
substantially higher shock speed does not lead to collapse, but to violent cloud shredding and
dispersal. Conversely, a shock that is too weak results in temporary distortion and compres-
sion of the cloud, followed by rebound to a spherical equilibrium. It thus appears that over
some range of shock speeds, including those appropriate for some supernova remnants within
molecular environments, pre-existing globules are indeed set into collapse.

Even if the cloud collapses, however, it does not follow that new stars are always, or even
usually, formed as a result. The reasoning here is the same as we applied to cometary globules
inside HII regions. Indeed, much of the compression in the supernova case is not from ram
pressure per se, but from the enhanced temperature behind the shock front, which has a similar
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Figure 15.28 Numerical simulation of the shock-induced collapse of a cloud. Contours represent
mass density and are spaced by factors of two in that variable. The cloud is initially spherical,
with a mass and radius of 1 M� and 104 AU, respectively. At t = 0, it is struck by a planar shock
front approaching from the right at 25 km s−1.

effect as that created at the globule surface by ultraviolet heating. The resultant collapse, in
either case, is unlikely to yield stellar densities unless the applied pressure marginally exceeds
the maximum allowed for gravitational stability. Barring such a match, which could occur only
through a fortuitous combination of supernova energy, distance, and the density of the medium
surrounding the cloud, the outcome of induced collapse is dynamical fragmentation.

15.5.6 Extinct Radionuclides

The formation of low-mass stars through the induced collapse of molecular clouds would thus
seem to be a rare event. Even so, a number of planetary scientists have maintained that just
such a picture applies to our own solar system. Their evidence is a pattern of anomalous iso-
topic abundances found within certain meteorites. This pattern is a fossil record of short-lived,
radioactive species that may have been injected just at the time of solar system formation. Since
supernova remnants carry such species, it is argued that the blast itself triggered collapse and
the subsequent creation of the Sun.

Meteorites are fragments of asteroids, the subplanetary masses orbiting within the solar
system. These bodies, in turn, are relics of the solar nebula, i. e., the protostellar disk within
which the planets themselves formed. Most rocky meteorites (as opposed to those with a high
metallic content) are classified as chondrites, and it is these which most faithfully represent the
original nebular conditions.5 Chondrites are not homogeneous rocks, but aggregates of smaller
objects, termed chondrules and CAIs. The former are millimeter-size droplets, rich in iron,

5 Abundance analysis of long-lived radioactive species within chondrites has given us the presently accepted age of the
solar system, 4.6 × 109 yr.
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magnesium and silicates. The term CAI is an acronym for “calcium-aluminum-rich inclusion.”
These are larger, rounded structures, up to several centimeters in size. They are depleted in just
those volatile elements that make up the chondrules and contain an array of minerals, each with
its own crystalline structure.

For the most part, the relative elemental abundances within chondritic meteorites are close
to those observed in the solar atmosphere. This basic fact supports the view that the original ma-
terial was a homogeneous gas that later differentiated into the central star and its disk. Depletion
in the more volatile elements, such as that occurring in CAIs, presumably reflects high temper-
atures in the solar nebula, at the sites where these objects condensed. There are also variations
within the isotopic abundances of a given element. Some of these variations are attributable to
fractionation processes, akin to the selective chemical reactions that alter the [12C/13C] ratio
throughout the Galaxy (Chapter 6). Other isotopic shifts, however, do not fit this pattern and
appear to be the result of prior radioactive decay.

Let us consider one case, the enrichment of 26Mg in CAIs. This isotope may be produced
by the decay of 26Al. What is the evidence that such a decay actually occurred in the solar
nebula? Figure 15.29 shows data from a single CAI of the Allende meteorite, recovered in
Mexico in 1969. This particular specimen contains four distinct crystalline phases. Each has its
own characteristic abundance ratio of the two principal isotopes, 27Al and 24Mg; this ratio is
plotted on the horizontal axis. On the vertical axis is displayed the corresponding ratio of 26Mg
to 24Mg. This latter quantity varies by some 10 percent throughout the CAI, with a minimum
of 0.140, just the value found in terrestrial and lunar rocks.

The most significant feature of Figure 15.29 is that the local enrichment of 26Mg increases
linearly with the abundance of 27Al. A plausible explanation is that a certain fraction of alu-
minum was in the isotopic form 26Al at the time the inclusion solidified. Different parts of the
body ended up with different amounts of aluminum, depending on their crystalline phase. The
original fraction of the radioactive isotope, [26Al/27Al]0, may be read from the slope of the line
as 5 × 10−5. Note that the half-life of 26Al is only 1.1×106 yr. Assuming that this isotope was
produced during a supernova, there was very little time from the explosion to incorporation of
the hot gas into the forming solar nebula. Hence the hypothesis of triggered collapse.

Other elements tell a similar tale, with comparable fractions of extinct, radioactive isotopes.
At present, there is no quantitative model that produces all these contaminants in their correct
proportions. Nor is their a firm understanding of how the radioactive material penetrated the
collapsing dense core to the relatively tiny disk in its deep interior. Some theorists have sug-
gested that the trigger was not a supernova at all, but the wind shed by a lower-mass star during
its asymptotic giant phase. Others have pointed out, in opposition to the triggering hypothesis,
that energetic protons from flares in the young Sun could have reacted with 25Mg in the disk
to create 26Al. (This same reaction produces the isotope in supernovae and giants.) Overshad-
owing all these competing ideas is our ignorance of how chondrules and CAIs form at all. The
morphology of both shows that their constituent matter was heated to some 1500 K and that
their solidification occurred very quickly after this heating. The nature of this thermal event is
at least as mysterious as the isotopic anomalies.

Returning finally to the general issue of star formation, we have stressed that any triggering
scenario relies on a finely tuned relation between the dense core and the external agent. Such
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Figure 15.29 Observation of excess 26Mg in the Allende meteorite. The indicated isotopic ratios
are plotted for four different crystalline phases within a single CAI. The straight line is a best fit
to the data.

conditions are unlikely to hold throughout an extensive cluster or association. On the other hand,
the orchestrated pattern of star formation within such groups does suggest an environmental
influence (Chapter 12). Part of this influence could well be the prior compression of the larger
cloud by nearby, massive objects. If we are to reject any direct form of triggering, then the birth
of each low-mass star must still proceed through the growth, to the point of instability, of its
parent dense core.

Chapter Summary

The ultraviolet radiation from a high-mass star ionizes ambient gas. If the latter is a typical
molecular cloud, the ionization front initially races out at high speed. The front decelerates as
photons are depleted, then begins a more prolongued expansion at subsonic velocity. Eventually,
the highly pressurized HII region bursts out of the cloud. The resulting champagne flow may be
traced through its optical and radio emission.

Observations show that massive stars are actually born in environments far denser than or-
dinary clouds. Such hot cores emit copiously in the infrared and through radio molecular lines,
but exhibit no internal HII region. At a later phase, the ionization front is temporarily stalled by
the ambient density at a radius of order 0.1 pc. These ultracompact HII regions are especially
luminous in far-infrared continuum radiation from heated dust.
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O and B stars also disrupt clouds through their high-velocity winds. Here, the ionized gas
is accelerated outward by radiation pressure. Wind-emitting stars have excess radio emission
with a characteristic value of the spectral index. They also produce fluctuating X-rays that stem
from internal wind shocks. Younger, embedded objects drive bipolar molecular outflows that
are both broader and more massive than those from lower-luminosity stars.

Any disk within an HII region suffers photoevaporation. If the source of ultraviolet flux is
the disk’s own central star, the inner part of the structure is kept intact by stellar gravity, while
the outer part flows off as a pressure-driven wind. Low-mass stars in Orion near θ1 Ori C have
evaporating disks known as proplyds that glow optically. Parsec-scale cloud globules within
other HII regions are similarly destroyed. Radiation squeezes a globule, and the enhanced
density stimulates production of new, low-mass stars. Finally, the smallest globules are pushed
away from an ionizing star by the recoil from their evaporative flows.

Cloud material not dissipated during a star’s main-sequence life by the wind or radiation
is impacted by the terminal supernova event. A dense shell traveling from the exploded star
creates a shock in the cloud, observed through broad emission lines. The interior of this shell
glows in X-rays. Analogous structures, but on a much larger scale, are created by multiple,
contiguous supernovae. These supershells strongly perturb gas throughout the Galaxy. An
individual supernova is generally disruptive, but can drive a relatively small cloud into collapse.
Such rapid implosion is more likely to result in cloud breakup than production of a new star.
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16 Quasi-Static Contraction

The pre-main-sequence phase of stellar evolution marks both an end and a beginning. On the
one hand, it represents the last period of a star’s youth, before the object enters a protracted
epoch of hydrogen fusion. It is also true that the star, as it begins pre-main-sequence contraction,
is no longer buried within an opaque dust cloud. For the first time, radiation can emanate freely
from the surface layers. The star thus behaves in some respects like a mature, largely stable
object and is relatively easy to observe by traditional means. A number of phenomena, however,
attest to the fact that youthful activity has not ceased altogether. It is these peculiarities that have
kept pre-main-sequence stars a major focus of astronomical research for over half a century.

We begin our study, in the present chapter, by exploring this evolutionary phase from a the-
oretical perspective. After examining the physical origin of the stellar birthline, we address the
central issue of how contraction persists over a relatively long period. We also describe the ther-
mal and nuclear changes that occur along the way. The ignition of hydrogen ends contraction
for normal stars. In brown dwarfs, which we also discuss, the central temperature is generally
high enough to burn deuterium but not ordinary hydrogen, and contraction must eventually be
halted by electron degeneracy pressure. In both cases, the depletion of another light element,
lithium, provides a useful chronometer.

Another issue of prime concern is stellar rotation. All stars are born with some finite angular
momentum, and the question of how their spin rate changes during contraction is not yet fully
understood. Hence, we will rely heavily on the available observations to guide us through
this developing topic. In the remaining chapters of Part V, we will summarize our current
understanding of both T Tauri and Herbig Ae/Be stars.

16.1 The Stellar Birthline

Throughout this book, we have frequently utilized the birthline as a theoretical construct within
the HR diagram. We presented the curve as the locus from which pre-main-sequence tracks
descend, as well as the fiducial zero-point for stellar ages. But what is the motivation, from an
observational viewpoint, for introducing this concept? And once the idea is accepted, with what
precision can we pinpoint the curve’s location, from either observation or theory? We saw in
previous chapters that the birthline is not relevant for the most massive stars, which first appear
on the main sequence. What is the stellar physics at the root of this distinction? One task in this
chapter must be to address these questions.

16.1.1 Empirical Evidence

The idea of the birthline stems not from the observations of individual stars, but from surveys of
stellar groups. Consider first T associations. These, as we described in Chapter 4, still contain
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a substantial quantity of molecular gas, although the visual extinction toward the regions is
low enough for most members to be placed in the HR diagram. A glance at Figure 4.9 shows
immediately that there is a pattern to the distribution. Within each association, virtually every
star is found above the main sequence. This fact, along with the presence of molecular gas,
assures us that the systems are indeed young. Equally striking is the clear upper boundary in
each distribution. Such a boundary appears in every T association with a sufficient population of
well-observed members. It also appears in even richer groups containing massive stars. A good
example is the Orion Nebula Cluster, whose HR diagram we displayed as Figure 12.29. The
net impression is that the upper reaches of the HR diagram are somehow forbidden, i. e., that
pre-main-sequence stars, by their very nature, are restricted to relatively modest luminosities.

This interpretation, however, is immediately subject to a telling criticism. The contraction of
pre-main-sequence stars decelerates with time. We also know that low-mass stars grow dimmer
as they contract. Might not the paucity of very luminous objects be a statistical effect? Might
there be no sharp upper boundary at all, but only a diminishing likelihood of detecting stars high
in the diagram, simply because they spend so little time there?

To quantify this argument, we recall the characteristic time scale for pre-main-sequence
contraction. This is the Kelvin-Helmholtz value:

tKH =
G M2

∗
R∗ L∗

, (16.1)

introduced originally as equation (1.6). The quantity tKH, we recall, measures the period re-
quired for the stellar radius to shrink appreciably. That is, the star’s contraction obeys

dR∗
dt

= −n1
R∗
tKH

, (16.2)

where n1 is a dimensionless, positive constant of order unity. Later in this chapter, we will
derive this equation more formally and supply the numerical coefficient. We shall also indicate
the origin of another important fact concerning pre-main-sequence evolution. This is the near
constancy of the star’s effective temperature, especially for subsolar masses. Now the radius,
effective temperature, and luminosity are related through equation (1.5):

L∗ = 4 π R2
∗ σB T 4

eff . (16.3)

We thus have
dL∗
dt

= −n2
L∗
tKH

, (16.4)

where n2 ≡ 2 n1. It also follows that tKH itself varies as L
−3/2
∗ for a star of fixed mass. If the

number of stars in a portion of the HR diagram were indeed proportional to the length of time
spent in that portion, then equation (16.4) implies that the number per logarithmic interval of
luminosity would vary as tKH, i. e., as L

−3/2
∗ .

It is a straightforward matter to test this prediction against observation. Figure 16.1 shows
results for the Orion Nebula Cluster. Here, we have selected a vertical strip in the diagram
of Figure 12.29. This strip is centered on log Teff = 3.52, corresponding to a stellar mass of
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Figure 16.1 Stellar distribution by luminosity in the Orion Nebula Cluster. Plotted is the number
of stars in each luminosity interval ∆log (L∗/L�) = 0.1. The stars have log Teff = 3.52, within
a width ∆log Teff = 0.03. The survey’s nominal flux limit is 0.1 L�, as marked by the vertical
arrow on the horizontal axis. The dashed curve is the prediction of a steady-state formation model.

0.20 M�. The histogram shows the observed number of stars, in fixed intervals of log L∗. For
comparison, the dashed curve is the L

−3/2
∗ prediction. The two are manifestly different over

the entire range of luminosities, especially at small L∗-values. What are we to make of this
discrepancy?

A tacit assumption underlying our prediction is that pre-main-sequence stars appear at a
steady rate. We know from Chapter 12, however, that real groups do not form stars for longer
than about 107 yr. Thus, the eventual decline in the histogram toward lower luminosities, i. e.,
older stars, is to be expected. Note that the luminosities displayed extend below the sensitiv-
ity limit for these observations, which is about 0.1 L�. However, the decline is already well
established by that point.

Of more immediate interest is the trend toward higher luminosities. Figure 16.1 shows a
steep falloff in this direction and a sudden drop at log L∗ ≈ 0. The production rate of many
groups, including the Orion Nebula Cluster, accelerates with time through the present epoch
(§ 12.4). This increased rate partially offsets the diminishing value of tKH at higher luminosity.
Indeed, it is clear from the figure that the decline in population is initially less steep than in
steady state, just as expected. At a certain point, however, the number falls much more dramat-
ically. Even under the steady-state hypothesis, about 17 additional stars would be present with
log L∗ > 0. The observed number is only 2.
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A similar, precipitous truncation in the stellar population is seen for other vertical strips in
the Orion HR diagram. One possible explanation is that brighter objects would still be forming
if not for the current O stars, which have stripped away the molecular gas within the recent
past. However, essentially the same sharp boundary is seen for other groups, such as Lupus and
Taurus-Auriga, where there are no massive stars at present. We conclude that brighter stars of
low mass are not just undersampled in all these environments, but never appear at all. That is, a
forbidden region in the HR diagram indeed exists.

The physical reality of the boundary is confirmed by the fact that empirical indicators of
stellar youth show a marked enhancement in its vicinity. Some of these indicators, such as
excess infrared continuum flux and optical emission lines, will be considered in detail in the
next two chapters. Yet another sign, outflow activity, was the subject of Chapter 13. There
we saw that most stars driving either jets or molecular outflows are themselves too embedded
to be placed in the HR diagram. A few sources, however, exhibit optical photospheres. Their
measured temperatures and luminosities invariably place them close to the birthline.

To illustrate the point, we present in Figure 16.2 a composite HR diagram of several dozen
Herbig Ae and Be stars, taken from a number of different locations. As expected, the aggregate
group lies almost wholly between the birthline and the ZAMS, both of which are included in the
figure. The filled symbols represent objects, covering a range of masses, that have associated
molecular outflows, as detected in CO. In some cases, the optically visible star itself may be
powering its own flow. In others, an unresolved, and perhaps more embedded, binary companion
could be the driver. We know from Chapter 12 that both components within such a binary are
likely to be coeval, so the outflow would still serve as a sign of youth for the visible star.
It is evident, in any case, that stars associated with outflows occur relatively high within the
distribution, and that most fall close to the upper boundary.

16.1.2 Theoretical Derivation

Within the context of stellar evolution theory, the existence of the birthline is readily under-
stood. The pre-main-sequence objects that populate the HR diagram are the optically visible
descendents of embedded protostars. The most luminous, and therefore youngest, visible stars
have characteristics that reflect their origin as accreting objects within collapsing dense cores.
Both the surface luminosity and temperature of a protostar are set by infall dynamics. (Recall
equations (11.5) and (11.8).) These quantities are expected to change significantly once the
main accretion phase has ended. On the other hand, the radius of the object is determined by
its internal structure, i. e., by the balance of self-gravity and thermal pressure. This property is
insensitive to surface infall and is the same for a protostar and a very young pre-main-sequence
star of identical mass. The birthline is simply the locus in the HR diagram of pre-main-sequence
stars with protostellar radii.

Once this essential point is appreciated, it is easy to see why visible stars of very high
luminosity are not present, i. e., why there is a forbidden region. The theoretical calculations
described in Chapter 11 find that protostellar radii are greater than main-sequence values, but
never by more than a factor of 10. (Recall Figure 11.6.) The luminosity of a pre-main-sequence
star obeys the photospheric relation of equation (16.3). As we shall detail shortly, the surface
properties of such objects result in effective temperatures that, for subsolar masses, are slightly
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Figure 16.2 The distribution in the HR diagram of visible stars driving molecular outflows. The
open circles represent Herbig Ae/Be stars from a variety of star-forming regions. Filled circles are
that subset associated with CO emission. Also shown are the theoretical birthline, the zero-age
main sequence, and pre-main-sequence evolutionary tracks. Masses for the latter, in solar units,
are indicated.

less than main-sequence. It follows that the initial luminosities of pre-main-sequence stars
cannot exceed those along the ZAMS by more than two orders of magnitude. The L∗-values
are modest compared to those achieved in later stellar evolution (recall Figure 11.5).

Theoretical construction of the birthline begins by considering a sequence of stellar mod-
els, each taken to represent the youngest pre-main-sequence star of its respective mass. One
solves, for a given M∗-value, the four stellar structure equations. The radius enters when im-
posing the appropriate boundary conditions. (See § 16.2 below.) Thus, one surface condition
is equation (16.3), where R∗(M∗) is adopted from protostar theory. Solution of the structure
equations gives Teff , and therefore also L∗, at each mass. The birthline we have displayed so
far uses the mass-radius relation from a spherical calculation of protostellar infall, in which the
accretion rate Ṁ was set equal to the constant value 1 × 10−5 M� yr−1. Table 16.1 lists the
essential birthline properties under this assumption. The fifth column gives the period of active
deuterium burning in the subsequent, pre-main-sequence phase (see § 16.3 below). Finally, we
have listed the time tZAMS required for each mass to contract all the way to the main sequence.
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Table 16.1 The Theoretical Birthline

Mass Radius log L∗ log Teff ∆tD tZAMS

(M�) (R�) (L�) (K) (yr) (yr)

0.1 2.49 −0.28 3.49 1.5 × 106 3.7 × 108

0.2 2.52 −0.01 3.52 8.5 × 105 2.4 × 108

0.4 2.70 +0.27 3.56 3.0 × 105 1.1 × 108

0.8 4.32 +0.78 3.61 2.7 × 104 5.2 × 107

1.0 4.92 +0.85 3.63 6.9 × 103 3.2 × 107

1.5 5.09 +0.89 3.65 0 1.2 × 107

2.0 4.94 +0.90 3.67 0 8.4 × 106

3.0 5.66 +0.94 3.70 0 2.0 × 106

4.0 10.2 +2.09 3.84 1.4 × 104 8.2 × 105

5.0 8.20 +2.83 4.05 8.3 × 103 2.3 × 105

6.0 4.62 +3.24 4.27 1.1 × 103 2.9 × 104

7.0 3.28 +3.40 4.32 7.0 × 101 8.5 × 103

8.0 3.11 +3.55 4.36 0 0

The predicted birthline location clearly depends on the results of both protostar and pre-
main-sequence theory. Deferring consideration of the latter, how sensitive is this location to the
infall model? Given the considerable uncertainty regarding the infall phase, one must hope that
the precise value of Ṁ , its temporal behavior, or even the geometric pattern of infall, do not
strongly influence the curve’s location. Fortunately, this appears to be the case.

Consider the value of Ṁ , assumed for the moment to be temporally constant. We saw in
Chapter 10 how rates of 10−6 to 10−5 M� yr−1 are expected from the dynamics of inside-out
collapse, in conjunction with the measured temperatures of dense cores. (The central relation
connecting Ṁ and this temperature is equation (10.31).) But how does the birthline itself re-
spond to a shift in the infall rate? The left panel of Figure 11.8 shows that the protostellar radius,
at a given mass, diminishes for lower Ṁ . Slower buildup of its mass gives the protostar more
time to radiate internal energy and therefore shrink. Nevertheless, over the indicated range in
Ṁ , the radius change is severely restricted at subsolar masses. The reason, we recall, is the ther-
mostatic effect of deuterium fusion. Although present in small quantities, this fuel effectively
constrains the radius by altering the nuclear energy output during the main accretion phase. In
calculations where deuterium fusion is artificially suppressed, the mass-radius curve undergoes
a larger shift when Ṁ is altered. (See the right panel of Figure 11.8.)

Figure 16.3 shows the effect on the birthline of altering the infall rate, for the same Ṁ -range
as in Figure 11.8. As expected, inclusion of deuterium assures a relatively narrow spread in
the predicted birthline. In contrast, the maximum luminosities for pre-main-sequence stars
would have a larger dispersion in the hypothetical situation of zero deuterium abundance. To
summarize, we now have one clue why the observed stellar groups show a rather sharp boundary
in the HR diagram. This reasoning implies, incidentally, that any rise in the estimated deuterium
abundance relative to hydrogen in the interstellar medium, a matter of ongoing investigation and
here taken to be [D/H] = 2.5 × 10−5, would tighten the theoretical boundary even more.
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Figure 16.3 Effect on the theoretical birthline of changes in the mass accretion rate Ṁ . The
upper curve in each case is the birthline constructed with Ṁ = 1 × 10−5 M� yr−1, while the
lower curve corresponds to 2× 10−6 M� yr−1. In the left panel, the calculations assume the full
interstellar deuterium abundance, while this abundance has been artificially set to zero in the right
panel.

The other issues we raised — the temporal behavior of Ṁ(t) and the spatial pattern of infall
— have not yet been addressed through detailed calculations. A few general remarks, however,
are in order. The birthline concept rests on the supposition that a pre-main-sequence star’s initial
radius is that inherited from the infall epoch. Thus, the main accretion phase is assumed to end
quickly compared to the characteristic time tKH. If this were not the case, the star would begin
to contract even while gaining mass at a slowly diminishing rate. Theorists are still far from
understanding, even in a qualitative fashion, the mechanism by which infall ends. However, the
observations themselves offer valuable insight. In Chapter 17, we shall examine the evidence
for continued mass addition onto visible T Tauri stars. While such late infall is almost certainly
present, the estimated rate, even for stars relatively close to the birthline, is well under the
protostellar value of equation (10.31). Hence, the hypothesis of a rapid decrease of infall is at
least consistent with observations.

By the spatial pattern of infalling gas, we refer primarily to the effects of angular momentum.
It is not difficult to determine the density and streaming velocity within a rotating, collapsing
envelope, as we did in Chapter 11. The real problem, still outstanding, is the fate of this material
after it lands in the disk and how it is ultimately transported to the protostellar surface. We
argued in § 11.4 that the deposition of specific entropy on the surface should be insensitive to
the details of this transport, but the calculation has yet to be done. As an extreme limit, one may
replace the thermal boundary condition appropriate for spherical infall, equation (11.25), by the
photospheric one in equation (16.3). At fixed Ṁ , the effect of even this change on protostellar
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evolution should be minor, at least in the subsolar mass regime. The reason is that central
deuterium fusion has more influence on the star’s internal entropy than the surface condition.

16.1.3 Intersection with the ZAMS

If the protostar continues to increase its mass, other effects come into play. We described in
Chapter 11 how deuterium begins to fuse within an interior shell, and how this burning dramati-
cally swells the protostar’s radius (Figure 11.21). At even higher mass, gravitational contraction
becomes strong, and the protostar rapidly shrinks. These events occur once the star’s internal
luminosity, given by 〈Lint〉 in equation (11.44), becomes so high that it dominates Lacc.1 Both
processes clearly operate independently of the star’s surface properties. Hence, the precise ther-
mal boundary condition also has little impact on the radii of higher-mass protostars, and thus on
the birthline in this regime.

The form of the birthline naturally reflects the evolutionary developments just described.
Referring again to the curve in Figure 16.2, we note how, with increasing Teff , the boundary
veers upward in the neighborhood of log Teff = 3.70, corresponding to M∗ = 3 M�. This
change, which allows the birthline to encompass observed Herbig Ae and Be stars, results from
the swelling induced by deuterium shell burning. For even higher Teff , the upward rise sags,
as the protostar’s radius begins to fall. Finally, at log Teff = 4.33, corresponding to 8 M�, the
curve intersects the ZAMS.

Consider the physical significance of this intersection point. A star that has attained the mass
in question is joining the main sequence just as infall ends. That is, the object begins to fuse
hydrogen in its center at about the same time that it becomes optically revealed. Objects of lower
mass are still too cold to fuse hydrogen following their main accretion phase. These optically
visible stars thus enter a period of quasi-static contraction — the standard pre-main-sequence
phase. Conversely, stars more massive than the intersection value have no pre-main-sequence
phase at all. They are either embedded protostars or, following the end of infall, main-sequence
objects.

Observations of the Orion Nebula Cluster (Figure 12.29) and other populous groups support
this theoretical prediction. In the Orion HR diagram, we see a string of luminous objects above
the intersection; these fall, at least approximately, along the ZAMS. It is important to bear in
mind that the evolution of such objects prior to their main-sequence appearance must be very
different from that of low- and intermediate-mass protostars. As we argued in Chapter 12, the
time scale for their accumulation has to be greatly reduced to avoid the destructive effects of
winds and radiation pressure. The actual interval over which mass buildup occurs has little
bearing on their interior structure, in contrast to birthline objects. Instead, the properties of the
newly visible star, following the dissipation of transients, are set entirely by the need to maintain
hydrogen fusion at a steady rate.

1 Equivalently, the Kelvin-Helmholtz time associated with 〈Lint〉, which governs the rate of internal contraction,
becomes less than the evolutionary time scale M∗/Ṁ .



584 16 Quasi-Static Contraction

16.2 The Contraction Process

Although the main accretion phase involves dynamical motion, the protostar itself is always in
a state of hydrostatic equilibrium. Its central region is also hot enough to power nuclear fusion,
at least for part of the time. What distinguishes this entity from more mature objects is the
rapid, continual addition of fresh material from the surrounding cloud. With the end of infall,
this critical difference vanishes. The further evolution of the star, now of fixed mass, is driven
almost entirely by radiation from its surface layers. Let us now examine more closely the course
of events.

16.2.1 Tracking the Evolution

Radiation drains away internal energy. Since the object is gravitationally bound, its total energy,
Etot, is negative and becomes more so with the passage of time. The virial theorem tells us,
however, that the thermal contribution, U , is −Etot. Thus, U actually increases, as does the in-
ternal temperature. A pre-main-sequence star is therefore an object with negative heat capacity,
one whose temperature rises as a result of heat loss. This behavior, odd by terrestrial standards,
occurs because of the increased gravitational binding.

The energy loss from radiation causes the star to shrink with the characteristic time scale
tKH. For the evolution to be quasi-static, the stellar interior must continually readjust to maintain
force balance. This readjustment is achieved through pressure disturbances and takes place
over the sound travel time, ts ≡ R∗/as, where as is an appropriately averaged sound speed.
The justification for treating the star at each instant as a hydrostatic object is that tKH � ts
throughout the pre-main-sequence phase.

It is worthwhile to check this inequality through a numerical example. A 1 M� star near
the birthline has, according to Table 16.1, a radius of 4.92 R�. From equation (11.2a), the
volume-averaged sound speed is

as =

√
γ RT

µ

=
√

γ G M∗
3 R∗

,

(16.5)

which is 150 km s−1 for γ = 5/3. Thus, ts is only 6.5 hours . Since L∗ = 7.1 L�, the Kelvin-

Helmholtz time is 8.7×105 years. Moreover, the ratio tKH/ts varies as R
−5/2
∗ and so increases

even more as contraction proceeds.

Numerical calculation of pre-main-sequence evolution utilizes the four stellar structure
equations, along with the equation of state for an ideal gas, equation (11.16). As developed
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in Chapter 11, the first three structure equations are

∂r

∂Mr
=

1
4 π r2 ρ

(16.6a)

∂P

∂Mr
= −G Mr

4 π r4
(16.6b)

∂Lint

∂Mr
= ε − T

∂s

∂t
, (16.6c)

where we have suppressed all subscripts in the partial derivatives. In radiatively stable regions
of the star, the fourth equation is

T 3 ∂T

∂Mr
= − 3 κ Lint

256 π2 σB r4
. (16.7)

This is replaced by
∂s

∂Mr
= 0 (16.8)

in convection zones within the deep interior. Convection in the surface layers of a pre-main-
sequence star is inefficient, i. e., s(Mr) falls with a non-negligible slope. Here, the standard
procedure is to use mixing-length theory to supply the relation between ∂s/∂Mr and Lint.

Of the four boundary conditions needed to solve the four, first-order differential equations,
three are already familiar:

r(0) = 0 (16.9a)

Lint(0) = 0 (16.9b)

Lint(M∗) = 4 π R2
∗ σB T 4

eff . (16.9c)

Note that equation (16.9c) does not simply serve as the definition of Teff . The equation re-
lates three dependent variables: Lint, r, and T . The latter is equal to Teff only at the stellar
photosphere, which serves as the outer boundary of the calculation.

The fourth boundary condition, which replaces equation (11.23) for protostars, concerns the
pressure at the photosphere. Dividing equation (16.6b) by (16.6a), we obtain an expression for
∂P/∂r (see equation (11.14)). Spatial integration from the photosphere outward then yields

Pphot =
G M∗
R2∗

∫ ∞

R∗
ρ dr . (16.10)

We have assumed in our derivation that Mr and r have reached their final values at the pho-
tosphere, but that ρ(r) continues to fall beyond that point. If the temperature decline is rather
shallow, we may rewrite equation (16.10) approximately as

Pphot ≈ G M∗
R2∗ κphot

∫ ∞

R∗
ρ κ dr (16.11a)

=
G M∗ ∆τ

R2∗ κphot
. (16.11b)
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Here, κphot is the Rosseland mean opacity evaluated at the photosphere itself. The optical thick-
ness ∆τ is that seen by a photon propagating radially outward from that surface. This quantity
is 2/3, according to the Eddington approximation (Appendix G). Thus, our final boundary con-
dition is

P (M∗) =
2 G M∗

3 R2∗ κphot
. (16.12)

In stars of the lowest mass, the opacity in the outer stellar layers is especially complex
because of the presence of molecules. The most accurate evolutionary calculations supplement
the structure equations by integrating the full, frequency-dependent radiative transfer equation
within a thin, plane-parallel atmosphere. The calculated temperature and pressure at the base
of that atmosphere then supply the two outer boundary conditions in place of equations (16.9c)
and (16.12). Since each atmosphere calculation requires knowledge of the radiative flux Frad

and the surface gravity g ≡ GM∗/R2
∗, the solution is iterative.

Following the evolution numerically for any mass requires that we specify the initial condi-
tions of that object. These include the starting radius, which we obtain from protostar theory.
In addition, we must prescribe the star’s thermal structure, i. e., the distribution of specific en-
tropy, s(Mr). This function is also obtained from the appropriate protostellar model. Over any
subsequent time interval, one advances the entropy through the heat equation (16.6c) and then
establishes the density and temperature distribution through spatial integration of the remaining
three equations.

16.2.2 Fully Convective Phase

Table 16.2 gives numerical results for three representative stellar masses. Here we limit our-
selves to low-mass objects. The special issues encountered for heavier stars will be covered in
Chapter 18. The table displays the temporal evolution of a number of physical quantities. We
have denoted by Mcon the mass within any convection zone that is present. The luminosity Lnuc

is the contribution from nuclear reactions:

Lnuc ≡
∫ M∗

0

ε dMr . (16.13)

Early in the contraction, deuterium fusion releases energy, while hydrogen burning becomes
significant later on. At the initial time, conditions are identical to those on the birthline, as given
in Table 16.1. The final time listed for each mass is close to tZAMS.

These numerical solutions exhibit two striking characteristics. First, the surface temperature
is very nearly constant, at least until late in the contraction. The corresponding portions of
the evolutionary tracks in the HR diagram are therefore essentially vertical. Second, all three
masses, except for 0.2 M� during a relatively brief, initial phase, begin as fully convective
objects (Mcon = M∗) and remain so for substantial times. What is the underlying physical
explanation for both of these features?

To understand the behavior of the photospheric temperature, we first recognize that the
opacity in the star’s outer layers is largely provided by the H− ion. As discussed in Appendix G,
κ(ρ, T ) therefore falls substantially with even a slight decrease in temperature, in the regime
below 104 K. But the optical depth to the photosphere must always be close to unity. This
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Table 16.2 Evolution of Low-Mass, Pre–Main-Sequence Stars

M∗ = 0.2 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 2.55 3.51 +0.02 5.81 0 0.06
1 × 105 2.29 3.51 −0.02 5.92 0.83 0.20
1 × 106 1.89 3.51 −0.57 6.08 0.12 0.20
3 × 106 1.30 3.52 −1.11 6.30 0 0.20
1 × 107 0.61 3.52 −1.40 6.48 0 0.20
3 × 107 0.41 3.52 −1.78 6.64 0 0.20
1 × 108 0.28 3.52 −2.10 6.75 0.40 0.20
2 × 108 0.26 3.52 −2.15 6.78 0.90 0.20

M∗ = 0.6 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 4.01 3.59 +0.54 6.04 0.85 0.60
1 × 105 4.00 3.59 +0.53 6.08 0.45 0.60
3 × 105 3.62 3.59 +0.43 6.17 0.09 0.60
1 × 106 2.13 3.59 −0.02 6.35 0 0.60
3 × 106 1.51 3.59 −0.35 6.51 0 0.60
1 × 107 0.90 3.58 −0.78 6.68 0 0.51
3 × 107 0.72 3.59 −0.98 6.77 0.06 0.30
9 × 107 0.58 3.61 −1.08 6.97 0.90 0.10

M∗ = 1.0 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 4.80 3.64 +0.85 6.20 0 1.00
1 × 105 4.25 3.63 +0.75 6.22 0 1.00
3 × 105 3.77 3.63 +0.62 6.26 0 1.00
1 × 106 2.59 3.63 +0.28 6.48 0 1.00
3 × 106 1.80 3.63 +0.00 6.64 0 0.78
1 × 107 1.22 3.64 −0.28 6.78 0.01 0.38
3 × 107 1.01 3.75 −0.02 7.09 0.90 0.03

requirement tightly constrains the surface temperature. Specifically, a star of fixed mass and
radius has a minimum allowed value of Teff . We shall call this value the Hayashi temperature,
after the theorist who first demonstrated its existence.
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Figure 16.4 The critical luminosity for convec-
tive instability, 〈Lcrit〉, displayed as a function of
stellar mass. The corresponding radii are those
along the theoretical birthline of Table 16.1. Also
shown is the surface luminosity L∗.

If Teff is bounded from below, then equation (16.9c) implies that the luminosity emanating
from the photosphere also has a minimum. For a sufficiently large stellar radius, even this
minimum exceeds that which can be transported by radiation. The latter, critical luminosity,
evaluated locally at an internal mass shell, is given by equation (11.29). We are more interested
in a global average of Lcrit. From equation (11.44), this average may be written

〈Lcrit〉 ≈ 1 L�

(
M∗

1 M�

)11/2 (
R∗

1 R�

)−1/2

. (16.14)

Figure 16.4 plots 〈Lcrit〉 as a function of M∗, for stars along the theoretical birthline in Ta-
ble 16.1. Also plotted is L∗, the actual surface luminosity from the table. For sufficiently low
stellar mass, we see that L∗ greatly exceeds 〈Lcrit〉. Whatever the detailed, local variation of its
critical luminosity, a star in this regime must be fully convective, at least following the decay
of transients. If the object is initially radiative, as in the case of 0.2 M�, a convection zone
quickly sweeps in from the surface. Figure 16.4 also indicates that a higher-mass object, with
M∗ � 2 M�, is radiatively stable.

We still have not explained what sets the star’s true effective temperature, either along the
birthline or below it. For stars that are fully convective, the surface temperature is just the
minimum, Hayashi value. To see why, consider first the specific entropy, whose functional
dependence on temperature and density was given in equation (11.21). The interior temperature
scales as M∗ R−1

∗ . (See, e. g., equation (11.2a).) Similarly, the average density is approximately
M∗ R−3

∗ . We conclude that the mean value of the entropy is essentially fixed once we specify
the star’s mass and radius.

Figure 16.5 illustrates schematically the run of specific entropy, s(Mr), for stars of identical
M∗ and R∗, but differing internal, thermal states. Within a fully convective object (curve 1),
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Figure 16.5 Three possible interior entropy distributions in a star of fixed mass and radius
(schematic). Curve 1 represents a fully convective star with spatially uniform entropy s◦, curve 2
a star with radiative interior and outer convection zone, and curve 3 a fully radiative object.

s(Mr) is nearly a constant value, which we denote as s◦. The entropy in a star with an outer
convection zone (curve 2) first rises, then flattens at some interior mass. To preserve the mean
value, the entropy must be less than s◦ in the deep interior, but greater at the surface. Finally,
s(Mr) in a fully radiative star (curve 3) monotonically increases and therefore attains its highest
value at the outer edge. Note that the entropy increase in radiative portions is actually not linear,
as shown here for simplicity.

The lesson is that any fully convective object, including a low-mass, pre-main-sequence star
of sufficiently large radius, has the lowest possible surface entropy consistent with its mass and
size. From equation (11.21), the combination T 3/2ρ−1 must be a minimum at the boundary,
and therefore T 5/2P−1 must be, as well. But equation (16.12) says that P varies inversely with
κ, so we need to minimize T 5/2κ. Since the opacity drops very steeply as the temperature falls,
the configuration with the minimum surface entropy also has the lowest effective temperature.2

As the star contracts, its interior, nearly-constant entropy s◦ falls. From equation (11.21) and
the scaling relations for temperature and density, this change is only logarithmic with the stellar
radius. Thus, the photospheric entropy also decreases slowly, and the effective temperature
is nearly constant. The vertical portion of the star’s evolutionary curve in the HR diagram is
frequently called the Hayashi track. If we idealize Teff as being precisely fixed, then both the
star’s structure and evolution during this epoch may be described in a succinct manner.

2 Even a “fully” convective, pre-main-sequence star is radiatively stable in its outermost layers. Moving inward, the
specific entropy first drops, then climbs as hydrogen is ionized, and finally asymptotes to some interior value. The
climb signifies a super-adiabatic region (recall § 11.2); the calculated thermal structure here is sensitive to the adopted
model of convection. All these changes occur in a layer of negligible mass, and the photospheric entropy shifts in
tandem with the asymptotic value just inside. Hence, our argument concerning the surface temperature still holds.
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16.2.3 Polytropic Analysis

Spatial constancy of the specific entropy implies, from equation (11.21), that the local pressure
and density obey the polytropic relation

P = K ρ5/3 . (16.15)

Here, K, is a time-dependent coefficient related to s◦. If we divide equation (16.6b) by (16.6a)
to obtain ∂P/∂r, then a further differentiation yields

1
r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4 π G ρ . (16.16)

We now substitute equation (16.15) for the pressure. The resulting equation is simplified if we
define a nondimensional density and radius through

ρ = ρc θ3/2 (16.17a)

r = a ξ . (16.17b)

Here, ρc is the central density. Suppose we let the coefficient a in equation (16.17b) be

a ≡
(

5 K

8 π G ρ
1/3
c

)1/2

. (16.18)

Then the reader may verify that equation (16.16) transforms to

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θ3/2 . (16.19)

Equation (16.19) is the Lane-Emden equation, with index n = 3/2.3 The equation is to be
integrated subject to the initial conditions:

θ(0) = 1 (16.20a)

θ′(0) = 0 . (16.20b)

The first condition follows from the definition of ρc, and the second by considering the behavior
of ∂P/∂r in the limit of small radius. Figure 16.6 displays θ(ξ), as obtained by numerical
integration of equation (16.19).

The function θ(ξ) contains all the information concerning the stellar interior, at least within
our somewhat idealized model. The star’s radius is given by

R∗ = a ξ◦ , (16.21)

3 In Chapter 9, we utilized the isothermal Lane-Emden equation, which effectively has infinite n; compare equa-
tion (9.7).
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Figure 16.6 The function θ(ξ) for an
n = 3/2 polytrope.

where ξ◦ is the point where θ(ξ) falls to zero. As shown in Figure 16.6, ξ◦ has the numerical
value of 3.65. The total mass is

M∗ =
∫ R∗

0

4 π r2ρ dr

= 4 π a3ρc

∫ ξ◦

0

ξ2 θ3/2 dξ .

If we use equation (16.19) for the integrand, we find

M∗ = −4 π a3ρc

∫ ξ◦

0

∂

∂ξ

(
ξ2 ∂θ

∂ξ

)
dξ

= −4 π a3ρc

(
ξ2 ∂θ

∂ξ

)
◦

.

(16.22)

The term in parentheses, which is evaluated at ξ◦, has the value –2.71.

16.2.4 Entropy Decrease

Our immediate goal is to analyze the star’s contraction. To this end, we integrate the heat
equation (16.6c) over mass shells. Neglecting the nuclear energy contribution ε as well as any
spatial variation of the specific entropy, we find that

L∗ = −ṡ◦
∫ M∗

0

T dMr , (16.23)

where the dot signifies a temporal derivative. Using equations (11.21) and (16.15) along with
the equation of state, we find that

ṡ◦ =
3R
2 µ

K̇

K
.
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Equation (16.18) relates K and two other time-dependent quantities: a and ρc. Since the latter
is a numerical factor times M∗R−3

∗ , we have

Ṙ∗
R∗

=
ȧ

a

=
1
2

K̇

K
− 1

6
ρ̇c

ρc

=
1
2

K̇

K
+

1
2

Ṙ∗
R∗

.

Thus, the entropy decrease and the contraction rate are related through

ṡ◦ =
3R
2 µ

Ṙ∗
R∗

. (16.24)

It remains to evaluate the integral in equation (16.23). Using (16.21) and (16.22), this is∫ M∗

0

T dMr =
2
5

µ

R
G M2

∗
R∗

I
ξ3◦ (∂θ/∂ξ)2◦

. (16.25)

Here, we have used the notation

I ≡
∫ ξ◦

0

ξ2 θ5/2 dξ . (16.26)

This nondimensional quantity may be evaluated through repeated integration by parts and use
of equation (16.19). As we show in Appendix I, the result is

I =
5
7

ξ3
◦

(
∂θ

∂ξ

)2

◦
. (16.27)

If we substitute this evaluation of I into equation (16.25), then equations (16.23) and (16.24)
imply that

L∗ = −3
7

G M2
∗ Ṙ∗

R2∗
. (16.28)

As we know, the luminosity is a sink for the stellar energy. Thus equation (16.28) tells us that
the total energy at any time is

Etot = −3
7

G M2
∗

R∗
. (16.29)

The virial theorem then implies that the gravitational and thermal energies are 2 Etot and –Etot,
respectively.

Equation (16.28) gives us the rate of stellar contraction, which we now write as

dR∗
dt

= −7
3

L∗ R2
∗

G M2∗

= −7
3

R∗
tKH

.

(16.30)
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Thus, the coefficient n1 in equation (16.2) is 7/3. If we evaluate L∗ through equation (16.3) and
idealize Teff as a constant, we may find R∗ as an explicit function of time. The quantity tKH

varies as R−3
∗ . Thus, we may recast equation (16.30) in nondimensional form:

dλ

dτ
= −7

3
λ4 . (16.31)

Here, we have defined

λ ≡ R∗
R0

(16.32a)

τ ≡ t

t0
, (16.32b)

where R0 and t0 are initial (i. e., birthline) values of R∗ and tKH, respectively.
It is now a simple matter to integrate equation (16.31). Applying the initial condition

λ(0) = 1, we find
λ = (1 + 7τ )−1/3 . (16.33)

Figure 16.7 compares this formula with the result of a numerical integration of the full stellar
structure equations for a 0.6 M� star. Here, the values of R0 and t0 are 4.0 R� and 8× 105 yr,
respectively. While the agreement is generally good, the true contraction is briefly stalled at
first, so that the radius stays slightly above the predicted value for some time. The initial delay
is a result of internal deuterium fusion, as we will discuss shortly. At τ = 14, corresponding
to a dimensional time of 1 × 107 yr, the two curves touch. From that point on, the numerical
curve veers away with a flatter slope. A glance at Table 16.2 shows that the star is no longer
fully convective by this time. In addition, the effective temperature has begun to increase from
its Hayashi value. This temperature increase is more pronounced in stars of higher mass, which
also develop a radiative core earlier. The two changes are physically linked, and we should
understand why they occur.

Before doing so, we stress that contraction along Hayashi tracks is of a particularly simple
nature. All physical variables are functions of θ(ξ), multiplied by time-dependent, dimensional
coefficients. Thus, the star appears essentially the same at each instant, except for an overall
change of scale. Such homologous contraction owes its origin to the spatial uniformity of the
specific entropy. In Chapter 12, we studied the homologous collapse of interstellar clouds with
zero internal pressure. This highly idealized situation is useful conceptually, but never occurs
in practice, both because of finite pressure effects and because a zero-pressure cloud is unstable
to perturbations as it collapses. In contrast, uniform entropy within a star is enforced physically
by the circulation of turbulent eddies.

16.2.5 Growth of Radiative Core

As the fully convective star shrinks, its luminosity decreases in proportion to the surface area,
i. e. to R2

∗. The interior opacity also falls, since it is inversely related to the temperature. Thus,
radiation is able to carry an increasing fraction of L∗. From equation (16.14), 〈Lcrit〉 is both

proportional to M
11/2
∗ and increases as R

−1/2
∗ . Even if L∗ > 〈Lcrit〉 at the birthline, the two
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Figure 16.7 Contraction of a 0.6 M� pre-main-sequence star. The solid curve shows the result
of a numerical integration of the full stellar structure equations, while the dashed curve is from
equation (16.33) in the text. The vertical arrow marks the birth of the star’s radiative core.

luminosities approach equality and eventually cross, provided the stellar mass is sufficiently
high. If the mass is too low, the contraction ends before this crossover occurs, and the star
remains fully convective throughout its pre-main-sequence life. The transitional M∗-value, for
which the object starts to become radiative just as it reaches the main sequence, is 0.4 M�.

The onset of radiative stability reminds us of the situation governing intermediate-mass
protostars (§ 11.4). However, there are two important differences. For a protostar, it is the
increase of M∗ that causes 〈Lcrit〉 to grow; here, M∗ is fixed. Additionally, the accreting object
first becomes radiatively stable at some internal radius. (Recall Figure 11.18.) The analogous
event occurs at the center of a pre-main-sequence star. In the absence of any nuclear fuel,
the local value of Lint rises gently with enclosed mass Mr. Thus, when Lcrit(Mr) eventually
overtakes Lint(Mr), it does so even at Mr = 0. Convection gradually retreats to the surface
layers as contraction proceeds.

During this retreat, the distribution of specific entropy resembles, at least schematically,
curve 2 in Figure 16.4. The average entropy continues to fall, so the temporal decrease of
s(Mr) near the center is only partially compensated by an entropy increase within the flat,
outer portion. But any increase of s(Mr) in the surface layers pulls up the photospheric value.
Consequently, Teff rises above its previous, Hayashi level.

Figure 16.8 shows in more detail the pre-main-sequence tracks of the same masses used in
Table 16.2. We have marked by open circles the points where the stars’ central regions first
become radiatively stable. For the 0.2 M� object, this event never takes place, while it occurs
at t = 6 × 106 yr and 1 × 106 yr, respectively, for 0.6 M� and 1.0 M�. As convection
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Figure 16.8 Evolutionary tracks of 0.2, 0.6, and 1.0 M� pre-main-sequence stars. Open and
filled circles mark the onset of radiative stability and central hydrogen burning, respectively. Also
shown are the birthline (dashed curve) and the ZAMS.

retreats in these more massive objects, the stellar luminosity becomes better approximated by
equation (16.14) for 〈Lcrit〉. That is, L∗ stops falling and begins to increase slowly, as R

−1/2
∗ .

This change is evident in the figure. The more horizontal portion of the evolutionary curve is
traditionally known as the Henyey track.

The Henyey track covers the final interval of a star’s pre-main-sequence life, for masses of
0.4 M� and above. During this phase of the contraction, the object becomes more centrally
concentrated in density than it was on the Hayashi track. Not only does the luminosity increase,
but so does the star’s surface temperature. From equations (16.3) and (16.14), Teff climbs as
R

−5/8
∗ . The central temperature, on the other hand, continues to increase approximately as

R−1
∗ , with consequences that we shall explore next.

Note, however, one additional property of the evolutionary curves. The ones we have dis-
played thus far were constructed assuming a standard solar composition for the gas. In star
formation regions where the metallicity is lower, we expect the curves to change. To gauge the
sense of this change, recall that the Hayashi temperature is set by the requirement that the photo-
spheric optical depth be of order unity. With a lower abundance of heavy elements, the opacity
at a given temperature falls. Material at the previous Hayashi temperature is now optically thin,
and the true photosphere moves inward, to higher temperature. The full evolutionary curve,
including the Henyey track, thus shifts leftward in the HR diagram. The temperature change is
small, e. g., about 150 K when the metallicity is halved in a 0.2 M� star. Nevertheless, such an
alteration can be significant for quantitative work.
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16.3 Nuclear Reactions

We have seen how self-gravity inexorably drives the interior temperature to higher values dur-
ing pre-main-sequence contraction. The hotter interior facilitates a series of nuclear reactions,
culminating in the hydrogen fusion that halts the contraction itself. Along the way, other light
elements are consumed. One of these, lithium, has become an observational signature of stellar
youth.

16.3.1 Exhaustion of Deuterium

Let us quantify the rise of the interior temperature. Consider first the fully convective phase.
Here, the polytropic formalism allows us to derive the instantaneous distribution T (r). From
the equation of state, along with equations (16.15) and (16.17a), we find

T =
µ

R
P

ρ

=
µ

R K ρ2/3
c θ .

(16.34)

Thus, the spatial distribution of temperature is simply that of θ(ξ), as displayed in Figure 16.6.
Note that the nondimensional radius ξ in that plot is ξ◦ times the ratio r/R∗.

The central value of the temperature is evidently

Tc =
µ

R K ρ2/3
c .

Using equations (16.21) and (16.22) for the stellar radius and mass, respectively, we find

Tc = n3
µ

R
G M∗
R∗

, (16.35)

where the coefficient is

n3 ≡ −2
5

(
ξ

∂θ

∂ξ

)−1

◦
. (16.36)

After evaluating n3 numerically, we obtain the useful expression

Tc = 7.5 × 106 K
(

M∗
1 M�

) (
R∗

1 R�

)−1

. (16.37)

Knowledge of the contraction rate then yields the temporal evolution of Tc down the Hayashi
track.

It is instructive to apply equation (16.37) to the ensemble of stars that constitute the birthline.
Proceeding upward in mass, we find that the central temperature climbs, reaching 1× 106 K by
0.4 M�. The temperature then hovers within a factor of two of this figure until M∗ = 1.5 M�.
It is no coincidence that the Tc-value, over a significant mass range, is close to the ignition
temperature for deuterium fusion:

2H + 1H → 3He + γ . (16.38)
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During infall, the deuterium thermostat continually readjusts the stellar radius so that the ig-
nition temperature is maintained at the center. Meanwhile, the deuterium abundance steadily
declines below its full, interstellar value. The central region eventually becomes radiatively
stable, after which it quickly consumes whatever fuel remains inside the radiative barrier. A
reduced supply of deuterium continues to burn in a thick mantle that steadily retreats toward the
surface (Figure 11.20).

Pre-main-sequence stars of sufficient mass thus inherit a deuterium abundance that has
been reduced by prior burning in the protostellar phase. For protostars built up with
Ṁ = 1 × 10−5 M� yr−1, calculations find that their deuterium abundance is half the inter-
stellar value at a mass of 0.6 M�, while it falls to a tenth of interstellar by 0.9 M�. The
corresponding masses are smaller if Ṁ itself is lower, since the protostar then has more time to
burn deuterium. Any amount of the fuel, however, serves to retard pre-main-sequence contrac-
tion to some degree. Integration of the heat equation (16.6c) over mass shells tells us that the
entropy derivative ṡ◦, and therefore Ṙ∗/R∗, is proportional to the reduced luminosity L∗ − LD,
but of opposite sign.

If a protostar has appreciable deuterium-generated luminosity, then the pre-main-sequence
star of the same mass has LD close to L∗ at the beginning of its contraction. Lower-mass
objects initially have LD = 0, but subsequent contraction raises Tc until LD climbs to L∗. In
both cases, contraction is held up (i. e., Ṙ∗ = 0) for the period it takes to consume the deuterium.
Assuming the star to be fully convective at the time of ignition, this interval is

∆tD =
fD [D/H] X M∗ ∆ED

mH L∗

= 1.5 × 106 yr fD

(
M∗

1 M�

) (
L∗

1 L�

)−1

.

(16.39)

Here, fD is the deuterium abundance relative to that in the interstellar medium, as found in the
star just before it ignites the isotope. Our numerical version of equation (16.39) has assumed
[D/H] = 2.5 × 10−5. Recall from Chapter 11 that ∆ED represents the amount of energy re-
leased in each fusion reaction. Note finally that the luminosity L∗ is somewhat less than the
birthline value if the star must contract before deuterium ignites.

Table 16.1 displays ∆tD over a range of masses. This quantity vanishes near 1 M�, where
the protostellar fD has fallen to zero, but then resumes a finite value above 4 M�. Pre-main-
sequence stars of intermediate mass are partially radiative and burn the fuel only in their outer
layers (Chapter 18). Thus, equation (16.39) can no longer be used to obtain ∆tD. It is clear,
in any case, that the interval always represents a small fraction of the object’s total pre-main-
sequence lifetime. For the lowest-mass stars, ∆tD is about 106 yr and is therefore comparable
to the ages of the youngest observed clusters. Some cluster members should therefore be under-
going active deuterium burning.

An historical note is of interest here. Before the advent of protostar theory, it was assumed
that all pre-main-sequence stars begin contraction with their full complement of deuterium,
and with such large radii that fusion is inactive. The locus in the HR diagram where ignition
subsequently occurs (i. e., where Tc ≈ 1 × 106 K) was termed the “deuterium main sequence.”
We now recognize that the fusion process can begin in the protostar phase, and that fusion helps
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set the initial radius for contraction. Thus, the modern birthline essentially coincides with the
old deuterium main sequence over a range of subsolar masses.

16.3.2 Lithium Burning

The deuterium within young stars was produced cosmologically, with an abundance roughly
twice the current interstellar value. Other light elements were created through this primordial
nucleosynthesis, including helium, lithium, beryllium, and boron. By far the most useful astro-
physically has been lithium. Inside stars, the dominant isotope, 7Li, fuses with protons:

7Li + 1H → 4He + 4He . (16.40)

In this case, the ignition temperature is about 3× 106 K, so that the fusion event follows that of
deuterium.

Relative to hydrogen, the number abundance of lithium in the interstellar medium is mea-
sured to be [Li/H] = 2 × 10−9. This tiny fraction is itself higher than the primordial value by
an order of magnitude. The increase has come largely from cosmic-ray α particles impacting the
helium within interstellar clouds. Thus, the reaction that has produced most of the present-day
[Li/H] is just the inverse of that in equation (16.40).

In spite of its small abundance, lithium is readily observed in stellar atmospheres. The neu-
tral species Li I strongly absorbs in an electronic transition at 6708 Å. Figure 16.9 shows a
portion of the spectrum of a T Tauri star, BP Tau, which contains the full interstellar abun-
dance. Here we see the deep absorption trough. Note that the line is actually a doublet,
λλ 6707.78, 6707.93, but this structure is never resolved in practice. The figure also displays,
for comparison, a main-sequence star of the same spectral type, in which lithium has been de-
stroyed. Both objects show absorption in the Ca I line at 6718 Å, a prominent feature of late-type
photospheres.

Low-mass protostars do not have high enough internal temperatures to burn lithium, so
the corresponding pre-main-sequence stars inherit the full, interstellar supply. In protostars of
higher mass, Tc indeed reaches 3 × 106 K, at which point the central lithium is promptly de-
stroyed. This event occurs, however, when the protostar is already radiative in its deep interior.
The temperature at the base of the convection zone is below the ignition value and subsequently
declines as the zone retreats outward. (Recall § 11.4.) Thus, pre-main-sequence stars of all
mass begin contraction with their surface lithium abundance equal to the interstellar value. The
subsequent burning has no influence on contraction, but serves as an interesting test of the evo-
lutionary tracks, as well as a stellar clock.

Figure 16.10 shows the pattern of subsequent depletion at the surface of pre-main-sequence
stars, as predicted by theory. Objects within the white area, between the birthline and the ZAMS,
retain their original lithium abundance. Light gray indicates that [Li/H] at the surface has de-
clined by at most a factor of 10. Finally, stars within the darker gray zone have undergone
depletion of at least that amount. Consider, for example, an object of 0.6 M�. This star be-
gins fully convective and ignites lithium at its center once its radius has shrunk by a factor of
1.7. Convection then starts to retreat toward the surface, but the base temperature remains high
enough that the element continues to burn. During this period, rapid circulation of turbulent
eddies ensures that the lithium abundance declines uniformly throughout the entire convection
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Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical
spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective tempera-
ture of 4000 K. Also shown, for comparison, is a main-sequence star of the same spectral type,
61 Cyg B. Only in the first star do we see the Li I absorption line at 6708 Å. Both objects also
have a strong line due to neutral calcium.

zone. Eventually, the base temperature falls below 3 × 106 K, but not before lithium has been
fully destroyed. Such complete depletion is avoided in any star more massive than 0.9 M�, for
which convection retreats earlier. Stars with M∗ > 1.2 M� have such shallow convection that
their surface lithium does not decline at all during the contraction phase.

One interesting aspect of Figure 16.10 is how the shaded regions cut across stellar
isochrones. Consider, for example, the t = 3 × 106 yr isochrone, shown here as a dashed
curve. Within a group of pre-main-sequence stars of precisely that age, those with masses be-
tween 0.5 and 1.2 M� should be partially depleted in lithium, while objects outside that range
should contain the full supply. The mass interval for depletion evidently widens with increas-
ing age. Of course, any real stellar group consists of objects with a variety of ages. A cluster
formed 3 × 106 yr ago still contains some stars even closer to the birthline; these will have the
original, interstellar [Li/H]. Nonetheless, the prediction that all members of young groups with
sufficiently low mass should suffer no depletion is a useful corroboration of theory that has yet
to be directly checked through observations.

More attention has been paid to somewhat older groups with members close to the ZAMS.
Here, the basic pattern of Figure 16.10 is broadly consistent with the available data. However,
the observations reveal additional features whose origin is unclear. As an example, even cluster
members of very similar luminosity and effective temperature may exhibit a substantial spread
in their surface lithium abundance. The amount of depletion in such a star clearly depends on
more than just its mass and age.
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Figure 16.10 Theoretical prediction of pre-main-sequence lithium depletion. Within the white
area between the birthline and the ZAMS, the surface [Li/H] is equal to its interstellar value of
2 × 10−9. Stars in the lightly shaded region have depleted the element down to 0.1 times the
interstellar value. The darker shading indicates depletion by at least this amount. Note also the
masses on the ZAMS, in solar units, and the indicated isochrone.

Figure 16.11 displays [Li/H] as a function of effective temperature in the main-sequence
stars of the Pleiades (filled circles) and the Hyades (open circles). The lithium abundances in
both generally fall with decreasing Teff , as expected from Figure 16.10. The dispersion just
mentioned is most evident in the Pleiades, which has an age of 1 × 108 yr. By the age of
the Hyades (6 × 108 yr), this spread has greatly diminished. In addition, the temperature at
which [Li/H] falls precipitously is now higher. Apparently, there is a process that continues
transporting lithium to the hot, central region, even in main-sequence stars with radiatively
stable interiors. This process has created an even lower abundance in the Sun, also shown in the
figure. Finally, we note, for the Hyades, a sharp plunge in [Li/H] at a Teff -value near 6600 K. A
similar lithium dip appears in other clusters of comparable age and in the field population.

16.3.3 Joining the Main Sequence

Whether or not a pre-main-sequence star exhausts its surface lithium, further contraction in-
evitably leads, once the central temperature reaches about 107 K, to the fusion of hydrogen at
its center. The filled circles in Figure 16.8 mark the beginning of this process for the three
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Figure 16.11 Observed values of [Li/H] as a function of effective temperature. Results are shown
for the Pleiades (filled circles), Hyades (open circles), and the Sun, indicated by the usual symbol.

displayed masses. As the burning increases, the nuclear energy released can eventually balance
the surface loss through radiation, and the object’s radius stabilizes to its ZAMS value. In the
heat equation (16.6c), the temporal derivative on the righthand side becomes negligible, and
the internal luminosity is spatially constant outside the small region of active burning. (Recall
Figure 1.16.) The approach to this state of thermal equilibrium is asymptotic, since increased
hydrogen burning slows the very contraction process that drives up the central temperature.
Thus, there is some arbitrariness in defining the total time involved. The quantity tZAMS in
Table 16.1 represents the interval from the birthline to the point where the nuclear luminosity
constitutes 90 percent of L∗.

The basic hydrogen fusion reaction consists of the production of helium:

4 1H → 4He + 2 e+ + 2 ν . (16.41)

The energy release from this process is 26.7 MeV, of which a few percent is carried off by the
neutrinos and is thus unavailable for internal heating. The four protons actually never combine
directly, but through a sequence of intermediate steps. We described one such reaction network,
the CN cycle, in Chapter 11. Here, successive protons fuse with heavy nuclei, until the product
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eventually releases an α particle (see Figure 11.22). This sequence is part of the larger CNO
bi-cycle, which is the dominant source of nuclear energy in main-sequence stars heavier than
1.2 M�, i. e., of spectral type F7 and earlier.

Less massive stars burn hydrogen primarily through the PP chains, also introduced in Chap-
ter 11. As the name implies, this reaction network begins with the fusion of two protons:

1H + 1H → 2H + e+ + ν , (16.42)

promptly followed by
2H + 1H → 3He + γ . (16.43)

In the dominant PPI chain, the creation of 4He occurs through

3He + 3He → 4He + 1H + 1H . (16.44)

Alternatively, the 3He in equation (16.43) fuses with ambient 4He:

3He + 4He → 7Be + γ . (16.45)

The subsequent fate of the beryllium nucleus then determines whether the network is completed
through the PPII chain

7Be + e− → 7Li + ν
7Li + 1H → 4He + 4He ,

(16.46)

or through PPIII:

7Be + 1H → 8B + γ
8B → 8Be + e+ + ν

8Be → 4He + 4He .

(16.47)

The PPII and PPIII chains together contribute at most 10 percent of the stellar luminosity for
masses below 1.2 M�.

As we have seen, all stars exceeding 0.4 M� approach the main sequence along the more
horizontal, Henyey tracks. It is evident from Figure 16.8 that the luminosity does not increase
monotonically during the final approach, but peaks and then declines shortly before the end. At
the start of hydrogen burning, the star releases too much nuclear energy for thermal equilibrium.
The excess heats the stellar interior and creates a central convection zone. Increasing the central
entropy allows Lr(Mr) to fall, so that L∗ eventually drops back to its proper equilibrium value.
In a 1 M� star, the central convection disappears at this point. However, in those stars powered
by the CNO bi-cycle, this zone remains. Concurrently, any residual outer convection inherited
from the contraction phase vanishes. This latter trend is to be expected from the decline in
opacity at higher interior temperatures. In summary, more massive stars on the main sequence
have a convectively unstable center and a radiatively stable envelope, while those in the range
0.4 M� < M∗ < 1.2 M� have just the reverse.
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Figure 16.12 Central temperature as a function of
time in contracting objects of 0.09 and 0.07 M�.

16.4 Brown Dwarfs

Let us study in more detail objects of the lowest mass. Here we cross the border between true
stars, capable of hydrogen fusion, and brown dwarfs, which are not. The latter have now been
observed in abundance, an exciting development that is complementing our knowledge of stellar
birth.

16.4.1 Electron Degeneracy Pressure

Lower-mass, young stars take longer to reach the main sequence as a consequence of their
smaller surface areas for heat leakage. They also have higher densities at that final stage. To
see why, first note that the hydrogen ignition temperature decreases, but only slowly, along with
stellar mass. Thus, R∗ is roughly proportional to M∗ for objects along the ZAMS, at least for a
limited mass range. Over this same range, the central density increases as M∗R−3

∗ ∝ M−2
∗ as

we move down the main sequence to objects of lower mass and effective temperature.
Return now to the contraction phase. For an object of sufficiently low mass, the increased

density means that the central temperature may never increase to the point of hydrogen ignition.
Figure 16.12 shows what happens in more detail, as revealed through numerical calculation.
Here we see that Tc in a 0.09 M� star increases steadily with time, until it levels off to the
ZAMS value of 4.1 × 106 K. In an object of 0.07 M�, however, Tc first increases, peaks at a
lower value that creates only modest burning, then actually declines while contraction proceeds.
The critical mass of 0.075 M� separates ordinary stars, which fuse hydrogen in a protracted
main-sequence phase, from brown dwarfs, which may burn the element in a transient manner,
but ultimately cool to zero luminosity and effective temperature.

If the central temperature can fall while the object is still shrinking, then equation (16.35)
must no longer be valid. We derived this relation by applying hydrostatic balance, along with
Poisson’s equation for the gravitational field and the ideal equation of state. The first two con-
tinue to hold, of course, but the latter does not. At the relatively high densities of brown dwarfs,
free electrons experience an effective, mutual repulsion that is independent of the ambient ki-
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netic temperature. As the object contracts, this electron degeneracy pressure gradually supplants
ordinary gas pressure. The internal temperature, unlike in ordinary stars, can fall as the object
radiates energy into space. Eventually, degeneracy pressure fully counteracts gravity, and the
radius stabilizes to a finite value.

It is not difficult to understand the quantum mechanical basis of this new effect and to derive
a quantitative expression for Pdeg, the electron degeneracy pressure. Consider, for simplicity,
a zero-temperature gas consisting only of electrons. The latter we may describe through plane-
wave solutions of the Schrödinger equation. These solutions contain three independent quantum
numbers, corresponding to the three spatial components of momentum. Additionally, one must
specify the electron spin. Since the particles are fermions, the Pauli exclusion principle dictates
that no two can share all four quantum numbers. At zero temperature, therefore, the particles
simply fill all possible states. An elementary counting argument then shows that the number per
unit volume with momentum between p and p + dp is

dne =
8 π p2 dp

h3
. (16.48)

In obtaining this result, we have accounted for the spin through an extra factor of 2 in the
numerator on the righthand side.

Integration of equation (16.48) over all momenta yields the total electron density:

ne =
8 π p3

F

3 h3
. (16.49)

Here, pF is the Fermi momentum, the largest value attainable for the given ne at zero tem-
perature. Degeneracy pressure arises because pF can be appreciable even when the gas has
no thermal energy in the classical sense. In fact, the true energy density associated with the
differential population dne is

due =
p2

2 me
dne

=
4 π p4 dp

me h3
.

(16.50)

Thus, the total energy density is

ue =
4 π p5

F

5 me h3
. (16.51)

The pressure in a nonrelativistic gas is 2/3 of this quantity, so that

Pdeg =
8 π p5

F

15 me h3

=
h2

20 me

(
3
π

)2/3

n5/3
e ,

(16.52)

where we have also utilized equation (16.49).
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It is convenient to recast the electron degeneracy pressure in terms of the usual density ρ.
To this end, we introduce µe, the mass per free electron, expressed in units of mH . That is, µe

obeys
ρ = ne µe mH , (16.53)

to which the reader may compare the analogous equation (2.2) for the mean molecular weight µ.
Reasoning similar to that following equation (2.3) shows that µe in a fully ionized gas is nearly
equal to 2/(1+X), or 1.2 for solar composition. Insertion of equation (16.53) into (16.52) now
yields our final expression for the electron degeneracy pressure:

Pdeg =
h2

20 me

(
3
π

)2/3 1

m
5/3
H

(
ρ

µe

)5/3

≡ Kdeg ρ5/3 .

(16.54)

Here Kdeg has the numerical value 7.7 × 1012 in cgs units, again assuming solar composition.
Reference to equation (16.15) shows that our degenerate brown dwarf has the pressure-

density relationship of an n = 3/2 polytrope, i. e., the same as in a fully convective, ordinary
star. The underlying physics is entirely different in the two cases. The star has a uniform specific
entropy maintained by convection, while the degenerate object has zero entropy. Nevertheless,
we may still utilize our previous mathematical development, simply replacing K by Kdeg. For
example, we may combine equations (16.18), (16.21), and (16.22) to obtain a mass-radius rela-
tion for the zero-temperature configurations:

R∗ =
5 Kdeg

4 (2π2)1/3 G

[
−

(
ξ5 ∂θ

∂ξ

)
◦

]1/3

M
−1/3
∗

= 0.084 R�

(
M∗

0.05 M�

)−1/3

.

(16.55)

A more detailed structure calculation also accounts for the electrostatic attraction of the elec-
trons for ambient ions. This Coulomb pressure is negative and causes the radius to deviate from
equation (16.55). As we approach the realm of giant planets, i. e., masses of 0.01 M� and
below, R∗ flattens and begins to decline.

We stress that equation (16.55) refers only to the endstate of brown dwarfs. For any finite
interior temperature, the pressure is the sum of Pdeg and the ideal gas expression arising from
both ions and electrons. Even Pdeg itself only obeys equation (16.54) at zero temperature, since
otherwise the electrons are only partially degenerate. That is, they populate energy levels higher
than the maximum ones allowed at zero temperature and can have momenta in excess of pF .
In time, however, the brown dwarf cools sufficiently that its radius settles to a value near our
derived result.

16.4.2 Evolutionary Tracks

Figure 16.13 shows the evolution in the HR diagram of very low-mass stars and brown
dwarfs, along with representative isochrones. Here, we have arbitrarily begun all tracks at
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Figure 16.13 Evolutionary tracks of very low-mass stars and brown dwarfs. The corresponding
masses, in solar units, and isochrones are also indicated. The light and dark shading signify
the predicted depletion of surface lithium, as in Figure 16.10. Also shown is the point where a
0.075 M� star depletes 90 percent of its lithium (upper open circle), and where the object ignites
hydrogen (lower open circle).

log L∗ = −2, as there are no detailed calculations for the proper starting conditions in this
mass range. We see that the tracks are nearly vertical at relatively early times, just as in heav-
ier stars. Similarly, the interiors of the present structures are fully convective. As electron
degeneracy pressure begins to manifest itself, Teff declines while L∗ falls. Each track veers
toward a diagonal line corresponding to fixed radius (L∗ ∝ T 4

eff ). It is also apparent that these
asymptotic radii are larger for smaller masses, in accordance with equation (16.55).

Of particular interest is the curve defining the ZAMS. A star of 0.1 M� reaches the curve
and halts contraction when log L∗ = −3.07.4 For 0.09 M�, the track approaches the ZAMS
more gradually and does not reach it until log L∗ has dropped to −3.25. An object of 0.075 M�
halts contraction at log L∗ = −3.90 and log Teff = 3.31. This critical point is indicated by the
open circle near the bottom of the figure. All lower mass-values represent brown dwarfs. Their
tracks never end, but eventually follow a constant-radius diagonal.

4 The 0.1 M� track in Figure 16.13 differs from that in Figure 1.18, which reaches the ZAMS at higher luminosity,
while the track is still nearly vertical. The calculations in Figure 16.13 include a detailed treatment of the atmosphere,
which is essential at the very lowest masses.
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Figure 16.14 Optical image of the brown dwarf
Gl 229B. Here, south is down and east is to the
left. The brown dwarf is the isolated spot be-
low the large sphere, representing the M star Gl
229A. The latter image is not the star itself, but
an artifact of detector saturation. Note the promi-
nent diffraction spikes, which also arise in the de-
tector.

Figure 16.13 also displays the regions of light and heavy lithium depletion, using the same
scheme as Figure 16.10. The upper boundary of the darker region is known as the lithium edge.
This curve is parametrized by either the stellar mass or age, where the latter may be read off by
the intersection of the boundary with various isochrones. Note that brown dwarfs of 0.055 M�
and below never achieve a central temperature sufficient to burn lithium. Correspondingly,
the upper boundary of the lightly shaded region, i. e., the lithium ignition curve, touches the
0.055 M� track but does not cross it. Brown dwarfs of yet lower mass are still fully convective,
but are eventually unable to ignite even deuterium. This boundary value of 0.013 M�, or 14
times the mass of Jupiter, properly signifies the upper end of the giant planet regime.

16.4.3 Observed Properties

The main impediment to finding brown dwarfs is their intrinsically low luminosities. One rea-
sonable strategy is to look for dim companions to nearby field stars. After many years of failed
attempts, this approach ultimately proved successful in 1995, with the discovery of Gliese 229B.
The object was found 7.′′6 from the M star now designated Gl 229A (see Figure 16.14). The
distance to the latter, established through parallax, is 5.7 pc. Thus, the integrated flux of the
companion translates into a bolometric luminosity. The latter is only 6× 10−6 L�, demonstrat-
ing unambiguously that this faint emission source is indeed substellar.

An alternative strategy that has also been fruitful is to examine the low-mass end of stel-
lar groups. If the group is sufficiently young, the luminosities of member brown dwarfs are
significantly greater than any in the field. Additionally, the distance to the group is usually
known already through main-sequence fitting of the brighter members. This distance should
allow one to obtain the luminosity through application of a bolometric correction. In practice,
however, uncertain extinction renders L∗ more problematic than Teff in star-forming regions.



608 16 Quasi-Static Contraction

Figure 16.13 then shows that the inferred mass of the object depends critically on the cluster
age, which may not be known with sufficient accuracy.

Observation of the lithium absorption line is of considerable value in this regard and has
been critical in establishing the brown-dwarf nature of cluster members. Consider, for example,
a star at the pivotal mass 0.075 M�. This object has depleted 90 percent of its lithium when Teff

falls to 2800 K. The corresponding point in the HR diagram is marked by the upper open circle
in Figure 16.13. It is clear from the figure that any cooler object (i. e., one of spectral type M7
or later) must be a brown dwarf, provided it exhibits strong lithium absorption. More generally,
the observation of lithium in an object of any surface temperature provides upper bounds to both
its mass and age.

The survey of low-mass stars that revealed the first brown dwarf examined about 200 others
with negative result. Thus, binaries consisting of this combination appear to be rare. Single
brown dwarfs within clusters are far more common. Most of these objects have been discov-
ered through near-infrared surveys. Such observations are helping to delineate the initial mass
function in the regime below 0.1 M�. (Recall § 4.5.) Deep surveys of the field are also find-
ing numerous objects with the low luminosities and very cool surface temperatures expected of
older brown dwarfs.

Spectroscopic examination of brown dwarfs shows peculiarities that further distinguish
these objects from even the lowest-mass stars. Brown dwarfs have such low surface temper-
atures that dust grains, completely absent in pre-main-sequence stars, are able to grow within
their atmospheres. This additional component alters the spectrum in several ways. Ordinary M
stars display numerous absorption lines in the near-infrared and optical arising from rare molec-
ular species such as TiO (titanium oxide). These molecular bands vanish at cooler temperatures,
presumably because the relevant molecules are adsorbed onto dust grains. Concurrently, near-
infrared lines of H2 and CO become more prominent. Neutral atoms still in the gas phase, such
as Na and K, exhibit lines that are greatly broadened by the high atmospheric pressure. To cover
this ensemble of characteristics, a spectral type L has been added below the traditional M. The
new type spans effective temperatures from 2200 K down to 1300 K.

