
Harry J.W. Percival 
& Bob Gregory

 Architecture 
Patterns 
 with Python
Enabling Test-Driven Development, 
Domain-Driven Design, and Event-Driven 
Microservices





Harry Percival and Bob Gregory

Architecture Patterns with Python
Enabling Test-Driven Development,

Domain-Driven Design, and
Event-Driven Microservices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-492-05220-3

[LSI]

Architecture Patterns with Python
by Harry Percival and Bob Gregory

Copyright © 2020 Harry Percival and Bob Gregory. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Ryan Shaw
Development Editor: Corbin Collins
Production Editor: Katherine Tozer
Copyeditor: Sharon Wilkey
Proofreader: Arthur Johnson

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020:  First Edition

Revision History for the First Edition
2020-03-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492052203 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Architecture Patterns with Python, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492052203


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii

Part I. Building an Architecture to Support Domain Modeling

1. Domain Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
What Is a Domain Model?                                                                                              6
Exploring the Domain Language                                                                                   9
Unit Testing Domain Models                                                                                       10

Dataclasses Are Great for Value Objects                                                                 15
Value Objects and Entities                                                                                        17

Not Everything Has to Be an Object: A Domain Service Function                        19
Python’s Magic Methods Let Us Use Our Models with Idiomatic Python         20
Exceptions Can Express Domain Concepts Too                                                   20

2. Repository Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Persisting Our Domain Model                                                                                     24
Some Pseudocode: What Are We Going to Need?                                                    24
Applying the DIP to Data Access                                                                                25
Reminder: Our Model                                                                                                   26

The “Normal” ORM Way: Model Depends on ORM                                           27
Inverting the Dependency: ORM Depends on Model                                          28

Introducing the Repository Pattern                                                                            31
The Repository in the Abstract                                                                                32
What Is the Trade-Off?                                                                                              33

Building a Fake Repository for Tests Is Now Trivial!                                               37

iii



What Is a Port and What Is an Adapter, in Python?                                                 37
Wrap-Up                                                                                                                          38

3. A Brief Interlude: On Coupling and Abstractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Abstracting State Aids Testability                                                                                43
Choosing the Right Abstraction(s)                                                                              46
Implementing Our Chosen Abstractions                                                                   47

Testing Edge to Edge with Fakes and Dependency Injection                              49
Why Not Just Patch It Out?                                                                                       51

Wrap-Up                                                                                                                          53

4. Our First Use Case: Flask API and Service Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Connecting Our Application to the Real World                                                        57
A First End-to-End Test                                                                                                57
The Straightforward Implementation                                                                         58
Error Conditions That Require Database Checks                                                     60
Introducing a Service Layer, and Using FakeRepository to Unit Test It                61

A Typical Service Function                                                                                       63
Why Is Everything Called a Service?                                                                           66
Putting Things in Folders to See Where It All Belongs                                            67
Wrap-Up                                                                                                                          68

The DIP in Action                                                                                                      68

5. TDD in High Gear and Low Gear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
How Is Our Test Pyramid Looking?                                                                            72
Should Domain Layer Tests Move to the Service Layer?                                         72
On Deciding What Kind of Tests to Write                                                                 73
High and Low Gear                                                                                                       74
Fully Decoupling the Service-Layer Tests from the Domain                                  75

Mitigation: Keep All Domain Dependencies in Fixture Functions                    76
Adding a Missing Service                                                                                          76

Carrying the Improvement Through to the E2E Tests                                             78
Wrap-Up                                                                                                                          79

6. Unit of Work Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
The Unit of Work Collaborates with the Repository                                                83
Test-Driving a UoW with Integration Tests                                                               84
Unit of Work and Its Context Manager                                                                      85

The Real Unit of Work Uses SQLAlchemy Sessions                                             86
Fake Unit of Work for Testing                                                                                  87

Using the UoW in the Service Layer                                                                           88
Explicit Tests for Commit/Rollback Behavior                                                           89

iv | Table of Contents



Explicit Versus Implicit Commits                                                                               90
Examples: Using UoW to Group Multiple Operations into an Atomic Unit        91

Example 1: Reallocate                                                                                                91
Example 2: Change Batch Quantity                                                                         91

Tidying Up the Integration Tests                                                                                 92
Wrap-Up                                                                                                                          93

7. Aggregates and Consistency Boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Why Not Just Run Everything in a Spreadsheet?                                                      96
Invariants, Constraints, and Consistency                                                                   96

Invariants, Concurrency, and Locks                                                                        97
What Is an Aggregate?                                                                                                  98
Choosing an Aggregate                                                                                                 99
One Aggregate = One Repository                                                                             102
What About Performance?                                                                                         104
Optimistic Concurrency with Version Numbers                                                    105

Implementation Options for Version Numbers                                                  107
Testing for Our Data Integrity Rules                                                                         109

Enforcing Concurrency Rules by Using Database Transaction
Isolation Levels                                                                                                     110

Pessimistic Concurrency Control Example: SELECT FOR UPDATE             111
Wrap-Up                                                                                                                       111
Part I Recap                                                                                                                   113

Part II. Event-Driven Architecture

8. Events and the Message Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Avoiding Making a Mess                                                                                            118

First, Let’s Avoid Making a Mess of Our Web Controllers                                 118
And Let’s Not Make a Mess of Our Model Either                                               119
Or the Service Layer!                                                                                               120

Single Responsibility Principle                                                                                  120
All Aboard the Message Bus!                                                                                     121

The Model Records Events                                                                                     121
Events Are Simple Dataclasses                                                                               121
The Model Raises Events                                                                                        122
The Message Bus Maps Events to Handlers                                                         123

Option 1: The Service Layer Takes Events from the Model and Puts Them on
the Message Bus                                                                                                        124

Option 2: The Service Layer Raises Its Own Events                                               125
Option 3: The UoW Publishes Events to the Message Bus                                    126

Table of Contents | v



Wrap-Up                                                                                                                       130

9. Going to Town on the Message Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
A New Requirement Leads Us to a New Architecture                                           135

Imagining an Architecture Change: Everything Will Be an Event Handler   136
Refactoring Service Functions to Message Handlers                                              137

The Message Bus Now Collects Events from the UoW                                      139
Our Tests Are All Written in Terms of Events Too                                             141
A Temporary Ugly Hack: The Message Bus Has to Return Results                  141
Modifying Our API to Work with Events                                                            142

Implementing Our New Requirement                                                                      143
Our New Event                                                                                                         143

Test-Driving a New Handler                                                                                      144
Implementation                                                                                                        145
A New Method on the Domain Model                                                                 146

Optionally: Unit Testing Event Handlers in Isolation with a Fake Message
Bus                                                                                                                              147

Wrap-Up                                                                                                                       149
What Have We Achieved?                                                                                       150
Why Have We Achieved?                                                                                        150

10. Commands and Command Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151
Commands and Events                                                                                               151
Differences in Exception Handling                                                                           153
Discussion: Events, Commands, and Error Handling                                           155
Recovering from Errors Synchronously                                                                   158
Wrap-Up                                                                                                                       160

11. Event-Driven Architecture: Using Events to Integrate Microservices. . . . . . . . . . . . . .  161
Distributed Ball of Mud, and Thinking in Nouns                                                  162
Error Handling in Distributed Systems                                                                    165
The Alternative: Temporal Decoupling Using Asynchronous Messaging          167
Using a Redis Pub/Sub Channel for Integration                                                     168
Test-Driving It All Using an End-to-End Test                                                         169

Redis Is Another Thin Adapter Around Our Message Bus                               170
Our New Outgoing Event                                                                                       171

Internal Versus External Events                                                                                 172
Wrap-Up                                                                                                                       172

12. Command-Query Responsibility Segregation (CQRS). . . . . . . . . . . . . . . . . . . . . . . . . . .  175
Domain Models Are for Writing                                                                               176
Most Users Aren’t Going to Buy Your Furniture                                                    177

vi | Table of Contents



Post/Redirect/Get and CQS                                                                                       179
Hold On to Your Lunch, Folks                                                                                   181
Testing CQRS Views                                                                                                    182
“Obvious” Alternative 1: Using the Existing Repository                                        182
Your Domain Model Is Not Optimized for Read Operations                               183
“Obvious” Alternative 2: Using the ORM                                                                184
SELECT N+1 and Other Performance Considerations                                         184
Time to Completely Jump the Shark                                                                         185

Updating a Read Model Table Using an Event Handler                                     186
Changing Our Read Model Implementation Is Easy                                              188
Wrap-Up                                                                                                                       189

13. Dependency Injection (and Bootstrapping). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Implicit Versus Explicit Dependencies                                                                     193
Aren’t Explicit Dependencies Totally Weird and Java-y?                                       194
Preparing Handlers: Manual DI with Closures and Partials                                 196
An Alternative Using Classes                                                                                     197
A Bootstrap Script                                                                                                       199
Message Bus Is Given Handlers at Runtime                                                            201
Using Bootstrap in Our Entrypoints                                                                         203
Initializing DI in Our Tests                                                                                        204
Building an Adapter “Properly”: A Worked Example                                            205

Define the Abstract and Concrete Implementations                                          206
Make a Fake Version for Your Tests                                                                      206
Figure Out How to Integration Test the Real Thing                                           207

Wrap-Up                                                                                                                       209

Epilogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

A. Summary Diagram and Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

B. A Template Project Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

C. Swapping Out the Infrastructure: Do Everything with CSVs. . . . . . . . . . . . . . . . . . . . . . .  239

D. Repository and Unit of Work Patterns with Django. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245

E. Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265

Table of Contents | vii





Preface

You may be wondering who we are and why we wrote this book.

At the end of Harry’s last book, Test-Driven Development with Python (O’Reilly), he
found himself asking a bunch of questions about architecture, such as, What’s the
best way of structuring your application so that it’s easy to test? More specifically, so
that your core business logic is covered by unit tests, and so that you minimize the
number of integration and end-to-end tests you need? He made vague references to
“Hexagonal Architecture” and “Ports and Adapters” and “Functional Core, Impera‐
tive Shell,” but if he was honest, he’d have to admit that these weren’t things he really
understood or had done in practice.

And then he was lucky enough to run into Bob, who has the answers to all these
questions.

Bob ended up a software architect because nobody else on his team was doing it. He
turned out to be pretty bad at it, but he was lucky enough to run into Ian Cooper, who
taught him new ways of writing and thinking about code.

Managing Complexity, Solving Business Problems
We both work for MADE.com, a European ecommerce company that sells furniture
online; there, we apply the techniques in this book to build distributed systems that
model real-world business problems. Our example domain is the first system Bob
built for MADE, and this book is an attempt to write down all the stuff we have to
teach new programmers when they join one of our teams.

MADE.com operates a global supply chain of freight partners and manufacturers. To
keep costs low, we try to optimize the delivery of stock to our warehouses so that we
don’t have unsold goods lying around the place.

Ideally, the sofa that you want to buy will arrive in port on the very day that you
decide to buy it, and we’ll ship it straight to your house without ever storing it.

ix

http://obeythetestinggoat.com


1 python -c "import this"

Getting the timing right is a tricky balancing act when goods take three months to
arrive by container ship. Along the way, things get broken or water damaged, storms
cause unexpected delays, logistics partners mishandle goods, paperwork goes miss‐
ing, customers change their minds and amend their orders, and so on.

We solve those problems by building intelligent software representing the kinds of
operations taking place in the real world so that we can automate as much of the busi‐
ness as possible.

Why Python?
If you’re reading this book, we probably don’t need to convince you that Python is
great, so the real question is “Why does the Python community need a book like
this?” The answer is about Python’s popularity and maturity: although Python is
probably the world’s fastest-growing programming language and is nearing the top of
the absolute popularity tables, it’s only just starting to take on the kinds of problems
that the C# and Java world has been working on for years. Startups become real busi‐
nesses; web apps and scripted automations are becoming (whisper it) enterprise
software.

In the Python world, we often quote the Zen of Python: “There should be one—and
preferably only one—obvious way to do it.”1 Unfortunately, as project size grows, the
most obvious way of doing things isn’t always the way that helps you manage com‐
plexity and evolving requirements.

None of the techniques and patterns we discuss in this book are new, but they are
mostly new to the Python world. And this book isn’t a replacement for the classics in
the field such as Eric Evans’s Domain-Driven Design or Martin Fowler’s Patterns of
Enterprise Application Architecture (both published by Addison-Wesley Professional)
—which we often refer to and encourage you to go and read.

But all the classic code examples in the literature do tend to be written in Java or
C++/#, and if you’re a Python person and haven’t used either of those languages in a
long time (or indeed ever), those code listings can be quite…trying. There’s a reason
the latest edition of that other classic text, Fowler’s Refactoring (Addison-Wesley Pro‐
fessional), is in JavaScript.

x | Preface



TDD, DDD, and Event-Driven Architecture
In order of notoriety, we know of three tools for managing complexity:

1. Test-driven development (TDD) helps us to build code that is correct and enables
us to refactor or add new features, without fear of regression. But it can be hard
to get the best out of our tests: How do we make sure that they run as fast as pos‐
sible? That we get as much coverage and feedback from fast, dependency-free
unit tests and have the minimum number of slower, flaky end-to-end tests?

2. Domain-driven design (DDD) asks us to focus our efforts on building a good
model of the business domain, but how do we make sure that our models aren’t
encumbered with infrastructure concerns and don’t become hard to change?

3. Loosely coupled (micro)services integrated via messages (sometimes called reac‐
tive microservices) are a well-established answer to managing complexity across
multiple applications or business domains. But it’s not always obvious how to
make them fit with the established tools of the Python world—Flask, Django,
Celery, and so on.

Don’t be put off if you’re not working with (or interested in) micro‐
services. The vast majority of the patterns we discuss, including
much of the event-driven architecture material, is absolutely appli‐
cable in a monolithic architecture.

Our aim with this book is to introduce several classic architectural patterns and show
how they support TDD, DDD, and event-driven services. We hope it will serve as a
reference for implementing them in a Pythonic way, and that people can use it as a
first step toward further research in this field.

Who Should Read This Book
Here are a few things we assume about you, dear reader:

• You’ve been close to some reasonably complex Python applications.
• You’ve seen some of the pain that comes with trying to manage that complexity.
• You don’t necessarily know anything about DDD or any of the classic application

architecture patterns.

We structure our explorations of architectural patterns around an example app,
building it up chapter by chapter. We use TDD at work, so we tend to show listings of
tests first, followed by implementation. If you’re not used to working test-first, it may

Preface | xi



feel a little strange at the beginning, but we hope you’ll soon get used to seeing code
“being used” (i.e., from the outside) before you see how it’s built on the inside.

We use some specific Python frameworks and technologies, including Flask, SQL‐
Alchemy, and pytest, as well as Docker and Redis. If you’re already familiar with
them, that won’t hurt, but we don’t think it’s required. One of our main aims with this
book is to build an architecture for which specific technology choices become minor
implementation details.

A Brief Overview of What You’ll Learn
The book is divided into two parts; here’s a look at the topics we’ll cover and the chap‐
ters they live in.

Part I, Building an Architecture to Support Domain Modeling
Domain modeling and DDD (Chapters 1 and 7)

At some level, everyone has learned the lesson that complex business problems
need to be reflected in code, in the form of a model of the domain. But why does
it always seem to be so hard to do without getting tangled up with infrastructure
concerns, our web frameworks, or whatever else? In the first chapter we give a
broad overview of domain modeling and DDD, and we show how to get started
with a model that has no external dependencies, and fast unit tests. Later we
return to DDD patterns to discuss how to choose the right aggregate, and how
this choice relates to questions of data integrity.

Repository, Service Layer, and Unit of Work patterns (Chapters 2, 4, and 5)
In these three chapters we present three closely related and mutually reinforcing
patterns that support our ambition to keep the model free of extraneous depen‐
dencies. We build a layer of abstraction around persistent storage, and we build a
service layer to define the entrypoints to our system and capture the primary use
cases. We show how this layer makes it easy to build thin entrypoints to our sys‐
tem, whether it’s a Flask API or a CLI.

Some thoughts on testing and abstractions (Chapters 3 and 6)
After presenting the first abstraction (the Repository pattern), we take the oppor‐
tunity for a general discussion of how to choose abstractions, and what their role
is in choosing how our software is coupled together. After we introduce the Ser‐
vice Layer pattern, we talk a bit about achieving a test pyramid and writing unit
tests at the highest possible level of abstraction.

xii | Preface



Part II, Event-Driven Architecture
Event-driven architecture (Chapters 8–11)

We introduce three more mutually reinforcing patterns: the Domain Events,
Message Bus, and Handler patterns. Domain events are a vehicle for capturing the
idea that some interactions with a system are triggers for others. We use a mes‐
sage bus to allow actions to trigger events and call appropriate handlers. We move
on to discuss how events can be used as a pattern for integration between services
in a microservices architecture. Finally, we distinguish between commands and
events. Our application is now fundamentally a message-processing system.

Command-query responsibility segregation (Chapter 12)
We present an example of command-query responsibility segregation, with and
without events.

Dependency injection (Chapter 13)
We tidy up our explicit and implicit dependencies and implement a simple
dependency injection framework.

Addtional Content
How do I get there from here? (Epilogue)

Implementing architectural patterns always looks easy when you show a simple
example, starting from scratch, but many of you will probably be wondering how
to apply these principles to existing software. We’ll provide a few pointers in the
epilogue and some links to further reading.

Example Code and Coding Along
You’re reading a book, but you’ll probably agree with us when we say that the best
way to learn about code is to code. We learned most of what we know from pairing
with people, writing code with them, and learning by doing, and we’d like to re-create
that experience as much as possible for you in this book.

As a result, we’ve structured the book around a single example project (although we
do sometimes throw in other examples). We’ll build up this project as the chapters
progress, as if you’ve paired with us and we’re explaining what we’re doing and why at
each step.

But to really get to grips with these patterns, you need to mess about with the code
and get a feel for how it works. You’ll find all the code on GitHub; each chapter has its
own branch. You can find a list of the branches on GitHub as well.

Preface | xiii

https://github.com/cosmicpython/code/branches/all


Here are three ways you might code along with the book:

• Start your own repo and try to build up the app as we do, following the examples
from listings in the book, and occasionally looking to our repo for hints. A word
of warning, however: if you’ve read Harry’s previous book and coded along with
that, you’ll find that this book requires you to figure out more on your own; you
may need to lean pretty heavily on the working versions on GitHub.

• Try to apply each pattern, chapter by chapter, to your own (preferably small/toy)
project, and see if you can make it work for your use case. This is high risk/high
reward (and high effort besides!). It may take quite some work to get things
working for the specifics of your project, but on the other hand, you’re likely to
learn the most.

• For less effort, in each chapter we outline an “Exercise for the Reader,” and point
you to a GitHub location where you can download some partially finished code
for the chapter with a few missing parts to write yourself.

Particularly if you’re intending to apply some of these patterns in your own projects,
working through a simple example is a great way to safely practice.

