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Abstract
This paper investigates the performance of pulsar-based navigation in deep space
mission applications. The noise properties of X-ray based and radio-baspulsar mea-
surements are examined and compared. A closed form parametric covariance analysis
tool was developed in this study. It provides a rough estimate of the navigation
performance associated with a deep space cruise that makes use of ion thrusters
and sequential pulsar observations. In addition, the flight trajectory of the Dawn
spacecraft was used to form a hypothetical deep space mission scenario that uti-
lizes pulsars as navigation beacons. This simulated scenario accounts for clock
uncertainty, pulsar timing noise, maneuver execution errors, sequential observation
and interruptions between pulsar observations. A particle filter was implemented
to reduce the large initial position uncertainty by resolving the number of pulsar
wavelengths between the spacecraft and the Solar System Barycenter. The resulting
position and velocity uncertainties from the particle filter can be used to initialize
an Extended Kalman Filter, which estimates the spacecraft position and velocity for
steady state operations.
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Introduction

Space exploration has been an integral part of modern human history. As we explore
further into deep space, technological advancements are necessary to continue this
journey. Certain deep space missions can be enabled or enhanced with the use of
an autonomous navigation system. One novel approach is observing and process-
ing signals from rapidly rotating and highly magnetized neutron stars, called pulsars
[19]. These celestial objects rotate about an axis just like Earth, but as they rotate
charged particles along the magnetic field lines are accelerated to generate electro-
magnetic radiation. This beam of energy consists of components across the entire
electromagnetic spectrum. Because of the misalignment between the pulsar’s rota-
tional and magnetic axes, the energy beam sweeps across the sky as the pulsar rotates.
The detection of the beam is only possible when the emission direction is aligned
with the line-of-sight of an observer. From the perspective of the observer, a pulsar
signal is analogous to the beacon of a distant lighthouse. The rotation periods range
from 8.5 s to 1.39 ms, which translate to wavelengths between 2.5 × 106 km and
419 km. While these numbers seem large, they are minuscule comparing to the size
of the Solar System. The mean distance between Pluto and the Sun is approximately
40 AU , where one Astronomical Unit (AU) is approximately 1.50 × 108 km.

There have been multiple studies in pulsar-based navigation since the discovery
of pulsars in 1967. This navigation concept relies on determining the number of pul-
sar signal wavelengths between a spacecraft and the Solar System Barycenter (SSB)
[3, 24, 28, 29]. Due to the exceptional stability of the pulsing behavior, the phase of
this periodic signal can be tracked to determine the position and the velocity of the
spacecraft relative to the SSB.Most pulsar-based navigation techniques rely on a two-
stage approach. The first stage is a signal estimator based on parameter estimation
methods such as cross-correlation, nonlinear least squares, or Maximum Likelihood
Estimation (MLE). The purpose of this step is to obtain estimates of the pulsar sig-
nal phase offset and/or Doppler frequency from raw waveform measurements [10,
12]. These two estimates contain information about the spacecraft position and veloc-
ity relative to the SSB. The second stage relies on a Kalman-type nonlinear filter
to recursively process the outputs of the signal estimator together with a dynamical
model to generate a state estimate [10, 18, 30, 33]. The NASA Neutron star Inte-
rior Composition ExploreR (NICER) mission and the Station Explorer X-ray Timing
And Navigation Technology (SEXTANT) mission implement a refined version of the
MLE that uses the a priori mean of the spacecraft states to predict the signal phase
in order to compensate for extended observation duration [34, 35]. When there are
significant correlated noises embedded in the pulsar measurements, a more coherent
approach is to directly process the raw waveform measurements with a Kalman-type
nonlinear filter [7]. In 2018, X-ray pulsar-based navigation was demonstrated by the
NICER/SEXTANT team and achieved an accuracy of ∼ 10 km after processing the
pulsar measurements on the International Space Station for 1 day [21].

Building on the above research, this paper investigates the performance of pulsar-
based spacecraft navigation using a Design ReferenceMission (DRM). The trajectory
of the Dawn spacecraft was chosen for this study. The purpose of using a DRM is
to consider a realistic deep space mission scenario that could make use of sequential
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pulsar observation. Section “Design Reference Mission” and “Pulsar Model” dis-
cuss the DRM, spacecraft dynamics and pulsar model. Section “Navigation System”
shows the state space model for the numerical simulation. A covariance analysis is
included in “Covariance Analysis”. Section “Particle Filter for Position Acquisition”
discusses the use of particle filter to reduce the large initial position uncertainty in
which the integer ambiguity in the number of pulsar wavelengths from the spacecraft
to the SSB was resolved. Section “Extended Kalman Filter for Steady State Oper-
ations” shows the subsequent nominal navigation performance from an Extended
Kalman Filter (EKF).

Design ReferenceMission

NASA launched the Dawn spacecraft in September 2007. Its mission was to travel to
the asteroid belt using ion propulsion and to survey the two large asteroids Vesta and
Ceres. Figure 1 shows the mission timeline from launch to completion. This space-
craft is equipped with three ion thrusters developed using proven technologies from

Fig. 1 Complete mission trajectory. The blue trajectory corresponds to the thrusting segment, and the
black trajectory is the coasting segment [25]
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the Deep Space 1 mission. These thrusters enable Dawn to travel to and enter into
orbit around Vesta and Ceres. After deploying its solar panels, Dawn has a wingspan
of 19.7 m. The total mass of the spacecraft at the start of the mission is 1217 kg,
which consists of a 747 kg spacecraft mass, 425 kg of xenon propellant and 46 kg

of hydrazine propellant [27]. As indicated by Fig. 1, the spacecraft went through
multiple coasting and thrusting segments.

The Dawn ephemeris file has 11 columns of data: XYZ position, XYZ veloc-
ity, XYZ thrust, time, and spacecraft mass. The starting date is 2454385 JED and
the terminal date is 2455759 JED, where JED is Julian Ephemeris Day. The first
date is approximately 2 weeks after the launch of the spacecraft and the second date
corresponds to the time of arrival at Vesta. The 3-dimensional trajectory from the
ephemeris is plotted in Fig. 2, where the red star is the Sun. The red triangle is the start
of the ephemeris file. The kink in the trajectory followed by a change in orbital incli-
nation corresponds to the gravity assist at Mars on Feb. 17, 2009 (2454879.5 JED).
The inclination change is exaggerated by the stretching of the Z-axis.

Spacecraft Dynamics

In order to use the ephemeris for the study while simplifying the dynamical model
of the spacecraft, the following approximation was used. It was assumed that the
spacecraft acceleration could be approximately modeled as

r̈sc(t) = − Gm�
‖rsc(t)‖3 rsc(t) + d(t) + u(t), (1)

where G is the gravitational constant; m� is the mass of the Sun; rsc(t) is the space-
craft position relative to the Sun; d(t) is an unknown residual acceleration; and u(t)
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Fig. 2 3-dimensional heliocentric trajectory of the Dawn spacecraft from Earth to Vesta
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is the commanded acceleration from the ion thrusters. Since the velocity of the space-
craft, ṙsc(t), is provided in the ephemeris file, a numerical finite difference method
was used to determine the approximate value for the left hand side of Eq. 1 denoted
as r̈

f d
sc (t). Therefore, the unknown acceleration can be determined by solving Eq. 1

for d(t) and substituting in the finite differenced accelerations,

d(t) = r̈
f d
sc (t) + Gm�

‖rsc(t)‖3 rsc(t) − u(t). (2)

This residual acceleration is treated as a deterministic term in numerical simulation
and filter design. Figure 3 shows the duration of the thrusting and coasting segments
of the ephemeris in the top plot. The magnitude of u(t) is plotted in the middle plot
and the last plot shows the magnitude of d(t). The large spike at around day 500 in
the last plot is the Mars gravity assist. From the top plot, the typical coasting segment
is between 7 to 8 hours and the thrusting segment is between 6 to 7 days. If the pulsar-
based navigation system is only allowed to observe pulsars during coasting segments,
then the available observation time is approximately 5% of the total cruise time from
Earth to Vesta.