In even cooler objects, including Gl 229B itself, the near-infrared is dominated by absorp-
tion lines of CH4, which becomes the main repository of carbon. Such objects are designated
spectral type T. The presence of gas-phase CH4, along with other molecular species, would
be a puzzle if dust were still present. Apparently, the low ambient temperature promotes such
rapid growth of the grains that they settle out from the most tenuous region of the atmosphere.
The enlarged dust continues to sink until the higher ambient temperature causes it to partially
sublimate and find an equilibrium level. But grains residing in such optically thick, interior
gas no longer affect the emitted spectrum. This hypothesis also helps explain the curious fact
that T dwarfs exhibit bluer colors in the near-infrared than L dwarfs, despite their lower surface
temperatures. In a color-color plot, of which Figure 16.15 is an example, these objects occupy
a distinct region that is not the extension of that for M- and L-type objects.

It is important to realize that the effective temperature, and hence the spectral type, of any
brown dwarf is intrinsically time-dependent. Figure 16.13 shows that all such objects should
be of spectral type M (3.35 < log Teff < 3.58) sufficiently early in their lives. As cooling pro-
ceeds, the surface inevitably enters the regime of type L, and eventually becomes type T before



16.4 Brown Dwarfs 609

Figure 16.15 Near-infrared color-color plot of M dwarfs (filled circles), L dwarfs (open circles),
and T dwarfs (filled triangles). The objects are from a variety of regions. Note that the typical
measurement errors for the L- and T-dwarfs are quite large, about 0.13 mag.

the object fades to invisibility. This sequence of events holds regardless of the mass, provided
it is below the critical 0.075 M�.

The total number of brown dwarfs produced in a typical cluster or association may rival
that of ordinary stars, although the net contribution in mass is small.5 What is the origin of
these objects? In addressing this issue, it is important to remember that the nature of the initial
condensation or collapse process is unrelated to whether or not the final object fuses hydrogen.
Thus, there is no reason in principle why the higher-mass brown dwarfs cannot form like low-
mass stars, from the collapse of dense cloud cores. The discovery of PPl 15, a binary brown
dwarf system in the Pleiades, lends credence to this view. On the other hand, it is difficult to
envision the very lowest-mass brown dwarfs forming this way. Unless their parent dense cores
have considerably more mass than the endproduct, the diffuse structure would have a thermal

5 If the initial mass function were completely flat below 0.1 M�, then equation (4.6) implies that 31 percent of all
objects would have masses under this value.
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pressure that overwhelms self-gravity. (That is, the cloud mass would be less than MJ ; recall
equation (9.24).) In this regime, brown dwarfs may form like planets, by condensation from a
dusty disk surrounding a true star. The object Gl 229B, slowly orbiting its parent M star, would
seem to be a case in point. The rarity of such systems may reflect a physical limit to the masses
of objects that are able to coalesce from circumstellar disks.

16.5 Spinup and Spindown

After this digression into the substellar regime, we are ready to explore another important aspect
of pre-main-sequence evolution. This is the question of how quasi-static contraction influences
the star’s rotation rate. Regardless of the details of protostellar collapse, the object must possess
non-zero angular momentum at the birthline. If the contracting star is also fully convective, then
rapid circulation of turbulent eddies may establish an interior with nearly solid-body rotation, as
we discuss below. The moment of inertia of a polytropic sphere is some fixed, nondimensional
coefficient times M∗R2

∗. It follows from angular momentum conservation that the rotation
period should vary as R2

∗ and thus decline monotonically along a Hayashi track. In fact, obser-
vations reveal that spinup, when it occurs at all, progresses in a very different manner from this
theoretical expectation. Moreover, the final approach to the main sequence is characterized by
a rotational deceleration, at least for solar-type objects.

16.5.1 Measuring Rotation

Throughout this section, we shall concentrate on individual stars and ignore the issue of whether
an object is actually single or part of a binary. We know, of course, that most stars actually fall
into the second category. How does the presence of an orbiting companion alter an object’s rota-
tional history? We saw in Chapter 12 that the components within binaries exert mutual torques
that both lower the system’s eccentricity and induce synchronous rotation in the stars them-
selves. However, the tidal force responsible for these effects declines so rapidly with distance
that it is negligible except in the very tightest systems. In such binaries, both circularization and
synchronization occur as the components undergo quasi-static contraction. Numerical calcula-
tions of solar-mass pairs starting from the birthline find that those with periods less than about
8 days have circular orbits upon arrival on the main sequence, while wider pairs retain any ini-
tial eccentricity. This figure is consistent with the cutoff periods cited in Chapter 12. Since
tidal gravity is most effective early in the contraction, when the stars are largest, the agreement
provides additional support for the correctness of the starting radii and therefore the location of
the birthline.

Returning to single stars and their rotation, the observational picture is not only complex,
but still only partially filled in. We shall survey in due course the present landscape. First,
however, we should review the tools we have at our disposal for assessing rotation in any given
star, regardless of its age. One approach is spectroscopic and relies on a characteristic alteration
in the profiles of absorption lines. A second, photometric technique is to monitor temporal
variation of the object’s broadband flux. Let us now examine in more detail both the conceptual
basis and the implementation of each method.
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Consider first the spectroscopic approach. Photons emanating from a rotating star appear
redshifted if they originate from a surface patch that is receding from the observer. Approaching
patches give blueshifted emission. Since the stellar surface is never resolved in practice, the
net effect of rotation is to broaden any spectral line. Quantitatively, the original line profile
φ(λ − λ◦) associated with a central wavelength λ◦ becomes smeared out to the new profile
φ̄(λ − λ◦), where

φ̄(λ − λ◦) =
∫ +1

−1

dξ B(ξ) φ (λ − λ◦ − ∆λmax ξ) . (16.56)

Here, ∆λmax is defined as

∆λmax ≡ λ◦
Veq

c
sin i , (16.57)

and represents the maximum Doppler shift from any point on the surface. The quantity Veq is
the velocity of a fluid element on the star’s equator, and i is the inclination angle between the
rotational axis and the line of sight. (Thus, the circular orbit of the equatorial element is seen
edge-on when i = 90◦; compare Figure 12.6.) Finally, B(ξ) is the broadening function, which
is obtained theoretically by integrating the Doppler-shifted radiation from the entire surface. We
derive both equation (16.56) and a simple, illustrative form of B(ξ) in Appendix E.

To determine the rotational velocity of a star, one first requires the spectrum of a nonrotating
star of identical spectral type. One uses equation (16.56) to artificially broaden this comparison
spectrum to various degrees, i. e., over a range of assumed values for Veq sin i. The correct
value of Veq sin i is obtained once the artificially broadened spectrum matches the one of inter-
est.

Figure 16.16 shows, as a typical finding, the rotational broadening in the Taurus object
DF Tau. The top spectrum is that of the T Tauri star itself, while the bottom is for a comparison
star, DE Tau, that has negligible rotation. Both objects are of spectral type M1. It is evident
that the spectra are also nearly identical. However, the lines in DF Tau are not quite as deep,
and are slightly broader. Quantitative study gives a value for Veq sin i of 20 km s−1. Note that
spinup alone does not convert the DE Tau spectrum into that of DF Tau. The lines must also
be partially filled in by a broadband flux of energy. This additional luminosity is an important
feature of many T Tauri stars and will be further discussed in Chapter 17.

The photometric method for obtaining rotational velocities utilizes the fact that many stars
exhibit steady, periodic fluctuations in their broadband emission. In T Tauri stars, these changes
are of modest amplitude, typically 0.1 mag at visual wavelengths. The periodic nature of the
modulation, which may occur along with other, irregular variability, indicates that it is tied to
stellar rotation. Indeed, associated changes in color, which we shall revisit in the next chap-
ter, show that the dimming or brightening results from starspots. Such regions, like the better
observed but intrinsically far weaker sunspots, represent intense local concentrations of mag-
netic flux. The surface layers of convective pre-main-sequence stars are permeated by strong
magnetic fields and so are especially prone to starspots. The observed time between successive
minima or maxima gives an accurate measure of the rotation period. Knowledge of the lumi-
nosity and effective temperature then yields the star’s radius and hence the value of Veq itself,
with no correction for inclination.
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Figure 16.16 Rotational broadening of a T Tauri star. The top spectrum is that of DF Tau, a
T Tauri star rotating with the indicated velocity, while below is DE Tau, a nonrotating object of
the same spectral type.

16.5.2 Main-Sequence Trends

Any results concerning the rotation of young stars should be viewed in context. Specifically, it
helps to understand first the behavior of mature objects in this regard. Figure 16.17 displays the
variation of equatorial speed with mass, or equivalently, spectral type, for single main-sequence
stars in the field. Each filled circle represents an average of Veq sin i over many equal-mass
stars, as obtained spectroscopically. Note that the presence of the unknown inclination angle
has little qualitative impact, since the average of sin i for an ensemble of randomly pointed
axes is π/4 = 0.79.

Scanning Figure 16.17 from right to left, one sees that the surface velocity is constant or
perhaps increases gently, reaching a broad maximum in late-B stars. Even this maximum is
well below the critical speed for centrifugal breakup, Vcen ≡ √

G M∗/R∗. The latter is also
shown here as a function of stellar mass. For spectral types of A or later, the average rotational
speed falls, slowly at first, but then precipitously for spectral types later than early F, i. e., for
M∗ � 1.5 M�. This transition mass is not far from that where outer convection first appears.
Theory predicts that stars below this point emit magnetized winds, whose transport of angular
momentum we discussed in Chapter 13. Since pre-main-sequence stars also have significant
outer convection, the falloff in Veq seen in Figure 16.17 already hints that such young, contract-
ing objects do not spin up monotonically as they descend from the birthline.
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Figure 16.17 Rotational velocity of main-sequence field stars. Displayed is the equatorial velocity
as a function of stellar mass. Also shown are the corresponding spectral types. The smooth curve
at the top represents the critical speed for centrifugal breakup at each mass.

The temporal change in rotation is best documented in solar-type stars that have already
ceased contraction and are slowly consuming their hydrogen on the main sequence. Fig-
ure 16.18 shows measured values of Veq sin i as a function of age for four open clusters, along
with the Sun. As in the previous figure, each point represents an average over a large number
of individual objects, which in this case are confined to the spectral range from F8 to G8. The
observations reveal a consistent pattern and show that the relatively slow rotation of low-mass
stars in the field is achieved through a process of gradual deceleration. Ignoring the inclination
factor, we find that

Veq ≈ V◦
(
t/109 yr

)−α
. (16.58)

The dashed line in Figure 16.18, a least-squares fit to the data, corresponds to V◦ = 4.5 km s−1

and α = 0.51. Thus, Veq declines approximately as t−1/2, a result known traditionally as the
Skumanich law. This spindown must reflect the drain of angular momentum by the stellar wind.

We emphasize that the Skumanich law refers only to average values of the rotational speed.
In fact, each group displays a significant dispersion in the observed values of Veq sin i, even
within the relatively narrow mass range used in Figure 16.18. The youngest cluster shown
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Figure 16.18 Average values of Veq sin i for G-type stars in selected clusters and the Sun.

in the figure, α Persei, contains a few G-type stars with Veq sin i in excess of 200 km s−1.
Significantly, the measured dispersion of G-star velocities shrinks with cluster age and is quite
small in the Hyades. Stars that are rapidly rotating at the age of α Persei (7 × 107 yr) must
initially decelerate at a faster rate than indicated by equation (16.58), while slower ones spin
down at a more leisurely pace.

16.5.3 Orion and the Pleiades

Within any young cluster, a significant spread in rotational speeds exists at all stellar masses, not
just those close to solar. How the distribution of speeds varies with mass will ultimately reveal
much about both magnetic braking and the internal redistribution of angular momentum. The
pattern is especially well documented in the Pleiades. Figure 16.19 summarizes graphically the
results of several hundred spectroscopic velocity measurements. We see immediately that most
stars have relatively low surface velocities, Veq � Vcen. Within this majority population, many
values of Veq sin i are only upper limits, as indicated in the figure. The average speed for the
G-type stars, given by the Skumanich law, is heavily influenced by these low values.

The most interesting fact revealed by Figure 16.19 is that numerous stars are spinning much
more rapidly, with Veq sin i approaching, and occasionally exceeding, 100 km s−1. The latter
value is still only about 1/3 of Vcen, as shown in the figure. For stellar masses between about
0.5 and 1.0 M�, there is a pronounced hole in the density of points. That is, stars in this range
are rather neatly divided into two subsets – the bulk of slow rotators and a distinct minority of
rapid rotators.
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Figure 16.19 Spectroscopically measured values of Veq sin i for 266 stars in the Pleiades. In-
verted triangles represent upper limits. Also shown is the centrifugal breakup speed Vcen, calcu-
lated by using the main-sequence radius at each stellar mass.

For M∗ � 1.0 M�, the spread in Veq sin i narrows. There is also a narrowing at lower
masses, i. e., for M∗ � 0.5 M�. We should view both results with caution, as there are un-
doubtedly more stars with velocities below the detection limit. Nevertheless, it is worth observ-
ing that the hole at intermediate speeds disappears for lower mass, and that many such stars
exhibit relatively high Veq. Extrapolating Figure 16.17 to this mass regime, we see that most
of the Pleiades objects must slow down considerably as they age. Note, however, that rapid
rotation still persists even in some main-sequence field stars of spectral type M.

The breadth of Pleiades rotation rates at all masses is, of course, consistent with the α Persei
data, but is nonetheless striking. The total spread in Veq sin i, e.g. for M∗ ≈ 0.8 M�, is at
least a factor of 15. This is much too great to be attributable solely to age differences among
member stars, which are within 107 yr (§ 4.4). More plausibly, the dispersion reflects variations
in rotation at a much earlier epoch. Apparently, the braking action of stellar winds has been
insufficient, even at an age of 1 × 108 yr, to erase all memory of these primordial conditions.
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Figure 16.20 Values of the equatorial rotational speed Veq for 330 stars in the Orion Nebula
Cluster. These speeds were obtained photometrically. Also shown is the critical breakup speed
Vcen. The latter employs the birthline radius from Table 16.1 at each mass. Note the kink near
M∗ = 3 M�, associated with the swelling from deuterium shell burning.

The next logical step is to explore systematically the rotation rates within even younger
clusters and associations. Such studies have employed both the spectroscopic and photometric
approaches. By far the richest source of results has been the Orion Nebula Cluster. In Fig-
ure 16.20, we display rotational speeds for over 300 stars, ranging in mass from about 0.1 to
3 M�. The Veq-values were obtained from photometric periods, after using the stars’ known
luminosities and effective temperatures to calculate stellar radii. Placement of each object in the
HR diagram also yielded the proper mass.

It is clear that stars in this system, at an age of about 2 × 106 yr, again have a variety
of rotational speeds. Indeed, the dispersion appears even broader than that in the Pleiades,
especially when we consider that the Orion sample is again biased against very slow rotators.
Note that the bimodal distribution of Veq in the Pleiades, which occurs for masses between 0.5
and 1.0 M�, is no longer evident.

Another striking feature in Orion is the large population of low-mass objects with rotational
velocities exceeding 100 km s−1. The highest speeds found here are closer to the critical,
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breakup value than in the Pleiades. Figure 16.20 even shows many objects ostensibly exceeding
Vcen. However, the latter was calculated here using the birthline radius at each mass. The
contraction of a star raises the associated value of Vcen, so that Veq remains below that limiting
value. Some of the most rapidly rotating objects could be members of tight binary systems. The
tidal gravitational force of an undetected companion would then force the visible star into faster
rotation than it would maintain on its own.

The lowering of the average equatorial velocity from Orion to the Pleiades indicates that a
gradual deceleration, like that characterizing main-sequence G stars, holds both further back in
time and over a broader range in mass. On the other hand, the existence of the Pleiades fast
rotators shows that many stars rotating close to breakup at an age of 2×106 yr are still spinning
quite rapidly at 1×108 yr. The deceleration time should generally increase toward lower stellar
mass, to account for the fact that some M stars remain fast rotators even on the main sequence.
Most of the rotational data is consistent with this broad picture. A possible exception is Taurus-
Auriga. Since this system is older than Orion but younger than α Persei or the Pleiades, one
would expect to find a substantial fraction of very rapid rotators. Spectroscopic study, however,
has thus far revealed only a handful of members with Veq sin i exceeding even 50 km s−1, and
none over 100 km s−1.

16.5.4 Embedded Stars

Probing the rotation of stars even younger than those in the Orion Nebula is technologically
challenging. Such objects tend to be embedded in both circumstellar and cloud material, and
may be weak or undetectable in the optical. In principle, one could apply the photometric
method by dedicated monitoring at near-infrared wavelengths. More progress has been made
through high-resolution spectroscopy in the regime of 2 µm. Class I objects are so heavily
veiled that they exhibit no absorption lines at all. However, extreme Class II sources, i. e., those
with nearly flat spectral energy distributions between 2.2 and 10 µm, occasionally show weak
features in CO. The few available measurements yield values of Veq sin i that usually exceed
20 km s−1.

What are theoretical expectations in this regard? Suppose we first ignore the effect of mag-
netic braking during the protostellar accretion phase. Under this admittedly drastic simplifi-
cation, most newly visible stars would have acquired so much angular momentum from their
parent dense cores that they would be rotating at breakup speed. Indeed, this condition would
be met even before another early event associated with cloud rotation, the appearance of a cir-
cumstellar disk.

It is instructive to follow the argument here in more detail. Recall first that protostars become
convectively unstable from deuterium burning at a relatively low mass. Once this transition oc-
curs, the turbulent stresses associated with convection are effective at eliminating internal shear.
(See, however, the discussion of the solar case below.) In the idealized, and perhaps unrealis-
tic, picture of zero differential rotation, we may characterize the fully convective protostar as
a rigidly rotating n = 3/2 polytrope. If this object is indeed rotating close to breakup, then its
angular velocity, Ωmax, is

Ωmax = n4

(
G M∗
R3∗

)1/2

. (16.59)
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Here, n4 is a constant near unity, which is derivable from the numerical study of rotating poly-
tropes. The star’s moment of inertia is

I∗ = n5 M∗ R2
∗ , (16.60)

where n5 is another, known constant. The angular momentum contained in this maximally
rotating structure is therefore

Jmax = I∗ Ωmax

= n4 n5

(
G M3

∗ R∗
)1/2

.
(16.61)

Our goal is to see when, during the infall process, such a state is achieved. We model the
parent dense core as a singular isothermal sphere, rotating at angular speed Ω◦. Utilization of
the density distribution in equation (9.8) shows that the amount of cloud angular momentum
eventually incorporated into the star is

Jcloud =
2
9

M∗ Ω◦ r2
cloud . (16.62)

The radius rcloud is the outer boundary of the collapsing volume. From equation (9.8), this
quantity is

rcloud =
G M∗
2 a2

T

. (16.63)

After equating Jmax and Jcloud, we solve for M∗ to find

M∗ = (18 n4 n5)2/3

(
a8

T R∗
G3 Ω2◦

)1/3

. (16.64)

The protostar is built up at the rate Ṁ , given by equation (10.31). Thus, the time required
to accumulate the mass M∗ is

tbreak = M∗/Ṁ

= (18 n4 n5)2/3

(
R∗

m3◦ Ω2◦ aT

)1/3

.
(16.65)

The numerical studies alluded to earlier give n4 = 1.02 and n5 = 0.132. Hence, the factor
containing these constants in equation (16.65) has the value 1.80. Note that our expression for
tbreak has precisely the same algebraic form as that for t0, the time when the rotating infall first
creates a circumstellar disk. From equation (11.32), the corresponding numerical coefficient in
t0 is 161/3 = 2.52. We conclude that tbreak is less than t0, i. e., the star achieves breakup speed
prior to disk formation.

For times between tbreak and t0, the star must find some way to rid itself of the excess
angular momentum it is gaining through direct infall. Spinup of the surface layers may lead
to shedding of material, i. e., to disk formation even prior to t0. However, it is plausible that
magnetized winds, already known for their torquing action in older stars, also operate at this
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early epoch. Sometime after t0, the disk begins feeding additional mass and angular momentum
to the star (§ 11.3). The twisting of magnetic field lines in an outflowing wind might then
maintain the star’s equatorial speed near, but slightly below, the breakup value. Alternatively,
the wind could slow the object to a lower rotation rate. Future observations of Veq in deeply
embedded sources will tell us which path is actually followed.

16.5.5 Insights from Wind Theory

Returning to the pre-main-sequence phase, the empirical data from young groups demonstrates
that substantial angular momentum loss occurs during contraction. It is difficult to be more
quantitative, but a spindown of the Skumanich form may well hold over a broad mass range,
at least for part of this epoch. Suppose that the torquing action is due solely to a magnetized
wind. Then a simple theoretical argument, supplemented with input from observations, gives
an expression for the deceleration rate.6

We begin with equation (13.32), which tells us that the specific angular momentum in any
flux tube is

J = α �2
A . (16.66)

Recall that �A is the (cylindrical) Alfvén radius, while α is a constant along the field line
in question. If B has only a small toroidal component near the stellar surface, then equa-
tion (13.19) implies that α is close to the star’s rotational speed Ω∗. Suppose now that the full
Alfvén surface is a sphere of radius rA. Then the average specific angular momentum in this
sphere is

Jav =
2
3

Ω∗ r2
A . (16.67)

To obtain the total efflux of angular momentum, we multiply by the mass transport rate in the
wind:

J̇ = −2
3

Ṁw Ω∗ r2
A

= −8π

3
ρA uA Ω∗ r4

A .

(16.68)

Here, ρA and uA are the spherically averaged wind density and radial velocity, respectively,
at rA.

When the ejected gas crosses rA, the radial velocity matches the local Alfvén speed, evalu-
ated using the poloidal component of the field:

u2
A =

B2
p(rA)

4 π ρA
. (16.69)

6 Some investigators favor the idea that the star brakes itself by transferring angular momentum to its disk, via a linked
magnetic field. As just demonstrated, angular momentum loss must occur before the appearance of a disk. In any
case, we shall not explore this picture here. Recall § 13.4 for an introduction to the complexities of the star-disk
interaction.
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We may further relate Bp to the stellar surface field B∗ via flux conservation:

Bp(rA) r2
A = B∗ R2

∗ . (16.70)

Thus, equation (16.68) becomes

J̇ = −2
3

B2
p (rA)
uA

r4
A Ω∗

= −2
3

B2
∗

uA
R4

∗ Ω∗ .

(16.71)

The Alfvén radius is far enough from the stellar surface that the radial velocity has nearly
reached the terminal value V∞. Empirically, the latter is close to the escape speed. Hence, the
value of uA is likely to be insensitive to B∗ and Ω∗. But what is the relation of these latter two
quantities? The field is generated through the dynamo effect, i. e., the interaction of differential
rotation and convection. We therefore expect some dependence of B∗ on Ω∗. Unfortunately,
dynamo theory itself is not yet able to provide the desired relation, and we must turn to a direct,
observational comparison.

Detection of stellar magnetic fields relies on the Zeeman splitting of optical spectral lines.
In practice, one compares the profiles of selected lines with others formed at a similar depth that
are less magnetically sensitive. In this manner, one recovers both the line-of-sight field B‖ and
fB , the fraction of the star’s surface covered by the field. One interesting result, obtained for
G and K dwarfs, is that B‖ depends on spectral type but not on the observed Ω∗. On the other
hand, the product fBB‖ is at least roughly proportional to Ω∗. Thus, faster rotation increases
the number of flux tubes penetrating the surface, but without altering the field strength in each
one. In any case, the larger-scale field affecting magnetic braking arises from the merging of
individual flux tubes some distance above the photosphere. The combination B∗R2

∗ entering
equation (16.71), a quantity proportional to the total magnetic flux emanating from a stellar
hemisphere, thus varies as Ω∗.

Our conclusion is that J̇ is proportional to Ω3
∗. For stars just arriving on the main sequence,

the moment of inertia may be considered to be fixed. We then have

dΩ∗
dt

= −k Ω3
∗ , (16.72)

where k is a positive constant, dependent only on spectral type. The solution to this equation is

Ω−2
∗ − Ω−2

◦ = 2 k t , (16.73)

for any initial speed Ω◦. After initial transient behavior, the equatorial velocity is indeed pro-
portional to t−1/2.

It is a simple matter to generalize equation (16.72) so as to include the shrinking of the star’s
radius. However, this broader Skumanich-type relation is insufficient to describe the entire pre-
main-sequence phase. If J̇ were actually proportional to Ω3

∗ within the Orion Nebula Cluster,
all of its members would be slow rotators by the age of the Pleiades. Consequently, the mag-
netic torque needs to saturate at high rotational speed. That is, the braking must be relatively



16.5 Spinup and Spindown 621

inefficient at early epochs. A likely reason is that the star is fully covered by intense magnetic
flux above some minimum rotation speed. In support of this picture is a related observation.
One signpost of surface activity, including the emergence of magnetic fields, is X-ray emission.
(See also Chapter 17.) Among stars of a given spectral type, the X-ray luminosity generally
correlates with Veq sin i, but then levels off for sufficiently rapid rotation.

Another complication faced by theory is the case when the star is only partially convective.
Indeed, this situation arises in the very stars that provided the original data for the Skumanich
law. While it may be reasonable to assume that the outer convection zone spins down as a solid
body, how does the interior respond? Does angular momentum diffuse outward as the result of
some effective viscous stress between shearing layers? Do turbulent eddies in the convection
zone generate waves that travel inward and alter the rotation? Or do the central regions maintain
a state of high spin inherited from earlier contraction?

The most detailed empirical information concerning these questions has come from the field
of helioseismology. By combining observations of the Sun’s surface oscillations with models
of its bulk, normal modes, one may derive the internal distribution of the angular velocity. It has
long been known that the equatorial value of the surface angular speed exceeds the polar value
by about 40 percent. Helioseismology has demonstrated that this difference persists to the base
of the convection zone, with Ω showing little radial variation. Within the radiative interior, the
rotation rate appears to be uniform. The transition from differential to solid-body rotation occurs
in a remarkably thin layer known as the tachocline. How these results extend to younger, more
fully convective objects is not yet clear. There is no doubt, however, that continued analysis of
the solar case will aid our understanding of the evolutionary issues raised here.

Chapter Summary

The birthline manifests itself in the HR diagrams of stellar groups as a cutoff in the popula-
tion at high luminosity. This upper boundary is present because pre-main-sequence stars first
appear with the radii they attained as accreting protostars. The protostellar radius, in turn, is
tightly constrained by deuterium fusion for subsolar masses and by gravitational contraction in
intermediate-mass objects.

A star that has ceased protostellar accretion slowly contracts by radiating energy into space.
The star’s emitted luminosity is initially high enough to drive interior convection. Mixing as-
sociated with turbulent convection enforces a spatially constant specific entropy, and the star
contracts in a simple, homologous fashion. Since its effective temperature remains nearly fixed,
the object descends vertically in the HR diagram. Eventually, the interior opacity diminishes
to the point where radiation can provide energy transport. The effective temperature then in-
creases, and the evolutionary track becomes more horizontal.

The rising central temperature in a pre-main-sequence star ignites a sequence of nuclear
reactions. First, the object consumes whatever deuterium remains from the protostar phase.
This reaction can stall contraction for up to 106 yr in the lowest-mass stars. The subsequent
fusion of lithium is energetically trivial. Since, however, the element is readily detected in
stellar photosheres, its presence is an important observational signature of youth. Ordinary
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hydrogen eventually burns in all stars more massive than 0.075 M�. Here, the released energy
completely halts stellar contraction.

Objects of even smaller mass have a central temperature that peaks too low for hydrogen
ignition and then declines further as the radius settles to a finite value. In these brown dwarfs,
electron degeneracy pressure counteracts self-gravity. The presence of surface lithium is an
important observational tool for identification. Spectra at these very low effective temperatures
exhibit peculiarities due to the presence of dust grains and molecules such as CH4. Numerous
single brown dwarfs are present in stellar groups.

One important, if poorly understood, property of young stars is their rotation, which can be
measured both spectroscopically and photometrically. Members of the Orion Nebula, at an age
of 2 × 106 yr, have a large spread in rotation speed that must be inherited from the protostar
phase. This spread diminishes by the age of the Pleiades (1 × 108 yr), but there remains a
population of rapid rotators. The well-documented spindown of main-sequence stars, which
is consistent with magnetic wind theory, cannot apply to the pre-main-sequence phase. Wind
braking is present at this epoch, but is apparently less efficient.
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17 T Tauri Stars

Observations of star-forming regions have utilized, to great advantage, detectors spanning a
broad range of wavelengths. It remains true, however, that our knowledge is most complete
for young, but optically visible stars. Those of about 2 M� and below fall within the T Tauri
class, and have been intensively studied over many decades. Throughout this book, we have had
occasion to refer to various properties of these objects, but have never presented the empirical
data or associated theory in a systematic fashion. It is the purpose of this chapter to fill that gap.

Apart from their proximity to molecular clouds, the youth of T Tauri stars is primarily mani-
fested in their excess emission, i. e., photospheric radiation beyond that found in main-sequence
stars of the same effective temperature. We accordingly begin by describing the characteristics
of this emission, which occurs in both spectral lines and the continuum. Here we cover not only
optical radiation, but also that in the ultraviolet, infrared, X-ray, and radio. We then turn to the
finer details of optical lines, to show how these lines reveal the presence of both outflowing and
infalling matter (§ 17.2). In the next section, we see how excess continuum radiation furnishes
evidence for the existence of circumstellar disks. We also summarize theoretical understanding
of the disks’ thermal and dynamical structure.

Another fundamental characteristic of T Tauri stars is their temporal variability (§ 17.4).
Line and continuum fluctuations span a range of amplitudes, and can be either random or peri-
odic. Discussion of the latter naturally leads us to the issue of T Tauri magnetic fields and their
observational detection. We also devote significant attention to the FU Orionis phenomenon, an
especially dramatic flareup whose origin remains a puzzle.

In the final section, we describe low-mass objects that, while still contracting, have di-
minished surface activity and excess emission. This class of post-T Tauri stars provides the
observational link to the main sequence. Objects that are still more evolved, i. e., relatively
young dwarf stars, exhibit tantalizing clues of ongoing planet formation. We close the chapter
by summarizing our present understanding of this complex phenomenon.

17.1 Line and Continuum Emission

Although T Tauri stars individually display a bewildering variation in their properties, they
nevertheless share a set of common features. These intrinsic characteristics are more robust,
from an observational perspective, than the star’s placement in the proper region of the HR
diagram. For the latter purpose, one must assign an effective temperature, usually based on the
pattern of optical absorption lines. These are sometimes barely discernible, being so heavily
filled in that the underlying spectral type is hard to identify. The contamination here is due to an
extra component of continuum radiation not found in main-sequence stars. Whether or not this
veiling is present, some spectral lines that would normally be in absorption appear in emission.
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In fact, the presence of prominent emission lines is one basic, defining property of the T Tauri
class. These spikes project above a background spectrum that usually, but not always, contains
well-defined absorption dips. Let us begin, then, by describing both the emission and absorption
features.

17.1.1 Optical Spectra

The optical emission lines of T Tauri stars arise from hydrogen, along with neutral and singly
ionized metals. In the latter category are the prominent Ca II H and K lines at 3968 and 3934 Å,
respectively. Additionally, all T Tauri stars have significant flux in the X-ray regime. Both
optical emission lines and X-rays are also present in late-type, main-sequence stars. Here they
arise from the dissipation of mechanical and magnetic energy in an extended chromosphere and
corona lying above the stellar surface proper (recall Chapter 13). This activity, in turn, is a
manifestation of subsurface convection. Since pre-main-sequence stars of low mass are also
expected to be convectively unstable, the minimal T Tauri properties we have listed come as
no surprise. We shall see, however, that the level of surface activity is often far greater than in
main-sequence stars. Moreover, many T Tauri stars display additional features that are difficult
to understand solely within this framework.

The hydrogen lines are those of the Balmer series, principally Hα at 6563 Å. Accordingly,
the vast majority of T Tauri stars have been discovered through wide-field surveys that look
toward visually obscured regions for sources of either Hα or X-ray flux. Additional studies
are then necessary to confirm the pre-main-sequence nature of any candidate object. Detection
of strong lithium absorption at 6708 Å is a frequently used diagnostic. Through such means,
observers have identified and catalogued hundreds of objects.

Within this large dataset, those optical spectra displaying clear absorption features have
associated spectral types. These range from late G to mid M. The correspondence of the spectral
type with effective temperature is similar to that for main-sequence stars (Table 1.1), but differs
slightly, as a result of the lower surface gravity. It is important to realize that stars with identical
Teff -values may still have spectra that appear quite different. This difference reflects the amount
of excess emission in both the continuum and lines.

To illustrate the situation, Figure 17.1 displays spectra of three T Tauri stars, spanning wave-
lengths from the ultraviolet to the red portion of the optical. All the stars have spectral types
from late K to early M. Starting at the bottom, the objects show an increasing degree of emission
beyond photospheric. Thus, V830 Tau, a weak-lined T Tauri star, has pronounced absorption
dips. The lines in BP Tau are shallower, the result of continuum veiling. Finally, the extreme
T Tauri star DR Tau shows very few absorption lines, but a much larger number in emission. Its
spectral type is accordingly rather uncertain.

Other trends are noteworthy. The bluest region of each spectrum is dominated by the Balmer
continuum, i. e., by photons released through capture of free electrons into the n = 2 level of
hydrogen. Classical T Tauri stars show an upward jump in flux below the ionization threshold
of 3647 Å. In main-sequence objects and weak-lined T Tauri stars like V830 Tau, this portion of
the spectrum is depressed below that at longer wavelengths. Note, in both BP Tau and DR Tau,
the thicket of emission lines just redward of the jump. These are higher members of the Balmer
series: Hγ (n = 5 → 2), Hδ (n = 6 → 2), etc. Also within this region are the Ca II H and K
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Figure 17.1 Medium-resolution spectra of three T Tauri stars. The received flux is correct only
for BP Tau. The other two spectra have been shifted vertically for convenience.

lines. In DR Tau, there is a group of lines in Fe II, just to the red of Hβ at 4861 Å. The Na I D
doublet at 5893 Å is in emission in this extreme T Tauri star, while it appears as an absorption
feature in the other spectrograms.

Table 17.1 lists the principal emission lines found in classical T Tauri stars. Here we cover
infrared, optical, and ultraviolet wavelengths. The second column gives, in spectroscopic nota-
tion, the electronic transitions, while the Einstein A-values are tabulated last. Among the optical
lines, we note that both [O I] 6300 Å and [S II] 4076 Å have spontaneous emission rates smaller
than the others by orders of magnitude. These are forbidden transitions that originate from
material at relatively low densities. We will see later that these lines are valuable for probing
T Tauri winds, just as they were for jets from more embedded stars. For the moment, however,
we focus on the other, permitted, transitions.

17.1.2 Emission in Hα

Returning to Figure 17.1, the strongest line in both BP Tau and DR Tau is Hα. In contrast,
the spectrum of V830 Tau is nearly flat in the same region. The presence of Hα in emission
is, in fact, one of the defining spectral characteristics that separates classical from weak-lined
T Tauri stars. It is apparent from our examples that increasing strength in this particular line
is not an isolated phenomenon, but occurs in tandem with additional signposts of activity – a
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Table 17.1 Main Emission Lines in Classical T Tauri Stars

Line Transition Wavelength Aul

(Å) (s−1)

Infrared
Br γ n = 7 → 4 21661 3.0 × 105

Pa β n = 5 → 3 12822 2.2 × 106

Ca II 2P1/2 → 2D3/2 8662 2.8 × 105

Ca II 2P3/2 → 2D5/2 8542 1.2 × 106

Ca II 2P3/2 → 2D3/2 8498 6.3 × 105

Optical
[S II] 2D3/2 → 4S3/2 6731 8.8 × 10−4

[S II] 2D5/2 → 4S3/2 6716 2.6 × 10−4

Hα n = 3 → 2 6563 1.0 × 108

[O I] 1D2 → 3P2 6300 6.3×10−3

Na I D1
2P1/2 → 2S1/2 5896 6.2 × 107

Na I D2
2P3/2 → 2S1/2 5890 6.2 × 107

He I 3D3 → 3P2 5876 7.1 × 107

Fe II 6P3/2 → 6S5/2 4924 3.3 × 106

Hβ n = 4 → 2 4861 3.8 × 107

Hγ n = 5 → 2 4340 1.6 × 107

Fe I 3F3 → 3F2 4132 1.2 × 107

[S II] 2P1/2 → 4S3/2 4076 9.1 × 10−2

Ca II H 2P1/2 → 2S1/2 3969 1.4 × 108

Ca II K 2P3/2 → 2S1/2 3934 1.5 × 108

Ultraviolet
Mg II h 2P1/2 → 2S1/2 2803 2.6 × 108

Mg II k 2P3/2 → 2S1/2 2796 2.6 × 108

C IV 2P3/2 → 2S1/2 1548 2.7 × 108

Si IV 2P1/2 → 2S1/2 1403 7.6 × 108

O I 3S1 → 3P1 1305 2.0 × 108

S I 3P1 → 3P2 1296 4.9 × 108

Lyα 2p → 1s 1216 6.3 × 108

rise in metallic emission lines and others from the Balmer series, more pronounced veiling, and
elevation of the Balmer continuum.

For detailed analyses of spectra, it is convenient to have a quantitative measure of the
strength of any line, whether it is in absorption or emission. This measure is the equivalent
width. Consider first an absorption line. As usual, we let Fλ denote the specific flux received
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Figure 17.2 Definition of equivalent
width for an absorption line.

from the star. Then we define the equivalent width by an integral over the line in question:

Wλ ≡
∫

(1 − Fλ/F◦) dλ . (17.1)

Here, F◦ is the continuum flux on either side of the absorption dip. Figure 17.2 shows that Wλ

is the width of a hypothetical line with rectangular profile that represents the same integrated
flux deficit from the continuum as the true one. In addition, the rectangular profile is chosen
to be just deep enough to reduce the total flux at line center to zero. We also may apply the
definition in equation (17.1) to emission lines. Here, Wλ is formally negative, and the absolute
value is used in practice.

Return now to Hα in T Tauri stars and to the distinction between weak-lined and classical
objects. The Hα equivalent width varies greatly from one source to another and may reach
150 Å or more in extreme cases. Conversely, the width becomes vanishingly small in an object
such as V830 Tau. A T Tauri star of mid-K spectral type is considered to be weak-lined if WHα

is less than 10 Å.1 In practice, such an object also has little or no continuum veiling. It still
exhibits surface activity through Ca II H and K emission, as well as X-ray flux. In addition, the
Li I absorption line at 6708 Å is deeper than in main-sequence photospheres.

Table 17.2 summarizes the properties of classical and weak-lined stars. We stress that both
types of objects are not only found near molecular gas, but often close to each other in the HR
diagram. Thus, weak-lined stars are bona fide pre-main-sequence objects that lack some critical
ingredient (or ingredients) in their circumstellar environments. We shall want to explore this
issue in some depth. With reference to Hα, we note generally that the emission lines already
present in weak-lined stars and very strong in classical ones are just those observed in the Sun’s

1 The defining criterion for weak-lined stars varies with spectral type. Consider G- and K-type T Tauri stars, both with
WHα = 10 Å. The former has a greater flux in Hα, since the level of the background continuum is higher. The G
star is therefore classical. Equivalently, earlier spectral types have a lower threshold in WHα.
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Table 17.2 Classical vs. Weak-lined T Tauri Stars

Classical Weak-lined

Hα emission WHα
>∼ 10 Å WHα

<∼ 10 Å

other permitted very strong moderately strong
emission lines and broad and narrow

forbidden-line
emission yes no

Li absorption yes yes

optical veiling yes no

infrared excess yes no

X-ray emission yes yes

radio emission free-free nonthermal
extended compact

photometric
variability periodic/aperiodic periodic

chromosphere and in active, lower-mass dwarfs. Whatever physical mechanism powers main-
sequence chromospheres should therefore also be operating at this earlier epoch. On the other
hand, both the range and maximal extent of Hα emission from the full ensemble of T Tauri stars
are so great that a purely chromospheric origin is unlikely for this line, as well as for others in
the Balmer series.

We may better appreciate this fact by considering first a main-sequence G star. Here, Hα is
an absorption line, as it is in almost all main-sequence objects.2 If we next examine a somewhat
younger object, say a G dwarf in the Hyades, Hα is still in absorption, but the line is shallower.
The difference is an emission core that is superposed on an ordinary, photospheric absorption
line. Suppose we plot the Hα surface flux, i. e., the energy per unit time per unit area leaving the
star itself, as a function of stellar age. As seen in Figure 17.3, this quantity declines with age, and
in a manner at least very crudely consistent with a Skumanich-type (t−1/2) law. Whatever its
true form, the falloff only applies for t � 2 × 108 yr. A similar decline is seen in the strength
of Ca II H and K, and of course in the surface rotational velocity (equation (16.57)). These
parallel trends reinforce the belief in a chromospheric origin for main-sequence Hα emission.

If we now extrapolate back to solar-mass T Tauri stars a few million years old, the predicted
Hα flux falls in the midst of a much broader, observed range (Figure 17.3). The most active

2 The exceptions are anomalous stars of spectral type B and M, known as Be and dMe stars, respectively. Here, the “e”
refers to the presence of emission lines.
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Figure 17.3 Evolution of Hα emission. Plotted is the surface flux for solar-mass stars, as defined
in the text. Filled circles are T Tauri stars in Taurus-Auriga, and open ones are main-sequence
objects in the field. Notice the gap between the two groups, a manifestation of the post-T Tauri
problem. The dashed line represents a t−1/2 decay.

classical T Tauri stars have fluxes larger than predicted by at least an order of magnitude. Thus,
the Hα in these objects is unlikely to originate primarily in a chromosphere, although such a
component is almost certainly present. It is also interesting that the least active T Tauri stars,
i. e., those designated weak-lined, have fluxes below the extrapolated value, but comparable to
those seen at an age near 108 yr. Thus, any simple power law fails at early times, even for the
minimal flux level. A contracting object that begins as a weak-lined T Tauri star may generate
Hα from its chromosphere at a roughly steady level for as long as 108 yr, after which this
activity gradually fades. In contrast, a classical T Tauri star starts out producing far more Hα,
but the strong emission dies off quickly, within 107 yr.

17.1.3 Continuum Veiling

The question of what creates non-chromospheric Hα is a difficult one that is far from resolved.
Before delving into the matter, let us first complete our description of the emission character-
istics of T Tauri stars generally. Lines in the ultraviolet region of the spectrum also attest to
elevated activity. This radiation was first extensively studied using the International Ultraviolet
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Explorer (IUE) satellite, launched in 1978. The spectrum of classical T Tauri stars from 1100
to 3100 Å exhibits, at modest resolution, a smooth continuum with superposed emission lines.
Transitions are partially from neutral and singly ionized species, as in the optical. The strongest
flux is from the Mg II h and k doublet near 2800 Å. However, there are also lines from such ions
as C IV and Si IV. These latter transitions require ambient temperatures near 105 K.

Both the roster of ultraviolet emission lines and even their flux ratios are similar to those
observed in active dwarfs, including the Sun. This correspondence again implicates a chro-
mosphere and corona in the pre-main-sequence objects. On the other hand, individual flux
levels can be vastly greater than solar, three orders of magnitude or even more. Our reasoning
concerning Hα would then suggest a non-chromospheric origin for the ultraviolet lines. Com-
plicating this puzzle is the fact that the richness of the spectrum at the shortest wavelengths
bears little relation to emission strength in the optical regime. To cite but one example, the ex-
treme T Tauri star RW Aurigae displays few of the far-ultraviolet lines that originate from very
high-temperature gas.

We stress that this apparently contradictory behavior applies only to spectral lines. The
ultraviolet continuum flux in classical T Tauri stars is always greater than that of a weak-lined
or main-sequence star, and to a degree that correlates well with optical emission activity. That
is, the excess emission at the shortest observable wavelengths appears to be a smooth extension
of that seen in the optical.

What creates the additional continuum radiation? We cannot hope to address this question
without first establishing the wavelength dependence of the emission. That is, we must sep-
arate out the spectral energy distribution of the continuum excess from that of the underlying
photosphere. This separation is currently feasible only in the optical regime, where the spectral
resolution is highest, and even there requires some care. Suppose one has the spectrum of a
classical T Tauri star and that of a weak-lined object with nearly the same effective tempera-
ture but negligible veiling. Then one cannot simply difference the two spectra and obtain the
excess. All observed fluxes must first be dereddened to eliminate the effect of intervening dust.
Dereddening, in turn, requires comparison of an object’s apparent colors with those that would
be seen by an observer close to the star. This correction is straightforward for the weak-lined
star. In a classical T Tauri star, however, the observed colors are influenced both by reddening
and by the presence of the continuum excess.

We may disentangle the two effects through detailed comparison of absorption line strengths
in the classical and weak-lined stars. Recall that lines in the former are shallower as a result
of the veiling. Furnished with high-resolution spectrograms of both objects, we may find the
relative excess emission within small wavelength intervals.

Suppose, as in the top panel of Figure 17.4, that we have portions of a weak-lined and
classical spectrum, both with a continuum flux level of F0. Suppose further that the observed
depths of a particular absorption line in the weak-lined and classical stars are δF0 and δF1,
respectively. If we add a broadband, veiling flux ∆Fλ to the weak-lined spectrum, we preserve
the depth of the line, but raise the background continuum flux from F0 to F0 + ∆Fλ. We then
rescale the augmented, weak-lined spectrum until the continuum level is again F0. If we have
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added the proper veiling, then the new line depth matches δF1, the one in the classical star:

δF0

(
F0

F0 + ∆Fλ

)
= δF1 .

We define the veiling index, rλ, for the classical star as ∆Fλ/F0. The reader may verify that,
in a wavelength interval where rλ = 1, we would have δF0 = 2 δF1. That is, the lines in the
classical star would be half as deep as in the weak-lined object with no veiling.

The final step in the procedure is to take a dereddened, low-resolution spectrum of the weak-
lined star and multiply it at each wavelength by rλ. One thus obtains the properly dereddened
∆Fλ for the continuum excess. Figure 17.4 shows the calculated result for BP Tau. This is
the moderately active T Tauri star whose full optical spectrum we displayed earlier. Here, we
show the specific flux relative to that in a weak-lined, template star at 5500 Å. It is clear that the
optical excess represents a significant fraction of the star’s radiative output in this wavelength
range. Discounting observational noise, the flux distribution appears featureless, and declines
gently from 4000 to 6800 Å. The simplest model consistent with this result is a geometrically
thin, gaseous slab with a temperature near 10,000 K. Since the absorption lines of BP Tau are
only partially filled in, i. e., since rλ never greatly exceeds unity, the putative slab must cover
only a small fraction (a few percent in this case) of the stellar surface.

Other classical T Tauri stars are amenable to such modeling, although the parameters of the
slab vary widely. It is not difficult to find a more physical basis for this result. As we shall
see in § 17.2, there is ample evidence for infalling gas surrounding many T Tauri stars. There
are also, curiously enough, signs of outflow, often within the same object. The hot gas crudely
represented as homogeneous slabs must actually arise in shocks located above or on the star’s
surface. The sparse areal coverage of a typical slab reflects a corresponding sparsity of the shock
loci, where either outflowing gas impacts external material, or infalling streams collide with the
surface layers.

17.1.4 Infrared Excess

The continuum excess produced by T Tauri stars spans a much broader range in wavelength
than just the ultraviolet and optical. Figure 17.5 displays the full spectral energy distributions
for the same three stars that were shown in Figure 17.1. The weak-lined star V830 Tau peaks
in emission near 1 µm and differs little from a main-sequence star of the same spectral type.
In contrast, the broadband spectrum of BP Tau has a far shallower decline toward the infrared.
Finally, DR Tau has so much continuum emission at all wavelengths that the peak of its spectral
energy distribution is shifted redward by a large amount.

We have encountered the infrared excess before, of course. According to the classification
scheme introduced in Chapter 4, weak-lined stars such as V830 Tau fall into Class III, since they
exhibit no excess in the near-infrared. The moderately active BP Tau is a Class II source. So is
the extreme (or “continuum”) star DR Tau, since λ Fλ still declines between 2.2 and 10 µm. A
true Class I object, we recall, has rising flux in this interval and a spectral energy distribution
that may peak at wavelengths as large as 100 µm. We argued in Chapter 11 that these sources
are also likely to be pre-main-sequence stars, but ones that are buried within especially massive
and dense gaseous envelopes.
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Figure 17.4 Top panel: Determining the veiling flux in a classical T Tauri star. Bottom panel:
Spectral energy distribution of veiling emission in the star BP Tau. The specific flux is normalized
to F ◦

λ , the value in a weak-lined, template star at 5500 Å. The curve is a linear fit to the data.

Returning to Figure 17.5, the star BP Tau is the only one for which we may reliably obtain
an infrared excess. Weak-lined stars have essentially no excess, while the photospheric emission
cannot be accurately gauged for DR Tau. Such extreme objects comprise only about 10 percent
of all classical T Tauri stars. Thus, there exists a large number of documented infrared excesses.
As we shall discuss in § 17.3, the most plausible source for this emission is a circumstellar disk.
Much of the “excess” radiation simply represents incident stellar photons reprocessed by dust
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Figure 17.5 Broadband spectral energy distributions for the three stars in Figure 17.1. The spectra
for DR Tau and V830 Tau have been displaced up and down, respectively, by ∆ log Fλ = 0.5.
Note that the fluxes for BP Tau and V830 Tau have been dereddened for interstellar extinction.

into the infrared. In some cases, the disk itself may be supplying additional energy. If so, the
underlying physics is still unclear.

Having an infrared excess changes a star’s intrinsic colors, as measured in the standard
bandpasses. We discussed in Chapter 4 how near-infrared color-color plots are useful for pick-
ing out the classical T Tauri stars within populous groups. Figure 4.2 shows, in particular, that
the observed H −K values are too large relative to J −H for the objects of interest, even after
accounting for interstellar reddening. Of course, a reliable estimate for AV allows one to dered-
den any single color index. Comparison with a main-sequence color then gives a quantitative
measure of the amount of excess.

A dereddened color, such as (H −K)◦ or (K −L)◦, is thus useful and far more convenient
than a direct assessment of the total, additional luminosity at longer wavelengths. Figure 17.6
compares one such index, (K − L)◦, with another, ostensibly unrelated one, the equivalent
width of Hα. Here, the sample population consists of stars in Taurus-Auriga. Despite the large
scatter, there is evidently a relation between the two numbers. Weak-lined stars, i. e., those with
WHα � 10 Å, have (K − L)◦ ranging from 0.1 to about 0.3 mag. This is also the expected
range for main-sequence stars of the appropriate spectral types. Classical T Tauri stars with
higher Hα fluxes show correspondingly stronger infrared excesses. This trend illustrates the
fact that the permitted line emission and the continuum infrared radiation both depend on the
presence of circumstellar matter.
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Figure 17.6 The Hα equivalent width of T Tauri stars plotted against their dereddened, K − L

color index. All stars are located in the Taurus-Auriga association.

17.1.5 X-Ray and Radio Flux

Let us finally examine two types of continuum radiation that are closely related to the stellar
magnetic field. We have noted that X-ray activity is universal in T Tauri stars and has been
the principal means of identifying weak-lined objects. We previously discussed, in Chapter 7,
how this radiation is an important heating mechanism for molecular clouds. The flux from any
individual star is mostly steady in time, with modest fluctuations, but is punctuated occasionally
by strong flares. These represent a significant portion of the longterm energy output. The steady-
state luminosity, LX , typically constitutes about 10−4 of Lbol. However, the true fraction varies
considerably from source to source. Few have LX/Lbol exceeding 10−3, which is also the
observed upper limit for low-mass, main-sequence stars.

Figure 17.7 displays the spectral energy distribution of steady-state emission from one of
the strongest known pre-main-sequence X-ray sources, V773 Tau. This weak-lined star is also
the primary in a spectroscopic binary. The X-ray spectrum peaks near 1 keV and exhibits the
characteristics of thermal bremsstrahlung. A plasma with temperature TX = 1.5 × 107 K and
column density NH = 3 × 1021 cm−2 provides a good fit, as shown. Both of these values are
normal for T Tauri stars generally. On the other hand, LX is estimated at 1 × 1031 erg s−1.
Since Lbol = 3 L�, the ratio LX/Lbol is near the maximal value of 10−3.



636 17 T Tauri Stars

Figure 17.7 Spectral energy distribution of the steady-state X-ray emission from V773 Tau. The
continuous, step-like curve represents the calculated emission from a uniform plasma.

Flares from this source are also much stronger than average. Rising within minutes, the
flare luminosity can reach 10 percent of the stellar value, before fading in a matter of hours. At
the peak of emission, the spectral energy distribution is characterized by TX � 108 K. Such
hardening of the spectrum, while extreme in this case, is also a general feature. Within any
populous group of T Tauri stars, about 5 percent exhibit flaring at any time.

When considering the origin of the X-ray emission, it is helpful to compare with the Sun,
for which there is a wealth of detailed information. Here we also find steady-state and flaring
components, both at a much reduced level. The steady-state portion arises from the Sun’s
outflowing corona and is characterized by a TX of order 106 K. The temperature associated
with a flare is again higher. Individual flares originate within closed magnetic field loops. The
loop endpoints, embedded in the photosphere, move about as a result of subsurface convection.
Stress within the loop eventually leads to reconnection and a sudden release of energy.

How much of this picture applies to T Tauri stars? One key empirical fact is that a large LX -
value does not imply strong Hα emission. (Remember that our previous example, V773 Tau,
is a weak-lined star.) Nor does LX correlate with the ultraviolet, optical, or infrared continuum
excess. Thus, the observed X-rays do not depend on the presence of circumstellar matter. The
radiation must originate, as in the Sun, from surface activity involving a dynamo-generated
magnetic field. On the other hand, the spectral temperature TX associated with the steady-
state component of emission is too high to be coronal in origin. It appears instead that even
this “quiescent” output is actually the sum of numerous, unresolved flares. These may again
originate from reconnection in closed loops, but are only noticeable as discrete events when
anomalously strong.

Magnetic fields are implicated in yet another emission feature, that in the radio continuum.
We have seen at other points in this book how thermal bremsstrahlung (free-free radiation) at
centimeter wavelengths is a valuable tracer of ionized winds, both from deeply embedded stars
creating shocks in the surrounding medium (Chapter 13) and from exposed, massive objects
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that radiatively accelerate hot gas from their surfaces (Chapter 15). Only a few T Tauri stars in
the nearest associations have detectable free-free emission. Observations using the Very Large
Array (VLA) interferometer have established that this flux originates from a region of dimension
1014 cm, and is associated with optical jets.

Interestingly, it is only classical T Tauri stars, or rather a small subset of these, that exhibit
such extended, ionized flow. A higher portion of weak-lined stars produces centimeter flux, but
emanating from a much smaller volume. Moreover, the output here is more variable in time and
occasionally exhibits flaring. One dramatic example is DoAr 21, a relatively luminous, weak-
lined star in ρ Ophiuchi. Here the quiescent flux at 6 cm varies between 2 and 5 mJy. Over the
course of several hours in 1983, the level was caught rising from 34 to 48 mJy.

What is the nature of the compact radio emission? Consider again V773 Tau. This star not
only produces copious X-rays, but is also the brightest radio source in Taurus-Auriga, with nu-
merous, documented flares. Interferometric measurements with subarcsecond resolution at 6 cm
reveal the quiescent, i. e., moderately variable, emission to originate within 15 stellar radii. As
a function of frequency, the spectrum is essentially flat in this regime. We thus immediately
discount optically thick radiation, either in a static atmosphere or an ionized wind. (Recall the
discussion of the spectral index in Chapter 15.) Moreover, the high radio flux cannot repre-
sent the long-wavelength portion of an optically thin spectrum produced by bremsstrahlung, as
the implied X-ray intensity would then be far greater than what is observed. One is forced to
conclude that the emission is nonthermal. Note that the radio continuum from V773 Tau is
circularly polarized, a telltale sign of magnetic influence. A likely emission process is gyrosyn-
chrotron emission from electrons spiraling about stellar field lines.

It is tempting, of course, to seek a common origin for the activity in radio and X-ray wave-
lengths. The temporal pattern seen in both – longterm, quiescent emission interspersed with
flares – is encouraging in this regard. So too is the theoretical prediction that magnetic recon-
nection can release a shower of energetic electrons. On the other hand, radio flaring is much less
frequent than that in X-rays. It is also rather surprising that the magnetic field lines apparently
responsible for the steady-state radio emission extend as far as 15 stellar radii. This is much
greater than the loop sizes inferred for X-ray production, so that the two types of emission must
arise in different locations.

17.2 Outflow and Infall

Early in the investigation of T Tauri stars, it was observed that many optical emission lines have
profiles indicating the presence of outflowing gas. Even from the crude estimates available, it
was clear that the typical rate of mass efflux was vastly greater than solar. The idea thus gained
acceptance that powerful winds are a key aspect of pre-main-sequence evolution. Corroborating
this picture was the later finding that younger, more embedded objects drive even more ener-
getic flows. Other spectroscopic evidence, however, showed indisputably that gas is sometimes
approaching the parent star. More curious yet was the discovery that the same object can ex-
hibit both types of motion. The circumstellar environment is therefore both geometrically and
dynamically complex.
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In this section and in much of the remaining chapter, we shall present the main lines of
evidence that have been used to develop a picture of the matter exterior to T Tauri stars. We
stress at the outset that the process is ongoing, as no fully self-consistent physical description
yet exists. Where appropriate, we will summarize quantitative models that have proved useful.
At other points, we offer qualitative ideas that may serve as guidelines for future research.

17.2.1 Hα Profiles

As we have indicated, the study of line profiles has been the chief source of information. Let
us accordingly begin with the most prominent emission line of all, that of Hα. Indeed, the
very high Hα flux seen in classical T Tauri stars is one of the primary issues for theory to
address. The essential requirement to obtain this emission is a region outside the photosphere
with a temperature from 5,000 to 10,000 K, high enough to populate significantly the n = 3
level of hydrogen, but too low for complete ionization. One might postulate a layer analogous
to an ordinary chromosphere,but with a higher temperature minimum and greater geometrical
thickness. Such a structure, however, does not yield the requisite emission in the line. As
one proceeds outward into lower densities, the n = 3 level population cannot be maintained
through collisions, even if the local kinetic temperature continues to rise. The increasing n = 2
population causes absorption of Hα photons. The line profile develops a deep, central trough,
and the total flux is diminished.

Usually, observed Hα profiles are not so deeply self-reversed, but their structure is of interest
nonetheless. In fact, a range in line shapes is seen, and that of a given star may change in a
matter of days. Figure 17.8 shows two representative profiles, whose shapes together account
for the majority of the observations. About a fourth of the profiles are essentially symmetric,
as illustrated by FM Tau in the top panel. The greatest number, roughly a third of the total,
are asymmetric and resemble the CI Tau profile in the lower panel. Here, the main peak is still
close to line center. A secondary maximum of relatively small amplitude is located at a shorter
wavelength. This double-peaked structure is created by an absorption dip superposed on an
underlying symmetric emission profile with broad wings. The dip, in turn, must arise from a
partially opaque layer of gas moving away from an interior source of emission. An observer
within such a layer sees incoming radiation shifted to the red because of the Doppler effect.
Absorption therefore occurs for bluer photons whose wavelength is shifted back to line center
in the comoving frame. To summarize, a profile like that of CI Tau in Figure 17.8 reveals the
presence of a stellar wind.

High velocities are also evident from the overall width of the Hα line. For the symmetric
emission from FM Tau, this width (FWHM) is 200 km s−1. Thermal broadening alone would
require a temperature of 9 × 105 K, great enough to ionize all hydrogen, and far above our
previously estimated range. As we discussed in § 17.1, even higher temperatures are necessary
to produce the X-ray emission. This component must originate in a different region from the
Hα. Note finally that the broadening of the latter cannot be solely turbulent in origin, as internal
shocks would quickly damp the eddies. In summary, the large Hα line width must arise from
bulk motion within the emitting gas.

What is the nature of this bulk motion? First, it is important to appreciate that the offset
from line center of the blueshifted dip measures directly the speed of absorbing wind material.
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Figure 17.8 Two represen-
tative Hα profiles. Note that
only relative specific flux is
shown. Line center is indi-
cated by a vertical line.

In the case of CI Tau, this displacement is 70 km s−1. The velocity obtained in this manner is
consistent with that inferred through another diagnostic, optical forbidden lines (see below). On
the other hand, the full Hα profile of CI Tau extends to velocities, both blue- and redshifted, that
are substantially higher. The emission of Hα, therefore, stems from some type of non-turbulent
motion that may bear little resemblance to the smooth stellar wind relatively far from the star.
The latter only provides partial absorption of outgoing radiation.

For both components, a key question is what heats the gas. We faced the same issue in
Chapter 13, when discussing the optical jets from more deeply embedded stars. There we found
that broadened line radiation, including Hα, arises from oblique shocks that partially interrupt
the flow. Oblique shocks may also energize Hα emission in classical T Tauri stars, whether or
not these shocks arise in jets. The flow close to the star is constrained to follow a magnetic field
that is probably quite complex, consisting of both tight loops and more open portions. Recall
from § 17.1 that those stars with the most intense Hα emission also have a large supply of
circumstellar material, as revealed by their near-infrared excess. The system of shocks arising
from impact of the outflowing gas with external matter could yield a broad, symmetric line,
provided the shocks have a large range of inclinations. Short-term fluctuations in the field
topology, such as those observed on the Sun, might then account for the temporal changes.

Consider once more the blueshifted dip, marking the wind component. In the well-studied
winds of main-sequence stars and giants, the analogous absorption feature is often much
stronger, so that the flux in the blue region goes below the adjacent continuum. Such a P Cygni
profile is rarely seen in the Hα from T Tauri stars. There must be coherently outflowing mat-
ter in such objects as CI Tau, but the shallower absorption means that this exterior gas has a
relatively low column density. At the same time, its temperature must still be high enough to
populate significantly the n = 2 level of hydrogen. Our picture, then, is that Hα emission arises
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Figure 17.9 Microjet from DG Tau,
as seen in blueshifted Hα (top panel)
and [O I] 6300 Å (bottom panel). The
white cross marks the position of the
star. Filled triangles represent the po-
sitions of maximum velocity and the
bowshock apex. The angular offsets
are relative to the star.

primarily from numerous shocks within a central location relatively close to the star. There is
also, at least in many sources, shock-heated gas in a more distended and well-directed wind.
This latter material accounts for the absorption feature in the profile.

It is important to note in this context that there are some classical T Tauri stars, although
a distinct minority, that drive more extended flows, of the kind described in Chapter 13. We
may recall the example of AS 353A, where Hα is seen to emanate from several distinct bow-
shocks, including the bright HH 32A. These Herbig-Haro objects attest to wind collimation over
a distance of about 0.1 pc. Most T Tauri stars lack the environment necessary to produce such
narrow, elongated flows.

Powerful imaging techniques, such as adaptive optics, have revealed smaller-scale features
in the Hα emission, even for stars without an extended jet. The top panel of Figure 17.9 shows
a map of the blueshifted Hα from the classical T Tauri star DG Tau. Here the velocity interval
covered is from 100 to 250 km s−1 relative to the star. We note, from the greyscale display, that
the strongest flux emanates from an unresolved central source. There is also a local maximum
to the right, as well as a connecting bridge to the inner region. The whole projecting structure
is known as a microjet. Near the terminus of the flow, the contours resemble the bowshocks
driven by embedded objects. (Recall, e. g., Figure 13.5.) In the present case, the transverse arc
is located only 4′′, or 560 AU, from the star.
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Figure 17.10 Two representative line pro-
files in [O I] 6300 Å. The thin vertical line
demarcates the stellar rest velocity.

17.2.2 Forbidden-Line Emission

Equally detailed, complementary information on T Tauri environments is available from another
source: forbidden-line emission. As already noted, this radiation emanates from relatively low
densities, so that it specifically probes the wind region. Table 17.1 includes several of the lines
most frequently used – the [O I] transition at 6300 Å and the [S II]λλ 6716, 6731 doublet. At
the characteristic line formation temperature of 104 K, the associated critical densities are of
order ne = 106 and 104 cm−3, respectively. Note that these densities refer to electrons, the
species most effective at collisional deexcitation.

The strongest emission is in [O I] 6300 Å. About 20 percent of T Tauri stars have appreciable
flux in the line, i. e., equivalent widths exceeding 1 Å. (The largest equivalent widths found are
about 10 Å, an order of magnitude below the Hα maximum.) Figure 17.10 displays two of
the most commonly observed profile types. The upper example has a single peak, but the line
centroid is shifted to the blue. The lower profile, that of DG Tau, has a pronounced, secondary
peak. Here again, almost all the emission is blueward of the stellar photosphere.

The blueshift of forbidden-line emission is a general characteristic that holds for other
sources and other observed transitions. To appreciate its significance, we first note that the
low densities of their emitting regions mean that forbidden lines are optically thin. Thus, the ra-
diation stems from the entire volume of excited gas. The absence of redshifted emission means
that parcels of retreating wind material are blocked from view by some extended, opaque object.
This object is likely to be the circumstellar disk.

Aside from the presence of a disk, what do forbidden-line profiles tell us about the wind
itself? In both examples shown, the full line width is several hundred km s−1, similar to what
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we found using Hα. The more detailed wind morphology, including the distribution of gas
density and velocity, is difficult to ascertain from the profile alone. Nevertheless, it has long
been accepted that the presence of a secondary peak, such as that of DG Tau, represents a
directed portion of the flow, with a relatively small spread in velocity. Additional evidence
comes from long-slit spectroscopy, which effectively yields many contiguous line profiles along
a fixed direction. This technique indicates the presence of additional material closer to the star
that is also emitting in the forbidden lines. The gas here has a broader range in speeds but is, on
average, moving more slowly.

These inferences from spectroscopy have been supplemented by high-resolution spatial
mapping. Interestingly, the exterior wind component appears to coincide with that in Hα. The
lower panel of Figure 17.9 is an image of the DG Tau region in [O I] 6300 Å. Both the spatial
resolution and the selected velocity interval are the same as in the top panel. We see again that
the emission stems from a jet-like structure that terminates in an apparent bowshock. To con-
firm the latter identification, the reader should compare Figure 17.10 with Figure 13.3, the line
profile for HH 32A in Hα. The two profiles are essentially identical, apart from reversal of the
velocities. Images of DG Tau in [O I] taken several years apart reveal that the terminal knot is
moving outward at 200 km s−1. Thus, the shock itself is a relatively weak one that arises from
velocity fluctuations in a wind yet further inside. The lack of higher-excitation lines, such as
[O III] emission, supports this view.

The discovery of microjets, first through spectroscopy and then through direct imaging, is
an important step in our understanding. All of the optical emission lines associated with T Tauri
stars require temperatures close to 104 K. Images such as those of Figure 17.9 tell us that at
least some of the excitation occurs in shocks created by variable, jet-like winds. It is not yet
clear what fraction of T Tauri stars possess flows with this structure. Nor do we understand the
heating mechanism for the inner, unresolved portion of line emission. If, as we have argued in
the case of Hα, shocks are again responsible, their morphology is unknown. We should also
recognize that Hα and other permitted lines may well be optically thick in the central region.
This circumstance adds to the difficulty of theoretical modeling.

Within the sparser, more extended portion of the flow, we may utilize the forbidden-line
emission to quantify the mass transport along the microjet. The method here is the same as that
described in § 13.5 for jets from embedded stars. That is, we first obtain the ambient electron
density from the ratio of [S II] 6716 and 6731 Å fluxes. This density, in conjunction with the
observed luminosity in [O I] 6300 Å, yields the mass of emitting gas (equation (13.40)). Finally,
proper motion of the bowshock and the projected length of the microjet give the crossing time.
The result of this exercise for the DG Tau microjet is that Ṁj is 8 × 10−9 M� yr−1. Within a
factor of two, this figure must represent the total wind loss rate, Ṁw. The rate is comparable for
other T Tauri stars, but with substantial variation from source to source.

Not all T Tauri stars have detectable emission in optical forbidden lines. To see the trend,
Figure 17.11 plots the equivalent width in [O I] 6300 Å against our surrogate for thermal disk
emission, the (K − L)◦ color index. The sample of stars displayed here is the same as in
Figure 17.6. Apart from a systematic reduction in equivalent widths from those in Hα, the
pattern is similar. There is a clear correlation between the line emission strength and the near-
infrared excess. Furthermore, stars with low or undetectable [OI] flux are again those with
(K − L)◦ � 0.3 mag, i. e., weak-lined objects that appear to lack dusty, circumstellar disks.
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Figure 17.11 The [O I] 6300 Å equivalent width of T Tauri stars plotted against their dereddened,
K − L color index. The stars are the same as in Figure 17.6. Inverted triangles represent upper
limits.

How should we interpet these facts? Since forbidden lines trace winds, many have con-
cluded that circumstellar disks actually create these winds. Thus, stars without the near-infrared
excess signifying disks would also have no outflowing matter and hence no forbidden-line emis-
sion. The exact causal link from disks to winds is unknown. As we described in Chapter 13, it
may be that the disk themselves fling off material centrifugally, as this matter spirals inward on
its way to the star.

Whatever the appeal of this idea, we should recognize that it does not follow inexorably
from the data at hand. What we actually observe is that classical T Tauri stars, many of which
certainly have disks, also emit in forbidden lines. Suppose, for the sake of argument, that the
associated winds do not originate from disks, but from the stars themselves. Then weak-lined
objects with age and rotation period similar to classical ones may have comparable winds. How-
ever, these flows would also be more isotropic than the observed microjets, since the parent stars
lack the circumstellar matter that apparently provides collimation. Such winds (for which, we
stress, there is no evidence to date) might not have detectable levels of forbidden-line emis-
sion. A search for cooler, outflowing gas from weak-lined stars would therefore be of potential
interest.

Even the winds of classical T Tauri stars are almost certainly composed of largely neutral
gas. It is only when this material is locally heated, through shocks, that it becomes partially



644 17 T Tauri Stars

ionized and produces the optical lines by which the wind itself is revealed. Collisional ioniza-
tion also yields radio free-free emission, seen in such objects as DG Tau. Incidentally, the same
process may also explain why classical T Tauri stars lack nonthermal radio luminosity. A mod-
est amount of plasma can quench, through free-free absorption, radio photons from the deeper
interior. It may be, then, that most T Tauri stars actually produce synchrotron emission, but that
this component only emerges in the relatively clear environments of weak-lined objects.

17.2.3 YY Orionis Stars

Throughout this discussion, we have distinguished two spatial domains surrounding T Tauri
stars: one in which there is a well-developed wind, and another where the geometry of the flow
is poorly understood. We have also stressed that the bulk of permitted-line emission, including
Hα, originates in the second, interior volume. The complexity of this region is underscored by
the fact that many stars exhibit redshifted absorption in their optical lines. From our previous
discussion, a dip in the profile at a wavelength greater than line center signifies motion toward
the star, i. e., gravitational infall.

For this spectral feature to reveal itself, the star must have strong and broad emission lines.
Thus, the phenomenon is essentially limited to classical T Tauri stars. Objects with the spectro-
scopic signature of infall constitute the YY Orionis subclass. By definition, the profile distortion
must occur in one of the Balmer lines of hydrogen. Members of this group invariably show
infall in additional lines, such as Ca II H and K or the Na D doublet.

Figure 17.12 displays the pattern of emission in a typical YY Orionis star, S CrA. Like
others in its class, this object has especially strong continuum veiling, with few absorption lines
in the blue region of its spectrum. Here we show the lowest four emission lines in the Balmer
series. The profile of Hα does not have a redshifted absorption dip, but a modestly blueshifted
one, similar to that of CI Tau in Figure 17.8. Redshifted absorption first appears in Hβ, along
with a dip closer to line center. The infall signature deepens in the higher members of the
series. Notice that the velocity associated with this feature is nearly the same from line to line,
about 250 km s−1. Notice too that the redshifted absorption dip, when present, goes below the
continuum flux level. The complex profiles of Hβ, Hγ, and Hδ are thus said to exhibit both
P Cygni and inverse P Cygni character.

As we seek to understand the trends here, one important consideration is optical depth. A
glance at Table 17.1 shows that the Einstein A-value declines from Hα to Hβ; this falloff contin-
ues for the higher lines. Since A is directly proportional to optical depth (see equation (C.15)),
the medium is most opaque to Hα. The radiation in this line stems from more exterior gas.
That the corresponding profile exhibits only a wind signature reaffirms that infall must occur
relatively close to the star. Here, gas flowing along closed, magnetic loops could be returning at
high speed to the surface.

Although the Hα profiles of YY Orionis stars do change with time, they are relatively stable
compared to the higher transitions. In S CrA, the redshifted absorption in Hδ disappears and
reemerges in a matter of hours. It seems that the infall is not a steady phenomenon, but that
it fluctuates, probably along with outflow occurring on a similar scale. Complex and variable
Balmer profiles also occur in DR Tau, our prototype of an extreme T Tauri star.
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Figure 17.12 Balmer line profiles of the YY Orionis star S CrA. The outlying absorption and
emission lines in the Hγ panel are due to Fe I and Fe II, respectively.

The YY Orionis phenomenon is not rare. As many as half of the classical T Tauri stars
belong to this group, as traditionally defined. In other stars, inverse P Cygni profiles are seen
in longer-wavelength hydrogen lines, such as the near-infrared members of the Paschen series.
Infalling gas must be a common trait, provided one probes close enough to the central object.
Those stars exhibiting redshifted absorption in more optically thick lines have, in some sense,
more extensive infall. It is surely no coincidence that these same objects are among the most
variable spectroscopically and have higher levels of continuum veiling.

17.2.4 Origin of Continuum Veiling

We noted earlier that the continuum output of a classical T Tauri star can be modeled crudely
as arising from a homogeneous slab that partially covers the stellar surface. The spectroscopic
indications of rapid motion, both inward and outward, lend credence to the idea that this flux
originates in radiating shocks. Theorists have progressed beyond slab models and determined
numerically the emission from such shocks, but only for the pure infall case. At the base of
each magnetic flux tube, the collision of matter with the stellar surface is reminiscent of that
occurring in an embedded protostar. The speed attained just before entering the shock front is
again close to free-fall, as long as the gas starts from a distance of a few stellar radii or greater.
Thus, the immediate postshock temperature is also similar, of order 106 K. This is high enough
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for the gas to emit in the soft X-ray regime. On the other hand, the total infall rate from all the
flux tubes, Ṁ , has to be much less than the protostellar value, so that the accretion luminosity
does not overwhelm the stellar component.

The accretion calculations help to explain the origin of the 10,000 K temperatures needed
within the homogeneous slab models. Each shock actually creates two distinct sources of out-
going, continuum flux. Most of this energy originates from the stellar surface. The gas here
radiates more than usual because it is locally heated by the X-rays produced within each post-
shock region. (Recall Figure 11.5 and the discussion of § 11.2.) Shock-generated photons also
stream outward, where they encounter gas falling inside each flux tube. As the X-rays are ab-
sorbed, they ionize and heat the material to peak temperatures of 10,000 to 20,000 K. Optical
radiation from this preshock gas constitutes another component of the total excess emission.

Matching the observed optical continuum from any T Tauri star requires that Ṁ be of typical
magnitude 10−8 M� yr−1. It is encouraging that this rate is consistent with that for the winds,
as derived from observations of microjets. The infall models also find the flux tubes to cover a
percent or so of the stellar surface. A more detailed treatment of the magnetized surface layers
will be essential for improving these shock calculations. We need to know, for example, the
temperature at the base of a flux tube containing no infalling matter, to gauge accurately the
heating effect from accretion. Here, Teff must be depressed below that of the surrounding gas,
as is the case on the Sun. Observations of stellar variability make it clear that many starspots
are indeed cooler, while others are elevated in temperature by several thousand degrees above
the unperturbed photosphere. (See § 17.4 below.) The basic idea of multiple accretion shocks
is thus attractive. A similar calculation of wind shocks will eventually be necessary to account
for both the profiles and overall strengths of permitted emission lines.3

17.3 Circumstellar Disks

While shocks may explain the optical continuum in T Tauri spectra, they have little relevance at
infrared and longer wavelengths. It is true that shocks produce radio free-free photons, but the
total luminosity of this component is minor. Figure 17.5 shows, on the other hand, that the in-
frared excess typically comprises a large portion of the energetic output. Moreover, the amounts
of emission at short and long wavelengths are evidently correlated. This empirical relationship
naturally reminds us of those between optical line flux and the near-infrared continuum (Fig-
ures 17.6 and 17.11). All these trends reflect the importance of circumstellar matter, either for
supplying material that falls onto the star, or for partially impeding outflowing gas.

At least part of this external matter lies within a orbiting disk. Images of the Orion pro-
plyds, like those in Figure 15.19, show flattened configurations surrounding low-mass, pre-
main-sequence objects. We will see later in this section that interferometric observations in the
millimeter also reveal such structures.

3 Within a pure accretion scenario, the preshock gas also emits in spectral lines, including Hα. The heated region,
however, is far too small to yield the large observed equivalent widths.
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17.3.1 Dust Emission: Optically Thick

The primary, and historically the first, source of evidence for disks is the infrared excess. To
follow the chain of reasoning here, it helps to entertain a contrary hypothesis. Suppose that no
disk at all were present around a classical T Tauri star like BP Tau. Could the long-wavelength
spectral energy distribution of this source arise instead from a spherical distribution of matter?
The matter of interest is dust grains, which both absorb starlight and reradiate this energy into
the infrared. Ignoring the dynamics of this hypothetical dust envelope, could it explain the
long-wavelength excess?