At the very least, do a git checkout of the code from our repo as
you read each chapter. Being able to jump in and see the code in
the context of an actual working app will help answer a lot of ques‐
tions as you go, and makes everything more real. You’ll find
instructions for how to do that at the beginning of each chapter.

License
The code (and the online version of the book) is licensed under a Creative Commons
CC BY-NC-ND license, which means you are free to copy and share it with anyone
you like, for non-commercial purposes, as long as you give attribution. If you want to
re-use any of the content from this book and you have any worries about the license,
contact O’Reilly at permissions@oreilly.com.

The print edition is licensed differently; please see the copyright page.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xiv | Preface

mailto:permissions@oreilly.com


Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

Preface | xv

http://oreilly.com
http://oreilly.com


How to Contact O’Reilly
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/architecture-patterns-python.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
To our tech reviewers, David Seddon, Ed Jung, and Hynek Schlawack: we absolutely
do not deserve you. You are all incredibly dedicated, conscientious, and rigorous.
Each one of you is immensely smart, and your different points of view were both use‐
ful and complementary to each other. Thank you from the bottom of our hearts.

Gigantic thanks also to our Early Release readers for their comments and suggestions:
Ian Cooper, Abdullah Ariff, Jonathan Meier, Gil Gonçalves, Matthieu Choplin, Ben
Judson, James Gregory, Łukasz Lechowicz, Clinton Roy, Vitorino Araújo, Susan
Goodbody, Josh Harwood, Daniel Butler, Liu Haibin, Jimmy Davies, Ignacio Vergara
Kausel, Gaia Canestrani, Renne Rocha, pedroabi, Ashia Zawaduk, Jostein Leira,
Brandon Rhodes, and many more; our apologies if we missed you on this list.

Super-mega-thanks to our editor Corbin Collins for his gentle chivvying, and for
being a tireless advocate of the reader. Similarly-superlative thanks to the production
staff, Katherine Tozer, Sharon Wilkey, Ellen Troutman-Zaig, and Rebecca Demarest,
for your dedication, professionalism, and attention to detail. This book is immeasura‐
bly improved thanks to you.

Any errors remaining in the book are our own, naturally.

xvi | Preface

https://oreil.ly/architecture-patterns-python
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Introduction

Why Do Our Designs Go Wrong?
What comes to mind when you hear the word chaos? Perhaps you think of a noisy
stock exchange, or your kitchen in the morning—everything confused and jumbled.
When you think of the word order, perhaps you think of an empty room, serene and
calm. For scientists, though, chaos is characterized by homogeneity (sameness), and
order by complexity (difference).

For example, a well-tended garden is a highly ordered system. Gardeners define
boundaries with paths and fences, and they mark out flower beds or vegetable
patches. Over time, the garden evolves, growing richer and thicker; but without
deliberate effort, the garden will run wild. Weeds and grasses will choke out other
plants, covering over the paths, until eventually every part looks the same again—
wild and unmanaged.

Software systems, too, tend toward chaos. When we first start building a new system,
we have grand ideas that our code will be clean and well ordered, but over time we
find that it gathers cruft and edge cases and ends up a confusing morass of manager
classes and util modules. We find that our sensibly layered architecture has collapsed
into itself like an oversoggy trifle. Chaotic software systems are characterized by a
sameness of function: API handlers that have domain knowledge and send email and
perform logging; “business logic” classes that perform no calculations but do perform
I/O; and everything coupled to everything else so that changing any part of the sys‐
tem becomes fraught with danger. This is so common that software engineers have
their own term for chaos: the Big Ball of Mud anti-pattern (Figure P-1).

xvii



Figure P-1. A real-life dependency diagram (source: “Enterprise Dependency: Big Ball of
Yarn” by Alex Papadimoulis)

A big ball of mud is the natural state of software in the same way
that wilderness is the natural state of your garden. It takes energy
and direction to prevent the collapse.

Fortunately, the techniques to avoid creating a big ball of mud aren’t complex.

Encapsulation and Abstractions
Encapsulation and abstraction are tools that we all instinctively reach for as program‐
mers, even if we don’t all use these exact words. Allow us to dwell on them for a
moment, since they are a recurring background theme of the book.

The term encapsulation covers two closely related ideas: simplifying behavior and
hiding data. In this discussion, we’re using the first sense. We encapsulate behavior by

xviii | Introduction

https://oreil.ly/dbGTW
https://oreil.ly/dbGTW


identifying a task that needs to be done in our code and giving that task to a well-
defined object or function. We call that object or function an abstraction.

Take a look at the following two snippets of Python code:

Do a search with urllib
import json
from urllib.request import urlopen
from urllib.parse import urlencode

params = dict(q='Sausages', format='json')
handle = urlopen('http://api.duckduckgo.com' + '?' + urlencode(params))
raw_text = handle.read().decode('utf8')
parsed = json.loads(raw_text)

results = parsed['RelatedTopics']
for r in results:
    if 'Text' in r:
        print(r['FirstURL'] + ' - ' + r['Text'])

Do a search with requests
import requests

params = dict(q='Sausages', format='json')
parsed = requests.get('http://api.duckduckgo.com/', params=params).json()

results = parsed['RelatedTopics']
for r in results:
    if 'Text' in r:
        print(r['FirstURL'] + ' - ' + r['Text'])

Both code listings do the same thing: they submit form-encoded values to a URL in
order to use a search engine API. But the second is simpler to read and understand
because it operates at a higher level of abstraction.

We can take this one step further still by identifying and naming the task we want the
code to perform for us and using an even higher-level abstraction to make it explicit:

Do a search with the duckduckgo module
import duckduckgo
for r in duckduckgo.query('Sausages').results:
    print(r.url + ' - ' + r.text)

Encapsulating behavior by using abstractions is a powerful tool for making code
more expressive, more testable, and easier to maintain.

Introduction | xix



1 If you’ve come across class-responsibility-collaborator (CRC) cards, they’re driving at the same thing: think‐
ing about responsibilities helps you decide how to split things up.

In the literature of the object-oriented (OO) world, one of the clas‐
sic characterizations of this approach is called responsibility-driven
design; it uses the words roles and responsibilities rather than tasks.
The main point is to think about code in terms of behavior, rather
than in terms of data or algorithms.1

Abstractions and ABCs
In a traditional OO language like Java or C#, you might use an abstract base class
(ABC) or an interface to define an abstraction. In Python you can (and we sometimes
do) use ABCs, but you can also happily rely on duck typing.

The abstraction can just mean “the public API of the thing you’re using”—a function
name plus some arguments, for example.

Most of the patterns in this book involve choosing an abstraction, so you’ll see plenty
of examples in each chapter. In addition, Chapter 3 specifically discusses some gen‐
eral heuristics for choosing abstractions.

Layering
Encapsulation and abstraction help us by hiding details and protecting the consis‐
tency of our data, but we also need to pay attention to the interactions between our
objects and functions. When one function, module, or object uses another, we say
that the one depends on the other. These dependencies form a kind of network or
graph.

In a big ball of mud, the dependencies are out of control (as you saw in Figure P-1).
Changing one node of the graph becomes difficult because it has the potential to
affect many other parts of the system. Layered architectures are one way of tackling
this problem. In a layered architecture, we divide our code into discrete categories or
roles, and we introduce rules about which categories of code can call each other.

One of the most common examples is the three-layered architecture shown in
Figure P-2.

xx | Introduction

http://www.wirfs-brock.com/Design.html
http://www.wirfs-brock.com/Design.html


2 SOLID is an acronym for Robert C. Martin’s five principles of object-oriented design: single responsibility,
open for extension but closed for modification, Liskov substitution, interface segregation, and dependency
inversion. See “S.O.L.I.D: The First 5 Principles of Object-Oriented Design” by Samuel Oloruntoba.

Figure P-2. Layered architecture

Layered architecture is perhaps the most common pattern for building business soft‐
ware. In this model we have user-interface components, which could be a web page,
an API, or a command line; these user-interface components communicate with a
business logic layer that contains our business rules and our workflows; and finally,
we have a database layer that’s responsible for storing and retrieving data.

For the rest of this book, we’re going to be systematically turning this model inside
out by obeying one simple principle.

The Dependency Inversion Principle
You might be familiar with the dependency inversion principle (DIP) already, because
it’s the D in SOLID.2

Unfortunately, we can’t illustrate the DIP by using three tiny code listings as we did
for encapsulation. However, the whole of Part I is essentially a worked example of
implementing the DIP throughout an application, so you’ll get your fill of concrete
examples.

In the meantime, we can talk about DIP’s formal definition:

1. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

2. Abstractions should not depend on details. Instead, details should depend on
abstractions.

But what does this mean? Let’s take it bit by bit.

High-level modules are the code that your organization really cares about. Perhaps you
work for a pharmaceutical company, and your high-level modules deal with patients

Introduction | xxi

https://oreil.ly/UFM7U


and trials. Perhaps you work for a bank, and your high-level modules manage trades
and exchanges. The high-level modules of a software system are the functions,
classes, and packages that deal with our real-world concepts.

By contrast, low-level modules are the code that your organization doesn’t care about.
It’s unlikely that your HR department gets excited about filesystems or network sock‐
ets. It’s not often that you discuss SMTP, HTTP, or AMQP with your finance team.
For our nontechnical stakeholders, these low-level concepts aren’t interesting or rele‐
vant. All they care about is whether the high-level concepts work correctly. If payroll
runs on time, your business is unlikely to care whether that’s a cron job or a transient
function running on Kubernetes.

Depends on doesn’t mean imports or calls, necessarily, but rather a more general idea
that one module knows about or needs another module.

And we’ve mentioned abstractions already: they’re simplified interfaces that encapsu‐
late behavior, in the way that our duckduckgo module encapsulated a search engine’s
API.

All problems in computer science can be solved by adding another level of indirection.
—David Wheeler

So the first part of the DIP says that our business code shouldn’t depend on technical
details; instead, both should use abstractions.

Why? Broadly, because we want to be able to change them independently of each
other. High-level modules should be easy to change in response to business needs.
Low-level modules (details) are often, in practice, harder to change: think about
refactoring to change a function name versus defining, testing, and deploying a data‐
base migration to change a column name. We don’t want business logic changes to
slow down because they are closely coupled to low-level infrastructure details. But,
similarly, it is important to be able to change your infrastructure details when you
need to (think about sharding a database, for example), without needing to make
changes to your business layer. Adding an abstraction between them (the famous
extra layer of indirection) allows the two to change (more) independently of each
other.

The second part is even more mysterious. “Abstractions should not depend on
details” seems clear enough, but “Details should depend on abstractions” is hard to
imagine. How can we have an abstraction that doesn’t depend on the details it’s
abstracting? By the time we get to Chapter 4, we’ll have a concrete example that
should make this all a bit clearer.

xxii | Introduction



A Place for All Our Business Logic: The Domain Model
But before we can turn our three-layered architecture inside out, we need to talk
more about that middle layer: the high-level modules or business logic. One of the
most common reasons that our designs go wrong is that business logic becomes
spread throughout the layers of our application, making it hard to identify, under‐
stand, and change.

Chapter 1 shows how to build a business layer with a Domain Model pattern. The rest
of the patterns in Part I show how we can keep the domain model easy to change and
free of low-level concerns by choosing the right abstractions and continuously apply‐
ing the DIP.

Introduction | xxiii





PART I

Building an Architecture to Support
Domain Modeling

Most developers have never seen a domain model, only a data model.
—Cyrille Martraire, DDD EU 2017

Most developers we talk to about architecture have a nagging sense that things could
be better. They are often trying to rescue a system that has gone wrong somehow, and
are trying to put some structure back into a ball of mud. They know that their busi‐
ness logic shouldn’t be spread all over the place, but they have no idea how to fix it.

We’ve found that many developers, when asked to design a new system, will immedi‐
ately start to build a database schema, with the object model treated as an after‐
thought. This is where it all starts to go wrong. Instead, behavior should come first and
drive our storage requirements. After all, our customers don’t care about the data
model. They care about what the system does; otherwise they’d just use a spreadsheet.

The first part of the book looks at how to build a rich object model through TDD (in
Chapter 1), and then we’ll show how to keep that model decoupled from technical
concerns. We show how to build persistence-ignorant code and how to create stable
APIs around our domain so that we can refactor aggressively.

To do that, we present four key design patterns:

• The Repository pattern, an abstraction over the idea of persistent storage
• The Service Layer pattern to clearly define where our use cases begin and end



• The Unit of Work pattern to provide atomic operations
• The Aggregate pattern to enforce the integrity of our data

If you’d like a picture of where we’re going, take a look at Figure I-1, but don’t worry if
none of it makes sense yet! We introduce each box in the figure, one by one, through‐
out this part of the book.

Figure I-1. A component diagram for our app at the end of Part I

We also take a little time out to talk about coupling and abstractions, illustrating it
with a simple example that shows how and why we choose our abstractions.



Three appendices are further explorations of the content from Part I:

• Appendix B is a write-up of the infrastructure for our example code: how we
build and run the Docker images, where we manage configuration info, and how
we run different types of tests.

• Appendix C is a “proof is in the pudding” kind of content, showing how easy it is
to swap out our entire infrastructure—the Flask API, the ORM, and Postgres—
for a totally different I/O model involving a CLI and CSVs.

• Finally, Appendix D may be of interest if you’re wondering how these patterns
might look if using Django instead of Flask and SQLAlchemy.





CHAPTER 1

Domain Modeling

This chapter looks into how we can model business processes with code, in a way
that’s highly compatible with TDD. We’ll discuss why domain modeling matters, and
we’ll look at a few key patterns for modeling domains: Entity, Value Object, and
Domain Service.

Figure 1-1 is a simple visual placeholder for our Domain Model pattern. We’ll fill in
some details in this chapter, and as we move on to other chapters, we’ll build things
around the domain model, but you should always be able to find these little shapes at
the core.

Figure 1-1. A placeholder illustration of our domain model

5



What Is a Domain Model?
In the introduction, we used the term business logic layer to describe the central layer
of a three-layered architecture. For the rest of the book, we’re going to use the term
domain model instead. This is a term from the DDD community that does a better job
of capturing our intended meaning (see the next sidebar for more on DDD).

The domain is a fancy way of saying the problem you’re trying to solve. Your authors
currently work for an online retailer of furniture. Depending on which system you’re
talking about, the domain might be purchasing and procurement, or product design,
or logistics and delivery. Most programmers spend their days trying to improve or
automate business processes; the domain is the set of activities that those processes
support.

A model is a map of a process or phenomenon that captures a useful property.
Humans are exceptionally good at producing models of things in their heads. For
example, when someone throws a ball toward you, you’re able to predict its move‐
ment almost unconsciously, because you have a model of the way objects move in
space. Your model isn’t perfect by any means. Humans have terrible intuitions about
how objects behave at near-light speeds or in a vacuum because our model was never
designed to cover those cases. That doesn’t mean the model is wrong, but it does
mean that some predictions fall outside of its domain.

The domain model is the mental map that business owners have of their businesses.
All business people have these mental maps—they’re how humans think about com‐
plex processes.

You can tell when they’re navigating these maps because they use business speak. Jar‐
gon arises naturally among people who are collaborating on complex systems.

Imagine that you, our unfortunate reader, were suddenly transported light years away
from Earth aboard an alien spaceship with your friends and family and had to figure
out, from first principles, how to navigate home.

In your first few days, you might just push buttons randomly, but soon you’d learn
which buttons did what, so that you could give one another instructions. “Press the
red button near the flashing doohickey and then throw that big lever over by the
radar gizmo,” you might say.

Within a couple of weeks, you’d become more precise as you adopted words to
describe the ship’s functions: “Increase oxygen levels in cargo bay three” or “turn on
the little thrusters.” After a few months, you’d have adopted language for entire com‐
plex processes: “Start landing sequence” or “prepare for warp.” This process would
happen quite naturally, without any formal effort to build a shared glossary.

6 | Chapter 1: Domain Modeling



1 DDD did not originate domain modeling. Eric Evans refers to the 2002 book Object Design by Rebecca Wirfs-
Brock and Alan McKean (Addison-Wesley Professional), which introduced responsibility-driven design, of
which DDD is a special case dealing with the domain. But even that is too late, and OO enthusiasts will tell
you to look further back to Ivar Jacobson and Grady Booch; the term has been around since the mid-1980s.

This Is Not a DDD Book. You Should Read a DDD Book.
Domain-driven design, or DDD, popularized the concept of domain modeling,1 and
it’s been a hugely successful movement in transforming the way people design soft‐
ware by focusing on the core business domain. Many of the architecture patterns that
we cover in this book—including Entity, Aggregate, Value Object (see Chapter 7), and
Repository (in the next chapter)—come from the DDD tradition.

In a nutshell, DDD says that the most important thing about software is that it pro‐
vides a useful model of a problem. If we get that model right, our software delivers
value and makes new things possible.

If we get the model wrong, it becomes an obstacle to be worked around. In this book,
we can show the basics of building a domain model, and building an architecture
around it that leaves the model as free as possible from external constraints, so that it’s
easy to evolve and change.

But there’s a lot more to DDD and to the processes, tools, and techniques for develop‐
ing a domain model. We hope to give you a taste of it, though, and cannot encourage
you enough to go on and read a proper DDD book:

• The original “blue book,” Domain-Driven Design by Eric Evans (Addison-Wesley
Professional)

• The “red book,” Implementing Domain-Driven Design by Vaughn Vernon
(Addison-Wesley Professional)

So it is in the mundane world of business. The terminology used by business stake‐
holders represents a distilled understanding of the domain model, where complex
ideas and processes are boiled down to a single word or phrase.

When we hear our business stakeholders using unfamiliar words, or using terms in a
specific way, we should listen to understand the deeper meaning and encode their
hard-won experience into our software.

We’re going to use a real-world domain model throughout this book, specifically a
model from our current employment. MADE.com is a successful furniture retailer.
We source our furniture from manufacturers all over the world and sell it across
Europe.

What Is a Domain Model? | 7



When you buy a sofa or a coffee table, we have to figure out how best to get your
goods from Poland or China or Vietnam and into your living room.

At a high level, we have separate systems that are responsible for buying stock, selling
stock to customers, and shipping goods to customers. A system in the middle needs
to coordinate the process by allocating stock to a customer’s orders; see Figure 1-2.

Figure 1-2. Context diagram for the allocation service

For the purposes of this book, we’re imagining that the business decides to implement
an exciting new way of allocating stock. Until now, the business has been presenting
stock and lead times based on what is physically available in the warehouse. If and
when the warehouse runs out, a product is listed as “out of stock” until the next ship‐
ment arrives from the manufacturer.

Here’s the innovation: if we have a system that can keep track of all our shipments
and when they’re due to arrive, we can treat the goods on those ships as real stock and
part of our inventory, just with slightly longer lead times. Fewer goods will appear to
be out of stock, we’ll sell more, and the business can save money by keeping lower
inventory in the domestic warehouse.