In addition to the above deterministic model, two stochastic acceleration distur-
bances are added. The first is wr (t), which is a white noise disturbance with a
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constant Power Spectral Density (PSD) of Wr . The second disturbance, wg(t), is also
white and is a result of using the ion thrusters. In other words, if ‖u(t)‖ = 0, then
wg(t) = 0. The first component of wg(t) is the disturbance along the thrusting direc-
tion and the two other components correspond to disturbances normal to the thrusting
direction. All three components are uncorrelated with each other. The PSD of this
disturbance is denoted as Wg(t) and it is set following the Gates model [11],

[Wg(t)]ii = (σf ixed,i�t)2 + (σprop,i�V (t))2

�t
, (3)

where i = 1, 2, 3; �V (t) = ‖u(t)‖�t ; and �t is the integration time step. The
symbol [A]ij , means the ith row and j th component of the A matrix. If A is a vec-
tor, then only the ith index is provided. The Gates method separates the acceleration
disturbance into a fixed part, σf ixed,i , and a proportional part, σprop,i . The coef-
ficient, σf ixed,i , models disturbances that are independent of the magnitude of the
commanded acceleration in the ith direction. The coefficient, σprop,i , models distur-
bances that are proportional to the magnitude of the commanded acceleration. Adding
wr (t) and wg(t) to Eq. 1 gives

r̈sc(t) = − Gm�
‖rsc(t)‖3 rsc(t) + d(t) + u(t) + wr (t) + Gg(t)wg(t), (4)

where Gg(t) is a transformation matrix from the thruster frame to the inertial frame,

Gg(t) =
⎡
⎣
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤
⎦

⎡
⎣

cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

⎤
⎦

α(t) = atan2
([û(t)]2, [û(t)]1

)

β(t) = −atan2

(
[û(t)]3,

√
[û(t)]21 + [û(t)]22

)

û(t) = u(t)

‖u(t)‖ . (5)

The thruster frame is defined such that the X-axis (i = 1) corresponds to the thrusting
direction.

Pulsar Model

The phase (rotation) evaluation of a millisecond pulsar is

φ
(
tpsr

) = φ0 + φ̇
[
tpsr − t0

] + 1

2
φ̈

[
tpsr − t0

]2
, (6)

where φ0, φ̇, φ̈, and t0 are all known values obtained from prior observations [9]. The
time tpsr is the signal emission time at the pulsar center of mass. The electromagnetic
intensity measurement at the spacecraft is modeled as

y(tsc) = λb + λss
(
φsc(t

sc)
) + v(tsc), (7)
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where λb is the background strength and λs is the source strength. The time t sc is
the measurement time at the spacecraft. The function s(·) is periodic and normalized
such that

1∫

0

s(φ) dφ = 1. (8)

s(·) describes the pulsar signal profile and is unique to each pulsar. The phase equa-
tion φsc(t

sc) is a time shifted version of φ(tpsr ) [9]. The amount of time shift is
described by a system of time transfer equations,

t ssb = t sc − ��
(
t sc, tbb, r(tsc)

)

tbb = t ssb − �IS

(
t ssb, tbb, r(tsc)

)

tpsr = tbb − �B

(
tbb, tpsr , r(tsc)

)
, (9)

where t ssb and tbb are the time of arrival of the pulsar signal at the SSB and the
pulsar binary barycenter respectively. The position of the spacecraft relative to the
SSB is r .��,�IS , and�B represent the Solar System, interstellar, and binary delays
respectively. Solving Eq. 9 for tpsr requires the Solar System and time ephemerides
[15, 22]. Of all the delay terms in Eq. 9, the dominant term is the Roemer delay,

�R� = −nT r

c
, (10)

embedded in the Solar System delay, ��, where n is the pulsar direction unit vector
expressed in the inertial frame located at the SSB. �R� accounts for the geometric
delay due to light travel time as illustrated in Fig. 4.

In order to limit the scope of the study, only the signal frequency, φ̇, and the
Roemer delay, �R�, are modeled. The reasoning for the simplification is that the
frequency rate, φ̈, and the rest of the time transfer terms are much smaller than the

Fig. 4 The spacecraft is in orbit around the Sun. The unit vector, n, points toward the pulsar and r� is the
Sun position vector relative to the SSB. r� is exaggerated in this figure
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frequency and the Roemer delay respectively [13]. The simplified time transfer for
this study is

tpsr = t sc + nT r(tsc)

c
. (11)

It is worth pointing out that the particle filter in “Particle Filter for Position Acqui-
sition” and the EKF in “Extended Kalman Filter for Steady State Operations” can
accommodate the general time transfer in Eq. 9.

Substituting Eq. 11 into Eq. 6 and neglecting φ̈ gives the phase equation at the
spacecraft,

φsc(t
sc) = φ0 + φ̇

[
t sc + nT rsc(t

sc)

c
+ tc(t

sc) − t0

]
+ nζ (t

sc), (12)

where tc and nζ are added to account for clock noise and the pulsar timing noise. The
uncertainty in r� is assumed to be smaller than the positioning accuracy of pulsar-
based navigation, so it is not modeled in this study. For the purpose of clarity, the
superscript sc is neglected in the rest of the paper.

Radio Frequency

The statistical properties of the measurement noise, v(t), depend on the pulsar obser-
vation frequency. If radio pulsars are used, then a Gaussian process is used to model
the measurement of the signal waveform. The background source strength and signal
strength are

λb,rf = Tsys and λs,rf = λ̃s,rf Grf , (13)

where λ̃s,rf is the source flux density in Janskys (Jy). The units of λb,rf and λs,rf

are Kelvins (K). The antenna gain and antenna area are

Grf = Arf ηrf

2kB

and Arf = πd2
rf

4
, (14)

where drf is the antenna diameter; ηrf is the antenna efficiency; and kB is the Boltz-
mann constant. The gain represents the sensitivity of an antenna to a radio source.
The measurement noise PSD, Vrf , is given by the radiometer equation,

Vrf = T 2
sys

np�f
, (15)

where Tsys is the system noise temperature; �f is the system bandwidth; np is the
number of polarizations [19]. The system temperature is a sum of receiver noise tem-
perature, spillover noise temperature, and sky background noise temperature. Unlike
the X-ray measurement in “X-Ray Frequency”, the noise due to sky background is
independent of the antenna size [5]. The mean and variance of the measurement noise
is

E[v(t)] = 0, and var[v(t)] = Vrf

�t
, (16)

where �t is the sampling interval [32].
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X-Ray Frequency

If X-ray pulsars are used as navigation beacons, then a non-homogenous Poisson
process is used to model the detection of individual X-ray photons [10]. The rates of
the process are

λb,xr = λ̃b,xrAxrηxr , λs,xr = λ̃s,xrAxrηxr , (17)

where

Axr = πd2
xr

4
. (18)

ηxr is the area efficiency factor; Axr is the detector geometric frontal area; and dxr

is the detector diameter. The units of λb,xr and λs,xr are photons per second (ph/s).
The statistics of the measurement noise are

E[v(t)] = 0, and var[v(t)] = λb,xr + λs,xr sxr (φsc(t))

�t
. (19)

Because of the form of Eq. 19, one can interpret the non-homogenous Poisson
process as having a periodic PSD, Vxr(t) = λb,xr + λs,xr sxr (φsc(t)).