At this point, it helps to review the discussion of § 11.5 concerning more embedded stars.
There we showed that the spectral energy distribution of Class I sources can, at least in some
cases, be reproduced using a dust shell model (Figure 11.24b). The critical difference is that a
star such as BP Tau, despite copious infrared emission, is nonetheless optically visible. Indeed,
the observed optical spectrum is well fit as the sum of an ordinary photosphere and the contin-
uum excess of Figure 17.4, together with a modest degree of stellar extinction (AV = 1 mag).
If we were to include additional dust, enough to supply the full mid- and far-infrared luminosity,
the resulting column density would be much too high. That is, the AV -value associated with
this envelope would vastly exceed that derived from optical observations.

The real conclusion to be drawn is that the dust grains, which assuredly do supply the long-
wavelength emission, are distributed anisotropically. Moreover, the presence of near-infrared
emission shows that some of the dust is quite close to the star, within tens of stellar radii. A
natural assumption is that this matter is undergoing orbital motion.

Once we accept that a disk is present and responsible for the bulk of infrared emission,
we may also establish the run of dust temperature in that structure. We first separate out the
contributions from the photosphere and optical continuum excess from the full spectral energy
distribution. If we attribute the remaining emission solely to the disk, then the received flux is
given by

Fλ =
∫

Iλ µ dΩ . (17.2)

The integration is over the solid angle subtended by the disk. This solid angle, in turn, depends
on the disk’s projected surface area. Referring to Figure 17.13, we have

Fλ =
2π

D2

∫ �D

�◦
Iλ cos θ 	 d	 , (17.3)

where 	◦ and 	D are the inner and outer disk radii, respectively, and D is the distance to the
system. The angle θ measures the inclination to the line of sight.

We next evaluate the specific intensity. The solution to the radiative transfer equation (2.20),
applying Kirkhoff’s law to the dust emissivity and opacity, is

Iλ = Bλ(T ) [1 − exp (−∆τλ)] , (17.4)

where Bλ(T ) is the Planck function and ∆τλ the disk’s optical thickness at each radius (see
Figure 17.13). In practice, ∆τλ � 1 for plausible disk surface densities, as long as we restrict
our attention to the infrared regime, i. e., for λ � 100 µm. We may then neglect the second
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Figure 17.13 Dust emission from a circumstellar disk. Here the inner and outer radii are desig-
nated �◦ and �D , respectively. The lower figure shows how the optical thickness depends on the
disk’s inclination to the line of sight.

factor in equation (17.4) and approximate Iλ by Bλ itself. Utilizing equation (2.29) for the
latter, we find

Fλ =
4 π cos θ

D2

h c2

λ5

∫ �D

�◦
d	

	

exp (hc/λkBT ) − 1
. (17.5)

As a first guess for the radial temperature distribution, we employ a power law:

T (	) = T◦(	/	◦)−q , (17.6)

where T◦ is the inner-edge temperature and q is some positive constant. We define a nondimen-
sional variable x as

x ≡
(

h c

λ kB T◦

)1/q
	

	◦
, (17.7)

so that equation (17.5) becomes

Fλ =
4 π 	2

◦ cos θ

D2

h c2

λ5

(
h c

λ kB T◦

)−2/q ∫ xD

x◦
dx

x

exp (xq) − 1
. (17.8)

In the nondimensional integral, the upper limit xD can be set to infinity, because of the steep
falloff in the integrand for large x. The corresponding falloff toward the inner edge allows
us to take x◦ as zero, provided the disk extends inward all the way to the star. With these
simplifications, the integral depends only on the index q.
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Figure 17.14 Spectral energy distributions of a star with evidence for a dusty disk (upper panel)
and for a disk with a central hole (lower panel). Solid curves are derived from the theory presented
in the text. Dashed curves represent the photospheric contributions of both stars.

The spectral energy distribution is generally displayed as λ Fλ. From equation (17.8), the
wavelength dependence of this product is

(λ Fλ)disk ∝ λ(2− 4q)/q , optically thick (17.9)

where we have emphasized that this portion of the flux arises from the disk alone. How does
this predicted relation compare to observations? In the upper panel of Figure 17.14, we return
to our prototypical example, BP Tau. The data are identical to those in Figure 17.5, but we have
now added a point at 1.3 mm. We have also indicated, by a dashed curve, the photospheric
contribution, here idealized as a blackbody at the stellar effective temperature of 4060 K. Ap-
parently, the infrared flux does fall with wavelength in nearly power-law fashion; our straight
line represents the best fit between 2 and 100 µm. From the slope of this line, we may use
equation (17.9) to derive a q-value of 0.65.

For some stars, the infrared data clearly indicate a departure from our simple prescription
for the temperature. The anomaly most often encountered is a depression in the flux at near-
and mid-infrared wavelengths. In the lower panel of Figure 17.14, we use as an example the
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star GM Aur. It is again apparent that the observed flux greatly exceeds the photospheric con-
tribution at longer wavelengths. However, the actual wavelength dependence of λFλ is only
reasonably fit by a power law beyond the infrared, for λ > 100 µm, where the radiation is
optically thin.

What, then, creates the broad dip in the spectral energy distribution? One intriguing possi-
bility is that this feature is telling us something about the disk geometry. Specifically, the disk
in this case may be truncated before it gets too warm, i. e., at an inner radius 	◦ that is further
removed from the stellar surface. Referring again to equation (17.8), we may still set xD to
infinity, but we no longer neglect x◦. Equation (17.7) tells us, after specializing 	 to 	◦, that
x◦ varies inversely with wavelength. As λ decreases, the rise in x◦ causes the nondimensional
integral in (17.8) to diminish in value. Accordingly, λFλ from the disk is reduced below the
prediction of equation (17.9).

Before concerning ourselves with how such an inner hole arises in practice, let us see how
the idea works in the case of GM Aur. Note first that the observed spectral energy distribution
flattens as λ approaches 100 µm from below. If we assume that the interior disk truncation
has negligible effect by this point, then the underlying temperature distribution must have an
associated q-value close to 0.5 (see equation (17.9)). After fixing q, equation (17.7), evaluated
at 	 = 	◦, and equation (17.8) together give us λFλ from the disk, once we further specify
θ, 	◦, and T◦. For simplicity, we take θ = 0, corresponding to a face-on disk. We then vary
	◦ and T◦ until two conditions are simultaneously met. First, we require that the calculated
disk flux equal the observed value at 100 µm. Second, we demand that the total spectral energy
distribution, from both the disk and photosphere, match the empirical function for λ < 100 µm
as closely as possible. The solid curve in Figure 17.14 shows the best result, obtained for
	◦ = 0.3 AU and T◦ = 270 K.

17.3.2 Dust Emission: Optically Thin

We have noted that the submillimeter portion of the spectral energy distribution for GM Aur
does exhibit power-law behavior. It is not difficult to trace the origin of this trend, which has
also been observed in numerous other sources. Since the radiation is now optically thin, equa-
tion (17.5) no longer applies. Instead, we return to equation (17.4). The smallness of ∆τλ

implies that we may now approximate Iλ as Bλ ∆τλ. For the Planck function, we utilize the
Rayleigh-Jeans form, appropriate at these long wavelengths:

Bλ ≈ 2 c kB T

λ4
. (17.10)

The reader may verify, again referring to Figure 17.13, that the optical thickness is

∆τλ =
κλ Σ
cos θ

. (17.11)

Here, κλ is the opacity due to dust grains and Σ the disk surface density in this component.
Substitution of these results into equation (17.3) yields

Fλ =
4 π c kB κλ

D2 λ4

∫ �D

�◦
T (	) Σ(	) 	 d	 . (17.12)
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The wavelength dependence of Fλ is contained in the factors preceding the integral within
equation (17.12). We mentioned in Chapter 2 that observations of the interstellar medium are
consistent with the dust opacity declining as a fixed power of wavelength in the submillimeter
regime. Denoting the relevant exponent as β, equation (17.12) predicts that the spectral energy
distribution should obey

(λ Fλ)disk ∝ λ−3−β . optically thin (17.13)

Of course, the disk contribution is the only significant one in this regime, as the stellar flux has
fallen to comparatively negligible levels. The empirical decline in the GM Aur spectral energy
distribution is consistent with equation (17.13), i. e., with a nearly constant value of β. The best-
fit slope, again displayed in Figure 17.14, yields β ≈ 0.7. This value is less than those observed
for dust in the interstellar medium, where β generally lies between 1 and 2. A shallower slope
for κλ indicates that the grains are larger, perhaps because of coagulation that occurred within
the disk. Other T Tauri stars observed in the submillimeter yield similar results.

A key difference between equation (17.12) and the analogous equation (17.5) is that only
the former contains the disk’s surface density. Physically, the detected submillimeter photons
originate from every point along the line of sight, while optically thick radiation of shorter
wavelength emanates only from a thin layer near the disk surface. Observations in the submil-
limeter are thus useful for probing the disk mass, Md. What one must do in effect is invert
equation (17.12), solving for the appropriate integral of Σ(	) as a function of the empirically
known flux at some wavelength λ. The quantity Md then follows by assuming the standard,
interstellar ratio for the dust and gaseous mass densities.

There are several practical limitations to the implementation of this scheme. First, the actual
value of the opacity κλ is imprecisely known, even when its wavelength dependence is well
constrained from observations of a particular source (recall § 2.4). Second, it is not possible
in general to pull out the temperature from the integral in equation (17.12). The calculations
of Md done so far have assumed both that T (	) obeys equation (17.6) and that Σ(	) itself
declines as a fixed (and different) power of 	. While the first assumption is often well grounded
empirically, as we have demonstrated, the second is not. The net result is that estimates of Md

are only reliable to within an order of magnitude. Quoted values are nonetheless of interest,
since they consistently fall well below the associated stellar masses, usually at the level of a few
percent.

17.3.3 Imaging Studies

We stress once more that the observations discussed so far are sensitive only to the dust compo-
nent of the disk. The bulk of Md, obtained here by extrapolation from the dust mass, consists
of gas. To observe the latter, the relatively cold temperatures (varying within a given system
from roughly 10 to 103 K) suggest that we utilize the molecular transitions that have proved so
fruitful in exploring interstellar clouds. This expectation has been fully justified, with CO again
playing a dominant role. High-resolution spectroscopic studies have been conducted, utilizing
both near-infrared and millimeter lines. These investigations have probed, respectively, gas mo-
tion within the heated, inner portion of the disk and in the colder material comprising most of
its surface area.
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Figure 17.15 Contours of 12C16O (J = 2 → 1) emission from GM Aur. Solid contours represent
emission that is redshifted from the star by 0.5 km s−1, while dashed contours, enclosing the
shaded region, are for emission that is blueshifted by the same amount. The crosshairs indicate
the disk’s major and minor axes.

Let us focus, however, on the use of CO for direct imaging of the disks. As the need
here is for very high spatial resolution, observers have employed interferometers operating in
the millimeter regime. Figure 17.15 shows contours of the 12C16O (J = 2 → 1) emission at
1.3 mm associated with GM Aur. The solid contours represent gas whose radial velocity is
redshifted by 0.5 km s−1 with respect to the star, while the dashed ones are blushifted by the
same amount. Evidently, most of the gas on one side of the star is moving away from us, and
most on the opposite side is approaching. If we assume that the geometric aspect ratio of the
lobes results from the tilt of an associated thin disk, then the inclination angle is 56◦. Our earlier
estimate of 	◦ should then be increased by 1/ cos θ, or about a factor of two.

The skeptical reader may well ask how we know that these red- and blueshifted contours
represent a disk and not another molecular outflow. One reason is the modest extinction to the
star itself (AV = 0.1 mag), which would be unusually low for an outflow source. Far more
persuasive, however, is the detailed pattern of the radial velocity. Suppose we draw, as in the
figure, a straight line through the lobes’ common major axis. At each position along this line,
we may obtain the Vr-value corresponding to the maximum CO intensity. These numbers are
positive in the redshifted lobe and negative in the blueshifted one. Away from the star, |Vr|
declines approximately as 	−1/2, where 	 is the distance. But this is just the falloff we expect
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for material in Keplerian rotation about a star of mass M∗. Here, we would have

Vr =

√
G M∗

	
sin θ , (17.14)

where the last factor arises from projection onto the plane of the sky.
Since we previously inferred θ and also know Vr(	) from observations, we may use equa-

tion (17.14) to deduce the stellar mass. The answer is that M∗ = 0.8 M�. On the other hand,
we may also find M∗ by placing the star in the HR diagram. That is, we may use the object’s
known values of L∗ and Teff to locate it on the appropriate pre-main-sequence track. Here
again, the derived mass is close to 0.8 M�. Similar agreement holds for most of the dozen or
so T Tauri stars examined in this manner.

Returning once more to the case of GM Aur, we may also ask how the previously discussed
disk truncation meshes with the CO data. If the putative inner hole is also present in the gas, it
spans only about 1 AU, well below current spatial resolution. For comparison, the outermost CO
lobes in Figure 17.15 have radii of some 500 AU. If we were also to show the detected continuum
emission at 1.3 mm from heated dust, the corresponding radius would be about 200 AU. There
is no reason to think that dust does not exist at greater distance, but the combination of falling
surface density and temperature renders it invisible. On the other hand, the 12C16O transition
used to probe the outer region is optically thick and so does not reliably trace the local column
density. Our present uncertainty concerning the true sizes and gas distributions within disks
further complicates the issue of their masses.

Having noted this basic limitation, we also point out that there are a few cases where an
inner hole need not be surmised indirectly from broadband fluxes, but is directly observable.
The objects in question are all circumbinary disks, i. e., flattened configurations of gas and
dust surrounding both members of a stellar pair. We previously described, in § 12.3, how
such structures arise naturally during the cloud collapse that produces the stars themselves.
Numerical simulations, like that displayed as Figure 12.21, find that the two protostars rapidly
clear a gap in any gas residing within the orbital plane. The observations show that this gap
survives past the epoch of cloud infall, well into the pre-main-sequence contraction phase.

Figure 17.16 displays the most striking example, the large disk associated with the binary
GG Tau. We see here both contours and a greyscale image of 1.4 mm continuum radiation.
The figure also indicates the positions of both stars, which are evidently at the center of an
elliptically shaped, ring-like structure. Accounting for the finite inclination angle, this emission
from warm dust extends from 180 to 260 AU, where distance is measured relative to the binary
center of mass. For comparison, the stars themselves are separated by 44 AU. The reality of
an interior gap is confirmed by near-infrared images. These show light from the central objects
being scattered from an inner edge whose radius matches the figure derived from 1.4 mm data.

While the dimensions of the inner hole are vastly larger than in the GM Aur disk, the rel-
ative disposition of heated dust and cold gas is similar. Thus, observations here of 13C16O
(J = 2 → 1), also at 1.4 mm, show that molecular gas in the disk extends to at least 800 AU.
The falloff in CO radial velocity from the binary again follows equation (17.14) to good accu-
racy. In this case, the inferred central mass of 1.28 M� represents the sum of the two binary
components. One may also place both of these stars in the HR diagram and independently derive
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Figure 17.16 Map of GG Tau in
1.4 mm continuum radiation. The po-
sitions of the stars in the central binary
are indicated. Angular offset is mea-
sured relative to the binary centroid.
What appears as a narrow, interior gap,
about 1.′′5 from the stars, is actually a
region of strong, but clumpy emission.

their individual masses to be 0.78 and 0.54 M�. The sum is 1.32 M�, in excellent agreement
with the dynamical measurement.

A similar configuration of gas and dust is seen around UY Aur. This binary, discussed in
Chapter 12, consists of an optically visible star and an infrared companion (see Figure 12.15).
An evacuated ring of scattered light appears in the near infrared, as well as a much more ex-
tensive disk in CO. Since the visible object is a classical T Tauri star, complete with infrared
excess, it probably has its own circumstellar disk. A similar structure, but oriented edge-on,
could account for the high extinction toward the companion.

It appears, then, that young binary systems can simultaneously possess two types of disks
– circumbinary and circumstellar. This hierarchy of diffuse structures is simply a reflection of
orbital dynamics. Far from the binary’s center of mass, fluid elements orbit in paths nearly
indistinguishable from those in a central, point-mass potential. Close to either star, the paths
again degenerate into ellipses and circles. It is in the intermediate region where the complex
potential allows few, if any, stable orbits. One also sees, incidentally, how binary stars that are
tightly bound might have severely truncated circumstellar disks. Empirically, the submillimeter
continuum radiation from stellar pairs starts to decline once the binary separation becomes less
than about 100 AU.

17.3.4 Disk Frequency

Let us return, however, to objects without such relatively close, disruptive companions and
explore the basic issue of how often one finds associated disks. We first remark that all classical
T Tauri stars exhibit both excess infrared flux and submillimeter continuum radiation. These
two observational features probe the same circumstellar disk, albeit on different spatial scales.
Any star with an infrared excess, which arises from dust orbiting inside roughly 10 AU, also has
submillimeter emission, attesting to the presence of grains at a distance of order 100 AU. The
converse situation, however, does not hold. That is, a star detectable in the submillimeter may
have no infrared excess at all. The objects in question constitute a subset, perhaps 10 percent
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by number, of weak-lined T Tauri stars. Thus, they also lack the strong optical lines that signal
circumstellar matter even closer to the central object. The extended disks they do possess must
be relatively sparse. The highest 1.3 mm flux from a weak-lined star is an order of magnitude
below the minimum seen in classical objects.

Since weak-lined and classical T Tauri stars overlap in age, these facts bring into even
sharper focus an essential mystery. For reasons that remain obscure, a large portion of newly
visible objects either have no disks, or are surrounded by material with very low surface density.
Moreover, even the gross properties of the more substantial disks, including their outer radii,
cannot yet be predicted through our present theory concerning the prior collapse phase and its
aftermath. We saw in Chapter 11 that disks building up through rotating infall rapidly gain mass
while they still have relatively small sizes. Although it is believed that steady, internal torquing
can plausibly distend these structures both during and after infall, the idea has yet to be realized
in an evolutionary calculation.

On the observational front, there is scant but growing evidence concerning the disks around
protostars and their immediate descendents. Any optical or near-infrared disk signatures are
naturally absent in embedded sources of Class 0 or I. Longer-wavelength emission generally
lacks an unambiguous interpretation because of contamination by other matter. Thus, submil-
limeter radiation is indeed present in these sources, but mainly stems from much larger cloud
cores, such as that shown in Figure 3.16. Additional, compact sources of submillimeter flux are
known to be present in some cases. These plausibly represent circumstellar disks. However, no
interferometric images are available, such as those toward visible T Tauri stars.

17.3.5 Surface Irradiation and Flaring

The infrared data from T Tauri disks suggests that our original, admittedly ad hoc assumption
of a power-law temperature profile may actually hold in many cases. What underlying physics
accounts for such behavior? We now show that a simple consideration of thermal balance
for disk matter indeed yields a power-law profile. Other conceptual ingredients, however, are
needed to explain the relative shallowness of the observed temperature gradients.

Let us picture, as in Figure 17.17, a disk patch being irradiated by a central star. The latter
has a radius R∗ and its center lies at the distance 	. We have singled out, through shading,
a narrow annulus on the surface whose angular size, seen from the point of interest, is θ. As
indicated by the shading, only half of this annulus irradiates the disk’s upper surface. For a finite
annular width ∆θ, corresponding to a small solid angle ∆Ω, we may write the incremental flux
striking the patch as

∆Frad = fθ ∆Ω
∫

dλ Bλ . (17.15)

Here, fθ is a projection factor introduced to account for the grazing angle photons make with
the patch normal. We have also integrated the specific intensity, assumed to be of blackbody
form, over all wavelengths.

The integration of Bλ gives σB T 4
eff/π, according to equations (2.34) and (2.35). Straight-

forward calculation also yields ∆Ω = π sin θ ∆θ. To derive fθ , one must average the projec-
tion factor associated with each small element within the half-annulus. We forgo the necessary
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Figure 17.17 Irradiation of a disk patch by a spherical star.

geometric manipulations and simply quote the result:

fθ =
2
π

sin θ . (17.16)

It follows that

∆Frad =
2
π

σB T 4
eff sin2 θ ∆θ . (17.17)

We obtain the full flux by integrating ∆Frad over θ, where the latter ranges from 0 to
θmax ≡ sin−1 (R∗/	). We then have

Frad =
2
π

σB T 4
eff

∫ θmax

0

sin2 θ dθ

=
1
π

σB T 4
eff


sin−1

(
R∗
	

)
− R∗

	

√
1 −

(
R∗
	

)2



≈ 2
3 π

σB T 4
eff

(
R∗
	

)3

.

(17.18)

In the last step, we have expanded in terms of the ratio R∗/	, assumed to be small.
For the disk to maintain a steady temperature, the total heat input per unit area, given by

Frad, must equal the corresponding efflux of radiant energy. Let us further assume that the disk
is optically thick to its own cooling radiation. Then the outgoing flux from the top surface is

Fdisk = σB T 4 . (17.19)

Equating Frad and Fdisk, we find T as a function of 	:

T =
(

2
3 π

)1/4 (
R∗
	

)3/4

Teff . (17.20)

This expression only holds for 	 well in excess of R∗, so that T (	) is much lower than Teff .
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Figure 17.18 Irradiation of a flared disk. Depicted is a typical photon traveling from the stellar
surface.

Equation (17.20) indeed states that the disk temperature declines with radius as a power
law. The associated q of 0.75, however, is greater than we previously inferred for BP Tau (0.65)
or estimated more crudely for GM Aur (0.50). In general, few T Tauri disks seem to have
temperatures that fall as rapidly as our derivation predicts. To see the difficulty from another
perspective, we may integrate 2 Fdisk over all radii to find LD, the total luminosity emanating
from both disk surfaces. The answer, based on equation (17.20), is

LD =
2

3 π

(
R∗
	◦

)
L∗ , (17.21)

where L∗ is the stellar luminosity, and where we have assumed 	D � 	◦. Since the smallest
possible value of 	◦ is R∗, equation (17.21) implies that LD/L∗ has an upper bound of about
0.2. The integrated spectral energy distributions of most classical T Tauri stars give a fractional
disk luminosity higher than this limit.

Our derivation of the temperature assumed a razor-thin disk, i. e., we neglected the scale
height ∆z compared to the typical radius 	. However, as illustrated schematically in Fig-
ure 17.18, any increase of ∆z with 	 allows the disk to intercept more photons from the star.
The structure will thus be warmer than predicted earlier, and T (	) will decline more slowly.
Such flaring of the surface is indeed expected and may be quantified through scaling arguments.

Let us suppose that the disk is vertically isothermal at each radius. Then, according to
the dimensional analysis presented as equation (11.34), the scale height is related to the local,
isothermal sound speed aT by

∆z ≈
(

aT

VKep

)
	 .

Since aT ∝ T 1/2, and since the Keplerian orbital speed varies as 	−1/2, we evidently have

∆z ∝ T 1/2 	3/2 .

The grazing angle seen by the typical stellar photon, designated 〈θ〉 in Figure 17.18, equals
	 d(∆z/	)/d	, at least for 	 � R∗. This angle therefore scales as ∆z/	, and we have

〈θ〉 ∝ T 1/2 	1/2 . (17.22)
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We complete the argument by repeating, in generalized form, our earlier derivation of T (	).
The incoming flux Frad is proportional, for small grazing angle, to 〈θ〉	−2. On the other hand,
the outgoing flux still obeys equation (17.19) and thus scales as T 4. It follows that the disk
temperature now obeys

T ∝ 〈θ〉1/4 	−1/2 . (17.23)

Equations (17.22) and (17.23) together yield two interesting relationships:

〈θ〉 ∝ 	2/7 (17.24a)

T ∝ 	−3/7 . (17.24b)

The first equation verifies that flaring occurs, since 〈θ〉 increases with radial distance. Equa-
tion (17.24b) gives a new q-value of 0.43. Thus, flaring does produce a shallower falloff of
temperature with distance.

It is also clear that our argument would need further development to reproduce observed
spectral energy distributions. According to equation (17.9), any q-value less than 0.5 leads to
λ Fλ from the disk that increases with λ in the optically thick regime. Such a trend is rarely
seen. A more careful derivation takes account of the fact that dust grains near the surface are
actually warmer than those in the midplane. The former are exposed directly to stellar radiation,
but cool rather inefficiently via infrared photons (for which Qλ falls with λ; recall § 2.4). At
sufficiently large radius, our implicit assumption that the bulk of the disk radiates as a blackbody
also starts to break down. Finally, one must consider the effect on the observed flux of the disk’s
inclination with respect to the line of sight.

17.3.6 Magnetic Effects

These technical and physical issues are both nontrivial and have a significant impact on the
final spectral energy distribution. Thus, a major question of principle is still unanswered. Can
all the data be accommodated by models of passive disks, i. e., those which merely reprocess
impinging stellar radiation? Or does the non-photospheric contribution in some cases demand
an active disk, i. e., one generating part of its own luminosity?

The idea of active disks receives at least partial support from the observations of T Tauri
emission lines. We have seen that many stars, including all those in the YY Orionis subclass,
experience infall from circumstellar gas. To attain the observed speeds, this material need only
start from a distance of a few stellar radii, much less than that associated with the infrared
excess. Nonetheless, it is worth exploring whether some mechanism could both disrupt the
interior portions of disks, allowing matter to fall onto the star, and also cause orbiting gas much
farther out to migrate inward. The gravitational potential energy released during such migration
could then supply some of the disk’s luminosity.

Magnetic fields, which already must play a role in the observed winds, are also capable of
disrupting the inner disk. Very close to a magnetized star, the field is strong enough to control
the motion of both outgoing and incoming matter. Farther out, it is the matter that drags the
field in the course of the fluid motion. The critical boundary is found by equating the local
magnetic and kinetic energy densities. The calculation is straightforward, at least in principle,
for a centrifugal wind with a known outflow rate Ṁw (§ 13.4). A disk is more problematic, since
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the material kinetic energy, and indeed the entire disk structure, depends on whatever torquing
mechanism produces mass transport farther out. Nevertheless, there is certainly some region
within which disk gas can no longer maintain planar orbits. If it is to join onto the star, this gas
must flow along essentially rigid field lines.

What we are describing here is the magnetic dead zone, introduced in Chapter 13 during
our discussion of wind theory. There we noted that any accretion onto the star occurs within
the disk’s corotation radius, i. e., that point where the angular rotation speed Ω(	) matches the
stellar value Ω∗. If a steady state is reached, such that the magnetic field linking the disk to the
star does not change over an orbital time scale, then both this field linkage and the inflow must
occur precisely at corotation. To see why, let us denote this radius as 	c. Suppose first that we
have a disk where 	◦ < 	c < 	D. Then all fluid elements between the inner edge 	◦ and 	c

would, in the absence of a magnetic field, be rotating faster than the star. If magnetically linked,
this annulus drags forward the field lines. Conversely, the condition 	c < 	◦ would mean that
all points in the disk rotate more slowly than the star. Any stellar field lines penetrating the disk
would be pulled back, and the field again wrapped up.

It is not evident, on general grounds, that a steady state does hold. The field connecting the
disk to the star might indeed wrap up continually, only to periodically release energy through
reconnection. (Recall Figure 13.19 and the accompanying discussion.) Even inflow that starts
from the disk with a rotation speed of precisely Ω∗ will spin up the star, unless the field has just
the right azimuthal component.

Despite these caveats, some theorists argue that the star and disk must rapidly adjust them-
selves until a steady state is reached. That is, they assume that 	◦ = 	c holds at all times,
and that inflow to the star occurs only at that radius. The equality can, at least in principle, be
checked observationally. We readily calculate 	c to be

	c =
(

G M∗
Ω2∗

)1/3

= 12 R�

(
M∗

0.5 M�

)1/3 (
Ω∗

1 × 10−5 s−1

)−2/3

.

(17.25)

Here we have inserted, within our numerical evaluation, a representative Ω∗-value deduced
from surface rotation speeds (§ 16.5). We see that 	c is reasonable as a disk inner edge, in the
sense that it comfortably exceeds the stellar radius. On the other hand, return to our example
of GM Aur. Here the observed Ω∗ is 1.3 × 10−5 s−1, while M∗ is 0.8 M�. The 	c-value of
12 R� is much less than the 0.6 AU we inferred using the spectral energy distribution, after
correcting for the disk inclination. Of course, any determination of 	c from broadband fluxes is
necessarily imprecise. But if our value for 	◦ is correct, then the stellar and disk speeds should
not match. At a radius of 0.6 AU, both the disk temperature and its internal ionization are quite
low. We thus expect any mechanical coupling between the field and the predominantly neutral
matter to be weak.

This last example demonstrates that there are limits to the dynamical influence of the stellar
magnetic field and therefore to the regime where inflow can occur. Let us focus, however, on
a hypothetical disk that does become warm enough, and therefore sufficiently ionized, near its
inner edge for coupling to be strong. That is, the field is effectively frozen to the matter. Then
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Figure 17.19 Phase-wrapped light curve in the V-band for the weak-lined T Tauri star V410 Tau.

there is another process in such a region that may be of importance for T Tauri stars. This is an
instability associated with field lines penetrating any differentially rotating structure.

Consider the idealized situation of a straight magnetic field passing normally through a
disk. Suppose further that each field line extends infinitely far in the vertical direction and
that no external matter (or, more precisely, current) is present. The dynamical state of this
disk is unperturbed by the field lines, which are simply transported around by the rotating fluid
elements. Now imagine displacing an element radially outward, still within the disk plane. Then
the attached field lines bend in such a way as to resist shear (Figure 10.12). That is, Ω remains
nearly constant during the small excursion. However, the background Ω declines outward in all
realistic disks, i. e., dΩ/d	 < 0. The centrifugal force per unit mass of the perturbed element,
Ω2	, is thus too great, and impels the element even farther out.

It is instructive to compare this magnetorotational instability with the purely rotational sta-
bility discussed in § 9.2. There we found a disk to be stable provided its specific angular
momentum j ≡ Ω2	 increases outward. Even if this criterion is met, however, the structure
is still dynamically unstable if Ω(	) declines. One need only invoke the presence of a weak
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magnetic field. Indeed, the disk is restabilized for too strong a field, i. e., one for which the
associated Alfvén speed VA exceeds the local sound speed aT . This latter criterion is eventually
met as one approaches the star and the disk’s inner edge.

Numerical calculations have explored the nonlinear evolution of the instability. These stud-
ies have largely focused on the dynamics within a single, isolated disk patch. Any small, initial
perturbation in such a patch quickly grows and leads to large, time-varying disturbances of both
the magnetic field structure and fluid orbits. Whether such turbulence can persist for many or-
bital periods throughout a large portion of the disk remains an open question. If turbulence does
last, it could provide an effective viscosity between disk annuli that promotes mass transport
onto the star. Any calculation purporting to demonstrate such a long-term, global effect must
also address the origin and maintenance of the penetrating magnetic field. Does it arise wholly
from the star, or is it partially regenerated by dynamo activity within the disk itself? Addition-
ally, one would need to connect behavior in the turbulent region with that near the inner edge
and farther out, in the cooler and dynamically stable exterior.

17.4 Temporal Variability

Historically, the recognition that T Tauri stars are intrinsically variable came early and indeed
was one of their original, defining characteristics. In optical and ultraviolet light, these objects
exhibit erratic fluctuations. The observed changes are usually relatively minor, but the amplitude
in broadband flux can reach several magnitudes in some objects. The variables first identified by
Joy in the 1940s were exclusively classical T Tauri stars. With the later addition of weak-lined
objects, and with dedicated, photometric monitoring, other patterns of variability came to light.
The ensemble of T Tauri stars exhibits fluctuations on every accessible time scale, from hours
to decades. What further clues does this information provide about both the objects themselves
and their environments?

17.4.1 Cool Spots

Breaking with the historical sequence of discoveries, we begin by examining weak-lined stars.
Here the variability pattern is clearer, as is its physical interpretation. The changes in flux for any
one object are generally smaller than in classical stars. For example, the fluctuation amplitude
in the V-band is less than 1 mag. Another, and more striking, difference is that these changes
tend to be periodic. The observed periods, typically measured in days or weeks, can be stable
over observations spaced many years apart.

One possible cause for such alternate dimming and brightening of a star is pulsation of its
surface layers. This type of oscillatory motion is well documented in the Sun and other dwarfs,
and has been observed in a number of pre-main-sequence objects (Chapter 18). However, the
associated periods are much shorter than the ones we are now considering. Pulsations also
create changes in a star’s radial velocity that are not detected. The observations of variability
are better interpreted under the alternate assumption that the underlying period is that of the
star’s rotation.
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Figure 17.19 is the optical light curve for the weak-lined star V410 Tau. In this plot, com-
prising several decades of observations, the independent variable is not time, but the elapsed
fraction of a single period, i. e., the rotational phase. The period itself was determined em-
pirically by minimizing the scatter in the plotted points. The derived result in this case is
1.87 days. This figure is consistent with the independently known values of the stellar ra-
dius R∗ and Veq sin i = 77 km s−1, where the latter is determined by rotational broadening of
absorption lines. Since R∗ = 3.46 R�, we deduce a value for the inclination angle i of 54◦.

In this and numerous other weak-lined stars, the variations seen in the V-band flux are essen-
tially repeated when the star is observed through other filters, such as R and I. More specifically,
the period of the fluctuations is identical, but the amplitude is not. The latter diminishes as one
considers successively longer wavelengths. This falloff is gradual, suggesting that the modula-
tions stem from rotation into the field of view of relatively cool surface regions.

To see the reasoning here, it helps to consider a simplified model. Suppose the star has
photospheric temperature Tstar and contains a single spot of surface area Aspot and temperature
Tspot. Suppose further that rotation brings this feature to the precise center of the projected
stellar surface, which has area Astar. At this phase, the total received flux is

F1 = c [Aspot Bλ(Tspot) + (Astar −Aspot) Bλ(Tstar)] , (17.26)

where the coefficient c includes the stellar distance. Here we are idealizing both the unperturbed
photosphere and the spot as blackbodies. Half a rotation period later, the spot has disappeared
from view. The flux is then

F2 = cAstar Bλ(Tstar) . (17.27)

The ratio of these two fluxes, expressed in magnitudes, is the full range of variation seen in the
light curve. This range is

∆mλ = −2.5 log (F1/F2)

= −2.5 log

{
1 − fB

[
1 − Bλ(Tspot)

Bλ(Tstar)

]}
.

(17.28)

Here, the term fB is the fractional coverage of the star’s projected surface:

fB ≡ Aspot/Astar . (17.29)

Figure 17.20 plots ∆mλ as a function of λ for the case of Tstar = 4000 K and fB = 0.2.
For a cool spot, Tspot = 3000 K, ∆mλ indeed falls gently with λ (solid curve). The reader may
verify, using equation (2.29) for Bλ(T ), that the argument of the logarithm in equation (17.28)
increases from its zero-wavelength value of 1− fB toward unity, and therefore that ∆mλ itself
decreases. Qualitatively, this is the behavior seen in weak-lined stars. One may utilize, for any
particular object, the actual variation of ∆mλ to estimate both the depression in temperature
and the fraction of the stellar surface covered by spots. The temperature deficit is generally
about 1000 K, while the areal coverage can be significantly greater than the 20 percent we have
used. Even this last figure is enormous compared with analogous spotting on the Sun.

Thus far, we have discussed only results obtained through photometry. Multiple obser-
vations of spectral lines, when available, yield considerably more information. Through the
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Figure 17.20 Theoretical range of variation in the flux from a star with a cool spot (solid curve)
and a hot spot (dashed curve). The range is expressed in magnitudes and displayed as a function
of wavelength.

technique known as Doppler imaging, one may reconstruct in detail the distribution of Teff over
the rotating stellar surface. One begins with a model stellar surface divided into many small
zones. In each patch, an assumed Teff -value, together with the known surface gravity, allows
one to solve the radiative transfer equation for the profile of any line of interest. Note that the
result depends also on the inclination of the patch to the line of sight and hence on the rotational
phase. Adding up all the patches gives the total, predicted profile from the star at one time.
Finally, one varies the Teff -distribution to obtain the closest match to the observed temporal
sequence of profiles.

For this technique to be feasible, the rotational broadening of the line profiles must signifi-
cantly exceed the thermal contribution. Only a handful of T Tauri stars meet this requirement,
including V410 Tau. Figure 17.21 shows graphically the results of Doppler imaging in this
case. Here, temporal sequences of profiles from six absorption lines near 6400 Å were utilized.
In these four images, equally spaced in rotational phase, the darkened patches represent loca-
tions with Teff -values more than 500 K below the unperturbed, photospheric value. We see that
starspot activity concentrates heavily at high latitudes, i. e., close to the stellar pole. Comparison
with earlier observations indicates that the temperature distribution persisted for at least seven
years.
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Figure 17.21 Doppler images of V410 Tau, shown at the indicated phases of rotation. The dark
patches represent regions cooler than the surrounding photosphere by at least 500 K.

17.4.2 T Tauri Magnetic Fields

The presence of cool regions suggests that, as in the Sun, bundles of concentrated magnetic field
are penetrating the stellar surface. Such fields locally inhibit the process of convection, which
transports thermal energy from below. This is not our first indication, of course, that T Tauri
stars are magnetized. We noted early in this chapter that the roster of optical emission lines is
similar to that in active regions of the Sun. Continuum radiation in the X-ray and radio further
indicates not only the presence of a static field, but also attests to violent recombination within
migrating flux tubes. The reasoning that links such observations to magnetic fields is rather
indirect, and is guided by analogy with the solar case. More convincing evidence, along with
an assessment of the surface field strength, would be provided by Zeeman splitting of spectral
lines. Let us digress momentarily to consider the results of such investigations.

Recall the essential logic of the technique (§ 6.3). Unpaired electrons within atoms give
rise to circularly polarized radiation. In the presence of a magnetic field, two lines of differing
polarization are shifted in opposite directions. The total observed separation of each such line
pair yields the magnitude of the longitudinal field B‖, while the sense of the shift (i. e., which
polarization component increases in wavelength) gives the field direction. As summarized in
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Table 9.1, the method has proved successful in a number of environments and would seem
especially promising in T Tauri stars, where the fields should be the highest of all. Polarimetric
observations, however, find no detectable shift in optical absorption lines. The reason, once
again, must be that the surface fields of T Tauri stars are geometrically complex. Adjacent flux
tubes leaving and entering the photosphere combine to give zero net shift for any individual
polarized line.

On the other hand, consider observations of a spectral line taken without an intervening
polarimeter. The intensity one detects in this case represents the sum of polarized pairs of lines.
Since a magnetic field causes each component within a pair to shift in wavelength, the total line
profile broadens. The important point is that the amount of broadening does not depend on the
direction of the field, but only on its magnitude. A potential difficulty, however, is that other
physical effects, such as stellar rotation, also broaden lines and could be confused.

The trick is to observe a large number of lines with differing magnetic sensitivity (e. g.,
different values of the Landé g-factor; recall § 6.3). Any systematic rise in the line equivalent
width with increasing sensitivity reveals the presence of a field and also yields its magnitude.
Especially useful here are lines of longer wavelength, including the near-infrared. From equa-
tion (6.33), the Zeeman splitting in frequency, ∆ν, is equal to B‖ times a coefficient that is
independent of the line frequency ν. Thus, the shift in wavelength ∆λ = −λ2∆ν/c, is larger
for transitions with greater λ.

Observations of Zeeman broadening have so far provided field strengths for a few weak-
lined and classical T Tauri stars, including the primary of T Tauri itself. Measured values are
all of order 103 G. This figure actually represents fBB‖ the product of the mean field strength
and the fractional coverage of that field on the stellar surface. As we have indicated, fB is at
least 20 percent in weak-lined stars, with the fraction being even higher in many cases. It is
interesting that the field strength is the same order of magnitude in the Sun, whose flux tubes
cover only a few percent of the surface. The B‖-values are also comparable in younger main-
sequence stars, where the areal coverage is intermediate between weak-lined objects and the
Sun (§ 16.5).

17.4.3 Hot Spots

Returning to the main topic of this section, let us now examine how the variability of classical
T Tauri stars compares with their weak-lined counterparts. One general difference is that the
amplitude of fluctuations tends to be greater, especially as one considers shorter wavelengths.
Despite the historical identification of these objects as irregular variables, a sizable fraction do
change over well-defined intervals, where the latter range from several days to a week or more.
Even in such cases, however, the modulations display this character only for a limited duration,
usually no longer than a few months. A new period, differing as much as 20 percent from the
old, may then be established, after an epoch of seemingly random fluctuations. Analysis of
many stars reveals no period at all, even over relatively brief epochs.

Consider now a classical T Tauri star that does display, at least temporarily, regular varia-
tions in flux. As in weak-lined objects, the same period emerges from observations over a range
of wavelengths. The range ∆mλ once again declines as λ increases. This time, however, the
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falloff is much steeper. Such a trend is best explained by the rotation of zones that are hotter
than the surrounding photosphere.

Our previous, simplified model again helps elucidate the situation. The dashed curve in
Figure 17.20 shows ∆mλ as a function of λ when the putative single spot has a temperature
of 5000 K, i. e., 1000 K above the stellar photosphere. Since F1 is now greater than F2 in
equation (17.28), ∆mλ is formally negative; we have nonetheless plotted the range as a positive
quantity in the figure. The curve’s steep slope is readily understood if we consider the regime
of short wavelengths. In this limit, we have

Bλ(Tspot)
Bλ(Tstar)

≈ exp
[

h c

λ kB

(
1

Tstar
− 1

Tspot

)]
.

The exponential, which becomes vanishingly small in the case of a cool spot, now diverges and
dominates the argument of the logarithm in equation (17.28). We thus find

∆mλ ≈ −2.5 (log e)
h c

λ kB

(
1

Tstar
− 1

Tspot

)
. (17.30)

We now see both why U-band observations of classical T Tauri stars tend to exhibit large-
amplitude fluctuations, and also why this amplitude dies away rapidly in the visible and near-
infrared.4

The assumption that variability is again tied to spotting and rotation immediately raises
several questions. Under what circumstances do hot, as opposed to cool, spots arise on the
surface? How can a star’s apparent period of rotation shift over the course of weeks or months?
Finally, why do many classical T Tauri stars exhibit no regularity at all in their flux variations?

To address the first issue, consider the actual values of spot temperature obtained by more
careful modeling of ∆mλ. The contrast with the unperturbed photosphere is now greater than
for weak-lined objects; a typical Tspot is 7000 K. Conversely, the fraction of the total surface
area covered by spots is far less, of order 1 percent. Both figures are intriguingly similar to those
obtained in slab models of continuum veiling (§ 17.1). This fact, in turn, suggests a common
origin for the two phenomena. Hot spots plausibly represent areas where external matter falls
onto the stellar surface, creating elevated temperatures through shock heating.

As we have already stressed, the precise trajectory of this matter, and indeed its very origin,
are still murky. Gas flowing along magnetic loops remains an attractive picture. The detailed
modeling of photometric changes finds that a combination of hot and cool spots may best fit
the data. In these stars, some loops apparently contain flowing gas while others do not. Both
types of magnetic structures should partake in the local surface rotation, as they do on the Sun.
Pursuing the analogy, we might then attribute a shift in periods to migration of the largest spots
with latitude. Here, we further assume that the surface, like that of the Sun, is in a state of
differential rotation.

4 Our model also predicts that the photosphere should appear normal when the spot is hidden from view, i. e., at
minimum light. Indeed, the photometric colors of a classical star are most consistent with the object’s Teff -value
during this phase. Colors are anomalously warm at maximum light.
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17.4.4 Aperiodic Changes

Especially puzzling are the seemingly random fluctuations. The arrangement of magnetic loops,
or at least their associated mass flow, presumably changes rapidly during such epochs. Alter-
ations must occur on a time scale comparable to or less than the star’s rotation period. To repeat
a familiar theme, the shocks here may arise not only from surface infall, but also from the inter-
action of outflowing and circumstellar gas. In any case, there is little understanding of why this
more chaotic situation appears to dominate in many objects.

Return now to hot spots that do arise from localized infall. Surface rotation should not
only move these features in and out of view, but should also lead to concurrent shifts in the
measured level of veiling. It is encouraging that the continuum excess (as measured by rλ)
indeed fluctuates in a number of objects where it has been carefully tracked, and that these shifts
are sometimes periodic. For other stars, the veiling changes erratically. Obtaining simultaneous
photometry and high-resolution spectroscopy is difficult, so it is generally not possible to say in
these latter cases that the two changes are actually in phase. Exceptions are the extreme objects
such as DR Tau. Here the photospheres are dominated by an especially strong continuum flux.
Hence it is certain that any brightness modulations are coincident with those in veiling, even
when both are aperiodic.

The strong and broad emission lines of classical T Tauri stars also vary with time. Previ-
ously, we mentioned the unstable nature of Hα profiles. We shall not explore this topic in any
detail. Rather, we simply note that the profile changes do not exhibit the periodicity sometimes
found in the photometric data. Although it is thus difficult to link these two kinds of variations
quantitatively in any one object, an interesting pattern does exist across the ensemble of classical
stars. Suppose one measures the range of variation in the Hα equivalent width within a group
of such stars. This quantity correlates well with the photometric range in any fixed waveband.
In other words, stars that fluctuate greatly in their Hα-production also do so photometrically.

All the changes we have described thus far occur on time scales ranging from days to
months. T Tauri stars also display interesting variations over both shorter and longer intervals.
Documenting such activity naturally presents challenges, but there is nonetheless a significant
body of data. In the regime of short times, weak-lined stars generally exhibit more erratic be-
havior in the U- and B-bands than at longer wavelengths. These fluctuations, superposed on the
usual periodic light curve, stem from flaring activity. The actual rise in brightness, fortuitously
seen in a few objects including V410 Tau, happens within a matter of hours, while the decay is
more protracted.

Such events remind one, at least superficially, of those occurring in the X-ray domain
(§ 17.1). The detailed character of the flares, including both their prominence at shorter wave-
lengths and temporal behavior, resembles that seen in the low-mass dwarfs known as dMe stars.
Here, the activity stems from energy release above magnetized surface regions. Corroborating
this interpretation for weak-lined stars is the fact that photometric flares appear most often near
minimum light, i. e., when the cool spots are most visible. Similar episodes must occur in clas-
sical T Tauri stars, at least those with an admixture of cool spots. Observationally, any rapid
brightness changes in these objects tend to be more symmetric in time. There are also occa-
sional surges in the strengths of emission lines. The relation of these spectroscopic occurrences
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to the photometric ones is unclear. A quick rise followed by an equally rapid decay may signify
change of the infall rate onto a bright hot spot, rather than a coronal event.

17.4.5 FU Orionis Outbursts

We end this section by describing temporal changes of an entirely different character. These oc-
cur over decades, by far the longest intervals we have considered. The shorter-term phenomena
described earlier do exhibit secular drifts over such epochs. Weak-lined stars, for example, may
gradually alter both the amplitude and temporal form of their variation within each cycle. We
are interested, however, in a much more drastic alteration of the star’s appearance, one in which
the luminosity rises by two orders of magnitude in the course of a year or more, and then fades
again relatively slowly. Although few of these FU Orionis outbursts have actually been seen,
the phenomenon represents an important aspect of the pre-main-sequence phase.

The first object discovered, FU Ori itself, was, for at least a decade, an inconspicuous source
within the dark cloud B35. This cloud lies just beyond the spherical rim of the extensive λ Ori
HII region. In 1936, FU Ori was caught brightening. Within a few months, the luminosity
peaked and has been falling smoothly ever since. Figure 17.22 displays the B-band light curve,
both for FU Ori and for the other two well-documented cases. Notice that mB increased be-
tween 4 and 6 mag, with the change being relatively slow in V1515 Cyg. All three sources are
located within star-forming regions and have strong lithium absorption. These facts, together
with the objects’ known irregular variability prior to outburst, indicate that they are low-mass,
pre-main-sequence stars. Only V1057 Cyg was observed spectroscopically, albeit at low reso-
lution, during its earlier epoch. The spectrum exhibits standard T Tauri emission lines.

Other events uncovered since the FU Ori flareup may also represent the same phenomenon.
For example, comparison with archival images shows that a few embedded objects brightened
sometime in the past. We might also count as “FUors” all stars currently exhibiting spectro-
scopic properties similar to the original three in their post-outburst state (see below). Even this
expanded list comprises no more than about a dozen sources, and the effect we are describ-
ing would seem to be of little significance. Consider, however, the rate of appearance of new
outbursts. Over the 60 yr time span of observations, this rate (based on the expanded list) is
0.2 yr−1. Suppose that sources can be detected out to d = 1 kpc. The local stellar birthrate
in the Galaxy, according to Chapter 1, is ṁ∗ = 5 × 10−9 M� yr−1 pc−2. Within a cylinder
of radius d, therefore, new stars appear at the rate π ṁ∗ d2. This figure is 0.02 yr−1 for the
quoted numbers. On average, therefore, every star undergoes an outburst ten times during its
pre-main-sequence lifetime. The number is higher if only a fraction of young stars is involved.
In summary, outbursts seem to be a recurring feature of early stellar life.

From our examination thus far of pre-main-sequence evolution, there is no apparent reason
why stars should undergo large surges in brightness. In fact, T Tauri stars are in the convective
phase of quasi-static contraction, for which theory predicts a steady decrease in luminosity.
We shall later describe how objects of intermediate mass do brighten near the start of their
contraction phase. However, the change is a permanent one, rather than a periodic flareup,
and the relevant fraction of young stars is small in any case. If FU Orionis outbursts are as
common as our statistical argument indicates, then either the contraction theory for low-mass
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Figure 17.22 Historical light curves for the three visually erupting FU Orionis stars. The vertical
scale of V1515 Cyg has been displaced downward by 1 mag, that of V1057 Cyg by 8 mag.

stars needs refinement or the effect originates externally, through some interaction of the star
and its immediate environment.

Could each flareup occur simply from the removal or displacement of opaque material
blocking the visible starlight? The answer is no, for several reasons. First, the two more re-
cent, well-documented examples were not infrared objects prior to outburst. Second, the star’s
effective temperature apparently changes during the event. In the case of V1057 Cyg, both the
emission lines mentioned previously and the broadband fluxes in the pre-outburst spectrum are
consistent with those of a T Tauri star. Just afterward, the object lacked these emission lines and
had colors appropriate to an A-type star. Similarly, FU Ori first appeared in its luminous state
as a G star. Such dramatic shifts in temperature reflect either a change in the underlying stellar
photosphere or else heating of circumstellar material.

Under the first hypothesis, the object becomes much too luminous for its spectral type, even
on the birthline, and therefore acquires a large radius. Analysis of absorption lines yields, in
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fact, a very low surface gravity in all three cases. Both the swelling and attendant spectral
features change as the star fades. The apparent spectral type of V1057 Cyg went from A to F
within 2 yr after the peak luminosity. In this star and the others, Hα exhibits a P Cygni profile,
with a deep, blueshifted absorption dip. That is, the present-day object emits a strong wind.

Other features of the spectra are more problematic. The optical absorption lines are
quite broad, ostensibly signifying high rotational velocity. This property must be reconciled
with the enlarged radius. Consider again V1057 Cyg, for which the line broadening yields
Veq sin i ≈ 50 km s−1. From the estimated surface gravity, the immediate post-outburst ra-
dius was about 12 R�. Here we have assumed a mass of 0.5 M�, appropriate for a T Tauri
star. The pre-outburst radius for this same object would have been at most 3 R� (Table 16.1). If
angular momentum were conserved during the swelling, the initial rotation speed would exceed
the breakup value of 180 km s−1.

Adding to the mystery is the curious fact that the line broadening itself changes in different
wavelength intervals. The trend is for the apparent rotational speed to decrease as λ increases.
Thus, profiles of near-infrared lines on V1057 Cyg yield a Veq sin i of only about 30 km s−1.
The pattern of absorption lines in this regime, and especially the deep CO feature at 2.2 µm, is
characteristic of a late-type giant atmosphere, again in disagreement with the inferences from
optical data.

The spectral energy distributions for the three sources in Figure 17.22 all display large in-
frared excesses. It is therefore plausible that each object has its own circumstellar disk. Could
a very hot and luminous disk, rather than the star itself, be the source of the outburst? Some
of the observational problems would then be neatly resolved. Consider the combination of low
surface gravity and high rotational speed. The vertical gravitational acceleration in an extended
disk is much smaller than at the stellar surface (Figure 11.10). Absorption lines from an annulus
rotating at Keplerian speed would also be significantly broadened. One thus avoids the troubling
notion of a rapidly spinning giant star. Within a disk, near-infrared lines must originate in rel-
atively cool material, while optical features arise in hotter gas. Thus, if the disk temperature
falls with distance from the star, one would naturally expect the line broadening to diminish at
longer wavelengths. The deduced spectral type would also be later in this regime.

While the disk picture offers insight concerning puzzling aspects of FU Orionis spectra, it is
less helpful on the most fundamental issue of all, the origin of the outbursts themselves. A disk
can store very little thermal energy compared to a star. Thus, it can only generate luminosity
through orbital decay, i. e., through accretion onto the central object. Rapid mass transfer could
in principle be stimulated by close passage of a companion star. Unfortunately, the known
FUors are not spectroscopic binaries. We argued in Chapter 11 that continued infall onto a disk
also leads to mass transfer via gravitational torquing. Here, the infall arises from the collapse of
the parent molecular cloud. None of the original three stars, however, is situated within a dense
core. Finally, many theorists have investigated disk instabilities and stellar accretion that might
arise spontaneously. The models rely on a specified internal viscosity to carry matter onto the
star. Since the origin of the putative viscosity is unknown, it must be admitted that repetitive
outbursts in disks are no more comprehensible than those originating within stars.

We have noted that the well-documented FUors show evidence, through their Hα profiles,
for strong winds. The presence of this signature in a few other stars has led to their classification
as post-outburst objects. Whether or not this identification is correct, it is tempting to speculate
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Figure 17.23 Eruption of EX Lup during the 1950s. Note that the apparent magnitudes are visual
estimates.

that each flareup is accompanied by enhanced ejection of gas from the star or disk. Such a
wind burst would create a Herbig-Haro shock in nearby cloud matter. This does not mean,
of course, that all the observed Herbig-Haro objects are necessarily driven by such impulsive
events. Figure 13.20 demonstrates how traveling shocks arise also from continuous variation of
an underlying wind. More generally, there is still no evidence that the deeply embedded objects
driving jets are, as a group, subject to the flareups seen primarily in optically visible stars.

A small fraction of T Tauri stars have fluctuations that, in several respects, are intermediate
between FU Orionis events and the small-scale irregularities of the main population. Members
of this subclass are sometimes called “EXors.” The name derives both from the analogous
FUors and from the prototypical example, EX Lupi. This object exhibits outbursts of several
magnitudes every month or so. Larger increases occur about once a decade, with the bright
phase lasting roughly a year. An especially strong flareup, rivaling FU Orionis outbursts in
magnitude, is shown as Figure 17.23.

Even at maximum light, the spectrum of EX Lup continues to display the same T Tauri
emission lines as before. Moreover, the strongest ones have clear inverse P Cygni profiles. The
previously existing absorption spectrum becomes filled in by continuum veiling in the course
of brightening. As in YY Orionis stars (§ 17.2), these two observations indicate that each event
stems from episodic infall, presumably from material not far beyond the stellar surface. The
differences with FU Orionis observations are noteworthy. In the latter, the spectrum changes
so radically that the original, strong emission lines are no longer present. Nor is there any
ostensible infall signature, either through inverse P Cygni line profiles or elevated continuum
flux. A viable theory of the larger outbursts must naturally accommodate these facts.
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17.5 Post-T Tauri Stars and Beyond

All of the characteristics peculiar to T Tauri stars naturally disappear in the course of pre-main-
sequence contraction. Some of these properties, we have seen, are created by shocks associated
with inflow and winds, others arise from orbiting circumstellar disks, while still others, such as
X-ray emission, are related to the presence of strong magnetic fields. It is by no means obvious
that the rate of decline is the same for all properties, even at fixed stellar mass. Indeed, empirical
documentation of the various rates might help elucidate the T Tauri environment.

17.5.1 Fading of T Tauri Properties

A glance back at Figure 17.3 shows us immediately the essential complication in this enterprise.
While it is clear from the figure that the Hα surface flux generally decays with time, there
is considerable variation among subsamples of essentially identical age. This variation itself
gradually diminishes, but does not entirely vanish even as the main sequence is reached. The
only feasible way to quantify evolutionary trends is to compare stellar groups with disparate
ages. Any result obtained is an average, both with respect to the star-to-star variation and over
some finite spread in mass.

Figure 17.24 uses this approach with the near-infrared emission. Here we plot, within each
indicated group, the fraction of stars having excess emission, as judged through near-infrared
color-color diagrams. (Figure 4.2 showed such a plot using the J−H and H−K color indices.)
The “age” of each system in Figure 17.24 is a mean of the individual values determined from
the HR diagram. We see that the fraction of stars with excess flux smoothly falls in time and
disappears entirely by 6 × 106 yr. This last figure depends heavily on observations of a single
cluster and should not be given too much weight. In any case, the emission in question originates
in dust grains heated to roughly 103 K. Thus the falloff seen here reflects the sublimation or
orbital decay of grains located within a few stellar radii.

The bulk of circumstellar matter, including any extended disk, is too cold to be seen at near-
infrared wavelengths. As described in § 17.3, cooler dust at greater distance from the star still
emits in the submillimeter continuum. We recall that every classical T Tauri star radiates in this
regime, while most weak-lined sources are undetectable. Observations thus far do not show any
clear evolutionary trend, beyond the fact that the emission vanishes by a stellar age of roughly
107 yr. Gaseous tracers of disks, such as the 12C16O line emission shown in Figure 17.15, give
a similar result.

T Tauri stars also display activity related to surface magnetic fields, convection, and winds.
While some degree of activity remains in low-mass dwarfs, the erratic optical flaring charac-
teristic of younger stars eventually disappears in all but a small subset. To record the decline,
one must first identify the flaring objects in any given group. Repeated spectroscopic or photo-
metric observations are necessary for this purpose. Such a study of Taurus-Auriga reveals that
80 percent of weak-lined stars undergo flaring, compared to 56 percent of classical objects. The
figure drops to just 16 percent for zero-age main-sequence stars in the α Persei cluster, with an
age of 7 × 107 yr.

We also discussed how yet another manifestation of surface activity, X-ray emission, has
both flaring and steady contributions. Satellite observations have given us the distribution of the
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Figure 17.24 Decline of near-infrared excess with time. The quantity fNIR is the fraction of
sources displaying an excess, as gauged through color-color plots employing J , H , K, and L-
band fluxes. Cluster ages are average values within each group. Error bars indicate the statistical
uncertainty arising from the finite sample sizes. The straight line is a least-squares fit.

steady X-ray luminosity, LX , within populous groups. Figure 17.25 shows representative find-
ings, displayed here as the cumulative luminosity function, ΦX . This is the fraction of sources
within a group that have LX exceeding any given value. The figure shows results for K stars in
Taurus-Auriga, the Pleiades, and the Hyades. The first sample is missing numerous, relatively
faint sources; their inclusion may significantly alter the histogram. With this caveat, there is
evidently a steady fall in the mean LX , although the upper limit does not change appreciably
from the Pleiades age (1 × 108 yr) to that of the Hyades (6 × 108 yr).

All these observations indicate that alterations occurring in the course of pre-main-sequence
contraction and beyond are continuous. At what point, then, does a given low-mass object cease
being a T Tauri star? Any precise demarcation is clearly a matter of convention. However, the
question is meaningful because some phenomena die away before the onset of hydrogen fusion.
Thus, there is a realm of post-T Tauri stars.

One might be tempted to define such objects as those lacking any signature of disks, either
at infrared or submillimeter wavelengths. Such a definition, however, would encompass most
weak-lined T Tauri stars, including those close to the birthline. A more relevant property is
the X-ray luminosity, which is high in both classical and weak-lined objects. Unfortunately,
there is a wide spread in LX even at fixed mass and age, partially due to the influence of stellar
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Figure 17.25 Cumulative X-ray luminosity functions in Taurus, the Pleiades, and the Hyades.

rotation. Yet another choice is the surface lithium abundance. This is always enhanced above
the interstellar value in sufficiently young objects. While the abundance still varies within stars
of identical L∗ and Teff , it declines substantially before the zero-age main-sequence.

Figure 17.26 displays, as open circles, the observed equivalent widths in Li I λ6708 for
a number of Taurus-Auriga members. Here, the data are shown as a function of the stellar
effective temperature. It is apparent that nearly all points fall above the locus corresponding to
50 percent depletion (dashed curve). The filled circles in the figure represent measurements in
the Pleiades.5

Conspicuous in this plot is the widening gap between the dashed curve and the upper enve-
lope to the Pleiades, shown here as another solid line. We may conveniently define post-T Tauri
stars as being objects that fall within this wedge-shaped region. Note that warmer stars to the
left of the intersection (Teff � 4800 K) suffer less than 50 percent depletion by the age of the
Pleiades and may even have their full, interstellar supply upon arrival at the zero-age main se-
quence (recall Figure 16.10). Such objects, according to our definition, have no post-T Tauri
epoch prior to hydrogen ignition.

The sparseness of points in the region of interest (see also Figure 17.3) is a graphic illus-
tration of the venerable “post-T Tauri problem,” introduced in Chapter 12. For many years,
the dearth of such objects in Taurus-Auriga and other populous associations has been a puzzle.

5 The Pleiades data in Figure 17.26 are equivalent to those already displayed within Figure 16.11. There we showed,
instead of the directly observed equivalent width, the inferred surface lithium abundance. The latter is obtained
theoretically via the curve of growth. One solves the equation of transfer for the spectral line to obtain its equivalent
width as a function of the lithium column density within a model stellar atmosphere.
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Figure 17.26 Equivalent widths of Li I 6708 Å absorption in Taurus-Auriga (open circles) and
the Pleiades (closed circles). The equivalent widths are plotted as a function of stellar effective
temperature.

Since a star’s pre-main-sequence contraction rate slows with time, the later stages should be es-
pecially well represented, provided associations remain intact for the requisite time. Apparently,
they do not. How the parent cloud disappears after a few million years, leaving the member stars
to drift into space, is poorly understood (§ 12.4).

17.5.2 Older Associations

Large-scale surveys have uncovered groups of stars that individually display the characteristics
of pre-main-sequence objects, but are not situated within any molecular cloud. These are ev-
idently T associations, or subgroups of such associations, that have been caught in the act of
dispersing. Ironically, the absence of dusty gas is a disadvantage for identification of these sys-
tems, since the members are more easily confused with field stars. The persistence of T Tauri
signatures, however, allows one to pick out the objects of interest.

The best-studied example is the TW Hydrae Association. This group of two dozen stars lies
at an average distance of only 55 pc and subtends a full 20◦ on the sky. We previously depicted
this association, the closest known, in Figure 4.7. The star TW Hya itself is a classical T Tauri
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object, with both strong Hα emission and a near-infrared excess. Placement in the HR diagram
gives it an age of 1 × 107 yr. The other members have comparable ages. While none have the
Hα emission found in TW Hya, a few display remnant circumstellar disks through mid-infrared
and longer-wavelength fluxes. An elliptical ring around one object, the A star HR 4796A, has
been directly imaged in the optical and infrared. This structure appears to be a disk containing
a substantial inner hole (see also Chapter 18).

It was excess infrared fluxes that provided the first clues to the existence of the extended
TW Hya group. Additional objects were then revealed by X-ray observations and confirmed
spectroscopically through their lithium absorption. Distances here are small enough that they
can be established individually through parallax measurements. The objects also share a com-
mon proper motion that further serves to identify members. Both the large physical diameter
spanned by the stars, some 30 pc, and their observed streaming motion are at least broadly con-
sistent with a picture in which this small group originated as part of the Sco-Cen OB association.
Over the course of 107 yr, the stars spread apart, while retaining the bulk motion inherited from
their parent cloud.

Within the Chamaeleon region, X-ray study has revealed another grouping of similar age.
This observational tool already found many stars displaced far from the molecular clouds (Fig-
ure 4.11). The B-type star η Chamaeleontis, with a luminosity of about 100 L�, is tightly
surrounded by at least a dozen other objects lying at the same distance of 100 pc. The angular
extent of this group, also dubbed η Cha, is only 0.◦5, corresponding to a physical size of 0.8 pc.
Thus, the stars may represent a bound cluster. Almost all the remaining members are late-type
objects, exhibiting optical variability, infrared excess, and modest Hα emission.

Lithium observations in both the η Cha and TW Hya groups give equivalent widths similar
to those in Taurus-Auriga. That is, most objects lie above the dashed curve in Figure 17.26.
Coherent associations of true post-T Tauri stars may not exist, or at least are difficult to trace
observationally. By the time lithium has been reduced to less than half its initial level, the
objects have apparently dispersed so widely that they are no longer distinguishable from the
field population.

17.5.3 Debris Disks

As a star ends contraction and begins its main-sequence life, the excess continuum emission
signifying the presence of circumstellar matter continues to decline. Sensitive array detectors
nevertheless detect residual, long-wavelength flux in a significant fraction of dwarf stars. The
level of emission is far below that predicted by equation (17.8). Hence the warmed dust must be
optically thin to the photons it emits. Moreover, searches in millimeter lines, principally from
CO, detect little or no accompanying gas. The circumstellar structures being detected at this
relatively late epoch consist essentially of orbiting grains and are known as debris disks.

Main-sequence objects with the photometric signature of debris disks are often called Vega-
like. Vega itself is an A star, as are many other members of this class, including the previously
mentioned HR 4796A. This curious preponderance of more massive (and thus intrinsically rarer)
stars is a selection effect. Such objects more easily provide the luminosity required to warm the
dust to detectable levels. In any case, we shall revisit the structures around intermediate-mass
stars in Chapter 18, when we describe the aftermath of the Herbig Ae/Be phase.
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Figure 17.27 The debris disk around ε Eri-
dani. Displayed, in both greyscale and con-
tours, is the 850 µm continuum flux.

With regard to solar-type objects, the evidence for debris disks comes from surveys carried
out in the far-infrared and submillimeter continuum. When detected, the total excess luminosity
is at most 10−3 of the stellar value. This fraction declines steadily with the age of the parent
star. As usual, the age may best be determined if the surveyed object is within a cluster that can
be placed in the HR diagram.

On occasion, a star with an attendant disk may be so nearby that the structure can be spatially
resolved. Such a fortuitous case is presented by ε Eridani, a K2 star only 3.2 pc from the Sun.
Observations at 850 µm reveal a broad, face-on ring, with lumpy substructure (Figure 17.27).
The ring peaks in flux at a radius of about 60 AU. A fit to the spectral energy distribution over a
number of wavebands, along with the assumption of optically thin emission, yields a total dust
mass of 4 × 10−3 Earth masses, or 1 × 10−8 M�.

The age of ε Eri, as inferred from its Ca II H and K emission, is about 1 × 109 yr. If
the progenitor was a classical T Tauri star, then the tiny amount of circumstellar material now
observed is all that remains of a far more massive disk, composed of both gas and dust, that
largely vanished within the first 107 yr of the star’s life. The subsequent evolutionary path
of the material is far from clear. Especially puzzling is the large central hole. This seems
to violate our expectation that the mass density within any disk rises toward the central star.
One intriguing possibility is that the grains well inside of 60 AU have been incorporated into
larger bodies. The fractional surface area occupied by an ensemble of such objects would be
reduced from that associated with small grains. Hence, a swarm of much larger objects would
be undetectable, even if the surface mass density of the debris disk continues to rise toward the
star.

The grains we do observe are quite different from those associated with interstellar gas.
Multi-wavelength observations allow us to estimate their average size as 30 µm, larger than
what one finds generally. Moreover, a simple theoretical argument shows that the present-day
grains did not coagulate directly from interstellar ones, but are being continuously replenished
from some other source. The reason is that any given grain experiences collisions with its
neighbors on a time scale of 106 yr. These impacts arise because the debris disk has a finite
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thickness. Orbits are therefore inclined, at least to a modest degree, with respect to the plane.
Collisions between intersecting orbits are sufficiently energetic that they shatter both grains,
instead of leading to coalescence. The even smaller fragments are then susceptible to radiation
pressure from the star, which either drives them outward or causes them to spiral into the star,
again over a time brief compared to the stellar age. We shall reconsider the radiative effects in
Chapter 18.

In summary, a number of processes would clear the debris disk unless material were being
resupplied at a compensating rate. It is again attractive to invoke larger bodies. In this case, their
mutual collisions could provide a spray of debris, including perhaps the presently observed, 30 µ
grains. The original colliding objects may be asteroids, planets, or the smaller predecessors of
planets known as planetesimals.

17.5.4 Planet Formation

These arguments in favor of large, orbiting bodies are of course indirect and by no means iron-
clad. They attain additional weight, however, from the incontrovertible fact that some main-
sequence stars, including many akin to ε Eri, do have one or more giant planets, i. e., objects
with mass from about that of Jupiter (1 × 10−3 M�) to the deuterium fusion limit ten times
greater (Chapter 16). In 1995, M. Mayor and D. Queloz announced the discovery of a planet
orbiting close to 51 Pegasi, a G star at a distance of 14 pc. The actual detection was not of the
planet itself, but of a tiny, periodic shift in the star’s radial velocity. This shift was interpreted
as the wobble induced by an orbiting mass. Because the orbital inclination was unknown, the
observers could place only a lower bound on the mass value, which was 0.5 times the Jovian
value. A large number of similar detections quickly followed.

The discovery of extrasolar planets confirms that formation of these objects is a common
occurrence in solar-type stars. It is fitting that we close this chapter by posing, and at least
attempting to answer, the following question. Why does the evolution of a young star commonly
lead to attendant planets? To establish the context, let us first briefly describe the physical steps
in the formation process (see Figure 17.28). This theoretical framework, admittedly incomplete,
is still largely based on the vast amount of data accumulated from our own solar system.

Planets, or at least their solid cores, form through the aggregation of grains within a circum-
stellar disk. Many detailed investigations directed toward our own system employ as a specific
disk model the minimum-mass solar nebula. This structure, it is assumed, had the same chem-
ical composition as the Sun. It is observed that planets today are greatly enriched in heavy
elements relative to that standard. If these elements were inherited from the primordial epoch,
then one may readily determine the amount of hydrogen and helium needed to restore the proper
balance in each body. The result of this exercise is that the disk within 30 AU comprised some
0.01 M�, i. e., about 10 times the total mass contained in the present-day planets. This figure
represents a lower bound, since other material that never formed planets could have been lost
from the disk. By considering the orbital spacing of these objects, one further concludes that
the surface density within the minimum-mass nebula fell with heliocentric radius 	 roughly
as 	−3/2.

The first step toward forming a planetary system is physical separation of the dust and gas
components of the disk. Even if the dust were initially well mixed with the gas, it could not
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Figure 17.28 Essential elements in planet building, according to theory. The required time inter-
vals are indicated. That for grain sedimentation is a lower limit, based on the simplest, quiescent
disk model.

remain suspended forever, since individual grains have a tendency to settle under the force of
gravity. The drift is toward the midplane, and the relevant gravitational force is the vertical
component of that from the central star (recall Figure 11.10). As a grain falls, with the slow
terminal velocity set by aerodynamic drag, it encounters and sticks to neighboring particles.
The disk midplane thus becomes steadily more enriched in solid particles, which themselves
are enhanced in size and mass above interstellar values.

Two circumstances complicate this picture. First, gas near the disk surface rotates about
the star with an orbital speed that is sub-Keplerian. Each fluid element experiences, in addition
to the radially inward component of stellar gravity, an outward force induced by the thermal
pressure gradient (equation (9.25a)). While the reduction in orbital speed is relatively minor,
it is even less closer to the midplane. Here, gas is enriched by dust, which has inertia but no
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associated pressure. Each fluid element, consisting of dust and entrained gas, therefore rotates
even closer to the Keplerian speed. The net result is a vertical velocity shear at each radius. With
continued settling, the fluid eventually becomes susceptible to the Kelvin-Helmholtz instability,
a phenomenon we previously encountered in § 13.5 when discussing propagating jets. The
ensuing turbulence in the disk must inhibit any gentle, downward drift of grains.

A second complication is that the same drag force acting in the vertical direction also re-
moves energy from the particles’ orbital motion. This loss is negligible for the smallest grains,
which are well coupled to the local gas and rotate with it. Conversely, the inertia of the largest
solid masses overwhelms the drag, which again has little effect. Orbital decay is strongest at
some intermediate scale. In a minimum-mass solar nebula, at a heliocentric distance of 1 AU,
the critical size is about 1 m. A solid object of this dimension would spiral into the Sun ex-
tremely quickly, within about 100 yr.

To date, there are no theoretical models of dust settling and coalescense that successfully
address both of these concerns. The orbital decay problem implies that the growth process, how-
ever it occurs in detail, must build up objects very rapidly through the meter regime. Ironically,
turbulence might actually promote such fast growth, by increasing the frequency of particle
encounters. On the other hand, even a modest rise in relative velocity leads to shattering, as
we have seen in the case of debris disks. It is hardly surprising that estimates of the total time
needed to reach any average size for solid material vary widely. If turbulence is neglected and
the sticking probability during encounters remains high, then even growth to the kilometer scale
requires less than 104 yr at 1 AU. In this quiescent picture, the final size increase occurs through
gravitational clumping of enlarged grains already residing near the midplane.

A diameter of roughly 1 km conventionally defines the lower bound for planetesimals. The
evolution of a disk composed of such objects, still embedded within the original gas, is gov-
erned mainly by the pairwise gravitational attraction between the solid bodies. This attraction
perturbs their orbits about the central star. Physical collisions between planetesimals lead either
to merger or to breakup into smaller pieces.

The path of an individual planetesimal changes impulsively as a result of the gravitational
tug from a close neighbor. In a statistical sense, the effect of such mutual perturbations is to
introduce a random motion into the swarm of objects, i. e., a velocity component in addition to
that associated with circular, coplanar orbits. A large number of perturbations result in equipar-
tition of this random kinetic energy among the population. Thus, more massive objects tend to
have lower random speeds. (Compare the discussion of dynamical relaxation in § 4.4.) This
velocity reduction, together with the stronger gravitational pull of these bodies, increases their
collision cross section with other planetesimals. In addition, any fragments generated during
a collision tend to fall back toward the main body rather than escape. The result is runaway
growth. The most massive planetesimal in a given region of the disk gains even more mass by
devouring its neighbors.

As runaway growth proceeds, the initial high population of kilometer-size planetesimals
is partially transformed into a reduced number of larger objects spaced at regular intervals in
semimajor axis. During the phase of oligarchic growth, this ensemble evolves in unison, as the
background particles continue to be absorbed through collisions. The process ultimately yields
several hundred protoplanets, with sizes ranging from 103 km to an order of magnitude greater.
Terrestrial planets like the Earth build up slowly, over 108 yr, through merger of the smaller
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protoplanets. These perturb each others’ orbits until large radial excursions lead eventually to
orbit crossing and high-impact collisions.

Giant planets form by another route. Here, a more massive protoplanet is able to draw in gas
from the surrounding disk. This accretion onto the rocky planetary core is predicted to be very
rapid. On the other hand, the process must also end abruptly, as evidenced by the composition
of our own giant planets. Relative to its heavy elements, Jupiter contains only a tenth the
hydrogen and helium of a gas with solar composition. One attractive idea for the termination
is that the growing object eventually opens a gap in the disk through the action of gravitational
torques. Prior to gap formation, these same torques also cause the planets to migrate toward the
central star.6

Return finally to these central objects and to the observational data at the heart of this chap-
ter. The theory just outlined places little constraint on when planet formation actually begins in
the life of a star. Dust sedimentation could proceed within any disk, including one being cre-
ated during protostellar infall. On the other hand, the millimeter fluxes from classical T Tauri
stars originate from small dust grains, as does the infrared luminosity much further inside. Sed-
imentation has therefore not consumed all the dust at this time, up to 3 × 106 yr or so after
protostellar collapse. Apparently, the quiescent disk environment envisioned in the simplest
version of sedimentation theory is not maintained.

At a more advanced age, classical T Tauri observations tell us that both signatures of dust
vanish. Have planets formed by this point? We do not know, but the coalescence of most grains
into planetesimals would indeed curtail both millimeter and infrared fluxes. Significantly, the
stellar observations also show no indication, either through cold CO or warm H2, of a substantial
gaseous component to the disk. The gas must have either accreted onto the star or else been
driven into space, perhaps by photoevaporation or action of the stellar wind. Our ignorance of
this important event constitutes a major deficit in both stellar and planetary theory. In any case,
the formation of giant planets must occur prior to the dispersal. The relatively long buildup of
terrestrial planets takes place throughout the post-T Tauri phase and may well be continuing in
the young dwarfs that now exhibit debris disks.