8 | Chapter 1: Domain Modeling



But allocating orders is no longer a trivial matter of decrementing a single quantity in
the warehouse system. We need a more complex allocation mechanism. Time for
some domain modeling.

Exploring the Domain Language
Understanding the domain model takes time, and patience, and Post-it notes. We
have an initial conversation with our business experts and agree on a glossary and
some rules for the first minimal version of the domain model. Wherever possible, we
ask for concrete examples to illustrate each rule.

We make sure to express those rules in the business jargon (the ubiquitous language
in DDD terminology). We choose memorable identifiers for our objects so that the
examples are easier to talk about.

“Some Notes on Allocation” shows some notes we might have taken while having a
conversation with our domain experts about allocation.

Some Notes on Allocation
A product is identified by a SKU, pronounced “skew,” which is short for stock-keeping
unit. Customers place orders. An order is identified by an order reference and compri‐
ses multiple order lines, where each line has a SKU and a quantity. For example:

• 10 units of RED-CHAIR
• 1 unit of TASTELESS-LAMP

The purchasing department orders small batches of stock. A batch of stock has a
unique ID called a reference, a SKU, and a quantity.

We need to allocate order lines to batches. When we’ve allocated an order line to a
batch, we will send stock from that specific batch to the customer’s delivery address.
When we allocate x units of stock to a batch, the available quantity is reduced by x.
For example:

• We have a batch of 20 SMALL-TABLE, and we allocate an order line for 2
SMALL-TABLE.

• The batch should have 18 SMALL-TABLE remaining.

We can’t allocate to a batch if the available quantity is less than the quantity of the
order line. For example:

• We have a batch of 1 BLUE-CUSHION, and an order line for 2 BLUE-
CUSHION.

Exploring the Domain Language | 9



• We should not be able to allocate the line to the batch.

We can’t allocate the same line twice. For example:

• We have a batch of 10 BLUE-VASE, and we allocate an order line for 2 BLUE-
VASE.

• If we allocate the order line again to the same batch, the batch should still have an
available quantity of 8.

Batches have an ETA if they are currently shipping, or they may be in warehouse stock.
We allocate to warehouse stock in preference to shipment batches. We allocate to
shipment batches in order of which has the earliest ETA.

Unit Testing Domain Models
We’re not going to show you how TDD works in this book, but we want to show you
how we would construct a model from this business conversation.

Exercise for the Reader
Why not have a go at solving this problem yourself? Write a few unit tests to see if
you can capture the essence of these business rules in nice, clean code.

You’ll find some placeholder unit tests on GitHub, but you could just start from
scratch, or combine/rewrite them however you like.

Here’s what one of our first tests might look like:

A first test for allocation (test_batches.py)
def test_allocating_to_a_batch_reduces_the_available_quantity():
    batch = Batch("batch-001", "SMALL-TABLE", qty=20, eta=date.today())
    line = OrderLine('order-ref', "SMALL-TABLE", 2)

    batch.allocate(line)

    assert batch.available_quantity == 18

The name of our unit test describes the behavior that we want to see from the system,
and the names of the classes and variables that we use are taken from the business
jargon. We could show this code to our nontechnical coworkers, and they would
agree that this correctly describes the behavior of the system.

10 | Chapter 1: Domain Modeling

https://github.com/cosmicpython/code/tree/chapter_01_domain_model_exercise


2 In previous Python versions, we might have used a namedtuple. You could also check out Hynek Schlawack’s
excellent attrs.

3 Or perhaps you think there’s not enough code? What about some sort of check that the SKU in the OrderLine
matches Batch.sku? We saved some thoughts on validation for Appendix E.

And here is a domain model that meets our requirements:

First cut of a domain model for batches (model.py)
@dataclass(frozen=True)  
class OrderLine:
    orderid: str
    sku: str
    qty: int

class Batch:
    def __init__(
        self, ref: str, sku: str, qty: int, eta: Optional[date]  
    ):
        self.reference = ref
        self.sku = sku
        self.eta = eta
        self.available_quantity = qty

    def allocate(self, line: OrderLine):
        self.available_quantity -= line.qty  

OrderLine is an immutable dataclass with no behavior.2

We’re not showing imports in most code listings, in an attempt to keep them
clean. We’re hoping you can guess that this came via from dataclasses import
dataclass; likewise, typing.Optional and datetime.date. If you want to
double-check anything, you can see the full working code for each chapter in its
branch (e.g., chapter_01_domain_model).

Type hints are still a matter of controversy in the Python world. For domain
models, they can sometimes help to clarify or document what the expected argu‐
ments are, and people with IDEs are often grateful for them. You may decide the
price paid in terms of readability is too high.

Our implementation here is trivial: a Batch just wraps an integer available_quan
tity, and we decrement that value on allocation. We’ve written quite a lot of code just
to subtract one number from another, but we think that modeling our domain pre‐
cisely will pay off.3

Let’s write some new failing tests:

Unit Testing Domain Models | 11

https://pypi.org/project/attrs
https://github.com/python-leap/code/tree/chapter_01_domain_model


Testing logic for what we can allocate (test_batches.py)
def make_batch_and_line(sku, batch_qty, line_qty):
    return (
        Batch("batch-001", sku, batch_qty, eta=date.today()),
        OrderLine("order-123", sku, line_qty)
    )

def test_can_allocate_if_available_greater_than_required():
    large_batch, small_line = make_batch_and_line("ELEGANT-LAMP", 20, 2)
    assert large_batch.can_allocate(small_line)

def test_cannot_allocate_if_available_smaller_than_required():
    small_batch, large_line = make_batch_and_line("ELEGANT-LAMP", 2, 20)
    assert small_batch.can_allocate(large_line) is False

def test_can_allocate_if_available_equal_to_required():
    batch, line = make_batch_and_line("ELEGANT-LAMP", 2, 2)
    assert batch.can_allocate(line)

def test_cannot_allocate_if_skus_do_not_match():
    batch = Batch("batch-001", "UNCOMFORTABLE-CHAIR", 100, eta=None)
    different_sku_line = OrderLine("order-123", "EXPENSIVE-TOASTER", 10)
    assert batch.can_allocate(different_sku_line) is False

There’s nothing too unexpected here. We’ve refactored our test suite so that we don’t
keep repeating the same lines of code to create a batch and a line for the same SKU;
and we’ve written four simple tests for a new method can_allocate. Again, notice
that the names we use mirror the language of our domain experts, and the examples
we agreed upon are directly written into code.

We can implement this straightforwardly, too, by writing the can_allocate method
of Batch:

A new method in the model (model.py)
    def can_allocate(self, line: OrderLine) -> bool:
        return self.sku == line.sku and self.available_quantity >= line.qty

So far, we can manage the implementation by just incrementing and decrementing
Batch.available_quantity, but as we get into deallocate() tests, we’ll be forced
into a more intelligent solution:

12 | Chapter 1: Domain Modeling



This test is going to require a smarter model (test_batches.py)
def test_can_only_deallocate_allocated_lines():
    batch, unallocated_line = make_batch_and_line("DECORATIVE-TRINKET", 20, 2)
    batch.deallocate(unallocated_line)
    assert batch.available_quantity == 20

In this test, we’re asserting that deallocating a line from a batch has no effect unless
the batch previously allocated the line. For this to work, our Batch needs to under‐
stand which lines have been allocated. Let’s look at the implementation:

The domain model now tracks allocations (model.py)
class Batch:
    def __init__(
        self, ref: str, sku: str, qty: int, eta: Optional[date]
    ):
        self.reference = ref
        self.sku = sku
        self.eta = eta
        self._purchased_quantity = qty
        self._allocations = set()  # type: Set[OrderLine]

    def allocate(self, line: OrderLine):
        if self.can_allocate(line):
            self._allocations.add(line)

    def deallocate(self, line: OrderLine):
        if line in self._allocations:
            self._allocations.remove(line)

    @property
    def allocated_quantity(self) -> int:
        return sum(line.qty for line in self._allocations)

    @property
    def available_quantity(self) -> int:
        return self._purchased_quantity - self.allocated_quantity

    def can_allocate(self, line: OrderLine) -> bool:
        return self.sku == line.sku and self.available_quantity >= line.qty

Figure 1-3 shows the model in UML.

Unit Testing Domain Models | 13



Figure 1-3. Our model in UML

Now we’re getting somewhere! A batch now keeps track of a set of allocated Order
Line objects. When we allocate, if we have enough available quantity, we just add to
the set. Our available_quantity is now a calculated property: purchased quantity
minus allocated quantity.

Yes, there’s plenty more we could do. It’s a little disconcerting that both allocate()
and deallocate() can fail silently, but we have the basics.

Incidentally, using a set for ._allocations makes it simple for us to handle the last
test, because items in a set are unique:

Last batch test! (test_batches.py)
def test_allocation_is_idempotent():
    batch, line = make_batch_and_line("ANGULAR-DESK", 20, 2)
    batch.allocate(line)
    batch.allocate(line)
    assert batch.available_quantity == 18

At the moment, it’s probably a valid criticism to say that the domain model is too triv‐
ial to bother with DDD (or even object orientation!). In real life, any number of busi‐
ness rules and edge cases crop up: customers can ask for delivery on specific future
dates, which means we might not want to allocate them to the earliest batch. Some
SKUs aren’t in batches, but ordered on demand directly from suppliers, so they have
different logic. Depending on the customer’s location, we can allocate to only a subset
of warehouses and shipments that are in their region—except for some SKUs we’re
happy to deliver from a warehouse in a different region if we’re out of stock in the
home region. And so on. A real business in the real world knows how to pile on com‐
plexity faster than we can show on the page!

But taking this simple domain model as a placeholder for something more complex,
we’re going to extend our simple domain model in the rest of the book and plug it
into the real world of APIs and databases and spreadsheets. We’ll see how sticking

14 | Chapter 1: Domain Modeling



4 It is appalling. Please, please don’t do this. —Harry

rigidly to our principles of encapsulation and careful layering will help us to avoid a
ball of mud.

More Types for More Type Hints
If you really want to go to town with type hints, you could go so far as wrapping
primitive types by using typing.NewType:

Just taking it way too far, Bob
from dataclasses import dataclass
from typing import NewType

Quantity = NewType("Quantity", int)
Sku = NewType("Sku", str)
Reference = NewType("Reference", str)
...

class Batch:
    def __init__(self, ref: Reference, sku: Sku, qty: Quantity):
        self.sku = sku
        self.reference = ref
        self._purchased_quantity = qty

That would allow our type checker to make sure that we don’t pass a Sku where a
Reference is expected, for example.

Whether you think this is wonderful or appalling is a matter of debate.4

Dataclasses Are Great for Value Objects
We’ve used line liberally in the previous code listings, but what is a line? In our busi‐
ness language, an order has multiple line items, where each line has a SKU and a
quantity. We can imagine that a simple YAML file containing order information
might look like this:

Order info as YAML
Order_reference: 12345
Lines:
  - sku: RED-CHAIR
    qty: 25
  - sku: BLU-CHAIR
    qty: 25
  - sku: GRN-CHAIR
    qty: 25

Unit Testing Domain Models | 15



Notice that while an order has a reference that uniquely identifies it, a line does not.
(Even if we add the order reference to the OrderLine class, it’s not something that
uniquely identifies the line itself.)

Whenever we have a business concept that has data but no identity, we often choose
to represent it using the Value Object pattern. A value object is any domain object that
is uniquely identified by the data it holds; we usually make them immutable:

OrderLine is a value object
@dataclass(frozen=True)
class OrderLine:
    orderid: OrderReference
    sku: ProductReference
    qty: Quantity

One of the nice things that dataclasses (or namedtuples) give us is value equality,
which is the fancy way of saying, “Two lines with the same orderid, sku, and qty are
equal.”

More examples of value objects
from dataclasses import dataclass
from typing import NamedTuple
from collections import namedtuple

@dataclass(frozen=True)
class Name:
    first_name: str
    surname: str

class Money(NamedTuple):
    currency: str
    value: int

Line = namedtuple('Line', ['sku', 'qty'])

def test_equality():
    assert Money('gbp', 10) == Money('gbp', 10)
    assert Name('Harry', 'Percival') != Name('Bob', 'Gregory')
    assert Line('RED-CHAIR', 5) == Line('RED-CHAIR', 5)

These value objects match our real-world intuition about how their values work. It
doesn’t matter which £10 note we’re talking about, because they all have the same
value. Likewise, two names are equal if both the first and last names match; and two
lines are equivalent if they have the same customer order, product code, and quantity.
We can still have complex behavior on a value object, though. In fact, it’s common to
support operations on values; for example, mathematical operators:

16 | Chapter 1: Domain Modeling



Math with value objects
fiver = Money('gbp', 5)
tenner = Money('gbp', 10)

def can_add_money_values_for_the_same_currency():
    assert fiver + fiver == tenner

def can_subtract_money_values():
    assert tenner - fiver == fiver

def adding_different_currencies_fails():
    with pytest.raises(ValueError):
        Money('usd', 10) + Money('gbp', 10)

def can_multiply_money_by_a_number():
    assert fiver * 5 == Money('gbp', 25)

def multiplying_two_money_values_is_an_error():
    with pytest.raises(TypeError):
        tenner * fiver

Value Objects and Entities
An order line is uniquely identified by its order ID, SKU, and quantity; if we change
one of those values, we now have a new line. That’s the definition of a value object:
any object that is identified only by its data and doesn’t have a long-lived identity.
What about a batch, though? That is identified by a reference.

We use the term entity to describe a domain object that has long-lived identity. On
the previous page, we introduced a Name class as a value object. If we take the name
Harry Percival and change one letter, we have the new Name object Barry Percival.

It should be clear that Harry Percival is not equal to Barry Percival:

A name itself cannot change…
def test_name_equality():
    assert Name("Harry", "Percival") != Name("Barry", "Percival")

But what about Harry as a person? People do change their names, and their marital
status, and even their gender, but we continue to recognize them as the same individ‐
ual. That’s because humans, unlike names, have a persistent identity:

But a person can!
class Person:

    def __init__(self, name: Name):
        self.name = name

Unit Testing Domain Models | 17



5 The __eq__ method is pronounced “dunder-EQ.” By some, at least.

def test_barry_is_harry():
    harry = Person(Name("Harry", "Percival"))
    barry = harry

    barry.name = Name("Barry", "Percival")

    assert harry is barry and barry is harry

Entities, unlike values, have identity equality. We can change their values, and they are
still recognizably the same thing. Batches, in our example, are entities. We can allo‐
cate lines to a batch, or change the date that we expect it to arrive, and it will still be
the same entity.

We usually make this explicit in code by implementing equality operators on entities:

Implementing equality operators (model.py)
class Batch:
    ...

    def __eq__(self, other):
        if not isinstance(other, Batch):
            return False
        return other.reference == self.reference

    def __hash__(self):
        return hash(self.reference)

Python’s __eq__ magic method defines the behavior of the class for the == operator.5

For both entity and value objects, it’s also worth thinking through how __hash__ will
work. It’s the magic method Python uses to control the behavior of objects when you
add them to sets or use them as dict keys; you can find more info in the Python docs.

For value objects, the hash should be based on all the value attributes, and we should
ensure that the objects are immutable. We get this for free by specifying @fro
zen=True on the dataclass.

For entities, the simplest option is to say that the hash is None, meaning that the
object is not hashable and cannot, for example, be used in a set. If for some reason
you decide you really do want to use set or dict operations with entities, the hash
should be based on the attribute(s), such as .reference, that defines the entity’s
unique identity over time. You should also try to somehow make that attribute read-
only.

18 | Chapter 1: Domain Modeling

https://oreil.ly/YUzg5


6 Domain services are not the same thing as the services from the service layer, although they are often closely
related. A domain service represents a business concept or process, whereas a service-layer service represents
a use case for your application. Often the service layer will call a domain service.

This is tricky territory; you shouldn’t modify __hash__ without
also modifying __eq__. If you’re not sure what you’re doing, further
reading is suggested. “Python Hashes and Equality” by our tech
reviewer Hynek Schlawack is a good place to start.

Not Everything Has to Be an Object: A Domain Service
Function
We’ve made a model to represent batches, but what we actually need to do is allocate
order lines against a specific set of batches that represent all our stock.

Sometimes, it just isn’t a thing.
—Eric Evans, Domain-Driven Design

Evans discusses the idea of Domain Service operations that don’t have a natural home
in an entity or value object.6 A thing that allocates an order line, given a set of batches,
sounds a lot like a function, and we can take advantage of the fact that Python is a
multiparadigm language and just make it a function.

Let’s see how we might test-drive such a function:

Testing our domain service (test_allocate.py)
def test_prefers_current_stock_batches_to_shipments():
    in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    line = OrderLine("oref", "RETRO-CLOCK", 10)

    allocate(line, [in_stock_batch, shipment_batch])

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100

def test_prefers_earlier_batches():
    earliest = Batch("speedy-batch", "MINIMALIST-SPOON", 100, eta=today)
    medium = Batch("normal-batch", "MINIMALIST-SPOON", 100, eta=tomorrow)
    latest = Batch("slow-batch", "MINIMALIST-SPOON", 100, eta=later)
    line = OrderLine("order1", "MINIMALIST-SPOON", 10)

    allocate(line, [medium, earliest, latest])

    assert earliest.available_quantity == 90

Not Everything Has to Be an Object: A Domain Service Function | 19

https://oreil.ly/vxkgX


    assert medium.available_quantity == 100
    assert latest.available_quantity == 100

def test_returns_allocated_batch_ref():
    in_stock_batch = Batch("in-stock-batch-ref", "HIGHBROW-POSTER", 100, eta=None)
    shipment_batch = Batch("shipment-batch-ref", "HIGHBROW-POSTER", 100, eta=tomorrow)
    line = OrderLine("oref", "HIGHBROW-POSTER", 10)
    allocation = allocate(line, [in_stock_batch, shipment_batch])
    assert allocation == in_stock_batch.reference

And our service might look like this:

A standalone function for our domain service (model.py)
def allocate(line: OrderLine, batches: List[Batch]) -> str:
    batch = next(
        b for b in sorted(batches) if b.can_allocate(line)
    )
    batch.allocate(line)
    return batch.reference

Python’s Magic Methods Let Us Use Our Models with Idiomatic Python
You may or may not like the use of next() in the preceding code, but we’re pretty
sure you’ll agree that being able to use sorted() on our list of batches is nice,
idiomatic Python.

To make it work, we implement __gt__ on our domain model:

Magic methods can express domain semantics (model.py)
class Batch:
    ...

    def __gt__(self, other):
        if self.eta is None:
            return False
        if other.eta is None:
            return True
        return self.eta > other.eta

That’s lovely.