Timing Noise

While millisecond pulsars have stable rotational dynamics, they are still corrupted by
a small amount of fractional stationary noise whose PSD is

Snζ (ω) = Wζ(
1 +

(
ω
ωc

)2)α , (20)

where wζ , α, and ωc are positive fitting parameters [8]. They represent the strength
of the white noise, the integration order, and the corner frequency of a fractional
Linear Time Invariant (LTI) system. The parameters of Eq. 20 for various pulsars can
be found in the current literature [26]. The typical value of ωc is between 3 rad/yr

and 0.4 rad/yr , which translates to a time constant between 0.33 yr to 2.5 yr .
Eqution 20 is termed fractional because the parameter α is not necessary an integer
value. The typical value for α is between 1 and 3. The fractional PSD in Eq. 20
can be approximated over a bandwidth by interweaving zeros and poles [6]. The
approximated system is essentially a high-order stable LTI system. Therefore, the
pulsar timing noise in this study is modeled using a shaping filter with a large time
constant,

ζ̇ (t) = Fζ ζ (t) + Gζ wζ (t)

nζ (t) = Hζ ζ (t) (21)

where Fζ is a stable matrix.
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Navigation System

We assume the spacecraft carries a clock whose error model is
[

ṫc(t)

ḃc(t)

]
=

[
0 1
0 0

]

︸ ︷︷ ︸
Fc

[
tc(t)

bc(t)

]

︸ ︷︷ ︸
tc

+
[
1 0
0 1

]

︸ ︷︷ ︸
Gc

wc(t)

tc(t) = [
1 0

]
︸ ︷︷ ︸

Hc

[
tc(t)

bc(t)

]
, (22)

where tc(t) is the clock bias and bc(t) is the clock drift [4]. Combining Eq. 4 with
Eqs. 7, 21 and 22 gives the state space model for numerical simulation,

⎡
⎢⎢⎣

ṙsc(t)

r̈sc(t)

ṫc(t)

ζ̇p(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 I3x3 0 0
− Gm�

‖rsc(t)‖3 I3x3 0 0 0

0 0 Fc 0
0 0 0 Fζ,p

⎤
⎥⎥⎦

⎡
⎢⎢⎣

rsc(t)

ṙsc(t)

tc(t)

ζp(t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
0
d(t) + u(t)

0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
I Gg(t) 0 0
0 0 Gc 0
0 0 0 Gζ,p

⎤
⎥⎥⎦

⎡
⎢⎢⎣

wr (t)

wg(t)

wc(t)

wζ,p(t)

⎤
⎥⎥⎦

yp(tj ) = λb,p + λs,psp(φsc,p(tj )) + vp(tj ). (23)

The subscript p is added to ζ and y to indicate the timing noise and the intensity
measurement of the pth pulsar. It ranges from 1 to Npulsar , where Npulsar is the
number of observed pulsars. The phase equation at the spacecraft is

φsc,p(tj ) = φ0,p + φ̇p

⎡
⎢⎢⎣tj − t0 + nT

p rsc(tj )

c︸ ︷︷ ︸
geometric delay

+ Hctc(tj )︸ ︷︷ ︸
clock noise

⎤
⎥⎥⎦ + Hζ,pζp(tj )︸ ︷︷ ︸

pulsar timing noise

.(24)

The measurement noise variance is given by Eq. 19. This navigation system is formu-
lated using continuous time dynamics and discrete time measurements. The sample
time is given by tj . The measurement is yp(tj ) and the state vector is

x(t) = [
rsc(t) ṙsc(t) tc(t) ζp(t)

]T
. (25)

The time correlations of the process noises are

E[wr (t)w
T
r (τ )] = Wrδ(t − τ)

E[wg(t)w
T
g (τ )] = Wg(t)δ(t − τ)

E[wc(t)w
T
c (τ )] = Wcδ(t − τ)

E[wζ,p(t)wT
ζ,p(τ )] = Wζ,pδ(t − τ). (26)
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Covariance Analysis

As shown in Eq. 23, the navigation problem has nonlinear dynamics and nonlinear
measurements. The measurement function is given in terms of pulsar parameters such
as frequency, direction, intensity and waveform profile. The measurement noise vari-
ance is also related to the pulsar parameters. Because of the nonlinearity, the impact
of individual pulsar parameters on the overall navigation accuracy is not obvious.
Therefore, this section uses linearized covariance analysis to develop an intuitive
understanding.

X-ray Based vs. Radio Based Pulsar Timing System

This section investigates the timing accuracy of an X-ray based system and a radio-
based system. Let the timing accuracy of the X-ray based system due to photon
noise (a non-homogenous Poisson process) and that of the radio-based system due
to radiometer noise (a Gaussian process) be defined as σ 2

xr and σ 2
rf respectively. For

the X-ray based system, the uncertainty is quantified using the Cramér-Rao Lower
Bound (CRLB) [10],

σ 2
xr = 1

λ2s,xrTobs φ̇2

⎡
⎣

1∫

0

s′
xr (ϕ)2

λb,xr + λs,xr sxr (ϕ)
dϕ

⎤
⎦

−1

, (27)

where the prime symbol denotes the derivative with respect to the argument of the
function. The parameter Tobs is the observation time; φ̇ is the pulsar frequency; λb,xr

and λs,xr are the background and source rates given in Eq. 17.
On the other hand, the timing uncertainty of the radio-based system is obtained

using the covariance analysis result in [7],

σ 2
rf = Vrf

2π2λ2s,rf Tobs φ̇2

⎡
⎣

Nf∑
j=1

j2
(
a2j + b2j

)⎤
⎦

−1

, (28)

where λs,rf is the signal temperature given by Eq. 13; Vrf is the PSD of the noise
given by Eq. 15; aj and bj are the Fourier coefficients describing the signal profile;
and Nf is the number of Fourier series terms used. It is worth pointing out that Eq. 28
is consistent with the approximate timing accuracy formula,

σ 2
rf,w = Vrf

λ2s,rf Tobs

[
W 3

4(P−W)

]

= Vrf

λ2s,rf Tobs φ̇
2

[
γ 3

4(1−γ )

]
, (29)

which is derived using the profile pulse width [2]. P = 1/φ̇ is the pulsar signal
period;W is the full width at half maximum of a Gaussian approximation of the pulse
profile; and γ = W/P is the pulse fraction.
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From Eq. 15, Vrf is a function of the system temperature, Tsys , and the receiver
bandwidth �f . It is independent of the antenna size, A; therefore, from Eq. 27 σ 2

rf ∝
1/A2 ∝ 1/d4, whereas from Eq. 28 σ 2

xr ∝ 1/A ∝ 1/d2. This difference implies
that if the antenna size is not a key design consideration, then a radio-based system
is more effective at achieving high timing accuracy assuming the other parameters
are fixed.

Solving Eq. 27 for Tobs gives an expression for the required observation time in
terms of antenna size, pulsar parameters and timing accuracy. Performing the same
operation on Eq. 28 gives an analogous expression for the radio-based system. Figures 5,
6 and 7 plot the two resulting expressions for three different millisecond pulsars.
These plots compare the impact of the measurement noise on timing accuracy. Table 1
shows the pulsar and the system parameters used in the comparison. The pulsar pro-
files and parameters can be obtained from online databases [16, 20]. As a reference,
the Tsys of the RadioAstron space-based radio telescope is 45 K at L-band [17]. In
this study, we chose 50 K for the analysis to be conservative. For the X-ray based
approach, we used the system parameters of the NICER detector as the baseline [34].

Due to the variations in the pulsar parameters and profiles, the vertical position of
the curves in the plots can change drastically from one pulsar to another. From the
plots, a 1 m diameter X-ray detector has a similar performance as a 4 m, 12 m and
27 m diameter antenna for J0437-4715, B1937+21 and J2124-3358 respectively at
1-sigma of 1 μs. Since the minimum number of pulsars needed for navigation in the
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Table 1 Parameters for the Comparison [16, 17, 20, 34]

Pulsar Name Units J0347-4715 B1937+21 J2124-3358

φ̇ Hz 174 641 203

λ̃s,xr ph/(s cm2) 1.57 × 10−4 1.61 × 10−5 4.11 × 10−5

λ̃b,xr ph/(s cm2) 3.44 × 10−4 1.33 × 10−4 1.11 × 10−4

ηxr 0.281

λ̃s,rf mJy 149 13.2 3.6

Tsys K 50

�f MHz 32

ηrf 0.5

np 1

absence of clock error is 3, one would expect a relatively large radio antenna is still
needed to achieve accuracy comparable to the X-ray based system.