Chapter Summary

Spectra of classical T Tauri stars include a large number of broad optical and ultraviolet emission
lines, of which Hα predominates. Weak-lined objects, by definition, are lacking in this regard.
Also present in classical objects is an excess continuum flux in the blue and ultraviolet, as well
as one at infrared wavelengths. The former arises from shocks associated with winds and infall,
the latter from heated, circumstellar dust. All T Tauri stars have enhanced X-ray emission,
which appears to be the superposition of numerous, unresolved flares. Some also exhibit flaring

6 Theorists have also suggested, on the basis of simulations, that giant planets may form intact, through prompt,
dynamical fragmentation of the underlying disk. As in the analogous hypothesis for stellar cluster formation in
molecular clouds (§ 12.1), it is difficult to see how the parent object evolved to a configuration susceptible to such
breakup. The rapidly growing data on extrasolar planets should eventually test both this and the gas accretion picture.
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in the radio continuum. Both X-ray and radio flares arise from reconnecting magnetic field lines
outside the stellar surface.

The bulk of Hα emission originates in numerous shocks located relatively close to the star,
although there is frequently also shock-heated gas in a more directed wind. These microjets are
less than 103 AU in extent, much smaller than the jets from more embedded stars. Microjets
also appear in optical forbidden-line emission, such as that from O I. Analysis of the forbidden
lines reveals that the average mass loss rate in T Tauri winds is about 10−8 M� yr−1. A subclass
dubbed YY Orionis stars additionally shows, through permitted optical line profiles, evidence
for infall. The mass infall rate appears comparable to that in the wind, and both flows change
rapidly with time.

The spectral energy distribution of classical T Tauri stars in the infrared gives the run of dust
temperature with radius in their circumstellar disks. The shallowness of observed temperature
falloffs indicates that the disks are substantially flared. Observed dips in the spectral energy
distribution apparently signify a central hole in the surface density. In any case, the total mass
in dust may be crudely estimated from continuum radiation in the submillimeter regime. The gas
component reveals itself through millimeter lines, whose Doppler shift reflects rotational motion
about the central object. The total emission from a disk includes, at a minimum, reradiated light
from this star. There may also be energy release from internal mass torquing, including that
associated with the tangling and reconnection of magnetic field lines.

T Tauri stars exhibit both regular and erratic variability in their emission. The first type,
seen in weak-lined stars, arises from the rotation of cool spots, where strong magnetic fields
emerge from the stellar surface. Classical T Tauri stars show more aperiodic fluctuations and
often have both cool and hot spots. Flaring at optical wavelengths is also a hallmark of young,
pre-main-sequence stars. The class known as EXors display large outbursts on decade time
scales. FU Orionis stars exhibit the most dramatic changes. Here, the luminosity increases by
two orders of magnitude in the course of a year or so. These outbursts, of unknown origin, occur
repeatedly during pre-main-sequence contraction.

Even the youngest weak-lined objects have scant observational evidence of circumstellar
disks, while the signatures in classical stars fade within 107 yr. Both types continue to exhibit
X-ray emission and surface lithium into the ensuing, post-T Tauri phase. Observed associa-
tions contain so few of these older objects that they must disperse relatively quickly. Some of
the recently dispersed members are still visible as discrete groups. Still older, low-mass stars
can possess sparse remnant disks composed of dust grains. These grains must be continually
produced through the mutual collision of solid, orbiting masses. The discovery of extrasolar
giant planets shows that such bodies are commonly formed around T Tauri stars, before the
disappearance of their gaseous disks.
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18 Herbig Ae/Be Stars

In this last chapter on the pre-main-sequence phase, we describe objects of intermediate mass.
These Herbig Ae/Be stars share certain key features with the T Tauri class, and others with even
more massive and luminous O and B stars. The latter first become optically visible after they
have already begun to fuse hydrogen. Thus, the stars we now discuss are the only remaining
class of young objects that evolve purely through gravitational contraction.

The study of Ae/Be stars is less advanced than that of their low-mass counterparts. The
main impediment here is the relative scarcity of the objects. According to equation (4.6) for the
initial mass function, the number of stars produced in the range of interest, from 2 to 10 M� is
only 3 percent of those from 0.1 to 2 M�. Exacerbating the problem is the shorter contraction
time at larger masses. On the other hand, the higher luminosity does facilitate discovery; the
number of known sources now exceeds 100.

We begin this chapter by summarizing the general properties of this class. We examine not
only the observed characteristics of the stars themselves, but also their spatial relationship to
neighboring objects. Section 18.2 turns from these empirical matters to theory. We demonstrate
that quasi-static contraction in this mass range differs qualitatively from that in T Tauri stars.
This difference reflects the interior mode of energy transport. Theory also predicts that the
more massive objects should undergo a transient period of bulk oscillations, which has now
been observed.

In the final two sections, we shift our attention to the stellar environments. We show how
infrared and millimeter studies, while providing evidence for dusty, circumstellar material, have
not yet clarified its structure or dynamics. We also cover the winds from Ae/Be stars, which
dissipate remnant cloud gas. These outflows, whose origin is poorly understood, are apparently
responsible for the observed X-ray emission. Energetic radiation, including the ultraviolet com-
ponent of the stellar spectrum, ionizes and heats surrounding matter. Finally, § 18.4 focuses on
circumstellar disks and on the gradual depletion of their dust components.

18.1 Basic Properties

Within the HR diagram, Herbig Ae/Be stars fall close to, but below, the intersection of the
birthline and the zero-age main sequence. A glance at the diagram in Figure 16.2, which in-
cludes several dozen of these objects, shows that they have luminosities ranging from about
10 to 103 L�, and Teff -values from 8,000 to 20,000 K. One natural question is where to find
pre-main-sequence objects with these characteristics. Truly massive stars, as we know, are born
in the most crowded regions of giant cloud complexes. Low-mass T Tauri stars are also found
in such locales, but appear in sparser associations and more isolated dark clouds as well. What
type of environment spawns objects of intermediate mass?
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Figure 18.1 HR diagram for the cluster NGC 6530 in Sagittarius. Filled circles represent member
stars that have optical emission lines. The birthline and ZAMS are shown, as well as selected pre-
main-sequence tracks (solid curves) and the 5 × 106 yr post-main-sequence isochrone (dashed
curve).

18.1.1 Birth Environments

Toward the Galactic center in the constellation Sagittarius is a conspicuous HII region, the
Lagoon Nebula (M8). This patch of ionized gas, although at a distance of 1.8 kpc, is nevertheless
bright enough to be seen with the naked eye. It is situated in front of a massive molecular cloud
and engulfs a cluster known as NGC 6530. Other clusters nearby were also born from the
background molecular gas. All are part of the extended Sgr OB1 association.

Many stars ostensibly within the area encompassed by NGC 6530 are actually foreground
objects. Establishing cluster membership in this case is no simple task. Additionally, the large
distance limits observations to the more luminous objects in the system. Figure 18.1 shows
the HR diagram for a few dozen stars that have been studied both photometrically and spectro-
scopically. In most cases, members were selected by their anomalous ratios of color excesses,
an indication that their reddening arises from circumstellar and intracluster material, and not
simply from interstellar grains situated along the line of sight.



18.1 Basic Properties 687

In the diagram of Figure 18.1, most stars are quite close to the main sequence, but there
is increasing dispersion above this curve toward both higher and lower masses. If the high-
mass effect reflects true post-main-sequence evolution, then the relevant stars were born at most
5 × 106 yr ago. We show the isochrone corresponding to this age in the figure. The dispersion
among intermediate-mass members arises from pre-main-sequence contraction, although some
of the scatter across the diagram represents observational errors. Despite the generous sampling
of objects from 3 to 10 M�, few meet all the criteria for true Herbig Ae/Be stars. By definition,
the source must not only have a spectral type of A or B and be located near cloud gas, but
must also display optical emission lines, as indicated by the nomenclature.1 The filled circles in
Figure 18.1 represent the handful of stars with this last property.

The NGC 6530 group is not unusual in this regard. Another cluster within the Sgr OB1
association, NGC 6611, also has a substantial, intermediate-mass population, of which perhaps
4 objects exhibit line emission. We presented as Figures 4.9d and 12.29, respectively, the HR
diagrams for NGC 2264 in Monoceros and the especially crowded Orion Nebula Cluster. In
both diagrams, there appear to be many objects in the intermediate range. Yet a search for Hα
emission, in particular, turns up only a few sources. Note the technical issue one faces in making
this assessment, a problem that has occasionally misled observers. Since there are even more
massive, ionizing stars in all these regions, the ambient Hα emission arising from diffuse gas
must first be subtracted at each location.

The paucity of emission-line objects within young clusters is a striking departure from the
T Tauri situation. If one were to posit that Herbig Ae/Be stars are essentially similar to clas-
sical T Tauri objects, then the weak-lined analogues would comprise the vast majority of the
intermediate-mass population. However, this basic identification is not secure. As we shall
describe, the Ae/Be stars exhibit other key differences from low-mass objects generally.

Large clouds are not the only structures producing intermediate-mass stars. While giant
complexes do spawn the largest contiguous populations, individual sources are also seen within
more isolated dark clouds. On the other hand, Ae/Be stars are seldom found in the sparser
molecular gas that gives rise to T associations. These findings are simply manifestations of the
statistical rarity of intermediate-mass objects, together with the unremarkable fact that higher-
mass clouds tend to form more stars in total.

Of greater interest is the proximate cloud environment, e. g., the material within roughly
0.1 pc of the star itself. In the original definition of the class, Herbig Ae/Be stars were required
to illuminate optical reflection nebulae. This stipulation was added to ensure that the star was
physically associated with cloud material, and not a foreground or background object. Millime-
ter observations in spectral lines or continuum radiation accomplish the same goal. Additionally,
this radio mapping has provided more detail concerning the state of nearby gas.

While a variety of results are found, Figure 18.2 illustrates the extremes. Here we see,
through 13C16O (J = 1 → 0) emission at 2.7 mm, a portion of cloud material near the edge
of the Cepheus Bubble, a large shell created by massive stars in the Cep OB2 associa-
tion (Figure 4.14). The region shown coincides optically with a reflection nebula known as

1 It is common practice to include within the Herbig Ae/Be class F-type pre-main-sequence stars. The reason is simply
that T Tauri stars are conventionally restricted to having a spectral type later than G0. One thus avoids establishing
yet a third class for the F stars alone. We have no objection to the expanded definition, but will focus in this chapter
on A- and B-type stars.
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Figure 18.2 Three Herbig Ae/Be stars in the NGC 7129 region. Both the contours and greyscale
shading represent emission from 13C16O (J = 1 → 0). At a distance of 1250 pc, the physical
size of the map is about 3 × 3 pc.

NGC 7129 and contains three visible Herbig Ae/Be stars. That on the upper left, a B6 object
called LkHα 234, is still embedded within cloud material. The star coincides with a local peak
in gas, similar to a dense core that might produce a low-mass object. In contrast, the star on its
right, BD+65◦1637, lies within relatively sparse HI gas and has apparently evacuated its own,
local cavity, further compressing adjacent cloud material. An intermediate case is presented by
the star below these two, BD+65◦1638, which sits just at the edge of molecular gas.

Judging from several dozen of these observations, there are two factors promoting the gas
dispersal we are seeing from BD+65◦1637. The first is stellar age. Not surprisingly, the very
youngest Ae/Be stars are also the most obscured and are apt to be situated near peaks of mil-
limeter emission. The second factor is effective temperature. Earlier-type Be objects are more
able to clear extensive volumes of cloud gas. The star BD+65◦1637 has a spectral type of B3,
placing it close to the intersection of the birthline and zero-age main sequence. The physical
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agents that are available for dispelling the gas are stellar winds and ultraviolet radiation. We
shall explore both in § 18.3 below.

18.1.2 Low-Mass Companions

Return to the clump of molecular gas surrounding LkHα 234 in Figure 18.2. If this entity is truly
analogous to a dense core, then it recently created the interior star through inside-out collapse.
Are all Herbig Ae/Be stars formed in a manner analogous to low-mass objects? We have argued
throughout this book that the most luminous and massive stars probably do not form through the
process of dense core buildup to the point of gravitational collapse, but through the coalescense
of previously formed stars. The main line of evidence bolstering this view is the finding that
the youngest massive stars are invariably located at the crowded centers of stellar clusters. It is
gratifying that intermediate-mass objects show evidence for both formation modes.

As we discussed in § 12.5, there is again a division according to spectral type. While Herbig
Ae stars are relatively isolated entities, hotter stars are frequently, though not always, surrounded
by a retinue of lower-mass companions, i. e., T Tauri stars. We showed an example in Plate 5, an
infrared image of the Be star BD+40◦4124 and its attendant objects, both visible and embedded.
Of the latter, 40 objects have an infrared excess and therefore cannot be background sources.
The star BD+65◦1637 in Figure 18.2 is surrounded by many low-mass stars, not shown in
the map. These objects are revealed by virtue of the fact that the central object has aided in
dispersing nearby cloud gas. More young, low-mass stars undoubtedly lie within the thick shell.
We emphasize that such groups, while they may be visually impressive, are still less dense than
those around newly formed O stars, such as the Orion Nebula Cluster or NGC 3603 (Plate 7).
Nevertheless, the existence of a Be star at the center of an aggregate does suggest that the more
massive, central object formed through some coalescense process.

Additional support for this hypothesis comes from examination of orbiting companions to
Ae and Be stars. High-resolution surveys for visual systems find that the differential binary
frequency is at least 0.5 for log P between 5 and 7. Here, P is the orbital period in days, as
estimated using the total system mass and the projection-corrected separation. Figures 12.7 and
12.13 show that this frequency is more than double that of G dwarfs in the same period interval
and also exceeds the figure for T Tauri primaries. The suggestion is that the formation process
for intermediate-mass stars, occurring in a crowded environment, often results in the capture
of neighboring stars. In contrast, capture is not a plausible origin for even the widest T Tauri
binaries.

Whether this overabundance of binaries holds also for shorter periods is difficult to say.
As with O stars, both the high flux ratio and the greater distances to these systems make the
imaging of tighter pairs more problematic. It is also possible to misinterpret the members of a
low-mass cluster surrounding a given star as gravitationally bound companions. For periods less
than 100 days, one may detect, through spectroscopy, radial velocity variations of the primary.
While the overall fraction of such close binaries is small, the numbers are comparable to those
for T Tauri stars, which in turn mimic G-dwarf primaries (Figure 12.13). Chapter 12 discussed
in detail the system TY CrA, consisting of a 3.2 M� primary and a T Tauri secondary. Here the
primary has already reached the main sequence (Figure 12.16). In other observed systems, even
the more massive component is still undergoing pre-main-sequence contraction.
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18.1.3 Rotation

We stress that the current census of tight binaries with intermediate-mass primaries is undoubt-
edly incomplete. Yet another difficulty is presented by the fact that Herbig Ae/Be stars tend
to rotate quite rapidly. We saw in Chapter 16 how surface rotation broadens all photospheric
absorption lines. It thus becomes harder to discern the periodic shift in the line center stemming
from gravitational tug of an orbiting, companion object.

Of course, the faster rotation in Herbig Ae/Be stars is itself of interest. Figure 18.3 sum-
marizes observations of the projected equatorial velocity, Veq sin i, here shown as a function
of stellar mass. These speeds were obtained by comparing a portion of the optical spectrum
with that of nonrotating stars of identical spectral type. Thus, the same broadening that hin-
ders detection of binaries provides key information about the star itself, just as for T Tauri
stars. The typical equatorial speed for Ae/Be stars is about 150 km s−1. Here we may re-
call Figure 16.20, which displayed Veq in the Orion Nebula Cluster, for M∗ < 3 M�. While
some Orion stars have speeds exceeding 100 km s−1, the vast majority of Veq-values are much
lower. On the other hand, intermediate-mass objects are still rotating well under their respective
breakup speeds Vcen, displayed in Figure 18.3 for stars along the birthline.

Recall from our previous discussion that solar-type young stars rotate more slowly than
those on the zero-age main sequence. The situation for intermediate-mass stars is not as clearcut.
The dashed curve in Figure 18.3 shows the average observed values of Veq sin i for main-
sequence objects. Herbig Ae/Be stars have rotation velocities that are roughly consistent with
this curve, but there is considerable scatter, both above and below. Those objects with the
very lowest equatorial speeds are also the most displaced above the main sequence in the HR
diagram. Their future contraction, through roughly a factor of two in radius, will spin them up
close to main-sequence velocities, assuming strict conservation of angular momentum.

18.1.4 Spectroscopic Features

It is only the absorption lines of a Herbig Ae or Be star whose broadening yields rotational
speeds. The additional emission lines superposed on the spectrum have more complex profiles
that cannot arise simply from Doppler shifts on a rotating surface. As in T Tauri stars, the
emission must stem from circumstellar shocks. The physical origin and disposition of the infall
and wind activity powering these shocks is at least as problematic in the more massive objects.

The roster of absorption lines in a Herbig star is essentially the same as in a main-sequence
object of similar mass. There is also little continuum veiling, so that the relative line strengths
are true photospheric values. The assignment of spectral types thus presents no special diffi-
culty, even for the youngest, optically revealed sources. Figure 18.4 shows the spectrum of a
representative Herbig Be star, LkHα 220. This 4 M� object, with a luminosity of 170 L� and
Teff of 1.4 × 104 K, is located in an R association within Canis Majoris, at a distance of 1 kpc.
The star formation region is part of a ring-like nebula within a large molecular cloud.

Near its blue end, the spectrum is marked by a sharp rise in the continuum toward longer
wavelengths. This rise occurs just past the Balmer jump at 3647 Å. Recall from Figure 17.1
that classical T Tauri stars also exhibit a discontinuity here, but in the opposite sense, i. e., the
continuum is depressed at longer wavelengths. T Tauri stars also display a cluster of emission
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Figure 18.3 Spectroscopically measured rotation speeds of Herbig Ae/Be stars. The solid curve
represents breakup speed for each stellar mass along the birthline. Main-sequence rotational
speeds are shown by the dashed curve.

lines atop this lowered continuum. These lines include both Hβ at 4861 Å and higher members
of the series, which terminates at the Balmer jump. In the Be star, the same transitions appear
as deep absorption troughs, although Hβ has an emission core. Also in absorption here are the
He I line at 5876 Å and the two Na I D lines near 5900 Å.

Figure 18.4 includes, for comparison, a main-sequence star of nearly the same spectral
type. It is evident that both the shape of the continuum and the prominent absorption lines are
reproduced. The one noticeable difference is the presence of emission lines in the Herbig star.
These include, most prominently, Hα at 6563 Å. Others are the core of Hβ, a triplet of Fe II
lines near 5000 Å, and a weak [O I] line at 6300 Å. Reference to Table 17.1 shows that all these
features appear as well in classical T Tauri stars.

Their strong emission in Hα is a valuable tool for locating Herbig Ae/Be stars in observa-
tional surveys. Dedicated monitoring of this line shows that the profile varies on time scales at
least as short as days. While the same is true of classical T Tauri stars, there are differences.
In the low-mass case, we recall, most profiles either have a blueshifted absorption dip or are
symmetric (Figure 17.8). Absorption dips are also common in Herbig Ae/Be stars, and we shall
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Figure 18.4 Optical spectrum of a Herbig Be star (top), compared to a main-sequence star of type
B6 (bottom), which nearly matches in effective temperature. Note the prominent Hα emission in
the Herbig star.

discuss their dynamical significance in § 18.3 below. Symmetric Hα profiles, on the other hand,
are only occasionally seen. This curiosity may eventually provide a significant clue in future
modeling of the circumstellar environment.

It is important to distinguish Herbig Be stars from another group of older objects that spans
the same range in spectral type and also exhibits Hα emission. These classical Be stars, which
lie on the main sequence or have evolved past it, are actually quite numerous, constituting some
15 percent of the entire B-star population. The optical emission here is also highly variable and
can occur in other Balmer lines of hydrogen. Their rapid rotation is one of the most striking
features of these stars. The average Veq sin i is 250 km s−1, greater than in a typical Herbig
star, although still below breakup. Several lines of indirect evidence, as well as interferometric
imaging in a few cases, show that the emitting gas is configured in a flattened disk, where it is
being irradiated by the central star. Some objects also show, through narrow absorption lines,
the presence of nonrotating circumstellar matter. This “shell,” which appears intermittently in
a given object, represents absorbing disk material seen edge on. The disk itself arises from the
star shedding material in the equatorial plane. There is also a higher-velocity wind emanating
mainly from the poles. Note finally that classical Be stars exhibit a modest infrared excess,
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attributable to free-free emission from hot, circumstellar gas. Most Herbig Ae/Be stars, as we
shall see again in § 18.4, have much larger excesses arising from thermal dust emission.

18.1.5 UX Ori Stars

Variability of the line profiles in Ae/Be stars is a ubiquitous phenomenon that holds for more
than Hα. For example, the well-studied Ae star AB Aur exhibits emission in the Mg II h and
k doublet near 2800 Å. The profiles have blueshifted absorption dips that change periodically
in strength. Other lines, including pure absorption features, vary either erratically or in a peri-
odic fashion. Both types of changes are also found in the broadband flux. Some stars exhibit
longterm fading or brightening over decades of photometric observation. Many have relatively
low-amplitude fluctuations over much shorter time spans. However, strictly periodic alterations
in broadband flux, such as those observed in weak-lined T Tauri stars, are rare.

The most striking photometric changes are those exhibited by UX Ori stars. These objects
undergo, in a stochastic manner, sudden drops in optical light. The change can be as large as
3 mag in V (a factor of 16 in flux). After a few days near minimum, there ensues a relatively
slow recovery to normal brightness, typically lasting several weeks. Interestingly, all the sources
for which such behavior has been documented are of spectral type B8 and later. The UX Ori
phenomenon occurs in about a fourth of all Herbig Ae stars and also has been seen in a few F-
and G-type objects.

Other effects that accompany the sudden dimming help us to understand its origin. The
light from Herbig Ae/Be stars is often linearly polarized, although the degree of polarization
is usually low and erratically variable. During a UX Ori-type fading, the polarization level
increases markedly, reaching up to 8 percent at minimum light. The variation of the level with
wavelength makes it clear that we are witnessing the effect of scattering by circumstellar dust.
Additional grains, interposed directly along the line of sight, are presumably responsible for the
dimming itself.

If the latter statement is true, then we expect the starlight to redden as its fades. The actual
behavior is more interesting and complex. Figure 18.5 is a 3 yr record of photometric magni-
tudes and colors for the prototypical object UX Ori. Plotted here is the apparent V -magnitude
versus the B−V color index. Recall that a numerical increase in B−V signifies reddening. Pro-
gressive reddening indeed occurs during the earlier part of the fadeout, when V � 11.5 mag.
As the V -band flux continues to decline, B − V reaches a maximum, then starts to decrease.
This blueing phenomenon is a common feature of all UX Ori stars.

Figure 18.6 sketches a sequence of events that neatly accounts for the observations. Suppose
that an optically thick dust cloud passes in front of the star. Suppose further that the star and
cloud have comparable sizes. At first, the cloud both diminishes and reddens the received
flux, as the absorbed photons are reemitted by grains at longer wavelengths. A fraction of the
incoming radiation also consists of photons scattering off dust that is not directly in the line
of sight. Eventually, the extinction by the cloud becomes so great that most of the observed
radiation arises from scattering. This process is most efficient at shorter wavelengths and also
creates linearly polarized radiation for any asymmetric distribution of grains. We may thus
understand both the blueing effect and the enhanced polarization level near minimum light.
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Figure 18.5 Record of apparent
V -magnitude as a function of B − V
color in the star UX Ori. As the mag-
nitude dims, the star first reddens, then
becomes more blue.

The origin of the dust clouds themselves is less clear. These may be clumps in orbit around
the star, perhaps residing in a disk seen nearly edge on. If so, then the aperiodic character of the
dimming implies that we are witnessing several clumps at different radii. The same stars also
exhibit transient absorption lines in hydrogen and heavy elements. These dips are redshifted, as
in YY Orionis objects (§ 17.2). Hence, a complete dynamical picture must also include infalling
motion of circumstellar gas. Perhaps a flattened distribution of circulating and infalling clumps
exists around most Herbig Be stars, but only those in the UX Ori category have this material
properly oriented with respect to our line of sight.

18.2 Nonhomologous Evolution

Let us now turn from our empirical description of Herbig Ae/Be stars to considerations of a
more theoretical nature. We note at the outset that theory has not yet succeeded in explaining,
at least in any detail, numerous features of these objects, such as their emission-line spectra
or the X-rays we shall later discuss. On the other hand, Figure 16.2 indicates that the most
basic property of all, the distribution of the population within the HR diagram, is essentially
understood. Calculations have also shown how both the structure and evolution of these stars
differ from low-mass objects. Our purpose in this section is to delineate these differences.
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Figure 18.6 Theoretical explanation of the UX Ori phenomenon. A dust cloud partially obscuring
the star transmits both direct, reddened light and scattered, blue photons. Eventually, obscuration
is so great that only the scattered component appears in the substantially diminished flux.

18.2.1 Thermal Relaxation

Herbig Ae/Be stars evolve from intermediate-mass protostars. We previously saw, in § 11.4,
how a protostar becomes stable against convection once its mass exceeds about 2 M�. After the
end of infall, the newly visible pre-main-sequence object is also radiatively stable, in contrast to
a fully convective star of lower mass. Thus, the mode of interior energy transport has changed,
with consequences for the process of contraction itself.

At this point, we should recall the physical basis for this transition to radiative stability
within protostars. Consider first those of relatively low mass. Here the internal luminosity,
which is largely supplied by central deuterium fusion, exceeds the maximum value that can be
transported through radiation. The latter, expressed as an average throughout the stellar inte-
rior, is given by 〈Lcrit〉 in equation (16.14). According to this equation, 〈Lcrit〉 rises steeply as
the mass M∗ increases. This rise, in turn, reflects the declining opacity throughout the proto-
star. Eventually, 〈Lcrit〉 exceeds the deuterium-generated luminosity, which is therefore able to
traverse the interior through radiative diffusion.

Another key development in protostars of intermediate mass is the shifting locus of deu-
terium burning. Once the central portion of the star becomes radiatively stable deuterium is
rapidly consumed, and persists only in an outer mantle. Fusion occurs at the base of this man-
tle and leads to a dramatic swelling of the stellar radius (Figure 11.21). This swelling endows
young, pre-main-sequence stars in the proper mass range with greater luminosity. The conse-
quent lifting of the birthline in the HR diagram is just what is needed to encompass the known
positions of Herbig Ae/Be stars (Figure 16.2). With even further mass addition, the radius of
the protostar shrinks, and gravitational contraction takes over as the main source of luminosity.

A star of intermediate mass that has just finished accreting finds itself in a peculiar situation.
According to Figure 16.4, the luminosity 〈Lcrit〉 is higher than L∗, the value emitted by the
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surface layers. But 〈Lcrit〉 is not just the maximum luminosity that can be carried by radiation. It
is also, to the same degree of approximation, the actual interior luminosity within any radiatively
stable star. Thus, the pre-main-sequence object of interest is generating, at least initially, more
luminosity than it can radiate into space. This imbalance cannot last indefinitely. Both the
stellar interior and surface layers must change until 〈Lcrit〉 and L∗ match. In other words, the
star must undergo thermal relaxation.

The interior structure of any star is determined by its run of specific entropy, s(Mr). We
recall from Chapter 11 that the specific entropy added, layer by layer, to a protostar tends to
increase with time, as a result of the accretion process itself. If deuterium fusion drives global
convection, mixing by turbulent eddies enforces a spatially uniform s(Mr), regardless of the
star’s accretion history. In a radiatively stable object, however, the rising entropy accurately
reflects this buildup. There is no reason to expect that the resulting s(Mr) should correspond, in
a young pre-main-sequence object, to a distribution in luminosity, Lint(Mr), that joins smoothly
onto the new surface value, L∗. Thermal relaxation alters s(Mr) until the interior and surface
luminosities are indeed consistent.

A specific example helps to illustrate the process. Figure 18.7 is taken from a numerical
calculation, i. e., a solution of the stellar structure equations with photospheric boundary con-
ditions, as presented in § 16.2. The figure shows the evolution of both the specific entropy and
luminosity within a pre-main-sequence star of 3.5 M�. At t = 0, i. e., just after the cessation of
protostellar infall, s(Mr) rises gently to Mr = 2.8 M�, after which it is constant. The exterior,
flat portion of the profile occurs within a convective mantle created by the burning of residual
deuterium. In the righthand panel, we show the corresponding luminosity profile. The function
Lint(Mr) rises to a maximum near 60 L� and then falls steeply. The outer portion of this star is
abnormally cold relative to a thermally relaxed object. Correspondingly, the opacity is too high,
and the energy outflow blocked.

We can see, at least qualitatively, how this system must evolve by referring to the heat equa-
tion (16.6c). Within the region of rising interior luminosity, ∂Lint/∂Mr > 0. Thus, ∂s/∂t
is negative, i. e., the specific entropy falls with time. Conversely, the entropy must increase
with time in the region beyond the luminosity peak. Heat is therefore transfered from the deep
interior to more exterior layers. This outward transfer facilitates contraction of the interior. It
also leads, however, to temporary expansion of the surface region. Clearly, the star’s evolution
is more complex than in a fully convective, low-mass object. There, the spatially uniform en-
tropy declines globally, and the star undergoes homologous contraction (§ 16.2). The present
evolution, driven both by internal transfer and surface loss of thermal energy, is distinctly non-
homologous.

Returning to the lefthand panel of Figure 18.7, we see that the convective portion of the star
eventually vanishes, while the entropy profile develops a very steep, exterior spike. Concur-
rently, the luminosity falloff in the outer layers becomes more shallow. For the last time shown,
Lint(Mr) is a monotonically increasing function. At this point, ∂s/∂t < 0 everywhere, and
the star may be considered thermally relaxed.
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Figure 18.7 Thermal relaxation in a 3.5 M� star. The left panel shows the evolution of the spe-
cific entropy, while the right follows the internal luminosity. Both plots cover the first 2×105 yr of
quasi-static contraction. The zero point of specific entropy is arbitrarily set at T = 2.05 × 105 K,
ρ = 5.16 g cm−3.

18.2.2 Luminosity Jump

During thermal relaxation, the star’s surface luminosity increases from the relatively low value
imposed by protostellar initial conditions to the higher one consistent with energy transport in
the deep interior. The net increase, as we see from the figure, is nearly an order of magni-
tude in the present example. We may describe this change as a luminosity jump. As the term
indicates, the rise occurs rather quickly. The time scale for any bulk thermal change is the
Kelvin-Helmholtz value, given in equation (16.1). However, tKH overestimates the time inter-
val if one substitutes for L∗ the low, initial luminosity. The change actually occurs over the
shorter Kelvin-Helmholtz time obtained by using 〈Lcrit〉. In our example, this latter interval is
of order 105 yr.

Figure 18.8 shows the evolutionary path of the 3.5 M� star in the HR diagram. Because
of the early luminosity jump and the concurrent swelling of the radius, the pre-main-sequence
track looks very different from that of a solar-type object. The track first climbs steeply during
thermal relaxation, and even temporarily crosses to the high-luminosity side of the birthline.
The path then becomes shallower and more horizontal as the stellar radius begins to shrink.
This final locus corresponds to the Henyey track in low-mass stars.

We also display in the same figure the pre-main-sequence tracks for other masses. A 2.0 M�
star begins as a fully convective object. Hence, it starts to contract homologously, following a
nearly vertical path in the HR diagram. Within 2 × 106 yr, however, the central opacity falls
so low that a radiatively stable core develops. This core spreads with time, driving convection
to the surface. Meanwhile, some of the heat expelled from the deep interior is absorbed by
the retreating mantle, and the radius of the star swells. This swelling, and an accompanying
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Figure 18.8 Evolution in the HR diagram of three intermediate-mass stars. The masses of these
objects are given in solar units. Open circles mark the onset of central convection due to hydrogen
fusion. Also shown are the stellar birthline and ZAMS.

luminosity rise, are more modest than in the 3.5 M� star. Once it is fully radiative, the object
again follows a shallower track in the diagram.

A star of 5.0 M�, also included in Figure 18.8, begins with no convection at all. During
the protostar phase, an object of this mass derives its luminosity from rapid gravitational con-
traction. The same is true for the pre-main-sequence star shown here. The object is thermally
relaxed, so that the specific entropy at every mass shell falls with time.2 Correspondingly, the
luminosity profile, Lint(Mr), is monotonically increasing at any epoch. Since the star is fully
radiative, equation (16.14) tells us that the surface luminosity L∗ rises gently during contraction,
as R

−1/2
∗ .

Table 18.1 presents more detailed results for these same three masses. As in the analogous
Table 16.2 for low-mass objects, the initial entry represents conditions at the birthline, while
the final one corresponds in each case to the zero-age main sequence. We note immediately the

2 Because the object in question was already contracting as a protostar, its initial entropy profile is not the one estab-
lished through infall. This prior evolution explains how the pre-main-sequence star can be radiatively stable and yet
avoid nonhomologous evolution.
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much shorter evolutionary time scale for intermediate-mass stars. The main reason, of course,
is that tKH itself is less at these elevated luminosities. A second, and related, cause is that the
initial, protostellar radii are even closer to main-sequence values. A star of 5 M� has barely any
pre-main-sequence life, since a protostar of only slightly more mass would be burning hydrogen
at its center while still accreting.

Table 18.1 Evolution of Intermediate-Mass, Pre–Main-Sequence Stars

M∗ = 2.0 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 4.94 3.67 +0.90 6.54 0 1.60
1 × 105 4.14 3.67 +0.87 6.56 0 1.54
3 × 105 3.83 3.67 +0.81 6.58 0 1.35
1 × 106 3.18 3.68 +0.68 6.67 0 0.81
3 × 106 3.21 3.73 +0.86 6.85 0 0.05
8 × 106 1.77 3.94 +1.19 7.26 0.90 0.28

M∗ = 3.5 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 4.23 3.71 +1.04 6.81 0 0.72
5 × 104 4.89 3.72 +1.21 6.81 0 0.17
1 × 105 7.15 3.77 +1.73 6.83 0 0
3 × 105 5.94 3.88 +2.03 6.96 0 0
5 × 105 4.44 3.99 +2.20 7.10 0 0
1 × 106 2.52 4.09 +2.11 7.32 0.90 0.72

M∗ = 5.0 M�

Time R∗ log Teff log L∗ log Tc Lnuc/L∗ Mcon

(yr) (R�) (K) (L�) (K) (M�)

0 6.73 4.07 +2.89 7.08 0 0
1 × 104 5.93 4.08 +2.81 7.12 0 0
3 × 104 5.33 4.10 +2.80 7.16 0 0
5 × 104 4.88 4.13 +2.84 7.20 0 0
1 × 105 3.89 4.20 +2.91 7.32 0.03 0.04
2 × 105 3.09 4.18 +2.66 7.35 0.90 1.04
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18.2.3 Nuclear Burning

Young stars of intermediate mass contain light elements other than hydrogen that are suscep-
tible, at least in principle, to fusion during pre-main-sequence evolution. As we discussed in
§ 16.3, all stars start at the birthline with their full, interstellar supply of lithium. However, the
convection zone in even a star of 1.2 M� is too thin for its base temperature ever to exceed the
ignition value of 3 × 106 K. Herbig Ae/Be stars thus retain their initial lithium abundance as
they evolve toward the main sequence.

The situation regarding deuterium is more involved. Returning momentarily to protostars,
only their outer mantle contains the fuel at the time the radiative barrier is established, while
the interior is soon thoroughly depleted (§ 11.4). Deuterium within the mantle burns, but is
also resupplied continually through accretion. In fact, this convection zone retreats so quickly
toward the surface that the net deuterium abundance first rises with increasing protostellar mass,
then falls gradually to zero.

A pre-main-sequence star within a range of intermediate masses inherits the enriched man-
tle. Table 16.1 listed ∆tD, the subsequent time required to consume deuterium. Lower-mass Ae
stars begin with such a small abundance that this time is negligible. However, the enhanced deu-
terium in the thin mantle of a 4 M� star yields a finite burning time. During this relatively brief
interval, convection driven by the fusion reaction vanishes, as we have already seen. The lumi-
nosity yield from burning in both the radiative and convective outer layers is never comparable
to L∗, and the process does not affect the star’s mechanical evolution.

The contraction of intermediate-mass stars eventually initiates the fusion of ordinary hydro-
gen. As in lower-mass objects, the rate of nuclear energy generation increases rapidly with the
central temperature Tc. For some Tc-value in excess of 107 K, this energy production becomes
great enough to supply the full, interior luminosity, and contraction stops. The fusion of hy-
drogen to helium proceeds through the CN cycle, detailed in equation (11.46). Note again that
these reactions are unimportant in solar-type stars, whose central temperatures are too low to
overcome the strong Coulomb repulsion between protons and neavy nuclei such as 13C.

Referring again to equation (11.46), we see that one of the intermediate products in the CN
cycle is 15N. Protons fusing with this nucleus usually create 12C and an α particle, as indicated.
Occasionally, however, 16O is produced instead. The oxygen nucleus then further reacts with
protons, initiating another cycle that eventually regenerates 15N:

15N + 1H → 16O + γ
16O + 1H → 17F + γ

17F → 17O + e+ + ν
17O + 1H → 14N + α
14N + 1H → 15O + γ

15O → 15N + e+ + ν .

(18.1)

The net effect of the above cycle, like that of equation (11.46), is to consume four protons
and thereby create 4He. Note also that the last two reactions here are also contained within the
other set. Thus, the two cycles are interlocked and constitute the CNO bi-cycle, as illustrated
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Figure 18.9 Coupled reac-
tions of the CNO bi-cycle.
Compare Figure 11.22,
which shows only the
lefthand cycle.

in Figure 18.9. Note that the probability of forming 16O from 15N is only about 10−3 that of
forming 12C. Hence the reactions of equation (18.1) contribute little to the star’s total energy
production. On the other hand, this side cycle is important for nucleosynthesis, being the chief
source for such nuclei as 17O.

Intermediate-mass objects on the main sequence lack the surface convection found in those
of solar mass and below. Conversely, all stars with mass greater than about 1.5 M� have a cen-
tral convection zone immediately surrounding the nuclear-burning core. The reason is that the
CNO reactions are highly temperature sensitive. Thus, all the luminosity is generated very close
to the center. According to equation (16.7), the temperature gradient ∂T/∂Mr rises steeply with
diminishing radius r. Eventually, the specific entropy also begins to rise, the sign of convec-
tive instability. The birth of a central convection zone during pre-main-sequence contraction
is marked by open circles along the three evolutionary paths of Figure 18.8. This event can
also be seen in Table 18.1 as the final rise of the convective mass Mcon in the models of 3.5
and 5.0 M�. For the 2 M� star, the initial, surface convection does not vanish entirely until
3 × 106 yr, shortly before the appearance of the new, central zone.

18.2.4 Stellar Pulsations

Return once more to the earlier contraction of a Herbig Ae star, such as our 2 M� example. One
of the subtler evolutionary effects concerns the mechanical stability of the object’s outer layers.
Over some fraction of the star’s pre-main-sequence life, this region is subject to alternating
expansion and contraction. Such stellar pulsation is well understood theoretically, as the same
basic effect occurs in numerous other objects throughout the HR diagram.

Pulsation is manifested observationally through small, temporal variations of the stellar
brightness. Figure 18.10 is a brief record of the U -band flux from the Herbig Ae star V351 Ori.
This object, with an observed luminosity of 14 L� and effective temperature of 7400 K, has
a theoretically derived mass of 1.8 M�, at the low end of the Herbig Ae range. Over the in-
terval covered in Figure 18.10, the U -magnitude increases and decreases periodically, but with
an amplitude that also varies. The data are well reproduced by a combination of 5 sinusoidal
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Figure 18.10 Oscillations of the Herbig Ae star V351 Ori. Shown as a function of time is the
U -magnitude, relative to an arbitrary value. The data was recorded on a single night in December,
2000. The smooth curve is a best-fit combination of five frequencies.

oscillations. That with the largest amplitude has a period of 0.0841 days, or a little over 2 hours.
It is gratifying that theory predicts the same period for the oscillation in a model of the appro-
priate mass and luminosity. Indeed, this agreement is strong confirmation of the underlying
pre-main-sequence calculation.

How do pulsations arise in the first place? The key fact here is that, because of the star’s
Teff -value, hydrogen and helium become ionized inside, but not too far inside, the photosphere.
That is, ionization occurs in a region with sufficiently low density that it can undergo motion
of appreciable amplitude. Imagine, then, that an outer shell of the star contracts slightly inward
because of a pressure fluctuation. Surrounding layers squeeze the shell. This external work
creates further ionization of hydrogen and helium without increasing the kinetic temperature of
the gas. Since the density increases during contraction, so does the local opacity. As a result,
more of the star’s outgoing luminosity is absorbed, adding thermal energy to the compressed
layer. This shell then expands more vigorously, until its density falls below the starting value.
At this point, the opacity drops. The shell loses thermal energy as it collapses back toward its
starting location, under the influence of stellar gravity. The region is thus executing oscillatory
motion with increasing amplitude, a condition dubbed overstability.3

3 In a linear, perturbational analysis, all physical variables are assumed to vary with time as exp (iωt). For overstabil-
ity, ω is complex, so that the temporal function has both oscillatory and exponentially growing factors. Compare the
simpler case of isothermal cloud dynamics in § 9.1.
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This means of producing self-excited, radial pulsations through opacity variation is known
as the κ-mechanism. Calculations show that the specific layer most responsible for driving the
motion is that where helium becomes doubly ionized. The transition from He II to He III occurs
at a temperature of 4 × 104 K. A glance at Figure G.2 in Appendix G shows that κ decreases
with T in this regime more strongly than it increases with the density ρ. Slightly interior to
the helium ionization zone, the temperature rises during a shell’s contraction. The local opacity
falls, and motion tends to be damped in this region. Indeed, such damping is what eventually
limits the growing amplitude of radial excursions.

Thus far, our description applies to a single, normal mode of oscillation. If one such pattern
can be excited in a given star, then others can, as well. Each normal mode has its own char-
acteristic period. In the case of V351 Ori, the figure of 0.0841 days refers to the fundamental,
i. e., the longest period allowed. The observations show that additional modes are also present,
but with lower amplitude. These are overtones and have periods shorter than the fundamental.
Our particular star provides an especially clean example, where the full variation in flux can be
reproduced simply by a combination of discrete modes. In other objects, the fluctuations are not
as well understood. More complex, nonradial oscillations may be present, or the flux changes
may arise in part from variations in circumstellar dust extinction.

18.2.5 The Instability Strip

We have emphasized that the self-excitation of a normal mode requires fortuitous conditions
pertaining to ionization. In a star with the same mass as V351 Ori but a younger age, the
surface temperature is lower. Thus, helium is ionized too deeply for oscillatory motion to occur.
Conversely, ionization occurs at such a shallow depth in an older and hotter star that the outgoing
luminosity cannot be absorbed during a shell’s contraction. A star of fixed mass, therefore, is
only susceptible to pulsation over a limited range of age and effective temperature. Within the
HR diagram, the object must fall within the pre-main-sequence instability strip. Figure 18.11
displays this region, as ascertained through numerical calculations. Here, stellar models of
various masses and ages were subjected to perturbations corresponding to the three lowest radial
modes, and the oscillations were followed over many cycles to check for growth or decay. Note
that the luminosity and temperature of V351 Ori place it squarely in the middle of the region,
as also shown in the figure.

The lefthand edge of the instability strip touches the birthline at a Teff -value of 7100 K,
corresponding to an early-F spectral type. Because the strip veers to higher Teff with decreasing
luminosity, most pulsating objects should be Ae stars, a prediction in accord with the dozen or so
examples currently known. Depending on its mass, a given star only spends from 5 to 10 percent
of its pre-main-sequence lifetime within the strip. Thus, the potential number of candidate
sources is rather limited. Many more pulsating stars, however, are also observed in just this
region of the HR diagram. These are older objects, also of intermediate mass, that are either still
in, or have recently evolved past, their main-sequence phase. Both the photometric oscillation
amplitudes and periods of these δ Scuti variables are similar to those in the relevant subclass
of Herbig stars. We may thus consider the latter as another instance of the well-documented,
δ Scuti-type variation.
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Figure 18.11 The pre-main-sequence instability strip in the HR diagram. Stars within this shaded
region are subject to self-excited, radial pulsations. Also shown are the birthline, ZAMS, and
evolutionary tracks for the indicated masses, in solar units. The filled circle represents V351 Ori.

A point made earlier bears some elaboration. Despite the agreement between the predicted
fundamental period for V351 Ori and the observed one, the current photometric data on this
and other young pulsators are rather sparse, making it generally difficult to identify modes
with confidence. The situation will improve dramatically when satellites begin monitoring both
photometric and spectroscopic variations. More precise and extensive observations will not
only pinpoint the masses of stars that may not be components of binary pairs, but will also act
as probes of the objects’ internal structure, just as helioseismology currently does for the Sun.

As we leave the topic of stellar pulsation, let us broaden our perspective to note that the
shaded area demarcated in Figure 18.11 is actually the lowest portion of a much larger instability
strip. Stars with effective temperatures similar to those of interest here, but with luminosities
from 500 to 3 × 104 L�, constitute the Cepheid variables. These are evolved supergiants that
are either burning hydrogen in a thin shell or helium in their central cores. A given star can
pass through the instability strip many times as its post-main-sequence evolutionary path loops
around in the HR diagram. The period for radial pulsations, which are again driven by the
κ-mechanism, is greater by an order of magnitude than for δ Scuti variables. Moreover, this
period is systematically longer for stars of higher average luminosity. Historically, this last fact
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is the most important of all, since it enabled observers to gauge the absolute magnitude of a
pulsating star, and thereby measure its distance. It is through this means that both the structure
of our own Galaxy and the location of analogous, neighboring systems were first determined.

18.3 Thermal and Mechanical Effects

All Herbig Ae/Be stars exhibit, to varying degrees, both optical reddening and excess radiation
at longer wavelengths, above that emitted by a bare photosphere. The dust grains responsible
for these two effects are located in the sparse medium between the source and Earth, as well
as in relatively dense configurations surrounding the stars themselves. To analyze the situation,
we proceed in the same manner as for T Tauri stars. That is, we first obtain the spectral energy
distribution for each source, properly augmenting the flux in each waveband to compensate for
interstellar dust extinction. As we now see, the results point to key differences between Ae/Be
stars and their low-mass counterparts.

18.3.1 Infrared Excess

The variety of spectral energy distributions actually observed divides neatly into three cate-
gories. These are displayed, through representative examples, in Figure 18.12. The figure also
shows, as dashed curves, the expected flux at each wavelength from the stellar photospheres.
Construction of these curves requires, of course, a prior determination of each star’s spectral
type. This information was also needed when comparing observed and intrinsic colors, i. e.,
when dereddening the full spectral energy distribution. It is an important feature of Ae/Be stars,
already mentioned in § 18.1, that their visible absorption lines are not partially filled in by
continuum emission. Thus, the spectral type and the star’s own flux contribution are relatively
secure.

In AB Aur, the A0 star shown in the top panel, the flux climbs above stellar values for
wavelengths exceeding 1 µm. On the other hand, λ Fλ still declines with λ beyond the near-
infrared. This so-called “Group I” spectral energy distribution characterizes the majority of
Herbig Ae/Be stars. Perhaps one fourth of observed sources fall into Group II, exemplified
by LkHα 198 in the middle panel. Here, λ Fλ is flat or rising, at least between 3 and 10 µm.
In the remaining, Group III sources, λ Fλ not only declines sharply in this range, but the full,
dereddened spectral energy distribution is barely distinguishable from that of the star alone. Our
example here is the B3 star BD+65◦1637, previously shown in Figure 18.2. One sees only a
hint of excess emission at the longest wavelengths.

It is tempting to link Group III stars with the Class III subset of lower-luminosity sources.
We already know that BD+65◦1637, in particular, has cleared out much of its immediate en-
vironment. The minor infrared excess that remains plausibly stems from free-free emission by
hot, circumstellar gas, as in classical Be stars. This lack of a dusty environment is indeed remi-
niscent of the Class III situation. On the other hand, BD+65◦1637, like all Herbig Ae/Be stars,
produces Hα in emission, while Class III objects are either weak-lined or post-T Tauri stars,
without significant flux in the line. Whatever the origin of Hα emission in our B3 star, it is
assuredly not tied to the presence of a disk, for which there is no evidence.
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Figure 18.12 Spectral energy distributions for three representative Herbig Ae/Be stars. The plot
for AB Aur has been shifted upward by ∆log (λ Fλ) = +1.5, while that for BD+65◦1637 has
been lowered by ∆ log (λ Fλ) = −2.5. Dashed curves are blackbodies at the corresponding
effective temperatures.

At the other extreme, Group II objects, since they exhibit the largest infrared excess, should
also be the most deeply embedded. This expectation is confirmed through molecular line obser-
vations. The dense tracers CS and HCN are detected in a region spanning 104 AU around our
sample star LkHα 198. Heated dust within this envelope, and perhaps also from an interior disk,
must supply the copious infrared emission. The closest analog in the low-luminosity regime is
Class I sources. We stress, however, that Group II stars are still optically visible, despite rather
high values of AV .

Most detailed studies have focused on the relatively populous Group I sources. Referring
again to Figure 18.12, the declining λ Fλ in AB Aur in the mid- and far-infrared recalls Class II
T Tauri spectra, for which we ascribed disks with power-law temperature profiles (§ 17.3). The
near-infrared dip between 1 and 3 µm may similarly be explicable by a central hole in the disk, as
in the T Tauri star GM Aur. A closer look, however, reveals problems with this interpretation.
In all Group I sources, the infrared excess is so large that it rivals the stellar luminosity (For
AB Aur, LIR/L∗ = 0.48.) A flat, passive disk is thus ruled out. A flaring structure would
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intercept more stellar radiation and hence give a larger ratio LIR/L∗. However, the resulting
spectral energy distribution peaks at a longer wavelength than observed.

One might argue that the disk is self-luminous, i. e., that it somehow releases sufficient
energy to allow massive accretion onto the central star. We have seen, however, that Ae/Be stars
lack the optical continuum excess created by shock-generating accretion flows. More generally,
we recall that disks are invoked for T Tauri spectra because a more isotropic distribution of dust
would obscure the central object at visible wavelengths. However, if the luminosity from disk
accretion were to approach that from the star, we would have

G M∗ Ṁd

R∗
≈ L∗ , (18.2)

where Ṁd represents the rate of mass transport from the disk to the stellar surface. Here we have
utilized the fact that most of the energy release occurs close to the star, because of its deepening
potential well. We also know that M∗ exceeds the disk mass Md, so we find

Md

Ṁd

<
G M2

∗
R∗ L∗

. (18.3)

The expression on the right is the Kelvin-Helmholtz time for the star. Evidently, our self-
luminous disk would drain itself in a time short compared to that over which the star evolves.
The disk must continually be replenished, presumably by matter from a more extended, infalling
envelope. We are thus led back to the very structure we sought initially to avoid. In summary,
neither active nor passive disks seem able to explain the Group I infrared excess.

18.3.2 Dusty Envelopes

The resolution of this paradox is twofold. First, the bulk of excess emission in Group I sources
must not originate in a self-luminous disk, but in some more extended structure. Second, this
dusty configuration must have sufficiently low column density to leave the central star optically
visible. Here, we are aided by the larger intrinsic luminosities of Herbig Ae/Be stars. But
it is clear that the circumstellar matter cannot resemble the infalling envelope we described
for spherical protostars in Chapter 11; the resulting densities are simply too large. A sparser
structure is called for; one with little or no associated infall.

Theorists have offered a number of detailed prescriptions for spherical envelopes around
Herbig Ae/Be stars, all designed to match observed spectral energy distributions. In some mod-
els, the envelope surrounds a much smaller, interior disk. The latter is invoked to account for the
flux at submillimeter wavelengths, which is difficult to produce in a dust shell. Others account
for this long-wavelength component by diminishing β, the exponent characterizing the falloff
in grain opacity with wavelength. There is evidence, from intercomparison of color excesses,
that the grains surrounding Ae/Be stars are larger than in the general interstellar medium. Grain
coagulation would indeed create a relatively shallow decline in κλ at large λ.

It should be clear from our brief description that there is considerable latitude in building
models of this kind. Even within the arbitrarily restrictive framework of a perfectly spherical
envelope, one may freely alter not only the spatial distribution of dust, but also the composition
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and size of the grains themselves. This freedom, of course, reflects our ignorance of the true
circumstellar environment. One may at least hope to discern common features of those models
that successfully reproduce observed spectra. We find, as anticipated, that the average density is
lower than in canonical protostellar envelopes, but also higher than that of a cloud core forming
a T Tauri star. A figure of nH ∼ 105 cm−3 is representative, with an associated linear scale of
103 AU. These numbers refer either to the inner, heated portions of an individual cloud fragment
that spawned the star, or to an entity formed through coalescense of preexisting cores.

The inner hole required in disk models finds an analog within the envelope picture. As we
saw when discussing protostellar infall, dust approaching too close to the central object becomes
hot enough to sublimate. Thus, there is indeed a hole in the dust distribution, regardless of
details of the model. On the other hand, it is not obvious that there should be a corresponding
absence of gas. Even a relatively modest gas density could produce appreciable radiation when
bathed by the star’s copious ultraviolet photons. Earlier-type Herbig Be stars should create an
interior HII region. Photons leaving this region have energies below 13.6 eV, but still ionize
carbon and other elements farther out (see below). Free-free and bound-free transitions in these
species contribute to the near-infrared spectral energy distribution.

Direct imaging of Herbig Ae/Be environments has been achieved in some cases. On a scale
of 0.1 pc, optical reflection nebulae and the single-dish radio observations cited in § 18.1 reveal a
clumpy structure. Mapping of CO lines also gives asymmetric contours, centered on the star but
elongated. We shall return to these latter observations in the next section, when we summarize
evidence for circumstellar disks. Within the same size range, from 102 to 103 AU, interfer-
ometry shows halos of scattered infrared light, particularly around more embedded objects like
LkHα 198. These structures may persist quite close to the star itself, just as the theoretical dust
shell models indicate. Our prototypical Group I object, AB Aur, scatters near-infrared light in
a roughly symmetric region spanning 0.6 AU. Note that few T Tauri stars have shown similar,
direct evidence for truly three-dimensional distributions of dust.

Circumstellar grains not only scatter continuum radiation, but also produce their own spec-
tral lines. Aircraft and satellite observations of Herbig Ae/Be stars in the mid-infrared reveal
sharp emission features. Lines such as those at 3.3 and 6.2 µm are signatures of PAHs, the
very tiny grains of nearly molecular size. This emission is more prominent near Be stars, which
supply more of the ultraviolet photons that excite the transitions (§ 2.4).

The best-studied spectral line is the broad feature near 10 µm, associated with the SiO bond
in silicate grains. Recall that deeply embedded, low-mass stars have a strong absorption dip
in this wavelength regime (see Figure 11.24). Optically revealed T Tauri stars usually exhibit
emission at 10 µm, but a significant fraction show the feature in absorption. Those for which the
absorption is especially deep also have the highest polarization in their optical light. A plausible
explanation for this trend is that the silicates reside mainly in circumstellar disks. When these
are viewed nearly edge-on, infrared continuum light from near the star is strongly absorbed,
leading to a pronounced dip in the spectral energy distribution. Any optical light received is
scattered off material above and below the disk surface, resulting in polarization.

Many Herbig Ae/Be stars also exhibit a spectral signature at 10 µm. Again, one sees the line
both in emission and absorption. Those stars with absorption dips are often optically polarized.
However, there is no longer a correlation between the degree of polarization and the depth of
the dust feature. The inference is again that circumstellar grains are not wholly confined to
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a flattened configuration. On the other hand, the very fact of polarization demonstrates that
the stellar environment, at least that part responsible for scattering optical photons, cannot be
spherically symmetric. We shall return to this point, as well as to the 10 µm feature, in § 18.4.

18.3.3 Photodissociation Regions

The cloud matter surrounding some Herbig Be stars glows brightly in the far-infrared. This
luminosity is much too great to represent scattered emission from the star itself. Instead, the
radiation must stem from heated dust grains. Earlier, we noted that far-ultraviolet photons es-
caping an HII region can still ionize carbon and other elements, thereby contributing to the
observed near-infrared component of the spectral energy distribution. We recall from Chapter 8
that these same photons also heat both the dust and gas, the latter through the grain photo-
electric effect. In other words, Herbig Be stars create photodissociation regions, just like their
main-sequence counterparts.

While most of the emitted radiation is in the far-infrared continuum, there is also substantial
flux in atomic forbidden lines, especially [O I] 63 µm and [C II] 158 µm. Consider again the
NGC 7129 region shown in Figure 18.2. Satellite studies find emission in both lines peaking
toward the embedded B6 star LkHα 234. There is also more diffuse radiation surrounding
BD+65◦1637. It appears, in fact, that there are two photodissociation regions, one associated
with each star. That created by LkHα 234 has a 63 µm flux higher by about a factor of two
than in 158 µm. Accounting for self-absorption by cold O I along the line of sight, the intrinsic
ratio ΛOI/ΛCII is even greater. In § 8.3, we learned that this ratio becomes elevated in denser
cloud material. In fact, the derived nH from heated gas near LkHα 234 is of order 105 cm−3,
with a far-ultraviolet enhancement factor of G◦ ∼ 100. The photodissociation region created
by BD+65◦1637 lies in the molecular ridge just to the left of the evacuated cavity. Here nH is
lower by a factor of 100.

The denser and more compact photodissociation region also emits molecular lines in the far-
infrared regime. Satellite observations have detected various rotational transitions of CO. Here,
the upper J-values are very high, from 14 to 19. Energizing these levels requires a relatively
nearby star’s ultraviolet radiation bathing the cloud medium. The alternative mechanism, shock
heating from a stellar wind, is ruled out observationally. In both C- and J-type shocks, a principal
coolant is H2O formed downstream in the postshock gas. Some H2O masers are actually seen
near LkHα 234, demonstrating that a wind is indeed present. Nevertheless, the total flux in H2O
lines is well below that predicted by shock models.

Far-ultraviolet photons entering a photodissociation region destroy all molecular hydrogen
within a substantial volume. Those with energy between 11.2 and 13.6 eV excite the molecule
to higher electronic states, from which it may fall apart into isolated atoms (§ 5.2). Viewing
the matter globally, a fraction 〈βi〉 ≈ 0.15 of all emitted photons in this energy range destroy
a hydrogen molecule somewhere within the region. The other photons are reemitted at longer
wavelengths and escape. In steady state, each dissociation is balanced locally by the creation of
H2 from a pair of hydrogen atoms. Thus, we may determine the radius RH2 of dissociated H2

in essentially the same way we obtained the Strömgren radius marking the boundary of ionized
hydrogen.
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We recall that H2 forms through the recombination of atoms on grain surfaces. The volu-
metric formation rate is given by equation (5.10):

RH2 =
1
2

γH nd σd nHI Vtherm . (18.4)

Here, nd and σd are the grain number density and geometric cross section, respectively, while
γH is the probability that each hydrogen atom, traveling at the thermal speed Vtherm, sticks
to the grain after collision. To pursue the analogy with HII regions, we first rewrite nd σd as
nH Σd, following equation (2.42). After further equating nH to nHI, we have

RH2 = αrec(HI) n2
HI . (18.5)

The recombination coefficient for HI gas is

αrec(HI) ≡ 1
2

γH Σd Vtherm , (18.6)

and has the numerical value 3.3 × 10−13 cm−3 s−1 at the representative temperature of 500 K
for the photodissociation region.

Let us denote by Ndiss the rate at which the central star emits photons between 11.2 and
13.6 eV. Then the radius of the HI region is given by an expression analogous to equation (15.3):

RHI =
[

3 〈βi〉Ndiss

4 π αrec(HI) n2
H

]1/3

= 0.01 pc
( Ndiss

1045 s−1

)1/3 ( nH2

105 cm−3

)−2/3

.

(18.7)

In the second form of this equation, we have used representative values of Ndiss and the sur-
rounding density nH2 that are appropriate for LkHα 234.

Although the typical size of the HI region would appear to be quite small, one should bear
in mind that the corresponding Strömgren radius, for the same star immersed within the same
cloud, is smaller yet. Within equation (18.7), the coefficient αrec(HI) is four orders of magnitude
less than α′

rec in equation (15.3), while Ndiss always exceeds the ionizing flux from the same
star. For a B6 star like LkHα 234, this flux ratio is 2 × 104. A more accurate evaluation of
RHI accounts for partial absorption of outward photons by dust grains and lowers the numerical
coefficient in equation (18.7) by a factor of 2 at the B6 spectral type.

The HI region formed around a Herbig Ae/Be star is initially overpressured with respect to
its surroundings. The dissociated volume thus expands into the cloud medium. This expansion,
in the case of LkHα 234, has presumably been halted by ambient pressure. In contrast, most of
the cloud material around BD+65◦1637 has been driven outward, leaving only a relatively thin
ridge of heated and dissociated gas.

18.3.4 Winds

Herbig Ae/Be stars also disrupt their surroundings through the action of strong winds. As in
their low-mass counterparts, the primary evidence for winds is in profiles of emission lines.
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Figure 18.13 Observed Hα
profile of the Herbig Ae star
AB Aur. Specific flux is mea-
sured relative to the adjacent
continuum level.

Consider the strongest line of all, that of Hα. The detailed profile of a given star can change
erratically over a very short time. Nevertheless, these variations generally occur within a well-
defined morphological type. Most Hα profiles are double-peaked. As in T Tauri stars, the
central absorption feature is usually blueshifted by a modest velocity. (Recall the case of CI Tau,
seen in Figure 17.8.) There are fewer symmetric examples, analogous to FM Tau. However, a
fraction of stars exhibit true P Cygni profiles, in which the blueshifted absorption component
dips below the continuum. In summary, most Herbig Ae/Be stars show evidence, through Hα,
of material receding from the central object, i. e., a wind.

Figure 18.13 displays the Hα emission from AB Aur. At this epoch, the profile is unam-
biguously of the P Cygni type. The minimum in the blueshifted absorption dip occurs at a radial
velocity of Vr = −200 km s−1. This figure must represent the speed of relatively cold material
moving toward us against a background of hotter gas emitted by shocks outside the star. As in
T Tauri stars, the large overall breadth of the Hα profile indicates that the motion of the shocked
gas is complex, with velocity vectors spanning a range of orientations.

Nevertheless, there are other indications that the wind eventually attains a well-ordered,
anisotropic structure. Stars like AB Aur, with P Cygni profiles in Hα, also exhibit emission
in other lines traditionally associated with chromospheric activity, including the Mg II doublet
near 2800 Å. Figure 18.14 shows the flux in this spectral region, as detected via satellite, on two
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Figure 18.14 Profiles of the Mg II h and k lines in AB Aur, taken on two successive nights. The
continuum level is shown in each panel. Also indicated are the values of Vmax, the edge velocity
in the absorption dip of the Mg II k line.

successive days. Both the Mg II k line (centered at 2796 Å) and Mg II h (2803 Å) again have
P Cygni profiles, with strong absorption components. It is also clear that the detailed profiles
change with time, even over this brief interval. In particular, the blueward edge of the Mg II k
absorption trough has shifted to a less negative velocity.

The absorption edge traces the highest-speed material present in the wind at any time. If
we plot this velocity, Vmax, over a more extended time, we find that it varies sinusoidally, as
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Figure 18.15 Temporal variation of Vmax, the edge velocity of the Mg II k absorption dip in
AB Aur. The smooth curve is the best-fitting sinusoid, with indicated period.

seen in Figure 18.15. The derived period is 45 h. Note that the equatorial velocity of the star,
as obtained from the broadening of optical absorption lines, is Veq sin i = 75 km s−1. The
object’s effective temperature and luminosity imply a radius of 3 R�. Thus, the maximum
rotation period, corresponding to an inclination i = 90◦, is 49 h.

It therefore appears that the wind from AB Aur is being modulated in step with the star’s ro-
tation. The outflowing gas, at the point where Mg II absorption occurs, is clearly not spherically
symmetric, but is somehow tracking the conditions with which it was launched at the stellar
surface. One intriguing possibility is that the wind consists of high- and low-velocity streams,
each emitted from a different portion of the surface. The velocity Vmax then peaks whenever
the high-speed stream is directed toward the observer.

A handful of Ae/Be stars exhibit a wind signature in the ultraviolet: redshifted or blueshifted
emission in Lyα at 1216 Å. There is also indirect evidence. Some sources appear to be driving
CO outflows. Figure 16.2, which displayed a heterogeneous collection of intermediate-mass
stars in the HR diagram, singled out those with outflows. We noted that this subclass is situated
especially high up in the diagram, just below the birthline. We also cautioned that, at least in
some instances, the star actually powering the fast-moving CO may be an unresolved neighbor
or binary companion.

Such potential confusion of sources is a general problem for Herbig Ae/Be stars, arising
both from their location in crowded regions and from their greater distance. The same issue
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enters any discussion of jets. Several dozen Ae/Be stars have, at one time or another, been
identified as the sources of either continuous jets or chains of discrete, Herbig-Haro knots. An
additional difficulty here is that the intermediate-mass object may create a reflection nebula
whose continuum emission overwhelms the relatively weak jet. In any case, higher-resolution
imaging has sometimes led to retraction of the original claim. A good example is the Herbig
Be star LkHα 234 (Figure 18.2), which appears, from optical images, to drive a jet down the
central axis of a broad reflection nebula. Additional, millimeter and mid-infrared studies show
that the source of this jet, and of an oppositely directed CO outflow lobe, is more likely to be an
even more embedded object located nearby.

The situation regarding molecular outflows and jets is thus less settled than one might hope.
Nevertheless, the spectroscopic evidence, both from Hα and other lines, leaves no doubt that
Ae/Be stars do power winds. But this fact itself presents a major conundrum. Our theoretical
account of pre-main-sequence winds in § 13.4 focused on the mechanism of centrifugal ejection
from magnetized objects. This picture, in turn, is motivated by our knowledge that T Tauri stars
are at least partially convective and hence generate magnetic fields through dynamo activity.
The situation is entirely different for intermediate-mass objects. Apart from transient effects
during their thermal relaxation, these stars are stable against convection. Any surface magnetic
fields that exist must have a different origin.

There is, in fact, scant empirical evidence for magnetic fields associated with Herbig Ae/Be
stars. Measurements of Zeeman broadening have thus far been inconclusive. It is true that a
dozen or so objects have radio flux at centimeter wavelengths. The emission, however, is gener-
ally unpolarized and appears to be thermal, presumably arising from the ionized component of
the wind. Again, the situation is unlike that for T Tauri stars such as V773 Tau, whose polarized,
compact radio emission indicates the presence of an underlying field (§ 17.1).

What, then, powers Herbig Ae/Be winds? Our previous, general discussion of wind origins
further sharpens the dilemma. The earliest-type Herbig Be stars still have too small a luminosity
to drive winds through radiative acceleration. Furthermore, even the crudest estimates of mass
loss from Ae/Be stars (typically, Ṁ � 10−7 M� yr−1) show that the wind cannot be driven
by thermal pressure. The associated corona would be readily detectable through its powerful
X-rays, contrary to observation. Speculations about the other driver traditionally considered,
Alfvén-wave pressure, would seem premature in the absence of good evidence for surface fields.
For the time being, the origin of Ae/Be winds remains a mystery.

18.3.5 X-Ray Emission

Although X-rays are too weak to help explain the wind origin, this emission component does
exist, with characteristics that are gradually becoming clear. A succession of spaceborne instru-
ments, beginning with the Einstein satellite, have found X-rays in about a dozen stars, roughly
half of the observed sample. While such numbers make generalizations difficult, the data reveal
a luminosity LX that is a fraction 10−6 to 10−5 of the corresponding stellar value.

We may place this result into context by first recalling that LX/L∗ for T Tauri stars tends
to be greater, of order 10−4. On the other hand, O and early-B stars, which also display X-rays,
typically have LX/L∗ ∼ 10−7. The physical origin of the emission in the two groups is also
very different. In T Tauri stars, X-rays plausibly arise from reconnection of dynamo-generated
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magnetic loops near the stellar surface (§ 17.1). Massive stars, which lack outer convection
zones, create this emission through shocks generated by instabilities within the stellar wind
(§ 15.3).

Which of these two explanations, if either, applies to Herbig Ae/Be stars? Our question
assumes, of course, that the X-rays do not stem from an unseen, lower-mass companion, a
nontrivial assertion. Some Herbig Be stars have an associated LX that would be too large
for a T Tauri star. For the others, the attribution remains uncertain. In any event, a solar-type
dynamo mechanism is inapplicable to radiatively stable objects. We are left to consider the wind
hypothesis. Until the origin and configuration of the flow itself is better understood, we cannot
gauge the likelihood of internal shocks, arising either from the wind itself or from impact with
stationary matter. Note that the temperature required for the X-rays (T ∼ 107 K) can indeed
be produced, at least in principle, by a shock speed comparable to the highest observed wind
speeds, about 500 km s−1. As the star ages and its wind dies away, so does the X-ray flux. This
picture is at least consistent with the fact that LX falls to undetectable levels in main-sequence
stars with spectral types from mid B to early F.

18.4 Gaseous and Debris Disks

We have seen the difficulty of invoking thermal disk emission to account for the infrared excess
seen in most Herbig Ae/Be stars. Nevertheless, such entities must exist, if only because we
witness their remnants – flattened configurations of orbiting dust – around older objects in the
same mass range. Let us now review more systematically the observational study of disks
around Ae/Be stars, including the evolutionary development of these structures.

18.4.1 Spectral Line Studies

The spectral energy plots for AB Aur and LkHα 198 in Figure 18.12 include significant com-
ponents in the millimeter regime. Historically, strong continuum flux at λ � 1 mm was used
to bolster the idea that a star is surrounded by a dusty disk. The basic argument is the famil-
iar one that a spherical distribution of grains with this amount of long-wavelength emission
would obscure the object completely in the visual. As already noted, however, the shell models
themselves can accommodate a diversity of observations through appropriate changes in vol-
ume density and internal composition of the grains. Additionally, direct imaging fails to resolve
the continuum emission from relatively unobscured objects like AB Aur. More embedded stars,
such as LkHα 198 and LkHα 234, do have spatially extended emission, but this could arise
from warmed dust in their clumpy environments.

Stronger evidence for disks is potentially available from spectral lines originating in the gas.
Here, one hopes to image flattened structures that are manifestly rotating about their central
stars, as seen through Doppler shifts of the line in question. This hope has been realized to
some degree, although the case for disks remains weaker than in T Tauri stars. Figure 18.16
provides two examples of interferometric maps utilizing CO. We also show, for comparison,
the telescope beam in each case. On the left is the gaseous structure around AB Aur, as seen
in the 13C16O (J = 1 → 0) transition. While the configuration is clearly asymmetric, its true
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Figure 18.16 Interferometric images of 13C16O (J = 1 → 0) emission around the stars AB Aur
(left) and HD 163296 (right). Angular offsets are relative to the phase center of each field, which
does not coincide precisely with the stellar position, shown here symbolically. Also shown in each
case is the beam size and orientation.

shape is hard to discern, as the minor axis is only marginally resolved. The mean, i. e., intensity-
weighted, radial velocity exhibits a smooth gradient along the major axis, with a total range of
2 km s−1. Whether or not this variation represents Keplerian motion is still unclear. In the right
panel, we show gas around the star HD 163296, now mapped in the 12C16O (J = 2 → 1) line
at 1.3 mm. Here, the full structure is better resolved, but it is also more irregular in shape. The
mean radial velocity again changes along the major axis.

Both AB Aur and HD 163296 have spectral types of early A. It is significant that nearly
all the objects with excess millimeter emission, whether in the continuum or lines, are either
Ae or late-Be stars. Conversely, stars whose spectral type is earlier than about B5 rarely have
significant flux in this regime. It is true that more massive stars tend to be farther away, but
the higher millimeter luminosities already seen would be detectable. The implication is that
the circumstellar gas and dust being sampled by these observations is absent in the higher-mass
population.

We have encountered this situation before, in a slightly different context. After noting the
paucity of evidence for disks around main-sequence O stars, we saw in Chapter 15 how their
ultraviolet photons are able to destroy, through photoevaporation, any structures inherited from
the formation epoch. However, this mechanism is inadequate for the objects of interest here.
Equation (15.50) gives the theoretical rate of efflux from a disk outside its gravitational radius
�g. Consider a Herbig star of spectral type B4, corresponding to Teff = 1.7 × 104 K. If we
substitute into equation (15.50) M∗ = 7 M� and use the appropriate ionizing photon output of
N∗ = 6 × 1042 s−1, we find a mass loss rate of 3 × 10−8 M� yr−1. Thus, a disk with initial
mass 10 percent of M∗ would need 2 × 107 yr to vaporize, far longer than the object’s pre-
main-sequence lifetime. Either the disk never formed, or other factors, such as wind erosion,
predominate.
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Even among objects that do have millimeter flux, the additional disk signatures found in
T Tauri stars are curiously weak or absent. For example, we recall that optical forbidden lines,
most notably [OI] 6300 Å, tend to be blueshifted. The common interpretation of this fact is that
the redshifted emission that would arise from receding gas in the stellar wind is being occulted
by an opaque disk. Many Herbig Ae/Be stars also exhibit [O I] emission, presumably arising
from shocks generated in their winds. Usually, however, the line profile is either symmetric or
only modestly suppressed in the red wing. This finding may mean that the winds are relatively
broad, as suggested also by the apparent lack of molecular outflows and jets (§ 18.3).

Permitted optical emission lines in Herbig Ae/Be stars, such as those of the Balmer series,
do not commonly exhibit deep absorption dips in the red. Such inverse P Cygni profiles are the
spectroscopic sign of infall for the T Tauri class. Of course, we do not know the true source of
the infalling gas, even among these objects. But if even part of the material flows from the inner
regions of disks, then the rarity of the effect in intermediate-mass stars is puzzling. We note in
passing that the infall signature does appear more frequently in ultraviolet lines. Perhaps a third
of Herbig Ae stars show the effect, which is unseen at earlier spectral types.

These negative or ambiguous results should not allow us to lose sight of the secure fact that
matter just outside Herbig Ae/Be stars is distributed anisotropically. The difficulty has been in
establishing the specific, disk-like geometry and kinematics. As further evidence of anisotropy,
we need only recall that the optical emission is often linearly polarized. Photons are evidently
being scattered by dust grains in the stellar environment. These grains cannot reside in a purely
spherical envelope, which would yield no net polarization. The effect is strongest, and most
variable, in the UX Ori stars discussed previously. Note that these sources all have spectral
types of either A or late B. It appears, once again, that the more massive Herbig Be stars have
efficiently cleared out their immediate surroundings.

18.4.2 Dust Grain Processing

Those stars that still retain dusty material often exhibit broad emission near 10 µm, as mentioned
in § 18.3. The detailed profile of this spectral feature is sensitive to the grain structure. It is in-
teresting, therefore, that the profile evolves with time. Figure 18.17 illustrates the point through
two representative spectra. The top panel shows observations of the now-familiar AB Aur, an
A0 star with an age of 2 × 106 yr. Below is HD 100546, an object similar in spectral type (B9)
but closer to the main sequence, with an age of about 1 × 107 yr. The most obvious change in
the profile is the shift in its peak, from 9.7 µm in AB Aur to 11.3 µm in the older object.

Dust radiating in this regime is being heated to a temperature of roughly 500 K. Laboratory
studies, coupled with theoretical modeling, find that it is the smaller, and more amorphous, sili-
cates whose emission peaks near 9.7 µm. (The same feature, often seen in absorption, is created
by dust in the interstellar medium.) Conversely, larger and more crystalline material has a profile
that peaks at a longer wavelength. The particular value of 11.3 µm seen in HD 100546 indi-
cates the presence of the mineral forsterite (Mg2SiO4) and also coincides with a PAH emission
feature.

The picture, then, is that the grains, while heated, are nonetheless in a quiescent environment
that allows them both to agglomerate and to gradually assume a more ordered structure. This
finding is in accord with the inference, based on optical colors, that grains near Herbig Ae/Be
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Figure 18.17 Spectra of mid-infrared emission from AB Aur (top panel) and the older star
HD 100546 (bottom panel). Note the shift with age of the peak flux.

stars are larger, on average, than those in the interstellar medium. Finally, we noted earlier
that spherical envelope models need the dust opacity to have a relatively weak dependence
on wavelength in the millimeter regime to match observed flux values. Enhanced grain size
naturally gives this property.