Exceptions Can Express Domain Concepts Too
We have one final concept to cover: exceptions can be used to express domain con‐
cepts too. In our conversations with domain experts, we’ve learned about the possibil‐
ity that an order cannot be allocated because we are out of stock, and we can capture
that by using a domain exception:

20 | Chapter 1: Domain Modeling



Testing out-of-stock exception (test_allocate.py)
def test_raises_out_of_stock_exception_if_cannot_allocate():
    batch = Batch('batch1', 'SMALL-FORK', 10, eta=today)
    allocate(OrderLine('order1', 'SMALL-FORK', 10), [batch])

    with pytest.raises(OutOfStock, match='SMALL-FORK'):
        allocate(OrderLine('order2', 'SMALL-FORK', 1), [batch])

Domain Modeling Recap
Domain modeling

This is the part of your code that is closest to the business, the most likely to
change, and the place where you deliver the most value to the business. Make it
easy to understand and modify.

Distinguish entities from value objects
A value object is defined by its attributes. It’s usually best implemented as an
immutable type. If you change an attribute on a Value Object, it represents a dif‐
ferent object. In contrast, an entity has attributes that may vary over time and it
will still be the same entity. It’s important to define what does uniquely identify an
entity (usually some sort of name or reference field).

Not everything has to be an object
Python is a multiparadigm language, so let the “verbs” in your code be functions.
For every FooManager, BarBuilder, or BazFactory, there’s often a more expres‐
sive and readable manage_foo(), build_bar(), or get_baz() waiting to happen.

This is the time to apply your best OO design principles
Revisit the SOLID principles and all the other good heuristics like “has a versus
is-a,” “prefer composition over inheritance,” and so on.

You’ll also want to think about consistency boundaries and aggregates
But that’s a topic for Chapter 7.

We won’t bore you too much with the implementation, but the main thing to note is
that we take care in naming our exceptions in the ubiquitous language, just as we do
our entities, value objects, and services:

Raising a domain exception (model.py)
class OutOfStock(Exception):
    pass

def allocate(line: OrderLine, batches: List[Batch]) -> str:
    try:
        batch = next(
        ...

Not Everything Has to Be an Object: A Domain Service Function | 21



    except StopIteration:
        raise OutOfStock(f'Out of stock for sku {line.sku}')

Figure 1-4 is a visual representation of where we’ve ended up.

Figure 1-4. Our domain model at the end of the chapter

That’ll probably do for now! We have a domain service that we can use for our first
use case. But first we’ll need a database…

22 | Chapter 1: Domain Modeling



CHAPTER 2

Repository Pattern

It’s time to make good on our promise to use the dependency inversion principle as a
way of decoupling our core logic from infrastructural concerns.

We’ll introduce the Repository pattern, a simplifying abstraction over data storage,
allowing us to decouple our model layer from the data layer. We’ll present a concrete
example of how this simplifying abstraction makes our system more testable by hid‐
ing the complexities of the database.

Figure 2-1 shows a little preview of what we’re going to build: a Repository object
that sits between our domain model and the database.

Figure 2-1. Before and after the Repository pattern

23



The code for this chapter is in the chapter_02_repository branch
on GitHub.

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_02_repository
# or to code along, checkout the previous chapter:
git checkout chapter_01_domain_model

Persisting Our Domain Model
In Chapter 1 we built a simple domain model that can allocate orders to batches of
stock. It’s easy for us to write tests against this code because there aren’t any depen‐
dencies or infrastructure to set up. If we needed to run a database or an API and cre‐
ate test data, our tests would be harder to write and maintain.

Sadly, at some point we’ll need to put our perfect little model in the hands of users
and contend with the real world of spreadsheets and web browsers and race condi‐
tions. For the next few chapters we’re going to look at how we can connect our ideal‐
ized domain model to external state.

We expect to be working in an agile manner, so our priority is to get to a minimum
viable product as quickly as possible. In our case, that’s going to be a web API. In a
real project, you might dive straight in with some end-to-end tests and start plugging
in a web framework, test-driving things outside-in.

But we know that, no matter what, we’re going to need some form of persistent stor‐
age, and this is a textbook, so we can allow ourselves a tiny bit more bottom-up devel‐
opment and start to think about storage and databases.

Some Pseudocode: What Are We Going to Need?
When we build our first API endpoint, we know we’re going to have some code that
looks more or less like the following.

What our first API endpoint will look like
@flask.route.gubbins
def allocate_endpoint():
    # extract order line from request
    line = OrderLine(request.params, ...)
    # load all batches from the DB
    batches = ...
    # call our domain service
    allocate(line, batches)
    # then save the allocation back to the database somehow
    return 201

24 | Chapter 2: Repository Pattern

https://oreil.ly/6STDu


1 I suppose we mean “no stateful dependencies.” Depending on a helper library is fine; depending on an ORM
or a web framework is not.

We’ve used Flask because it’s lightweight, but you don’t need to be a
Flask user to understand this book. In fact, we’ll show you how to
make your choice of framework a minor detail.

We’ll need a way to retrieve batch info from the database and instantiate our domain
model objects from it, and we’ll also need a way of saving them back to the database.

What? Oh, “gubbins” is a British word for “stuff.” You can just ignore that. It’s pseudo‐
code, OK?

Applying the DIP to Data Access
As mentioned in the introduction, a layered architecture is a common approach to
structuring a system that has a UI, some logic, and a database (see Figure 2-2).

Figure 2-2. Layered architecture

Django’s Model-View-Template structure is closely related, as is Model-View-
Controller (MVC). In any case, the aim is to keep the layers separate (which is a good
thing), and to have each layer depend only on the one below it.

But we want our domain model to have no dependencies whatsoever.1 We don’t want
infrastructure concerns bleeding over into our domain model and slowing our unit
tests or our ability to make changes.

Instead, as discussed in the introduction, we’ll think of our model as being on the
“inside,” and dependencies flowing inward to it; this is what people sometimes call
onion architecture (see Figure 2-3).

Applying the DIP to Data Access | 25



2 Mark Seemann has an excellent blog post on the topic.

Figure 2-3. Onion architecture

Is This Ports and Adapters?
If you’ve been reading about architectural patterns, you may be asking yourself ques‐
tions like this:

Is this ports and adapters? Or is it hexagonal architecture? Is that the same as onion
architecture? What about the clean architecture? What’s a port, and what’s an adapter?
Why do you people have so many words for the same thing?

Although some people like to nitpick over the differences, all these are pretty much
names for the same thing, and they all boil down to the dependency inversion princi‐
ple: high-level modules (the domain) should not depend on low-level ones (the infra‐
structure).2

We’ll get into some of the nitty-gritty around “depending on abstractions,” and
whether there is a Pythonic equivalent of interfaces, later in the book. See also “What
Is a Port and What Is an Adapter, in Python?” on page 37.

Reminder: Our Model
Let’s remind ourselves of our domain model (see Figure 2-4): an allocation is the con‐
cept of linking an OrderLine to a Batch. We’re storing the allocations as a collection
on our Batch object.

26 | Chapter 2: Repository Pattern

https://oreil.ly/LpFS9


3 In this sense, using an ORM is already an example of the DIP. Instead of depending on hardcoded SQL, we
depend on an abstraction, the ORM. But that’s not enough for us—not in this book!

Figure 2-4. Our model

Let’s see how we might translate this to a relational database.

The “Normal” ORM Way: Model Depends on ORM
These days, it’s unlikely that your team members are hand-rolling their own SQL
queries. Instead, you’re almost certainly using some kind of framework to generate
SQL for you based on your model objects.

These frameworks are called object-relational mappers (ORMs) because they exist to
bridge the conceptual gap between the world of objects and domain modeling and
the world of databases and relational algebra.

The most important thing an ORM gives us is persistence ignorance: the idea that our
fancy domain model doesn’t need to know anything about how data is loaded or per‐
sisted. This helps keep our domain clean of direct dependencies on particular data‐
base technologies.3

But if you follow the typical SQLAlchemy tutorial, you’ll end up with something like
this:

SQLAlchemy “declarative” syntax, model depends on ORM (orm.py)
from sqlalchemy import Column, ForeignKey, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Order(Base):
    id = Column(Integer, primary_key=True)

class OrderLine(Base):

Reminder: Our Model | 27



    id = Column(Integer, primary_key=True)
    sku = Column(String(250))
    qty = Integer(String(250))
    order_id = Column(Integer, ForeignKey('order.id'))
    order = relationship(Order)

class Allocation(Base):
    ...

You don’t need to understand SQLAlchemy to see that our pristine model is now full
of dependencies on the ORM and is starting to look ugly as hell besides. Can we
really say this model is ignorant of the database? How can it be separate from storage
concerns when our model properties are directly coupled to database columns?

Django’s ORM Is Essentially the Same, but More Restrictive
If you’re more used to Django, the preceding “declarative” SQLAlchemy snippet
translates to something like this:

Django ORM example
class Order(models.Model):
    pass

class OrderLine(models.Model):
    sku = models.CharField(max_length=255)
    qty = models.IntegerField()
    order = models.ForeignKey(Order)

class Allocation(models.Model):
    ...

The point is the same—our model classes inherit directly from ORM classes, so our
model depends on the ORM. We want it to be the other way around.

Django doesn’t provide an equivalent for SQLAlchemy’s classical mapper, but see
Appendix D for examples of how to apply dependency inversion and the Repository
pattern to Django.

Inverting the Dependency: ORM Depends on Model
Well, thankfully, that’s not the only way to use SQLAlchemy. The alternative is to
define your schema separately, and to define an explicit mapper for how to convert
between the schema and our domain model, what SQLAlchemy calls a classical map‐
ping:

28 | Chapter 2: Repository Pattern

https://oreil.ly/ZucTG
https://oreil.ly/ZucTG


4 Even in projects where we don’t use an ORM, we often use SQLAlchemy alongside Alembic to declaratively
create schemas in Python and to manage migrations, connections, and sessions.

Explicit ORM mapping with SQLAlchemy Table objects (orm.py)
from sqlalchemy.orm import mapper, relationship

import model  

metadata = MetaData()

order_lines = Table(  
    'order_lines', metadata,
    Column('id', Integer, primary_key=True, autoincrement=True),
    Column('sku', String(255)),
    Column('qty', Integer, nullable=False),
    Column('orderid', String(255)),
)

...

def start_mappers():
    lines_mapper = mapper(model.OrderLine, order_lines)  

The ORM imports (or “depends on” or “knows about”) the domain model, and
not the other way around.

We define our database tables and columns by using SQLAlchemy’s abstractions.4

When we call the mapper function, SQLAlchemy does its magic to bind our
domain model classes to the various tables we’ve defined.

The end result will be that, if we call start_mappers, we will be able to easily load and
save domain model instances from and to the database. But if we never call that func‐
tion, our domain model classes stay blissfully unaware of the database.

This gives us all the benefits of SQLAlchemy, including the ability to use alembic for
migrations, and the ability to transparently query using our domain classes, as we’ll
see.

When you’re first trying to build your ORM config, it can be useful to write tests for
it, as in the following example:

Testing the ORM directly (throwaway tests) (test_orm.py)
def test_orderline_mapper_can_load_lines(session):  
    session.execute(
        'INSERT INTO order_lines (orderid, sku, qty) VALUES '

Reminder: Our Model | 29



5 Shout-out to the amazingly helpful SQLAlchemy maintainers, and to Mike Bayer in particular.

        '("order1", "RED-CHAIR", 12),'
        '("order1", "RED-TABLE", 13),'
        '("order2", "BLUE-LIPSTICK", 14)'
    )
    expected = [
        model.OrderLine("order1", "RED-CHAIR", 12),
        model.OrderLine("order1", "RED-TABLE", 13),
        model.OrderLine("order2", "BLUE-LIPSTICK", 14),
    ]
    assert session.query(model.OrderLine).all() == expected

def test_orderline_mapper_can_save_lines(session):
    new_line = model.OrderLine("order1", "DECORATIVE-WIDGET", 12)
    session.add(new_line)
    session.commit()

    rows = list(session.execute('SELECT orderid, sku, qty FROM "order_lines"'))
    assert rows == [("order1", "DECORATIVE-WIDGET", 12)]

If you haven’t used pytest, the session argument to this test needs explaining. 
You don’t need to worry about the details of pytest or its fixtures for the purposes
of this book, but the short explanation is that you can define common dependen‐
cies for your tests as “fixtures,” and pytest will inject them to the tests that need
them by looking at their function arguments. In this case, it’s a SQLAlchemy
database session.

You probably wouldn’t keep these tests around—as you’ll see shortly, once you’ve
taken the step of inverting the dependency of ORM and domain model, it’s only a
small additional step to implement another abstraction called the Repository pattern,
which will be easier to write tests against and will provide a simple interface for fak‐
ing out later in tests.

But we’ve already achieved our objective of inverting the traditional dependency: the
domain model stays “pure” and free from infrastructure concerns. We could throw
away SQLAlchemy and use a different ORM, or a totally different persistence system,
and the domain model doesn’t need to change at all.

Depending on what you’re doing in your domain model, and especially if you stray
far from the OO paradigm, you may find it increasingly hard to get the ORM to pro‐
duce the exact behavior you need, and you may need to modify your domain model.5

As so often happens with architectural decisions, you’ll need to consider a trade-off.
As the Zen of Python says, “Practicality beats purity!”

30 | Chapter 2: Repository Pattern



At this point, though, our API endpoint might look something like the following, and
we could get it to work just fine:

Using SQLAlchemy directly in our API endpoint
@flask.route.gubbins
def allocate_endpoint():
    session = start_session()

    # extract order line from request
    line = OrderLine(
        request.json['orderid'],
        request.json['sku'],
        request.json['qty'],
    )

    # load all batches from the DB
    batches = session.query(Batch).all()

    # call our domain service
    allocate(line, batches)

    # save the allocation back to the database
    session.commit()

    return 201

Introducing the Repository Pattern
The Repository pattern is an abstraction over persistent storage. It hides the boring
details of data access by pretending that all of our data is in memory.

If we had infinite memory in our laptops, we’d have no need for clumsy databases.
Instead, we could just use our objects whenever we liked. What would that look like?

You have to get your data from somewhere
import all_my_data

def create_a_batch():
    batch = Batch(...)
    all_my_data.batches.add(batch)

def modify_a_batch(batch_id, new_quantity):
    batch = all_my_data.batches.get(batch_id)
    batch.change_initial_quantity(new_quantity)

Even though our objects are in memory, we need to put them somewhere so we can
find them again. Our in-memory data would let us add new objects, just like a list or
a set. Because the objects are in memory, we never need to call a .save() method; we
just fetch the object we care about and modify it in memory.

Introducing the Repository Pattern | 31



6 You may be thinking, “What about list or delete or update?” However, in an ideal world, we modify our
model objects one at a time, and delete is usually handled as a soft-delete—i.e., batch.cancel(). Finally,
update is taken care of by the Unit of Work pattern, as you’ll see in Chapter 6.

7 To really reap the benefits of ABCs (such as they may be), be running helpers like pylint and mypy.

The Repository in the Abstract
The simplest repository has just two methods: add() to put a new item in the reposi‐
tory, and get() to return a previously added item.6 We stick rigidly to using these
methods for data access in our domain and our service layer. This self-imposed sim‐
plicity stops us from coupling our domain model to the database.

Here’s what an abstract base class (ABC) for our repository would look like:

The simplest possible repository (repository.py)
class AbstractRepository(abc.ABC):

    @abc.abstractmethod  
    def add(self, batch: model.Batch):
        raise NotImplementedError  

    @abc.abstractmethod
    def get(self, reference) -> model.Batch:
        raise NotImplementedError

Python tip: @abc.abstractmethod is one of the only things that makes ABCs
actually “work” in Python. Python will refuse to let you instantiate a class that
does not implement all the abstractmethods defined in its parent class.7

raise NotImplementedError is nice, but it’s neither necessary nor sufficient. In
fact, your abstract methods can have real behavior that subclasses can call out to,
if you really want.

32 | Chapter 2: Repository Pattern



Abstract Base Classes, Duck Typing, and Protocols
We’re using abstract base classes in this book for didactic reasons: we hope they help
explain what the interface of the repository abstraction is.

In real life, we’ve sometimes found ourselves deleting ABCs from our production
code, because Python makes it too easy to ignore them, and they end up unmain‐
tained and, at worst, misleading. In practice we often just rely on Python’s duck typ‐
ing to enable abstractions. To a Pythonista, a repository is any object that has
add(thing) and get(id) methods.

An alternative to look into is PEP 544 protocols. These give you typing without the
possibility of inheritance, which “prefer composition over inheritance” fans will par‐
ticularly like.

What Is the Trade-Off?
You know they say economists know the price of everything and the value of nothing?
Well, programmers know the benefits of everything and the trade-offs of nothing.

—Rich Hickey

Whenever we introduce an architectural pattern in this book, we’ll always ask, “What
do we get for this? And what does it cost us?”

Usually, at the very least, we’ll be introducing an extra layer of abstraction, and
although we may hope it will reduce complexity overall, it does add complexity
locally, and it has a cost in terms of the raw numbers of moving parts and ongoing
maintenance.

The Repository pattern is probably one of the easiest choices in the book, though, if
you’re already heading down the DDD and dependency inversion route. As far as our
code is concerned, we’re really just swapping the SQLAlchemy abstraction (ses
sion.query(Batch)) for a different one (batches_repo.get) that we designed.

We will have to write a few lines of code in our repository class each time we add a
new domain object that we want to retrieve, but in return we get a simple abstraction
over our storage layer, which we control. The Repository pattern would make it easy
to make fundamental changes to the way we store things (see Appendix C), and as
we’ll see, it is easy to fake out for unit tests.

In addition, the Repository pattern is so common in the DDD world that, if you do
collaborate with programmers who have come to Python from the Java and C#
worlds, they’re likely to recognize it. Figure 2-5 illustrates the pattern.

Introducing the Repository Pattern | 33

https://oreil.ly/q9EPC


Figure 2-5. Repository pattern

As always, we start with a test. This would probably be classified as an integration
test, since we’re checking that our code (the repository) is correctly integrated with
the database; hence, the tests tend to mix raw SQL with calls and assertions on our
own code.

Unlike the ORM tests from earlier, these tests are good candidates
for staying part of your codebase longer term, particularly if any
parts of your domain model mean the object-relational map is
nontrivial.

Repository test for saving an object (test_repository.py)
def test_repository_can_save_a_batch(session):
    batch = model.Batch("batch1", "RUSTY-SOAPDISH", 100, eta=None)

    repo = repository.SqlAlchemyRepository(session)
    repo.add(batch)  
    session.commit()  

    rows = list(session.execute(
        'SELECT reference, sku, _purchased_quantity, eta FROM "batches"'  
    ))
    assert rows == [("batch1", "RUSTY-SOAPDISH", 100, None)]

repo.add() is the method under test here.

We keep the .commit() outside of the repository and make it the responsibility
of the caller. There are pros and cons for this; some of our reasons will become
clearer when we get to Chapter 6.

We use the raw SQL to verify that the right data has been saved.