Navigation Accuracy for Periodic Thrusting Schedule

Continuing the development from the previous section, this section considers the
covariance analysis for the 3-dimensional navigation problem. From the ephemeris of
Dawn, it is clear that the use of an ion thruster is associated with a periodic thrusting
schedule. In this case, the typical thrusting segment lasts several days and is followed
by a few hours of coasting. Similar to the Dawn simulation in the previous section,
it was assumed that the spacecraft is only allowed to observe pulsars sequentially
during coasting segments. However, instead of using Eq. 4 as the system dynam-
ics, a double integrator system is used to simplify the analysis. Let the state space
system be

[
ṙsc(t)

r̈sc(t)

]
=

[
0 I3x3
0 0

]

︸ ︷︷ ︸
F

[
rsc(t)

ṙsc(t)

]

︸ ︷︷ ︸
x(t)

+
[

0
I3x3

]

︸ ︷︷ ︸
G

w(t) +
[

0
I3x3

]
u(t)

yp(t) = hp(t, rsc(t)) + vp(t), (30)

where rsc(t) is spacecraft position vector; ṙsc(t) is the velocity vector; w(t) is the
ion thruster process noise; u(t) is the ion thruster input; and vp(t) is measurement
noise. The measurement function is

hp(t, rsc) = λb,p + λs,psp(φsc,p(t))

φsc,p(t) = φ0,p + φ̇p

[
t + nT

p rsc(t)

c
− t0,p

]
, (31)
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where λb,p is background signal intensity; λs,p is pulsar signal intensity; sp(·) is a
periodic function; np is the pulsar direction; φ̇p is the pulsar frequency; and p is the
pulsar index.

The process noise PSD, W(t), and the thrust u(t) are assumed to be constant
during the thrusting segment. During the coasting segment, u(t) = 0 and W(t) = 0.
Assuming an EKF is used to process pulsar waveform measurements, then the error
covariance is governed by the Riccati equation, here and below

Ṗ (t) = FP(t) + P(t)F T + GW(t)GT − P(t)HT (t)V −1(t)H(t)P (t)

P (t0) = P0, (32)

where

H(t) =
⎡
⎢⎣

h′
1(φsc,p(t)) 0

. . .
0 h′

p(φsc,p(t))

⎤
⎥⎦

⎡
⎢⎢⎢⎣

[
φ̇1

nT
1
c

0
]

...[
φ̇p

nT
p

c
0

]

⎤
⎥⎥⎥⎦

V (t) = diag([V1(t), . . . , Vp(t)]), p = 1, . . . , Np. (33)

The phase, φsc,p(t), is evaluated along the true trajectory.
Since there are no pulsar observations during thrusting segments and no thrusting

occurs while making pulsar observations, the differential Riccati equation in Eq. 32
reduces to two Lyapunov differential equations. Let the time axis be partitioned as
follows:

1. If t is between tk and tk+1, where k is odd, then this segment is defined as a
thrusting segment.

2. If t is between tk and tk+1, where k is even, then this segment is defined as a
coasting segment.

Using the above partition, the Lyapunov differential equation for the thrusting
segment is

Ṁ(t) = FM(t) + M(t)F T + GW(tk)G
T , (34)

where the initial condition is M(tk) = P(tk). The solution for Eq. 34 is

M(tk+1) = eF(tk+1−tk )M(tk)e
FT (tk+1−tk )

+
tk+1∫

tk

eF (tk+1−t)GW(tk)G
T eFT (tk+1−t)dt

= Φthr (�tthr
k )M(tk)Φ

T
thr (�tthr

k ) +
[

W(tk)
3 �tthr

k

3 W(tk)
2 �tthr

k

2

W(tk)
2 �tthr

k

2
W(tk)�tthr

k

]
, (35)

where

Φthr(�tthr
k ) =

[
I3x3 �tthr

k I3x3
0 I3x3

]
(36)
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and W(tk) is the noise PSD for the kth segment. The error covariance at the end of the
thrusting segment is P(tk+1) = M(tk+1). The thrusting duration is �tthr

k = tk+1−tk ,
where k is odd. Because of the process noise, the increase in position error bound is
proportional to

√
�t3 while the velocity error bound is proportional to

√
�t .

The Lyapunov differential equation for the coasting segment is

Ẋ(t) = −FT X(t) − X(t)F + HT (t)V −1(t)H(t), (37)

where the initial condition is X(tk) = P −1(tk). Since we assumed there is no process
noise, w(t), or thruster input, u(t), during the coasting segment, the spacecraft trajec-
tory during this segment has constant velocity, i.e., rsc(t) = rsc(tk)+ ṙsc(tk)(t − tk).
Therefore, the phase equation is

φsc,p(t) = fs,p(tk)t + ψp(tk), (38)

where

fs,p(tk) = φ̇p

[
1 + nT

p ṙsc(tk)

c

]

ψp(tk) = φ0,p + φ̇p

[
nT

p [rsc(tk) − ṙsc(tk)tk]

c
− t0,p

]
. (39)

The form of Eq. 38 implies that the pulsar signals have constant frequencies and
constant phase offsets during coasting segments. Since we only consider sequential
observation, the coasting duration can be partitioned into multiple sub-segments,

�tcoast
k = tk+1 − tk =

Np∑
p=1

�tobs
k,p , (40)

where k is even. This simplification implies the dimension of the measurement matrix
over each sub-segment is reduced to 1× 6. This reduced matrix is denoted as Hp(t),
which is the pth row of H(t). The pulsar observation duration is �tobs

k,p = tek,p − t sk,p,

where t sk,p and tek,p are the observation starting and ending times of the pth pulsar in

the kth time segment. Let tk = t sk,1, t
e
k,p = t sk,p+1, and tk+1 = tek,Np

= t sk,Np+1, then
the solution for Eq. 37 can be written as

X(tek,p) = e
−FT (tek,p−t sk,p)

X(tsk,p)e
−F(tek,p−t sk,p)

+
tek,p∫

t sk,p

e
−FT (tek,p−t)

HT
p (t)V −1

p (t)Hp(t)e
−F(tek,p−t)

dt

= Φ̃obs(�tobs
k,p )X(tsk,p)Φ̃T

obs(�tobs
k,p ) + Qp(�tobs

k,p ), (41)
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where

Qp(�tobs
k,p ) =

tek,p∫

t sk,p

[
I 0

−(tek,p − t)I I

] [
φ̇p

n
c

0

]
h′

p
2
(φsc,p(t))

Vp(t)

[
φ̇p

nT

c
0

] [
I −(tek,p − t)I

0 I

]
dt

= φ̇2
p

c2

tek,p∫

t sk,p

h′
p
2
(φsc,p(t))

Vp(t)

[
Ξp −(tek,p − t)Ξp

−(tek,p − t)Ξp (tek,p − t)2Ξp

]
dt

= φ̇2
p

c2

�tobs
k,p∫

0

h′
p
2
(φsc,p(tsk,p + τ))

Vp(tsk,p + τ)

⎡
⎣ Ξp −

(
�tobs

k,p − τ
)

�p

−
(
�tobs

k,p − τ
)

Ξp

(
�tobs

k,p − τ
)2

Ξp

⎤
⎦ dτ

Ξp = npnT
p , (42)

and

Φ̃obs(�tobs
k,p ) =

[
I3x3 0

−�tobs
k,p I3x3 I3x3

]
. (43)

for p = 1, . . . , Np. Note the change in integration variable, τ = t − t sk,p, in Eq. 42.
The symbol f ′(x) indicates the derivative of f (x) with respect to x.