The top panel of Figure 18.18 shows the full spectral energy distribution for HD 100546.
It is clear that the object still emits copiously in the infrared. The excess, long-wavelength
luminosity is 0.51 times the stellar value of 32 L�. Indeed, the rise in flux from the near- to
mid-infrared is reminiscent of Group II Herbig Ae/Be stars (recall Figure 18.12). In the present
case, however, the visual extinction is too low for the star to be embedded within a massive,
opaque envelope. Again, a flattened structure is more appropriate. Note that the spectral en-
ergy distribution exhibits a strong dip just shortward of 10 µm. Such a depression, we saw in
Chapter 17, suggests truncation of the disk at its inner edge.4

Absence of gas close to the star is not a surprise. Ultraviolet photons from this B9 object can
dissociate ambient molecules and ionize the atomic component. The dip in the spectral energy
distribution, however, attests to the lack of dust within roughly 10 AU from the stellar surface.
There is copious material beyond that distance, as seen through the large infrared excess. It
appears, then, that the system of orbiting grains has been somehow cleared, perhaps by infall
onto the star. Infall motion is directly seen in the ultraviolet, where gaseous emission lines
exhibit redshifted absorption. Curiously, the species displaying this effect are either neutral

4 All three spectral energy distributions in Figure 18.18 also have strong dips shortward of 0.4 µm. This feature is
intrinsic to the photosphere and represents absorption by partially ionized hydrogen in the star’s outer layers.
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Figure 18.18 Spectral energy distributions of intermediate-mass stars close to, or on the main se-
quence. From top to bottom, the three objects have increasing age and decreasing infrared excess,
as measured relative to blackbodies at the appropriate effective temperatures (dashed curves).
Note the strong dips in photospheric flux near log λ = −0.4. The top curve has been shifted
upward by ∆ log (λ Fλ) = +2.5, the bottom downward by ∆ log (λ Fλ) = −4.0

(e. g., C I) or lightly ionized (S II). Given our previous remarks, the presence of gas moving at
high speed, and thus situated relatively close to the star, is unexpected. Perhaps this gas arises
through evaporation of infalling, solid material.

The dust component of the disk around HD 100546 is directly observable through scattered
optical and near-infrared light. Since the star is relatively luminous and close (100 pc), this
structure has been probed in some detail. It can be traced out to 500 AU in radius and has a
surface density that rises inward, at least to the (unresolved) truncation edge. Several dark lanes
are seen that may be segments of larger, spiral structures. There is also a much lower-density
envelope of grains above and below the disk plane, some 1000 AU in radius. This more diffuse
material appears as a haze in scattered light.

Another well-studied disk is that associated with the A0 star HR 4796A. The star itself is the
brightest member of the TW Hya Association, described earlier in § 17.5. The age of HR 4796A
is thus known to be about 1 × 107 yr, close to that of HD 100546. Nevertheless, the excess,
long-wavelength luminosity is a good deal less, only 5 × 10−3 of the stellar value. Spectral
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observations in CO have failed to detect any flux. It appears that most circumstellar gas has
been driven off, leaving behind the collection of orbiting grains we have termed a debris disk.

The upper left panel in Figure 18.19 displays an image of this disk in scattered, near-infrared
light. To reduce contrast, the star was masked with a coronagraph, as shown. We see, with
remarkable clarity, that the circumstellar material in this case is actually confined to a narrow,
highly inclined ring. The width of this ring is measured to be 17 AU. Interior to it, i. e., within
a radius of some 60 AU outside the star, all grains have been cleared. We are reminded of the
interior gap in the debris disk of ε Eri, the K dwarf situated in the immediate solar vicinity
(Figure 17.27). Another point of similarity is that the observed dust grains in both cases are
larger than those generally found in the interstellar medium.

18.4.3 Main-Sequence Disks

Scattered-light images of disks can be striking in their detail, but are available only for a hand-
ful of relatively nearby systems. Detection of unresolved, infrared flux from a star has always
provided the initial evidence for circumstellar matter. This longer-wavelength radiation repre-
sents emission from heated dust grains. Because of their higher luminosities, A stars, such as
the zero-age main-sequence object HR 4796A and its older counterparts, have constituted the
bulk of the sample. All told, a substantial (but quantitatively uncertain) fraction of field stars
are Vega-like, i. e., display excess thermal emission, but have little sign of circumstellar gas.

The most intensively studied debris disk has been that around β Pictoris, a Southern hemi-
sphere star lying at a distance of 19 pc. One may assess the age of this 1.8 M� object by
utilizing the fact that it is moving through space with several, lower-mass companions that are
still on pre-main-sequence tracks. Through this means, the age appears to be 1.5 × 107 yr, not
much older than HR 4796A. The spectral energy distribution in Figure 18.18 shows that there
is slightly less infrared excess luminosity, about 3 × 10−3 times the L∗-value of 8.5 L�.

Coronagraphic optical imaging reveals a remarkably narrow structure (Figure 18.19; upper
right panel). Apparently, we are viewing the debris disk almost exactly edge-on. Also striking
is the manifest asymmetry. While the northeast portion of the disk extends out to 790 AU from
the star, the opposite side can only be seen in this image to a radius of 650 AU. The gravitational
influence of another body, either a planet or passing star, may have created the distortion.

A wide range of observing facilities, including both spaceborne and groundbased telescopes,
have provided many more details. The general picture, in any case, follows the pattern we
have already seen. From the thermal, infrared emission, we know that the orbiting grains are
relatively large, typically 10 µm in size. There is a steep falloff in this material within some tens
of AU from the central star, but smaller grains persist farther inside. A relatively small amount
of gas exists, some of it lying in a ring within 1 AU of the star. All of this attention, we note,
has been lavished on a structure whose total mass amounts to 10 percent that of the Earth. The
interest lies mainly in the generation and erosive depletion of this material, and in the evidence
from both processes for more massive, orbiting bodies.

As a star continues to age, its circumstellar dust eventually becomes undetectable through
scattered light. However, thermal radiation at submillimeter wavelengths still yields images, as
exemplified in the two lower panels of Figure 18.19. On the left is an 850 µm map of Fomalhaut
(α Piscis Austrini), an A3 star 8 pc away. All main-sequence objects in the field, including
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Figure 18.19 Debris disks around four main-sequence A stars. The top two images are in scattered
starlight (optical and near-infrared), while the bottom two display submillimeter thermal emission
from grains.

this one, have highly uncertain ages. Here, there happens to be a nearby K star with identical
proper motion and radial velocity. Assuming the two objects were born together, we may use
the fact that the lower-mass companion has a detectable lithium abundance to assign an age to
both of 2 × 108 yr. The submillimeter image of Fomalhaut itself shows a ring-like debris disk
seen edge-on, i. e., essentially in cross section. A hollow central cavity extends 30 AU in radius.
Within the ring are relatively large (10 µm) grains but no observed gas.

The prototype of all objects with excess, long-wavelength emission but little accompanying
gas is Vega (α Lyrae), shown in the lower panel of Figure 18.19. The spectral energy distribu-
tion, plotted in Figure 18.18, reveals that the actual luminosity contributed by dust has declined
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to 2 × 10−5 L∗. Judging from its position in the HR diagram, the star has already left the zero-
age main sequence and has an age of 4× 108 yr. The 850 µm map in Figure 18.19 shows a disk
viewed nearly face-on. In addition to a low-emission gap of radius 60 AU surrounding the star
itself, there is also an interior, bright peak that is curiously off-center. Note, however, that this
region is marginally resolved in the image.

Table 18.2 summarizes key properties of the debris disk systems we have discussed. Here
we have included LIR/L∗, the fraction of the stellar luminosity reemitted at long wavelengths,
as well as estimates or upper bounds for �in, the interior radius of the disk itself. While the age
uncertainty is large, there is clearly a tendency for the total mass in orbiting dust to diminish
with time. Erosion apparently proceeds faster on the inside, as evidenced by the central holes.
What accounts for these trends?

Table 18.2 Nearby Stars with Debris Disks

Name Distance Spectral M∗ L∗ LIR/L∗ �in Age
(pc) Type (M�) (L�) (AU) (106 yr)

HD 100546 103 B9 2.4 32 0.51 <50 10

HR 4796A 67 A0 2.5 20 5 × 10−3 55 10

β Pictoris 19 A5 1.8 8.5 3 × 10−3 <15 15

Fomalhaut 7 A3 2.0 13 8 × 10−5 30 200

Vega 8 A0 2.5 60 2 × 10−5 60 400

18.4.4 Effects of Radiation

The first point to appreciate is that, regardless of their origin, all grains below a minimum size
are rapidly expelled by stellar radiation pressure. Suppose, for simplicity, that the dust perfectly
absorbs all photons and reradiates them isotropically. Recall that each photon of energy ε carries
momentum ε/c. Then frad, the radiative force on a single grain of cross section σd, is

frad =
σd L∗

4 π c �2
, (18.8)

where � is the distance from the star. Here, we have neglected scattering and assumed that the
absorption efficiency is unity, so that the cross section is the geometric value. The opposing
gravitational force is

fgrav =
G M∗ md

�2
, (18.9)

for a grain with mass md.
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Figure 18.20 Mechanism of Poynting-Robertson drag. In the stellar frame of reference, the
photon path is orthogonal to the velocity V of the dust grain. In the grain’s reference frame, this
path is tilted by the small angle ∆θ, creating a retarding force.

We now evaluate both σd and md by assuming that the grain is a sphere of radius ad and
internal density ρd. Equating frad and fgrav gives us the desired minimum radius:

amin =
3 L∗

16 π c ρd G M∗

= 1 µm

(
L∗

10 L�

) (
M∗

2 M�

)−1

.

(18.10)

In making the numerical estimate, we have set ρd equal to 3 g cm−3. It is no surprise that grains
of ordinary interstellar size are not seen in debris disks around A stars. Radiation pressure long
ago drove them away, within an interval at most equal to an orbital period.

Larger grains are also vulnerable. Curiously, radiation pressure causes these to spiral
inward, toward the central star. Figure 18.20 explains why. In the star’s reference frame, pho-
tons impact the grain broadside as it moves with orbital speed V , at a radial distance �. The
only effect of the transverse force, if it is less than gravity, is to increase � slightly above the
Keplerian value. In the rest frame of the grain, however, each incoming stellar photon acquires
a small, retrograde velocity component. That is, the propagation direction is tilted by the angle
∆θ, where

∆θ ≈ V/c . (18.11)

The tilt in photon direction means that the grain effectively experiences a retarding force from
the impinging radiation field. This force is known as Poynting-Robertson drag.

The grain spirals inward because the drag exerts a torque, equal in magnitude to � frad ∆θ.
This torque, in turn, drains orbital angular momentum, which has the instantaneous value



724 18 Herbig Ae/Be Stars

� md V . Since the decay of the orbit is very gradual in practice, we may approximate V at
any time as Keplerian. Setting the torque equal to the rate of change of angular momentum and
utilizing equations (18.8) and (18.11), we find the evolution of the orbital radius:

d�

dt
= − σd L∗

2 π md c2 �
. (18.12)

Notice, from this last equation, that the radial decay is slowest at the beginning and then
speeds up as the grain moves inward. Thus, the total time required to drift all the way to the
star may be found by integration from the initial radius �◦ to � = 0. Denoting this Poynting-
Robertson decay time as tPR, we find it to be

tPR =
π md c2 �2

◦
σd L∗

. (18.13)

We again idealize the grain as a uniform-density sphere of radius ad. Then tPR becomes

tPR =
4 π ad ρd c2 �2

◦
3 L∗

= 2 × 107 yr
(

ad

10 µm

) ( �◦
100 AU

)2
(

L∗
10 L�

)−1

.

(18.14)

A more careful derivation would properly account for the fact that longer-wavelength stellar
photons are inefficiently absorbed and that all photons may instead be scattered. Nevertheless,
our result is adequate for illustrating the main effect of the drag. It is apparent that even rela-
tively large grains spiral inward over a period less than the stellar age. Moreover, the Poynting-
Robertson decay time is shorter at smaller orbital radius. The inner disk is thus the first region
to be cleared by this means.

18.4.5 Episodic Infall

We are led to the same conclusion we reached in Chapter 17, when discussing the ε Eri debris
disk. The relatively short times for orbital decay and radiative expulsion imply that the presently
observed grains are not primordial, but must be continually replenished. An attractive source
of material is again provided by the mutual collision of larger solid bodies, e. g., asteroids and
planets. Such objects could well be lurking within the presently observed disks, but have so
far escaped detection. Any fragments they produce are subject to further collisions and shatter-
ing. The current grain population must result from balancing this input source against radiative
clearing.

The total amount of mass locked up in solid bodies is difficult to ascertain, and arguments
to this effect are necessarily indirect. Besides acting as a potential source for grains, these
objects may also supply whatever gas is observed. Recall that HD 100546 exhibits redshifted
absorption troughs in ultraviolet lines. The transitions are in atoms that are either neutral or
singly ionized. We speculated that this material represents evaporation by infalling bodies. The
absorption features vary in time and can disappear entirely. Thus, the inward flux of the parent
solid bodies appears to be episodic, rather than continuous.
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Figure 18.21 Evidence for episodic infall onto β Pic. The left and right spectra of the Ca II K
line were taken in 1984 and 1986, respectively.

A similar phenomenon occurs in other debris disks and has been extensively monitored in
β Pic. Figure 18.21 displays two spectra, taken several years apart, of the Ca II K line. What we
are seeing is actually the bottom of the rotationally broadened photospheric absorption trough.
Exactly at line center is an additional, narrower dip, which does not change with time. Redward
of this feature, however, there appears a new dip at the later epoch. This depression signifies
inward motion of the Ca II ion, with a radial velocity in this instance of 25 km s−1.

While the Ca II features come and go at day-long intervals, ultraviolet lines, such as Mg II
h and k, change within hours and show infall speeds as high as 400 km s−1. The total number
of events is on the order of several hundred per year. A model, which has been elaborated
in considerable detail, posits that the objects ultimately responsible are comets. Originating
somewhere in the debris disk, they plunge toward the star on highly eccentric orbits. Increased
heating from the central object eventually drives off grains from the bodies’ surfaces. These
form a dust coma around the comet nucleus, as witnessed in solar system objects. Ultraviolet
radiation then sublimates the grains, creating the atoms and ions that we detect through their
absorption of stellar light.

According to this picture, the intermittency of the gaseous infall signature means that the
flux of comets has a similar temporal pattern. The fact that the absorption is nearly always
redshifted rather than blueshifted is curious; one would expect an equal number of bodies that
are approaching us after a near miss of the star. Equally puzzling is the narrow absorption dip
at line center. The atoms and ions creating this feature have little radial velocity. Yet they
experience strong radiation pressure, which should quickly drive them away.

Comets in the solar system plunge inward from the outer disk because of gravitational en-
counters with giant planets. Pursuing the analogy, the β Pic comets may be so perturbed by an
unseen planet that their elongated orbits lock to it. Numerical simulations find that their major
axes can align with the planet’s in a configuration that minimizes close approach to the larger
body. Each passage of the planet across the star would then generate a flurry of absorption
events in the spectrum. If the comets are completely evaporated before they round the star,
then only redshifts would result. Of course, new comets then need to be continuously supplied,
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presumably by this or another planet. Such ideas still lie in the realm of speculation. Most
welcome at this point would be direct evidence for the planets themselves, either around β Pic
or other stars with debris disks. Such a finding would demonstrate unequivocally that formation
of these bodies is not limited to solar-type objects.

Chapter Summary

Many young clusters, when displayed in the HR diagram, contain a large population of interme-
diate mass, pre-main-sequence stars. Yet only the small minority of these objects with optical
line emission are classified as Herbig Ae/Be stars. Each is surrounded by dusty cloud mate-
rial, seen either in optical reflection or in the millimeter continuum. Some create local bubbles,
driving nearby gas away through radiative heating and winds. Those of earlier spectral type are
surrounded by a retinue of T Tauri stars.

Rotation in Herbig Ae/Be stars is more rapid than in lower-mass objects, but still signifi-
cantly under breakup. Few stars display significant periodic changes in broadband emission.
Those in the UX Ori subclass undergo sudden dimming, accompanied by enhanced polarization
and a blueward shift in color. Both developments indicate temporary obscuration by circumstel-
lar dust clouds.

From a theoretical perspective, the evolution of intermediate-mass objects is influenced by
the fact that the deep interior is radiatively stable. The star begins with a modest surface lumi-
nosity and then undergoes thermal relaxation. Here, the central region contracts, while transfer-
ring heat to an expanding, exterior mantle. After a relatively short time, the surface luminosity
jumps upward. Subsequent contraction to the main sequence is more uniform. However, theory
predicts that the star’s outer layers are unstable to pulsation for a limited time. These pulsations
have been observed. Arriving on the main sequence, the star develops a central convection zone
in which hydrogen fusion occurs via the CNO bi-cycle.

The spectral energy distributions of all Herbig Ae/Be stars show some degree of infrared
excess. The majority, Group I objects, have excesses that are too large to originate solely from
disks. An additional, dusty envelope is needed. This is also the case for the even more infrared-
luminous Group II stars. Some of these envelopes have been imaged directly through inter-
ferometry. The relatively small infrared excess in Group III stars plausibly stems from hot,
circumstellar gas.

Ultraviolet radiation creates photodissociation regions in surrounding cloud material. These
regions are observed in the infrared, through both continuum dust emission and through atomic
and molecular transitions. Heating of the cloud gas disperses it, along with the ram pressure
from stellar winds. While the winds are well-documented through P Cygni profiles, there origin
is not understood. Equally mysterious is the X-ray luminosity, which is intermediate in strength
between that in T Tauri stars and massive, main-sequence objects.

Direct observational evidence for disks is scant, and absent entirely for earlier-type Her-
big Be stars. Nevertheless, we do see remnant debris disks around older objects. The dust sur-
rounding an aging pre-main-sequence star gradually agglomerates into larger, more crystalline
grains. Poynting-Robertson drag from stellar photons causes these grains to spiral inward.
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Others must be resupplied, presumably through the mutual collisions of larger orbiting bod-
ies. In any case, both optical and submillimeter observations show that debris disks gradually
disappear during the main-sequence phase. Episodic infall is seen through gaseous absorption
lines. This material may originate from the evaporation of star-grazing comets.
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19 Star Formation on the Galactic Scale

Our exploration of stellar birth has led us through many different environments. These have
ranged widely in physical extent, from the compact, nuclear-burning cores of young stars them-
selves to the largest coherent gas clouds spawning these objects. The underlying empirical data
have been drawn almost entirely from our own Galaxy, indeed largely from the solar neighbor-
hood. In the final two chapters comprising Part VI, we broaden our perspective in two senses.
First, we describe what is known about star formation activity over the dimensions of entire
galaxies. We see how the consumption of diffuse gas is affected by, and in turn may influence,
the morphology of these systems. Our description here is necessarily more qualitative and less
detailed than in our coverage of nearby regions. Chapter 20 will then attempt, in a summary
fashion, to reconsider the physical problem of star formation as a whole. We assess both the
insights we have gained and the areas where understanding remains poor.

We begin our galactic investigation with the Milky Way itself. After describing our own
pattern of stellar birth, we turn in § 19.2 to that in other spiral galaxies, as well as the two other
major classes, ellipticals and irregulars. In the first type, star formation ended long ago. We
describe the clues that allow us to reconstruct the early history of activity. In gas-rich irregulars,
including small galaxies neighboring ours, the production of new stars is ongoing.

This activity reaches an extreme in starburst systems, the subject of Section 19.3. Here,
a region of the galaxy, usually close to the center, is undergoing a dramatic, and ultimately
short-lived, flareup in formation activity. As we shall see, the influx of gas that fuels this ex-
plosive event is often stimulated by interaction or merger with a neighboring galaxy. Exotic
phenomena also occurred in much older systems, including some types no longer seen, and
others that appear to antedate present-day galaxies (§ 19.4). As we extend our investigation, in
Section 19.5, to formation of the very first stars, we reach the limits, in both time and space, of
current knowledge.

19.1 The Milky Way Revisited

In Chapter 1, we introduced two basic measures of star formation in our Galaxy. One, which
we denoted as ṁ∗, is the local birthrate, expressed in units of M� yr−1 per square parsec
of the Galactic disk.1 This figure refers to activity only within the solar neighborhood. The
second quantity, Ṁ∗, is the total rate (in M� yr−1), summed over the entire disk. How are
these numbers obtained? Moreover, if � denotes the Galactocentric radius, what is known
about ṁ∗(�), the radial variation of the star formation rate? Our first goal should be to give

1 We limit our discussion to the traditional “thin” disk, with scale height of order 100 pc. There is also evidence for a
thick disk, consisting of older stars. The scale height of the latter is greater by an order of magnitude.
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the empirical basis for these key measures of activity. We may then see how our own Galaxy
compares with others.

19.1.1 Activity in the Disk

The fact that we are embedded within the Galactic plane makes it impossible to observe the
full stellar content of young, distant groups, and hence their associated birthrates. Optical light
is strongly absorbed by interstellar dust, so one must turn to infrared and radio wavelengths.
Figure 1.19 demonstrates how near-infrared photons penetrate to the central bulge of the Galaxy.
Much of this light, however, is contributed by red giants. The daunting task of separating out
the youthful component over the entire disk remains unsolved. A more feasible approach is
to survey far-infrared and radio-wavelength emission known to arise exclusively from massive
stars. Since these objects have relatively short lifetimes, one may obtain what is essentially
their instantaneous formation rate without needing to consider the prior history at the location
of interest. Summing the birthrate over all masses then requires that we augment the massive
population employing the initial mass function.

Let us focus on the radio emission, which is both thermal and nonthermal. Within the first
category is a diffuse background of centimeter radiation that pervades interstellar space. While
the received flux is weak compared to other interstellar sources, it is much too strong to orig-
inate from the photospheres of stars. Rather, it represents free-free emission from HII regions
surrounding massive objects. We described in Chapter 15 how these volumes are ionized by
Lyman continuum photons. It is straightforward, at least in principle, to convert the centimeter
flux, observed as a function of Galactic longitude, to a corresponding emission rate of stel-
lar ionizing photons, now expressed in terms of Galactocentric radius. The latter function, in
turn, yields the surface density of O and early-B stars. Their birthrate follows by utilizing the
appropriate main-sequence lifetimes (Table 1.1).

A very similar analysis may be applied to two sources of nonthermal radio flux, again most
conveniently at centimeter wavelengths. One is synchrotron emission from supernova remnants
(§ 15.5). It has been established empirically that the surface brightness, i. e., the specific flux
divided by the solid angle subtended by the source, declines steeply with the physical diameter
of a remnant’s surface. This relation allows one to assess the distance to individual remnants,
provided they are spatially resolved. The observed space density of the objects then translates
into a distribution of progenitor, high-mass stars.

Finally, extensive radio surveys have detected thousands of Galactic pulsars. Each, we re-
call, is a rapidly spinning neutron star. The distance in this case is established utilizing the
phenomenon of interstellar dispersion. The source itself emits brief, repetitive bursts of radia-
tion over a broad spectral range. As photons traverse the ionized component of interstellar gas,
those of shorter wavelength have higher group velocity. The net result is that the original burst
is spread out (dispersed) by an amount proportional to the distance traveled.2 Again, the areal
distribution of sources may be reinterpreted as the spatially varying birthrate of the associated,
massive stars.

2 The dispersion actually depends on the emission measure, i. e., the square of the electron volume density integrated
over distance (§ 15.1). Extracting the distances to numerous pulsars thus requires a global model of the electron
density throughout the Galactic disk.
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Figure 19.1 Star formation rate per unit area in the Milky Way disk. The rate, shown as a
function of Galactocentric radius, is normalized to that of the solar system, whose radial position
is indicated here by a vertical arrow.

We emphasize that the birthrates thus obtained represent only the small fraction pertaining
to the high-mass tail of the stellar distribution. If we assume that the initial mass function is the
same throughout the disk, we may plot up the full, empirical birthrates normalized to ṁ∗(��),
the value in the solar neighborhood. Figure 19.1 shows the result of this exercise. Allowing for
the considerable measurement uncertainties, it is significant and gratifying that all three methods
exhibit a similar trend. The star formation rate increases steadily inward to � ≈ 3 kpc. There
is indication of a steep decline interior to that radius.

Assigning absolute values to ṁ∗(�) now requires only a single number, the local birthrate.
Here, we recall the method used to establish the initial mass function itself (§ 4.5). Equa-
tion (4.4) shows explicitly how ṁ∗(��) is needed to convert the present-day luminosity func-
tion Φ(MV ), to its initial counterpart Ψ(MV ). The latter, in turn, yields the initial mass function
ξ(M∗) through equation (4.5). Since the luminosity function Φ(MV ) is known in physical units
(see Figure 4.21), the conversion to Ψ(MV ) yields a true value for ṁ∗(��). Under the ad-
ditional assumption that the local birthrate has been temporally constant (see below), we find
ṁ∗(��) ≈ 3 × 10−9 M� yr−1 pc−2, with a 50 percent uncertainty in either direction. Spa-
tial integration of a smoothed approximation to the plot in Figure 19.1 then yields the global
formation rate throughout the disk. This is Ṁ∗ ≈ 4 M� yr−1, as quoted in Chapter 1.

We know that stars are born within molecular clouds. How, then, does the radial variation of
ṁ∗(�) compare with that of the H2 surface density? A glance at Figure 2.3 reveals substantial,
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qualitative agreement. There is again a slow, inward rise in the gaseous surface density, with a
peak at � ≈ 4 kpc. There is an apparent decline further inside, also consistent with the spatial
pattern in the stellar birthrate.

19.1.2 The Galactic Center

An additional, and striking, feature of the H2 distribution in Figure 2.3 is the high, central peak.
Is there a corresponding rise in the star formation rate close to the Galactic center? If so, this rise
is certainly not apparent in Figure 19.1. We must keep in mind, however, the inherent limitations
of our empirical methods for measuring ṁ∗(�). For example, the dispersion of pulsars residing
in the dense, central portion of the Galaxy is so great that discrete pulses are smeared out. The
identification of individual supernova remnants also becomes problematic. Nevertheless, the
suggestion provided by the molecular spike in Figure 2.3 is true. There is indeed a very high
level of star formation activity close to the Galactic center.

Before delving into this topic, however, consider once again the spatially extended gas in
the disk and its rate of conversion into stars. In Chapter 2, we cited a total mass in Galactic
H2 of 2 × 109 M� (see Table 2.2). Using Ṁ∗ = 4 M� yr−1, all of the molecular gas should
disappear in 5 × 108 yr, a small fraction of the Galactic age of 1 × 1010 yr. We must account,
of course, for the fact that a portion of the molecular gas is recycled back to the interstellar
medium by winds, novae, and supernovae. But this effective reduction of Ṁ∗, fractionally
perhaps 25 percent, does not alter the essential result. On the other hand, the mass in atomic
hydrogen within the disk is larger, roughly 7 × 109 M� (Table 2.2). The depletion time for
the total gas reservoir is thus increased to 2 × 109 yr, a more palatable result. There must be a
steady conversion of HI to H2 throughout this epoch. Since the HI surface density is quite flat
at large �, there is evidently radial transport of the gas, as well.

Some of that gas makes its way to the Galactic center. In Chapter 5, we discussed the rich
chemistry of Sgr B2, a giant molecular cloud displayed, in Figure 5.3, through its submillimeter
emission. While Sgr B2 holds the record as the most massive cloud in the Galaxy, it is just
one of a half dozen similar entities within the region. All have masses exceeding 106 M� and
densities nH � 104 cm−3, more characteristic of dense cores in the surrounding disk. The
kinetic temperature in these clouds is also relatively high, typically 70 K, as are their internal
velocity dispersions, which range from 15 to 50 km s−1.

The giant clouds all appear to lie within the Galactic plane. Surrounding them is a massive
ring, also composed of molecular hydrogen. This latter structure has a radius of some 200 pc
and is tilted with respect to the plane. The ring and clouds within it together make up the
central molecular zone. A magnetic field of milligauss strength permeates the gas. This field
manifests itself through long filaments that glow in synchrotron, radio emission. Other high-
energy phenomena include a hot (T � 107 K) plasma seen in X-rays and extending 100 pc in
radius. There is also evidence for a massive black hole lurking within Sgr A∗, the intense radio
source lying even closer to the center (Figure 5.3).

But let us return to our main topic, star formation activity. Application of the radio-
continuum method previously described, together with a similar analysis of far-infrared emis-
sion, yields a star formation rate in the central molecular zone of 0.3 M� yr−1, nearly 10 per-
cent of that in the entire Galaxy. Where, precisely, are the new stars being created? Consider
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first Sgr B2. When viewed in continuum, radio emission with the VLA interferometer, the
complex breaks up into dozens of HII regions, distributed within a 9 × 11 pc area. Many are
ultracompact and display cometary or shell-like morphologies (recall Figure 15.7). The con-
tinuum observations also reveal a more extended halo of emission surrounding the discrete HII
regions. We are again witnessing the heating and ionizing effects of massive stars. These are
undoubtedly accompanied by many more, lower-mass objects, but the latter are undetectable, at
least through such means.

Some clouds within the central molecular zone appear to be sterile, while others are forming
similar populations of massive stars, as revealed through radio observations in both the contin-
uum and recombination lines. The latter indicate the velocity of outflowing, ionized material.
The most intense star formation activity, however, occurs in three clusters that are not embed-
ded within giant molecular clouds, presumably because the gas has already been driven off. One
such cluster, about 1 pc in radius, surrounds the central black hole and radio source Sgr A∗. In-
deed, the mass of the black hole (2×106 M�) has been obtained by tracking the proper motion
of member stars. Just outside the stellar group is a gaseous disk or torus whose inner edge is
being illuminated and ablated by stellar radiation and winds.

Two other isolated clusters, also seen only in the infrared, lie about 30 pc in projection from
the center. One, dubbed the Arches, is named for a system of nearby radio filaments. After it
was realized that these structures are emitting thermally, and therefore require an external source
of heating, a deep near-infrared search uncovered the stars. The cluster is an impressive entity.
While only a few tenths of a parsec in size, it contains over 150 O stars. Extrapolation gives a
total cluster mass in excess of 104 M�. A similar group is the Quintuplet Cluster. This is also
found near a region of extended radio emission. Figure 19.2 shows some of the more prominent
stars, as well as the radio source, which is aptly called The Pistol. The name of the cluster
itself derives from the original group of five stars detected in near-infrared surveys. Thousands
of other members were later observed by the Hubble Space Telescope. The color-magnitude
diagram exhibits a main-sequence turnoff, giving a rough age of 4× 106 yr. This figure is twice
that for the Arches.

The Central, Arches, and Quintuplet clusters are the most massive concentrations of young
stars in the Galaxy. For example, they collectively account for 10 percent of all the O stars.
Their central densities exceed by two orders of magnitude that in the Orion Nebula Cluster.
And yet these compact groups must be short-lived, as we find no analogous systems in the
Galactic center with ages of 107 yr or longer. Furthermore, the total stellar production rate of
the clusters, prodigious as it is, represents a minor fraction of that within the central molecular
zone. We should view the clusters as spectacular, but transient and highly localized, flareups of
activity within a larger arena of persistent star formation.

Broadening our perspective still further, the central production of stars within the Galaxy
depends on a steady inflow of gas from the disk. It is not difficult to see why such a drift oc-
curs. Recall from our discussion of protostellar disks (Chapter 11) how self-gravity within a
differentially rotating, flattened structure establishes trailing spiral arms. The gravitational per-
turbation associated with these arms creates internal torquing that in turn leads to mass inflow.
Protostellar disks are gaseous entities, while galaxies are composed mainly of discrete stars.
Nevertheless, the same basic physics applies, as demonstrated by the spiral arms of our own
and similar galaxies. We can thus understand, at least in general terms, how the Galactic cen-
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Figure 19.2 The Quintuplet Cluster near the Galactic Center. The grayscale shading and contours
display 6 cm continuum emission. Also indicated are a few of the brightest, infrared stars.

ter obtains its reservoir of diffuse material for new stars. Note finally that the spike in central
density creates a strong tidal force of gravity. Thus, material creeping inward is eventually dis-
rupted. This process accounts for the brief lifetimes of even dense clusters like the Arches and
Quintuplet. 3

19.1.3 Schmidt’s Law

We noted earlier that the H2 surface density and ṁ∗(�), the azimuthally averaged star formation
rate, both decline for � � 4 kpc. Similarly, the volumetric gas density and formation rate also
vary together, attaining their highest values toward the Galactic center. It is hardly surprising
that the production of new stars at any location depends on the availability of fuel, in the form
of molecular gas. Whether a simple, functional relationship holds throughout the Galaxy is
another matter, one that has been discussed for many years. In 1959, M. Schmidt originally
proposed that the star formation rate in the solar neighborhood is proportional to the square of

3 The tidal force vanishes at � = 0 and thus may not be disrupting the Central Cluster. Unfortunately, it is also more
difficult to ascertain the age of this group from its color-magnitude diagram, which is heavily contaminated by older
stars from the Galaxy’s central bulge.
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the local gas density, where both quantities are measured per unit volume. He cited as evidence
the scale height of young stars, which is about half that of the diffuse gas. Note that the latter
referred to atomic hydrogen. However, it is reasonable to assume that the relevant quantity is the
total gas density, atomic plus molecular. This assumption is consistent with Schmidt’s original
hypothesis, since HI dominates H2 in the solar neighborhood (Figure 2.3).

Models of large-scale star formation and the recycling of disk gas employ a similar, but
mathematically distinct, relationship. The most common form of Schmidt’s law is

ṁ∗(�) = A [Σgas(�)]N . (19.1)

Here, A and N are constants and Σgas is the total surface density of interstellar gas. A direct
comparison of Figures 2.3 and 19.1 shows that equation (19.1) cannot be fully correct. On
the one hand, the relation accords with the fact that both ṁ∗ and Σgas peak near � = 4 kpc.
Considering only this interior region, one would conclude that N ∼ 1. On the other hand, Σgas

is roughly constant for 8 � � � 16 kpc, while ṁ∗ falls to zero in this interval. It may be
that star formation requires a threshold surface density, which is too high in the outer region.
Indeed, we will see shortly that yet another, global form of the Schmidt law seems to apply to
other spiral galaxies, as long as Σgas exceeds some minimum value.

Why the power-law relation in equation (19.1) should hold is not at all clear from a theo-
retical perspective. In principle, ṁ∗(�) must depend on (at least) the production rate of new
molecular clouds and how rapidly these create stars before their demise. We have seen in Chap-
ters 5 and 8 that the conversion of HI gas to H2 is well understood as a local process. It is
quite another matter to predict the bulk formation rate of cloud complexes out of atomic gas.
Our understanding is equally limited concerning the stellar output of such clouds, once created.
Schmidt’s law must therefore be viewed as a strictly observational result. Its simplicity has
made it a key ingredient in Galactic models, especially those of chemical evolution.

19.2 Other Galaxies

As we turn our attention to external galaxies, we are immediately struck by their wide variety in
shapes and sizes. These morphological differences correlate, as we will show, with an equally
broad dispersion in the pattern of star formation. The connection here is not obvious. Some giant
systems of high luminosity are completely inactive with respect to star formation. Conversely,
some intrinsically dim galaxies are producing stars at a much faster pace than the Milky Way.

19.2.1 The Hubble Sequence

We first establish the basic categories and nomenclature. Spiral galaxies like the Milky Way
contain both a central bulge and an extended, flat disk. Elliptical galaxies, such as NGC 4472
in Figure 19.3, are fully three-dimensional entities, consisting essentially only of a bulge. They
display a range of projected shapes, from spheres to cigars. At the other end of the spectrum
are irregulars, illustrated in the figure by the Large Magellanic Cloud, an orbiting companion
to the Milky Way. This galaxy has traces of spiral structure, not evident in this figure, but there
is no central bulge. Between these two extremes are the spirals, classified according to the
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Figure 19.3 Four sample galaxies that span the Hubble sequence. All photographs are optical
images.

Hubble scheme as Sa through Sd. The order here is one of decreasing bulge size and increasing
openness of the disk’s spiral pattern. Figure 19.3 gives examples of an early (Sa) and late-type
(Sd) system. We may also recall Figure 1.20 showing M51, a system classified as Sc. Our own
Galaxy is thought to fall midway between Sb and Sc in its morphology. Finally, we note the
existence of a transitional type (S0) between the most elongated ellipticals and Sa, the earliest
true spiral.
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This sequence is based solely on the optical appearance of the galaxies. However, the or-
dering correlates well with other observed characteristics. One of these is the radial velocity of
the stars themselves, as measured spectroscopically. Detailed study of these velocities, supple-
mented by theoretical modeling, shows that the stars within ellipticals are on plunging, nearly
radial orbits, whose planes are randomly oriented. The disks of spiral galaxies, as one might
expect, consist of objects moving on essentially coplanar, circular orbits. Central bulges again
display the more random velocities.

We defer until § 19.4 and § 19.5 the fundamental, and still poorly understood, issue of
how the various galaxy types arose cosmologically. At this point, it suffices to remark that the
placement of a system within the Hubble sequence does not primarily reflect its age, but rather
the detailed circumstances of its origin. That is, most relatively nearby galaxies have comparable
ages, about 1×1010 yr. A given region of primordial gas develops into a certain Hubble type by
virtue of its mass and velocity distribution, as well as the amount of its associated dark matter.
The latter, we recall, is manifestly still present in the halos of present-day spiral galaxies and
actually dominates the total system mass. A key fact, surely relevant for this discussion, is that
most ellipticals are found at the centers of galaxy clusters. Spirals, on the other hand, may occur
either as isolated objects or in crowded regions.

Although an elliptical and spiral galaxy may have the same age, their star formation his-
tories are entirely different. An interesting way to see this fact is through the variation of the
photometric color along the Hubble sequence. Figure 19.4 shows the average B−V color index
for hundreds of catalogued galaxies, displayed as a function of Hubble type. Ellipticals are the
reddest, while the color of spirals becomes progressively bluer. The explanation is that much
of the light from early-type galaxies is from relatively old, low-mass stars presently in their
red giant phase. Later-type galaxies contain numerous main-sequence stars of high mass and
effective temperature. The two panels of Figure 1.20 illustrated, for the case of M51, the pre-
dominance of spiral arms in blue light. Massive, hot stars are necessarily young. In summary,
star formation activity ended early in the life of elliptical galaxies, but is ongoing in spirals and
irregulars. This view of ellipticals is bolstered by the observation, from radio studies, that they
are devoid of molecular and atomic gas.

19.2.2 Early and Late Spirals

Return now to spiral galaxies and their integrated, optical spectra. Two examples, representing
averages over a number of systems, are given in Figure 19.5. Here we see how the redder color
of earlier Hubble types is associated with a depression in the spectrum at shorter wavelengths.
This depression is filled in for Sd systems. Another change that occurs along the Hubble se-
quence is the appearance of strong emission lines, notably [OII]λ 3727, an [OIII] doublet near
5000 Å, and Hα at 6563 Å. These arise, not from stellar photospheres (which create the blue
continuum), but from HII regions surrounding young, massive stars. The latter are produced
with a much larger complement of low-mass objects, in the proportion dictated by the initial
mass function. Thus a galaxy’s Hα luminosity, in particular, effectively measures its total star
formation rate and indeed has become the most widely used means of doing so. This tech-
nique cannot be used in our own Galaxy, because of the high optical extinction within the plane.
Even for external galaxies, one must correct for extinction in more edge-on systems, such as
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Figure 19.4 The color index B − V of galaxies as a function of their Hubble type. Note that the
latter contains intermediate spiral types (such as Sbc), as well as the Magellanic irregulars Sm and
Im (see text). The two sets of data points were produced by averaging from two different galaxy
catalogs. Error bars represent counting statistics.

NGC 4111 in Figure 19.3. Note finally that other diagnostics at ultraviolet, infrared and radio
wavelengths are also used and may serve to complement the Hα data.

Figure 19.6 displays the Hα equivalent widths for many individual spirals, grouped accord-
ing to Hubble type. Also included, for comparison, are a small number of ellipticals (here
labeled E/S0) and irregulars (Sm/Im). As indicated in the plot, the observed fluxes include
emission from nearby [NII] lines; this extra component must be subtracted to obtain star for-
mation rates. Recall from equation (17.1) and the accompanying discussion that the equivalent
width of a line measures its strength relative to the adjacent continuum. Thus, Figure 19.6 actu-
ally gives the intrinsic formation activity per unit galactic luminosity in the red, rather than an
absolute rate. In any case, the trend is clear. Ellipticals, as expected, have no star formation at
all. Later-type spirals display an increasing range in activity, with the maximum level system-
atically rising along the Hubble sequence. When the data are translated into true star formation
rates, these rise, on average, by a factor of 20 from Sa to Sc. A typical Ṁ∗-value for the latter
is 10 M� yr−1.

It is also of interest to compare the activity in spirals with their supply of interstellar matter.
In the spirit of equation (19.1), Figure 19.7 plots 〈ṁ∗〉, the total star formation rate per unit area
of the galactic disk, versus 〈Σgas〉, the average surface density in diffuse gas. The latter is the
total mass in molecular and atomic gas, as measured through CO and HI, respectively, divided
by the disk area. Despite appreciable scatter, the points display a linear trend in this logarithmic
plot. That is, spiral galaxies roughly obey a global form of the Schmidt law:

〈ṁ∗〉 = A1 〈Σgas〉N1 . (19.2)

The best-fit curve, also shown in the figure corresponds to N1 = 1.4.
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Figure 19.5 Galactic optical spectra along the Hubble sequence. The top panel is an average
spectrum for 11 galaxies of type Sa. The bottom represents the average of 7 systems, classified
Scd or Sd. In both panels, the specific flux is normalized to the value at 5500 Å.

19.2.3 Density Threshold

Earlier we introduced, when discussing ṁ∗ in the Milky Way, the idea of a threshold surface
density for the gas, below which it is impossible to sustain vigorous star formation activity. This
notion actually derives from observations of other, well-resolved spirals, where a spatial limit to
the activity is more apparent. Thus, we often see the stellar disk of a galaxy extending beyond
the region of Hα emission. The latter exhibits a sharp cutoff in radius. Beyond this break, one
still finds individual HII regions, but their surface density is much lower.

Given this finding, we may now recast the issue of threshold density in a more precise
manner. Near the boundary of strong Hα emission in any galaxy, we should examine Σcrit, the
total gas surface density. In fact, there is a simple, theoretical prescription for this quantity that
turns out to be surprisingly accurate. Suppose we think of the gas within a galaxy as constituting
its own disk. Let us further suppose that molecular clouds, and therefore stars, only form at radii
where this fluid is gravitationally unstable. The stability of a self-gravitating disk is determined
by the Toomre Q-parameter, given in equation (11.41). Setting Q = 1 and rearranging terms
gives our expression for Σcrit:

Σcrit =
κ as

π G
. (19.3)
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Figure 19.6 Combined equivalent widths of Hα and [NII] for field galaxies (filled circles) and
those in the Virgo Cluster (open circles). The galaxies have been binned by Hubble type. Note
again the intermediate types, such as Sab.

We calculate the epicyclic frequency κ from equation (11.42), using for Ω(�) the observed
distribution of rotation speeds in HI gas. Additionally, we reinterpret the sound speed as as a
weighted mean velocity dispersion of the atomic and molecular material at each radius. This
quantity is also supplied by observation.

How well does equation (19.3) account for the star formation threshold? Figure 19.8 shows
the run of surface density in a large number of spiral galaxies. Here, Σgas has been normalized
to Σcrit. The radius � has similarly been scaled to �HII, the position of the Hα cutoff. While
Σgas itself can fall by two orders of magnitude from the center to �HII in a typical galaxy,
Σgas/Σcrit rarely changes even by a factor of 3. Thus, the interior gas is never very far from
marginal stability. Even more striking is the fact the Σgas/Σcrit reaches a nearly universal value
at the point where �/�HII = 1. It appears, then, that equation (19.3) predicts the observed
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Figure 19.7 Star formation rate per unit disk area as a function of total gas surface density. The
circles represent quiescent galaxies, the triangles starburst systems (see § 19.3). For the latter, the
gas surface density is the circumnuclear value inferred from CO observations.

truncation rather well, especially if we supply a numerical coefficient (about 0.7) on the right-
hand side.

This success notwithstanding, the underlying model leading to equation (19.3) is surely
oversimplified and hard to justify in any detail. Diffuse gas represents a small fraction of the
mass in a typical spiral. Thus, it is the stars that supply most of the gravitational force on a
gaseous fluid element. This fact is clear from the observed distribution of rotation speeds. That
is, Ω(�) obtained at any radius from HI is identical to that inferred from Doppler shifts of the
integrated stellar spectra. How can the gravitational stability of the gas then depend on Σgas?

There is still no fully satisfactory explanation of why equation (19.3) works as well as it
does, but we can at least indicate a key point on which there is consensus. Proper assessment of
a galaxy’s gravitational stability must indeed take into account both the gas and stars. For the
purposes of such an analysis, we may also consider the stars to be a fluid with internal pressure.
The latter stems from the stars’ finite velocity dispersion, i. e., their departure from perfectly
circular motion. Moreover, the magnitude of this dispersion, as high as 35 km s−1 in our own
Galaxy, is significantly greater than that associated with the gas. (This is about 8 km s−1 locally
in the Milky Way.) But it is the pressure of each fluid component, along with its rotation, that
opposes gravity. Hence, the stability of the combined star-gas system is sensitive to the gas,
even if its fractional mass is low.

The view that star formation ultimately arises from the gravitational instability of a galaxy is
an appealing one that has stimulated much research. Unfortunately, there remains a significant
gap between global calculations in this vein and those pertaining to the evolution and collapse
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Figure 19.8 Total gas surface density as a function of radius in the disks of spiral galaxies. The
surface density is normalized to the critical value, and the radius to the star formation threshold,
as measured by Hα. The straight, horizontal line corresponds to a numerical coefficient of 0.67
on the lefthand side of equation (19.3).

of individual clouds. One important element in the picture, at least for the galaxies we are now
considering, is that self-gravity drives the formation of spiral arms and would do so even if
there were no gas. We know from observation that HI concentrates along the arms, presumably
settling into the gravitational trough they provide. The resulting increase of column density
promotes self-shielding and the creation of molecular gas. High-resolution studies of CO find
that it too exhibits spiral structure (Figure 1.21). The azimuthally averaged CO intensity always
first rises toward the center and then may decline, sometimes peaking at � = 0. Our own
molecular ring thus finds its analog in these other galaxies.

We have noted that Hα is produced, at least indirectly, by short-lived, massive stars. Any
assessment of formation activity based on this technique refers only to present-day conditions.
What do we know concerning the history of activity on the galactic scale? To address this issue,
the most widely used method is population synthesis modeling. The idea here is to combine the
light from a range of stellar photospheres to match a galaxy’s observed spectrum, i. e., both its
distribution of broadband fluxes and discrete absorption lines. Accounting for galactic emission
lines, on the other hand, is more difficult, as it requires a model of interstellar clouds at each
epoch.

In any case, one effects the match by first obtaining, from theory, the fluxes from individual
stars as a function of their mass and evolutionary age τ . Holding τ fixed, one adds together
many stellar fluxes, weighted according to the initial mass function, and obtains fλ(τ ), the
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galactic spectral energy distribution at each isochrone. The true predicted flux at time t follows
by utilizing the star formation rate Ṁ∗(t) and integrating over the single-isochrone results:

Fλ(t) = A

∫ t

0

Ṁ∗(t − τ ) fλ(τ ) dτ . (19.4)

Here, A is a normalization constant, with units M−1
� . The integral at any time t has contributions

from many epochs. Physically, the observed spectral energy distribution is sensitive to previous
history, since old stars of sufficiently low mass are still present. The practice has been to fix the
present galactic age and then vary the star formation rate, assuming a simple exponential time
dependence. It is also common to adopt as a free parameter the initial metallicity of the gas,
which is naturally well below solar. The metallicity is updated by assuming prompt mixing of
stellar winds and supernova remnants with previously existing gas.

The best-fit parameters obtained through this modeling indicate significant variation of the
histories even among galaxies of the same Hubble type. Nevertheless, there is a definite trend
along the sequence. In earlier-type spirals, the present-day rate of star formation is as much
as an order of magnitude lower than the rate averaged over the entire galactic lifetime. In
Sc galaxies, the current and average rates are closer, implying a relatively slow change. The
simplified assumption of a temporally constant Galactic star formation rate, used in deriving
the initial mass function, is therefore not unreasonable. In any case, the pattern of histories
among spirals is consistent with our previous remarks. Considering the extreme ends of the
sequence, ellipticals have no present-day star formation, while this rate exceeds the average in
gas-rich irregulars. However, the findings still present a puzzle. Every Sc galaxy must have
been predominantly gaseous early in its history. Presumably, 〈Σgas〉 declined with time. But
then a Schmidt-type law at each epoch would be inconsistent with a steady consumption rate.
A significant caveat is the possibility, to be discussed later, that the galaxy continued to accrete
fresh gas while it was making stars.

19.2.4 Activity in Irregulars

Optical images of galaxies with relatively high, current values of Ṁ∗ show a larger number of
HII regions. Moreover, the average size of each region is greater. In a typical Sa galaxy, a single
patch of Hα emission requires only a handful of O stars to provide the observed luminosity. This
number rises to hundreds in an Sc-type system. As we proceed down the Hubble sequence into
the realm of irregular galaxies, we find that giant HII regions predominate. Indeed, the mottled
appearance of irregulars largely reflects the asymmetric distribution of massive star formation
sites, within an underlying, disk-like geometry.

The prototypical example of an irregular galaxy is the Large Magellanic Cloud (Fig-
ure 19.3). Located relatively close to the Milky Way (50 kpc), it is one of the best studied
systems in its class. The total mass within the brighter optical portion, as indicated by the speed
of outlying HI gas, is 4 × 109 M�. This figure is a few percent that for a typical spiral. Irregu-
lars generally are also among the dimmer galaxies. Nevertheless, these low-luminosity objects
of unimposing size and mass constitute a large fraction, at least one third, of all catalogued
systems. Their high degree of star formation activity is reflected not only in their blue colors
(Figure 19.4), but more directly, as just indicated, by the presence of giant HII regions.



19.2 Other Galaxies 745

Figure 19.9 Image in Hα of the N70 shell, created by winds from an OB association in the Large
Magellanic Cloud. The shell radius is 55 pc. Two O stars are marked by crosses.

Within the Large Magellanic Cloud, the most impressive such region is 30 Doradus. This
is the bright patch situated to the upper left of the galaxy’s main body in Figure 19.3. (Recall
also Plate 8.) The entire complex is 1 kpc in diameter. It contains over 100 O stars, including an
especially dense concentration in the area known as R136. Images in Hα show the presence of
many shells, some enclosing cavities that are glowing in X-rays. Much of this hot gas has been
energized by supernova explosions. Other expanding shells are created by winds from Wolf-
Rayet stars. These are massive, post-main-sequence objects that have already shed much of
their hydrogen-enriched mantles of gas. The exposed helium core emits a fast wind that shocks
as it plows into the previously ejected mantle. Figure 19.9 displays an example, from outside
30 Doradus itself, of an especially symmetric, wind-driven shell. Here, gas streaming from an
OB association impacts a surrounding, HI cloud.

Of course, fast-moving shells, hot gas, and other energetic phenomena are only the most
spectacular manifestations of a process involving many more, lower-mass objects. The Large
Magellanic Cloud is near enough that this larger population is accessible through direct imaging.
Hundreds of classical T Tauri stars have now been resolved in Hα, and detailed spectroscopy
of individual objects has also begun. From such studies and others, we infer a metallicity
averaging only one fourth the solar value, yet another indication of low prior activity. The
copious production of new stars accords with the quantity of interstellar gas, comprising some
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15 percent of the total galactic mass. Curiously, nearly all the diffuse matter is HI; the CO
luminosity indicates only a small molecular component.

The giant HII regions of the Large Magellanic Cloud, while striking in terms of their pro-
ductivity, are in essence no different from many others observed in late-type spiral galaxies. It is
apparent that, once a region attains a density sufficient for rapid production of massive stars, the
nature of the larger environment fades in significance. A second valuable lesson is that vigorous
star formation in a galaxy does not require well-delineated spiral arms. As mentioned earlier in
this section, such structure is actually present in the Large Magellanic Cloud, but the arms are
fragmentary and of relatively low contrast.4

Most other irregular galaxies resemble, in their broad characteristics, the two closest ex-
amples, the Large Magellanic Cloud and the even more HI-rich Small Magellanic Cloud. A
minority, the so-called amorphous irregulars, present a much smoother optical appearance. One
should not infer, however, an absence of HII regions. The integrated spectra still have conspic-
uous emission lines, and Hα luminosities, in particular, are relatively high. A safer conclusion
is that star formation is proceeding strongly, as in the Magellanic-type irregulars, but is more
diffuse spatially. Activity is also strong in blue compact dwarfs. Considered a third subclass of
irregulars, these are small systems with both exceptionally blue photometric color and strong
line emission.

19.2.5 The Local Group

The Magellanic Clouds are not only our galactic neighbors, but also the brightest systems of the
three dozen that make up the Local Group. This gravitationally bound entity, of which the Milky
Way is a prominent member, extends out to a radius of nearly 2 Mpc. The third brightest system
is the Andromeda Galaxy (M31), a spiral of type Sb. Andromeda and the Milky Way together
account for nearly all of the group’s visible mass. Remaining members consist of a third spiral
(M33) and a collection of smaller, low-luminosity (i. e., dwarf) irregulars and ellipticals. For the
most part, the minor galaxies are clustered about the two massive members. Those ellipticals
without a strong, central peak in stellar density are also known as dwarf spheroidals. Some two
dozen Local Group systems fall into this latter category. Table 19.1 lists essential properties of
some nearby galaxies. Note that we have tabulated the luminosity in the B-band, a conventional
measure of massive stellar content.

All galaxies in the Local Group are close enough that we can spatially resolve individual
stars of high and intermediate mass, both on and off the main sequence. Color-magnitude dia-
grams may then be constructed. Within these, one may discern separate populations of differing
age. Spectroscopy of the brightest objects also yields the metallicity of the subgroups. In other
words, one may read off the galaxy’s detailed history, both in terms of stellar production and
chemical enrichment.

This basic strategy is clear enough, but the interpretation of color-magnitude data is not a
simple exercise. One must accommodate inevitable errors in the photometry, patchy extinction
across the galaxy, and a distance that is usually far from secure. A valuable approach is to

4 Irregulars also lack the opaque dust lanes conspicuous in spiral galaxies. A paucity of grains is consistent with
the reduced metallicity of these systems. Note that ambient ultraviolet radiation is more destructive in a low-dust
medium. We can thus understand the small amount of molecular gas found in these systems.
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Table 19.1 Properties of Some Nearby Galaxies

Name Type Distance LB MHI MH2 Mtot

(kpc) (L�) (M�) (M�) (M�)

Milky Way Sbc 2 × 1010 6 × 109 2 × 109 2 × 1011

LMC Im 50 3 × 109 7 × 108 6 × 107 1 × 1010

SMC Im 60 9 × 108 6 × 108 4 × 106 9 × 108

Leo I dSph 250 1 × 106 < 104 2 × 107

NGC 185 dE 630 6 × 108 1 × 105 4 × 104 7 × 108

M31 Sb 750 6 × 1010 5 × 109 5 × 108 3 × 1011

M33 Scd 840 6 × 109 2 × 109 2 × 108 5 × 1010

Note that the luminosity is in the B-band only (spectral width 1000 Å). The total masses for all
systems except Leo I and the Small Magellanic Cloud are based on the HI rotational velocity, and
thus include dark matter.

search for characteristic features in the diagram or special classes of stars. For example, a
horizontal branch well above the main sequence indicates that the corresponding population is
of low metallicity and older than 1010 yr. The slope and position of the red giant branch are also
sensitive to metallicity. From the presence of numerous O and early-B stars, one may conclude
that stars have formed recently, i. e., within the last 2 × 107 yr. On the other hand, a concurrent
absence of Wolf-Rayet stars means that this activity ceased more than 6 × 106 yr ago, which is
the time needed for such objects to fade from view.

Figure 19.10 shows a color-magnitude diagram (using the V - and I-bands) for Leo I, a
dwarf spheroidal companion to the Milky Way. We have included this system in Table 19.1,
where it is conspicuous for its low total mass and luminosity. The diagram, constructed from
28,000 observed stars, displays both a main sequence and red giant branch. The extraordinary
thickness of the main sequence largely reflects random errors in the photometry, which have
significant impact at the lowest magnitudes. Nevertheless, there is still a well-defined turnoff;
this translates into a minimum stellar age of 1 × 109 yr.

The red giant branch of Leo I consists of stars with intermediate ages, i. e., from 1 × 109

to 1 × 1010 yr. Those undergoing central helium burning form the prominent clump to the left.
Note also that the whole red giant branch is shifted toward the blue with respect to stars of the
solar neighborhood. This change indicates a reduced metallicity. The single, best-fit Z-value,
used to construct the star formation history in the righthand panel, is 4 × 10−4, or 2 percent
of the solar figure. As presented here, the history is actually a record of Ṁ∗(t), constructed
from the stellar ages. Note the low level of star formation in the remote past. Activity during
this epoch would have manifested itself as a horizontal branch in the color-magnitude diagram.
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Figure 19.10 (left panel:) Color-magnitude diagram for 28,000 stars in the Leo I galaxy.
Both the color and I-magnitude have been corrected using a spatially averaged reddening of
E(V − I) = 0.04 mag. (right panel:) Derived global star formation rate as a function of time t

into the past.

The fairly recent spike in star formation is curious, as there is no detected interstellar gas at the
present time (see Table 19.1).

A very different history is displayed in Figure 19.11, representing data from another Local
Group member, NGC 185. This dwarf elliptical satellite of Andromeda has a strong central
concentration of stars. The color-magnitude diagram, based on 16,000 objects, includes both
the central region and less crowded areas, for which the photometric accuracy is higher. Both
the main sequence and horizontal branch are below the flux limit in this diagram, which consists
essentially of a thickened red giant branch. Here reside low-mass objects with ages of 1×1010 yr
and greater. Accordingly, the reconstructed star formation history shows a strong, initial burst of
activity, followed by a steep decline. Observations show a small, but nonzero amount of atomic
and molecular gas in the central region (Table 19.1). This material is not primordial, but was
ejected by stars passing through their planetary nebula phase.

Similar analysis of the remaining Local Group systems reveals a broad variety in star for-
mation histories. The diversity itself may be a consequence of the low galactic masses. As in
the case of NGC 185, fresh gas regenerated from dying stars often constitutes the bulk of the
interstellar medium at any epoch. This gas is vulnerable to dispersion by a few supernovae.
There will then be a lag in star formation activity, which could end when more gas is supplied
by the aging stellar population. Such intermittent behavior on a global scale would not occur in
a galaxy with greater mass and deeper gravitational potential, which can retain the bulk of its
gas over longer periods.
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Figure 19.11 (left panel:) Color-magnitude diagram for 16,000 stars in NGC 185.
As in Figure 19.10, both colors and magnitudes have been dereddened, here using
E(V − I) = 0.22 mag. (right panel:) Star formation rate as a function of time into the past.

19.3 The Starburst Phenomenon

We have seen that the majority of galaxies within our own cluster are objects whose mass and
luminosity are very low compared to the Milky Way or M31. This preponderance of dwarf
systems appears to hold in more distant regions, as well. Morphologically, we again find dwarfs
outside the Local Group to be either ellipticals or irregulars. What little interstellar gas resides in
the first type is presumably generated by the aging stellar population. The dwarf irregulars, like
those nearby, have copious gas, with the material largely being HI. This gas is of low metallicity,
typically 10 percent of the solar value. Thus, there has not been a great deal of nucleosynthesis
through successive generations of stars.

On the other hand, many dwarf irregulars do contain localized sites that are not only actively
producing new stars, but at extraordinary rates. Such a starburst region, with a diameter of
perhaps 300 pc, has an associated Ṁ∗ exceeding that of the entire Milky Way by one to two
orders of magnitude. Note that the host galaxy itself spans only a few kpc, but often contains
several of these regions. Other, much more massive, galaxies may also harbor starbursts, as we
shall describe. In all cases, the limited supply of gas tells us that this activity could not have
been sustained for a long period. Population synthesis models give quantitative estimates of the
duration, typically 108 yr.

19.3.1 Anomalous Spectra and Colors

Starbursts are most conspicuous in dwarf irregulars because of the relatively low background
flux from old stars. Hence, we begin our survey with these gas-rich but metal-poor systems.
Optical spectra of starbursts are characterized by strong emission lines from hydrogen and other
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ionized elements. These are the same lines displayed by late-type spirals (Figure 19.5), but now
with higher equivalent widths because of the greater contrast. The lines are again created in
the gaseous envelopes around O and early-B stars, of which there may be thousands in a single
site. Indeed, the spectrum of a starburst closely resembles that of any nearby HII region, despite
the difference in physical scale. Starburst irregulars where the background light is undetectably
faint have accordingly been dubbed “HII galaxies” or “extragalactic HII regions.”

In our description of the nearest true starburst region, 30 Doradus, we noted the presence
of Wolf-Rayet stars. Here, we recall, the surrounding envelope has been supplied by the stellar
wind itself. Ionized species within the envelope generate emission lines, as in HII regions,
but there is a difference. Because of the high wind speed, the observed lines are significantly
broadened. Such characteristic emission, generally in the 4686 Å line of He II, has been used
to identify over 100 starburst irregular galaxies. In particular, these are systems where vigorous
star formation began 3 to 6 × 106 yr in the past, corresponding to the predicted interval for the
phenomenon in an individual, massive star.

Another point to recall about 30 Doradus is that it contains a bright core, designated R136.
This is the compact region, only 5 pc in diameter, that includes the most massive stars, along
with a large complement of dimmer objects. Analogous clusters, some of even greater density,
are located in more distant galaxies. For example, the dwarf irregular NGC 1569 has two such
luminous knots (see Figure 19.12). In both locales, we detect the broadened He II emission line
from Wolf-Rayet stars. Other starburst regions probably have a number of these tight forma-
tions, not yet spatially resolved. If the groups remain bound after gas dispersal, they may slowly
evolve into globular clusters like those orbiting within our own halo.

Starbursts in larger galaxies were first recognized, in the 1970s, by their effect on the in-
tegrated system color. The argument here is of more than just historical interest and bears
repeating. Figure 19.4 showed that the B − V colors of galaxies along the Hubble sequence,
while exhibiting a scatter at each type, nevertheless change systematically. This variation re-
flects the different rates at which global star formation declines in each type. A similar plot
holds for any other color index, such as U − B. Thus, there is a correlation between a galaxy’s
U−B and B−V colors. The empirical relationship is apparent in the left panel of Figure 19.13.
Each point here represents a galaxy taken from a magnitude-limited survey.

We next consider galaxies that, while they have luminosities comparable to the first set,
are morphologically peculiar in some way. The spirals display narrow, asymmetric features,
variously labeled as tails, filaments, or bridges, in addition to a standard bulge and disk. We
shall later see some examples. The important point for now is that the color-color diagram for
this new group, shown in the right panel of Figure 19.13, is also peculiar. While some galaxies
still lie close to the average curve representing the normal (U − B, B − V ) relation, others lie
well above it. At a given B − V value, these systems have U − B indices that are low, i. e., the
galaxies are anomalously blue.

A blue galaxy quite generally is one with a significant portion of hot, massive objects. Thus,
it is actively forming stars. In our peculiar group, however, this activity must be relatively short-
lived, so that a growing, older population does not change the colors and bring the U −B index
back to its normal range. Population synthesis modeling, either of the (U − B, B − V ) values
or of the optical spectrum, confirms that the surge in formation activity cannot last longer than
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Figure 19.12 Central portion of the dwarf irregular NGC 1569, as seen in the V -band. The dark
rings around each of the two lower clusters are an artifact of the false colors used in the original
image. The more distended patch at the top is a complex of HII regions.

about 107 yr. Moreover, the event cannot have ended much more than 108 yr in the past. In
other words, many of the peculiar galaxies have ongoing or comparatively recent starbursts.

Optical imaging reveals the activity to be occurring close to the galaxy’s center. This cir-
cumnuclear region, with a radius of less than a kpc, is blue in color and gives the galaxy as a
whole its unusual photometric flux ratios. Moreover, a spectrum of the area shows the same
emission lines that we find in both HII regions and the starbursts of dwarf irregulars. We also
detect nonthermal radio continuum flux at centimeter wavelengths, the signature of many su-
pernova remnants ploughing through the local interstellar medium. It is clear that we are again
witnessing copious production of stars in a restricted volume.

Such production requires, of course, a certain amount of fuel. Return to Figure 19.7, where
the filled triangles now represent individual spiral galaxies harboring circumnuclear starbursts.
The inferred star formation rate per disk area, which stems almost entirely from the central
region, is evidently correlated with the total gas surface density. Interestingly, the points still
lie close to the line representing the Schmidt law for ordinary spirals. This result, besides
corroborating the general, underlying relationship, also begins to clarify the nature of starbursts
themselves. The key question is how the system accumulates a large amount of interstellar
matter in a localized area, and in a relatively brief time. Note that the Schmidt law exponent N1
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Figure 19.13 (left panel:) Color-color plot of galaxies from the Hubble Atlas; these systems
are, for the most part, normal spirals. (right panel:) The same plot, but for galaxies from the Arp
Atlas; these are all morphologically peculiar. The solid curve in both panels represents a smoothed
average of the color-color relation for normal systems. Crosshairs indicate the mean error in both
color indices.

is not far above unity. The gas, once in place, thus forms stars at a rate per unit mass that does
not greatly exceed that in a normal spiral.

19.3.2 Infrared Galaxies

The actual values of Ṁ∗ for the starburst systems in Figure 19.7 were not obtained from the Hα
luminosity, as in the other sample. Dust extinction in the circumstellar region is sufficiently high
that it becomes more convenient (and accurate) to utilize instead the far-infrared component of
the flux. We assume that this longer-wavelength radiation stems from grains that are heated,
principally by massive stars. Thus, the far-infrared luminosity serves, as did Hα, to identify the
high-mass population, and thereby to set the total stellar birthrate.

Among galaxies exhibiting starburst activity, the proportion of the energy output at infrared
wavelengths rises dramatically with the total luminosity. The most extreme systems were there-
fore not discovered optically, but through the infrared satellite IRAS, in the mid 1980s. Only
later did optical study reveal these galaxies to have the emission-line circumnuclear regions
characteristic of starbursts.

The general trend toward higher infrared brightness is illustrated by Figure 19.14. Here we
reproduce the spectral energy distributions of three well-studied galaxies. In the spiral M51,
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Figure 19.14 Spectral energy distributions of three galaxies. The plot for M51 has been shifted
vertically upward by ∆log λ Fλ = +2, while Arp 220 has been shifted downward by 0.5. Note
the prominent silicate absorption features near 10 µm in M82 and Arp 220.

we see that the flux has two major peaks, in the near- and far-infrared; these have compa-
rable strength. The long-wavelength portion begins to dominate in M82, an edge-on irregu-
lar just outside the Local Group. This system has LIR > 1011 L� and exemplifies the class
designated luminous infrared galaxies. Here, the quantity LIR refers to the energy output be-
tween 8 and 1000 µm. Those rare galaxies, like Arp 220, with LIR > 1012 L� are classified as
ultraluminous. The total star formation rate in this latter group approaches 103 M� yr−1, while
λ Fλ at 100 µm exceeds that at 1 µm by two orders of magnitude.

Most star formation activity of infrared galaxies, and indeed most of their long-wavelength
radiation, comes from the dusty, circumnuclear region. One would expect that the steep, central
concentration of grains should be accompanied by plentiful gas, and this appears to be the
case. Interferometric measurements of 12C16O (J = 1 → 0) emission reveal that the flux peaks
strongly toward the galactic center. New stars are being formed within what is essentially an
inner disk of gas and dust.

While this qualitative picture is well established, accurate assessment of the mass in central
gas, and hence the star formation efficiency, has not been straightforward. Using the CO as a
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tracer for the hydrogen content, i. e., application of the X-factor introduced in equation (6.14),
leads to high column densities. In some cases, including M82, the integrated mass is clearly
too large, as it exceeds the virial theorem estimate using the width of the CO lines themselves.
The implication is that there must be less hydrogen for a given CO flux. In other words, the
CO that is present radiates more strongly, probably because its excitation temperature is higher
than in our own Galactic disk, where X is calibrated. The difficulty is how to account for
this effect in a systematic way. It is still unclear how the correction alters various estimates
of the circumnuclear surface density, including those employed for the starburst systems in
Figure 19.7.

Nevertheless, other evidence attests to the elevated volumetric gas density near the centers of
starburst galaxies. Observations of molecular tracers such as CS and HCN yield typical values
for n(H2) between 105 and 107 cm−3, while kinetic temperatures range from 60 to 90 K. Both
figures are reminiscent of the molecular cloud Sgr B2 in our own Galaxy. The CO mapping, on
the other hand, indicates that the filling factor of such entities is higher in the starburst systems,
and that the clouds persist out to a larger galactocentric radius.

The proliferation of massive and luminous stars within such a dense environment is con-
ducive to maser activity. Indeed, strong emission in the main lines of OH, at 1665 and
1667 MHz, was first seen toward Arp 220 in 1982. Since then, numerous other starburst galaxies
have yielded positive detections. Radio interferometers have shown that much of the emission
in Arp 220 comes from several, parsec-size spots. In all systems, this emission is very high,
with a flux equivalent to an isotropic luminosity approaching LOH = 104 L�. Since this figure
exceeds by a factor of 106 the luminosities of even the most powerful Galactic sources, infrared
galaxies are said to power OH megamasers. The copious, far-infrared radiation from dust may
act as the pump, enabling the OH molecules to amplify background, radio continuum flux. The
latter plausibly stems from supernova remnants in the vicinity.

What accounts for the impressive, if transient, energetics displayed by starburst galaxies? At
the very highest luminosities, the pattern of emission lines in the optical and near-infrared be-
gins to resemble that in active galactic nuclei and the closely related quasars. Some of the power
in these cases therefore stems from accretion onto a central black hole. The bulk of the lumi-
nosity from most infrared galaxies, however, is from massive, young stars. A basic problem, as
mentioned earlier, is how the molecular fuel for these stars is transported to the circumnuclear
region. Even with reasonable corrections for the CO flux conversion, the diffuse mass within
this region is of order 1010 M�. This figure may well represent the entire interstellar medium
of the system, gathered into the central kpc or so in radius.

19.3.3 Mergers and Tidal Interactions

To make headway on the transport issue, let us amplify our previous remark that starburst galax-
ies are morphologically “peculiar.” We begin with Arp 220. At a distance of 75 Mpc, this is one
of the nearest ultraluminous systems. Optical emission, while dim compared to the far-infrared,
is nonetheless revealing (see Figure 19.15). Most light comes from the more or less spherical
area in the center. We also see two plumes of lower intensity to the right. Another, related fea-
ture becomes apparent once we probe the central region using higher-resolution, near-infrared
imaging. Here, we are sampling a mix of stars, many of them red supergiants. As displayed in
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the figure inset, there is not just one peak in stellar density, but at least two. Radio continuum
maps also show the two strongest concentrations, separated by a mere 360 pc. The intriguing
suggestion is that Arp 220 is not a single galaxy at all, but a pair caught in the act of merging.
The optical plumes are then a byproduct of the merger process.

This general picture is assuredly not established solely by the present example. However, it
quickly gains credence as we look at additional starburst systems. The left panel of Figure 19.16
is an optical image of The Antennae (Arp 244). Two bright lobes are evident, as are a remarkable
pair of faint and thin tails. The lobes, it is clear from spectroscopic examination, are the main
bodies of two merging, disk galaxies. Their current separation is 15 kpc. The tails are also
composed of stars, as well as HI gas.

The righthand panel of Figure 19.16 is a closer view, taken in the near-infrared, of the
interaction region. Here we see much more clearly the two galactic nuclei, each with attendant
spiral arms. We also see a stellar bridge connecting the two galaxies. Each clump within this
bridge and beyond it is a massive cluster. Population synthesis models yield a range of cluster
ages, from less than 107 yr, within the bridge itself, to a maximum of 5×108 yr. Interestingly, the
youngest groups are larger by an order of magnitude than the older ones, which in turn resemble
globular clusters. The region between the galactic nuclei also has a strong concentration of
molecular gas.

Surveys of many tight galaxy pairs find that their total star formation rate, as measured by
the far-infrared luminosity, increases dramatically with smaller galaxy separation. Conversely,
the fraction of galaxies that are evidently interacting with a neighbor climbs with LFIR and is
almost unity for LFIR > 1012 L�. We cannot draw the conclusion from these results that all
starbursts are created by mergers. Recall the dwarf irregulars, many of which exhibit similar
activity and yet appear relatively isolated. What the studies do show clearly is that dynamical
interaction is an effective trigger of galactic starbursts, probably the most significant one for
spirals. How, then, does the close passage of two galaxies stimulate formation of stars? What is
the origin of the structural changes accompanying this event?

We begin with the second issue, which is more completely understood. A long series of
numerical simulations, beginning in the 1970s, has demonstrated that bridges, tails, and related
features are streams of stars and gas, torn away from each galaxy by the gravity of its com-
panion. The key point to recognize is the tidal nature of the interaction. Each galaxy, besides
pulling bodily on its neighbor, stretches it along the line joining the two centers of mass. Stars
closest to the approaching system are drawn toward it, creating a bridge. Stars diametrically op-
posite are pushed outward, relative to the center of mass, and may fail to complete their orbits,
instead flying off as tails. Both effects are strongest when the approaching galaxy is orbiting in
the same sense as the target’s internal rotation. In addition, the response peaks for those stars in
the target galaxy whose angular speed closely matches the highest orbital angular speed of the
neighbor. This resonance condition explains the striking narrowness of many observed streams.

All close interactions between galaxies do not create starbursts. The distended arm of M51
(Figure 1.20), reaching toward its smaller companion, is yet another tidal bridge. The main
galaxy, however, is a normal Sc, without significantly enhanced star formation. A second gen-
eral point is that any induced, narrow features are transient. The stars in distended tails escape
both systems, while bridge material is either captured by the companion or falls back to the
galaxy from which it was originally drawn. Finally, the numerical studies make it clear that
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Figure 19.16 (left panel:) Optical image of The Antennae, spanning 18′. (right panel:) Image in 2.12 µm
of the innermost 2.′5, or 14 kpc at the galactic distance of 19 Mpc.

even two galaxies locked in a binary orbit cannot undergo many interactions. The ejection
of stars during each encounter robs energy and angular momentum from the large-scale, orbital
motion. After only a few close passages, a pair of gravitationally bound galaxies spirals together
and truly merges, creating a system quite different from the original ones. The presence of dark
halos accelerates this process, both by increasing the geometric cross section and through halo
spinup, which further diminishes the orbital angular momentum of the visible component.

Each spiral galaxy of an interacting pair contains some 1011 stars. These are so thinly dis-
tributed, however, that there is no chance for direct collisions, even when the systems partially
or wholly merge. The two stellar populations simply interpenetrate. During all subsequent
motions, including violent ejection of stars, total energy is conserved. Similar statements can-
not be made of the gas. This component, relatively small in mass, responds to the changing
gravitational field created by the stars. Fluid streamlines may then cross, even when the galax-
ies themselves are still some distance apart. Streamline crossing creates shocks, which radiate
energy.

This energy loss within the circulating gas of each galaxy allows that material to spiral
rapidly inward, deeper into the potential well. If the gas shocks repeatedly, the spiraling oc-
curs over just a few galactic orbital periods, or a total interval of order 108 yr. Such a time
scale accords with that deduced empirically for the starburst phenomenon. We can thus under-
stand, at least in broad terms, how circumnuclear gas accumulates. But how, in detail, do stars
form within this new medium? And what is the nature of the perturbation leading to crossed
streamlines and shocks?
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The best-resolved examples of starburst regions show formation activity occurring in dis-
crete clusters. The youngest of these do not widely differ within the system or from one galaxy
to another. While their internal stellar densities may be a 100 times those in even the most
vigorous Galactic sites, the inferred cluster formation times of order 107 yr are similar. The
indication, then, is that localized regions are making stars through the usual process, albeit in
an unusually dense and massive environment.

We have noted, in fact, that the molecular clouds producing individual clusters in starbursts
are probably more akin to Sgr B2 than to anything in the solar neighborhood. There is a linger-
ing uncertainty regarding the mass distribution of the stars being formed. The best-studied case
is 30 Doradus. Here, the color-magnitude diagram yields a distribution that falls off at high M∗
in a manner similar to the Galactic initial mass function. In the other direction, the flattening
and subsequent turnover may occur at a larger M∗-value. If so, the region is forming a greater
proportion of relatively massive stars. We must bear in mind, however, such technical issues
as the proper dereddening procedure in an inhomogeneous, dusty environment. High extinction
effectively removes objects from a magnitude-limited sample. The corrections are problematic
but important, since they alter the low-mass end of the distribution.

19.3.4 Stellar Bars

Returning once more to the large-scale picture, we have noted that gas transport is facilitated
by energy dissipation. The material also needs to lose angular momentum if it is to spiral
inward. Any nonaxisymmetric perturbation to the stellar surface density will torque the gas
gravitationally, and a trailing spiral wave induces mass flow in the proper direction. (Recall
our discussion of the Galactic center.) To generate a very high mass flow, the perturbation
itself must be exceptionally strong. Numerical simulations have demonstrated two fundamental
results in this context. First, a trailing, spiral disturbance can be enhanced in a galaxy through
tidal interaction with a neighbor. Second, a sufficiently large-amplitude disturbance becomes a
linear bar in the central region.