The next test involves retrieving batches and allocations, so it’s more complex:

34 | Chapter 2: Repository Pattern



Repository test for retrieving a complex object (test_repository.py)
def insert_order_line(session):
    session.execute(  
        'INSERT INTO order_lines (orderid, sku, qty)'
        ' VALUES ("order1", "GENERIC-SOFA", 12)'
    )
    [[orderline_id]] = session.execute(
        'SELECT id FROM order_lines WHERE orderid=:orderid AND sku=:sku',
        dict(orderid="order1", sku="GENERIC-SOFA")
    )
    return orderline_id

def insert_batch(session, batch_id):  
    ...

def test_repository_can_retrieve_a_batch_with_allocations(session):
    orderline_id = insert_order_line(session)
    batch1_id = insert_batch(session, "batch1")
    insert_batch(session, "batch2")
    insert_allocation(session, orderline_id, batch1_id)  

    repo = repository.SqlAlchemyRepository(session)
    retrieved = repo.get("batch1")

    expected = model.Batch("batch1", "GENERIC-SOFA", 100, eta=None)
    assert retrieved == expected  # Batch.__eq__ only compares reference  
    assert retrieved.sku == expected.sku  
    assert retrieved._purchased_quantity == expected._purchased_quantity
    assert retrieved._allocations == {  
        model.OrderLine("order1", "GENERIC-SOFA", 12),
    }

This tests the read side, so the raw SQL is preparing data to be read by the
repo.get().

We’ll spare you the details of insert_batch and insert_allocation; the point is
to create a couple of batches, and, for the batch we’re interested in, to have one
existing order line allocated to it.

And that’s what we verify here. The first assert == checks that the types match,
and that the reference is the same (because, as you remember, Batch is an entity,
and we have a custom eq for it).

So we also explicitly check on its major attributes, including ._allocations,
which is a Python set of OrderLine value objects.

Whether or not you painstakingly write tests for every model is a judgment call. Once
you have one class tested for create/modify/save, you might be happy to go on and do

Introducing the Repository Pattern | 35



the others with a minimal round-trip test, or even nothing at all, if they all follow a
similar pattern. In our case, the ORM config that sets up the ._allocations set is a
little complex, so it merited a specific test.

You end up with something like this:

A typical repository (repository.py)
class SqlAlchemyRepository(AbstractRepository):

    def __init__(self, session):
        self.session = session

    def add(self, batch):
        self.session.add(batch)

    def get(self, reference):
        return self.session.query(model.Batch).filter_by(reference=reference).one()

    def list(self):
        return self.session.query(model.Batch).all()

And now our Flask endpoint might look something like the following:

Using our repository directly in our API endpoint
@flask.route.gubbins
def allocate_endpoint():
    batches = SqlAlchemyRepository.list()
    lines = [
        OrderLine(l['orderid'], l['sku'], l['qty'])
         for l in request.params...
    ]
    allocate(lines, batches)
    session.commit()
    return 201

Exercise for the Reader
We bumped into a friend at a DDD conference the other day who said, “I haven’t used
an ORM in 10 years.” The Repository pattern and an ORM both act as abstractions in
front of raw SQL, so using one behind the other isn’t really necessary. Why not have a
go at implementing our repository without using the ORM? You’ll find the code on
GitHub.

We’ve left the repository tests, but figuring out what SQL to write is up to you. Per‐
haps it’ll be harder than you think; perhaps it’ll be easier. But the nice thing is, the rest
of your application just doesn’t care.

36 | Chapter 2: Repository Pattern

https://github.com/cosmicpython/code/tree/chapter_02_repository_exercise
https://github.com/cosmicpython/code/tree/chapter_02_repository_exercise


Building a Fake Repository for Tests Is Now Trivial!
Here’s one of the biggest benefits of the Repository pattern:

A simple fake repository using a set (repository.py)
class FakeRepository(AbstractRepository):

    def __init__(self, batches):
        self._batches = set(batches)

    def add(self, batch):
        self._batches.add(batch)

    def get(self, reference):
        return next(b for b in self._batches if b.reference == reference)

    def list(self):
        return list(self._batches)

Because it’s a simple wrapper around a set, all the methods are one-liners.

Using a fake repo in tests is really easy, and we have a simple abstraction that’s easy to
use and reason about:

Example usage of fake repository (test_api.py)
fake_repo = FakeRepository([batch1, batch2, batch3])

You’ll see this fake in action in the next chapter.

Building fakes for your abstractions is an excellent way to get
design feedback: if it’s hard to fake, the abstraction is probably too
complicated.

What Is a Port and What Is an Adapter, in Python?
We don’t want to dwell on the terminology too much here because the main thing we
want to focus on is dependency inversion, and the specifics of the technique you use
don’t matter too much. Also, we’re aware that different people use slightly different
definitions.

Ports and adapters came out of the OO world, and the definition we hold onto is that
the port is the interface between our application and whatever it is we wish to abstract
away, and the adapter is the implementation behind that interface or abstraction.

Now Python doesn’t have interfaces per se, so although it’s usually easy to identify an
adapter, defining the port can be harder. If you’re using an abstract base class, that’s

Building a Fake Repository for Tests Is Now Trivial! | 37



8 Diagram inspired by a post called “Global Complexity, Local Simplicity” by Rob Vens.

the port. If not, the port is just the duck type that your adapters conform to and that
your core application expects—the function and method names in use, and their
argument names and types.

Concretely, in this chapter, AbstractRepository is the port, and SqlAlchemyReposi
tory and FakeRepository are the adapters.

Wrap-Up
Bearing the Rich Hickey quote in mind, in each chapter we summarize the costs and
benefits of each architectural pattern we introduce. We want to be clear that we’re not
saying every single application needs to be built this way; only sometimes does the
complexity of the app and domain make it worth investing the time and effort in
adding these extra layers of indirection.

With that in mind, Table 2-1 shows some of the pros and cons of the Repository pat‐
tern and our persistence-ignorant model.

Table 2-1. Repository pattern and persistence ignorance: the trade-offs

Pros Cons

• We have a simple interface between persistent storage and our
domain model.

• It’s easy to make a fake version of the repository for unit testing, or
to swap out different storage solutions, because we’ve fully
decoupled the model from infrastructure concerns.

• Writing the domain model before thinking about persistence helps
us focus on the business problem at hand. If we ever want to
radically change our approach, we can do that in our model, without
needing to worry about foreign keys or migrations until later.

• Our database schema is really simple because we have complete
control over how we map our objects to tables.

• An ORM already buys you some decoupling.
Changing foreign keys might be hard, but it
should be pretty easy to swap between MySQL
and Postgres if you ever need to.

• Maintaining ORM mappings by hand requires
extra work and extra code.

• Any extra layer of indirection always increases
maintenance costs and adds a “WTF factor” for
Python programmers who’ve never seen the
Repository pattern before.

Figure 2-6 shows the basic thesis: yes, for simple cases, a decoupled domain model is
harder work than a simple ORM/ActiveRecord pattern.8

If your app is just a simple CRUD (create-read-update-delete)
wrapper around a database, then you don’t need a domain model
or a repository.

38 | Chapter 2: Repository Pattern

https://oreil.ly/fQXkP


But the more complex the domain, the more an investment in freeing yourself from 
infrastructure concerns will pay off in terms of the ease of making changes.

Figure 2-6. Domain model trade-offs as a diagram

Our example code isn’t complex enough to give more than a hint of what the right-
hand side of the graph looks like, but the hints are there. Imagine, for example, if we
decide one day that we want to change allocations to live on the OrderLine instead of
on the Batch object: if we were using Django, say, we’d have to define and think
through the database migration before we could run any tests. As it is, because our
model is just plain old Python objects, we can change a set() to being a new
attribute, without needing to think about the database until later.

Repository Pattern Recap
Apply dependency inversion to your ORM

Our domain model should be free of infrastructure concerns, so your ORM
should import your model, and not the other way around.

The Repository pattern is a simple abstraction around permanent storage
The repository gives you the illusion of a collection of in-memory objects. It
makes it easy to create a FakeRepository for testing and to swap fundamental
details of your infrastructure without disrupting your core application. See
Appendix C for an example.

You’ll be wondering, how do we instantiate these repositories, fake or real? What will
our Flask app actually look like? You’ll find out in the next exciting installment, the
Service Layer pattern.

But first, a brief digression.

Wrap-Up | 39





1 A code kata is a small, contained programming challenge often used to practice TDD. See “Kata—The Only
Way to Learn TDD” by Peter Provost.

CHAPTER 3

A Brief Interlude: On Coupling
and Abstractions

Allow us a brief digression on the subject of abstractions, dear reader. We’ve talked
about abstractions quite a lot. The Repository pattern is an abstraction over perma‐
nent storage, for example. But what makes a good abstraction? What do we want
from abstractions? And how do they relate to testing?

The code for this chapter is in the chapter_03_abstractions branch
on GitHub:

git clone https://github.com/cosmicpython/code.git
git checkout chapter_03_abstractions

A key theme in this book, hidden among the fancy patterns, is that we can use simple
abstractions to hide messy details. When we’re writing code for fun, or in a kata,1 we
get to play with ideas freely, hammering things out and refactoring aggressively. In a
large-scale system, though, we become constrained by the decisions made elsewhere
in the system.

When we’re unable to change component A for fear of breaking component B, we say
that the components have become coupled. Locally, coupling is a good thing: it’s a sign
that our code is working together, each component supporting the others, all of them
fitting in place like the gears of a watch. In jargon, we say this works when there is
high cohesion between the coupled elements.

41

https://oreil.ly/vhjju
https://oreil.ly/vhjju
https://oreil.ly/k6MmV


Globally, coupling is a nuisance: it increases the risk and the cost of changing our
code, sometimes to the point where we feel unable to make any changes at all. This is
the problem with the Ball of Mud pattern: as the application grows, if we’re unable to
prevent coupling between elements that have no cohesion, that coupling increases
superlinearly until we are no longer able to effectively change our systems.

We can reduce the degree of coupling within a system (Figure 3-1) by abstracting
away the details (Figure 3-2).

Figure 3-1. Lots of coupling

Figure 3-2. Less coupling

In both diagrams, we have a pair of subsystems, with one dependent on the other. In
Figure 3-1, there is a high degree of coupling between the two; the number of arrows
indicates lots of kinds of dependencies between the two. If we need to change system
B, there’s a good chance that the change will ripple through to system A.

In Figure 3-2, though, we have reduced the degree of coupling by inserting a new,
simpler abstraction. Because it is simpler, system A has fewer kinds of dependencies
on the abstraction. The abstraction serves to protect us from change by hiding away
the complex details of whatever system B does—we can change the arrows on the
right without changing the ones on the left.

42 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



Abstracting State Aids Testability
Let’s see an example. Imagine we want to write code for synchronizing two file direc‐
tories, which we’ll call the source and the destination:

• If a file exists in the source but not in the destination, copy the file over.
• If a file exists in the source, but it has a different name than in the destination,

rename the destination file to match.
• If a file exists in the destination but not in the source, remove it.

Our first and third requirements are simple enough: we can just compare two lists of
paths. Our second is trickier, though. To detect renames, we’ll have to inspect the
content of files. For this, we can use a hashing function like MD5 or SHA-1. The code
to generate a SHA-1 hash from a file is simple enough:

Hashing a file (sync.py)
BLOCKSIZE = 65536

def hash_file(path):
    hasher = hashlib.sha1()
    with path.open("rb") as file:
        buf = file.read(BLOCKSIZE)
        while buf:
            hasher.update(buf)
            buf = file.read(BLOCKSIZE)
    return hasher.hexdigest()

Now we need to write the bit that makes decisions about what to do—the business
logic, if you will.

When we have to tackle a problem from first principles, we usually try to write a sim‐
ple implementation and then refactor toward better design. We’ll use this approach
throughout the book, because it’s how we write code in the real world: start with a
solution to the smallest part of the problem, and then iteratively make the solution
richer and better designed.

Our first hackish approach looks something like this:

Basic sync algorithm (sync.py)
import hashlib
import os
import shutil
from pathlib import Path

def sync(source, dest):
    # Walk the source folder and build a dict of filenames and their hashes

Abstracting State Aids Testability | 43



    source_hashes = {}
    for folder, _, files in os.walk(source):
        for fn in files:
            source_hashes[hash_file(Path(folder) / fn)] = fn

    seen = set()  # Keep track of the files we've found in the target

    # Walk the target folder and get the filenames and hashes
    for folder, _, files in os.walk(dest):
        for fn in files:
            dest_path = Path(folder) / fn
            dest_hash = hash_file(dest_path)
            seen.add(dest_hash)

            # if there's a file in target that's not in source, delete it
            if dest_hash not in source_hashes:
                dest_path.remove()

            # if there's a file in target that has a different path in source,
            # move it to the correct path
            elif dest_hash in source_hashes and fn != source_hashes[dest_hash]:
                shutil.move(dest_path, Path(folder) / source_hashes[dest_hash])

    # for every file that appears in source but not target, copy the file to
    # the target
    for src_hash, fn in source_hashes.items():
        if src_hash not in seen:
            shutil.copy(Path(source) / fn, Path(dest) / fn)

Fantastic! We have some code and it looks OK, but before we run it on our hard drive,
maybe we should test it. How do we go about testing this sort of thing?

Some end-to-end tests (test_sync.py)
def test_when_a_file_exists_in_the_source_but_not_the_destination():
    try:
        source = tempfile.mkdtemp()
        dest = tempfile.mkdtemp()

        content = "I am a very useful file"
        (Path(source) / 'my-file').write_text(content)

        sync(source, dest)

        expected_path = Path(dest) /  'my-file'
        assert expected_path.exists()
        assert expected_path.read_text() == content

    finally:
        shutil.rmtree(source)
        shutil.rmtree(dest)

44 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



def test_when_a_file_has_been_renamed_in_the_source():
    try:
        source = tempfile.mkdtemp()
        dest = tempfile.mkdtemp()

        content = "I am a file that was renamed"
        source_path = Path(source) / 'source-filename'
        old_dest_path = Path(dest) / 'dest-filename'
        expected_dest_path = Path(dest) / 'source-filename'
        source_path.write_text(content)
        old_dest_path.write_text(content)

        sync(source, dest)

        assert old_dest_path.exists() is False
        assert expected_dest_path.read_text() == content

    finally:
        shutil.rmtree(source)
        shutil.rmtree(dest)

Wowsers, that’s a lot of setup for two simple cases! The problem is that our domain
logic, “figure out the difference between two directories,” is tightly coupled to the I/O
code. We can’t run our difference algorithm without calling the pathlib, shutil, and
hashlib modules.

And the trouble is, even with our current requirements, we haven’t written enough
tests: the current implementation has several bugs (the shutil.move() is wrong, for
example). Getting decent coverage and revealing these bugs means writing more
tests, but if they’re all as unwieldy as the preceding ones, that’s going to get real pain‐
ful real quickly.

On top of that, our code isn’t very extensible. Imagine trying to implement a --dry-
run flag that gets our code to just print out what it’s going to do, rather than actually
do it. Or what if we wanted to sync to a remote server, or to cloud storage?

Our high-level code is coupled to low-level details, and it’s making life hard. As the
scenarios we consider get more complex, our tests will get more unwieldy. We can
definitely refactor these tests (some of the cleanup could go into pytest fixtures, for
example) but as long as we’re doing filesystem operations, they’re going to stay slow
and be hard to read and write.

Abstracting State Aids Testability | 45



2 If you’re used to thinking in terms of interfaces, that’s what we’re trying to define here.

Choosing the Right Abstraction(s)
What could we do to rewrite our code to make it more testable?

First, we need to think about what our code needs from the filesystem. Reading
through the code, we can see that three distinct things are happening. We can think of
these as three distinct responsibilities that the code has:

1. We interrogate the filesystem by using os.walk and determine hashes for a series
of paths. This is similar in both the source and the destination cases.

2. We decide whether a file is new, renamed, or redundant.
3. We copy, move, or delete files to match the source.

Remember that we want to find simplifying abstractions for each of these responsibili‐
ties. That will let us hide the messy details so we can focus on the interesting logic.2

In this chapter, we’re refactoring some gnarly code into a more test‐
able structure by identifying the separate tasks that need to be done
and giving each task to a clearly defined actor, along similar lines to
the duckduckgo example.

For steps 1 and 2, we’ve already intuitively started using an abstraction, a dictionary
of hashes to paths. You may already have been thinking, “Why not build up a dictio‐
nary for the destination folder as well as the source, and then we just compare two
dicts?” That seems like a nice way to abstract the current state of the filesystem:

source_files = {'hash1': 'path1', 'hash2': 'path2'}
dest_files = {'hash1': 'path1', 'hash2': 'pathX'}

What about moving from step 2 to step 3? How can we abstract out the actual move/
copy/delete filesystem interaction?

We’ll apply a trick here that we’ll employ on a grand scale later in the book. We’re
going to separate what we want to do from how to do it. We’re going to make our
program output a list of commands that look like this:

("COPY", "sourcepath", "destpath"),
("MOVE", "old", "new"),

Now we could write tests that just use two filesystem dicts as inputs, and we would
expect lists of tuples of strings representing actions as outputs.

46 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



Instead of saying, “Given this actual filesystem, when I run my function, check what
actions have happened,” we say, “Given this abstraction of a filesystem, what abstrac‐
tion of filesystem actions will happen?”

Simplified inputs and outputs in our tests (test_sync.py)
    def test_when_a_file_exists_in_the_source_but_not_the_destination():
        src_hashes = {'hash1': 'fn1'}
        dst_hashes = {}
        expected_actions = [('COPY', '/src/fn1', '/dst/fn1')]
        ...

    def test_when_a_file_has_been_renamed_in_the_source():
        src_hashes = {'hash1': 'fn1'}
        dst_hashes = {'hash1': 'fn2'}
        expected_actions == [('MOVE', '/dst/fn2', '/dst/fn1')]
        ...

Implementing Our Chosen Abstractions
That’s all very well, but how do we actually write those new tests, and how do we
change our implementation to make it all work?

Our goal is to isolate the clever part of our system, and to be able to test it thoroughly
without needing to set up a real filesystem. We’ll create a “core” of code that has no
dependencies on external state and then see how it responds when we give it input
from the outside world (this kind of approach was characterized by Gary Bernhardt
as Functional Core, Imperative Shell, or FCIS).

Let’s start off by splitting the code to separate the stateful parts from the logic.

And our top-level function will contain almost no logic at all; it’s just an imperative
series of steps: gather inputs, call our logic, apply outputs:

Split our code into three (sync.py)
def sync(source, dest):
    # imperative shell step 1, gather inputs
    source_hashes = read_paths_and_hashes(source)  
    dest_hashes = read_paths_and_hashes(dest)  

    # step 2: call functional core
    actions = determine_actions(source_hashes, dest_hashes, source, dest)  

    # imperative shell step 3, apply outputs
    for action, *paths in actions:
        if action == 'copy':
            shutil.copyfile(*paths)
        if action == 'move':
            shutil.move(*paths)

Implementing Our Chosen Abstractions | 47

https://oreil.ly/wnad4


        if action == 'delete':
            os.remove(paths[0])

Here’s the first function we factor out, read_paths_and_hashes(), which isolates
the I/O part of our application.