If radio pulsars are used, then Vp(t) is a constant representing the Gaussian
radiometer noise PSD. If X-ray pulsars are used, then Vp(t) = λb,p+λs,psp(φsc,p(t))

for a non-homogenous Poisson process. If the observation time is much larger
than the signal period (�tobs

k,p � 1/fs,k,p), then the integrals in Eq. 42 can be
approximated using the following expressions [10],

�tobs
k,p∫

0

h′
p
2
(φsc,p(T + τ))

Vp(T + τ)
dτ ≈ �tobs

k,p Ip

�tobs
k,p∫

0

τh′
p
2
(φsc,p(T + τ))

Vp(T + τ)
dτ ≈ �tobs

k,p

2

2
Ip

�tobs
k,p∫

0

τ 2h′
p
2
(φsc,p(T + τ))

Vp(T + τ)
dτ ≈ �tobs

k,p

3

3
Ip, (44)

where

Ip =
1∫

0

λ2s,ps′
p
2
(θ)

Vp(θ)
dθ, (45)

and T is a constant time offset. The above approximation is only valid for signals
with constant frequencies, and it removes the dependence on spacecraft position and
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velocity for linearization. In other words, for this simplified model, the navigation
accuracy is insensitive to the spacecraft states. Substituting Eq. 44 into Eq. 42 gives

X(tek,p) ≈ Φ̃obs(�tsk,p)X(tsk,p)Φ̃T
obs(�tsk,p)

+ φ̇2
pIp

c2

⎡
⎢⎢⎣

�tobs
k,p Ξp −

(
�tobs

k,p

2 − �tobs
k,p

2

2

)
Ξp

−
(

�tobs
k,p

2 − �tobs
k,p

2

2

)
Ξp

(
�tobs

k,p

3 − 2
�tobs

k,p

3

2 + �tobs
k,p

3

3

)
Ξp

⎤
⎥⎥⎦

≈ Φ̃obs(�tsk,p)X(tsk,p)Φ̃T
obs(�tsk,p) + φ̇2

pIp

c2

⎡
⎣ �tobs

k,p Ξp −�tobs
k,p

2

2 Ξp

−�tobs
k,p

2

2 Ξp

�tobs
k,p

3

3 Ξp

⎤
⎦ . (46)

Equation 46 is the information matrix at the end of a pulsar observation, tek,p. In
order to discuss the positioning accuracy, Eq. 46 has to be inverted to obtain the error
covariance, P(tek,p).

Given the system in Eq. 30, the state transition matrix for one pulsar observation is

Φobs(�tobs
k,p ) =

[
I3x3 �tobs

k,p I3x3

0 I3x3

]

= Φ̃−T
obs (�tobs

k,p ). (47)

Therefore, the error covariance not including the measurement update at the end of
the observation is

M(tek,p) = Φobs(�tobs
k,p )P (tsk,p)ΦT

obs(�tobs
k,p )

= Φ̃−T
obs (�tobs

k,p )P (tsk,p)Φ̃−1
obs(�tobs

k,p )

=
(
Φ̃obs(�tobs

k,p )X(tsk,p)Φ̃T
obs(�tobs

k,p )
)−1

. (48)

Factoring Eq. 46 gives

X(tek,p) ≈ Φ̃obs(�tobs
k,p )X(tsk,p)Φ̃T

obs(�tobs
k,p )︸ ︷︷ ︸

M−1(tek,p)

+
[

φ̇p
np

c
0

0 φ̇p
np

c

]

︸ ︷︷ ︸
H̃ T

p

Ip

⎡
⎣ �tobs

k,p −�tobs
k,p

2

2

−�tobs
k,p

2

2
�tobs

k,p

3

3

⎤
⎦

︸ ︷︷ ︸
Ṽ −1

p (�tobs
k,p )

[
φ̇p

np

c
0

0 φ̇p
np

c

]T

︸ ︷︷ ︸
H̃p

. (49)

Applying the matrix inversion lemma gives

P(tek,p) ≈ M(tek,p) − M(tek,p)H̃ T
p

(
H̃pM(tek,p)H̃ T

p + Ṽp(�tobs
k,p )

)−1
H̃pM(tek,p)

≈
(
I − K̃p(tek,p)H̃p

)
M(tek,p)

(
I − K̃p(tek,p)H̃p

)T

+K̃p(tek,p)Ṽp(�tobs
k,p )K̃T

p (tek,p), (50)
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where

K̃p(tek,p) = M(tek,p)H̃ T
p

(
H̃pM(tek,p)H̃ T

p + Ṽp(�tobs
k,p )

)−1
,

Ṽp(�tobs
k,p ) = 2

Ip

⎡
⎣

2
�tobs

k,p

3

�tobs
k,p

2

3

�tobs
k,p

2
6

�tobs
k,p

3

⎤
⎦ . (51)

The error covariance at the start of the next observation is equal to that at the end
of the previous observation, P(tsk,p+1) = P(tek,p). The error covariance at the end

of each coasting segment is P(tk+1) = P(tsk,Np+1). The matrices H̃p, K̃p, and Ṽp

can be interpreted as the effective measurement matrix, the effective filter gain, and
the effective noise covariance matrix. They show the measured pulsar signal over
the observation time, �tobs

k,p , not only provides position information but also velocity
information. From the form of Eq. 50, the navigation pulsars should have high signal
frequency and large Ip. From Eq. 45, Ip is large when the signal-to-noise ratio is
high. The impact of the pulsar waveform profile is also accounted for by the integral.
Longer observation duration also improves the navigation accuracy. The impact of
the pulsar geometry on the covariance matrix is more difficult to recognize, so it is
necessary to evaluate Eq. 50 numerically.
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Fig. 8 Covariance analysis for periodic thrusting schedule
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Table 2 Radio Pulsar Parameters [20]

Obsv. order Pulsar name λb,rf (K) λs,rf (mK) λ̃s,rf (mJy) φ̇ (Hz) RA (◦) DEC (◦)

1 J0437-4715 50 2.564 149.0 173.7 69.32 −47.25

2 J0711-6830 50 0.055 3.2 182.1 107.98 −68.51

3 J1045-4509 50 0.046 2.7 133.8 161.46 −45.17

4 J1713+0747 50 0.176 10.2 218.8 258.46 7.79

5 B1937+21 50 0.227 13.2 641.9 294.91 21.58

RA is right ascension and DEC is declination in the celestial coordinate system

Equation 34 and 50 can be evaluated in an alternating manner to compute the
error covariance of the EKF for the system in Eq. 30. The thrusting and observation
schedule used in generating Fig. 8 consists of 5 thrusting segments and 4 coasting
segments. Each thrusting segment is 7 days and each coasting segment is 8 hours. In
other words, the thrusting duty cycle is 95%. Gates parameters for the process noise
are σf ixed,i = 10−10 km/s2 and σprop,i = 0.44% for i = 1, 2, 3. The acceleration
magnitude over each thrusting segment is constant at 8×10−5 m/s2. Both the radio-
based and the X-ray based systems observe the first 5 pulsars listed in Table 2 and
Table 3 sequentially. The observation duration for each pulsar is 1 hour for both
cases. The radiometer noise PSD is calculated by substituting ηrf = 0.5, np = 1,
�f = 32 MHz, and Tsys = 50 K into Eq. 15, where the antenna diameter is set
to 11 m. The initial XYZ position and XYZ velocity 1-sigma bounds are 50 km and
0.01 m/s respectively.

Because of the addition of the process noise during each thrusting segment, the
position error bound exhibits a periodic-like pattern. Therefore, it is necessary to allo-
cate sufficient observation time to keep the position error bound to within ±0.5 cyc

of the wavelength of the fastest pulsar. In this analysis, the radio antenna is sized such
that the radio-based system has a similar performance to the X-ray based system.
Once the system is in a periodic-like steady state, the Root-Sum-Square (RSS) posi-
tion bounds for both systems at the start of the coasting segment are approximately

Table 3 X-ray Pulsar Parameters [20, 34]

Obsv. order Pulsar name λb,xr (ph/s) λs,xr (ph/s) φ̇ (Hz) RA (◦) DEC (◦)

1 J0437-4715 0.62 0.283 173.7 69.32 −47.25

2 J0030+0451 0.20 0.193 205.5 7.61 4.86

3 J2124-3358 0.20 0.074 202.8 321.18 −33.98

4 J0218+4232 0.20 0.082 430.5 34.53 42.54

5 B1821-24 0.22 0.093 327.9 270.4 −24.87

6 B1937+21 0.24 0.029 641.9 294.9 21.6

RA is right ascension and DEC is declination in the celestial coordinate system
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25 km. At the end of the coasting segment they reduce to approximately 12 km. This
pattern repeats for every thrusting and coasting pair.