Figure 19.17 illustrates both points through a representative calculation. This sequence
shows the response of a face-on spiral galaxy to another, passing spiral. The latter, which
is inclined 71◦ to our line of sight, only appears in the second frame, at its point of closest
approach. Both systems are modeled as containing stars and gas, with the latter comprising
10 percent of the disk mass. There are also massive, dark halos, not shown. The stars (upper
panels) are treated as point masses, interacting only through their mutual gravity. Gas elements
(lower panels) have an extra, repulsive force to mimic pressure, following the technique of SPH
(Chapter 12). Each unit of nondimensional time corresponds to 2.5 × 108 yr.

Before the companion galaxy appears, both the gas and stars exhibit a clear spiral pattern
whose amplitude is modest, especially for the stellar component. The patterns are greatly dis-
turbed in the second pair of frames, when the center of the neighboring galaxy reaches 8 kpc
from the target nucleus. Following this close passage, the two-armed spiral is much more open
and of greater amplitude. A central bar develops and is dominant in the last frames shown.
The rotation sense of the face-on galaxy is clockwise. Hence, the gaseous bar slightly leads the
stellar one. The stars exert a braking torque on the gas, draining its angular momentum.
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While shocks are not evident in Figure 19.17, they are nonetheless occurring within the
simulated gas. Shocks, like gravitational torquing, arise from the nonaxisymmetric potential
created by the bar itself. In the frame of reference rotating with the bar, there exist stable orbits
both elongated in the bar direction and perpendicular to it. Many orbits have cusp-like segments
or internal loops. An idealized test particle could trace such a region smoothly, but a real fluid
undergoes a shock. After such a transition, the fluid temporarily follows another orbit further
inside, until it shocks again. In this way, gas inexorably flows towards the center.

Most observed spiral galaxies are not interacting with a nearby companion. Hence, it must
be possible for a spiral pattern to arise spontaneously within the system. The same is true for
central bars. A portion of starburst galaxies, comprising the lower end of the luminosity scale,
are isolated, barred spirals. These display circumnuclear formation activity and have a central
structure that is strongly influenced by the bar. A disturbed pattern of this nature can also be
found in galaxies with Ṁ�-values closer to our own. The top two panels of Figure 19.18 provide
an interesting example. On the left is a large-scale view of the galaxy NGC 4314, showing two
spiral arms originating from a central bar. The inset to the right demonstrates that the nucleus is
surrounded by a clumpy ring. Inside this ring, which has a radius of 320 pc, is a dark dust lane.
Apparently, the bar has caused inward flow of gas from the body of the disk, but the material
has become stalled, long enough for some of it to produce new stars.

One also sees bars at the centers of many otherwise normal spirals. These are classified,
according to the Hubble scheme, as “SB” and fall along a sequence parallel to unbarred systems.
The lower panel of Figure 19.18 shows an especially striking case, NGC 1300. This galaxy has,
besides a well-defined bar of diameter 14 kpc, a prominent, interior bulge and relatively tight,
outer arms. Hence it is assigned a Hubble type of SBbc. We expect that both the trailing arms
and bar stimulate inflow of diffuse gas. However, this transport has not created a true starburst,
either in the nucleus proper or in a circumnuclear ring.

A similar situation holds within the Milky Way. Near-infrared light from the central bulge
(Figure 1.19; top panel) is slightly brighter to one side of the Galactic center than the other. This
light emanates mainly from old stars and suffers only modest extinction by intervening dust. A
plausible explanation for the asymmetry is that the stars are distributed in a bar-like pattern,
oriented obliquely with respect to our line of sight. The semi-major axis of the bar must be an
appreciable fraction of our Galactic radius for its nearer side to be noticeably brighter. In fact,
this length is estimated to be from 3 to 4 kpc, so that the entire structure spans the molecular
ring seen in CO. The associated mass is of order 1010 M�.

Our own bar, like those in other galaxies, sets the velocity pattern of the local interstellar
medium. Indeed, it was the noncircular motion displayed by HI gas that provided the first hint
of the bar’s existence. Numerous other studies have confirmed this finding and provided other
details. The distinctive entities we have described in the Galactic center, such as the giant cloud
Sgr B2, are orbiting within the nonaxisymmetric gravitational potential largely created by the
bar. Such objects slowly but continually spiral inward, to be replaced by fresh material supplied
from the outside. We are witnessing in this region a complex interplay of forces, where the
distribution of older stars creates gas flow and the condensation of molecular clouds. The latter,
in turn, are responsible for the addition of new members to the stellar component.
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Figure 19.18 Optical images of barred galaxies. The upper left panel and inset show the bar and
central ring of NGC 4314, while the lower image highlights the bar in the spiral NGC 1300.

19.4 Galaxies in Their Youth

Galaxies evolve with time. Beginning with the Milky Way, we know that the processes now
occurring in various regions have changed qualitatively. At some point in the past, the Galaxy
consisted entirely of gas, which transmuted to stars at different rates, depending on its location.
This activity was most vigorous in what is now the stellar halo and the central bulge, since these
components presently contain the highest proportion of old red giants. On the other hand, the
transformation in the disk was so delayed that it is very much ongoing, at a roughly steady rate.
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Figure 19.19 Distribution of oxygen abundance for 231 stars in the solar neighborhood. The
independent variable is the logarithmic oxygen mass fraction relative to the solar photosphere.
Shown are the number of stars in bins of ∆[O/H] = 0.05. The dashed curve is the theoretical
prediction from equation (19.12).

19.4.1 The G-Dwarf Problem

How did the Galaxy arrive at its present-day structure? We are far from having a complete
answer to this question. As just suggested, and demonstrated previously with regard to the
Local Group, stellar ages inferred from the HR diagram provide the key input for empirical
reconstruction of galactic history. Another valuable clue is the observed metallicity of stars.
The mass of heavy elements within any region inexorably rises, as successive generations of
objects die and return processed material to the interstellar medium. Elemental abundances are
well documented in the solar neighborhood and have at least ruled out the simplest picture of
how our Galactic patch could have evolved. This contradiction between the pattern of stellar
metallicities and basic theoretical expectations is known traditionally as the G-dwarf problem.

The theoretical prediction is easy enough to grasp, at least qualitatively. Any stars initially
formed within the Milky Way should have been entirely metal-free. While high-mass members
of this group died quickly and enriched the gaseous environment, objects of sufficiently low
mass should still be observable. According to Table 1.1, any star with M∗ < 1 M�, corre-
sponding to a spectral type later than G2, lives more than 1 × 1010 yr. It is true that low-mass
stars born somewhat later incorporated gas already polluted with heavy elements, but the enrich-
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ment must have increased only gradually. Hence, there should still be an appreciable fraction
of very metal-poor stars.

To quantify this argument, consider the evolution of Mgas(t) and Mstars(t), the mass in gas
and long-lived stars, respectively, within the solar neighborhood. The second quantity increases
at the expense of the first, so that their sum is a constant, equal to Mgas(0). We also follow
the metallic enrichment of the gas, focusing specifically on XO ≡ MO(t)/Mgas(t), the mass
fraction in oxygen. This element is created in Type II supernovae, from progenitor stars that live
a short period, in terms of Galactic evolution. Such massive objects therefore do not enter the
long-lived population of interest, but they do contribute a mass of oxygen proportional to ∆t, the
Galactic time elapsed. Since ∆Mstars is also proportional to ∆t, the oxygen mass produced by
supernovae during this interval may be written as yO ∆Mstars. Here, yO is the yield in oxygen.
This quantity, which we assume to be temporally constant, depends on the initial mass function.
As usual, we also take the latter distribution to be invariant over Galactic history.

At the same time that supernovae are distributing fresh oxygen, the creation of new, low-
mass stars has depleted some of the element from the gas. The net change is

∆MO = yO ∆Mstars + XO ∆Mgas

= (XO − yO) ∆Mgas .
(19.5)

where we have employed the fact that ∆Mstars = −∆Mgas. Note that ∆MO is positive and
∆Mgas negative, so that XO < yO. Utilizing equation (19.5), we find the change in XO over
∆t to be

∆XO =
∆MO

Mgas
− MO

M2
gas

∆Mgas

= −yO
∆Mgas

Mgas
.

(19.6)

We may readily integrate the last equation. Since XO(0) = 0, we have

Mgas(t) = Mgas(0) exp
[−XO(t)/yO

]
, (19.7)

which is conveniently recast as

Mstars(t) = Mgas(0)
{

1 − exp
[−XO(t)/yO

]}
. (19.8)

Suppose now that we observe the metallicities in a subset of long-lived stars. What is ∆N∗,
the expected number of objects with oxygen mass fraction between XO and XO + ∆XO?
Within the Galactic region, the cumulative mass of stars that were produced in this abundance
range is

∆Mstars =
Mgas(0)

yO
exp (−XO/yO) ∆XO .

Here we have combined the second form of equation (19.6) with (19.7), and again utilized mass
conservation. We are interested only in a certain fraction f of these stars, set by some range of
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spectral types. If 〈M∗〉 denotes the average stellar mass created at any time, then

∆N∗ = f
∆Mstars

〈M∗〉
= f

Mgas(0)
〈M∗〉 exp (−XO/yO)

∆XO

yO
.

(19.9)

At the present Galactic age t◦, the total number of stars in our sample, with all oxygen
abundances, is Ntot = f Mstars(t◦)/〈M∗〉. Let us denote by αmax yO the highest oxygen mass
fraction within the sample, where αmax is another nondimensional quantity. This maximal
fraction should be above the solar one, which we denote α� yO. Equation (19.8) then gives

Ntot = f
Mgas(0)
〈M∗〉 [1 − exp (−αmax)] . (19.10)

Combining Equations (19.9) and (19.10), we find

∆N∗
∆xO

=
α� Ntot

1 − exp (−αmax)
exp (−α� xO) . (19.11)

Here we have defined xO ≡ XO/(α�yO), the oxygen mass fraction relative to the solar value.
Our final transformation of equation (19.11) is to bin stars into equal increments of log xO,

a quantity traditionally denoted [O/H]. We thus rewrite our equation as

∆N∗
∆[O/H]

=
α� xO Ntot

log e
[
1 − exp (−αmax)

] exp (−α� xO) , (19.12)

where xO = 10[O/H]. The dashed curve in Figure 19.19 is this theoretical prediction. To set
α� and αmax, we first utilized nucleosynthesis calculations, which give yO = 0.016. In com-
bination with the observed oxygen abundance in the solar photosphere, we find α� = 0.52.
The maximum abundance for local G dwarfs then gives αmax = 0.82. The histogram in Fig-
ure 19.19 summarizes data for 231 stars, with spectral types from G2 to G9, all located within
a cylindrical radius of 25 pc from the solar Galactic position. There is evidently a steep falloff
in stars with [O/H] both above and below about -0.2, in conflict with equation (19.12). The
latter discrepancy with theory is the essence of the G-dwarf problem. Where are the truly low-
metallicity stars?

One possible answer is that the gas in our region of the Galaxy was already enriched by the
time its stars began to form. Perhaps the heavy elements were spewed out by the central bulge,
which created stars at an earlier epoch. In any case, initial enrichment per se does not solve the
problem. It is not difficult to repeat the foregoing derivation with a finite level of XO at t = 0.
Although this assumption sets a lower bound on the present-day oxygen abundance, the shallow
rise of the distribution above that point remains.

An alternative suggestion is that the earliest, metal-poor stars were all massive objects that
quickly exploded. The hypothesis, then, is that the initial mass function becomes tilted toward
high M∗ within a lower-metallicity cloud environment. There is, as yet, little empirical evidence
supporting this notion. We have seen that 30 Doradus, where the mean metallicity is one third
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solar, has a falloff in the upper end of its stellar distribution that is similar to our own. The
inferred initial mass function in globular clusters, whose metallicity is lower by another two
orders of magnitude, is also close to the local result, at least for M∗ < 1 M�. In § 19.5.3, we
will describe how cloud collapse in a truly zero-metal environment may nonetheless have led to
massive objects.

Yet a third solution is perhaps the most radical conceptually, but also one of the most appeal-
ing. The idea is to abandon the ‘closed-box’ nature of our theoretical model and allow inflow
of gas. Suppose, for example, that the Galaxy, initially starless, had a much smaller mass than
at present. As this structure began to produce stars, fresh gas was added continually from the
outside. This material was presumably metal-free. Heavy elements created by the existing stars
were mixed into a reservoir of less total mass, so that the enrichment quickly climbed. As more
gas entered, it too engulfed the metals distributed by the growing stellar population. The extant
members of this population that are very metal-poor would then be few in number.

There is still no firm evidence for steady gas accretion, either past or present, and therefore
little basis for modifying our simple model in a quantitative manner.5 Generally, however, the
accretion picture is in accord with observations that galaxy mergers were more common in the
past. We shall discuss these observations shortly. It is also worth noting that the ongoing search
for zero-metallicity, or “Population III,” stars, has still found no suitable objects in the disk,
but interesting candidates in the Galactic halo. Here, individual stars can have metallicities far
below that of the globular clusters. The 0.8 M� red giant HE 0107-5240, located at a distance
of 11 kpc, has [Fe/H] = −5.3. That is, the iron mass fraction is 5×10−6 times the solar value.
Finding other objects of this nature will help fill in early Galactic history.

19.4.2 Trends with Redshift

The most direct approach to the broad problem of galaxy origins is to probe systems much
less evolved than our own, i. e., those which formed closer in time to the Big Bang. These
younger entities may be identified by the redshift of all their spectral lines. If λobs and λ◦ are
the observed and laboratory wavelengths, respectively, of a representative line, then we define
the redshift as

z ≡ λobs

λ◦
− 1 . (19.13)

This increase in wavelength, corresponding to a decrease in photon energy, arises from the
background gravitational field. According to General Relativity, the Universe has expanded
between the time of photon emission and detection. The galaxy is receding from us with a radial
velocity Vr. This velocity, to a first approximation, is proportional to the galaxy’s distance:

Vr = H◦ D . (19.14)

Here, the Hubble constant H◦ is inferred empirically to be 70 km s−1 Mpc−1, with an uncer-
tainty gauged to be about 5 percent.

5 Speculation has centered, for many years, on high-velocity clouds as material accreting onto the Milky Way. These
patches of HI gas are seen in 21 cm surveys. If located outside the Milky Way but within the Local Group, their sizes
and masses correspond to dwarf galaxies.
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It is important to remember that we do not directly observe Vr, only the redshift. The usual
practice is to assign the recessional velocity through the Doppler relation Vr = z c. However,
the redshift is not simply a manifestation of the Doppler effect. Theory shows that the righthand
side of equation (19.14) is actually the initial term from a series expansion in D. Higher-
order coefficients are conventionally obtained within the context of homogeneous and isotropic
cosmological models. These same models also give us both the age and precise distance of the
galaxy from its redshift. For example, a redshift z = 2 corresponds to a time since the Big Bang
of 3×109 yr and a distance of 1700 Mpc.6 These figures pertain to a specific set of cosmological
parameters, as we shall later describe. Other models within the currently accepted parameter
range give similar ages and distances, with the difference between model results growing more
pronounced at higher redshift.

How, then, do we find redshifted galaxies among the myriad of objects in the field? A
traditional, and effective, method has been photometric surveys of relatively faint systems. Here,
the choice of waveband is important. A z = 1 galaxy with high B-band luminosity in its own
rest frame, indicative of ongoing star formation, will appear to us bright in I . Surveys in the
latter wavelength regime, utilizing ground-based telescopes, have netted thousands of candidate
galaxies. Spectroscopic examination has then culled those systems with appreciable redshift.

A key result of the surveys, already established by the 1980s, is a marked change in galaxy
color with increasing redshift. Higher-z systems tend to be bluer, as measured, for example,
by their rest-frame U − V color index. From the discussion of § 19.2, it follows that star
formation activity in this group was higher in the past. Another significant trend is a rapid rise
in the number of low-luminosity galaxies. In summary, dwarf systems of intrinsically blue color
become a major component of the population for z � 1.

Spatial imaging of the galaxies allows us to identify them morphologically and helps clarify
the situation. The majority of faint, blue galaxies turn out, upon examination, to be irregulars
undergoing starbursts. Recall that many present-day irregulars are also blue in color and vigor-
ously producing stars. Their activity, however, began only recently in cosmological terms. To
put the matter another way, the older irregulars found in deep surveys are too numerous to be the
progenitors of the current group. The left panel of Figure 19.20 shows the number of galaxies
as a function of apparent I-magnitude from one particular survey, in which the median redshift
was z ≈ 0.5. Here, galaxies classified as irregulars have been grouped together with peculiar
systems suspected to represent mergers. It is apparent that the galaxy count rises more steeply
toward fainter I-magnitudes than predicted by a simple extrapolation from the local population
(solid and dashed curves).

The same statement does not apply to ellipticals or spirals. In the right panel of Figure 19.20,
we see that the number of the latter type increases with magnitude in just the manner expected.
In other words, the population has changed little from z ≈ 1 to the present, at least in terms
of its luminosity distribution. The intrinsic color of spirals, however, has on average become
less blue, as star formation has slowed. This trend, while significant, is less dramatic than in
the dwarf irregulars, most of which are no longer seen. Their disappearance may signify that

6 We are observing the galaxy as it was in the past, when the separations between all such entities were less. The
distance quoted here is a proper value. Specifically, it is the separation between the young Milky Way and the galaxy
when the latter actually emitted its light. Also of interest is the comoving value of 1700 × (1 + 2) = 5100 Mpc.
This is the distance the galaxy would have now if it had continued following the universal expansion.
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Figure 19.20 Density of galaxies as a function of I-band magnitude. The quantity Ngal is the
number of galaxies observed per square degree of sky, and per unit magnitude in I . The left
panel shows a combination of irregulars and merger systems, while the right panel shows spirals.
Solid and dashed smooth curves are the predictions based on the hypothesis that the galactic
distributions have not evolved in time. The two curves are based on different estimates for the
local galaxy density.

individual irregulars have remained intact, while fading in luminosity. It may also indicate
something very different, that most of the small systems have vanished by merging with larger
ones. This latter picture is supported by the general finding, already mentioned, that morpho-
logical signatures of mergers and close encounters increase with redshift.

By measuring the flux in various wavebands from many galaxies, we may reconstruct a
quantity of key importance for the evolutionary issue. This is the comoving luminosity density,
L(λ, z). To obtain it, we first gauge the total luminosity of a group of galaxies within a narrow
redshift interval and waveband. We account for global expansion during the intervening epoch
by using the comoving volume of the group in question. Reconstruction of this volume from
the observed redshifts again requires adoption of a cosmological model.

The important point is that L(λ, z) is related to the total star formation rate Ṁ∗ of the
group, where this rate is again measured per comoving volume. In fact, the energy output in
the ultraviolet of an individual galaxy stems almost entirely from its massive stars. The ultra-
violet luminosity, assessed in the galaxy’s rest frame, thus correlates with its instantaneous star
formation rate, independent of past history. As for nearby systems, we quantify this correlation
through population synthesis models, after assuming an initial mass function and metallicity.

Figure 19.21 summarizes these analyses by displaying the volumetric star formation rate as
a function of redshift. We see that there is a dramatic rise in Ṁ∗ from z = 0 to z = 1. Much
of this increase reflects the appearance, at earlier time, of dwarf irregulars. At even greater
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Figure 19.21 Global, volumetric star formation rate, displayed as a function of redshift.

redshifts, the total star formation rate appears to level off or even decline slightly. Needless to
say, there is a great deal of information concealed in this deceptively simple figure. Why Ṁ∗
has this particular history is still far from clear.

19.4.3 Lyman-Break Galaxies

Before delving into the greater evolutionary issue, we need to explain how individual galaxies
with redshifts significantly above unity are detected at all. The surveys we have described, con-
ducted within a single waveband, no longer suffice. As we search for increasingly dim objects,
their number rises so steeply that direct, spectroscopic determination of redshifts becomes in-
feasible. What we require is some characteristic spectral signature of a young galaxy. Searching
for this signature within a large population would be far more efficient than analyzing spectra
one by one.

Two such features have been exploited, both arising from atomic hydrogen. One is the
Lyman α transition at 1216 Å. While this line has been detected in emission toward many
systems, it has proved even more useful when seen in absorption. The strategy is to observe a
distant quasar in the optical regime. Any HI gas lying between us and the quasar will partially
absorb its radiation. The strongest dip occurs at 1216 Å in the rest frame of the HI mass. If this
entity has redshift z, we detect the line at a wavelength increased by the factor 1 + z, which
shifts it to the optical regime for z � 2.

Many quasars display, in fact, a large number of closely spaced absorption lines. This
Lyman α forest arises, through the above mechanism, from intervening HI clouds spanning a
broad range of distances and redshifts. (See the top panel of Figure 19.26 and later discussion.)
In damped Lyman α systems, one sees additional, deeper absorption at a certain wavelength. The
name comes from the fact that the line wings have the profile characteristic of natural broad-
ening, which in turn mimics frictional damping (Appendix E). Column densities associated
with the enhanced absorption are sufficiently high (NH � 2 × 1020 cm−2) that these systems
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may represent the gaseous component of old, galactic disks. Further spectroscopy reveals a
wealth of information concerning this material, including both its heavy element enrichment
and kinematics.

Let us turn, however, to other, complementary studies that directly observe radiation
from the stars themselves. We now utilize a second spectral feature, the Lyman continuum
discontinuity. Consider a typical O star in a young galaxy. The light from this object and its kin
dominates the ultraviolet continuum of the star-forming system. Radiation being transported
through the stellar atmosphere to the surface has a much higher optical depth if λ < 912 Å,
where the threshold corresponds to the ionization energy of an n = 1 electron in hydrogen.
The emergent flux is therefore diminished in this short-wavelength regime. As seen in the
model spectral energy distribution of Figure 19.22 (top panel), the integrated flux from the entire
galaxy also suffers a sharp discontinuity at this point. Indeed, the break is even stronger in the
galactic flux, since interstellar HI gas absorbs another large portion of those short-wavelength
photons emitted by the stars themselves.

The discontinuity shown in Figure 19.22 occurs in the far-ultraviolet. But this is only so in
the rest frame of the galaxy. If the system were redshifted, say to z = 3.0, the feature would
appear at a wavelength of 912 × 4.0 = 3648 Å. The increased wavelength happens to lie near
the U -band, centered at 3600 Å. Thus, photometry of the galaxy in question should yield a
relatively low flux at U and a pronounced upward jump at B. Here, we recall that the B-band is
centered at 4400 Å, corresponding in the galaxy’s rest frame to 1100 Å, a wavelength longward
of the discontinuity. Many such “U -dropout” galaxies have, in fact, been seen. The bottom two
panels of Figure 19.22 display one example. Here, a galaxy visible in B and V disappears in U .

What we have just described is known generally as the Lyman break technique for finding
high-redshift galaxies. Among a population of faint sources, those exhibiting a jump in flux
between two adjacent wavebands are good, initial candidates. We then follow up the photo-
metric survey by examining each object spectroscopically, thus determining its precise redshift.
The technique is not limited to the U - and B-bands. When comparing B- and V -fluxes to find
B-dropouts, we are selecting candidate galaxies with z ≈ 4. Extension to V and R is more
problematic, as the background flux increases and sensitivity is lowered. Given that the U -band
filter still represents the short-wavelength limit in both ground-based and satellite observations,
Lyman-break galaxies currently span a redshift range 2.5 � z � 5.

Spectroscopic study yields much more than just the numerical value of z. Remember that
we are effectively probing these systems in the far-ultraviolet, a regime dominated by massive
stars. The pattern and strength of emission lines, as well as the continuum level, make it clear
that we are witnessing starbursts. In fact, the star formation rate per galaxy is comparable to
that seen locally. A significant caveat here is that we must properly account for interstellar dust
within each system. Dust both reduces the emergent ultraviolet flux and redistributes emission
over a broad range of wavelengths, especially the far-infrared. This complication is a major
source of uncertainty when assessing both the stellar production of individual galaxies and the
overall, volumetric formation rate Ṁ∗ shown in Figure 19.21.

With the imaging capability of the Hubble Space Telescope, it has been possible to discern
spatial structure in many Lyman-break galaxies. We find a broad range of morphologies, but
these do not mimic the standard Hubble types. A fraction of the systems, it is true, have a
smooth distribution of surface brightness, reminiscent of present-day ellipticals. Most, however,
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Figure 19.22 The Lyman break technique. upper panel: Model spectrum of a starburst galaxy,
as seen in its rest frame. Note the severe drop in flux shortward of 912 Å. This Lyman limit is
indicated by the vertical dashed line. lower panel: Hubble Space Telescope image of a z = 2.8

galaxy in the U , B, and V -filters.

display a pattern of bright knots embedded in a dimmer and more diffuse background (see
Figure 19.22). Some appear clearly fragmented. Such images strengthen our earlier conclusion,
based on spectral data, that the systems are analogous to local starbursts, which themselves arise
from mergers and interactions. Lyman-break galaxies may be the antecedents to ellipticals and
the central bulges of present-day spirals. Both systems completed formation in the remote past,
perhaps in the burst-like fashion we seem to be witnessing.

The most powerful starbursts in the local Universe are the ultraluminous, infrared galaxies,
such as Arp 220 (Figure 19.15). These radiate too weakly in the ultraviolet to be detected
by the Lyman-break technique. There may thus exist a population of ancient starbursts even
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stronger than the ones we see. A dusty galaxy radiating most of its energy in the far-infrared
should be bright in the submillimeter when seen at sufficiently high redshift. In fact, surveys
have detected numerous sources with just this character. The system may be matched, in some
cases, to a Lyman-break galaxy found in the optical. Generally, however, the relatively poor
angular resolution in the submillimeter has hampered such identification. Both the nature of this
population and its significance in early galactic evolution remain key problems for the future.

19.5 The First Stars

If accretion and mergers were common in the past, then the gas reservoir within any particular
galaxy may have been relatively small when star formation began. Nevertheless, this matter
must have evolved to the point of creating the analogues to today’s dense cores, which thereafter
collapsed. A key element in this picture is the ability of clouds to radiate energy efficiently while
undergoing compression. This cooling ensures the ultimate onset of gravitational instability.
The first difficulty we face is that the mechanisms described in Chapter 7, whether radiation
in CO lines or infrared continuum from grains, would have been unavailable in the absence of
metals.

19.5.1 Recombination and Molecule Synthesis

The general question is how cooling occurs in a gas composed of only hydrogen, helium, and
the smattering of other light elements produced in the Big Bang. The answer depends on the
relative population of ions, atoms, and molecules within the gas. Early on, the Universe was
filled with ionized plasma taking part in the cosmic expansion. Free electrons and protons
were immersed in a sea of blackbody radiation. Photons traveled only a short distance before
scattering off electrons. As both the matter and radiation temperatures fell through adiabatic
expansion, protons and electrons began recombining to form neutral hydrogen. This process
accelerated once the number of Lyman continuum photons within any volume became less than
the number of hydrogen atoms.

The recombination epoch occurred at a temperature of 4 × 103 K, about half the equivalent
transition value in stellar interiors. Once hydrogen became neutral, its opacity fell drastically.
Photons could now propagate freely, and some traversed the distance and time needed to reach
our own location and epoch. Recombination, therefore, represents the earliest event in cos-
mological history that is presently observable. The arriving photons constitute the microwave
background, with its precisely measured blackbody temperature of T◦ = 2.73 K.

A simple argument places the recombination epoch in time, or equivalently, redshift. Con-
sider the photons themselves as a relativistic gas, expanding adiabatically from recombination
to the present. The first law of thermodynamics tells us that, as a representative volume V
grows, its enclosed energy density and radiation pressure obey

0 = ∆ (urad V ) + Prad ∆V . (19.15)
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We now use Equations (2.37) and (11.48) to relate urad and Prad to the radiation temperature
Trad. We quickly find that

∆Trad

Trad
= −1

3
∆V

V
. (19.16)

Equation (19.16) tells us that Trad declines as V−1/3. If V◦ is the volume at the present time, it
was V◦ (1 + z)−3 at redshift z. It follows that the redshift associated with recombination is

zrec =
(

Vrec

V◦

)−1/3

− 1

=
Trec

T◦
− 1

≈ 1500 ,

(19.17)

where we have again employed an approximate recombination temperature, Trec, of 4× 103 K.
If the hydrogen gas were completely transformed to HI by the end of this phase, the sub-

sequent formation of stars would be difficult to explain. Pure hydrogen at temperatures below
4000 K cools so inefficiently that any incipient contraction would quickly be reversed. The
solution is that there is a small, but nonzero, population of free protons and electrons remaining
for z < zrec.

Two factors inhibit recombination within the gas. One is the absorption of ultraviolet pho-
tons that arise when electrons cascade from higher levels or jump down from the continuum
to the n = 1 state. Such radiative excitation is ameliorated by the fact that hydrogen can
sometimes make the transition from n = 2 to n = 1 by releasing a pair of lower-energy
photons. This two-photon decay is intrinsically rare, but important for setting the overall rate
of recombination. A second inhibiting factor is the global expansion itself. Recall that the
volumetric recombination rate is proportional to the product of electron and proton densities
(equation (15.1)). Both of these fall in time. Consequently, the declining electron fraction in
the gas “freezes out” at a certain point. The residual fraction is of order 10−4 for cosmological
parameters of interest.

Neither protons nor electrons by themselves provide significant cooling. However, they
lead to the creation of molecular hydrogen, which eventually does. The first step is taken in the
post-recombination era when protons react with the dominant, HI gas:

H + H+ → H+
2 + hν

H+
2 + H → H2 + H+ .

(19.18)

This reaction sequence, presented earlier in Chapter 5, leads to a small fractional H2 abun-
dance, of order 10−7, by a redshift of 300. By z ≈ 100, the abundance climbs another order of
magnitude through the formation and subsequent reaction of H−:

H + e− → H− + hν

H− + H → H2 + e− .
(19.19)

The stepwise increase in the H2 abundance, along with the prior freezeout of the electrons,
can be seen in Figure 19.23. Note that H− is rather easily ionized by the background radiation,
thus explaining its delayed production relative to H+

2 .
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Figure 19.23 Growth of molecular abundances in the expanding Universe. Shown are the number
densities of the indicated species relative to hydrogen as a function of redshift.

This last comment leads us to a more general observation. Tracking the evolution of the
molecular abundance in the expanding gas requires that we fully account for the interaction of
the matter and the ambient radiation. As discussed earlier, photons scatter off free electrons.
This process heats the gas, provided the temperature of the radiation exceeds that of the matter.
Radiation is also absorbed by the newly formed molecules. If an excited molecule collides with
gas atoms before undergoing spontaneous decay, the gas temperature is again raised.

Figure 19.24 shows in more detail the decline of both the radiation and gas temperatures
as a function of redshift. Prior to recombination, Trad and Tgas are kept nearly equal by the
frequent photon-electron scattering. The heat capacity of the photons greatly exceeds that of
the gas. Thus, it is actually Tgas that is locked to Trad, which in turn declines as (1 + z)−1.
The small electron fraction left over from recombination keeps the two temperatures close until
z ≈ 500, after which Tgas falls more quickly.

Suppose the gas subsequently cooled adiabatically, with declining temperature Tad. Then
the expression analogous to equation (19.15) would lead instead to

∆Tad

Tad
= −2

3
∆V

V
(19.20)

Here, we have employed ugas = 3ρkBTad/(2mH) for a pure hydrogen gas, and
Pgas = (2/3) ugas. We have also used the fact that ρ V is a constant during the expan-
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Figure 19.24 Decay of the radiation and matter temperatures during cosmological expansion.
Also shown is the temperature in a hypothetical gas that expanded adiabatically.

sion. It follows from equation (19.20) that Tad falls as (1 + z)−2. Figure 19.24 demonstrates
that the actual gas temperature declines slightly less rapidly. The difference reflects absorption
of radiation by H2, followed by collisional deexcitation.

The nucleosynthesis that created hydrogen soon after the Big Bang also produced helium,
deuterium, and lithium. Most important is the second of these. Indeed, the deuterated form of
molecular hydrogen, HD, appears along with H2 itself (Figure 19.23). This species plays a role
in subsequent cooling of the gas. It is produced by the reaction

D+ + H2 → HD + H+ . (19.21)

As seen in the figure, the fractional abundance of HD reaches 10−9 during the global expansion.
Lower concentrations of HeH+, LiH and LiH+ are also formed during this period.

19.5.2 The Role of Dark Matter

Our description thus far of the expanding Universe has included the ionized and neutral compo-
nents of the gas, along with the background radiation field. We know, however, that a consider-
able amount of matter is present in some non-luminous form. Again, spiral galaxies reveal the
presence of dark matter through their optical and radio rotation curves. Outlying stars and gas
are orbiting too rapidly for the attracting mass to be only that seen directly. Analogous results
hold for other galaxy types. Within the Local Group, one measures the central velocity disper-
sions of dwarf spheroidals or the rotation curves of dwarf irregulars. Comparison with the total
system luminosity shows that the kinematics is dominated by a dark halo. The stellar velocity
dispersion within ellipticals also reveals this extra component. On larger scales, the motion of
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galaxies within rich clusters is unaccountably fast unless one posits a rich supply of dark matter
in the space between the orbiting systems.

These observations indicate that the dark matter density, averaged over suitably large vol-
umes, exceeds that of ordinary (“baryonic”) matter by an order of magnitude. Cosmological
models therefore need to include this substance, even if we are completely ignorant of its na-
ture. Indeed, its presence is critical for the growth of structure in the Universe.

Galaxies must have begun as small density perturbations within the uniform, expanding
fluid. The self-gravity of such a lump retarded its expansion. Eventually, the object began
to contract and formed the molecular clouds that in turn produced early stars. A theoretical
stumbling block is that the initial growth of the density perturbation is not exponential in time, as
in the Jeans analysis of a (fictitious) static medium (§ 9.1). The density, measured relative to the
changing background, grows only algebraically in time, just as in the dynamical fragmentation
of a uniform, collapsing sphere (§ 12.1). Quantitatively, ∆ρ/ρ◦ must have been of order 10−3

at recombination to have reached unity by the present epoch.
This prediction is flatly contradicted by observation. The putative density perturbation

would have imprinted itself on the background radiation field, giving rise to an angular fluctu-
ation of Trad that would be still be detectable. However, numerous experiments show that the
anisotropy of the microwave background is much smaller, if measured in the proper reference
frame. The actual fluctuations indicate that δρ/ρ◦ at recombination was of order 10−5. The
accepted solution to this conundrum is that the requisite, initial perturbation occurred not in the
baryonic matter, but in the dominant, dark component. Baryonic matter fell into the local po-
tential wells created by these perturbations, and only then evolved to the point of gravitational
collapse. It was in this later evolution that radiation from molecules played a crucial role.

Before describing this development, let us consider further the clumping of dark matter.
The effectiveness of self-gravity depends on the velocity of the constituent particles. If this
velocity is relativistic, i. e., if the dark matter is “hot,” then particles can readily stream out of
a perturbed volume. In effect, this leakage stifles density growth, unless the perturbation has a
very large physical extent. Numerical simulations confirm this fact and find that the dark matter
condenses into a network of huge sheets, each of dimension 100 Mpc in comoving coordinates.
Individual galaxies could only have separated out recently from these structures, in contradiction
to observations of quasars at z � 5.

One is forced instead to the cold dark matter picture. Here, the particles are moving at non-
relativistic speeds. The initial uniform sea breaks up into a more randomly dispersed collection
of smaller clumps. These coalesce in a hierarchical manner, gradually creating structure on
larger scales. Meanwhile, baryonic matter is also condensing. In contrast to the previous picture,
galaxies build up through the fusion of the central, gaseous portions of merging, dark matter
clumps. This activity was well underway before even the oldest observed quasars were formed.

Numerical simulations of the merging process have led to an intriguing suggestion for the
origin of various Hubble types. Any gas collecting in dark matter potential wells has finite
angular momentum. But a rotating cloud will naturally flatten along its central axis, provided
it can radiate away a substantial portion of its initial energy. The first disks formed in this
way were far less massive than those in present-day spirals. We must therefore consider what
happens when two or more small disks merge. One result is that the new, combined entity puffs
up again into a more three-dimensional structure. It is also plausible that the merger triggers
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a starburst. Once all the gas is either consumed or driven off, we are left with a stellar system
that can no longer dissipate energy. This basic picture, while incomplete in many aspects, may
explain both ellipticals and the bulges of spirals. Perhaps spiral disks represent additional gas,
accreted later, that did not participate in the original starburst.

Our sketch of the modern cosmological landscape requires one final element. The anisotropy
measurements of the microwave background radiation also tell us how photon paths were curved
gravitationally, from the recombination epoch until now. This curvature, in turn, depends on
ρtot, the present-day, total density of the Universe. According to General Relativity, the quantity
of interest is actually Ωtot ≡ ρtot/ρc. Here, ρc is the critical density, defined as

ρc ≡ 3 H2
◦

8 π G

= 9 × 10−30 g cm−3 .

(19.22)

We have used for H◦ the value 70 km s−1 Mpc−1.
The anisotropy observations indicate that Ωtot is close to unity. On the other hand, calcula-

tions of primordial nucleosynthesis tell us, that in order to produce the present-day abundance
of deuterium, the baryonic density ΩB can be only a few percent. Observations of galaxies and
clusters, together with the virial theorem, indicate that the dark matter density can exceed this
by an order of magnitude but not more. The remaining density in the Universe is ascribed to
another pervasive component known as dark energy. This exotic substance provides a repul-
sive form of gravity. It was unimportant in the past, during the initial growth of perturbations,
but is now causing the cosmic expansion to accelerate. Its origin and nature are even less un-
derstood than cold dark matter. The popular “ΛCDM” models typically prescribe a baryonic
density ΩB = 0.05, a cold dark matter component with ΩDM = 0.25, and a dark energy with
associated ΩΛ = 0.70.7

19.5.3 Protostellar Collapse

Return to the gravitational settling of gas within a dark matter clump. During this condensation,
the matter first heats up adiabatically. Molecular hydrogen, however, continues to form by
the processes already mentioned. A critical point is reached once the fractional abundance in
H2 reaches about 10−3, when the gas density nH is of order 10 cm−3. This event may have
occurred as early as z ≈ 20. Emission in the rovibrational lines then creates a sharp drop in
temperature, which stabilizes at a value near 200 K. With further accrual of gas, both the density
and temperature rise again. If the calculation is run until nH exceeds 108 cm−3, then all of the
hydrogen quickly becomes molecular via the three-body reactions:

H + H + H → H2 + H (19.23a)

H + H + H2 → 2H2 . (19.23b)

The temperature concurrently reaches a plateau of about 1500 K.

7 The symbol Λ associated with dark energy represents the cosmological constant. This is a term added to the stress-
energy tensor of ordinary matter in Einstein’s field equations of General Relativity.
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We do not know if primordial clouds much more massive than individual stars were able to
reach such elevated densities. Our limited understanding of the dynamical balance in present-
day dark clouds and complexes should be chastening in this regard. The compression at an
earlier epoch could have been stymied, at least temporarily, by internal, turbulent motion. In
simulations, the quiescent settling of gas tends to be disrupted by mergers of parent, dark matter
clumps. Nonetheless, the joint action of molecular emission and slow condensation must have
eventually led to true protostellar collapse at many locations.

The cloud fragment that ultimately became unstable was still much less dense than the star
it produced. As in present-day star formation, the only known way to effect this transition is
through inside-out collapse onto a central nucleus. Presumably, a disk acted as an intermediate
conduit for infalling matter of higher angular momentum. If the temperatures we have quoted
apply to this dense core analogue, then the protostellar infall rate, given by equation (10.31),
was as much as three orders of magnitude above current ones. Thus, primordial protostars were
extraordinarily luminous.

In § 11.4, we described a major impediment to forming massive protostars: radiation pres-
sure acting on the infalling envelope. The absence of grains, however, means that the envelope
opacity was far lower. Infalling matter close to the star was fully ionized, so that the appropriate
κ is the electron scattering value (Appendix G). It may thus have been possible for the central
protostar to attain much greater mass, even in the simplified picture of spherical collapse.

Figure 19.25 displays the mass-radius relation for a protostar accreting at
Ṁ = 4 × 10−3 M� yr−1. The initial rise in R∗ is analogous to that in low-mass proto-
stars forming at more modest rates. (See Figure 11.6, but note the different radius scale.)
Also analogous is the first turnover (compare Figure 11.21). The latter is again due to the
onset of gravitational contraction. This process continues until hydrogen ignites at a mass
of 80 M�. The resulting luminosity increase exerts additional pressure on the star’s outer
layers, as manifested by the second rise in R∗. Concurrently, Lacc falls and the star temporarily
contracts. If the stellar mass reaches 300 M�, then the sharply increasing nuclear luminosity
creates very rapid surface expansion. The L∗-value at this point has reached 6 × 106 L�.

It is interesting that even such an extraordinarily luminous object does not create an HII
region. Ultraviolet photons are completely absorbed in the massive accretion flow. Radiation
diffuses outward through an optically thick precursor outside the accretion shock, ultimately
escaping when the associated color temperature falls to about 6000 K. Stars of this nature are
subject to internal pulsations, driven by their central nuclear reactions. These pulsations, in
turn, could drive winds. Nevertheless, the foregoing calculation at least suggests that zero-metal
objects of very high mass formed, along with the much lower-mass population represented by
the halo star HE 0107-5240.

19.5.4 Reionization

The idea of massive, primordial objects is intriguing from another perspective. Following the
accretion phase and the disappearance of the infalling envelope, each star shines copiously in
the ultraviolet. Indeed, the effective temperature at a given mass is greater than that of its Popu-
lation I counterpart, because of the reduced surface opacity (§ 16.2). The combined ultraviolet



778 19 Star Formation on the Galactic Scale

Figure 19.25 Mass-radius relation for primordial protostars accreting at a rate of
Ṁ = 4 × 10−3 M� yr−1. Note the extremely rapid swelling when M∗ reaches 300M�.

luminosity from these massive stars could have ionized vast expanses of gas. Is there actually
evidence for this effect?

The answer is that there is. We turn again to those distant beacons, quasars. As before,
we utilize the fact that these objects emit continuum, ultraviolet light over a broad wavelength
range. If hydrogen gas between us and the quasar were predominantly neutral, it would absorb
this radiation strongly at the Lyman α transition. An ionized intergalactic medium would not.

If this argument sounds familiar, it is very similar to one we used to explain the Lyman α
forest observed toward many quasars. The top panel of Figure 19.26 now shows an example.
In this spectrum of a quasar at z = 3.54, we see the prominent Ly α peak, redshifted in wave-
length to 1216 × 4.54 = 5520 Å. The panoply of lines blueward of the peak arises from many
individual HI clouds. Each such entity absorbs in Ly α, but each is also less redshifted than
the background quasar. Thus, the lines appear at shorter wavelength than the main emission
feature.

Suppose, however, that there were additional, intervening gas not confined to discrete
clouds. This material would span a continuous range of redshifts, though all still less than that
of the quasar. We would now observe, superposed on the Lyman α forest, a broad depression
of the spectrum. This Gunn-Peterson effect is not seen in the top panel of Figure 19.26, where
the spectrum is basically symmetric about the Ly α peak. We conclude that, at the cosmolog-
ical time corresponding to z = 3.54, the intergalactic medium was largely ionized. Since this
medium was almost completely neutral following recombination, we may say that the Universe
went through an epoch of reionization. This transition was created by the ultraviolet emission
from massive, primordial stars.
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Figure 19.26 The Gunn-Peterson Effect. upper panel: Optical spectrum of a quasar at z = 3.54,
showing symmetric emission about the redshifted Ly α line. Also apparent is the Lyman forest
shortward of the line. lower panel: Spectrum of a quasar at z = 6.28, displaying a depression of
the continuum shortward of Ly α.

The bottom panel of Figure 19.26 helps to date the epoch. Here, we see an even more distant
quasar (z = 6.28) that does show the Gunn-Peterson effect. The spectrum is strongly depressed
blueward of the Ly α peak, which now occurs at 8850 Å. Intergalactic gas was therefore still
neutral at z = 6.28, or 9 × 108 yr after the Big Bang, using the now standard cosmological
parameters. Star formation had not yet begun. Other studies confirm that the critical redshift
value was close to 6.
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By now, the reader will not be surprised to learn that things are a bit more complicated than
just indicated. First, it is not clear that the objects emitting the ultraviolet flux were actually
stars, as opposed to other quasars, i. e., accreting black holes. Second, the same hydrogen
molecules that were instrumental in forming stars are readily dissociated by ultraviolet radiation.
So one must be careful about the placement of massive stars within clouds. Finally, there was
apparently a distinct, earlier epoch of reionization.

Satellite observations of the microwave background radiation find it to be linearly polarized.
While the degree of polarization is tiny, of order 10−6, it has important implications. The ef-
fect stems from scattering of photons by free electrons. From the angular scale of the observed
polarization, one may conclude that the requisite ionization already existed by z = 17. Per-
haps a very early generation of high-mass stars, born only 2 × 108 yr after the Big Bang, was
responsible. If so, then full ionization of the intergalactic medium did not occur until another
stellar population appeared, at z = 6. Did this second starbirth event mark the formation of the
most primitive galaxies now observed? In what environment did the previous generation form?
These are but a few of the questions whose answers we await.

Chapter Summary

The production rate of stars within the Milky Way varies with Galactocentric radius. We gauge
this variation by observing the emission from young, massive stars and then extrapolating to
obtain the full population. Both the formation rate and the supply of molecular gas rise inward,
begin falling at a radius of about 4 kpc, then rise again at the very center. The latter region is
extraordinarily active, containing both giant cloud complexes and the richest young clusters in
the Galaxy.

Most relatively nearby galaxies have similar ages, regardless of morphological type. In
ellipticals, there was a high level of stellar production early on, which has now abated. This
activity is ongoing in the disks of spirals, as measured primarily through Hα emission. The spa-
tial variation of star formation in many galaxies seems to correlate in a simple way with the gas
supply (Schmidt’s law), but only above a threshold surface density of the fuel. Theoretical mod-
eling of a galaxy’s optical spectrum yields the temporal history of activity. The galaxies with
the largest current rise in production are the gas-rich and metal-poor irregulars, of which there
are many within our Local Group. Other galaxies within this system, the dwarf spheroidals, are
more akin to ellipticals.

Star formation activity reaches extraordinarily high levels in localized regions of some ir-
regulars. Such starbursts are recognized spectroscopically, by the emission lines associated with
a large population of massive stars. Larger, spiral galaxies may also contain starbursts, located
near their centers. In these cases, it appears that the galaxy is being tidally disturbed or is merg-
ing with a close neighbor. Tidal gravity induces a rapid inflow of diffuse gas, often through the
formation of a central, stellar bar. The most prodigiously active starburst galaxies are so heavily
cloaked in dust that they are primarily seen in the infrared.

The paucity of extremely metal-poor, low-mass stars in the solar neighborhood demonstrates
that our region of the Galaxy has not evolved in isolation. One possibility is that fresh gas has
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accreted from the outside. Surveys of older, redshifted galaxies find additional evidence for
interactions. Many starbursting, dwarf irregulars existed in the past but have now disappeared,
perhaps as a result of mergers. The Lyman break technique find even more primitive systems of
higher luminosity that are also undergoing starburst activity.

Primordial gas must have both cooled and contracted substantially to create the first gen-
eration of stars. In modern cosmological models, the gas first coalesced at the centers of dark
matter clumps, which had earlier separated out from a more uniform, expanding background.
The cooling of the gas was effected by hydrogen molecules. These formed in abundance once
the gas density reached values well in excess of present-day clouds. The first protostars there-
fore experienced rapid infall during their main accretion phase. Formation of these objects
reionized the diffuse, intergalactic gas.
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20 The Physical Problem: A Second Look

We now step back from the technical development of our subject and assess, in summary fash-
ion, our grasp of its essential points. Of course, it is only through the course of this study that
we have gained an appreciation of the salient issues. It is also true in general that the very
questions we are capable of framing reflect the limitations of our understanding. Many current
quandaries will fade in importance or even lose their meaning entirely as our knowledge base
expands. Nevertheless, let us try and see how far we have advanced, and where future progress
can be made.

20.1 Clouds

Half or more of all stars form within giant molecular cloud complexes. Where do these come
from? We touched very lightly on this issue, in part because it is tangential to star formation
proper, but also because it is incompletely understood. The idea that molecular clouds condense
from HI gas has been prevalent for decades, and is strongly bolstered by the theory of hydrogen
self-shielding (§ 8.1). How this transformation occurs on galactic scales is less clear, although it
is a problem where numerical simulations could still make significant headway. To complicate
the matter, a substantial, but uncertain fraction of the molecular gas is being converted back into
atomic form, through the action of stellar radiation in photodissociation regions.

Roughly 107 yr following the birth of a giant cloud, it disappears from view, leaving behind
multiple groups of stars that disperse into space. Combined molecular line maps of the clouds
and optical imaging of the nascent clusters show the dispersal in action (§ 3.1). It is the massive
stars themselves that evidently do the damage through their winds and ionizing radiation. A
far more vexing issue is the disappearance of smaller, dark cloud complexes containing no
massive stars. Stellar jets appear to be the culprit, at least by default, but the theory is woefully
undeveloped (§ 12.4). Observations of HI gas surrounding aging T Tauri or post-T Tauri stars
would be of great benefit in this regard.

Another central issue is the mechanical support of clouds against gravity. For dense cores,
the smallest entities producing stars, the issue is resolved in principle. A combination of ther-
mal pressure and tension from an embedded, largely static magnetic field seems adequate. How
these two forces endow cores with their observed, elongated structure is less secure (§ 9.4). It is
on the larger scale of dark clouds and giant complexes that things indeed become murky. Ther-
mal pressure is manifestly unimportant, leaving the magnetic field as the dominant influence.
The morphology of the clouds, as well as their large, internal line widths tell us that neither
the gas nor the field is homogeneous and static. A field composed of planar Alfvén waves and
one tangled up through turbulent motion are both unlikely to persist (§ 9.5). Some alternative
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picture is called for, in which magnetized streams of gas interact but somehow avoid creating
shocks and thereby rapidly dissipating energy.

Given our ignorance of clouds’ large-scale support, it is not surprising that the origin of sub-
structure is also problematic. The molecular gas in giant complexes resides in clumps whose
simple mass distribution may be a clue to the assembly process (§ 3.1). Only the most massive
clumps are forming stars. Somehow, isolated regions in these entities lose their effective mag-
netic pressure, and settle into quiescent cores that subsequently undergo protostellar collapse.
How this transition occurs is a matter of paramount importance, for it underlies the manifest
inefficiency of star formation itself. Only a small fraction, perhaps a few percent, of the total
mass of a giant cloud or dark cloud complex ends up in stars. Why should this be so? To put the
matter another way, why is one cloud volume destined to become a star, while most neighboring
volumes are not?

The empirical pattern of stellar births, as manifested in the histories of known associations
and clusters, provides an interesting clue. That there is a coherent pattern at all, that the global
star formation rate accelerates in regions with abundant molecular gas, is significant (§ 12.4).
This increase demonstrates that the formation of a dense core cannot be a random event in the
cloud medium, but is occurring in response to some global change in that medium. One such
change would be large-scale, gravitational contraction of the parent cloud. This contraction
presumably occurs through gradual loss of the mechanical support. Theory can say little more
until the nature of that support is better established.

In this context, two traditional and influential ideas from the past can now be put to rest.
One is hierarchical fragmentation, already mentioned briefly in § 12.4. The picture is that a
large, relatively diffuse cloud transforms into small, dense stars in stages. Through the action
of gravity, the original cloud both contracts and splits into several daughter fragments. Each
of these fragments suffers an analogous fate, subdividing further into more compact entities.
Eventually, we arrive at a collection of stars.

The very inefficiency of star formation tells us immediately that such a process cannot occur
ubiquitously throughout a giant complex or dark cloud. But hierarchical fragmentation is not
a plausible sequence of events even for a hypothetical region where a large mass fraction is
destined to become stars. One way for a self-gravitating cloud to split apart is through dynamical
fragmentation (§ 12.1). Here, the original object must be significantly out of force balance. It
strains credibility to suppose that every observed giant molecular cloud is essentially in a state
of free-fall collapse. But even if that were the case, breakup would continue only until the
combination of thermal and magnetic pressure became significant in the latest fragment. At that
point, the fragment would rebound as a static, equilibrium object.

Inside-out collapse is the other possibility. This is indeed the only known means by which
a cloud can achieve the enormous density increase (a factor of 1020) required to become a star.
The requisite initial condition is that the cloud be in force balance, but that self-gravity be just
over the maximum allowed for dynamical stability. It is unlikely that this delicate condition
is attained through breakup of a larger parent. More plausibly, regions evolve to such a state.
Dense cores presently observed to be starless may thus, in the future, gain mass from their
surroundings until they reach the point of marginal stability. Gas will drift across magnetic
field lines during this period (§ 10.1). In summary, stars do not arise from the “top-down”
fragmentation of a larger entity. The dense cores producing them grow in a “bottom-up” fashion,
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out of a less static and homogeneous medium, which itself may be slowly contracting. The
ensuing, inside-out collapse of cores involves no dynamical fragmentation.

The second traditional idea is bimodal star formation. Creating a massive star through
inside-out collapse is problematic, because of the repulsion by stellar winds and radiation pres-
sure (§ 11.4). Pending a solution to this difficulty, one may draw the conclusion that stars above
some critical mass form in a very different way. We have said as much in this book, and have
favored the view, still largely untested, that high-mass objects result from the coalescence of
dense cores and previously formed stars within a crowded environment (§ 12.5).

Adherents of bimodal star formation, on the other hand, invoke the dynamical fragmentation
of large clouds. Smaller clouds more nearly in force balance produce low-mass stars via inside-
out collapse; larger clouds yield massive stars through prompt breakup. The objection here is
the same as before. No such breakup can lead from cloud to stellar densities. Furthermore,
observations show that every group of massive stars is accompanied by an even larger retinue
of lower-mass objects. The true situation is not best described as bimodal, but as a continuous
variation in the pattern of star formation in diverse environments. We shall return to this issue
shortly.

20.2 Stars

Consider the region within a dense core that is undergoing inside-out collapse onto an embedded
star and its disk. Note first that there are generally two such regions, since most stars are born as
binaries (§ 12.1). The observed, geometric elongation of dense cores may promote the growth
of two separate concentrations (§ 12.3). These gradually evolve, through accretion of their
surroundings and further gravitational settling, to the point of true collapse. Since most binaries
have separations much less than 0.1 pc, the stars must have transferred most of their angular
momentum to the surrounding gas.

Let us concentrate, however, on the infall taking place onto a single star. A critical, unsolved
problem is what ends the process. Equivalently, we are asking what circumstance limits the mass
of stars in general. This latter question would be meaningless if the initial mass function were
a simple power law. In fact, most stars form in the decade from 0.1 and 1 M� (§ 4.5). Having
established the existence of a characteristic stellar mass scale, it is natural to seek its origin.

A basic realization from cloud studies is that the potential reservoir of material is very large.
It is true that the estimated masses of dense cores do not greatly exceed stellar values (§ 3.3).
But these figures simply represent the integrated signal from a molecular line or warmed dust,
both of which essentially select high column density. The outermost contour from such a tracer
does not mark a true discontinuity in the medium. To put the issue in more physical terms, we
recall that the dense core is permeated by a magnetic field that pinches together in the vicinity
of the star (as sketched in Figure 10.8). Once cloud collapse has begun, why doesn’t cloud gas
continue to slide along curved field lines, filling in the material draining onto the central object?

It is worth repeating the two observations that may be relevant in this regard. First, as we
proceed to sufficiently large distances beyond the conventional boundary of the dense core, the
gas is no longer quiescent. It has been difficult to characterize this transition quantitatively, as
maps of the exterior, lower-density region are typically made in CO and have poorer spatial
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resolution than those of the interior. An improved theoretical treatment of dense core origins
might clarify to what degree this change in the cloud inhibits accretion onto the star. The second
significant fact, or rather inference from other data, is that the protostar itself may power a wind.
This flow could be what reverses infall, even for a low-mass object.

Whether protostars in fact drive strong winds cannot presently be stated with any confidence,
since we have no direct evidence that any particular embedded source is a true protostar, i. e.,
that its luminosity stems mainly from the release of infall kinetic energy (§ 11.5). The fact
is, however, that essentially all embedded stars have associated molecular outflows, and these
tend to have higher mechanical luminosities for more deeply embedded objects (§ 13.2). Strong
winds may arise in response to the buildup of stellar angular momentum during infall. Here,
one should recall our demonstration in § 16.5 that a fully convective protostar accreting from
a rotating cloud would attain breakup speed even before the appearance of any circumstellar
disk. Thus, the eruption of the wind must occur very early, again as indicated by the outflow
observations.

Molecular outflows are not themselves composed of wind gas, but of cloud matter that has
been stirred up and dragged outward by an internal jet. This jet is the stellar wind channeled
into a narrow, bipolar configuration (§ 13.1). Even as it leaves the star, the wind is already
anisotropic because of rotational and magnetic forces. How the subsequent channeling over
larger distances occurs is still not fully understood. It is ironic that jets first revealed themselves
through shocks (Herbig-Haro objects) arising from relatively minor fluctuations in the wind.
The spacing of the shocks yields, in principle, a record of these fluctuations. Shocks of the
greatest intensity occur very far from the star and have associated intervals of order 103 yr.
Weaker shocks occur within 0.1 pc and represent decade-long variations.

The growth of a disk represents another response of the protostar to increasing angular
momentum. Infalling gas enters into orbit around the central object if that material is rotating
too fast to reach the stellar surface. It is important to recognize the limitations of this statement.
Imagine the extreme case, where essentially all the matter within a region collapses into a
rotating slab. If such a slab can cool to a geometrically thin configuration, then it will break
apart into numerous fragments, none of which attains stellar density. Forming a star requires an
initial supply of low-angular momentum gas, presumably from the central column of a slowly
rotating dense core (§ 10.4).

Since we observe disks around optically revealed stars (§ 17.3), something prevents the
earlier, protostellar disk from building up mass to the point of fragmentation. It is attractive to
think of the process as self-limiting, through the torquing action of spiral waves that both drive
mass inward and also spread the configuration (§ 11.3). This idea is secure conceptually, but
still needs development in an evolutionary setting. A more complex interaction occurs closer to
the star, where the local magnetic field exerts dynamical influence.

Accretion from the disk onto the star appears to continue during the visible, pre-main-
sequence phase. At least that is one relatively simple interpretation of the spectroscopic infall
signature evident in the YY Orionis subclass of T Tauri stars (§ 17.2). Estimates of the mass
transport rate are crude, but indicate that it is relatively low. Thus, numerical calculations of
quasi-static contraction that ignore stellar mass variation are still trustworthy. Observations of
microjets show that more than just infall is occurring. There are still no quantitative models
for the full motion of gas in the vicinity of a pre-main-sequence object. Whatever its detailed
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nature, shocks resulting from this activity give rise to the strong emission lines that help define
classical T Tauri stars (§ 17.1). A major puzzle is that weak-lined stars, which match their clas-
sical counterparts in both mass and age, lack strong emission lines in gas, as well as the heated
dust indicative of nearby disks.

The bulk contraction of T Tauri stars is a relatively simple process that is well understood
physically. Good corroboration of the basic theory is provided by the similar contraction ages
for binary components of disparate masses (§ 12.3). This finding not only tells us something
significant about binary origins, but would not hold unless the ages themselves were reasonably
accurate. A key feature of quasi-static contraction is the steady decrease of stellar luminosity
(§ 16.2). Pre-main-sequence stars are relatively bright, long before the fusion of hydrogen.
Their source of energy is self-gravity. In no sense, therefore, do young stars “flare up” as a
result of nuclear ignition.

Intermediate-mass stars are important conceptually as a bridge between solar-type objects,
which originate from individual dense cores, and truly massive stars that do not. Above 2 M�,
the process of quasi-static contraction itself grows more complex, as the partially radiative star
adjusts to thermal equilibrium (§ 18.2). A natural upper boundary for intermediate masses is
about 10 M�. Stars heavier than this have no pre-main-sequence phase at all, but begin fusing
hydrogen even if they are still experiencing infall.

These findings are more secure than those concerning the stellar environment. We do not
understand why emission-line activity is relatively rare at intermediate masses (§ 18.1). Pre-
sumably, the complex flows occurring outside lower-mass objects tend to be absent. Does this
change reflect the detailed circumstances of formation? Certainly there is less evidence for
disks, especially among Be stars. The volume immediately surrounding a massive O star may
be exceptionally clean, as any residual matter would have been driven off by the intense radia-
tion and winds.

The HII region generated by such an object sweeps through a large portion of the parent
cloud (§ 15.1). Clumps overtaken by the ionization front undergo both compression and surface
evaporation. The first process demonstrably induces low-mass star formation in the clump inte-
rior (§ 15.5), presumably through the stimulated production of dense cores and their subsequent
collapse. But the net effect of the O star on its surroundings is a destructive one. If the cloud is
not completely driven off before the star explodes as a supernova, then the resulting blast wave
finishes the job.

A problem that involves star formation at all masses, along with cloud dynamics, is the
origin of stellar groups. Why does one region form an OB association, another a bound cluster,
while a third creates a T association? Here one can only speculate, as we did in Chapter 12. The
star formation record, we have noted, suggests that the clouds undergo large-scale contraction,
even while they are creating dense cores that in turn produce low-mass stars and binaries. Since
the putative contraction is driven by self-gravity, it leads to the greatest density increase in
the most massive parent clouds. The centers of these, therefore, are ripe environments for the
coalescence leading to high-mass stars. Once formed, these objects rapidly disperse ambient
gas.

Contraction also occurs in less massive clouds, but here it is reversed by the energy input
and disruption from stellar outflows. The cloud therefore is unable to progress beyond the stage
of forming a loose collection of low-mass objects, i. e., a T association. In between are entities



788 20 The Physical Problem: A Second Look

that contract and shed mass through stellar outflows on the same time scale. Within these
environments, dense cores become sufficiently crowded that the stars they spawn remain as a
bound cluster even after all background gas has been driven off. Both theoretical analysis and
observations of very young, bound clusters should be brought to bear in exploring this picture.

20.3 Galaxies

The largest stellar groups of all are galaxies. In these, one encounters the full range of star for-
mation activity. At one extreme are the moribund ellipticals, composed of aging main-sequence
and red giant stars. At the other extreme are starburst regions in spirals and irregulars (§ 19.3).
Many of these regions are deeply enshrouded in interstellar dust. We may thus be reassured that
molecular gas, which provides the raw material for stars in the Galactic neighborhood, plays
an analogous role even under these circumstances. But the clouds themselves are denser and
warmer, the latter characteristic undoubtedly arising from the intense star formation itself. In
the single well-resolved example, the 30 Doradus region in the Large Magellanic Cloud, we
observe directly that massive stars are created together with a dominant population of solar-type
objects. It would be even more comforting to witness the latter forming out of dense cores, but
these will be hard to find in gas so thoroughly ravaged by its most luminous products.

Galaxies in general give us the perspective to witness large-scale processes that must also
be occurring locally. For example, we know that gas in the solar neighborhood has not simply
been consumed to produce the current population of stars. The essential lesson of the G-dwarf
problem (§ 19.4) is that fresh material enters the region even as this production continues. Some
of this accretion may represent the global transport of gas within the Galaxy, induced by the
torquing action of spiral arms. The extraordinary activity at the Galactic center (§ 19.1) must
ultimately arise from this effect. It remains to be seen if the pileup in gas manifested as the
molecular ring reflects the same transport process.

Even apart from the issue of mass transport, spiral arms are central to molecular cloud
buildup and therefore star formation. The arms are fundamentally perturbations of the stellar
population. Since it is the stars that provide most of the gravitational force within galactic disks,
the gas responds by collecting into the spiral pattern. We see the result with striking clarity in
the CO images of M51 (Figure 1.21) and many other systems.

Equally striking in disk galaxies is the pattern in the azimuthally averaged star formation
rate. Despite the complexity of spiral arms, the rate per surface area varies smoothly with
total gas density. This behavior, the global form of the Schmidt law, still lacks a convincing
theoretical basis. Within any galaxy, star formation also truncates abruptly below a well-defined,
gas surface density (§ 19.2). There is much still to be learned from this simple fact.

Any complacency that galaxy structure is an old and settled issue must be shaken by the
existence of dark matter. This unknown substance comprises most of the mass of spirals, and
is at least as dominant in nearby dwarf irregulars. Needless to say, dark matter must enter
any discussion of star formation on the galactic scale. Spiral arms, for example, are often
stimulated by the presence of a companion galaxy. This mode of arm production must hold
especially for systems with starburst nuclei, which are almost all members of interacting pairs.
The interaction, however, is not between stellar disks, but between dark halos containing both
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stars and ordinary gas. Simulations demonstrate the complexity of the dynamics under these
circumstances (§ 19.3).

Reaching back further in time, our knowledge of early galaxy evolution is advancing rapidly
through direct observations. At modest redshifts (z � 2), the global star formation rate rises
quickly, and is largely supplied by analogues to present-day dwarf irregulars. The behavior of
the global rate at higher z is far less certain. What does seem clear, however, is that the primitive
systems being revealed through spectroscopic and photometric surveys have little in common
with those of today (§ 19.4).

In retrospect, this marked difference is perhaps not surprising. Certainly the interstellar
medium in the first galaxies was exotic by our standards. The low abundance of metals implies
far less efficient cooling in the ambient gas. What emission did occur was from molecules
created initially during the cosmological expansion (§ 19.5). Self-gravity must still overwhelm
thermal pressure to create stars. It follows that only clouds of extraordinary density, at least
with respect to nearby examples, were susceptible to collapse. Detection of such entities would
represent a key advance in understanding this distant epoch.
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A Astronomical Conventions

A.1 Units and Constants

Here we list some standard units of astronomy. We have also included other physical constants employed
in the book.

Name Symbol Value

Angstrom Å 10−8 cm
Astronomical Unit AU 1.496 × 1013 cm
Bohr magneton µB 5.788 × 10−3 eV µG−1

Boltzmann constant kB 1.381 × 10−16 erg K−1

electron charge e 4.803 × 10−10 esu
electron mass me 9.110 × 10−28 g
electron volt eV 1.602 × 10−12 erg
gas constant R 8.314 × 107 erg g−1 K−1

gravitational constant G 6.672 × 10−8 cm3 g−1 s−2

Hubble constant H◦ 70 km s−1 Mpc−1

Jansky Jy 10−23 erg s−1 cm−2 Hz−1

nuclear magneton µN 3.152 × 10−6 eV µG−1

parsec pc 3.086 × 1018 cm
Planck constant h 6.626 × 10−27 erg s

� 1.055 × 10−27 erg s
proton mass mp 1.673 × 10−24 g
radiation density constant a 7.565 × 10−15 erg cm−3 K−4

solar luminosity L� 3.827 × 1033 erg s−1

solar mass M� 1.989 × 1033 g
solar radius R� 6.960 × 1010 cm
speed of light c 2.998 × 1010 cm s−1

Stefan-Boltzmann constant σB 5.670 × 10−5 erg s−1 cm−2 K−4

Thomson cross section σT 6.652 × 10−25 cm2
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A.2 Photometric Systems
The wavelength listed here is an effective one, weighted by the transmission function of the filter. We also
list the full width half-maximum of the transmitted intensity.

System Filter Wavelength Width

Johnson-Morgan U 3600 Å 700 Å
B 4400 Å 1000 Å
V 5500 Å 900 Å

Infrared R 7000 Å 2200 Å
I 9000 Å 2400 Å
J 1.22 µm 0.26 µm
H 1.65 µm 0.29 µm
K 2.18 µm 0.41 µm
L 3.55 µm 0.57 µm
M 4.77 µm 0.45 µm
N 10.5 µm 5.2 µm
Q 20.1 µm 7.8 µm

Strömgren u 3500 Å 340 Å
v 4100 Å 200 Å
b 4700 Å 160 Å
y 5500 Å 240 Å
β 4860 Å 150 Å

A.3 Equatorial and Galactic Coordinates
From our perspective, astronomical objects appear to reside on a two-dimensional spherical surface cen-
tered on us. Because of diurnal rotation, this celestial sphere itself rotates from east to west, carrying
planets and stars, including the Sun, along with it. The celestial equator is the outward projection of
our own, and its north and south poles are the imaginary extensions of the Earth’s rotational axis (see
Figure A.1). Over a longer time scale, the Sun and planets migrate along the ecliptic, a band representing
the intersection of the solar system’s orbital plane and the celestial sphere. The ecliptic is tilted by 23◦

with respect to the celestial equatorial plane.
Several astronomical coordinate systems are used to locate objects within the celestial sphere, in such

a way that the position is independent of diurnal motion. In the equatorial system, depicted in Figure A.1,
we measure the right ascension (α) of the object as its angular displacement eastward along the celestial
equator. Note that the angle is measured in hours, minutes, and seconds, where 1 hour is equivalent to
360/24 = 15◦. The zero point for this measurement is the vernal equinox. This is the point where the
Sun, in the northward phase of its migration along the ecliptic, crosses the celestial equator. The vernal
equinox is located in the constellation Aries and is designated by an open circle in Figure A.1. The second
coordinate in the equatorial system is the declination (δ). This is the angular displacement (in degrees,
arcminutes (′), and arcseconds (′′)), measured north or south of the celestial equator. Positive declinations
are northern ones.

The Earth’s rotational axis precesses slowly in time, with an associated period of 26,000 yr. Con-
sequently, both the north and south poles of the equatorial system, as well as the celestial equator itself,
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Figure A.1 Equatorial coordinate system. The celestial sphere, with the observer at the center,
and the north and south celestial poles are indicated. The right ascension α is measured relative
to the vernal equinox (open circle). This latter point is the intersection of the celestial equator and
the northern leg of the ecliptic. The declination δ is measured from the celestial equator.

Figure A.2 Galactic coordinate system. The Galactic equator is the intersection of the Milky
Way’s plane with the celestial sphere. This equator is tilted relative to the celestial one; the
Galactic north and south poles are indicated. The longitude l is measured relative to the Galactic
center (open circle). The latitude b is is the angular distance above or below the Galactic equator.
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drift relative to the background of distant stars. This phenomenon, known as precession of the equinoxes,
continually alters the coordinate values for any object. In any particular observation, these values are re-
ferred to the appropriate epoch, the current one being the year 2000. Our maps in this book reproduce the
coordinates as published in the literature. The reader who needs a precise location for any object should
refer to the original article, as listed in the Sources section, to ascertain the epoch used. Standard programs
can, if necessary, shift the coordinate values to the current ones.

In the galactic coordinate system, one places objects with respect to the plane of the Milky Way (see
Figure A.2). This plane intersects the celestial sphere in the Galactic equator, a band that is tilted by 63◦

from the celestial one. The longitude (l) of the object is measured eastward along the Galactic equator.
Here, the zero point is the Galactic center (open circle in the figure), which is located in the constellation
Sagittarius, in the Southern hemisphere. For the latitude (b), we measure the angle north or south of the
Galactic equator. Both the longitude and latitude are given in degrees, arcminutes, and arcseconds. A
positive b-value indicates that the object is north of the equator. The origin (l = 0; b = 0) corresponds,
in equatorial coordinates, to (α = 17h45m37s; δ = −28◦56′10′′).

B The Two-Level System

We consider a species of atom or molecule of number density n dispersed throughout a gas of total den-
sity ntot and homogeneous composition. This species has only two energy levels, separated by ∆E
(Figure B.1). In any real system, there are always other levels connected by possible physical transitions.
Our two-level approximation is valid to the extent that these other transitions are slow compared to the one
of interest. We include the possibility of degeneracy, i. e., we suppose that there exist gu and gl sublevels
of identical energy in the upper and lower levels, respectively. Our problem is to find the level populations
nu and nl as a function of the ambient kinetic temperature Tkin and density ntot.

As illustrated in the figure, each atom in the lower level can be excited both collisionally and radia-
tively. The total rate of collisional excitations per unit time and per unit volume can be written γlu ntot nl,
where the coefficient γlu depends on atomic properties of the species of interest and the background gas,
as well as on their relative velocity distribution. The probability per unit time of a single atom being ex-
cited radiatively must be proportional to the ambient radiation intensity. Thus, we write this probability
as Blu J̄ nl. Here Blu is the Einstein coefficient for absorption. The quantity J̄ is related to the mean
intensity Jν by

J̄ ≡
Z ∞

0

Jν φ(ν) dν (B.1)

Figure B.1 Processes governing the populations in the
two-level system. These include: collisions with other
molecules, interaction with ambient radiation, and spon-
taneous emission.
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where φ(ν)dν is the relative efficiency with which a photon of frequency ν and ν + dν excites an upward
transition. This absorption profile is normalized so thatZ ∞

0

φ(ν) dν = 1 . (B.2)

Note that φ(ν) is always strongly peaked at ν◦ ≡ ∆E/h. The factors determining this function are
discussed in Appendix E.

Turning to downward transitions, the volumetric collisional rate is γul ntot nu, with γul being the
deexcitation coefficient. Two kinds of radiative transition can occur. First, an atom can spontaneously
emit a photon of energy near hν◦ and drop to the lower level. The corresponding rate is Aul nu, where
Aul, the Einstein coefficient for spontaneous emission, is a function only of atomic properties. Secondly,
an ambient photon of the right frequency can stimulate the excited atom to radiate a photon of identical
energy and momentum, thereby again decaying to the lower level. Here, the associated volumetric rate of
transitions is Bul J̄ nu, where Bul is the Einstein coefficient for stimulated emission.

In order for the populations of both levels to remain constant in time, we need

γlu ntot nl + Blu J̄ nl = γul ntot nu + Bul J̄ nu + Aul nu . (B.3)

A relation between γlu and γul can be obtained by considering a value of ntot so high that radiative tran-
sitions are negligible compared to collisional ones. From equation (B.3), we then have γlu/γul = nu/nl.
In this high-density limit, the two-level system reaches local thermodynamic equilibrium (LTE) with the
ambient temperature Tkin, so that the level population obeys the Boltzmann relation. We therefore find

γlu

γul
=

gu

gl
exp

„
− ∆E

kBTkin

«
, (B.4)

an equation which holds generally at any density ntot.
We next seek relations between the Einstein coefficients. Accordingly, we consider the opposite limit,

i. e., a value of ntot so low that radiative transitions completely dominate. Under these conditions, the
two-level system is in thermodynamic equilibrium with the radiation field. The level populations again
follow the Boltzmann relation, but with the exponential now evaluated at the radiation temperature Trad

that characterizes the photon energy distribution. Neglecting ntot in equation (B.3) and solving for J̄ , we
find

J̄ =
Aul nu

Blunl − Bulnu

=
Aul/Bul

(glBlu/guBul) exp(∆E/kBTrad) − 1
,

(B.5)

where the second form utilizes the Boltzmann relation for the ratio nu/nl.
Under the assumed condition of thermodynamic equilibrium, the radiation intensity Jν obeys Planck’s

law:

Jν = Bν

=
2hν3/c2

exp(hν/kBTrad) − 1
.

(B.6)

This distribution is much broader than the profile function φ(ν) in equation (B.1), so that substitution of
(B.6) into (B.1) yields

J̄ ≈ Bν◦

=
2hν3

◦/c2

exp(∆E/kBTrad) − 1
.

(B.7)
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Figure B.2 Variation of the excita-
tion temperature Tex as a function of
the ambient density ntot. In this nu-
merical example, Trad = ∆E/kB ,
while Tkin = 10Trad.

Comparison of (B.7) with (B.5) gives the desired relations between the Einstein coefficients:

Aul =
2hν3

◦
c2

Bul (B.8a)

gl Blu = gu Bul (B.8b)

These relations, like that in equation (B.4), are valid also in environments far out of thermodynamic equi-
librium.

We can now use equations (B.4) and (B.8) in (B.3) to derive an expression for nu/nl valid for any
ntot and Tkin. We find

nu

nl

»
1 +

ncrit

ntot

„
1 +

c2J̄

2hν3◦

«–
=

gu

gl

»
exp

„
− ∆E

kBTkin

«
+

„
ncrit

ntot

«
c2J̄

2hν3◦

–
, (B.9)

where ncrit ≡ Aul/γul is the critical density introduced in § 5.2. Equation (B.9) can be recast into a
more physically transparent form by using Trad instead of J̄ , through equation (B.7). Note that the actual
radiation field need not be Planckian to make this substitution. If we further express nu/nl through the
excitation temperature Tex as in equation (5.14), we finally derive

exp

„
− ∆E

kBTex

«
= fcoll exp

„
− ∆E

kBTkin

«
+ (1 − fcoll) exp

„
− ∆E

kBTrad

«
. (B.10)

Here the parameter fcoll represents the fraction of all downward transitions due to collisions:

fcoll ≡
ntot

ntot + ncrit(1 + c2J̄/2hν3◦)
. (B.11)

For fixed values of ntot, Tkin, and Trad, we may solve equation (B.10) for Tex, i. e., for nu/nl. The
individual level populations nu and nl follow by further imposing the condition nu + nl = n.