Here is where carve out the functional core, the business logic.

The code to build up the dictionary of paths and hashes is now trivially easy to write:

A function that just does I/O (sync.py)
def read_paths_and_hashes(root):
    hashes = {}
    for folder, _, files in os.walk(root):
        for fn in files:
            hashes[hash_file(Path(folder) / fn)] = fn
    return hashes

The determine_actions() function will be the core of our business logic, which says,
“Given these two sets of hashes and filenames, what should we copy/move/delete?”. It
takes simple data structures and returns simple data structures:

A function that just does business logic (sync.py)
def determine_actions(src_hashes, dst_hashes, src_folder, dst_folder):
    for sha, filename in src_hashes.items():
        if sha not in dst_hashes:
            sourcepath = Path(src_folder) / filename
            destpath = Path(dst_folder) / filename
            yield 'copy', sourcepath, destpath

        elif dst_hashes[sha] != filename:
            olddestpath = Path(dst_folder) / dst_hashes[sha]
            newdestpath = Path(dst_folder) / filename
            yield 'move', olddestpath, newdestpath

    for sha, filename in dst_hashes.items():
        if sha not in src_hashes:
            yield 'delete', dst_folder / filename

Our tests now act directly on the determine_actions() function:

Nicer-looking tests (test_sync.py)
def test_when_a_file_exists_in_the_source_but_not_the_destination():
    src_hashes = {'hash1': 'fn1'}
    dst_hashes = {}
    actions = determine_actions(src_hashes, dst_hashes, Path('/src'), Path('/dst'))
    assert list(actions) == [('copy', Path('/src/fn1'), Path('/dst/fn1'))]
...

48 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



def test_when_a_file_has_been_renamed_in_the_source():
    src_hashes = {'hash1': 'fn1'}
    dst_hashes = {'hash1': 'fn2'}
    actions = determine_actions(src_hashes, dst_hashes, Path('/src'), Path('/dst'))
    assert list(actions) == [('move', Path('/dst/fn2'), Path('/dst/fn1'))]

Because we’ve disentangled the logic of our program—the code for identifying
changes—from the low-level details of I/O, we can easily test the core of our code.

With this approach, we’ve switched from testing our main entrypoint function,
sync(), to testing a lower-level function, determine_actions(). You might decide
that’s fine because sync() is now so simple. Or you might decide to keep some inte‐
gration/acceptance tests to test that sync(). But there’s another option, which is to
modify the sync() function so it can be unit tested and end-to-end tested; it’s an
approach Bob calls edge-to-edge testing.

Testing Edge to Edge with Fakes and Dependency Injection
When we start writing a new system, we often focus on the core logic first, driving it
with direct unit tests. At some point, though, we want to test bigger chunks of the
system together.

We could return to our end-to-end tests, but those are still as tricky to write and
maintain as before. Instead, we often write tests that invoke a whole system together
but fake the I/O, sort of edge to edge:

Explicit dependencies (sync.py)
def sync(reader, filesystem, source_root, dest_root): 

    source_hashes = reader(source_root) 
    dest_hashes = reader(dest_root)

    for sha, filename in src_hashes.items():
        if sha not in dest_hashes:
            sourcepath = source_root / filename
            destpath = dest_root / filename
            filesystem.copy(destpath, sourcepath) 

        elif dest_hashes[sha] != filename:
            olddestpath = dest_root / dest_hashes[sha]
            newdestpath = dest_root / filename
            filesystem.move(olddestpath, newdestpath)

    for sha, filename in dst_hashes.items():
        if sha not in source_hashes:
            filesystem.delete(dest_root/filename)

Implementing Our Chosen Abstractions | 49



Our top-level function now exposes two new dependencies, a reader and a file
system.

We invoke the reader to produce our files dict.

We invoke the filesystem to apply the changes we detect.

Although we’re using dependency injection, there is no need to
define an abstract base class or any kind of explicit interface. In this
book, we often show ABCs because we hope they help you under‐
stand what the abstraction is, but they’re not necessary. Python’s
dynamic nature means we can always rely on duck typing.

Tests using DI
class FakeFileSystem(list): 

    def copy(self, src, dest): 
        self.append(('COPY', src, dest))

    def move(self, src, dest):
        self.append(('MOVE', src, dest))

    def delete(self, dest):
        self.append(('DELETE', src, dest))

def test_when_a_file_exists_in_the_source_but_not_the_destination():
    source = {"sha1": "my-file" }
    dest = {}
    filesystem = FakeFileSystem()

    reader = {"/source": source, "/dest": dest}
    synchronise_dirs(reader.pop, filesystem, "/source", "/dest")

    assert filesystem == [("COPY", "/source/my-file", "/dest/my-file")]

def test_when_a_file_has_been_renamed_in_the_source():
    source = {"sha1": "renamed-file" }
    dest = {"sha1": "original-file" }
    filesystem = FakeFileSystem()

    reader = {"/source": source, "/dest": dest}
    synchronise_dirs(reader.pop, filesystem, "/source", "/dest")

    assert filesystem == [("MOVE", "/dest/original-file", "/dest/renamed-file")]

50 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



Bob loves using lists to build simple test doubles, even though his coworkers get
mad. It means we can write tests like assert foo not in database.

Each method in our FakeFileSystem just appends something to the list so we
can inspect it later. This is an example of a spy object.

The advantage of this approach is that our tests act on the exact same function that’s
used by our production code. The disadvantage is that we have to make our stateful
components explicit and pass them around. David Heinemeier Hansson, the creator
of Ruby on Rails, famously described this as “test-induced design damage.”

In either case, we can now work on fixing all the bugs in our implementation; enu‐
merating tests for all the edge cases is now much easier.

Why Not Just Patch It Out?
At this point you may be scratching your head and thinking, “Why don’t you just use
mock.patch and save yourself the effort?"”

We avoid using mocks in this book and in our production code too. We’re not going
to enter into a Holy War, but our instinct is that mocking frameworks, particularly
monkeypatching, are a code smell.

Instead, we like to clearly identify the responsibilities in our codebase, and to separate
those responsibilities into small, focused objects that are easy to replace with a test
double.

You can see an example in Chapter 8, where we mock.patch() out
an email-sending module, but eventually we replace that with an
explicit bit of dependency injection in Chapter 13.

We have three closely related reasons for our preference:

• Patching out the dependency you’re using makes it possible to unit test the code,
but it does nothing to improve the design. Using mock.patch won’t let your code
work with a --dry-run flag, nor will it help you run against an FTP server. For
that, you’ll need to introduce abstractions.

• Tests that use mocks tend to be more coupled to the implementation details of
the codebase. That’s because mock tests verify the interactions between things:
did we call shutil.copy with the right arguments? This coupling between code
and test tends to make tests more brittle, in our experience.

• Overuse of mocks leads to complicated test suites that fail to explain the code.

Implementing Our Chosen Abstractions | 51



3 Which is not to say that we think the London school people are wrong. Some insanely smart people work that
way. It’s just not what we’re used to.

Designing for testability really means designing for extensibility.
We trade off a little more complexity for a cleaner design that
admits novel use cases.

Mocks Versus Fakes; Classic-Style Versus London-School TDD
Here’s a short and somewhat simplistic definition of the difference between mocks
and fakes:

• Mocks are used to verify how something gets used; they have methods like
assert_called_once_with(). They’re associated with London-school TDD.

• Fakes are working implementations of the thing they’re replacing, but they’re
designed for use only in tests. They wouldn’t work “in real life”; our in-memory
repository is a good example. But you can use them to make assertions about the
end state of a system rather than the behaviors along the way, so they’re associ‐
ated with classic-style TDD.

We’re slightly conflating mocks with spies and fakes with stubs here, and you can read
the long, correct answer in Martin Fowler’s classic essay on the subject called “Mocks
Aren’t Stubs”.

It also probably doesn’t help that the MagicMock objects provided by unittest.mock
aren’t, strictly speaking, mocks; they’re spies, if anything. But they’re also often used
as stubs or dummies. There, we promise we’re done with the test double terminology
nitpicks now.

What about London-school versus classic-style TDD? You can read more about those
two in Martin Fowler’s article that we just cited, as well as on the Software Engineer‐
ing Stack Exchange site, but in this book we’re pretty firmly in the classicist camp. We
like to build our tests around state both in setup and in assertions, and we like to
work at the highest level of abstraction possible rather than doing checks on the
behavior of intermediary collaborators.3

Read more on this in “On Deciding What Kind of Tests to Write” on page 73.

We view TDD as a design practice first and a testing practice second. The tests act as
a record of our design choices and serve to explain the system to us when we return
to the code after a long absence.

52 | Chapter 3: A Brief Interlude: On Coupling and Abstractions

https://oreil.ly/yYjBN
https://oreil.ly/yYjBN
https://oreil.ly/H2im_
https://oreil.ly/H2im_


Tests that use too many mocks get overwhelmed with setup code that hides the story
we care about.

Steve Freeman has a great example of overmocked tests in his talk “Test-Driven
Development”. You should also check out this PyCon talk, “Mocking and Patching
Pitfalls”, by our esteemed tech reviewer, Ed Jung, which also addresses mocking and
its alternatives. And while we’re recommending talks, don’t miss Brandon Rhodes
talking about “Hoisting Your I/O”, which really nicely covers the issues we’re talking
about, using another simple example.

In this chapter, we’ve spent a lot of time replacing end-to-end tests
with unit tests. That doesn’t mean we think you should never use
E2E tests! In this book we’re showing techniques to get you to a
decent test pyramid with as many unit tests as possible, and with
the minimum number of E2E tests you need to feel confident. Read
on to “Recap: Rules of Thumb for Different Types of Test” on page
79 for more details.

So Which Do We Use In This Book? Functional or Object-Oriented
Composition?

Both. Our domain model is entirely free of dependencies and side effects, so that’s our
functional core. The service layer that we build around it (in Chapter 4) allows us to
drive the system edge to edge, and we use dependency injection to provide those serv‐
ices with stateful components, so we can still unit test them.

See Chapter 13 for more exploration of making our dependency injection more
explicit and centralized.

Wrap-Up
We’ll see this idea come up again and again in the book: we can make our systems
easier to test and maintain by simplifying the interface between our business logic
and messy I/O. Finding the right abstraction is tricky, but here are a few heuristics
and questions to ask yourself:

• Can I choose a familiar Python data structure to represent the state of the messy
system and then try to imagine a single function that can return that state?

• Where can I draw a line between my systems, where can I carve out a seam to
stick that abstraction in?

• What is a sensible way of dividing things into components with different respon‐
sibilities? What implicit concepts can I make explicit?

Wrap-Up | 53

https://oreil.ly/jAmtr
https://oreil.ly/jAmtr
https://oreil.ly/s3e05
https://oreil.ly/s3e05
https://oreil.ly/oiXJM
https://oreil.ly/zNUGG


• What are the dependencies, and what is the core business logic?

Practice makes less imperfect! And now back to our regular programming…

54 | Chapter 3: A Brief Interlude: On Coupling and Abstractions



CHAPTER 4

Our First Use Case:
Flask API and Service Layer

Back to our allocations project! Figure 4-1 shows the point we reached at the end of
Chapter 2, which covered the Repository pattern.

Figure 4-1. Before: we drive our app by talking to repositories and the domain model

55



In this chapter, we discuss the differences between orchestration logic, business logic,
and interfacing code, and we introduce the Service Layer pattern to take care of
orchestrating our workflows and defining the use cases of our system.

We’ll also discuss testing: by combining the Service Layer with our repository abstrac‐
tion over the database, we’re able to write fast tests, not just of our domain model but
of the entire workflow for a use case.

Figure 4-2 shows what we’re aiming for: we’re going to add a Flask API that will talk
to the service layer, which will serve as the entrypoint to our domain model. Because
our service layer depends on the AbstractRepository, we can unit test it by using
FakeRepository but run our production code using SqlAlchemyRepository.

Figure 4-2. The service layer will become the main way into our app

56 | Chapter 4: Our First Use Case: Flask API and Service Layer



In our diagrams, we are using the convention that new components are highlighted
with bold text/lines (and yellow/orange color, if you’re reading a digital version).

The code for this chapter is in the chapter_04_service_layer branch
on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_04_service_layer
# or to code along, checkout Chapter 2:
git checkout chapter_02_repository

Connecting Our Application to the Real World
Like any good agile team, we’re hustling to try to get an MVP out and in front of the
users to start gathering feedback. We have the core of our domain model and the
domain service we need to allocate orders, and we have the repository interface for
permanent storage.

Let’s plug all the moving parts together as quickly as we can and then refactor toward
a cleaner architecture. Here’s our plan:

1. Use Flask to put an API endpoint in front of our allocate domain service. Wire
up the database session and our repository. Test it with an end-to-end test and
some quick-and-dirty SQL to prepare test data.

2. Refactor out a service layer that can serve as an abstraction to capture the use
case and that will sit between Flask and our domain model. Build some service-
layer tests and show how they can use FakeRepository.

3. Experiment with different types of parameters for our service layer functions;
show that using primitive data types allows the service layer’s clients (our tests
and our Flask API) to be decoupled from the model layer.

A First End-to-End Test
No one is interested in getting into a long terminology debate about what counts as
an end-to-end (E2E) test versus a functional test versus an acceptance test versus an
integration test versus a unit test. Different projects need different combinations of
tests, and we’ve seen perfectly successful projects just split things into “fast tests” and
“slow tests.”

For now, we want to write one or maybe two tests that are going to exercise a “real”
API endpoint (using HTTP) and talk to a real database. Let’s call them end-to-end
tests because it’s one of the most self-explanatory names.

Connecting Our Application to the Real World | 57

https://oreil.ly/TBRuy


The following shows a first cut:

A first API test (test_api.py)
@pytest.mark.usefixtures('restart_api')
def test_api_returns_allocation(add_stock):
    sku, othersku = random_sku(), random_sku('other')  
    earlybatch = random_batchref(1)
    laterbatch = random_batchref(2)
    otherbatch = random_batchref(3)
    add_stock([  
        (laterbatch, sku, 100, '2011-01-02'),
        (earlybatch, sku, 100, '2011-01-01'),
        (otherbatch, othersku, 100, None),
    ])
    data = {'orderid': random_orderid(), 'sku': sku, 'qty': 3}
    url = config.get_api_url()  
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 201
    assert r.json()['batchref'] == earlybatch

random_sku(), random_batchref(), and so on are little helper functions that
generate randomized characters by using the uuid module. Because we’re run‐
ning against an actual database now, this is one way to prevent various tests and
runs from interfering with each other.

add_stock is a helper fixture that just hides away the details of manually insert‐
ing rows into the database using SQL. We’ll show a nicer way of doing this later
in the chapter.

config.py is a module in which we keep configuration information.

Everyone solves these problems in different ways, but you’re going to need some way
of spinning up Flask, possibly in a container, and of talking to a Postgres database. If
you want to see how we did it, check out Appendix B.

The Straightforward Implementation
Implementing things in the most obvious way, you might get something like this:

First cut of Flask app (flask_app.py)
from flask import Flask, jsonify, request
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

import config
import model
import orm

58 | Chapter 4: Our First Use Case: Flask API and Service Layer



import repository

orm.start_mappers()
get_session = sessionmaker(bind=create_engine(config.get_postgres_uri()))
app = Flask(__name__)

@app.route("/allocate", methods=['POST'])
def allocate_endpoint():
    session = get_session()
    batches = repository.SqlAlchemyRepository(session).list()
    line = model.OrderLine(
        request.json['orderid'],
        request.json['sku'],
        request.json['qty'],
    )

    batchref = model.allocate(line, batches)

    return jsonify({'batchref': batchref}), 201

So far, so good. No need for too much more of your “architecture astronaut” non‐
sense, Bob and Harry, you may be thinking.

But hang on a minute—there’s no commit. We’re not actually saving our allocation to
the database. Now we need a second test, either one that will inspect the database
state after (not very black-boxy), or maybe one that checks that we can’t allocate a sec‐
ond line if a first should have already depleted the batch:

Test allocations are persisted (test_api.py)
@pytest.mark.usefixtures('restart_api')
def test_allocations_are_persisted(add_stock):
    sku = random_sku()
    batch1, batch2 = random_batchref(1), random_batchref(2)
    order1, order2 = random_orderid(1), random_orderid(2)
    add_stock([
        (batch1, sku, 10, '2011-01-01'),
        (batch2, sku, 10, '2011-01-02'),
    ])
    line1 = {'orderid': order1, 'sku': sku, 'qty': 10}
    line2 = {'orderid': order2, 'sku': sku, 'qty': 10}
    url = config.get_api_url()

    # first order uses up all stock in batch 1
    r = requests.post(f'{url}/allocate', json=line1)
    assert r.status_code == 201
    assert r.json()['batchref'] == batch1

    # second order should go to batch 2
    r = requests.post(f'{url}/allocate', json=line2)

The Straightforward Implementation | 59



    assert r.status_code == 201
    assert r.json()['batchref'] == batch2

Not quite so lovely, but that will force us to add the commit.

Error Conditions That Require Database Checks
If we keep going like this, though, things are going to get uglier and uglier.

Suppose we want to add a bit of error handling. What if the domain raises an error,
for a SKU that’s out of stock? Or what about a SKU that doesn’t even exist? That’s not
something the domain even knows about, nor should it. It’s more of a sanity check
that we should implement at the database layer, before we even invoke the domain
service.

Now we’re looking at two more end-to-end tests:

Yet more tests at the E2E layer (test_api.py)
@pytest.mark.usefixtures('restart_api')
def test_400_message_for_out_of_stock(add_stock):  
    sku, smalL_batch, large_order = random_sku(), random_batchref(), random_orderid()
    add_stock([
        (smalL_batch, sku, 10, '2011-01-01'),
    ])
    data = {'orderid': large_order, 'sku': sku, 'qty': 20}
    url = config.get_api_url()
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 400
    assert r.json()['message'] == f'Out of stock for sku {sku}'

@pytest.mark.usefixtures('restart_api')
def test_400_message_for_invalid_sku():  
    unknown_sku, orderid = random_sku(), random_orderid()
    data = {'orderid': orderid, 'sku': unknown_sku, 'qty': 20}
    url = config.get_api_url()
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 400
    assert r.json()['message'] == f'Invalid sku {unknown_sku}'

In the first test, we’re trying to allocate more units than we have in stock.

In the second, the SKU just doesn’t exist (because we never called add_stock), so
it’s invalid as far as our app is concerned.