Particle Filter for Position Acquisition

In the integer ambiguity problem with sequential pulsar measurements, we used a
basic particle filter with resampling and roughening [1, 31]. Traditional methods such
as hypothesis testing and floating-point integer estimation are not directly applicable
to pulsar-based navigation because of the following reasons [36, 37]. Due to design
considerations on size, weight, and power, it is unlikely that a deep space exploration
spacecraft would carry multiple X-ray detectors for navigation purposes. Further-
more, since X-ray pulsar signals have low signal-to-noise ratio compared to the GPS
for example, extended observation time on the order of tens of minutes is required
to obtain the fractional part of the differential phase measurement and the Doppler
frequency measurement. Coupling these difficulties with large uncertainty in space-
craft velocity makes it impractical to track multiple pulsar signals simultaneously and
continuously. Having large velocity uncertainty means the pulsar phase measurement
between two observations cannot be connected using state prediction. Therefore, the
position acquisition method has to be able to resolve the integer associated with each
pulsar sequentially relying only on the fractional phase. The idea of using a parti-
cle filter to resolve the integer ambiguity in differential GPS phase measurement has
been investigated in prior research [14]. This section extends that idea to pulsar-based
navigation.

The particle filter relies on the sequential Monte Carlo method, in which a large
number of particles are generated to approximate the conditional Probability Density
Function (PDF),

p(xk|zk) ≈
N∑

i=1

wi
kδ(xk − xi

k), (52)

where xi
k and wi

k are the particle and the associated weight at time tk respectively.
The number of particles is denoted by N . The state can be estimated by taking the
sum of each particle’s state, weighted by the conditional PDF of that particle. The
unnormalized weight of the ith particle at time tk is

w̆i
k = p(zk|xi

k)p(xi
k|xi

k−1)w
i
k−1

q(xi
k|xi

k−1, zk)

wi
k = w̆i

k

N∑
i=1

w̆i
k

. (53)

p(zk|xk) is the likelihood function; p(xk|xk−1) is the transition density function;
wk−1 is the normalized weight from the previous time step; and q(xk|xk−1, zk) is
the proposal density function for drawing the particles. Setting the proposal density
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function, q(xk|xk−1, zk), to the transition density function, p(xk|xk−1), simplifies
Eq. 53 to

w̆i
k = p(zk|xi

k)w
i
k−1. (54)

This choice means that xi
k ∼ p(xk|xi

k−1). Because Eq. 54 is the same as the sequen-
tial Wald probability ratio test used in the GPS integer ambiguity resolution problem,
one can view the measurement update step of the particle filter as hypothesis testing
[37].

Since the particle filter is used for position acquisition, a simplified dynamical
model is used instead of Eq. 23.

r̈sc(t) = − Gm�
‖rsc(t)‖3 rsc(t) + wr (t). (55)

Furthermore, we assumed the fractional part of the differential phase measurement
and the Doppler frequency measurement are available from a MLE [10]. Under these
assumptions the measurement equation for the particle filter is

zp(t) =
⎡
⎣ φ̇p

nT
p rsc(t)

c
− Np(t)

φ̇p
nT

p ṙsc(t)

c

⎤
⎦ + νp(t), (56)

where the number of integer wavelengths from the SSB to the spacecraft is

Np(t) =
[
φ̇p

nT
p rsc(t)

c

]

int

, (57)

and p is the pulsar index. The function [·]int rounds the argument to the nearest inte-
ger, which means the true fractional phase is between -0.5 and 0.5. The measurement
noise, νp(t), is assumed to be Gaussian and white. The covariance is set according to
the CRLB associated with the pulsar phase and frequency estimation problem,

σ 2
CRLB,p = 2

Ip

⎡
⎣

2
Tobs

−3
T 2

obs−3
T 2

obs

6
T 3

obs

⎤
⎦ , (58)

where Tobs is the observation time and Ip is given by Eq. 45.
The high-level particle filter algorithm is as follows:

1. Propagate N particles according to Eq. 55 with different process noise realiza-
tions from tk−1 to tk .

2. Observe a pulsar to obtain fractional phase and Doppler frequency measurements
subject to measurement noise (Eq. 56).

3. Evaluate the likelihood function of each particle based on which a normalized
weight is assigned (Eq. 54).

4. Compute the best estimate and empirical covariance from the weighted sum of
these particles.

5. If the effective number of particles, Neff , is below a specified threshold, Nthr ,
resample and roughen the particles.

Sample degeneracy occurs when only a few particles have high weights. This
occurs in cases where the initial sample space is large so that only a relatively small
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number of particles will be close to the true state. The high weight particles will tend
to increase in weight until only a single particle represents the entire conditional PDF.
This will cause divergence of the filter and the empirical covariance to approach zero.
Sample degeneracy may be countered by resampling, but naive resampling can lead
to “sample impoverishment.” For instance, if one simply replaces low weight parti-
cles with copies of high weight particles, all the particles and thus weights will be
identical. Both these problems arise because we are attempting to estimate the condi-
tional PDF, a continuous function, with discrete particles. Ideally, we could resample
the particles from the continuous conditional PDF. However, because the conditional
PDF is only known at discrete values calculated from the particles, the only guaran-
teed way to approach the continuous conditional PDF distribution is to increase the
particle count. If the initial uncertainty is large, this can lead to an intractably large
number of particles. This is because the number of particles needed is proportional
to the volume of the phase space, which is 6-dimensional.

In step 5, the particles are resampled using the systematic resampling method [1].
The criterion for resampling is given by the effective number of particles,

Neff = 1
N∑

i=1
(wi

k)
2

(59)

where Neff ranges from 1 to N . It is 1 if all the particles are weight 0 except for one,
and N if all the particles are weight 1/N . Thus, it is a useful statistic for determining
the variance of the particles and how many of them are close to the true state. The
threshold for resampling was chosen to be Nthr = N/2.

To alleviate the sample impoverishment issue, the roughening step adds three
noises to the resampled particles,

xi
k = x̃i

k + ε1,k + ε2,k + ε3,k, (60)

where

ε1,k ∼ N (0, P̃1(tk)), ε2,k ∼ N (0, P̃2(tk)), ε3,k ∼ N (0, P̃3(tk)), (61)

and x̃i
k is from the particle set after resampling. The first noise, ε1,k , is drawn from

a Gaussian distribution with covariance, P̃1(tk) = C1P(tk)C
T
1 . Thus, as the filter

processes more measurements the first term decays with time. This term is added to
increase sample diversity during filter initialization. The second noise, ε2,k , is drawn
from a Gaussian distribution with covariance, P̃2(tk) = C2P(t0)C

T
2 . This noise term

is always present and ensures particle diversity during steady state. The two tuning
matrices have the form

C1 =
[

c11I3x3 0
0 c12I3x3

]
, C2 =

[
c21I3x3 0

0 c22I3x3

]
. (62)

The third noise, ε3,k , is also drawn from a Gaussian distribution; however, this
term places particles in the direction with high measurement likelihood to enable
the filter to more efficiently search for the spacecraft position. This term is included
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to address the limited number of particles and large initial position uncertainty. The
covariance for ε3,k is

P̃3(tk) =
[

LkSkL
T
k 0

0 0

]
e−(k−1). (63)

The exponential decay term in Eq. 63 ensures ε3,k disappears during steady state.
The Lk matrix is a transformation between the inertial frame and a frame specified
by two angles: α̃ and β̃.

Lk =
⎡
⎣
cos(α̃) − sin(α̃) 0
sin(α̃) cos(α̃) 0

0 0 1

⎤
⎦

⎡
⎣

cos(β̃) 0 sin(β̃)

0 1 0
− sin(β̃) 0 cos(β̃)

⎤
⎦ (64)

The motivation for ε3,k is based on the following geometric facts. The intersec-
tions between a sphere and planes are circular planes; the intersections between
planes and planes are lines; and the intersections between planes and lines are points.
The sphere represents the initial distribution of the particles at time t0. Each plane,
whose normal vector is np, represents the region of high measurement likelihood
associated with each pulsar measurement. Therefore, after the first measurement
update and resampling, the surviving particles tend to lie on several planes. Simi-
larly, after the second and third measurement updates and resampling, the surviving
particles tend to lie on several lines and points respectively. One can interpret each
point (particle cluster) as a single integer hypothesis. In order to reduce the num-
ber of hypotheses and increase the number of particles per hypothesis, it is more
advantageous to observe pulsars with longer wavelength during the beginning of the
simulation. Observing several different pulsars also increases the speed of conver-
gence because it allows the filter to better distinguish the true hypothesis from the
rest.