Equation (B.10) shows that Tex always lies between Trad and Tkin. When collisions are relatively rare
(fcoll � 1), nu and nl equilibrate with the radiation field, and Tex ≈ Trad. As ntot increases and colli-
sions become more important, the ratio nu/nl first rises proportionally to ntot. For ntot sufficiently greater
than ncrit, equation (B.11) indicates that fcoll → 1, so that Tex → Tkin and the system comes into LTE.
Figure B.2 shows the behavior of Tex as a function of ntot/n′

crit, where n′
crit ≡ ncrit(1 + c2J̄/2hν3

◦).
The smooth increase of Tex, and therefore of nu/nl, implies that the emission from the J = 1 → 0
transition will also rise smoothly and then level off. In particular, the local maximum in emissivity seen
in Figure 5.4 is not present, reflecting the fact that the rotational ladder of CO is poorly approximated as a
two-level system, even at the relatively low kinetic temperatures of quiescent molecular clouds.
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C Transfer of Radiation in Spectral Lines

As we saw in Chapter 2 (equation (2.20)), the propagation of the specific intensity Iν is governed by the
fundamental equation

dIν

ds
= −αν Iν + jν , (C.1)

where αν was written as ρκν . We suppose that a line of sight passing through the medium of interest (e. g.,
a molecular cloud) covers a total path length s = ∆s, where s = 0 at the backside of the medium (see
Figure C.1). In general, the absorption coefficient αν and emission coefficient jν will be functions of s.
We can write down the general solution of (C.1) by noting that

dIν

ds
+ αν Iν = exp

»
−

Z s

0

αν(s′) ds′
–

d

ds

„
Iν exp

»Z s

0

αν(s′) ds′
–«

.

Equation (C.1) then becomes

d

ds

„
Iν exp

»Z s

0

αν(s′) ds′
–«

= jν exp

»Z s

o

αν(s′) ds′
–

.

Integration from s = 0 to s = ∆s then yields the general solution:

Iν(∆s) = Iν(0) exp

»
−

Z ∆s

0

αν(s′) ds′
–

+

Z ∆s

0

ds′ jν(s′) exp

»
−

Z ∆s

s′
αν(s′′) ds′′

–
.

(C.2)

Here, Iν(0) is the specific intensity of any background radiation field impinging at s = 0 (Figure C.1).
If we now specialize to a uniform medium in which both αν and jν are spatial constants, equation (C.2)
simplifies to

Iν(∆s) = Iν(0) exp [−αν ∆s] +
jν

αν
(1 − exp [−αν ∆s]) . (C.3)

Figure C.1 Propagation of radiation through a gaseous medium. Both the absorption by the
medium and its emissivity change the specific intensity Iν over the path length ∆s.
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We consider the case in which both emission and absorption are due to transitions between two discrete
levels in an atom or molecule. Employing the notation of Appendix B, the volumetric transition rate due
to spontaneous emission is Aulnu. We assume that this emission is isotropic, so that the coefficient jν ,
which is measured per unit solid angle, is given by

jν =
hν◦
4π

nu Aul φ(ν) . (C.4)

Here, φ(ν) is the relative probability of emission into a photon frequency ν near the line center frequency
ν◦. This profile function can generally be taken as identical to the absorption profile introduced under the
same notation in Appendix B.

The volumetric absorption rate is BluJ̄nl. Hence, the energy absorbed per unit time per unit solid
angle is (hν/4π)BluJ̄nl. The contribution to the absorption coefficient, which is measured per unit
frequency, is

(αν)true =
hν◦
4π

Blu nl φ(ν) . (C.5)

The reader may check that this expression, upon integration over solid angle and frequency, yields the
correct volumetric absorption rate in the case of an isotropic radiation field (Jν = Iν ). However, equa-
tion (C.5) holds even when the radiation is anisotropic. The subscript indicates that this is a true absorption
process. In contrast, stimulated emission can be viewed as negative absorption. Such an identification is
natural because the stimulated emission rate is also proportional to the ambient radiation intensity. By
analogy with equation (C.5), we can write down the associated coefficient as

(αν)stim =
hν◦
4π

Bul nu φ(ν) . (C.6)

The total absorption coefficient, corrected for stimulated emission, is then

αν =
hν◦
4π

(nl Blu − nu Bul) φ(ν) . (C.7)

From (C.4) and (C.7) we find that

jν

αν
=

nu Aul

nl Blu − nu Bul

=
2hν3

◦/c2

exp(hν◦/kBTex) − 1
,

(C.8)

where we have used equation (B.8) and the definition of Tex in equation (5.14). After specializing to
ν = ν◦ in equation (C.3), substitution of (C.8) yields

Iν◦(∆τ◦) = Iν◦(0) e−∆τ◦ +
2hν3

◦/c2

exp(hν◦/kBTex) − 1

“
1 − e−∆τ◦

”
. (C.9)

Here we have set ∆τ◦ ≡ ∆τν◦ , where the medium’s optical thickness ∆τν is defined as αν∆s.
The quantity of interest to the observer is not Iν itself, but rather the difference between Iν and the

background intensity. Accordingly, we define a brightness temperature TB by

TB ≡ c2

2 ν2 kB
[Iν(∆τν) − Iν(0)] . (C.10)

To motivate this definition, recall the Planckian formula for the specific intensity at frequency ν from a
blackbody source at temperature T :

Bν =
2hν3/c2

exp(hν/kBT ) − 1
(C.11)
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In the Rayleigh-Jeans limit appropriate for low-energy transitions (hν � kBT ), we see that T/Bν →
c2/2ν2kB . Note also that equations (C.8) and (C.11) together imply that jν/αν , a quantity known as
the source function, is simply Bν◦(Tex) in the case of line radiation. Equation (C.9) further shows that
Iν◦ →Bν◦(Tex) in the limit ∆τ◦ � 1, as claimed in § 6.1.

The radio astronomer usually reports observations in terms of an antenna temperature TA, defined as

TA ≡ η
ΩS

ΩA
TB . (C.12)

Here, η is the beam efficiency, which accounts for such factors as the losses in the system’s optics. The
quantities ΩS and ΩA are, respectively, the solid angles subtended by the source and the telescope beam.
The ratio of these two solid angles, known as the beam dilution factor, can be less than unity for observa-
tions of a clumpy molecular cloud, and is always very small for an interstellar maser.

If we make the final assumption that the background radiation field is Planckian with an associated
temperature Tbg, then the definition (C.10) applied to (C.9) yields the detection equation introduced in
§ 6.1:

TB◦ = T◦ [f(Tex) − f(Tbg)]
h
1 − e−∆τ◦

i
, (C.13)

where TB◦ ≡ TB(ν = ν◦), T◦ ≡ hν◦/kB , and

f(T ) ≡ [exp(T◦/T ) − 1]−1 . (C.14)

Since the absorption coefficient αν◦ is proportional to the total volume density n of the species of
interest, the optical thickness ∆τ◦ can also be written in terms of the column density N ≡ n∆s. Using
equation (C.7) for αν◦ , we have

∆τ◦ =
hν◦
4π

(nl Blu − nu Bul) φ(ν◦) ∆s

=
c2Aul(gu/gl)

8πν2◦

»
1 − exp

„
− ∆E

kBTex

«–
nl∆s

∆ν
.

(C.15)

Here, we have again used equations (B.8) relating the Einstein coefficients and equation (5.14) for Tex.
In addition, we have replaced φ(ν◦) by the inverse of a characteristic frequency width ∆ν. This quantity
equals the full-width half-maximum of the line in the case of a Doppler-broadened profile (Appendix E).

For the two-level system considered in Appendix B, nl ≈ n and nl∆s ≈ N , so that equation (C.15)
expresses the desired relation between ∆τ◦ and N . Such an approximation is not adequate, however, for
a system in which the two levels are closely spaced rungs in a ladder. Consider, as in § 6.1, the lowest
rotational transition of CO. Here the upper level corresponds to J = 1 and the lower to J = 0. Assuming
that a single excitation temperature characterizes all the level populations, then repeated application of the
definition for Tex yields

n = n◦

»
1 +

g1

g0
exp

„
− ∆E10

kBTex

«
+

g2

g1
exp

„
− ∆E20

kBTex

«
+ . . .

–

≡ n◦ Q ,

(C.16)

where the partition function Q is given in this case by

Q =

∞X
j=0

(2J + 1) exp

»
−BhJ(J + 1)

kBTex

–

=

∞X
j=0

(2J + 1) exp

»
−T◦J(J + 1)

2Tex

–
.

(C.17)
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In writing equation (C.17), the formula (5.6) for the rotational energy has been employed. If Tex � T◦,
we effectively have a two-level system, since Q → 1 and n◦ → n. Since, however, T◦ for 12C16O is only
5.5 K, it is more useful to consider the opposite regime. Since the index J increases by unit intervals in
(C.17), we may adopt the approximation

Q ≈
Z ∞

0

dJ (2J + 1) exp

»
−T◦J(J + 1)

2Tex

–

= 2 Tex/T◦ .

(C.18)

Substitution of this result into (C.15) yields, after rearrangement, equation (6.9) in the text.

D Derivation of the Virial Theorem

We form the scalar product of the position vector r with the equation of motion (3.6) and integrate over
volume. For the manipulations that follow, it is most convenient to work in Cartesian coordinates, where
r has the components xi (i = 1, 2, 3). We adopt the notation

∂i ≡ ∂

∂xi
,

and follow the Einstein summation convention for repeated indices. The identities ∂ixi = 3 and
∂ixj = δij will be used extensively.

Using the definition (3.4), the lefthand side of equation (3.6) becomes

Z
ρ xi

„
∂vi

∂t

«
x

d3x +

Z
ρ xi vj ∂jvi d3x .

The first integrand can be written

ρxi

„
∂vi

∂t

«
x

= ρ

»
∂ (xivi)

∂t

–
x

, (D.1)

while the second integrand is

ρ xi vj ∂jvi = ρ vj ∂j (xi vi) − ρ vj vi ∂jxi

= ∂j (ρ vj xi vi) − (xi vi) ∂j (ρ vj) − ρ vj vi δij

= ∂j (ρ vj xi vi) +

„
∂ρ

∂t

«
x

(xi vi) − ρ vi vi ,

(D.2)

where we have used the mass continuity equation (3.7) to replace ∂j (ρvj) ≡ ∇ · (ρv).
The first righthand term in the final form of equation (D.2) is the divergence of a vector. After the

volume integration, this term generates a surface integral which vanishes in the absence of any external
mass flux. Adding equations (D.1) to (D.2) and integrating, we find

Z
ρxi

„
∂vi

∂t

«
x

d3x +

Z
ρ xi vj ∂jvi d3x =

∂

∂t

Z
ρ xi vi d3x − 2T , (D.3)
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where the kinetic energy T is defined in equation (3.10). The integrand on the right is

ρ xi vi =
1

2
ρ vi ∂i (xj xj)

=
1

2
∂i (ρ vi xj xj) − 1

2
xj xj ∂i (ρ vi)

=
1

2
∂i (ρ vi xj xj) +

1

2

„
∂ρ

∂t

«
x

xj xj .

Invoking once more the condition of zero external mass flux, we have

Z
ρ xi vi d3x =

1

2

∂I

∂t
, (D.4)

where I is a scalar quantity resembling the moment of inertia:

I ≡
Z

ρxj xj d3x . (D.5)

With the help of (D.4), equation (D.3) now becomes

Z
ρ xi

„
∂vi

∂t

«
x

d3x +

Z
ρ xi vj ∂jvi d3x =

1

2

∂2I

∂ t2
− 2T . (D.6)

We turn next to the righthand terms of equation (3.6). We first have

−
Z

xi ∂iP d3x = −
Z

∂i (xiP ) d3x +

Z
(∂ixi) P d3x

= −
Z

P r · n d2x + 3

Z
P d3x ,

where n denotes an outward normal vector in the surface integral. For a nonrelativistic fluid, the internal
pressure is two-thirds the energy density in thermal motion, so we find

−
Z

xi ∂iP d3x = −
Z

P r · n d2x + 2 U , (D.7)

where U is the total thermal energy in equation (3.11).
To handle the gravitational term in equation (3.6), we first write the potential Φg(r) as an integral over

all the mass elements in the volume:

Φg(r) = −G

Z
ρ(r′)

|r − r′| d3x .

We thus find

−
Z

ρ xi ∂iΦg d3x = −G

ZZ
ρ(r) ρ(r′)

xi(xi − x′
i)

|r − r′|3
d3x′ d3x , (D.8)

where we have used the identity

∂i
1

|r − r′| = − (xi − x′
i)

|r − r′|3
.
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Within the double integral in (D.8), we next switch the dummy variables r and r′. After changing
the order of integration, we can add the resulting expression to the original integral, thereby doubling its
value. We conclude that

−
Z

ρ xi ∂iΦg d3x = −1

2
G

ZZ
ρ(r) ρ(r′)

|r − r′|2
|r − r′|3 d3x′ d3x

=
1

2

Z
ρ(r)Φg(r) d3x

= W ,

(D.9)

where W is the gravitational potential energy of equation (3.12).
Lastly, we consider the two magnetic terms of equation (3.6). Integration of the first leads to

1

4π

Z
xi Bj ∂jBi d3x =

1

4π

Z
∂j (xi Bj Bi) d3x − 1

4π

Z
Bi ∂j (xi Bj) d3x

=
1

4π

Z
∂j (xi Bj Bi) d3x − 1

4π

Z
Bi Bi d3x

=
1

4π

Z
(r · B) B · n d2x − 2M ,

(D.10)

where M is the magnetic energy defined in equation (3.13). Here we have used Maxwell’s equation
∂jBj ≡ ∇ · B = 0 to eliminate one integral in the second line of (D.10). Integration of the last term of
equation (3.6) gives

− 1

8π

Z
xi ∂i (Bj Bj) d3x = − 1

8π

Z
∂i (xi Bj Bj) d3x

+
1

8π

Z
(∂ixi) Bj Bj d3x

= − 1

8π

Z
B2 r · n d2x + 3M .

(D.11)

Equations (D.6), (D.7), (D.9), (D.10), and (D.11) add together to yield the virial theorem:

1

2

∂2I

∂ t2
= 2T + 2 U + W + M

−
Z „

P +
B2

8π

«
r · n d2x +

1

4π

Z
(r · B) B · n d2x .

(D.12)

E Spectral Line Broadening

E.1 Natural Width
We consider an isolated, stationary atom or molecule with only an upper (u) and lower (l) energy level,
separated by ∆E. Let ν0 ≡ ∆E/h be the central frequency of the spectral line emitted during a downward
transition. Our first goal is to determine the natural line broadening, i.e., how the radiation intensity varies
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with frequency, in the vicinity of ν0. Thus, we will obtain the emission profile function φ(ν − ν0). Along
the way, we will find a quantum-mechanical expression for the Einstein coefficient Aul.

Let Ψ(t) be the wavefunction describing both the atom and its surrounding radiation field. This
function obeys Schrödinger’s equation:

H Ψ = i �
∂Ψ

∂t
. (E.1)

We decompose the Hamiltonian operator H into

H = H◦ + V . (E.2)

Here, V represents the interaction between the atom and the electromagnetic field, while H◦ governs the
unperturbed system of separate atom and field. We assume that the disturbance is relatively weak and
apply the methods of perturbation theory.

If V were strictly zero, there would still exist a set of wavefunctions obeying equation (E.1). Each of
these solutions, denoted Ψn(t), corresponds to an energy En of the combined system and has the time
dependence

Ψn(t) = Ψn e−iωnt , (E.3)

where ωn ≡ En/�. Moreover, each Ψn, a function of spatial coordinates alone, is a solution to the
time-independent Schrödinger equation:

H◦ Ψn = En Ψn . (E.4)

Since we are now concerned with emission, we let the initial state Ψ0 represent the excited atom in the
upper energy level together with zero photons in the radiation field, while Ψ1 is the atomic ground state
and a single photon.

We now expand Ψ(t) in terms of the unperturbed eigenfunctions:

Ψn(t) =

1X
n=0

cn(t)Ψn(t)

=
1X

n=0

cn(t) Ψn e−iωnt .

(E.5)

Each coefficient cn(t) is a complex number whose square c∗n(t)cn(t) ≡ |cn(t)|2 gives the probability that
the system is in the corresponding eigenstate at time t. Physically, we expect that |c1(t)|2 will grow, while
|c0(t)|2 diminishes. Substitution of (E.5) into (E.1) yields

i�

1X
n=0

»
dcn

dt
− iωncn

–
Ψn e−iωnt =

1X
n=0

cn[H◦ Ψn + V Ψn]e−iωnt

=
1X

n=0

cn[En Ψn + V Ψn]e−iωnt ,

(E.6)

where we have also applied equation (E.4). We next utilize the orthonormal property of the unperturbed
eigenfunctions: Z

Ψ∗
m Ψn d3x = δmn . (E.7)
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Multiplying (E.6) through by Ψ∗
0 and integrating yields, after simplification,

i �
dc0

dt
= c0 V00 + c1 V01 ei(ω0−ω1)t , (E.8)

where we have adopted the convenient notation

Vmn ≡
Z

Ψ∗
m V Ψn d3x .

Similarly, multiplication of (E.6) by Ψ∗
1 gives

i �
dc1

dt
= c0 V10 expi(ω1−ω0)t + c1 V11 . (E.9)

The task now is to solve the coupled differential equations (E.8) and (E.9). These equations are subject
to the initial conditions

c0 (t = 0) = 1 c1 (t = 0) = 0 . (E.10)

For times short enough that |c1(t)|2 has not grown close to unity, it is a reasonable approximation to ignore
c1 in equation (E.9) and write instead

i �
dc1

dt
= c0 V10 ei(ω1−ω0)t , (E.11)

which has the integral solution

c1(t) = − i V10

�

Z t

0

c0(t
′) ei(ω1−ω0)t′ dt′ . (E.12)

Substituting (E.12) into (E.8), we obtain a differential equation for c0(t) alone:

dc0

dt
= −|V10|2

�2

Z t

0

c0(t
′) ei(ω1−ω0)(t′−t) dt′ − ic0V00

�
. (E.13)

Equation (E.13) is best solved through Fourier transforms. Omitting the details, the result, for
t � (ω0 − ω1)

−1, is

c0(t) = exp


− i

�

»
V00 +

|V00|2
E0 − E1

− i π |V10|2 δ(E1 − E0)

–
t

ff
, (E.14)

where δ(E1 − E0) is the Dirac delta function.
This expression for c0(t) has a clear physical interpretation. Referring again to the second form of

equation (E.5), we see that the two imaginary terms in the exponential above effectively constitute a shift
of the initial state energy E0. The shift is small because V00 � H◦

00 = E0. The remaining term leads
to an exponential decay of the occupation probability |c0(t)|2. Such behavior indicates a transition rate
from the initial to the final state that is constant in time. The presence of the delta function in (E.14) means
that no transition occurs unless the final state has the same total energy, i.e., unless the emitted photon has
energy equal to the difference of the atomic levels. In fact, there are many final, composite states of the
same energy, each distinguished by the direction of the emitted photon, i.e., by the vector wavenumber k,
where k ≡ E/�c. Suppose there are ρEdE such states in the energy interval dE. Then the total transition
rate to these states is γ ≡ |c0(t)|2/dt, or

γ =
2 π |V10|2

�

= Aul .

(E.15)
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As indicated, the calculated rate is also equal to the Einstein coefficient for spontaneous emission associ-
ated with the atomic transition.

Leaving aside the small energy change in the initial state, which contributes a phase shift to the oscil-
lating wavefunction Ψ0(t), we may write c0(t) in the simplified form

c0(t) = e−γt/2 . (E.16)

We now substitute this expression into the right side of equation (E.12), in order to obtain c1(t). We find

c1(t) = − i V10

�

Z t

0

ei(ω1−ω0)t′−γt′/2 dt′

=
V10

�

1 − ei(ω1−ω0)t−γt/2

(ω1 − ω0) + iγ/2
.

(E.17)

Hence, the probability that the atom has decayed to its lower level is

|c1(t)|2 =
|V10|2

�2

1 − 2 e−γt/2 cos(ω1 − ω0)t + e−γt

(ω1 − ω0)2 + γ2/4

≈ |V10|2
(E1 − E0)2 + γ2/4

,

(E.18)

where the limiting expression holds for times such that γt �1. 1

Once we recall that E1 − E0 = hν − ∆E = h(ν − ν◦), we see that our final asymptotic form for
|c1(t)|2 gives the probability for emission of a photon of frequency ν. This probability, normalized so that
its integral is unity, is the Lorentz profile function:

φL(ν) =
γ/4π2

(ν − ν◦)2 + (γ/4π)2
, (E.19)

which we display graphically in Figure E.1. It is interesting that the same formula describes, in classical
electromagnetic theory, the spectrum of radiation from an oscillating charged particle subject to a damping
force per unit mass equal to γ times its velocity. However, this analogy is no guide once we consider
multiple energy levels. As the simplest example, suppose that our initial (n = 0) level can decay to either
the n = 1 or an even lower level, designated n = 2. Suppose further that n = 1 cannot decay into n = 2,
so that V12 = 0. Then our previous method of solution shows that |c0(t)|2 still declines exponentially, but
with a time constant equal to

γ =
2 π |V10|2

�
+

2π |V20|2
�

.

The profile for the 0→1 spectral line is again given by (E.19), with this larger value of γ. The most general
case is an ensemble of many levels connected by radiative transitions. We define the “width” of a single
level to be the sum of the Einstein A-coefficients to all lower levels. Then the appropriate γ for the spectral
line connecting any two levels is the sum of their respective widths.

Equation (E.19), although derived for the case of emission, also describes the profile of the corre-
sponding absorption line. To see why, consider a spatially uniform gas composed of radiating atoms in
an enclosure at temperature T . If the system is in thermal equilibrium, the radiation spectrum is isotropic

1 Strictly speaking, the expression for |c1(t)|2 in (E.18) violates conservation of probability, i. e., |c0|2 + |c1|2 �= 1.
This error stems from our neglect of the phase factor in equation (E.16) and has a minor effect on the final result
embodied in (E.19), effectively shifting the central frequency ν◦ by a small amount.
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Figure E.1 Doppler (solid) and Lorentz (dashed) line profiles. The frequency is written as
(ν − ν◦)/∆νD, and the profile functions as φ(ν)∆νD. We have chosen ∆νD = 1.5 × γ/4π.

and Planckian. Referring to the radiative transfer equation (2.20), we have Iν = Bν(T ) and dIν/ds = 0.
Thus, the emission coefficient jν is related to the opacity κν through

jν = ρ κν Bν(T ) , (E.20)

where ρ is the gas density. Equation (E.20) is known as Kirkhoff’s law and applies to any material whose
emission depends only on its temperature and internal properties. The frequency dependence of jν in
(E.20) is given by equation (E.19). Over the narrow interval |ν − ν◦| ∼ γ, Bν(T ) changes negligibly.
Hence, κν and jν must share the same profile.

E.2 Thermal, Turbulent, and Collisional Broadening
Returning to emission lines, let us suppose that the atom has a velocity component Vr along the line of
sight. Here, a positive Vr describes a velocity directed away from the observer. As a result of the Doppler
effect, any photon emitted with frequency ν◦ is actually detected at a different frequency ν, given by

ν◦ − ν

c
=

Vr

c
, (E.21)

where we assume that Vr � c. If the emitting material is in thermal equilibrium at temperature T , the
probability ptherm(Vr)dVr that the velocity lies in the range dVr is found from the Maxwell-Boltzmann
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relation:

ptherm(Vr) dVr = A exp

„
− m V 2

r

2 kB T

«
dVr , (E.22)

where m is the atomic mass and A is a normalization constant. Since the velocity is related to the fre-
quency by equation (E.21), this probability is effectively the profile function of the emitted radiation. After
normalization, we obtain

φD(ν) =
1√

π ∆νD
exp

»
− (ν − ν◦)2

∆ν2
D

–
, (E.23)

where ∆νD , the Doppler width, is

∆νD ≡ ν◦
c

„
2 kB T

m

«1/2

. (E.24)

Note that we obtained the coefficient in (E.23) by integrating ν − ν◦ from −∞ to +∞, i. e., by making
the reasonable assumption that ∆νD � ν◦. The Doppler profile is also shown in Figure E.1.

The foregoing discussion employed a hypothetical emission line that was infinitely sharp in the atom’s
rest frame. Actually, the line will be subject to natural broadening. For each velocity Vr, the Lorentz
emission profile is φL(ν − ν◦Vr/c). Hence, the net profile for the ensemble of atoms is

φ(ν) =

Z +∞

−∞
dVr ptherm(Vr) φL(ν − ν◦Vr/c) . (E.25)

The explicit form of this function (known as the Voigt profile) is of less interest than its qualitative features.
Under most astrophysical conditions, ∆νD � γ/4π, so that the line core, |ν − ν◦| � νD , closely follows
equation (E.23). However, the sharp falloff of the Gaussian implies that the Lorentz profile dominates in
the line wings. Here, the intensity declines much more slowly, as |ν − ν◦|−2.

In radio astronomy, observations of a spectral line are generally given in terms of the antenna temper-
ature TA, with the independent variable being the radial velocity Vr . From equation (E.22), the full-width
half-maximum breadth of a purely thermally broadened line is

∆VFWHM(therm) =

„
8 ln 2 kB T

m

«1/2

= 2 (ln 2)1/2

„
∆νD

ν◦

«
c ,

(E.26)

where (∆νD/ν◦)c is the one-dimensional velocity dispersion, i.e., the root-mean-square value. If the
radio beam includes many gas parcels in turbulent motion, this bulk, random velocity creates additional
broadening. Suppose the distribution of turbulent velocities, Vturb along the line of sight is also Gaussian.
Then the probability distribution pturb(Vturb) analogous to equation (E.22) is

pturb(Vturb) = A′ exp

»
− 4 ln 2 V 2

turb

∆V 2
FWHM(turb)

–
, (E.27)

where A′ is another normalization constant and where ∆VFWHM(turb) is the width of the distribution.
This width is 2 (ln 2)1/2 times the corresponding one-dimensional velocity dispersion. For any fixed value
of Vturb, the observer detects a total velocity Vr only if the additional thermal component is Vr − Vturb.
Hence the net profile function is described by

p(Vr) =

Z +∞

−∞
dVturb pturb (Vturb) ptherm(Vr − Vturb)

= A′′
Z +∞

−∞
dVturb exp

»
− 4 ln 2 V 2

turb

∆V 2
FWHM(turb)

–
exp

»
−4 ln 2 (Vr − Vturb)2

∆V 2
FWHM(therm)

–
.



808 E Spectral Line Broadening

After factoring out the term involving V 2
r , the integral over Vturb can be evaluated by completing the

square of the exponential argument. The result is another Gaussian:

p(Vr) = A′′′ exp

»
− 4 ln 2 V 2

r

∆V 2
FWHM(tot)

–
, (E.28)

where the total width is now given by

∆V 2
FWHM(tot) = ∆V 2

FWHM(therm) + ∆V 2
FWHM(turb) . (E.29)

At sufficiently high densities, the direct collision with neighboring atoms leads to additional broaden-
ing of any emission (or absorption) line. Since we will not have occasion to use this collisional broadening
quantitatively, we limit ourselves to a heuristic account of its origin. Our analysis of the two-level atom
shows that any process enhancing downward transitions from the excited level must also widen the corre-
sponding spectral line. Indeed, if γcoll is the mean rate of collision-induced transitions, we expect c◦(t) to
decay exponentially with a time constant of 2/(γ +γcoll). In the absence of thermal motion, therefore, the
profile function should again be a Lorentzian, but now with an associated width of γ + γcoll. A detailed
derivation confirms the Lorentzian shape, but gives the true width as γ + 2γcoll.

E.3 Rotational Broadening of Stellar Lines
A star that is rotating exhibits additional spectral broadening beyond any that can be attributed to ther-
mal, turbulent, or collisional effects. The reason is that opposite limbs of the star have differing radial
velocities. The corresponding frequency shifts are not seen directly, since one cannot resolve the stellar
surface. Instead, the profile of the total emission across the projected surface is smeared out by an amount
proportional to the rotation speed. Let us now obtain a quantitative expression for this broadening.

Figure E.2 depicts a spherical star of radius R∗, rotating with angular speed Ω∗. We erect a coordinate
system with origin at the star’s center, and with a z-axis pointing toward the observer. We further constrain
the rotation axis to lie within the y − z plane, and to be tilted by the inclination angle i with respect to the
z-axis. Consider now a point lying on the surface. If r ≡ (x, y, z) is the vector displacement of this point
from the origin, then its rotational velocity is

v = Ω∗ n̂ × r , (E.30)

where n̂ ≡ (0, sin i, cos i) is a unit vector along the rotation axis. Radiation emanating from our point
will be Doppler-shifted by an amount that depends on the velocity component vz . Using equation (E.30),
this is

vz = −x Ω∗ sin i

= − x

R∗
Veq sin i .

(E.31)

Here, Veq ≡ Ω∗R∗ is the star’s equatorial velocity.
In our figure, a surface element with positive vz approaches the observer. Thus, the central wavelength

of any spectral line is changed from λ to λ′, where

λ′ − λ = −λ◦
vz

c

= λ◦
x

R∗
Veq

c
sin i .

(E.32)
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Figure E.2 Geometry of a rotating star. The rotation axis is in the y − z plane, and tilted at an
angle i with respect to the z-axis, where the latter coincides with the observer’s line of sight. The
unit vector n also lies along the rotation axis. Also shown is a typical patch on the surface and its
vector displacement r from the origin.

Note that we have used λ, rather than ν, for our independent variable, as the former is more appropriate
for optical stellar observations. The maximum possible wavelength shift occurs when x = R∗:

∆λmax = λ◦
Veq

c
sin i . (E.33)

To derive the line broadening, we first let INR
λ (x, y) be the specific intensity emanating from any

point (x, y) within the projected surface of a nonrotating star with identical radius. We may write this
intensity as

INR
λ (x, y) = Ic ∆λ◦ φ(λ − λ◦) . (E.34)

Here, Ic is the continuum intensity, i. e., that observed at wavelengths just outside the line of interest.
We assume for simplicity that Ic does not vary over the stellar disk. The quantity ∆λ◦ characterizes the
intrinsic width of the line and depends on the profile φ(λ − λ◦). The latter is determined by the various
physical effects already covered. Under the influence of rotation, the intensity becomes Iλ(x, y). This
function is identical to INR

λ (x, y), but with λ◦ replaced by λ′
◦. Then from equation (E.32), we have

Iλ(x, y) = Ic ∆λ◦ φ

„
λ − λ◦ − λ◦

x

R∗
Veq

c
sin i

«
. (E.35)
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Each point on the disk contributes an intensity of the above form. The effective, smeared profile of the
total received intensity is thus an average over the disk:

φ̄(λ − λ◦) =

R R
dx dy Iλ(x, y)

Ic ∆λ◦ π R2∗

=
1

π R2∗

Z +R∗

−R∗
dx

Z +
√

R2∗−x2

−
√

R2∗−x2
dy φ

„
λ − λ◦ − λ◦

x

R∗
Veq

c
sin i

«
.

(E.36)

The y-integration is trivial, and we find

φ̄(λ − λ◦) =
2

π R2∗

Z +R∗

−R∗
dx

p
R2∗ − x2 φ

„
λ − λ◦ − λ◦

x

R∗
Veq

c
sin i

«
(E.37a)

=
2

π

Z +1

−1

dξ
p

1 − ξ2 φ (λ − λ◦ − ∆λmax ξ) . (E.37b)

To obtain the last expression, we have introduced the nondimensional variable ξ ≡ x/R∗, and have fur-
ther utilized equation (E.33) for ∆λmax.

It is instructive to recast equation (E.37b) as

φ̄(λ − λ◦) =

Z +1

−1

dξ B(ξ) φ (λ − λ◦ − ∆λmax ξ) . (E.38)

That is, the new profile is the convolution of the original one and the broadening function:

B(ξ) =
2

π

p
1 − ξ2 . (E.39)

The reader may verify that the broadening function is normalized, in the sense that
R +1

−1
dξ B(ξ) = 1.

Figure E.3 shows the rotational distortion of a purely thermal profile. Here, we have let ∆λmax be
2.0 and 0.5 times ∆λD ≡ (c/ν2

◦)∆νD. To better understand the plotted results, consider that for a very
rapidly rotating star, i. e., for ∆λmax � ∆λ◦, the broadening function is much wider than the intrinsic
profile. Approximating the latter as a delta function, we find that

φ̄(λ − λ◦) ≈ B
„

λ − λ◦
∆λmax

«
. rapid rotation (E.40)

Conversely, a slowly rotating star has such small ∆λmax that we may neglect this term in equation (E.38).
We then recover the intrinsic profile:

φ̄(λ − λ◦) ≈ φ(λ − λ◦) . slow rotation (E.41)

A more detailed analysis of rotational broadening accounts for the spatial variation of the continuum
intensity Ic across the face of the stellar disk. The main effect is limb darkening, i. e., the fact that radiation
originating near the edge has diminished intensity because it samples gas of lower temperature. This
complication alters B(ξ) from our simple elliptical form.



E.4 Two Examples: H2 and CO in Clouds 811

Figure E.3 Rotational broadening of a spectral line. The emission line from the nonrotating
star has a thermal profile. Dashed and solid curves show the result of applying the simplified
broadening function of equation (E.39) for the indicated ratios of ∆λmax to ∆λD .

E.4 Two Examples: H2 and CO in Clouds
What is the relative importance of the various broadening mechanisms we have discussed? Consider,
for example, the passage of radiation through molecular clouds. What is the expected absorption line
profile of molecular hydrogen for external stellar photons? We recall that H2 is dissociated near cloud
surfaces through electronic excitation followed by radiative decay (§ 8.1). Although many levels con-
tribute to this process, the ultraviolet photon causing the initial excitation has the typical frequency
ν◦ = 3 × 1015 s−1. The core of the absorption line is broadened mainly by turbulent motions, where
∆VFWHM(turb) = 1.67 km s−1 for a one-dimensional velocity dispersion of ∆V = 1 km s−1.
In contrast, at the temperature of 37 K for the generic cloud boundary in § 8.1, the thermal width
is only ∆VFWHM(therm) = 0.92 km s−1. From equation (E.29), the full line width is therefore
∆VFWHM(tot) = 1.91 km s−1, corresponding to a width in frequency of 8 × 109 s−1. This width
exceeds the typical natural broadening for such lines of γ ≈ 2 × 109 s−1. Thus, the core indeed follows
a (nonthermal) Doppler profile. The line wings, however, are naturally broadened, a fact we utilized in
the detailed analysis of § 8.1. To see this, note from equation (B.4) that the rate of collisional excitation is
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multiplied by a thermal Boltzmann factor which is very small when, as here, ∆E � kBT . Thus, we have
γcoll � γ in this particular case.

Another important example in molecular clouds is the J = 1 → 0 emission line of 12C16O. Once
again, the low gas temperature implies that thermal broadening is generally small compared to that caused
by turbulent motion. A significant exception is dense cores, where the inequality is reversed (see § 3.3).
In any case, the line core again has the form of equation (E.25). The line wings have a Lorentzian shape,
but the natural and collisional widths are now competitive. To see their relation, note that γcoll is equal
to γ10ntot, in the notation of Appendix B. Thus, γcoll equals the natural γ when ntot equals the critical
density ncrit introduced in § 5.3. For ntot less than about 3 × 103 cm−3, natural broadening dominates
the line wings, while collisions are paramount at higher densities.

F Shock Jump Conditions

Consider a fluid with density ρ1 and pressure P1, moving with velocity u1 in the x-direction (see Fig-
ure F.1). The flow occurs within a uniform, frictionless tube of rectangular cross section, whose sides lie
in the x-y and y-z planes. At position x = s(t), the flow encounters a shock front, which itself travels at
velocity u0 = ds/dt. Downstream from the shock, the fluid has a different density, pressure, and velocity,
each distinguished here by the 2–subscript. At any instant, we consider two imaginary surfaces in the y-z
plane, before and after the shock. These surfaces, located at x1(t) and x2(t), respectively, are comoving
with the fluid, so that dx1/dt = u1 and dx2/dt = u2.

To derive the jump conditions, we first note that no mass leaves the volume enclosed by the comoving
surfaces. Thus we have

d

dt

Z x2(t)

x1(t)

ρ dx = 0 , (F.1)

where we have divided through by the tube’s cross-sectional area. The upstream pressure P1 acting from
the outside on the left surface increases the linear momentum of the fluid, while the momentum is lowered

Figure F.1 Portion of a tube containing a shocked fluid. The tube has a rectangular cross section
and extends in the z-direction, i. e., out of the plane of the page. The two dashed lines represent
surfaces that move with the fluid at the indicated speeds. The interior, solid line is the shock front.
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by the pressure P2 which the right surface exerts on the external medium. Hence

d

dt

Z x2(t)

x1(t)

ρ u dx = P1 − P2 , (F.2)

Finally, we note that the net mechanical power input per unit area, P1u1 − P2u2, serves to increase the
energy of the fluid between the surfaces:

d

dt

Z x2(t)

x1(t)

ρ
`
u2/2 + ε

´
dx = P1 u1 − P2 u2 , (F.3)

where ε is the internal energy content per unit mass. Here we have omitted the gravitational potential
energy, which does not change appreciably across the shock. Equation (F.3) is invalid if the fluid can lose
energy through radiation; we consider this case below.

Each of the left-hand sides in equations (F.1)–(F.3) is of the form

dJ

dt
≡ d

dt

Z x2(t)

x1(t)

Ψ(x, t) dx ,

where Ψ(x, t) is spatially discontinuous at x = s(t). If we split the integral into up– and downstream
contributions before differentiating, we obtain

dJ

dt
=

d

dt

Z s(t)

x1(t)

Ψ dx +
d

dt

Z x2(t)

s(t)

Ψ dx

=

Z x2(t)

x1(t)

∂Ψ

∂t
dx + Ψ1 u0 − Ψ1 u1 + Ψ2 u2 − Ψ2 u0 ,

where Ψ1 and Ψ2 are, respectively, the upstream and downstream values of the generic integrand. Since
the positions of the comoving surfaces are arbitrary, we consider the limit as both x1(t) and x2(t) ap-
proach s(t). We are motivated to take this limit because the actual thickness of the shock front is almost
always smaller than the dimensions of interest. The term ∂Ψ/∂t is finite, so the first righthand term above
vanishes. We conclude that

lim
x1,x2→s

dJ

dt
= Ψ2 v2 − Ψ1 v1 , (F.4)

where v1 ≡ u1 − u0 and v2 ≡ u2 − u0 are, respectively, the upstream and downstream velocities relative
to the shock front. In § 8.4, we referred to v1 as the “shock speed”, Vshock.

Applying equation (F.4) to (F.1), we obtain

ρ2 v2 = ρ1 v1 . (F.5)

Turning to equation (F.2), we find, after using (F.5), that

P2 + ρ2 v2
2 = P1 + ρ1 v2

1 . (F.6)

Finally, equation (F.3) becomes

1

2
v2
2 + ε2 +

P2

ρ2
=

1

2
v2
1 + ε1 +

P1

ρ1
. (F.7)

Equations (F.5)–(F.7) constitute the Rankine-Hugoniot jump conditions for an “adiabatic” (i. e., non-
radiating) shock. In general, the complete solution of a flow problem with a shock requires knowledge
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of seven quantities – the velocity plus two thermodynamic variables (e. g., P and ρ) both upstream and
downstream, together with the velocity of the shock itself. If the 3 variables on one side of the shock are
specified, application of the 3 jump conditions still leaves one more unknown quantity. For example, in
the problem of spherical protostellar accretion shocks (Chapter 11), we specify the upstream state of the
gas and take the velocity of the shock front (i. e., the protostellar surface) to be essentially zero.

What is the temperature increase across a shock? If the fluid of interest is a perfect gas, then the
internal energy ε is given by 1/(γ − 1)P/ρ, where γ is the ratio of specific heats at constant pressure and
volume, respectively. Substituting this relation into (F.7) leads to

1

2
v2
2 − 1

2
v2
1 =

γ

γ − 1

„
P1

ρ1
− P2

ρ2

«
. (F.8)

Equations (F.5) and (F.6) together imply that

v2 − v1 =
P1 − P2

ρ1 v1
. (F.9)

Multiplying equation (F.9) by 1/2(v2 + v1) and combining the result with (F.5) and (F.8), we obtain

P2 − P1

2

„
1

ρ1
+

1

ρ2

«
=

γ

γ − 1

„
P2

ρ2
− P1

ρ1

«
,

from which we can solve for ρ2/ρ1 in terms of P2/P1:

ρ2

ρ1
=

(γ + 1)P2/P1 + (γ − 1)

(γ − 1)P2/P1 + (γ + 1)

=
v1

v2
,

(F.10)

where the last equality follows from equation (F.5). For an ideal gas, T2/T1 is equal to P2ρ1/P1ρ2, so
that

T2

T1
=

(γ − 1)(P2/P1)
2 + (γ + 1)P2/P1

(γ + 1)P2/P1 + (γ + 1)
. (F.11)

For very weak shocks (P2 ≈ P1), T2/T1 is close to unity, but equation (F.11) shows that this ratio increases
without bound as P2/P1 becomes very large. On the other hand, equation (F.10) implies that, in the same
limit, ρ2/ρ1 approaches (γ + 1)/(γ − 1), which is equal to 4 in the case of a monoatomic, ideal gas
(γ = 5/3).

In equations (F.10) and (F.11), we have used the ratio P2/P1 as our measure of shock strength. Al-
ternatively, we could employ the upstream Mach number M1 ≡ v1/a1, where a1 is the adiabatic sound
speed ahead of the shock. For a perfect gas, we have a1 = (γP1/ρ1)

1/2. To relate M1 to P2/P1, we first
divide (F.7) by v1, and then use (F.10) to express v2/v1 in terms of P2/P1. The result can be expressed as

ρ1 v2
1 =

P1

2
[(γ + 1)P2/P1 + (γ − 1)] . (F.12)

But we also know that
ρ1 a2 = γ P1 . (F.13)

Dividing (F.12) by (F.13) yields the desired relation:

M2
1 =

1

2 γ
[(γ + 1)P2/P1 + (γ − 1)] . (F.14)
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We can now use equation (F.14) to recast (F.10) and (F.11) in terms of M1:

ρ2

ρ1
=

v1

v2
=

(γ + 1) M2
1

(γ − 1) M2
1 + 2

(F.15)

and
T2

T1
=

[2 γ M2
1 − (γ − 1)][(γ − 1) M2

1 + 2]

(γ + 1)2 M2
1

. (F.16)

If the postshock temperature is sufficiently high, the fluid can lose energy through radiation. As
discussed in § 8.4, this loss occurs over a relaxation region much broader than the particle mean free path
characterizing the shock front itself. Nevertheless, it is sometimes appropriate, as in the protostellar case,
to view the entire region as a single, radiating shock front. The jump conditions (F.5) and (F.6) are still
valid across this broadened front, but the energy relation (F.7) is not. To see the required modification, we
return to equation (F.3), which now becomes

d

dt

Z x3(t)

x1(t)

ρ (u2/2 + ε) dx = P1 u1 − P3 u3 − 2Frad ,

where Frad is the flux radiated in either the + or −x-direction, and where the postshock point x3(t) lies
beyond the relaxation region (see Figure 8.9). Applying the same limiting procedure as before, we find
that

1

2
v2
3 + ε3 +

P3

ρ3
=

1

2
v2
1 + ε1 +

P1

ρ1
− 2Frad

ρ1 v1
. (F.17)

Note that the compression ratio ρ3/ρ1 can now be much higher than ρ2/ρ1 for the adiabatic shock. Sup-
pose, for example, that the postshock gas were to cool to the preshock temperature T1. Then the relation
a3 = a1, coupled with (F.5) and (F.6), implies that ρ3/ρ1 = M2

1 . This last term, which can be arbitrarily
high, is the square of the isothermal Mach number, i. e., the ratio of v1 to the isothermal sound speed
aT ≡ (P/ρ)1/2.

G Radiative Diffusion and Stellar Opacity

In a very optically thick medium, such as the interior of a star, the specific intensity Iν is very nearly the
Planckian function Bν(T ). The temperature T is also the same as the kinetic gas value. To see why, we
first recall from Appendix C that Iν for any spectral line approaches Bν(Tex) in this limit, where Tex is
the excitation temperature of the relevant transition. We further note, from Appendix B, that Tex becomes
Tkin for densities ntot � ncrit. Both these results are restatements of the fact that LTE prevails under
these conditions.

On the other hand, Iν cannot be precisely Bν(T ). Since the latter is isotropic, the monochromatic
flux Fν , given by the integral in equation (2.17), would vanish identically. Suppose the net flux is locally
in the z-direction, and consider the variation of Iν(z, θ) with respect to θ, the angle between the photon
propagation direction n̂ and ẑ (see Figure G.1). If µ = cos θ, then the oblique path length ∆s = ∆z/µ.
Thus, we may rewrite the radiative transfer equation (2.20) as

µ
∂ Iν(z, µ)

∂ z
= −αν Iν + jν . (G.1)
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Figure G.1 Variation of radiative intensity
with angle. Although the net flux is in the ẑ-
direction, we consider the specific intensity in
the n̂-direction, inclined at the angle θ.

We assume the emission to be thermal, so that jν is given by Kirkhoff’s Law, equation (E.20). After
replacing αν by ρκν , we may rewrite equation (G.1) as

Iν(z, µ) = Bν − µ

ρκν

∂ Iν

∂ z
. (G.2)

In pure LTE, Iν would have no spatial variation; equation (G.2) then confirms that Iν = Bν exactly.
For small departures from this state, we may substitute Bν for Iν in the derivative. Noting that Bν is a
function of T alone, we obtain the desired angular dependence:

Iν(z, µ) ≈ Bν(T ) − µ

ρ κν

dBν

dT

dT

dz
. (G.3)

When we use this form of Iν in equation (2.17) for Fν , the isotropic part still vanishes. However, the
second part survives integration to yield

Fν(z) =

Z
Iν µ dΩ

= 2 π

Z +1

−1

dµ µ Iν

= − 4π

3 ρ κ

dBν

dT

dT

dz
.

(G.4)

We are often more interested in the frequency-integrated quantity Fbol, which is also denoted Frad in
this context. We have

Frad =

Z ∞

0

Fν dν

− 4 π

3 ρ

dT

dz

Z ∞

0

1

κν

dBν

dT
dν .

(G.5)

If we define the Rosseland mean opacity κ through the relation

1

κ
≡

R ∞
0

κ−1
ν dBν/dT dνR ∞

0
dBν/dT dν

, (G.6)
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then (G.5) becomes the radiative diffusion equation:

Frad = −16 σB T 3

3 ρ κ

dT

dz
. (G.7)

Here, we have utilized Z ∞

0

dBν

dT
dν =

d

dT

Z ∞

0

Bν dν

=
c

4 π

d

dT

Z ∞

0

uν dν ,

where uν is the energy density of the blackbody radiation field (recall equation (2.18)). SinceR ∞
0

uνdν = 4σBT 4/c, we obtain the desired result.
Although our derivation strictly applies within the interior of a star, equation (G.7) gives a useful

expression for the temperature variation near the stellar surface. In this case, Frad may be considered a
spatial constant. Integrating from the tenuous, outer regime inward, we find

σB T 4 =
3 Frad

4
τ + σB T 4

◦ . (G.8)

Here, the optical depth τ increases deeper into the atmosphere:

τ ≡
Z ∞

z

ρ κ dz .

The boundary temperature T◦ is the value at τ = 0. To derive an expression for T◦, we adopt the Eddington
approximation. We assume that Iν at the top of the atmosphere is isotropic in the outward direction, i. e.,
for 0 ≤ µ ≤ 1, and is zero otherwise. From equations (2.17) and (2.18), we find that

Fν =
c

2
uν

at that location. Integration over all frequencies then yields

Frad = 2 σB T 4
◦ . (G.9)

Finally, substitution of equation (G.9) into (G.8) gives the desired run of temperature:

σB T 4 =
3Frad

4

„
τ +

2

3

«
. (G.10)

The stellar photosphere may be defined as that location where the local gas temperature T equals Teff . The
latter is related to the flux through equation (2.35), which we write as

Frad = σB T 4
eff .

Equation (G.10) then implies that the photosphere has an optical depth of 2/3.
Using the radiative diffusion equation requires knowledge of κ, which is a function of ρ and T for a

gas of fixed chemical composition. It is sometimes useful to approximate the frequency dependence of the
monochromatic opacity by a power law, over some specified interval:

κν ≈ κ◦

„
ν

ν◦

«n

= κ◦

„
kB T

h ν◦

«n

xn ,

(G.11)
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Figure G.2 The Rosseland mean opacity for a gas of solar composition, shown as a function of
temperature. The numbers labeling each curve are values of mass density, displayed as log ρ.

where x ≡ hν/kBT . Suppose we let ∂Bν/∂T dν = A f(x) dx, where A is the appropriate dimensional
factor. Substituting this form into the definition of equation (G.6), we find

1

κ
=

1

κ◦

„
h ν◦
kB T

«n
R

x−n f(x) dxR
f(x) dx

. (G.12)

The quotient of integrals, both of whose limits we have left unspecified, is a pure number. We see that κ is
proportional to T n in the frequency regime of interest.

For more precise numerical work, the Rosseland mean opacity must be obtained numerically and has
been tabulated by many researchers over the years. Generally speaking, κ(ρ, T ) is well established at the
higher stellar temperatures, while its accurate determination at photospheric conditions in the lowest-mass
stars is a continuing enterprise of considerable importance. Figure G.2 displays modern results for κ as
a function of temperature, for a range of densities. It is clear that the curves share a number of generic
features, which reflect the salient physical processes underlying the extinction.

The peak in opacity somewhat above 104 K is principally due to the photoionization of hydrogen.
This is a bound-free transition, in that the electron goes from the lowest, n = 1 orbital into the continuum.
At lower temperatures, the opacity falls steeply because too few photons in the Planckian distribution have
energies exceeding 13.6 eV, or even the 10.2 eV required to promote the hydrogenic electron from n = 1
to n = 2. The latter is an example of a bound-bound transition.

For temperatures as low as 5000 K, most free electrons in the gas come from more easily ionized
metals. A small fraction of atomic hydrogen captures extra electrons to become H− ions. With its ioniza-
tion potential of 0.75 eV, this species can be more readily photoionized by the ambient radiation field and
provides the chief opacity source in the outer layers of late-type dwarfs and pre-main-sequence stars. The
decline in opacity with falling temperature halts temporarily near 103 K, where the dominant process is
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now bound-bound transitions in molecules. The complex behavior of κ(ρ, T ) in this regime is not included
in Figure G.2. Nor is the absorption and scattering by dust grains, which dominates for T � 103 K.

At temperatures significantly above 104 K, the opacity declines and varies approximately as ρ T−7/2,
the so-called Kramers law. Initially, the main extinction mechanism is still bound-free absorption, not only
of hydrogen and helium, but also of metals such as carbon, nitrogen, and oxygen. Photons of higher energy
transfer momentum with less efficiency to the bound electrons. The monochromatic opacity thus declines
with frequency, and the Rosseland mean has its characteristic falloff with temperature. The Kramers-law
behavior applies also at the higher densities and temperatures where free-free transitions prevail. Here,
photons are absorbed by free electrons, whose recoil is taken up by nearby metallic ions. For the two
lowest densities shown in Figure G.2, the opacity exhibits a localized peak near 105 K, the Z-bump. This
feature stems from bound-bound transitions involving the inner electrons of heavier metals, principally
iron.

The opacity at the highest temperatures is due to electron scattering. A free electron in the now
fully ionized plasma absorbs a photon and reemits it without change of frequency. For photon energies
less than mec

2, the electron rest energy, one may employ classical theory to analyze the process. Here,
one pictures scattering as dipole radiation emanating from an electron oscillating under the influence of a
plane, electromagnetic wave. The total power radiated divided by the incident flux is the Thomson cross
section for a single electron, σT = (8π/3)r2

◦ = 6.65 × 10−25 cm−2. The quantity r◦ ≡ e2/mec
2 =

2.82 × 10−13 cm is the electron classical radius, obtained by equating its rest mass to the electrostatic
potential energy. Note that the expression for σT does not involve the wave frequency. We obtain the
opacity through multiplying σT by the number of free electrons per gram, a figure which is independent
of density and temperature once the gas is fully ionized. The Rosseland mean opacity thus attains the
constant value of 0.3 cm2 gm−1 displayed in Figure G.2.

H Derivation of Binary Star Relations

To obtain equation (12.17), we examine more closely the orbit of either star within the binary system
depicted in Figure 12.6a. Figure H.1 displays the ellipse, whose focus (again shown as a cross) lies at the
binary’s center of mass. The star attains its greatest speed Vmax at the smallest distance, rmin, from the
focus. Conversely, the lowest speed Vmin occurs at the largest radius rmax. These two distances are related
to the semi-major axis a by

rmin = a (1 − e) (H.1a)

rmax = a (1 + e) , (H.1b)

where e is the eccentricity.

We now invoke conservation of angular momentum for the entire system. The velocity and radius
vectors are perpendicular at the extreme points. Using subscripts to distinguish the primary and secondary
stars, we have

M1 (Vmax)1 (rmin)1 + M2 (Vmax)2 (rmin)2 =

M1 (Vmin)1 (rmax)1 + M2 (Vmin)2 (rmax)2 .
(H.2)
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Figure H.1 The elliptical orbit of a star
within a binary system. The semi-major axis
of the ellipse has length a, and the focus is
at the cross. When the star reaches the mini-
mum and maximum radial distances, it attains
its greatest and least speeds, respectively.

Recall, from equation (12.14), that the radii and velocities in the two orbits scale inversely with the respec-
tive masses. Thus, we also have

(rmin)2
(rmin)1

=
(rmax)2
(rmax)1

=
(Vmin)2
(Vmin)1

=
(Vmax)2
(Vmax)1

=
M1

M2
. (H.3)

Applying these relations to equation (H.2) simplifies it to

(Vmax)1 (rmin)1 = (Vmin)1 (rmax)1 . (H.4)

In a similar fashion, energy conservation for the binary reads

− GM1 M2

(rmin)1 + (rmin)2
+

1

2
M1 (Vmax)

2
1 +

1

2
M2 (Vmax)

2
2 =

− G M1 M2

(rmax)1 + (rmax)2
+

1

2
M1 (Vmin)21 +

1

2
M2 (Vmin)22 .

(H.5)

We again use equation (H.3) to eliminate all radii and speeds of the secondary. We thus find

G M2

»
1

(rmin)1
− 1

(rmax)1

–
=

1

2

„
1 +

M1

M2

«2 ˆ
(Vmax)

2
1 − (Vmin)21

˜
.

Combining this equation with (H.4) yields

G M2 =
1

2

„
1 +

M1

M2

«2

(Vmax)
2
1 [(rmax)1 + (rmin)1]

„
rmin

rmax

«
1

.

We then use equation (H.1) to obtain

GMtot

a1
=

„
1 +

M1

M2

«3 „
1 − e

1 + e

«
(Vmax)

2
1 . (H.6)

Here, Mtot = M1 + M2. Finally, we utilize Kepler’s third law, equation (12.15). The combination of
(12.15) and (H.6) gives an expression for (Vmax)1:

(Vmax)1 =
2π a1

P

„
1 + e

1 − e

«1/2

. (H.7)

Consider now the radial (line-of-sight) velocity of the primary star. This quantity attains the maximum
value [Vcm + (Vmax)1] sin i. Here, Vcm is the velocity of the binary’s center of mass, and i is the
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inclination angle depicted in Figure 12.6b. Similarly, the minimum value is [Vcm − (Vmin)1] sin i. Let
the amplitude K1 be half the total range in radial velocity. Using equations (H.1) and (H.3), we find

K1 =
1

2
[(Vmax)1 + (Vmin)1] sin i

=
(Vmax)1
1 + e

sin i .

We evaluate (Vmax)1 from equation (H.7) and obtain

K1 =
2π a1

P
(1 − e2)−1/2 sin i , (H.8)

which is equivalent to equation (12.17).
To derive equation (12.19) for the mass function f(M), we first recast (H.8) into the form

K3
1 P 3 = (2π)3 a3

1 (1 − e2)−3/2 sin3 i . (H.9)

Squaring equation (12.15) gives an expression for P 2, which we combine with this last relation to yield

K3
1 P =

2 π G (M1 + M2) a3
1

(a1 + a2)3
(1 − e2)−3/2 sin3 i

=
2 π G M3

2 (1 − e2)−3/2 sin3 i

(M1 + M2)2
.

Here, we have also used a1/a2 = M2/M1. We may rearrange the last equation as

M3
2 sin3 i

(M1 + M2)2
=

1

2π G
(1 − e2)3/2 K3

1 P , (H.10)

which is also equation (12.19).

I Evaluation of a Polytropic Integral

In Chapter 16, we encounter the following nondimensional integral:

I =

Z ξ◦

0

ξ2 θ5/2 dξ . (I.1)

Here, θ(ξ) is the Lame-Emden function of index n = 3/2. This function obeys equation (16.19):

1

ξ2

d

dξ

„
ξ2 dθ

dξ

«
= −θ3/2 , (I.2)

subject to the initial conditions

θ(0) = 1 (I.3a)

θ′(0) = 0 . (I.3b)

We have denoted by ξ◦ the point where θ(ξ) falls to zero.
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To evaluate I, we first use equation (I.2) to replace the integrand:

I = −
Z ξ◦

0

θ
∂

∂ξ

„
ξ2 ∂θ

∂ξ

«
dξ . (I.4)

We then integrate by parts:

I = −
Z ξ◦

0

∂

∂ξ

„
ξ2 θ

∂θ

∂ξ

«
dξ +

Z ξ◦

0

ξ2

„
∂θ

∂ξ

«2

dξ (I.5a)

=

Z ξ◦

0

„
ξ2 ∂θ

∂ξ

«2

ξ−2 dξ . (I.5b)

Here, the first term in equation (I.5a) vanishes, since θ(ξ◦) ≡ 0. We now integrate by parts again:

I = −
Z ξ◦

0

∂

∂ξ

"„
ξ2 ∂θ

∂ξ

«2

ξ−1

#
dξ +

Z ξ◦

0
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= −ξ3
◦

„
∂θ
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«2

◦
− 2

Z ξ◦

0

ξ3 ∂θ

∂ξ
θ3/2 dξ , (I.6b)

= −ξ3
◦

„
∂θ

∂ξ

«2

◦
− 4

5

Z ξ◦

0

ξ3 ∂

∂ξ
θ5/2 dξ , (I.6c)

where we have again applied equation (I.2) to the second righthand term in equation (I.6a).
Consider finally the remaining integral within equation (I.6c). If we integrate it by parts, we find

I = −ξ3
◦

„
∂θ

∂ξ

«2

◦
− 4

5

Z ξ◦

0

∂

∂ξ

“
ξ3 θ5/2

”
dξ +

12

5

Z ξ◦

0

ξ2 θ5/2 dξ (I.7a)

= −ξ3
◦

„
∂θ

∂ξ

«2

◦
+

12

5
I , (I.7b)

since the second term in equation (I.7a) vanishes. Solving equation (I.7b) for I, we find

I =
5

7
ξ3
◦

„
∂θ

∂ξ

«2

◦
, (I.8)

which is identical to equation (16.27) in the text.
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The following abbreviations have been used for journals and reviews:

AA Astronomy and Astrophysics
AAS Astronomy and Astrophysics Supplements
AJ Astronomical Journal
ApJ Astrophysical Journal
ApJSS Astrophysical Journal Supplement Series
ApSS Astrophysics and Space Science
ARAA Annual Reviews of Astronomy and Astrophysics
AREPS Annual Reviews of Earth and Planetary Sciences
AstL Astronomy Letters
Astron. Rep. Astronomy Reports
BAN Bulletin of the Astronomical Institute of the Netherlands
Can. J. Phys. Canadian Journal of Physics
Fund. Cosm. Phys. Fundamentals of Cosmic Physics
Mem. Soc. Astron. It. Memorie della Società Astronomica Italiana
MNRAS Monthly Notices of the Royal Astronomical Society
PASJ Publications of the Astronomical Society of Japan
PASP Publications of the Astronomical Society of the Pacific
Phys. Rev. Lett. Physical Review Letters
Planet. Sp. Sci. Planetary and Space Science
Prog. Theor. Phys. Progress of Theoretical Physics
Rep. Prog. Phys. Reports of Progress in Physics
Sp. Sci. Rev. Space Science Reviews
ZAp Zeitschrift für Astrophysik

Chapter 1
Table 1.1 - Data from § 9.6 and § 9.7 of Lang 1992, Astrophysical Data: Planets and Stars, (New York:
Springer-Verlag), p. 132. For stars with M∗ ≤ 0.8 M�, data are from the theoretical calculations of
Baraffe et al. 1997, AA, 337, 403.
Figure 1.2 - left panel: Combination of Figures 6 and 7 of Maddalena et al. 1986, ApJ, 303, 375. right
panel: From Figure 2 of Lada 1992, ApJ, 393, L25.
Figure 1.3 - From Lang 1992, Astrophysical Data: Planets and Stars, (New York: Springer-Verlag), p.
365.
Figure 1.4 - Photograph courtesy of C. Beichman, Infrared Processing and Analysis Center.
Figure 1.5 - left panel: Hubble Space Telescope photograph by C. R. O’Dell, courtesy of Space Telescope
Science Institute. right panel: Photograph courtesy of M. McCaughrean.

The Formation of Stars. Steven W. Stahler and Francesco Palla
Copyright © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40559-3

The Formation of Stars
Steven W. Stahler and Francesco Palla

© 2004 WILEY-VCH Verlag GmbH & Co.
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Figure 1.6 - Main sketch adapted from Figure 1 of Zuckerman 1973, ApJ, 183, 863. Insert from Figure 1
of Gordon & Churchwell 1970, AA, 9, 307.
Figure 1.7 - From Figure 1 of Cameron et al. 1992, in Progress in Telescope and Instrumentation Tech-
nologies, ed. M.-H. Ulrich (Munich: ESO Conf. and Workshop Proc.), p. 705.
Figure 1.8 - From Plate 5 of Barnard 1927, A Photographic Atlas of Selected Regions of the Milky Way,
Carnegie Inst. of Washington Publ. 247, (Washington: Carnegie Inst.).
Figure 1.9 - From Figure 4 of Ungerechts & Thaddeus 1987, ApJS, 63, 645.
Figure 1.10 - Upper panel: From Plate L19 of Mizuno et al. 1995, ApJ, 445, L161. Lower panel: From
Figure 5 of Abergel et al. 1994, ApJ, 423, L59.
Figure 1.11 - From Figure 1 of Kenyon et al. 1990, AJ, 99, 869.
Figure 1.12 - From Figure 14 of Benson & Myers 1989, ApJS, 71, 89.
Figure 1.13 - From Figure 1 of Pound & Bally 1991, ApJ, 383, 705.
Figure 1.14 - From Figure 1-1 of Binney & Tremaine 1989, Galactic Dynamics, (Princeton: Princeton U.
Press), p. 10.
Figure 1.15 - From Figure 13 of Palla & Stahler 1993, ApJ, 418, 414; Figure 1c of Sweigart & Gross
1978, ApJS, 36, 405; Figure 2 of Schönberner 1983, ApJ, 272, 708.
Figure 1.18 - Based on a calculation by the authors.
Figure 1.19 - Upper panel: Photograph courtesy of M. Hauser, COBE Science Working Group. Lower
panel: Lund Observatory.
Figure 1.20 - From Plate 1 of Elmegreen 1981, ApJS, 47, 229.
Figure 1.21 - From Figure 4 of Garcia-Burillo et al. 1993, AA, 274, 123.

Chapter 2
Table 2.1 - Data for the Solar System from Table 1 of Anders & Grevesse 1989, Geochim. et Cosmochim.
Acta 53, 197; results for M42 are from Rubin et al. 1991, ApJ, 374, 564.
Table 2.2 - The total mass in H2 is from Dame 1993, in Back to the Galaxy, ed. S. Holt and F. Verter
(New York: AIP), p. 267. Dame also gives the total mass in the warm and cold neutral components,
citing HI surveys. The relative masses of these two components are from E. Corbelli 2002 (personal
communication) and Haynes & Broeils 1997, in The Insterstellar Medium in Galaxies, ed. J. M. Van der
Hulst (Dordrecht: Kluwer), p. 75. Filling factors and other data are from Dopita & Sutherland 2002,
Astrophysics of the Diffuse Universe (Berlin: Springer-Verlag).
Figure 2.2 - From Figure 13 of Radhakrishnan et al. 1972, ApJS, 24, 15.
Figure 2.3 - Combination of Figure 1 of Dame 1993, in Back to the Galaxy, ed. S. Holt and F. Verter,
(New York: AIP), p. 267; Figure 5 of Lockman 1990, in Radio Recombination Lines: Twenty-five Years of
Investigation, ed. M. A. Gordon and R. L. Sorochencko (Dordrecht: Kluwer), p. 225. The central density
of H2 is from Blitz et al. 1995, AA, 143, 267.
Figure 2.4 - From Figure 2.3 of Wilson & Pauls 1984, AA, 138, 225.
Figure 2.5 - From Figures 3(a) and 3(d) of Wolfire et al. 1995, ApJ, 443, 152.
Figure 2.7 - From Figure 3.3 of Whittet 1992, Dust in the Galactic Environment (Bristol: Institute of
Physics Publishing).
Figure 2.14 - From Figure 5 of Sellgren 1984, ApJ, 277, 623.
Figure 2.15 - From Figure 5 of Puget & Leger 1989, ARAA, 27, 161.

Chapter 3
Figure 3.1 - From Figure 1 of Solomon & Rivolo 1987, in The Galaxy, ed. Gilmore and Carswell,
(Dordrecht: Reidel), p. 105.
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Figure 3.2 - From Figure 2(a) of Dame 1993, in Back to the Galaxy, ed. S. Holt & F. Verter, (New York:
AIP), p. 272.
Figure 3.3 - Combination of Figure 2(a) of Blitz & Thaddeus 1980, ApJ, 241, 676 and Figure 28 of
Raimond 1966, Bull. Astr. Inst. Neth., 18, 191.
Figure 3.4 - From Figure 2 of Blitz & Stark 1986, ApJ, 300, L89.
Figure 3.5 - From Figure 3 of Blitz & Stark 1986, ApJ, 300, L89.
Figure 3.6 - Constructed from Table 2 in Williams & Blitz 1994, ApJ, 428, 693.
Figure 3.7 - From Figure 3 of Knapp 1974, AJ, 79, 527.
Figure 3.8 - From Figure 47 of Leisawitz 1989, ApJS, 70, 731.
Figure 3.9 - From Figure 3 of Myers & Goodman 1988, ApJ, 329, 392.
Figure 3.10 - From Figure 9 of Solomon & Rivolo 1987, in The Galaxy, ed. Gilmore & Carswell, (Dor-
drecht: Reidel), p. 124.
Figure 3.11 - From Figure 2 of Fuller & Myers 1993, ApJ, 418, 273.
Figure 3.12 - From Figure 1a of Myers et al. 1991, ApJ, 376, 561.
Figure 3.13 - From Figure 41 of Benson & Myers 1989, ApJS, 71, 89.
Figure 3.16 - (a) From Figure 27 of Benson & Myers 1989, ApJ, 71, 89. (b) From Figure 1 of Ward-
Thompson et al. 1999, MNRAS, 305, 143; figure supplied by P. André.
Figure 3.17 - Combination of Figure 7 of Loren 1989, ApJ, 338, 902 and Figure 8 of Goodman et al.
1990, ApJ, 359, 363.
Figure 3.18 - From Figure 3a of Goodman et al. 1993, ApJ, 406, 528.
Figure 3.19 - From Figure 4 of Bok 1977, PASP, 89, 597.
Figure 3.20 - From Figure 1 of Frerking et al. 1987, ApJ, 313, 320.
Figure 3.21 - Constructed from Table 3 of Frerking et al. 1987, ApJ, 313, 320.

Chapter 4
Table 4.1 - Data from Racine 1968, AJ, 73, 233 and Herbst 1975, AJ, 80, 503. Note that distances to
several systems have been updated.
Table 4.2 - Data from de Zeeuw et al. 1999, AJ, 117, 354 and, for Orion, from Brown et al. 1994, AA,
289, 101.
Table 4.3 - From Mermilliod, J.-C. 1995, in Information and On-Line Data in Astronomy, ed. D. Egret
and M. A. Albrecht (Dordrecht: Reidel), p. 127. For updated, electronic versions of this information, see
http://obswww.unige.ch/webda/ and http://cfa∼www.harvard.edu ∼stauffer/opencl/.
Figure 4.1 - From Figure 1 and Tables 3 and 4 of Koornneef 1983, AA, 128, 84.
Figure 4.2 - From Figure 3 of Lada & Lada 1995, AJ, 109, 1682.
Figure 4.3 - From Figures 3a, 3c, and 3d of Wilking et al. 1989, ApJ, 340, 823.
Figure 4.4 - From unpublished data by Barsony, Ward-Thompson, & O‘Linger 1997; figure courtesy of J.
O‘Linger.
Figure 4.5 - Constructed from Table 3 of Wilking et al. 1989, ApJ, 340, 823, and from Table 1 of Greene
et al. 1994 ApJ, 434, 614.
Figure 4.6 - Constructed from Table 3 of Wilking et al. 1989, ApJ, 340, 823.
Figure 4.8 - From Figure 8 of Gomez et al. 1993, AJ, 105, 1927.
Figure 4.9 - From (a) Figure 15 of Kenyon & Hartmann 1995, ApJS, 101, 117; (b) Table 3 of Hughes et al.
1994, AJ, 108, 1071; (c) Table 6 of Lawson et al. 1996, MNRAS, 280, 1071, but adjusted to the distance
of 215 pc advocated by Gauvin & Strom 1992, ApJ, 385, 217; (d) Figure 4 of Cohen & Kuhi 1979, ApJS,
41, 743, and Figure 3 of Penston 1964, Observatory, 84, 141.
Figure 4.10 - From Figure 2 of Murphy et al. 1986, AA, 167, 234.
Figure 4.11 - From Figure 1 of Alcalá et al. 1995, AAS, 114, 109.
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Figure 4.12 - Combination of Figure 1 of Herbig 1954, ApJ, 119, 483 and Figure 1 of Margulis & Lada
1986, ApJ, 309, L87.
Figure 4.13 - (a) Constructed from Table A4 of Kenyon & Hartmann 1995, ApJS, 101, 117. (b) Con-
structed from Table 4 of Prusti et al. 1992, MNRAS, 254, 361. The initial luminosity function is based on
Figure 1b of Basu & Rana 1992, ApJ, 393, 373, together with equation (4.6) of the text.
Figure 4.14 - From Figure 1 of de Zeeuw et al. 1999, AJ, 117, 354.
Figure 4.15 - Combination of our Figures 3.15 and 4.9, together with Figure 1 of Blaauw 1991, in The
Physics of Star Formation, ed. C. J. Lada and N. D. Kylafis (Dordrecht: Kluwer), p. 125.
Figure 4.16 - From Figures 3 and 4 of Blaauw 1978, in Problems of Physics and Evolution of the Universe,
ed. L. Mirzoyan, (Yerevan USSR), p. 101.
Figure 4.17 - From Figure 6b of de Geus et al. 1989, AA, 216, 44.
Figure 4.18 - From Figure 7 of Blaauw 1991, in The Physics of Star Formation, ed. C. J. Lada and N. D.
Kylafis (Dordrecht: Kluwer), p. 125.
Figure 4.19 - From Figure 10 of Churchwell 1991, in The Physics of Star Formation, ed. C. J. Lada and
N. D. Kylafis (Dordrecht: Kluwer), p. 221.
Figure 4.20 - Based on data in Meynet et al. 1993, AAS, 98, 477, and in Stauffer 1984, ApJ, 280, 189,
together with additional data supplied by J.-C. Mermilliod.
Figure 4.21 - From Figure 2 of Basu & Rana 1992, ApJ, 393, 373.
Figure 4.22 - From Figure 4 of Basu & Rana 1992, ApJ, 393, 373.
Figure 4.23 - (a) From Figure 9 of Hambly et al. 1991, MNRAS, 253, 1; and data in Moraux et al. 2003,
AA, 400, 891. (b) From Figure 10 of Hillenbrand et al. 1993, AJ, 106, 1906.
Plate 1 - Optical image from R. Probst, National Optical Astronomy Observatories. Near-infrared image
from Figure 1 of Haisch et al 2001, AJ, 121, 1512.
Plate 2 - Photograph from Subaru Telescope, National Astronomical Observatory of Japan.
Plates 3 and 4 - Photographs courtesy of H. Zinnecker and M. McCaughrean.
Plate 5 - Image taken by L. Testi at the Telescopio Nazionale Galileo, La Palma, Spain.
Plate 6 - Photograph courtesy of J. Rayner, H. Zinnecker, and M. McCaughrean.
Plate 7 - From Figure 1 of Brandl et al. 1999, AA, 352, L69; photograph courtesy of B. Brandl.
Plate 8 - Photograph from European Southern Observatory.

Chapter 5
Table 5.1 - Relative abundances in TMC-1 are from Ohishi et al. 1992, in Astrochemistry of Cosmic
Phenomena, ed. P. D. Singh, (Dordrecht: Kluwer), p. 171. The collision rates used to compute ncrit are
in Danby et al. 1988, MNRAS, 235, 299.
Figure 5.2 - From Figure 9 of Van Dishoeck et al. 1993, in Protostars and Planets III, ed. E. H. Levy and
J. I. Lunine, (Tucson: U. of Arizona Press), p. 163.
Figure 5.3 - From Figure 2 of Lis & Carlstrom 1994, ApJ, 424, 189.
Figure 5.4 - Constructed from data in Table 39 of Herzberg 1950, Molecular Spectra and Molecular
Structure: I. Diatomic Molecules, (New York: Van Nostrand), p. 532.
Figure 5.5 - From Figure 1 of Shull & Beckwith 1982, ARAA, 20, 163; and data in Table 39 of Herzberg
1950, Molecular Spectra and Molecular Structure: I. Diatomic Molecules, (New York: Van Nostrand), p.
532.
Figure 5.6 - Constructed from data in Table 39 of Herzberg 1950, Molecular Spectra and Molecular
Structure: I. Diatomic Molecules, (New York: Van Nostrand), p. 522.
Figure 5.7 - Based on an unpublished calculation by W. Welch.
Figure 5.8 - From Figure 1 of Scoville et al. 1979, ApJ, 232, L121.
Figure 5.9 - From Figure 2 of Carr & Tokunaga 1992, ApJ, 393, L67.
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Figure 5.12 - From Figure 1 of Ho & Townes 1983, ARAA, 21, 239.
Figure 5.13 - The function U is the Newton-Thomas potential, given in Townes & Schawlow, Microwave
Spectroscopy, (New York: McGraw-Hill), p. 306.
Figure 5.14 - From Figure 2 of Ho & Townes 1983, ARAA, 21, 239.
Figure 5.16 - Constructed from data supplied by G. Melnick.
Figure 5.18 - Combination of Figure 9-9 of Moran 1976, in Frontiers of Astrophysics, ed. E. H. Avrett
(Cambridge: Harvard U. Press), p. 406; and Figure 1 of Destombes et al. 1977, AA, 60, 55.

Chapter 6
Figure 6.1 - From Figure 1 of Frerking et al. 1982, ApJ, 262, 590.
Figure 6.3 - From Figure 4-3 of Mihalas & Binney 1981, Galactic Astronomy, (San Francisco: Freeman),
p. 216.
Figure 6.5 - From Figure 2 of Benson & Myers 1980, ApJ, 242, L87.
Figure 6.6 - From Figure 2 of Heiles et al. 1993, in Protostars and Planets III, ed. E. H. Levy and J. I.
Lunine (Tucson: U. of Arizona Press), p. 279.
Figure 6.7 - From Figure 1 of Goodman 1989, unpublished PhD. thesis, Harvard University.
Figure 6.8 - From Figure 10-5 of Powell & Crasemann 1961, Quantum Mechanics, (Reading: Addison-
Wesley), p. 352.
Figure 6.9 - Lower panel from Figure 1 of Goodman et al. 1989, ApJ, 338, L61.

Chapter 7
Figure 7.1 - Combination of Figure 1 of Wefel 1992, in The Astronomy and Astrophysics Encyclopedia,
ed. S. P. Maran, (New York: Van Nostrand Reinhold), p. 134; and Figure 9a of Seo et al. 1991, ApJ, 378,
763.
Figure 7.4 - From Figure 1 of Black 1994, in The First Symposium on the Infrared Cirrus and Diffuse
Interstellar Clouds, eds. R. M. Cutri & W. B. Latter, (San Francisco: ASP), p. 360.
Figure 7.8 - From Figure 14.1 of Melnick 1990, in Molecular Astrophysics, ed. T. W. Hartquist, (Cam-
bridge: Cambridge U. Press), p. 273.
Figure 7.9 - Based on a numerical calculation by the authors.