And sure, we could implement it in the Flask app too:

60 | Chapter 4: Our First Use Case: Flask API and Service Layer



Flask app starting to get crufty (flask_app.py)
def is_valid_sku(sku, batches):
    return sku in {b.sku for b in batches}

@app.route("/allocate", methods=['POST'])
def allocate_endpoint():
    session = get_session()
    batches = repository.SqlAlchemyRepository(session).list()
    line = model.OrderLine(
        request.json['orderid'],
        request.json['sku'],
        request.json['qty'],
    )

    if not is_valid_sku(line.sku, batches):
        return jsonify({'message': f'Invalid sku {line.sku}'}), 400

    try:
        batchref = model.allocate(line, batches)
    except model.OutOfStock as e:
        return jsonify({'message': str(e)}), 400

    session.commit()
    return jsonify({'batchref': batchref}), 201

But our Flask app is starting to look a bit unwieldy. And our number of E2E tests is
starting to get out of control, and soon we’ll end up with an inverted test pyramid (or
“ice-cream cone model,” as Bob likes to call it).

Introducing a Service Layer, and Using FakeRepository to
Unit Test It
If we look at what our Flask app is doing, there’s quite a lot of what we might call
orchestration—fetching stuff out of our repository, validating our input against data‐
base state, handling errors, and committing in the happy path. Most of these things
don’t have anything to do with having a web API endpoint (you’d need them if you
were building a CLI, for example; see Appendix C), and they’re not really things that
need to be tested by end-to-end tests.

It often makes sense to split out a service layer, sometimes called an orchestration
layer or a use-case layer.

Do you remember the FakeRepository that we prepared in Chapter 3?

Our fake repository, an in-memory collection of batches (test_services.py)
class FakeRepository(repository.AbstractRepository):

    def __init__(self, batches):

Introducing a Service Layer, and Using FakeRepository to Unit Test It | 61



1 Service-layer services and domain services do have confusingly similar names. We tackle this topic later in
“Why Is Everything Called a Service?” on page 66.

        self._batches = set(batches)

    def add(self, batch):
        self._batches.add(batch)

    def get(self, reference):
        return next(b for b in self._batches if b.reference == reference)

    def list(self):
        return list(self._batches)

Here’s where it will come in useful; it lets us test our service layer with nice, fast unit
tests:

Unit testing with fakes at the service layer (test_services.py)
def test_returns_allocation():
    line = model.OrderLine("o1", "COMPLICATED-LAMP", 10)
    batch = model.Batch("b1", "COMPLICATED-LAMP", 100, eta=None)
    repo = FakeRepository([batch])  

    result = services.allocate(line, repo, FakeSession())  
    assert result == "b1"

def test_error_for_invalid_sku():
    line = model.OrderLine("o1", "NONEXISTENTSKU", 10)
    batch = model.Batch("b1", "AREALSKU", 100, eta=None)
    repo = FakeRepository([batch])  

    with pytest.raises(services.InvalidSku, match="Invalid sku NONEXISTENTSKU"):
        services.allocate(line, repo, FakeSession())  

FakeRepository holds the Batch objects that will be used by our test.

Our services module (services.py) will define an allocate() service-layer func‐
tion. It will sit between our allocate_endpoint() function in the API layer and
the allocate() domain service function from our domain model.1

We also need a FakeSession to fake out the database session, as shown in the fol‐
lowing code snippet.

A fake database session (test_services.py)
class FakeSession():
    committed = False

62 | Chapter 4: Our First Use Case: Flask API and Service Layer



    def commit(self):
        self.committed = True

This fake session is only a temporary solution. We’ll get rid of it and make things
even nicer soon, in Chapter 6. But in the meantime the fake .commit() lets us migrate
a third test from the E2E layer:

A second test at the service layer (test_services.py)
def test_commits():
    line = model.OrderLine('o1', 'OMINOUS-MIRROR', 10)
    batch = model.Batch('b1', 'OMINOUS-MIRROR', 100, eta=None)
    repo = FakeRepository([batch])
    session = FakeSession()

    services.allocate(line, repo, session)
    assert session.committed is True

A Typical Service Function
We’ll write a service function that looks something like this:

Basic allocation service (services.py)
class InvalidSku(Exception):
    pass

def is_valid_sku(sku, batches):
    return sku in {b.sku for b in batches}

def allocate(line: OrderLine, repo: AbstractRepository, session) -> str:
    batches = repo.list()  
    if not is_valid_sku(line.sku, batches):  
        raise InvalidSku(f'Invalid sku {line.sku}')
    batchref = model.allocate(line, batches)  
    session.commit()  
    return batchref

Typical service-layer functions have similar steps:

We fetch some objects from the repository.

We make some checks or assertions about the request against the current state of
the world.

We call a domain service.

If all is well, we save/update any state we’ve changed.

Introducing a Service Layer, and Using FakeRepository to Unit Test It | 63



That last step is a little unsatisfactory at the moment, as our service layer is tightly
coupled to our database layer. We’ll improve that in Chapter 6 with the Unit of Work
pattern.

Depend on Abstractions
Notice one more thing about our service-layer function:

def allocate(line: OrderLine, repo: AbstractRepository, session) -> str:

It depends on a repository. We’ve chosen to make the dependency explicit, and we’ve
used the type hint to say that we depend on AbstractRepository. This means it’ll
work both when the tests give it a FakeRepository and when the Flask app gives it a
SqlAlchemyRepository.

If you remember “The Dependency Inversion Principle” on page xxi, this is what we
mean when we say we should “depend on abstractions.” Our high-level module, the
service layer, depends on the repository abstraction. And the details of the implemen‐
tation for our specific choice of persistent storage also depend on that same abstrac‐
tion. See Figures 4-3 and 4-4.

See also in Appendix C a worked example of swapping out the details of which persis‐
tent storage system to use while leaving the abstractions intact.

But the essentials of the service layer are there, and our Flask app now looks a lot
cleaner:

Flask app delegating to service layer (flask_app.py)
@app.route("/allocate", methods=['POST'])
def allocate_endpoint():
    session = get_session()  
    repo = repository.SqlAlchemyRepository(session)  
    line = model.OrderLine(
        request.json['orderid'],  
        request.json['sku'],  
        request.json['qty'],  
    )
    try:
        batchref = services.allocate(line, repo, session)  
    except (model.OutOfStock, services.InvalidSku) as e:
        return jsonify({'message': str(e)}), 400  

    return jsonify({'batchref': batchref}), 201  

We instantiate a database session and some repository objects.

64 | Chapter 4: Our First Use Case: Flask API and Service Layer



We extract the user’s commands from the web request and pass them to a
domain service.

We return some JSON responses with the appropriate status codes.

The responsibilities of the Flask app are just standard web stuff: per-request session
management, parsing information out of POST parameters, response status codes,
and JSON. All the orchestration logic is in the use case/service layer, and the domain
logic stays in the domain.

Finally, we can confidently strip down our E2E tests to just two, one for the happy
path and one for the unhappy path:

E2E tests only happy and unhappy paths (test_api.py)
@pytest.mark.usefixtures('restart_api')
def test_happy_path_returns_201_and_allocated_batch(add_stock):
    sku, othersku = random_sku(), random_sku('other')
    earlybatch = random_batchref(1)
    laterbatch = random_batchref(2)
    otherbatch = random_batchref(3)
    add_stock([
        (laterbatch, sku, 100, '2011-01-02'),
        (earlybatch, sku, 100, '2011-01-01'),
        (otherbatch, othersku, 100, None),
    ])
    data = {'orderid': random_orderid(), 'sku': sku, 'qty': 3}
    url = config.get_api_url()
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 201
    assert r.json()['batchref'] == earlybatch

@pytest.mark.usefixtures('restart_api')
def test_unhappy_path_returns_400_and_error_message():
    unknown_sku, orderid = random_sku(), random_orderid()
    data = {'orderid': orderid, 'sku': unknown_sku, 'qty': 20}
    url = config.get_api_url()
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 400
    assert r.json()['message'] == f'Invalid sku {unknown_sku}'

We’ve successfully split our tests into two broad categories: tests about web stuff,
which we implement end to end; and tests about orchestration stuff, which we can
test against the service layer in memory.

Introducing a Service Layer, and Using FakeRepository to Unit Test It | 65



Exercise for the Reader
Now that we have an allocate service, why not build out a service for deallocate?
We’ve added an E2E test and a few stub service-layer tests for you to get started on
GitHub.

If that’s not enough, continue into the E2E tests and flask_app.py, and refactor the
Flask adapter to be more RESTful. Notice how doing so doesn’t require any change to
our service layer or domain layer!

If you decide you want to build a read-only endpoint for
retrieving allocation info, just do “the simplest thing that can
possibly work,” which is repo.get() right in the Flask handler.
We’ll talk more about reads versus writes in Chapter 12.

Why Is Everything Called a Service?
Some of you are probably scratching your heads at this point trying to figure out
exactly what the difference is between a domain service and a service layer.

We’re sorry—we didn’t choose the names, or we’d have much cooler and friendlier
ways to talk about this stuff.

We’re using two things called a service in this chapter. The first is an application ser‐
vice (our service layer). Its job is to handle requests from the outside world and to
orchestrate an operation. What we mean is that the service layer drives the application
by following a bunch of simple steps:

• Get some data from the database
• Update the domain model
• Persist any changes

This is the kind of boring work that has to happen for every operation in your system,
and keeping it separate from business logic helps to keep things tidy.

The second type of service is a domain service. This is the name for a piece of logic
that belongs in the domain model but doesn’t sit naturally inside a stateful entity or
value object. For example, if you were building a shopping cart application, you
might choose to build taxation rules as a domain service. Calculating tax is a separate
job from updating the cart, and it’s an important part of the model, but it doesn’t
seem right to have a persisted entity for the job. Instead a stateless TaxCalculator class
or a calculate_tax function can do the job.

66 | Chapter 4: Our First Use Case: Flask API and Service Layer

https://github.com/cosmicpython/code/tree/chapter_04_service_layer_exercise


Putting Things in Folders to See Where It All Belongs
As our application gets bigger, we’ll need to keep tidying our directory structure. The
layout of our project gives us useful hints about what kinds of object we’ll find in each
file.

Here’s one way we could organize things:

Some subfolders
.
├── config.py
├── domain  
│   ├── __init__.py
│   └── model.py
├── service_layer  
│   ├── __init__.py
│   └── services.py
├── adapters  
│   ├── __init__.py
│   ├── orm.py
│   └── repository.py
├── entrypoints  
│   ├── __init__.py
│   └── flask_app.py
└── tests
    ├── __init__.py
    ├── conftest.py
    ├── unit
    │   ├── test_allocate.py
    │   ├── test_batches.py
    │   └── test_services.py
    ├── integration
    │   ├── test_orm.py
    │   └── test_repository.py
    └── e2e
        └── test_api.py

Let’s have a folder for our domain model. Currently that’s just one file, but for a
more complex application, you might have one file per class; you might have
helper parent classes for Entity, ValueObject, and Aggregate, and you might
add an exceptions.py for domain-layer exceptions and, as you’ll see in Part II,
commands.py and events.py.

We’ll distinguish the service layer. Currently that’s just one file called services.py
for our service-layer functions. You could add service-layer exceptions here, and
as you’ll see in Chapter 5, we’ll add unit_of_work.py.

Putting Things in Folders to See Where It All Belongs | 67



Adapters is a nod to the ports and adapters terminology. This will fill up with any
other abstractions around external I/O (e.g., a redis_client.py). Strictly speaking,
you would call these secondary adapters or driven adapters, or sometimes inward-
facing adapters.

Entrypoints are the places we drive our application from. In the official ports and
adapters terminology, these are adapters too, and are referred to as primary, driv‐
ing, or outward-facing adapters.

What about ports? As you may remember, they are the abstract interfaces that the
adapters implement. We tend to keep them in the same file as the adapters that imple‐
ment them.

Wrap-Up
Adding the service layer has really bought us quite a lot:

• Our Flask API endpoints become very thin and easy to write: their only responsi‐
bility is doing “web stuff,” such as parsing JSON and producing the right HTTP
codes for happy or unhappy cases.

• We’ve defined a clear API for our domain, a set of use cases or entrypoints that
can be used by any adapter without needing to know anything about our domain
model classes—whether that’s an API, a CLI (see Appendix C), or the tests!
They’re an adapter for our domain too.

• We can write tests in “high gear” by using the service layer, leaving us free to
refactor the domain model in any way we see fit. As long as we can still deliver
the same use cases, we can experiment with new designs without needing to
rewrite a load of tests.

• And our test pyramid is looking good—the bulk of our tests are fast unit tests,
with just the bare minimum of E2E and integration tests.

The DIP in Action
Figure 4-3 shows the dependencies of our service layer: the domain model and
AbstractRepository (the port, in ports and adapters terminology).

When we run the tests, Figure 4-4 shows how we implement the abstract dependen‐
cies by using FakeRepository (the adapter).

And when we actually run our app, we swap in the “real” dependency shown in
Figure 4-5.

68 | Chapter 4: Our First Use Case: Flask API and Service Layer



Figure 4-3. Abstract dependencies of the service layer

Figure 4-4. Tests provide an implementation of the abstract dependency

Figure 4-5. Dependencies at runtime

Wrap-Up | 69



Wonderful.

Let’s pause for Table 4-1, in which we consider the pros and cons of having a service
layer at all.

Table 4-1. Service layer: the trade-offs

Pros Cons

• We have a single place to capture all the use cases for
our application.

• We’ve placed our clever domain logic behind an API,
which leaves us free to refactor.

• We have cleanly separated “stuff that talks HTTP” from
“stuff that talks allocation.”

• When combined with the Repository pattern and
FakeRepository, we have a nice way of writing
tests at a higher level than the domain layer; we can
test more of our workflow without needing to use
integration tests (read on to Chapter 5 for more
elaboration on this).

• If your app is purely a web app, your controllers/view functions
can be the single place to capture all the use cases.

• It’s yet another layer of abstraction.
• Putting too much logic into the service layer can lead to the

Anemic Domain anti-pattern. It’s better to introduce this layer
after you spot orchestration logic creeping into your
controllers.

• You can get a lot of the benefits that come from having rich
domain models by simply pushing logic out of your controllers
and down to the model layer, without needing to add an extra
layer in between (aka “fat models, thin controllers”).

But there are still some bits of awkwardness to tidy up:

• The service layer is still tightly coupled to the domain, because its API is
expressed in terms of OrderLine objects. In Chapter 5, we’ll fix that and talk
about the way that the service layer enables more productive TDD.

• The service layer is tightly coupled to a session object. In Chapter 6, we’ll intro‐
duce one more pattern that works closely with the Repository and Service Layer
patterns, the Unit of Work pattern, and everything will be absolutely lovely. You’ll
see!

70 | Chapter 4: Our First Use Case: Flask API and Service Layer



CHAPTER 5

TDD in High Gear and Low Gear

We’ve introduced the service layer to capture some of the additional orchestration
responsibilities we need from a working application. The service layer helps us clearly
define our use cases and the workflow for each: what we need to get from our reposi‐
tories, what pre-checks and current state validation we should do, and what we save at
the end.

But currently, many of our unit tests operate at a lower level, acting directly on the
model. In this chapter we’ll discuss the trade-offs involved in moving those tests up to
the service-layer level, and some more general testing guidelines.

Harry Says: Seeing a Test Pyramid in Action Was a Light-Bulb Moment
Here are a few words from Harry directly:

I was initially skeptical of all Bob’s architectural patterns, but seeing an actual test pyra‐
mid made me a convert.

Once you implement domain modeling and the service layer, you really actually can get
to a stage where unit tests outnumber integration and end-to-end tests by an order of
magnitude. Having worked in places where the E2E test build would take hours (“wait
‘til tomorrow,” essentially), I can’t tell you what a difference it makes to be able to run all
your tests in minutes or seconds.

Read on for some guidelines on how to decide what kinds of tests to write and at which
level. The high gear versus low gear way of thinking really changed my testing life.

71



How Is Our Test Pyramid Looking?
Let’s see what this move to using a service layer, with its own service-layer tests, does
to our test pyramid:

Counting types of tests
$ grep -c test_ test_*.py
tests/unit/test_allocate.py:4
tests/unit/test_batches.py:8
tests/unit/test_services.py:3

tests/integration/test_orm.py:6
tests/integration/test_repository.py:2

tests/e2e/test_api.py:2

Not bad! We have 15 unit tests, 8 integration tests, and just 2 end-to-end tests. That’s
already a healthy-looking test pyramid.

Should Domain Layer Tests Move to the Service Layer?
Let’s see what happens if we take this a step further. Since we can test our software
against the service layer, we don’t really need tests for the domain model anymore.
Instead, we could rewrite all of the domain-level tests from Chapter 1 in terms of the
service layer:

Rewriting a domain test at the service layer (tests/unit/test_services.py)
# domain-layer test:
def test_prefers_current_stock_batches_to_shipments():
    in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    line = OrderLine("oref", "RETRO-CLOCK", 10)

    allocate(line, [in_stock_batch, shipment_batch])

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100

# service-layer test:
def test_prefers_warehouse_batches_to_shipments():
    in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    repo = FakeRepository([in_stock_batch, shipment_batch])
    session = FakeSession()

    line = OrderLine('oref', "RETRO-CLOCK", 10)

72 | Chapter 5: TDD in High Gear and Low Gear



    services.allocate(line, repo, session)

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100

Why would we want to do that?

Tests are supposed to help us change our system fearlessly, but often we see teams
writing too many tests against their domain model. This causes problems when they
come to change their codebase and find that they need to update tens or even hun‐
dreds of unit tests.

This makes sense if you stop to think about the purpose of automated tests. We use
tests to enforce that a property of the system doesn’t change while we’re working. We
use tests to check that the API continues to return 200, that the database session con‐
tinues to commit, and that orders are still being allocated.

If we accidentally change one of those behaviors, our tests will break. The flip side,
though, is that if we want to change the design of our code, any tests relying directly
on that code will also fail.

As we get further into the book, you’ll see how the service layer forms an API for our
system that we can drive in multiple ways. Testing against this API reduces the
amount of code that we need to change when we refactor our domain model. If we
restrict ourselves to testing only against the service layer, we won’t have any tests that
directly interact with “private” methods or attributes on our model objects, which
leaves us freer to refactor them.

Every line of code that we put in a test is like a blob of glue, holding
the system in a particular shape. The more low-level tests we have,
the harder it will be to change things.

On Deciding What Kind of Tests to Write
You might be asking yourself, “Should I rewrite all my unit tests, then? Is it wrong to
write tests against the domain model?” To answer those questions, it’s important to
understand the trade-off between coupling and design feedback (see Figure 5-1).

On Deciding What Kind of Tests to Write | 73



Figure 5-1. The test spectrum

Extreme programming (XP) exhorts us to “listen to the code.” When we’re writing
tests, we might find that the code is hard to use or notice a code smell. This is a trig‐
ger for us to refactor, and to reconsider our design.

We only get that feedback, though, when we’re working closely with the target code.
A test for the HTTP API tells us nothing about the fine-grained design of our objects,
because it sits at a much higher level of abstraction.

On the other hand, we can rewrite our entire application and, so long as we don’t
change the URLs or request formats, our HTTP tests will continue to pass. This gives
us confidence that large-scale changes, like changing the database schema, haven’t
broken our code.