The roughening direction for ε3,k is given below. In the first resampling step,
k = 1, the Sk matrix and α̃ and β̃ angles are chosen as

Sk =
[

c23σ̃
2
p 0

0 c24I2x2

]

α̃ = atan 2
([np]2, [np]1

)

β̃ = −atan 2

(
[np]3,

√
[np]21 + [np]22

)
, (65)

where p is the index of the first pulsar. The positioning accuracy of the pth pulsar in
the direction of np is related to the (1,1) component of the CRLB bound in Eq. 58
and the pulsar frequency,

σ̃ 2
p = c2

φ̇2
p

[σ 2
CRLB,p]11. (66)

The tuning parameters c3 and c4 in this time step control the magnitude of the out-
of-plane and in-plane perturbations. Given the angles in Eq. (65), the matrix, Lk , is
a transformation from the inertial frame to a frame whose X-axis is aligned with the
pulsar direction, np.
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In the second resampling step, k = 2, the Sk matrix and α̃ and β̃ angles are chosen
as

Sk =
[

c24 0
0 c23σ̃

2
pI2x2

]

α̃ = atan 2 ([ñ]2, [ñ]1)
β̃ = −atan 2

(
[ñ]3,

√
[ñ]21 + [ñ]22

)

ñ = np × np−1. (67)

The tuning parameters c3 and c4 in this time step control the magnitude of the in-
plane and out-of-plane perturbations. Given the angles in Eq. 67, the matrix, Lk , is
a transformation from the inertial frame to a frame whose X-axis is aligned with the
cross product of the current pulsar direction with the previous pulsar direction. In
other words, the out-of-plane direction in this step is along ñ rather than np.

For the third and subsequent steps, k ≥ 3, the Sk matrix is chosen as

Sk = c23σ̃
2
pI3x3, (68)

and the α̃ and β̃ angles are chosen according to Eq. 65. After k = 3, the filter uses pul-
sar measurements to eliminate particle clusters until one only cluster is left. Figure 9
shows the particle distribution due to this roughening strategy at k = 0, k = 1, k = 2,
and k = 3. The bottom right plot shows that every integer ambiguity within a radius
of 5200 km around the mean is populated with particles.

Simulation Results

In the following results, an orbiting spacecraft at 1 AU with perpendicular velocity
30 km/s was estimated for tf = 5 day. Let the initial covariance be partitioned as

P(t0) =
[

Prsc (t0) 0
0 Pṙsc (t0)

]
. (69)

The initial velocity covariance is scaled according to the initial position covariance,
the mean position vector, and the mean velocity vector,

[Pṙsc (t0)]ii = 10 × [Prsc (t0)]ii
(‖˙̄rsc(t0)‖

‖r̄sc(t0)‖
)2

, (70)

for i = 1...3. The numerical values of these covariance matrices are Prsc (t0) =
9 × 106I3x3 km2 and Pṙsc (t0) = 3.61I3x3 m2/s2. In the following realization, the
initial XYZ position errors are [ê(t0)]1 = −3000 km, [ê(t0)]2 = 3000 km, and
[ê(t0)]3 = −3000 km respectively. The initial XYZ velocity errors are [ê(t0)]4 =
2.0 m/s, [ê(t0)]5 = 1.5 m/s, and [ê(t0)]6 = −1.5 m/s respectively. The PSD of
the acceleration disturbance is Wr = 10−18 I3x3 km2/s3. It was assumed that the
spacecraft carries a body mounted X-ray detector similar to the 56-element NICER
X-ray telescope. The spacecraft observes the 6 pulsars listed in Table 3 sequentially
with a observation duration of 1 hr for each pulsar. The wavelengths of the pulsars in
the table are 1727 km, 1479 km, 1460 km, 697 km, 915 km, and 463 km following
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Fig. 9 This figure shows the initial particle distribution and the subsequent 3 time steps. The blue circles
are the true spacecraft position and the green triangles are the particle filter position estimates. The particle
distribution changes from a sphere at k = 0 to several plane segments at k = 1 to several line segments at
k = 2 then to several points at k = 3

the listed order. The number of particles was N = 300000. The 6 tuning parameters
in Eqs. 62, 65, 67 and 68 were

c11 = c12 = 0.01, c21 = 0.001, c22 = 0.1, c3 = 0, c4 = 900. (71)

Let the estimation error and the 1σ error bound be defined as

ê(tk) = x(tk) − x̂(tk)

σ (tk) = √
diag[P(tk)]. (72)

The definitions of the RSS errors and bounds are

êrss,rsc (tk) =
√

[ê(tk)]21 + [ê(tk)]22 + [ê(tk)]23
êrss,ṙsc (tk) =

√
[ê(tk)]24 + [ê(tk)]25 + [ê(tk)]26

σrss,rsc (tk) = √[P(tk)]11 + [P(tk)]22 + [P(tk)]33
σrss,ṙsc (tk) = √[P(tk)]44 + [P(tk)]55 + [P(tk)]66. (73)



The Journal of the Astronautical Sciences

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

101

102

103

104

Po
si

tio
n 

(k
m

)
RSS Error

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (days)

0

1

2

3

4

Ve
lo

ci
ty

 (m
/s

)

Fig. 10 This figure shows the RSS estimation errors in position and velocity. The black dashed lines are
the RSS bounds from the particle filter and the black dots are the estimation errors

The RSS position and velocity errors of a single realization are given in Fig. 10.
The convergence of the pulsar integer cycle counts, given by the error in the num-
ber of cycles, is shown in Fig. 11. The final 1σ bounds are [σ (tf )]1 = 5.9 km,
[σ (tf )]2 = 1.2 km, [σ (tf )]3 = 6.5 km, [σ (tf )]4 = 0.4 m/s, [σ (tf )]5 = 0.3 m/s,
[σ (tf )]6 = 0.4 m/s. Given that these bounds are sufficiently accurate, the parti-
cle filter estimates are suitable for initializing the EKF, which maintains an effective
steady state performance.

Extended Kalman Filter for Steady State Operations

The estimation algorithm used after the acquisition of the pulsar integer wavelength
from the SSB to the spacecraft is a modified EKF with epoch folding and multirate
processing [7]. The dynamical model for this step is Eq. 2. The filter operation can
be separated into three time intervals: epoch folding interval, �t , integration interval,
�σ , and measurement sample interval, �τ . These parameters are essentially tuning
parameters, and they are chosen according to the trajectory of the spacecraft. The
estimator architecture is shown in Fig. 12. Even though this algorithm was developed
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Fig. 12 This block diagram shows an EKF based navigation algorithm with epoch folding [7]. The
abbreviation CLT in the figure stands for Central Limit Theorem
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for X-ray pulsars, it is also applicable to radio pulsars as long as the first and second
moments of the noise process are available.