Chapter 8
Figures 8.2, 8.4, and 8.6 - Based on calculations by the authors.
Figures 8.5 - From Figure 1 of Tielens & Hollenbach 1985, ApJ, 291, 722.
Figure 8.8 - Combination of optical photo, courtesy of K. Birkle, and CII emission contours from Figure
1 of Zhou et al. 1993, ApJ, 419, 190.
Figure 8.9 - From Figure 1 of Hasegawa et al. 1987, ApJ, 318, L77.
Figure 8.10 - From Figure 3 of Shull & McKee 1979, ApJ, 227, 131; and Figure 1 of Hollenbach &
McKee 1989, ApJ, 342, 406; supplemented with a numerical calculation by the authors.
Figure 8.12 - From Figure 1 of Wardle 1999, ApJ, 525, L101.

Chapter 9
Table 9.1 - From data in Myers et al. 1995, ApJ, 442, 177; Heiles 1988, ApJ, 324, 321; Crutcher et al.
1999, ApJ, 275, 285; Goodman et al. 1989, ApJ, 338, L61; Roberts et al. 1995, ApJ, 442, 208; Plante et
al. 1995, ApJ, 445, L113; Baart et al. 1986, MNRAS, 219, 145.
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Figures 9.1 and 9.2 - From the tabulation of Chandrasekhar & Wares 1949, ApJ, 109, 551.
Figure 9.7 - From Figures 1 and 10 of Stahler 1983, ApJ, 268, 165.
Figure 9.8 - From Figure 9 of Stahler 1983, ApJ, 268, 165.
Figure 9.9 - From Figure 7 of Stahler 1983, ApJ, 268, 165.
Figure 9.12 - From Figure 1d and 1g of Tomisaka et al. 1988, ApJ, 335, 239.
Figure 9.13 - Combination of Figures 4 and 6 of Tomisaka et al. 1988, ApJ, 335, 239.

Chapter 10
Figure 10.3 - From Figure 2 of Fiedler & Mouschovias 1993, ApJ, 415, 680.
Figure 10.4 - From Figure 1a of Fiedler & Mouschovias 1993, ApJ, 415, 680.
Figure 10.5 - From Figure 1a of Foster & Chevalier 1993, ApJ, 416, 303.
Figure 10.6 - From Figures 3a and 3b of Foster & Chevalier 1993, ApJ, 416, 303.
Figure 10.9 - From Figure 12 of Black & Scott 1982, ApJ, 263, 696.
Figure 10.10 - From Figure 15.2 of Parker 1979, Cosmical Magnetic Fields, (Oxford: Clarendon Press),
p. 395.
Figure 10.11 - From Figure 3 of Mestel & Strittmatter 1967, MNRAS, 137, 95.
Figure 10.18 - Plotted by F. Wilkin; see also Figure 2 of Cassen & Moosman 1981, Icarus, 48, 353.

Chapter 11
Figure 11.1 - From an unpublished calculation by H. Masanuga, S. M. Miyama, & S.-I. Inutsuka. Figure
courtesy of S.-I. Inutsuka.
Figure 11.2 - From Figure 1 of Stahler et al. 1980, ApJ, 241, 637.
Figure 11.3 - From Figure 1d of Kenyon et al. 1993, ApJ, 414, 676.
Figure 11.4 - From Figure 10 of Chick et al. 1996, ApJ, 461, 956.
Figure 11.5 - Based on Figure 5 of Stahler et al. 1980, ApJ, 241, 637.
Figure 11.6 - From Figure 5 of Stahler 1988, ApJ, 332, 804.
Figure 11.8 - From Figure 7 of Stahler 1988, ApJ, 332, 804.
Figure 11.9 - Constructed from numerical calculations described in Palla & Stahler 1991, ApJ, 375, 288.
Figure 11.12 - Based on Figure 7 of Stahler et al. 1994, ApJ, 431, 341.
Figure 11.13 - From Figure 11 of Stahler et al. 1994, ApJ, 431, 341.
Figure 11.16 - From Figure 5 of Laughlin & Bodenheimer 1994, ApJ, 436, 335.
Figure 11.17 - From Figure 9 of Laughlin & Bodenheimer 1994, ApJ, 436, 335.
Figure 11.18 - From Figure 5 of Palla & Stahler 1991, ApJ, 375, 288.
Figure 11.19 - From Figure 7 of Palla & Stahler 1991, ApJ, 375, 288.
Figure 11.20 - From Figure 3 of Stahler & Walter 1993, in Protostars and Planets III, ed. E. H. Levy and
J. I. Lunine (Tucson: U. of Arizona), p. 405.
Figure 11.21 - From Figure 1 of Palla & Stahler 1991, ApJ, 375, 288.
Figure 11.22 - Adapted from Figure 6.19 of Rolfs & Rodney 1988, Cauldrons in the Cosmos (Chicago:
U. of Chicago), p. 366.
Figure 11.24 - Empirical data from Figure 1 of Ladd et al. 1991, ApJ, 366, 203. Profiles based on
numerical calculations by the authors.
Figure 11.25 - Empirical data from Figure 4 of Chandler et al. 1990, MNRAS, 243, 330. Theoretical
curve based on calculations by the authors.
Figure 11.26 - From panels (b) and (c) of Figure 19 in Zhou et al. 1994, ApJ, 421, 854.
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Chapter 12
Figure 12.3 - From Figures 6 and 11 of Miyama et al. 1984, ApJ, 279, 621.
Figure 12.4 - From Figure 16 of Stahler 1983, ApJ, 268, 165.
Figure 12.5 - From Figure 10d of Monaghan 1994, ApJ, 420, 692.
Figure 12.7 - The G-dwarf histogram is based on Figure 7 of Duquennoy & Mayor 1991, AA, 248, 485;
M-dwarf results adopted from Figure 2b of Fischer & Marcy 1992, ApJ, 396, 178.
Figure 12.8 - From Figure 10 of Duquennoy & Mayor 1991, AA, 248, 485; and Figure 3 of Fischer &
Marcy 1992, ApJ, 396, 178.
Figure 12.9 - From Figure 5 of Duquennoy & Mayor 1991, AA, 248, 485.
Figure 12.10 - From Figure 2 of Herbst et al. 1997, AJ, 114, 744.
Figure 12.11 - From Figure 1 of Chen et al. 1990, ApJ, 357, 224.
Figure 12.12 - Panels (a) and (b) are from Figure 3a and Figure 3d, respectively, of Mathieu et al. 1989,
AJ, 98, 987; panel (c) is from Figures 1 and 3 of Casey et al. 1998 AJ, 115, 1617.
Figure 12.13 - From Figure 1 of Mathieu 1994, ARAA, 32, 465.
Figure 12.14 - From Figure 2a of Mathieu 1994, ARAA, 32, 465.
Figure 12.15 - From Figure 1g of Koresko et al. 1997, ApJ, 480, 741.
Figure 12.16 - Upper panel is from data in Casey et al. 1998, AJ, 115, 1617; lower panel is adapted from
Figure 2 of Welty 1995, AJ, 110, 776.
Figure 12.17 - From data in Kenyon & Hartmann 1995, ApJS, 101, 117; and Brandner & Zinnecker 1997,
AA, 321, 220.
Figure 12.18 - From Figure 4 of Durisen et al. 1986, ApJ, 305, 281.
Figure 12.19 - From Figures 1c and 2a of Bonnell et al. 1996, MNRAS, 279, 121.
Figure 12.20 - From Figure 1b of Clarke & Pringle 1993, MNRAS, 261, 190.
Figure 12.22 - From Figure 2 of Bonnell & Bate 1994, MNRAS, 269, L45.
Figure 12.23 - From Figure 5 of Fletcher & Stahler 1994, ApJ, 435, 313.
Figure 12.24 - From Figures 6, 7, and 8 of Fletcher & Stahler 1994, ApJ, 435, 329.
Figure 12.25 - From Figure 17 of Fletcher & Stahler 1994, ApJ, 435, 329, which also used data from
Wilking et al. 1989, ApJ, 340, 823.
Figure 12.26 - Based on data from Kenyon & Hartmann 1995, ApJS, 101, 117; and Hughes et al. 1994,
AJ, 108, 1071.
Figure 12.27 - Unpublished data supplied by J. Bally and L. Hillenbrand.
Figure 12.28 - From Figure 2 of Palla & Stahler 1999, ApJ, 525, 772.
Figure 12.29 - From Figure 3 of Palla & Stahler 1999, ApJ, 525, 772.
Figure 12.30 - From Figure 5 of Palla & Stahler 1999, ApJ, 525, 772.

Chapter 13
Figure 13.1 - From Figure 2 of Reipurth 1989, Nature, 340, 2.
Figure 13.2 - From Figure 1 of Heathcote et al. 1996, AJ, 112, 1141; figure supplied by J. Morse.
Figure 13.3 - From Figure 5a of Hartigan et al. 1987, ApJ, 316, 323.
Figure 13.4 - The bowshock curve (left side) and theoretical line profile (right side) are based on calcula-
tions by the authors.
Figure 13.5 - From Figures 3 and 8 of Eislöffel & Mundt 1992, AA, 263, 292.
Figure 13.6 - Photograph courtesy of M. McCaughrean.
Figure 13.7 - From Figure 1 of Devine et al. 1997, AJ, 114, 2095; figure supplied by D. Devine.
Figure 13.8 - From Figure 4 of Rodriguez et al. 1990, ApJ, 352, 645.
Figure 13.9 - From Figure 1 of Snell et al. 1980, ApJ, 239, L17.
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Figure 13.10 - From Figure 1 of Tafalla et al. 1993, ApJ, 415, L139; figure supplied by M. Tafalla.
Figure 13.11 - From Figure 5 of Moriarty-Schieven et al. 1987, ApJ, 319, 742.
Figure 13.12 - left panel: From Figure 17 of Levreault 1988, ApJS, 67, 283; right panel: from Figure 5 of
André et al. 1990, AA, 236, 180.
Figure 13.13 - From Figure 2 of Masson & Chernin 1992, ApJ, 387, L47 (L1551/IRS 5; NGC 2071), and
P. André, personal communication (VLA 1623).
Figure 13.14 - Based on data in Cabrit & Bertout 1992, AA, 261, 274 and André et al. 2000, in Protostars
and Planets IV.
Figure 13.15 - From Figure 2 of Bachiller et al. 1993, ApJ, 417, L45.
Figure 13.16 - Based on a calculation by the authors.
Figure 13.19 - From Figure 6 of Goodson et al. 1997, ApJ, 489, 199.
Figure 13.20 - From Figure 1 of Hartigan & Raymond 1993, ApJ, 409, 705.
Figure 13.22 - bottom panel: From Figure 2d of Tenorio-Tagle et al. 1988, AA, 202, 256.
Plate 9 - From Figure 2 of Stapelfeldt et al. 1998, ApJ, 116, 372; figure supplied by K. Stapelfeldt.
Plate 10 - From Figure 12 of Reipurth et al. 1997, AJ, 114, 757; figure supplied by J. Morse.
Plate 11 - From Figure 18 of Reipurth et al. 1997, AJ, 114, 757; figure supplied by P. Hartigan.
Plate 12 - From Figure 4 of Gueth & Guilloteau 1999, AA, 343, 57.
Plate 13 - From Figure 2b of Wiseman & Ho 1996, Nature, 382, 139; figure supplied by J. Wiseman.

Chapter 14
Figure 14.1 - Upper panel: From Figure 4 of Welch et al. 1987, Science, 238, 1550. Lower panel: From
Figures 1 and 3 of Dreher et al. 1984, ApJ, 283, 632.
Figure 14.2 - From Figure 2 of Walker et al. 1982, ApJ, 255, 128.
Figure 14.3 - From Figure 1 of Gwinn 1994, ApJ, 429, 241.
Figure 14.4 - From Figure 24 of Gaume & Mutel 1987, ApJS, 65, 193. For the H2O maser positions,
Table 2 of Forster & Caswell 1999, AAS, 137, 43.
Figure 14.5 - From Figure 2 of Claussen et al. 1996, ApJS, 106, 111.
Figure 14.8 - Based on a calculation by the authors.
Figure 14.11 - From Figure 4 of Torrelles et al. 1997, ApJ, 489, 744.
Figure 14.12 - Constructed from Figure 4 of Bally et al. 1993, ApJ, 418, 322 and Figure 2 of Chernin
1995, ApJ, 440, L99.
Figure 14.13 - From Figure 5 of Gwinn et al. 1992, ApJ, 393, 149.
Figure 14.14 - From Figure 1a of Greenhill et al. 1998, Nature, 396, 650.

Chapter 15
Table 15.1 - From data in Diaz-Miller et al 198, ApJ, 501, 192.
Figure 15.3 - From Figure 3 of Yorke 1986, ARAA, 24, 49.
Figure 15.4 - Upper panel: From Figure 4 of Felli & Harten 1981, AA, 100, 42. Lower panel: From
Figure 2 of Garay et al. 1998, ApJ, 501, 710.
Figure 15.5 - Hubble Space Telescope photograph by J. Hester and P. Scowen; image courtesy of Hubble
Space Telescope Science Institute.
Figure 15.6 - From Figure 91 of Wood & Churchwell 1989, ApJS, 69, 831. Data points at 350 µm and
7 mm are from Hunter et al. 2000, AJ, 119, 2711.
Figure 15.7 - From Figures 2a, 14a, 42, and 75 of Wood & Churchwell 1989, ApJS, 69, 831.
Figure 15.8 - From Figure 1 of Kurtz et al. 2000, in Protostars and Planets IV, eds. V. Mannings, A. P.
Boss, and S. S. Russell (Tucson: U. of Arizona Press), p. 299.
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Figure 15.9 - Upper panel: From Figure 1 of Moscadelli et al. 2000, AA, 360, 663 Lower panel: From
Figure 8 of Cesaroni et al. 1997, AA, 325, 725.
Figure 15.11 - From Figure 3 of Leitherer & Robert 1991, ApJ, 377, 629.
Figure 15.12 - Upper panel: From Figure 3 of Kudritzki et al. 1996, MPE Report, 263, 9. Lower panel:
From Figure 10 of Berghöfer et al. 1996, AA, 306, 899.
Figure 15.14 - From Figure 1 of Devine et al. 1999, AJ, 117, 2919, Figure 1 of Shepherd & Kurtz 1999,
ApJ, 523, 690, and Figure 1 of Shepherd et al. 1998, ApJ, 507, 861.
Figure 15.15 - From Figure 11 of Henning et al. 2000, AA, 353, 211.
Figure 15.16 - From Figure 2 of White & Becker 1985, ApJ, 297, 677.
Figure 15.17 - Based on Figure 1 of Hollenbach et al. 1994, ApJ, 428, 654.
Figure 15.19 - Left panel: From Figure 7b of Bally et al. 2000, AJ, 119, 2919, Right panel: From Figure
1 of McCaughrean & O’Dell 1996, AJ, 111, 1977.
Figure 15.21 - From Figure 2 of White et al. 1997, AA, 323, 931.
Figure 15.23 - Based on calculations by the authors.
Figure 15.24 - From Figure 3 of Sugitani et al. 1995, ApJ, 455, L39.
Figure 15.25 - From Figure 4 of Lefloch & Lazareff 1994, AA, 289, 559.
Figure 15.26 - Optical photograph from the Digital Sky Survey, courtesy of the Hubble Space Telescope
Science Institute. Near-infrared image courtesy of M. Burton. X-ray image courtesy of F., Seward.
Figure 15.27 - From Figures 2 and 3 of Lindblad et al. 1973, AA, 24, 309.
Figure 15.28 - From Figures 2d and 2e of Boss 1995, ApJ, 439, 224.
Figure 15.29 - From Figure 1 of Lee et al. 1977, ApJ, 211, L107.

Chapter 16
Figure 16.1 - Based on data in Hillenbrand 1997, AJ, 113, 1733.
Figure 16.2 - Herbig Ae/Be stars are from Berilli et al. 1992, ApJ, 398, 254; Testi et al. 1999, AA, 342,
515. Sources of CO outflows are from Levreault 1988, ApJ, 330, 897.
Figure 16.3 - From Figure 11 of Stahler 1988, ApJ, 332, 804.
Figure 16.5 - Based on Figure 2 of Stahler 1988, PASP, 100, 1474.
Figures 16.7 and 16.8 - Based on calculations in Palla & Stahler 1999, ApJ, 525, 772.
Figure 16.9 - Figure supplied by G. Basri.
Figure 16.10 - Based on the computed lithium abundances in Siess et al. 2000, AA, 358, 593.
Figure 16.11 - Data supplied by S. Randich.
Figures 16.12 and 16.13 - From a calculation by I. Baraffe.
Figure 16.14 - From Figure 1 of Golimowski et al. 1998, AJ, 115, 2579; figure supplied by B. Oppen-
heimer.
Figure 16.15 - M stars from Leggett 1992, ApJS, 82, 351; Gizis et al. 2000, AJ, 120, 1085. L dwarfs
from Kirkpatrick et al. 2000, AJ, 120, 447. For the T dwarfs, see references listed in Burgasser 2001, in
Galactic Structure and the Interstellar Medium, ed. M. Bicay and C. Woodward (San Francisco: ASP), p.
411.
Figure 16.16 - Figure supplied by G. Basri.
Figure 16.17 - Based on the data in Table II of Fukuda 1982, PASP, 94, 271.
Figure 16.18 - Velocity for NGC 6475 is from Jeffries et al. 1998, MNRAS, 300, 550. All other points
are from Bouvier 1997, Mem. Soc. Astr. It., 68, 885.
Figure 16.19 - Based on data in Queloz et al. 1998, AA, 335, 183 and Terndrup et al. 2000, AJ, 119,
1303. Figure prepared with the assistance of K. Stassun.
Figure 16.20 - Based on data in Stassun et al. 1999, AJ, 117, 2941; Herbst et al. 2000, AJ, 119, 261; and
Rhode et al. 2001, AJ, 122, 3258. Figure prepared with the assistance of K. Stassun.
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Chapter 17
Table 17.1 - Constructed using the NIST Atomic Spectra Database, available at
http://physics.nist.gov/cgi-bin/AtData/lines−form.
Figure 17.1 - Figure courtesy of C. Johns-Krull and J. Valenti.
Figure 17.3 - Based on data from Kenyon & Hartmann 1995, ApJS, 101, 117 and Herbig & Bell 1988,
Lick Obs Bull, 1111 (for T Tauri stars), and Herbig 1985, ApJ, 289, 269 (for main-sequence stars).
Figure 17.4 - From Figure 7c of Hartigan 1991, ApJ, 382, 617.
Figure 17.5 - Based on data in Kenyon & Hartmann 1995, ApJS, 101, 117.
Figure 17.6 - Based on data in Herbig & Bell 1988, Lick Obs Bull, 1111 and Hartigan et al. 1995, ApJ,
452, 736.
Figure 17.7 - From Figure 4 of Tsuboi et al. 1998, ApJ, 503, 894.
Figure 17.8 - From Figure 15 of Beristain et al. 2001, ApJ, 551, 1037.
Figure 17.9 - From Figure 1 of Lavalley-Fouquet et al. 2000, AA, 356, L41.
Figure 17.10 - From Figure 1 of Hartmann & Raymond 1989, ApJ, 337, 903.
Figure 17.11 - Based on data in Hartigan et al. 1995, ApJ, 452, 736.
Figure 17.12 - From Figure 8 of Krautter et al. 1990, AA, 236, 416.
Figure 17.14 - Data on BP Tau from Kenyon & Hartmann 1995, ApJS, 101, 117; Beckwith et al. 1990,
AJ, 99, 924. Data on GM Aur from Kenyon & Hartmann 1995, ApJS, 101, 117; Weaver et al. 1992, ApJS,
78, 239; Beckwith & Sargent 1991, ApJ, 381, 250; Dutrey et al. 1998, AA, 338, L63.
Figure 17.15 - From Figure 1 of Simon et al. 2000, ApJ, 545, 1034.
Figure 17.16 - From Figure 1 of Guilloteau et al. 1999, AA, 348, 570.
Figure 17.19 - Based on the data maintained by W. Herbst at
http : //www.astro.wesleyan.edu/ ∼ bill/research/ttauri.html.
Figure 17.21 - From Figure 13 of Hatzes et al. 1995, ApJ, 451, 784.
Figure 17.22 - From Figure 4 of Ibragimov 1997, AstL, 23, 103.
Figure 17.23 - From Figure 14 of Herbig, 1977, ApJ, 217, 693.
Figure 17.24 - From Figure 1 of Haisch et al. 2001, ApJ, 553, L153.
Figure 17.25 - From Figure 6b of Stelzer & Neuhaüser 2001, AA, 377, 538.
Figure 17.26 - Theoretical lithium depletion curve from Martín et al. 1997, AA, 321, 492 and Zapatero-
Osorio et al. 2002, AA, 384, 937. Data on the Taurus stars refer to weak-lined members, and are from
Martín et al. 1994, AA, 282, 503. Pleiades data kindly supplied by S. Randich.
Figure 17.27 - Figure supplied by J. Greaves.

Chapter 18
Table 18.1 - Numerical data from Palla & Stahler 1991, ApJ, 375, 288.
Table 18.2 - The inner edges of the debris disks are from: Grady et al. 2001, AJ, 122, 3396 (HD 100546);
Koerner et al. 1998, ApJ, 503, L83 (HR 4796A); Heap et al. 2000, ApJ, 539, 435 (β Pic); Holland et al.
1998, Nature, 392, 788 (Fomalhaut); Wilner et al. 2002, ApJ, 569, L115 (Vega).
Figure 18.1 - Stellar data from Sung et al. 2000, ApJ, 120, 333. The pre-main-sequence tracks are from
Palla & Stahler 1999, ApJ, 525, 772, and the post-main-sequence isochrone from Schaller et al. 1992,
AAS, 96, 269.
Figure 18.2 - From Figure 1 of Fuente et al. 2001, AA, 366, 873.
Figure 18.3 - Pre-main-sequence rotational speeds from Finkenzeller 1985, AA, 151, 340; Böhm & Catala
1995, AA, 301, 155; Mora et al. 2001, AA, 378, 116. Main-sequence data from Table II of Fukuda 1982,
PASP, 94, 271.
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Figure 18.4 - Spectrum of Herbig Be star from Figure 5 of Tjin A Djie et al. 2001, MNRAS, 325, 1441.
We also thank P. Manoj for help with this figure. Main-sequence B6 spectrum from Figure 2b of Jacoby
et al. 1984, ApJS, 56, 257.
Figure 18.5 - From Figure 2 of Grinin et al. 1994, AA, 292, 165.
Figure 18.7 - From Figure 8 of Palla & Stahler 1993, ApJ, 418, 414.
Figure 18.8 - Based on calculation in Palla & Stahler 1999, ApJ, 525, 772.
Figure 18.10 - From Figure 3 of Marconi et al. 2001, AA, 372, L21.
Figure 18.11 - From Figure 3 of Marconi & Palla 1998, ApJ, 507, L141.
Figure 18.12 - Optical and infrared data for all stars from Hillenbrand et al. 1992, ApJ, 397, 613, with
additional far-infrared data for AB Aur from Meeus et al. 2001, AA, 365, 476. Submillimeter data from
Mannings 1994, MNRAS, 267, 361.
Figure 18.13 - From Figure 1 of Finkenzeller & Mundt 1984, AAS, 55,109.
Figure 18.14 - From Figure 4 of Praderie et al. 1986, AA, 303, 311.
Figure 18.15 - From Figure 6a of Praderie et al. 1986, AA, 303, 311.
Figure 18.16 - From Figure 3 of Mannings & Sargent, 1997, ApJ, 490, 792.
Figure 18.17 - From Figure 4 of Bouwman et al. 2001, AA, 375, 950. Original figures kindly supplied by
G. Meeus.
Figure 18.18 - Data for HD 100546 and β Pic from Figure 2 of van den Ancker et al. 1997, AA, 324, L33.
Optical and near-infrared fluxes from Vega are from Malfait et al. 1998, AA, 331, 211; longer-wavelength
data are from Figure 1 of Backman & Paresce 1993, in Protostars and Planets III, ed. E. H. Levy & J. I.
Lunine (Tuscon: U. of Arizona), p. 1253.
Figure 18.19 - The image of HR 4796A is from Figure 1 of Schneider et al. 1999, ApJ, 513, L127, while
the β Pic figure was kindly supplied by P. Kalas. The bottom two images are both from Figure 1 of Holland
et al. 1998, Nature, 392, 788.
Figure 18.21 - From Figure 1 of Beust 1994, in Circumstellar Dust Disks and Planet Formation,, eds. R.
Ferlet & A. Vidal-Madjar (Gif-sur-Yvette: Editions Frontières), p. 35.

Chapter 19
Table 19.l - Most data are from S. Van den Bergh 2000, The Galaxies of the Local Group, (New York:
Cambridge U. Press). Additional references for molecular gas masses are: Mizuno et al. 2001, PASJ,
53, 971 (Large Magellanic Cloud); Mizuno et al. 2001, PASJ, 53, L35 (Small Magellanic Cloud); Young
2000, AJ, 120, 2460 (NGC 185); Heyer 2003 (personal communication) (M31); Corbelli 2003, MNRAS,
342, 199 (M33).
Figure 19.1 - Data for HII regions from Güsten & Mezger 1982, Vistas Astron, 26, 159. Data for pulsars
and supernova remnants from Lyne et al. 1985, MNRAS, 213, 613 and Leahy & Wu 1989, PASP, 101,
607, respectively.
Figure 19.2 - From Figure 7 of Glass 1994, in The Nuclei of Nearby Galaxies, ed. R. Genzel & A. I.
Harris (Dordrecht: Kluwer), p. 209.
Figure 19.3 - All images from the NASA/IPAC Extragalactic Database, available at
http://nedwww.ipac.caltech/edu.
Figure 19.4 - From Figure 5 of Roberts & Haynes 1994, ARAA, 32, 115.
Figure 19.5 - From Figure 3 of Gavazzi et al. 2002, ApJ, 576, 135.
Figure 19.6 - Filled circles are from Table 2 of Kennicutt & Kent 1983, AJ, 88, 1094. Open circles are
from Table 4 of Gavazzi et al. 2002, AA, 396, 449. Original data kindly provided by G. Gavazzi.
Figure 19.7 - From Figure 15 of Kennicutt 1998, in Starbursts: Triggers, Nature, and Evolution, ed. B.
Guiderdoni & A. Kembhavi (Berlin: Springer-Verlag), p. 1.
Figure 19.8 - From Figure 11 of Kennicutt 1989, ApJ, 344, 685.
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Figure 19.9 - From Figure 1a of Skelton et al. 1999, PASP, 111, 465.
Figure 19.10 - Color-magnitude diagram from Figure 1 of Gallart et al. 1999, AJ, 118, 2245. Star
formation history from Figure 4 of Hernandez et al. 2000, MNRAS, 317, 831.
Figure 19.11 - Color-magnitude diagram from Figure 4 of Martinez-Delgado et al. 1998, AJ, 115, 1462.
Star formation history from Figure 15 of Martinez-Delgado et al. 1999, AJ, 118, 2229.
Figure 19.12 - From Figure 1a of O’Connell et al. 1994, ApJ, 433, 65.
Figure 19.13 - From Figure 1 of Larson & Tinsley 1978, ApJ, 219, 46.
Figure 19.14 - Spectral energy distributions are from Silva et al. 1998, ApJ, 509, 103: Figures 10 (M51),
6 (M82), and 9 (Arp 220).
Figure 19.15 - Optical image from Figure 1 of Sanders et al. 1988, ApJ, 325, 74. Near-infrared image
from Figure 3 of Scoville et al 1998, ApJ, 492, L107.
Figure 19.16 - Optical image from the NASA/IPAC Extragalactic Database. Near-infrared (2.12 µm)
image courtesy of B. Brandl and the Cornell WIRC team, and Palomar Observatory.
Figure 19.17 - From Figure 43 of Barnes 1998, in Galaxies: Interactions and Induced Star Formation, ed.
Kennicutt, Schweizer, & Barnes (Berlin: Springer), p. 275.
Figure 19.18 - Image of NGC 3351 from Figure 1 of Colina et al. 1997, ApJ, 484, L41. Image of
NGC 1300 from Figure 1 of Aguerri et al. 2000, AA, 361, 841.
Figure 19.19 - From data compiled by Rocha-Pinto & Maciel 1996, MNRAS, 279, 447.
Figure 19.20 - From Figure 1 of Glazebrook et al. 1995, MNRAS, 275, L19.
Figure 19.21 - From Figure 9 of Steidel et al. 1999, ApJ, 519, 1.
Figure 19.22 - From Figure 1 of Dickinson 1998, in The Hubble Deep Field, ed. M. Livio, S. M. Fall, &
P. Madau (New York: Cambridge U. Press), p. 219.
Figure 19.23 - From Figure 4 of Galli & Palla 1998, AA, 335, 403.
Figure 19.24 - Based on an unpublished calculation by D. Galli and F. Palla.
Figure 19.25 - From Figure 1 of Omukai & Palla 2001, ApJ, 561, L55.
Figure 19.26 - Upper panel from Figure 3 of Lyons et al. 1995, AJ, 110, 1544. Lower Panel from Figure 1
of Becker et al. 2001, AJ, 122, 2850.

Appendix G
Figure G.2 - From the tabulation of Rogers & Iglesias 1992, ApJS, 79, 507.

All figures from AA, AAS, and BAN are reproduced with authorization of the European Southern Obser-
vatory. Figures from ApJ, ApJS, AJ, and Icarus are reproduced courtesy of The American Astronomical
Society.
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Constellations
Aquila, 115, 433, 488
Auriga, 11
Chamaeleon, 103
Crux, 119
Cygnus, 509, 545, 547
Lupus, 101
Monoceros, 63, 104
Orion, 2
Perseus, 495
Taurus, 10

Embedded Clusters
ρ Ophiuchi, 94, 98, 106, 411, 415
30 Doradus, 97
Arches Cluster, 734
Central Cluster, 734
IC 348, 91, 98, 109, 447
Kleinman-Low (KL) Nebula, 10, 138, 226,

229, 233, 237, 455, 508, 513, 535
NGC 2023, 96
NGC 2024, 96
NGC 2068, 96
NGC 2071, 96
NGC 2244, 63, 67, 109, 385
NGC 2264, 104, 107, 109, 121, 363, 686
NGC 3603, 97, 689
NGC 7538, 97
Quintuplet Cluster, 734
R136, 417, 745, 750
S106, 96, 121, 257
S255 / S257, 96

Galaxies
Arp 220, 753, 754, 770
Arp 244 (The Antennae), 755
Large Magellanic Cloud, 97, 417, 736, 744,

747
Leo I, 747
M31 (Andromeda Galaxy), 746, 747, 749

M33, 746, 747
M51 (NGC 5194), 26, 737, 752, 755
M82, 753
NGC 185, 747, 748
NGC 1300, 760
NGC 1569, 750
NGC 4111, 739
NGC 4472, 736
Small Magellanic Cloud, 746, 747

HII Regions
λ Orionis, 668
30 Doradus (Tarantula Nebula), 97, 417, 745,

750, 758, 764
G192.16−3.82, 544
G29.96−0.02, 534
G34.26+0.15, 531
G43.18−0.52, 531
G5.89−0.39, 530
M8 (Lagoon Nebula), 686
M16 (Eagle Nebula), 126, 528, 555
NGC 1999, 428
NGC 3603, 97, 417
NGC 6334F, 493, 496, 512, 531
NGC 7538, 97, 454
Orion Bar, 7, 523
Orion Nebula (M42, NGC 1976), 7, 37, 38,

496, 552, 555
Rosette Nebula, 63, 556
S106, 547
S199, 560
S254 / S255 / S257, 96
S88B, 525
W3(OH), 492, 507, 513
W49, 115, 488, 491, 493, 512, 513
W49N, 488, 507, 509, 514, 515
W75N, 257, 509

VLA 1, 509
VLA 2, 509
VLA 3, 509
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Molecular Clouds
ρ Ophiuchi Complex, 73, 92, 110, 358, 560,

567, 637
ζ Ophiuchi, 60
B5, 12
B33 (Horsehead), 222
B35, 668
B68, 84
B335, 60, 84, 215, 362, 363, 446, 454
Cepheus Molecular Cloud, 348
Chamaeleon Molecular Cloud, 103, 676
Corona Australis Complex, 73, 390
Cygnus Molecular Cloud, 98, 509

L63, 80
L260, 75
L984, 98
L988, 98
L1251A, 82

Gum Nebula, 430, 540
L204, 257
L1688, 81, 92, 359
L1709, 81
L1712, 81
L1729, 81
L1755, 81
Lupus Molecular Cloud, 101, 110

B228, 101
M17 (Omega Nebula), 222, 223
Maddalena Cloud, 272
Monoceros Molecular Cloud, 63, 104, 687
Orion Molecular Cloud, 2, 60, 63, 115, 222,

348
L1617, 430
L1630, 4, 96, 107, 226, 439, 450
L1641, 4, 114, 432
NGC 2024, 181, 257
OMC-1, 9
Orion 1.5′ South, 138
Orion A, 4, 113, 251, 348, 428, 432, 455
Orion B, 4, 5, 348

Perseus Molecular Cloud, 81, 91, 98, 414,
446, 495

B1, 60, 81, 176, 257, 446
NGC 1333, 12, 495

Rosette Molecular Cloud, 63, 66, 67, 72, 109
Sagittarius Molecular Cloud

A/West, 257
B2, 135, 733, 754, 758, 760

B2/Middle, 139
B2/North, 515

Serpens Molecular Cloud, 98
L572, 98

Taurus-Auriga Complex, 11, 60, 73, 358, 414
L1434, 12
L1459, 12
L1489, 76, 78, 173, 359
L1495, 12
L1521, 12
L1544, 366
L1551, 15, 444, 452, 453
TMC-1, 12, 60, 137, 454
TMC-1C, 15
TMC-2, 12

Ursa Major, 257
Molecular Outflows

BN-KL, 10
DR 21, 545
HH 211, 447, 486
HH 212, 510, 512
IRAS 03282, 446
L1448/mm, 93, 512
L1551/IRS 5, 444, 446, 448, 452, 545
L1557, 454
NGC 2071, 450
OMC-1, 455, 545
VLA 1623, 448

OB Associations
α Persei (Per OB3), 110, 423
θ1 Orionis, 7
Cassiopeia OB2, 97, 454
Cassiopeia-Taurus, 110, 423, 567
Cepheus OB1, 109
Cepheus OB2, 110, 117, 687
Cepheus OB6, 110
Collinder 121, 110
Cygnus OB2, 569
Cygnus OB7, 569
Gemini OB1, 96, 565
Lacerta OB1, 110
Lower Centaurus-Crux, 110, 111
Monoceros OB1, 104, 109
Monoceros OB2, 109, 117
Orion OB1, 109, 110, 114, 567
Perseus OB2, 107, 109, 110, 567
Sagittarius OB1, 686
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Scorpius-Centaurus, 102, 110, 567, 676
Serpens OB1, 126
Trapezium Cluster (Orion Nebula Cluster), 7,

416, 420, 552, 577, 583, 616, 620, 687,
689, 690, 734

Trumpler 10, 110
Upper Centaurus-Lupus, 110
Upper Scorpius, 110, 112, 560
Vela OB2, 110

Open Clusters
α Persei, 118, 614, 615, 672
Blanco 1, 118
Collinder 359, 118
Coma Berenices, 118
Hyades, 11, 118, 120, 392, 515, 600, 614,

629, 673
IC 1396, 117
IC 2391, 118
IC 2602, 118
Melotte 227, 118
NGC 752, 120
NGC 2244, 117
NGC 2451, 118
NGC 4755 (Jewel Box), 119
NGC 6475, 118
NGC 6530, 686
NGC 6611, 126, 687
Pleiades, 11, 118, 120, 121, 126, 415, 600,

609, 614, 620, 673
Praesepe, 118
Ursa Major, 118

Optical and Embedded Stars
β Pictoris, 720, 722, 725
ε Eridani, 677, 678, 720, 724
η Chamaeleontis, 676
η Orionis, 114
σ Orionis, 222
θ1 Orionis C, 7, 417, 418, 542, 552, 555
ξ Persei, 141
ζ Orionis, 113, 222, 417
ζ Puppis, 540, 542, 556
155913−2233, 387
162814−2427, 389
51 Pegasi, 678
AB Aurigae, 693, 705, 708, 711, 715, 717
Aldebaran (α Tauri), 11
AS 353A, 433, 640
BD+40◦ 4124, 97, 417, 689

BD+65◦ 1637, 688, 689, 705, 709
BD+65◦ 1638, 688
Becklin-Neugebauer (BN) object, 9, 138,

149, 455
Betelgeuse (α Orionis), 2
BP Tauri, 598, 625, 626, 632, 647, 657
CI Tauri, 638, 644, 711
Cohen-Schwartz star, 429
DE Tauri, 611
DF Tauri, 387, 611
DG Tauri, 640, 641
DoAr 21, 637
DR Tauri, 625, 626, 632, 644, 667
EX Lupi, 671
FM Tauri, 638, 711
Fomalhaut (α PsA), 720, 722
FU Orionis, 668
GG Tauri, 653
Gl 229A, 607
Gliese 229B, 607
GM Aurigae, 650, 652, 657, 706
HD 100546, 717, 722, 724
HD 163296, 716
HE 0107−5240, 765, 777
HH 34/IRS, 440
HR 4796A, 676, 719, 720, 722
HR 5999, 101
IRAS 03282+3035, 446
IRAS 04016+2610, 359
IRAS 16293−2422, 394
IRAS 20126+4104, 535, 544
IRc2, 9, 138, 226, 237, 250, 455, 513, 514,

545
L1448/mm, 93, 446, 473, 510, 512
L1551/IRS 5, 444, 447
LkHα 198, 705, 708, 715
LkHα 220, 690
LkHα 234, 688, 689, 709, 715
MWC 349, 547
Pistol Star, 734
PPl 15, 609
PV Cephei, 440
Rigel (β Orionis), 2
RNO 43, 440
S Coronae Australis (S CrA), 644
S Monoceros, 104, 121, 385
S106 IRS4, 96
S255/IR, 96
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Sagittarius A∗, 138, 162, 222, 257, 733
SR 20, 92
SR 24, 92
SSV 13 (SVS 13), 149, 495, 510
T Tauri, 14, 385, 392, 611
Trapezium, 2, 7, 14, 37, 552
TW Hydrae, 675
TY Coronae Australis (TY CrA), 390, 391,

395
UX Orionis, 693
UY Aurigae, 393, 654
V351 Orionis, 703
V351 Orionis, 701
V410 Tauri, 662, 667
V773 Tauri, 395, 635, 714
V830 Tauri, 625, 626, 632
V1057 Cygni, 668
V1318 Cygni, 97
V1515 Cygni, 668
V1686 Cygni, 97
Vega (α Lyrae), 676, 721, 722
VLA 1, 429, 442
WL 12, 92
WSB 18, 395
YY Orionis, 644

Quasars
3C161, 34

R Associations
Canis Majoris R1, 106, 690
Cassiopeia R1, 106
Cepheus R1, 106
Cepheus R2, 106
Monoceros R1, 106, 107
Monoceros R2, 106, 363
Orion R1/R2, 106, 107, 113
Perseus R1, 106
Scorpius R1, 106

Scorpius R5, 106
Taurus R1/R2, 106
Taurus-Orion R1, 106
Vela R1, 106
Vela R2, 106

Reflection Nebulae
NGC 2023, 226
NGC 7129, 688, 709
S106, 96

Stellar Jets and Herbig-Haro Objects
HH 1/2, 429, 430, 439, 442, 453, 509
HH 7-11, 495
HH 32, 433, 438, 640, 642
HH 33, 440
HH 34, 432, 437, 440, 442, 473, 475
HH 46/47, 430, 437, 453, 556
HH 88, 440
HH 111, 430, 438, 440, 442, 453
HH 211, 447
HH 212, 438, 510
VLA 1, 429

Supernova Remnants
Cassiopeia A, 564
Crab Nebula, 563
Cygnus Loop, 564
Cygnus Superbubble, 568
IC 443, 565, 569
Lindblad Ring, 567
Local Bubble, 567

T Associations
Chamaeleon I/II/III, 103, 105
Lupus, 101, 110, 412, 579
NGC 1333, 98
Taurus-Auriga, 14, 97, 98, 100, 105, 110,

411, 579, 617, 672
TW Hydrae, 98, 675, 719
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α-disk models, 343
δ Scuti variables, 704
γ-radiation: production in molecular clouds, 185,

187
κ-mechanism, 703
Λ-doubling, see hydroxyl

Absolute magnitude, defined, 16, 43
Absorption of radiation, 45
Accretion luminosity, defined, 320
Accretion shock, 321
Activation barrier, 136
Adsorption of molecules, see dust grains
Alfvén point, 465
Alfvén velocity, defined, 234
Alfvén waves, 275

damping of, 289, 460
influence on stellar winds, 460
torsional, 306

Alfvénic Mach number, defined, 234
Ambartsumian, V., 97
Ambipolar diffusion, 262

during cloud collapse, 299
flux loss during, 282
time scale for, 284, 286

Ammonia (NH3), 10, 15
as probe of dense cores, 75, 151
creation in molecular outflows, 453
discovery of in space, 135
inversion transitions, 153, 172, 173
maser emission from, 497
rotational states, 152
use in obtaining cloud density and tempera-

ture, 171
Antenna temperature, defined, 799
Apparent magnitude, defined, 17
Apparent magnitude, defined„ 43
Array detectors

near-infrared, 89
use in imaging binary stars, 386

Artificial viscosity, 377
Associations, stellar, defined, 88
Asymptotic giant branch, 24
Atomic cooling rates, 198
Atomic envelope, of clouds: heating and cooling in,

207, see also Atomic hydrogen
Atomic hydrogen (HI)

21 cm line profiles, 32, 34
as probe of magnetic field, 71
associated with molecular clouds, 66
clouds, 34, 38
distribution in the Milky Way, 36
energy levels, 33
in cold neutral medium, 40
in external galaxies, 34
ionization by cosmic rays, 188, 189
origin of 21 cm emission, 32
photoionization by high-mass stars, 520
radio recombination lines from, 525
scale height in the Milky Way, 40
shells and supershells of, 567
temperature of, 34

Atomic oxygen (OI)
emission, from stellar jets, 472
emission, from T Tauri stars, 641
far-infrared emission from, 200, 208, 222,

520, 709
fine-structure levels, 198
in cloud envelopes, 212

Autoionization of H2, 137

Balmer continuum, 625
Balmer series, 32, 36
Band head, of CO emission, 149
Barnard, E. E., 11
Barred galaxies, origin of, 758
Beam dilution, defined, 799
Beam efficiency, 799
Big Bang, 2, 28
Binary frequency
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among pre-main-sequence objects, 385
differential, defined, 382

Binary stars
comparison of ages in, 394
containing compact objects, 28
containing intermediate-mass primaries, 689
disks in, 402
dynamical influence of disks, 402
embedded, 392
encounters between, 116
fission hypothesis for, 397
observed classes of, 380
orbital relations, 819
pre-main-sequence spectroscopic, 387
properties in T associations, 391
properties on the main sequence, 382
supernovae in, 116
tidal circularization in, 392, 404
unresolved, effect on the zero-age main se-

quence, 121
Bipolar nebulae, 96
Birthline

in associations, 100, 576
in the HR diagram, 20
theoretical derivation of, 579

Birthrate of stars
as function of Galactocentric radius, 730, 731
by spectral type, 30
in bound clusters, 88
in the Galactic center, 733
in the solar neighborhood, 124, 730, 732
total, in the Milky Way, 29, 61, 730, 731

Blaauw, A., 107
Black holes, 24
Blackbody radiation, 48
Blue compact dwarfs, see Irregular galaxies
Blueing, in UX Ori stars, 693
Bohr magneton, defined, 177
Bok globules, 83
Bolometric correction

for T Tauri stars, 99
Bolometric correction, defined, 23
Bolometric flux from a stellar surface, 50
Bolometric luminosity, defined, 16
Bolometric magnitude, defined, 23
Boltzmann relation, for level populations, 147, 795
Bonnor-Ebert mass, defined, 247
Bound-bound and bound-free transitions, 818

Bowshocks
in giant flows, 439
in stellar jets, 429
spectroscopic signature of, 433

Boyle’s law, 246
Bremsstrahlung, defined, 196
Brightness temperature, defined, 798
Broadening function, 611, 810
Brown dwarfs, see also Dust grains

in the HR diagram, 605
mass-radius relation, 605
problem of origin, 609
spectroscopic properties, 608

Brown dwarfs, defined, 125
Bullets, in molecular outflows, 447

C-shocks, see also Wardle instability
heating and cooling in, 236

C-shocks, defined, 235
CAIs (carbon-aluminum-rich inclusions), 570
Carbon, see Carbon ionization; Ionized carbon
Carbon ionization: as heating source for molecular

clouds, 192
Carbon monoxide (CO), 3, 12

as coolant of molecular clouds, 201, 215
as molecular gas tracer, 32
as source of stellar opacity, 91
as tracer of molecular gas, 146
collisional excitation of, 35, 147
emission, from giant molecular clouds, 61
emission, from photodissociation regions,

709
gas-phase formation of, 213
high abundance in space, 137
in the Milky Way, 32
isotopes, 146
line profiles, 164
photodissociation of, 151, 213
relation to hydrogen column density, 168
rotational states, 148
use in imaging disks, 651
use in obtaining cloud temperature and den-

sity, 165
vibrational states, 149

Carbon sulfide (CS)
as probe of dense cores, 75
depletion onto grains, 76, 139

Central bulge, see Milky Way
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Central molecular zone, 733
Centrifugal potential, 252
Centrifugal winds, theory of, 461
Cepheid variables, 704
Champagne flows, 524
Charge-coupled detectors (CCDs), 108
Charge-exchange reaction, 136
Chemical abundances

in dense cores, 137
near high-mass stars, 138

Chemical fractionation, of CO, 165
Chondrules, 570
Chromosphere, solar, 457
Class 0 sources

modeling of, 361
Class 0 sources, defined, 93
Class I sources

nature of, 358
Class I sources, defined, 93
Class II sources, defined, 93
Class III sources, defined, 93
Classical Be stars, 692
Classical T Tauri stars, see also Hα; Infrared ex-

cess; Veiling; YY Orionis stars
variability, 103

Classical T Tauri stars, defined, 98
Cloud complexes, see Giant molecular clouds
Clusters, see Embedded clusters; Galaxy clusters;

Open clusters
Clusters, stellar, defined, 88
CN cycle, 353, 601
CNO bi-cycle, 352, 602, 700
Coalescence models, see High-mass stars
Cold neutral medium, see Atomic hydrogen
Color

of galaxies, 27
of stars, 17

Color excess
near-infrared, 91
relation to hydrogen column density, 53

Color excess, defined, 43
Color index

observed vs. intrinsic, 43
Color index, defined, 17
Color-color diagram, near-infrared, 89
Color-color diagram, optical: of galaxies, 750
Color-magnitude diagram, defined, 18
Comoving distance, defined, 766

Compton Gamma Ray Observatory, 185
Conductivity, of a molecular cloud, 259
Convection, 20

in protostars, see Protostars
Coronagraphic imaging, 720
Corotation radius, 659
Cosmic distance ladder, 118
Cosmic microwave radiation, 166

as heating agent of molecular clouds, 191
Cosmic rays

as heating agent of molecular clouds, 187,
207, 215

attenuation in dense gas, 220
discovery of, 184
energy distribution, 185
origin, 184

Cosmological constant, 776
Coulomb pressure, 605
Critical density, cosmological, 776
Critical density, for collisional deexcitation, de-

fined, 141
Critical points, in stellar winds, 466, 540
Crossing shocks, see Jets
Crossing time, in open clusters, 121
Curve of growth, 674
Cyanopolyynes, 135

Damped Lyman α galaxies, 768
Dark cloud complexes, 73
Dark clouds, 4, 11

dispersal of, 413
internal magnetic field, 80
magnetic stabilization of, 270
within giant molecular clouds, 71

Dark energy, 776
Dark haloes, see also Milky Way
Dark matter

evidence for, 774
role in galaxy formation, 774

Dead zone, 467
Debris disks, 676

evidence for infall from, 724
Declination, defined, 792
Dense cores, 4, 75

erosion by stellar winds, 480
internal magnetic field, 80, 270
internal temperature of, 216
intrinsic shape, 77
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observed rotation, 82, 256
problem of origin, 299

Density waves, pattern speed, 26
Depletion of metals, 37
Detection equation, derivation, 799
Deuterium

cosmological production of, 774
fusion, in intermediate-mass stars, 695, 700
fusion, in pre-main-sequence stars, 596
fusion, in protostars, 332, 349
primordial, 28
thermostat, 334, 579

Dichroic extinction, 55, 72
Diffraction limit, defined, 387
Diffuse clouds, 53, 60

heating by cosmic rays, 188
Dilution factor, for interstellar radiation, 192, 194
Dirac theory, 33
Disks

around intermediate-mass stars, 706, 715
around main-sequence A stars, 720
as drivers of winds, 468
centrifugal radius, 308
circumbinary, 403, 653
flaring in, 655
frequency of occurrence, 654
gas efflux from, 550
in binary stars, see Binary stars
irradiation of, 655
magnetic disruption of, 658
millimeter imaging of, 651
photevaporation of, 547
relation to FU Orionis outbursts, 668
thermal emission from, 647, 650

Disks, protostellar
birth of, 336
early evolution, 340
internal torquing, 342
spiral arms in, 345

Dispersion relation
for magnetosonic waves, 275, 276
for self-gravitating gas, 249
for sound waves, 275

Dispersion, of pulsar radiation, 731
Dissociative recombination, 137
Distance modulus, defined, 17
Doppler effect, 33
Doppler imaging, 663

Doppler width, 807
Drag force, between charged particles and neutrals,

260, 290
Drift, relative, of charged particles and neutrals,

283, 299
Dust envelope, of protostars

temperature in, 323
Dust envelope, of protostars, defined, 321
Dust grains, see also Molecular hydrogen

absorption of heat from gas, 204
absorption of ultraviolet radiation, 211
as causes of metal depletion, 37, 139
as coolant of molecular clouds, 204, 216
coagulation and mantle growth, 107, 108
destruction in C-shocks, 455
electric charge of, 55, 219, 236
extinction efficiency factor, 51, 194
extinction from, 44
heating by interstellar radiation, 195, 215
in brown dwarf atmospheres, 608
mass fraction in the interstellar medium, 54
mechanical effects of radiation on, 722
opacity of, 47, 54, 204
origin, 29
polarization from, 54
reddening from, 17, 43
regeneration in debris disks, 676
sputtering in shocks, 232
thermal emission from, 47, 49, 80, 81, 93
thermal processing of, 717
total cross section, 53
within HII regions, 528

Dust lanes, 11
correspondence with CO emission, 101

Dust photosphere, of protostars, 321
conditions at, 324

Dust temperature, 49, 52, 194, 204, see also J-
shocks; Photodissociation regions; Re-
flection nebulae; Water

in atomic envelope of clouds, 207
in molecular interior of clouds, 215

Dwarf spheroidal galaxies, 746
Dwarf stars, see Main-sequence stars
Dynamical relaxation, in open clusters, 121

Echelle spectrometers, 433
Ecliptic, 792
Eddington approximation, 586, 817
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Effective temperature, defined, 16, 18
Einstein A and B coefficients, derivation of, 795
Electron degeneracy pressure

in brown dwarfs, 603
in white dwarfs, 24

Electron scattering, 819
Elephant trunks, 528
Elliptical galaxies, 26

dwarf, 746
morphology of, 737
problem of origin, 770, 776
star formation history of, 744

Embedded clusters
formation time, 96
morphology, 96
photometric identification, 89
within starburst galaxies, 97

Embedded clusters, defined, 88
Emission measure, 528, 733
Emissivity, defined, 47
Epicyclic frequency, 344, 741
Equation of transfer, 47
Equatorial coordinates, 792
Equipartition of energy, 72
Equivalent width, 627
Escape probability, 174, 211
Eulerian description, of fluid motion, 371
Excitation temperature, defined, 147
EXors, 671
Extinct radionuclides, 570
Extinction, 43

estimated using background stars, 169
near-infrared, 91
relation to CO column density, 169
relation to hydrogen column density, 63

Extinction curve, see Interstellar extinction curve
Extinction efficiency factor, see Dust grains

Fermi momentum, 604
Fermi, E., 186
Filling factor

of gas in the Milky Way, 36
of gas within a giant molecular cloud, 63

Fine splitting: in atomic hydrogen, 33
Fine-structure levels, of atoms, 198
Fluorescence, of H2, 145, 225
Flux density, see Specific flux
Flux freezing, 256, 261

Forbidden-line emission: from T Tauri stars, 641
Forbidden-line transitions, 200
Formaldehyde (H2CO): maser emission from, 497
Fragmentation, dynamical, 298, 369, 374, 377, 399
Fragmentation, quasi-static, 398, 406
Free radicals, 158
Free-fall time

in pressure-free collapse, 373
Free-fall time, defined, 70
Free-fall velocity, defined, 296
Free-free emission, see also Bremsstrahlung

from HII regions, 528
from stellar jets, 442

Free-free transitions, 819
FU Orionis outbursts, 668

G-dwarf problem, 762
Galactic center, 34

bar in, 758
black hole in, 733
star formation in, 733

Galactic clusters, see Open clusters
Galactic coordinates, 794
General luminosity function, 122
Giant molecular clouds, 2

clumpy substructure, 63
distribution in Milky Way, 61
formation and destruction, 67, 68
internal magnetic field, 72
observed rotation, 250

Globular clusters
in Milky Way, 25

Globular clusters, defined, 117
Globules, cometary, 556

photoevaporation of, 557
star formation in, 560

Gould’s Belt, 567
Graphite, 52
Gravitational collapse, see also Inside-out collapse

density and velocity in rotating, 312
fluid trajectories in rotating, 309
magnetic flux loss during, 299
of clouds, induced by supernovae, 569
of pressure-free sphere, 371

Gravitational radius, 548
Gravitational stability

of cylindrical clouds, 400
of magnetized clouds, 268
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of magnetized slabs, 269, 300
of protostellar disks, 343
of rotating clouds, 255
of spherical clouds, 245
of spiral galaxies, 742

Gunn-Peterson effect, 778

Hα emission
as measure of star formation activity, 738
from classical T Tauri stars, 98, 626, 636
from HII regions, 527
from intermediate-mass stars, 687, 691
from stellar jets, 428
from warm ionized medium, 42

Hα line, defined, 32
H− ion, as source of stellar opacity, 90

cosmological production of, 771
Habing flux, 193, 221
Haro, G., 428
Hayashi temperature, 587
Hayashi track, 589
Helioseismology, 621
Henyey track, 595
Herbig Ae/Be stars, 14, see also Disks; Winds; In-

frared excess; UX Ori stars; X-rays
as drivers of molecular outflows, 97
birth environments of, 686
companions of, 689
dust envelopes surrounding, 707
HI gas around, 710
objective prism searches for, 106
optical spectra of, 690
pulsations in, 701
rotation of, 690

Herbig, G., 428
Herbig-Haro objects, 428, see also Jets

associated with high-mass stars, 543
proper motion of, 437

Hertzsprung-Russell (HR) diagram, defined, 18
HI clouds, see Atomic hydrogen
HI gas, see Atomic hydrogen
High-mass stars, see also Herbig-Haro objects;

Molecular outflows; Winds; X-rays
as energizers of local hot gas, 191
clustering of, 416
in the field, 121
outflow generation by, 455
problem of origin, 84, 115, 416, 424

production of ultraviolet radiation, 192
radiative heating of clouds, 221
upper mass limit of, 416

High-velocity clouds, 765
HII regions

cometary, 512, 531
extragalactic, see Irregular galaxies
first and second expansions, 520
in irregular galaxies, 744
magnetic field in, 257
radio emission from, 37, 731
relation to embedded clusters, 96
temperature of, 527
ultracompact, see Ultracompact HII regions

Homologous collapse, 374
Homologous contraction, 593
Horizontal branch, 24
Hot cores, 416, 512

chemical composition of, 535
masers in, 534
molecular emission from, 535

Hot intercloud medium, 42
Hubble constant, defined, 765
Hubble sequence, 736
Hydrogen recombination lines, 9
Hydrostatic equilibrium

along magnetic field lines, 264
in clouds, 242, 251, 400
in stars, 19
of HI gas, 40

Hydroxyl (OH)
Λ-doubling, 160, 177
as probe of magnetic field, 71, 158, 176
creation and destruction of, 189, 232
discovery of in space, 135
magnetic hyperfine splitting, 161
maser emission from, 162, 489, 506, 565, 754
rotational states, 158

Ideal MHD equation, 261
Infall, see Protostars
Infrared Astronomical Satellite (IRAS), 4, 13, 76,

89
Infrared companions, 392
Infrared excess

decline with age, 672
in T Tauri stars, 632, 635
lack of, in weak-lined T Tauri stars, 100
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of Herbig Ae/Be stars, 705
Infrared excess, defined, 91
Infrared filter sequence, 792
Infrared spectral index, defined, 93
Infrared stars, 13
Initial luminosity function

attainment in stellar groups, 407
calculation of, 123

Initial luminosity function, defined, 106
Initial mass function (IMF)

effect of metallicity on, 763
in stellar groups, 124
in the brown dwarf regime, 126
Salpeter function, 124

Initial mass function (IMF), defined, 124
Inside-out collapse

of magnetized clouds, 300
of spherical clouds, 293
pressure effects in, 298

Instability strip, of intermediate-mass stars, 703
Intensity, see Specific intensity
Interferometers, 4
Interstellar dust, see also Dust grains

discovery of, 117
Local Bubble, 42, 192, 567
phases, 39
replenishment of, 28

Interstellar extinction curve, 44, 89
Interstellar masers, see masers, interstellar
Inverse P Cygni profiles, 644
Ion-molecule reactions, 136
Ionization fraction, in clouds

empirical determination of, 217
theory of, 219

Ionization fronts, 7, 230, 521
in globules, 555

Ionized calcium (Ca II): emission, from classical T
Tauri stars, 98, 628

Ionized carbon (C II)
as gas coolant, 34
far-infrared emission from, 39, 200, 208, 222,

520, 709
Ionized hydrogen (HII), see HII regions
Ionized oxygen (O II): emission, from HII regions,

527
Ionized oxygen (O VI), 42
Ionized sulfur (S II)

emission, from stellar jets, 430, 472

emission, from T Tauri stars, 641
Irregular galaxies, 26, 736
Irregular galaxies,

amorphous and blue compact, 746
in large-scale surveys, 766
metallicity of, 745
star formation in, 744

Isochrones
post-main-sequence, 112
pre-main-sequence, 21

J-shocks, defined, 226
dissociation and ionization by, 229, 236
dust temperature in, 232
jump conditions for, 812
temperature falloff behind, 228

Jeans length
as upper limit for cloud equilibria, 370

Jeans length, defined, 249
Jeans mass

role in cloud collapse, 377
Jeans mass, defined, 249
Jeans swindle, 370
Jets, stellar, see also Bowshocks

crossing shocks in, 476
entrainment by, 477
giant flows, 439
internal motion of, 437
mass transport by, 472
morphology of, 430
radio observations of, 442
relation to Herbig-Haro objects, 428
working surface in, 473, 476

Johnson-Morgan filter sequence, 17, 792
Joy, A. H., 97, 661

Kelvin-Helmholtz instability, 477
Kelvin-Helmholtz time, defined, 21
Kinetic temperature, defined, 148
Kirkhoff’s law, 49, 806
Kramers-law opacity, 819

Lagrangian description, of fluid motion, 371
Landé g-factor, 177, 179, 665
Lane-Emden equation, 243, 590
Larson’s law, 74
Level populations, in two-level system, 794
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Limb darkening, 810
Lindblad’s Ring, 567
Line broadening, 802

of 21-cm line, 34
of OH lines, 179
within dense cores, 74

Line narrowing, see Masers
Line wings, for ultraviolet absorption in H2, 212
Lithium

absorption, in weak-lined T Tauri stars, 625
as diagnostic of brown dwarfs, 608
as indicator of stellar youth, 103
fusion, in pre-main-sequence stars, 598
primordial, 28

Lithium dip, 600
Lithium edge, 607
Local Bubble, see Interstellar medium
Local Group, 746
Local Thermodynamic Equilibrium (LTE), 148,

795
relation to optical thickness, 175

Lorentz profile, 805
Luminosity density, comoving, 767
Luminosity functions, bolometric

of stellar clusters, 94
of T associations, 105, 411

Luminosity functions, bolometric: evolution of,
407

Luminosity jump, 697
Luminous infrared galaxies, 753
Lunar occultation, 387
Lyα

absorption, used to determine HI column den-
sity, 169

emission, as gas coolant, 39
emission, from J-shocks, 231
line, defined, 32

Lyβ: line, defined, 32
Lyman α forest, 768
Lyman band of H2, 145, 169, 214, 225
Lyman continuum radiation, 36
Lyman limit, 519
Lyman series, 32
Lyman-break galaxies, 768
Lynds Catalogue, 4

Mach angle, defined, 476
Mach disk, 433, 477

Mach number, 814
Mach reflection, 477
Maclaurin spheroids, 254, 398
Magnetic braking

of pre-main-sequence stars, 620
Magnetic braking: of molecular clouds, 305, 306
Magnetic field, see also Giant molecular clouds;

Dark clouds; Shocks
coupling to gas, 220
decoupling from gas during collapse, 302
mapping through polarization, 56, 81
of clouds, observed density dependence, 257
of main-sequence stars, 619
of T Tauri stars, 664

Magnetic flux problem, 262
Magnetic pinch, 470
Magnetic precursor, 235
Magnetic pressure, 69
Magnetic reconnection, 262

during cloud collapse, 302
Magnetic tension, 69
Magnetorotational instability, 660
Magnetosonic waves, 275
Magnetostatic equilibrium, of clouds, 263
Main-sequence fitting, see Zero-age main sequence
Main-sequence stars

in near-infrared color-color diagrams, 89
lifetime, 23, 27

Main-sequence stars, defined, 18
Main-sequence turnoff, 67, 111
Main-sequence turnon, 105, 112
Marginal stability, of clouds, 293, 377
Maser pump, defined, 498
Masers, interstellar, 10

brightness temperature of, 491
collisional pumping in, 506
gain and saturation, 501
geometric beaming in, 505
line narrowing in, 504
motion of, 489
polarization of, 492
production behind shocks, 496
radiative pumping in, 506
relation to HII regions, 493, 512
relation to molecular outflows, 512
relation to stellar jets, 509
use in expanding cluster parallax, 514
variability, 493
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Mass accretion rate, 294, 329
Mass continuity equation, 69
Mass function, for binary stars, 388, 821
Massive stars, see High-mass stars
Mathis, Rumpl, and Nordsiek distribution, 53
Maxwell-Boltzmann relation, 75, 806
Mean free path of photons, 47
Mean intensity, defined, 45
Mean molecular weight, defined, 38
Mechanical luminosity, defined, 451
Megamasers, OH, 754
Mergers, galactic, 754
Messier Catalogue, 7
Metallicity: in the solar neighborhood, 37
Metastable states, of atoms, 231, 429, 527
Meteorites, 37, 570
Methane (CH4): in brown dwarf atmospheres, 608
Methanol (CH3OH): maser emission from, 496
MHD equation, 258, see also Ideal MHD equation
MHD waves, see also Alfvén waves; Magnetosonic

waves
as causes of field distortion, 72
effective pressure of, 277, 459
mode conversion of, 279
perturbational analysis of, 272

MHD winds, see Centrifugal winds
Microjets, 640, 642
Milky Way, see also Birthrate of stars; Galactic

center; Scale height
age of disk, 123
central bulge, 25, 35
dark halo, 25
differential rotation of HI gas, 34
disk, 25
distribution of HI gas, 35
distribution of HII regions, 37
distribution of molecular gas, 34
molecular gas content, 28, 61
origin, 28
spiral structure, 36, 62, 108
stellar halo, 25
thick disk, 730

Minimum-mass solar nebula, 678
Mixing layer, 477
Mixing-length theory, 333
Molecular bands, 17
Molecular clouds, see Dense cores; Giant molecu-

lar clouds; Dark clouds

Molecular hydrogen (H2), 2
discovery of in space, 141
dissociation of, 144, 187, 195, 209, 213, 709
distribution in the Milky Way, 36, 732
excitation in stellar jets, 453
formation on grain surfaces, 136, 145, 209,

212
gas-phase formation of, 146, 231, 771, 776
heating in shocks, 226
in first core, 318
ionization by cosmic rays, 187, 189, 219
quantum states, 141

Molecular interior, of clouds: heating and cooling
in, 215

Molecular lines, as source of stellar opacity, 91
Molecular outflows, 10, 15

bipolar lobes in, 444
chemical enrichment in, 138
energy and momentum of, 451
from Class 0 sources, 93, 446
from high-mass stars, 544
relation to stellar jets, 477
velocity nesting in, 448

Molecular oxygen (O2): photodissociation of, 215
Molecular ring: in the Milky Way, 36
Momentum flux tensor, see Pressure tensor
Moving-cluster method, 118
Multiplicity, of stars, see Binary frequency

Naked T Tauri stars, 100
Nested grid, computational techniques, 376
Neutral-neutral reactions, 136
Neutron stars, 24
New General Catalogue (NGC), 4
Nonequilibrium cooling, in J-shocks, 230
Nonhomologous collapse, 374
Nonhomologous contraction, 696
Nonthermal motion, see Velocity dispersion
Normal mode, in an oscillating cloud, 247
Nova outbursts, 29
Nuclear reactions

cosmological, 28
in main-sequence stars, 19

O-type neutral point, 303
OB associations

ages, 107
distribution in the Milky Way, 108
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early evolution, 418
in the HR diagram, 108
origin, 97, 111
pattern of formation, 113
problem of origin, 421
relation to giant molecular clouds, 61, 109

Ohm’s law, generalized, 258
Olivine, 52
Opacity gap, 321
Open clusters, see also Moving-cluster method

destruction by giant molecular clouds, 121
distribution in the solar neighborhood, 117
evaporation from, 121
in the HR diagram, 119
mass segregation in, 121
problem of origin, 96, 415

Open clusters, defined, 117
Optical depth, defined, 47
Optical thickness: relation to extinction, 47, see

also Radiative trapping
Ortho and para states, of H2, 226
Ortho and para states, of H2O, 156
Oscillator strength, 210, 211
Overstability, 702
Oxygen, see Atomic oxygen; Ionized oxygen;

Molecular oxygen

P Cygni profiles, 639
PAHs (polycyclic aromatic hydrocarbons), 56
Partition function, of CO rotational states, 168, 799
Pattern speed, see Density waves
Pedestal feature, in CO emission lines, 444
Penetration probability, for ultraviolet photons, 211
Phase mixing, 279
Photodissociation regions

chemical transformations in, 225
dust temperature in, 222
excited by Herbig Ae/Be stars, 709
fine-structure emission from, 223

Photodissociation regions, defined, 221
Photoelectric heating, 38, 53, 193, 195, 208, 222
Photosphere, defined, 16
Planck function, for specific intensity, 49, 164
Planetesimals

as sources of dust, 678
Planetesimals, defined, 680
Planets

extrasolar, 678

formation of, 678
Poincaré-Wavre theorem, 251
Poisson’s equation, 41
Polarization, see also Dust grains

in UX Ori stars, 693
measurement of, 54
of cosmic microwave radiation, 780
of OH lines, 177, 180

Polytropes, 243, 590, 591, 596, 821
Population I, 25
Population II, 25
Population III stars, 765

formation of, 776
Population inversion, 498, 500
Population synthesis modeling, 743
Position-velocity diagram

of giant molecular clouds, 64
of molecular outflows, 448

Post-main-sequence stars
evolutionary tracks, 24
winds from, 29

Post-T Tauri problem, 413, 673
Post-T Tauri stars

in haloes of T associations, 101
lithium depletion in, 674

Post-T Tauri stars, defined, 100
Poynting-Robertson drag, 723
PP chains, 602
Pre-main-sequence stars, 14, see also Deuterium;

Lithium
entropy decrease in, 591
evolutionary tracks, 20
fully convective phase, 586
growth of radiative core, 593
observed rotation of, 614
quasi-static contraction of, 20, 584, 697
winds from, 15

Pressure equilibrium of interstellar gas, 39, 42
Pressure tensor, 278
Proper distance, defined, 766
Proper motion, defined, 89
Proplyds, 552
Protobinaries, see Binary stars
Protoplanets, 680
Protostars

disappearance of convection in, 348
early evolution, 317
evidence for inward motion, 365
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evolutionary time scale, 296
formation of primordial, 777
hydrogen fusion in, 353, 583
main accretion phase, 319
mass-radius relation, 329
observational search for, 357
onset of convection in, 331
population in stellar groups, 407
radiation pressure in, 354
rotation of, 617

Protostars, defined, 22

Q method, 108
Quasars

as accreting black holes, 780
as background continuum sources, 32, 768,

778
Quasi-static contraction, see Pre-main-sequence

stars
of magnetized clouds, 284, 288
of stars, see Pre-main-sequence stars

R associations, defined, 106
Radial velocity, defined, 62
Radiation field, interstellar

as heating agent of dust, see Dust grains
components of, 191

Radiative association, 136
Radiative diffusion equation, 815
Radiative precursor, 228
Radiative recombination, 137
Radiative trapping

in a collapsing cloud, 298, 321
of CO rotational lines, 148, 166, 201
of NH3 inversion lines, 173

Radio emission: from T Tauri stars, 637
Ram pressure, at accretion shock, 328
Rankine-Hugoniot jump conditions, see J-shocks
Rarefaction wave, 296, 301, 304, 524
Rayleigh-Jeans approximation, defined, 174
Recombination coefficient, for hydrogen, 519
Recombination epoch, 771
Reconnection, see Magnetic reconnection
Red giant branch, see Red giant stars
Red giant stars

in near-infrared color-color diagrams, 89
in the HR diagram, 18, 24

Reddening vector, 91

Redshift, defined, 765
Reflection nebulae, 4

dust temperature in, 56
excited by intermediate-mass stars, 106
in T associations, 102
polarization in, 54
relation to stellar jets, 431

Reionization epoch, 778
Relaxation region, 228
Relaxation time, see also Dynamical relaxation
Resonance lines, defined, 537
Resonant scattering, 231
Right ascension, defined, 792
Rocket effect, 558
Rosseland-mean opacity, 816
Rotation, stellar, see also Pre-main-sequence stars;

Protostars
as source of line broadening, 808
measurement of, 610
on the main sequence, 612

Rotational backbone
of H2O, 157
of NH3, 153

Rotational stability, 253, 660
Rovibrational transitions

in CO, 151
in H2, 143

Runaway OB stars, 115

Salpeter, E. E., 124
Saturation, of CO lines, 164, 166, 168
Scale height

of a disk, defined, 25
of HI gas in the Milky Way, 36
of low-mass stars in the Milky Way, 41
of open clusters in the solar neighborhood,

117
Scattering of radiation, 46
Schmidt law, 735, 739, 751
Schmidt, M., 735
Schrödinger’s equation, 32, 803
Schwarzschild’s criterion, 332
Seeing, defined, 387
Selective extinction, defined, 44
Self-consistent field method, 253
Self-reversed emission lines, 363
Self-shielding
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of CO, 146
of H2, 146

Shock velocity, defined, 227
Shocks, interstellar, see also C-shocks; J-shocks

as sources of molecules, 135, 231, 233
collisionless, 563
cushioning by magnetic field, 233
nonradiative, 232, 544
surrounding HII regions, 523

Silicates, 52
Silicon oxide (SiO), 10

and the 10 µm feature, 52, 708
creation in molecular outflows, 453
maser emission from, 497

Singular isothermal sphere, 244
Sink cell, 294
Skumanich law, 613, 629
Smoothed-particle hydrodynamics (SPH), 376
Solar composition, 37
Solar nebula, 570
Solar neighborhood

gravitational potential, 40
stellar mass density, 41

Solar neighborhood, defined, 25
Solar wind

effect on cosmic rays, 185
MHD waves in, 271
variability of, 457

Sonic point, 458
Sound speed, 40

adiabatic, 229, 584
isothermal, 243

Source function, defined, 799
Spallation, defined, 184
Specific flux

from a stellar surface, 50
Specific flux, defined, 16, 45
Specific intensity

from a stellar surface, 49
Specific intensity, defined, 44
Speckle interferometry, 386
Spectral energy distribution, stellar

dereddening of, 91
modeling of, 359

Spectral type, 17
Spectroscopic parallax, 108
Spheroid, see Milky Way
Spin-orbit interaction

in HI, 33
in OH, 159, 176
in OI, 198

Spiral arms, see also Disks; Milky Way; Spiral
galaxies

Spiral density waves, see Density waves
Spiral galaxies

gas content, 26
optical spectra of, 736

Split monopole, 300
Sputtering, see Dust grains
Starbursts, 97, 416

circumnuclear, in galaxies, 752
in dwarf irregular galaxies, 749
in merging galaxies, 755
relation to galactic bars, 758

Starless cores, see Dense cores
Starspots, 611, see also T Tauri stars
Steepening, of sound waves, 277
Stellar structure equations, 326
Stokes parameters, 180
Strömgren filter sequence, 17, 792
Strömgren sphere, 519
Super-adiabatic region, 333, 589
Supernova remnants

evolution of, 563
intersection of, 42
radio emission from, 564, 731, 751

Supernovae, 25, 29
anisotropic, 116
as energizers of HI gas, 42
as sources of cosmic rays, 186
as sources of interstellar gas, 29
cloud compression and heating by, 565

Surface gravity, defined, 586

T associations
demise of, 413
halo population, 104
in the HR diagram, 99
properties of older, 675

T associations, defined, 97
T Tauri stars, see also Disks; Forbidden-line emis-

sion; Radio emission; Ultraviolet emis-
sion; X-rays

classical, see Classical T Tauri stars
cool spots in, 661
hot spots in, 665
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irregular variation in, 668
optical spectra of, 625
weak-lined, see Weak-lined T Tauri stars

Tachocline, 621
Theoretical HR diagram, see Hertzsprung-Russell

diagram
Thermal emission, see Dust grains
Thermal equilibrium

in stars, 19, 601
Thermal instability, 39
Thermal jets, see Jets
Thermal relaxation, of intermediate-mass stars, 696
Thomson cross section, 819
Threshold density, for star formation, 736, 740
Toomre Q-parameter, 344, 740
Total extinction, defined, 44
Trumpler, J., 11, 117
Turbulence

as source of line broadening, 806
in magnetized gas, 279, 299

Ultracompact HII regions
lifetime problem, 532
OH masers near, 507
radio emission from, 532
relation to giant molecular clouds, 115

Ultracompact HII regions, defined, 115
Ultraluminous infrared galaxies, 753
Ultraviolet emission, from T Tauri stars, 631
UX Ori stars, 693

van Rhijn, P. J., 122
Veiling index, defined, 632
Veiling, of T Tauri absorption lines, 624, 630

origin of, 645
Velocity dispersion

of cloud clumps, 64
of HI clouds in the Milky Way, 32, 42
of molecular gas in the Milky Way, 34
of stars in T associations, 99
within dense cores, 74
within giant molecular clouds, 72
within OB associations, 107

Vibrational temperature, 226
Virial equilibrium, 71
Virial theorem, 69, 802
Virial velocity, 72
Viscosity, 343

Visual extinction, see Extinction
Voigt profile, 807

Walker, M., 105
Wardle instability, 237
Warm ionized medium, 42
Warm neutral medium, 34, 39, 42, 519
Water (H2O), 10

discovery of in space, 135
maser emission from, 154, 157, 489, 506
production in shocks, 154, 232, 233
rotational states, 154
sublimation of ice mantles, 53

Wave action, 460
Weak-lined T Tauri stars, defined, 98
Weber-Davis model, 466, 467
Werner band of H2, 145, 225, 523
White dwarfs, 24

in the HR diagram, 18
Wien’s displacement law, 50
Winds, see also Centrifugal winds; Solar wind;

Weber-Davis model
from Herbig Ae/Be stars, 710
from high-mass stars, 10, 29
from post-main-sequence stars, 24, 29
from pre-main-sequence stars, 15
optical and radio emission from high-mass

stars, 540
radiative acceleration of, 537
thermal acceleration of, 457
types of, 456
X-rays from, see X-rays

Wolf-Rayet stars, 745
in starburst irregular galaxies, 750

Work function, 193
Working surface, see Jets

X-factor, 170, 754
X-ray emission, see Weak-lined T Tauri stars
X-rays

as heating sources of molecular clouds, 195
emitted by winds from high-mass stars, 542
from Herbig Ae/Be stars, 714
from protostars, 322, 329
from T Tauri stars, 636
from the Sun, 636
in local radiation field, 192, 567
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saturation, in rotating stars, 621
stellar, decline with age of, 672

X-type neutral point, 303

YY Orionis stars, 644

Zeeman splitting
in maser sources, 493
of dark cloud emission, 80
of HI and OH, 71, 176, 257

of stellar absorption lines, 664
of stellar spectral lines, 620

Zero-age main sequence (ZAMS)
approach to, 601
at low luminosities, 120
effect of metallicity on, 120
establishment by main-sequence fitting, 118

Zero-age main sequence (ZAMS), defined, 22
Zone of avoidance, 62