The dynamics of the pulsar timing noise is a first-order lag with ωc = 1.17×10−8

and α = 1 to simulate the slow varying behavior indicated by Eq. 20. The PSD of
the input noise is Wζ,p = 9.4 × 10−5 s2/s. The PSD of the clock process noise is
Wc = diag[1.6 × 10−21 s2/s, 1.0 × 10−32 s2/s3] [23, 38]. The persistent white
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Fig. 14 Red solid and black dashed lines are the a priori and a posteriori RSS bounds respectively. The
red and black dots are the a priori and a posteriori RSS estimation errors respectively
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Fig. 15 Zoomed in version of Fig. 14 near day 30

acceleration disturbance has a PSD of Wr = 3.6 × 10−19 I3x3 km2/s3. The strength
of the ion thruster disturbance, Wg(t), is set according to Eq. 3, where

σf ixed,i = 10−10 km/s2 for i = 1, 2, 3

σprop,i =
{

0.25% for i = 1
4.35 mrad for i = 2, 3

. (74)

Simulation Results

The initial conditions for the true spacecraft position and velocity are randomly gen-
erated according to a Gaussian distribution around the values, r̄sc(t0) and ˙̄rsc(t0),
from the Dawn ephemeris. The EKF was initialized using the mean value. The initial
error covariance matrix is

P(t0) = diag
[
Prsc (t0) Pṙsc (t0) Ptc (t0) Pζ (t0)

]
, (75)

where

Prsc (t0) = 2500I3x3 (km2)

Pṙsc (t0) = 10−6I3x3 (km2/s2)

Ptc (t0) = diag[2.5 × 10−9 (s2), 10−20 (s2/s2)]
Pζ (t0) = 2.5 × 10−12I5x5 (s2). (76)
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The initial time, t0, in this scenario is 2454981.66 JED, which is a few days after the
Mars gravity assist (2454879.5 JED). Figure 13 shows the simulation segments. The
scenario starts with roughly 9.6 days of coasting before the first thrusting segment. A
total of 6 thrusting segments and 7 coasting segments are included in this simulation.

It was assumed that the spacecraft is only allowed to observe pulsars during the
coasting segments using a single body-mounted detector. Therefore, the spacecraft
can only observe one pulsar at a time, and the order of observation is listed in Table 3.
After observing the fifth pulsar in the table, the spacecraft returns to observe the
first pulsar. The observation time allowed for each pulsar is Tobs = 50 min. A time
period of 10 min is allocated to slew the spacecraft from one pulsar to another pulsar.
The time interval between the ends of two pulsar observations within one coasting
segment is �t = 1 hr . The number of pulsar observations within each coasting
segment depends on the duration of the coasting segment.

Figures 14 and 15 show the RSS position and velocity estimation errors. After pro-
cessing pulsar data for 10 days, the RSS position and velocity bounds decrease from
87 km to 8 km and from 1.73 m/s to 0.015 m/s respectively. Because of the high
process noise and the lack of measurements during the thrusting segments, the RSS
bounds and the estimation errors tend to increase. On average the RSS bounds at the
end of each thrusting segment are ∼ 27 km and ∼ 0.03 m/s. After approximately
8 hours of observation, the RSS bounds decrease to ∼ 16 km and ∼ 0.02 m/s.
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Fig. 16 Estimation errors and 1σ bounds for the two state clock model
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Fig. 17 Estimation errors and 1σ bounds for the pulsar timing noise

These values are consistent with those of Fig. 8, which indicate the integral approx-
imations in the covariance analysis are reasonable. The clock estimation errors are
plotted in Fig. 16. Similar behavior occurs in the estimate of the clock bias, tc(t).
This correlation is because both position, rsc(t), and tc(t) are explicit in the pul-
sar phase equation, φsc(t). The estimation errors for the pulsar correlated noise are
shown in Fig. 17. While the 1σ bounds for the pulsar timing noise state are decreas-
ing, they decrease at a slow rate due to the large time constant associated with the
pulsar dynamics and the low signal-to-noise ratio pulsar measurements.

Discussion

Equations 34 and 50 are derived using a double integrator system with acceleration
input. This simplified system represents a spacecraft on a trajectory composed of
segments of constant acceleration and constant velocity. Since the gravitational accel-
eration due to the Sun in deep space is typically small compared to that experienced
by a spacecraft in orbit around a planet, the covariance analysis tool in “Covariance
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Analysis” can be used to assess the rough performance of pulsar-based navigation
in a deep space mission. The model fidelity can be improved by replacing the dou-
ble integrator with the linearized dynamics of the inverse squared gravity field along
a nominal trajectory. In this case, Eqs. 35 and 41 need be solved numerically. The
matrix Qp(�tobs

k,p ) is also more difficult to compute, because the pulsar signal is no
longer periodic. Another approach is to include a lump sum process noise in Eq. 48
to account for the un-modeled dynamics at a cost of using a sub-optimal filter gain.

The set of X-ray and radio pulsars used in the covariance analysis is not opti-
mized. However, it is reasonable to infer from Fig. 8 that a radio-based system with
positioning performance on the order of a few tens of kilometers would require an
antenna diameter of 11 m. Since a radio antenna can be designed using lightweight
materials and be stored in a compact container, it may be possible to use radio pul-
sar signals for navigation for applications that allow the installation of a large radio
antenna. It is noteworthy that we used a conservative receiver bandwidth of 32 MHz

from the RadioAstron telescope designed in the 2000s. If the receiver bandwidth can
be increased, then the antenna diameter can be reduced to a more manageable size.

Regarding the position acquisition step, it is possible to absorb the function of the
signal estimator into the particle filter. For X-ray pulsar navigation, the signal esti-
mator is typically a MLE that processes the X-ray photon time-of-arrivals [10, 35].
Since the particle filter also uses a measurement likelihood function, it is conceptu-
ally possible to replace the Gaussian likelihood function with a Poisson likelihood
function to simplify the architecture of the position acquisition step.

In order for the particle filter to converge to the true position, it is necessary to
have a particle cluster at every integer. A sufficient number of particles is also needed
within each cluster to make the filter more resilient against measurement outliers.
If the number of particles is not sufficient, then measurement outliers can cause the
particle cluster near the true position to disappear through measurement update and
particle resampling. The posterior density function before the integer ambiguity is
resolved has multiple modes. This can be seen from Fig. 9. Therefore, depending on
the distribution of the particles and weights, the estimation error can be much larger
than the 3σrss,rsc bound as indicated by Fig. 10 at time tk = 0.46 day ≈ 11 hr . The
RSS position error is 7474 km while the RSS bound is 1764 km.

The particle filter was implemented in Matlab and simulated on a laptop equipped
with a 2.9 GHz Intel Core i7 processor and 16 GB of memory. The total com-
putation time for a 5 day simulation with 300000 particles was ∼ 1.5 hr . The
computation aspect of this approach is the main obstacle between theoretical study
and a practical implementation. If one were to implement a particle filter for pul-
sar integer ambiguity resolution, then there is a trade between the size of the initial
uncertainty, P(t0), the measurement update rate, Tobs , and the onboard computa-
tion resources. Since the individual particle propagation and measurement update are
independent from other particles, it is possible to utilize parallel computing to speed
up the calculations. We used a relatively basic particle filter and applied a heuris-
tic roughening scheme to the posterior particles based on the geometric properties
of the pulsar distribution in the sky. It is possible to refine this approach using more
advanced schemes such as a particle filter with adaptive resampling, the auxiliary
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particle filter, or the extended Kalman particle filter to more efficiently place the
particles in the search region [1, 14].

For the second part of the simulation, an EKF is used to process the pulsar mea-
surements to reduce computation. The advantage of using the EKF for long-term
operation is improving the accuracy of the navigation system by incorporating a
detailed spacecraft model and time-correlated noise models. Because of the high
strength of the ion thruster process noise, wg(t), and the limited observation time
between two thrusting segments, the navigation filter is not able to obtain enough
measurements to reach an RSS bound of 8 km as indicated by Fig. 14. This simula-
tion illustrates the importance of the observation duration when there is significant
process noise.

Conclusions

In conclusion, this paper investigates the performance of a pulsar-based navigation
technique for a spacecraft traveling to deep space using ion thrusters. The result of the
covariance analysis is a simple tool that quantifies the rough performance of a pulsar-
based navigation system for a given observation schedule, thrusting schedule, and
measurement type. However, detailed numerical simulation is still needed to account
for other errors such as clock noise and pulsar timing noise. The use of a particle filter
allows one to increase the initial uncertainty from 50 km in Cartesian coordinates to
3000 km. This capability improves the robustness of the navigation system against an
unforeseen system shutdown. As shown in the numerical simulation that utilizes the
Dawn trajectory, if there is no thrusting segment, then the expected root-sum-square
position bound is approximately 8 km. If the spacecraft is thrusting, then the position
bound oscillates between 27 km and 16 km. The navigation accuracy of the pulsar-
based navigation depends on several variables, so it is necessary to perform detailed
simulations to explore the trade space of a specific deep space mission.
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