At the other end of the spectrum, the tests we wrote in Chapter 1 helped us to flesh
out our understanding of the objects we need. The tests guided us to a design that
makes sense and reads in the domain language. When our tests read in the domain
language, we feel comfortable that our code matches our intuition about the problem
we’re trying to solve.

Because the tests are written in the domain language, they act as living documenta‐
tion for our model. A new team member can read these tests to quickly understand
how the system works and how the core concepts interrelate.

We often “sketch” new behaviors by writing tests at this level to see how the code
might look. When we want to improve the design of the code, though, we will need to
replace or delete these tests, because they are tightly coupled to a particular
implementation.

High and Low Gear
Most of the time, when we are adding a new feature or fixing a bug, we don’t need to
make extensive changes to the domain model. In these cases, we prefer to write tests
against services because of the lower coupling and higher coverage.

For example, when writing an add_stock function or a cancel_order feature, we can
work more quickly and with less coupling by writing tests against the service layer.

74 | Chapter 5: TDD in High Gear and Low Gear



When starting a new project or when hitting a particularly gnarly problem, we will
drop back down to writing tests against the domain model so we get better feedback
and executable documentation of our intent.

The metaphor we use is that of shifting gears. When starting a journey, the bicycle
needs to be in a low gear so that it can overcome inertia. Once we’re off and running,
we can go faster and more efficiently by changing into a high gear; but if we suddenly
encounter a steep hill or are forced to slow down by a hazard, we again drop down to
a low gear until we can pick up speed again.

Fully Decoupling the Service-Layer Tests from the Domain
We still have direct dependencies on the domain in our service-layer tests, because we
use domain objects to set up our test data and to invoke our service-layer functions.

To have a service layer that’s fully decoupled from the domain, we need to rewrite its
API to work in terms of primitives.

Our service layer currently takes an OrderLine domain object:

Before: allocate takes a domain object (service_layer/services.py)
def allocate(line: OrderLine, repo: AbstractRepository, session) -> str:

How would it look if its parameters were all primitive types?

After: allocate takes strings and ints (service_layer/services.py)
def allocate(
        orderid: str, sku: str, qty: int, repo: AbstractRepository, session
) -> str:

We rewrite the tests in those terms as well:

Tests now use primitives in function call (tests/unit/test_services.py)
def test_returns_allocation():
    batch = model.Batch("batch1", "COMPLICATED-LAMP", 100, eta=None)
    repo = FakeRepository([batch])

    result = services.allocate("o1", "COMPLICATED-LAMP", 10, repo, FakeSession())
    assert result == "batch1"

But our tests still depend on the domain, because we still manually instantiate Batch
objects. So, if one day we decide to massively refactor how our Batch model works,
we’ll have to change a bunch of tests.

Fully Decoupling the Service-Layer Tests from the Domain | 75



Mitigation: Keep All Domain Dependencies in Fixture Functions
We could at least abstract that out to a helper function or a fixture in our tests. Here’s
one way you could do that, adding a factory function on FakeRepository:

Factory functions for fixtures are one possibility (tests/unit/test_services.py)
class FakeRepository(set):

    @staticmethod
    def for_batch(ref, sku, qty, eta=None):
        return FakeRepository([
            model.Batch(ref, sku, qty, eta),
        ])

    ...

def test_returns_allocation():
    repo = FakeRepository.for_batch("batch1", "COMPLICATED-LAMP", 100, eta=None)
    result = services.allocate("o1", "COMPLICATED-LAMP", 10, repo, FakeSession())
    assert result == "batch1"

At least that would move all of our tests’ dependencies on the domain into one place.

Adding a Missing Service
We could go one step further, though. If we had a service to add stock, we could use
that and make our service-layer tests fully expressed in terms of the service layer’s
official use cases, removing all dependencies on the domain:

Test for new add_batch service (tests/unit/test_services.py)
def test_add_batch():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("b1", "CRUNCHY-ARMCHAIR", 100, None, repo, session)
    assert repo.get("b1") is not None
    assert session.committed

In general, if you find yourself needing to do domain-layer stuff
directly in your service-layer tests, it may be an indication that your
service layer is incomplete.

76 | Chapter 5: TDD in High Gear and Low Gear



And the implementation is just two lines:

A new service for add_batch (service_layer/services.py)
def add_batch(
        ref: str, sku: str, qty: int, eta: Optional[date],
        repo: AbstractRepository, session,
):
    repo.add(model.Batch(ref, sku, qty, eta))
    session.commit()

def allocate(
        orderid: str, sku: str, qty: int, repo: AbstractRepository, session
) -> str:
    ...

Should you write a new service just because it would help remove
dependencies from your tests? Probably not. But in this case, we
almost definitely would need an add_batch service one day
anyway.

That now allows us to rewrite all of our service-layer tests purely in terms of the serv‐
ices themselves, using only primitives, and without any dependencies on the model:

Services tests now use only services (tests/unit/test_services.py)
def test_allocate_returns_allocation():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("batch1", "COMPLICATED-LAMP", 100, None, repo, session)
    result = services.allocate("o1", "COMPLICATED-LAMP", 10, repo, session)
    assert result == "batch1"

def test_allocate_errors_for_invalid_sku():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("b1", "AREALSKU", 100, None, repo, session)

    with pytest.raises(services.InvalidSku, match="Invalid sku NONEXISTENTSKU"):
        services.allocate("o1", "NONEXISTENTSKU", 10, repo, FakeSession())

This is a really nice place to be in. Our service-layer tests depend on only the service
layer itself, leaving us completely free to refactor the model as we see fit.

Fully Decoupling the Service-Layer Tests from the Domain | 77



Carrying the Improvement Through to the E2E Tests
In the same way that adding add_batch helped decouple our service-layer tests from
the model, adding an API endpoint to add a batch would remove the need for the
ugly add_stock fixture, and our E2E tests could be free of those hardcoded SQL quer‐
ies and the direct dependency on the database.

Thanks to our service function, adding the endpoint is easy, with just a little JSON
wrangling and a single function call required:

API for adding a batch (entrypoints/flask_app.py)
@app.route("/add_batch", methods=['POST'])
def add_batch():
    session = get_session()
    repo = repository.SqlAlchemyRepository(session)
    eta = request.json['eta']
    if eta is not None:
        eta = datetime.fromisoformat(eta).date()
    services.add_batch(
        request.json['ref'], request.json['sku'], request.json['qty'], eta,
        repo, session
    )
    return 'OK', 201

Are you thinking to yourself, POST to /add_batch? That’s not very
RESTful! You’re quite right. We’re being happily sloppy, but if you’d
like to make it all more RESTy, maybe a POST to /batches, then
knock yourself out! Because Flask is a thin adapter, it’ll be easy. See
the next sidebar.

And our hardcoded SQL queries from conftest.py get replaced with some API calls,
meaning the API tests have no dependencies other than the API, which is also nice:

API tests can now add their own batches (tests/e2e/test_api.py)
def post_to_add_batch(ref, sku, qty, eta):
    url = config.get_api_url()
    r = requests.post(
        f'{url}/add_batch',
        json={'ref': ref, 'sku': sku, 'qty': qty, 'eta': eta}
    )
    assert r.status_code == 201

@pytest.mark.usefixtures('postgres_db')
@pytest.mark.usefixtures('restart_api')
def test_happy_path_returns_201_and_allocated_batch():
    sku, othersku = random_sku(), random_sku('other')

78 | Chapter 5: TDD in High Gear and Low Gear



1 A valid concern about writing tests at a higher level is that it can lead to combinatorial explosion for more
complex use cases. In these cases, dropping down to lower-level unit tests of the various collaborating domain
objects can be useful. But see also Chapter 8 and “Optionally: Unit Testing Event Handlers in Isolation with a
Fake Message Bus” on page 147.

    earlybatch = random_batchref(1)
    laterbatch = random_batchref(2)
    otherbatch = random_batchref(3)
    post_to_add_batch(laterbatch, sku, 100, '2011-01-02')
    post_to_add_batch(earlybatch, sku, 100, '2011-01-01')
    post_to_add_batch(otherbatch, othersku, 100, None)
    data = {'orderid': random_orderid(), 'sku': sku, 'qty': 3}
    url = config.get_api_url()
    r = requests.post(f'{url}/allocate', json=data)
    assert r.status_code == 201
    assert r.json()['batchref'] == earlybatch

Wrap-Up
Once you have a service layer in place, you really can move the majority of your test
coverage to unit tests and develop a healthy test pyramid.

Recap: Rules of Thumb for Different Types of Test
Aim for one end-to-end test per feature

This might be written against an HTTP API, for example. The objective is to
demonstrate that the feature works, and that all the moving parts are glued
together correctly.

Write the bulk of your tests against the service layer
These edge-to-edge tests offer a good trade-off between coverage, runtime, and
efficiency. Each test tends to cover one code path of a feature and use fakes for
I/O. This is the place to exhaustively cover all the edge cases and the ins and outs
of your business logic.1

Maintain a small core of tests written against your domain model
These tests have highly focused coverage and are more brittle, but they have the
highest feedback. Don’t be afraid to delete these tests if the functionality is later
covered by tests at the service layer.

Error handling counts as a feature
Ideally, your application will be structured such that all errors that bubble up to
your entrypoints (e.g., Flask) are handled in the same way. This means you need
to test only the happy path for each feature, and to reserve one end-to-end test
for all unhappy paths (and many unhappy path unit tests, of course).

Wrap-Up | 79



A few things will help along the way:

• Express your service layer in terms of primitives rather than domain objects.
• In an ideal world, you’ll have all the services you need to be able to test entirely

against the service layer, rather than hacking state via repositories or the data‐
base. This pays off in your end-to-end tests as well.

Onto the next chapter!

80 | Chapter 5: TDD in High Gear and Low Gear



CHAPTER 6

Unit of Work Pattern

In this chapter we’ll introduce the final piece of the puzzle that ties together the
Repository and Service Layer patterns: the Unit of Work pattern.

If the Repository pattern is our abstraction over the idea of persistent storage, the
Unit of Work (UoW) pattern is our abstraction over the idea of atomic operations. It
will allow us to finally and fully decouple our service layer from the data layer.

Figure 6-1 shows that, currently, a lot of communication occurs across the layers of
our infrastructure: the API talks directly to the database layer to start a session, it
talks to the repository layer to initialize SQLAlchemyRepository, and it talks to the
service layer to ask it to allocate.

The code for this chapter is in the chapter_06_uow branch on
GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_06_uow
# or to code along, checkout Chapter 4:
git checkout chapter_04_service_layer

81

https://oreil.ly/MoWdZ
https://oreil.ly/MoWdZ


Figure 6-1. Without UoW: API talks directly to three layers

Figure 6-2 shows our target state. The Flask API now does only two things: it initial‐
izes a unit of work, and it invokes a service. The service collaborates with the UoW
(we like to think of the UoW as being part of the service layer), but neither the service
function itself nor Flask now needs to talk directly to the database.

And we’ll do it all using a lovely piece of Python syntax, a context manager.

82 | Chapter 6: Unit of Work Pattern



Figure 6-2. With UoW: UoW now manages database state

The Unit of Work Collaborates with the Repository
Let’s see the unit of work (or UoW, which we pronounce “you-wow”) in action. Here’s
how the service layer will look when we’re finished:

Preview of unit of work in action (src/allocation/service_layer/services.py)
def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:  
        batches = uow.batches.list()  
        ...
        batchref = model.allocate(line, batches)
        uow.commit()  

The Unit of Work Collaborates with the Repository | 83



1 You may have come across the use of the word collaborators to describe objects that work together to achieve a
goal. The unit of work and the repository are a great example of collaborators in the object-modeling sense. In
responsibility-driven design, clusters of objects that collaborate in their roles are called object neighborhoods,
which is, in our professional opinion, totally adorable.

We’ll start a UoW as a context manager.

uow.batches is the batches repo, so the UoW provides us access to our perma‐
nent storage.

When we’re done, we commit or roll back our work, using the UoW.

The UoW acts as a single entrypoint to our persistent storage, and it keeps track of
what objects were loaded and of the latest state.1

This gives us three useful things:

• A stable snapshot of the database to work with, so the objects we use aren’t
changing halfway through an operation

• A way to persist all of our changes at once, so if something goes wrong, we don’t
end up in an inconsistent state

• A simple API to our persistence concerns and a handy place to get a repository

Test-Driving a UoW with Integration Tests
Here are our integration tests for the UOW:

A basic “round-trip” test for a UoW (tests/integration/test_uow.py)
def test_uow_can_retrieve_a_batch_and_allocate_to_it(session_factory):
    session = session_factory()
    insert_batch(session, 'batch1', 'HIPSTER-WORKBENCH', 100, None)
    session.commit()

    uow = unit_of_work.SqlAlchemyUnitOfWork(session_factory)  
    with uow:
        batch = uow.batches.get(reference='batch1')  
        line = model.OrderLine('o1', 'HIPSTER-WORKBENCH', 10)
        batch.allocate(line)
        uow.commit()  

    batchref = get_allocated_batch_ref(session, 'o1', 'HIPSTER-WORKBENCH')
    assert batchref == 'batch1'

84 | Chapter 6: Unit of Work Pattern



We initialize the UoW by using our custom session factory and get back a uow
object to use in our with block.

The UoW gives us access to the batches repository via uow.batches.

We call commit() on it when we’re done.

For the curious, the insert_batch and get_allocated_batch_ref helpers look like
this:

Helpers for doing SQL stuff (tests/integration/test_uow.py)
def insert_batch(session, ref, sku, qty, eta):
    session.execute(
        'INSERT INTO batches (reference, sku, _purchased_quantity, eta)'
        ' VALUES (:ref, :sku, :qty, :eta)',
        dict(ref=ref, sku=sku, qty=qty, eta=eta)
    )

def get_allocated_batch_ref(session, orderid, sku):
    [[orderlineid]] = session.execute(
        'SELECT id FROM order_lines WHERE orderid=:orderid AND sku=:sku',
        dict(orderid=orderid, sku=sku)
    )
    [[batchref]] = session.execute(
        'SELECT b.reference FROM allocations JOIN batches AS b ON batch_id = b.id'
        ' WHERE orderline_id=:orderlineid',
        dict(orderlineid=orderlineid)
    )
    return batchref

Unit of Work and Its Context Manager
In our tests we’ve implicitly defined an interface for what a UoW needs to do. Let’s
make that explicit by using an abstract base class:

Abstract UoW context manager (src/allocation/service_layer/unit_of_work.py)
class AbstractUnitOfWork(abc.ABC):
    batches: repository.AbstractRepository  

    def __exit__(self, *args):  
        self.rollback()  

    @abc.abstractmethod
    def commit(self):  
        raise NotImplementedError

    @abc.abstractmethod

Unit of Work and Its Context Manager | 85



    def rollback(self):  
        raise NotImplementedError

The UoW provides an attribute called .batches, which will give us access to the
batches repository.

If you’ve never seen a context manager, __enter__ and __exit__ are the two
magic methods that execute when we enter the with block and when we exit it,
respectively. They’re our setup and teardown phases.

We’ll call this method to explicitly commit our work when we’re ready.

If we don’t commit, or if we exit the context manager by raising an error, we do a
rollback. (The rollback has no effect if commit() has been called. Read on for
more discussion of this.)

The Real Unit of Work Uses SQLAlchemy Sessions
The main thing that our concrete implementation adds is the database session:

The real SQLAlchemy UoW (src/allocation/service_layer/unit_of_work.py)
DEFAULT_SESSION_FACTORY = sessionmaker(bind=create_engine(  
    config.get_postgres_uri(),
))

class SqlAlchemyUnitOfWork(AbstractUnitOfWork):

    def __init__(self, session_factory=DEFAULT_SESSION_FACTORY):
        self.session_factory = session_factory  

    def __enter__(self):
        self.session = self.session_factory()  # type: Session  
        self.batches = repository.SqlAlchemyRepository(self.session)  
        return super().__enter__()

    def __exit__(self, *args):
        super().__exit__(*args)
        self.session.close()  

    def commit(self):  
        self.session.commit()

    def rollback(self):  
        self.session.rollback()

86 | Chapter 6: Unit of Work Pattern



The module defines a default session factory that will connect to Postgres, but we
allow that to be overridden in our integration tests so that we can use SQLite
instead.

The __enter__ method is responsible for starting a database session and instanti‐
ating a real repository that can use that session.

We close the session on exit.

Finally, we provide concrete commit() and rollback() methods that use our
database session.

Fake Unit of Work for Testing
Here’s how we use a fake UoW in our service-layer tests:

Fake UoW (tests/unit/test_services.py)
class FakeUnitOfWork(unit_of_work.AbstractUnitOfWork):

    def __init__(self):
        self.batches = FakeRepository([])  
        self.committed = False  

    def commit(self):
        self.committed = True  

    def rollback(self):
        pass

def test_add_batch():
    uow = FakeUnitOfWork()  
    services.add_batch("b1", "CRUNCHY-ARMCHAIR", 100, None, uow)  
    assert uow.batches.get("b1") is not None
    assert uow.committed

def test_allocate_returns_allocation():
    uow = FakeUnitOfWork()  
    services.add_batch("batch1", "COMPLICATED-LAMP", 100, None, uow)  
    result = services.allocate("o1", "COMPLICATED-LAMP", 10, uow)  
    assert result == "batch1"
...

Unit of Work and Its Context Manager | 87



FakeUnitOfWork and FakeRepository are tightly coupled, just like the real Uni
tofWork and Repository classes. That’s fine because we recognize that the objects
are collaborators.

Notice the similarity with the fake commit() function from FakeSession (which
we can now get rid of). But it’s a substantial improvement because we’re now
faking out code that we wrote rather than third-party code. Some people say,
“Don’t mock what you don’t own”.

In our tests, we can instantiate a UoW and pass it to our service layer, rather than
passing a repository and a session. This is considerably less cumbersome.

Don’t Mock What You Don’t Own
Why do we feel more comfortable mocking the UoW than the session? Both of our
fakes achieve the same thing: they give us a way to swap out our persistence layer so
we can run tests in memory instead of needing to talk to a real database. The differ‐
ence is in the resulting design.

If we cared only about writing tests that run quickly, we could create mocks that
replace SQLAlchemy and use those throughout our codebase. The problem is that
Session is a complex object that exposes lots of persistence-related functionality. It’s
easy to use Session to make arbitrary queries against the database, but that quickly
leads to data access code being sprinkled all over the codebase. To avoid that, we want
to limit access to our persistence layer so each component has exactly what it needs
and nothing more.

By coupling to the Session interface, you’re choosing to couple to all the complexity
of SQLAlchemy. Instead, we want to choose a simpler abstraction and use that to
clearly separate responsibilities. Our UoW is much simpler than a session, and we feel
comfortable with the service layer being able to start and stop units of work.

“Don’t mock what you don’t own” is a rule of thumb that forces us to build these sim‐
ple abstractions over messy subsystems. This has the same performance benefit as
mocking the SQLAlchemy session but encourages us to think carefully about our
designs.

Using the UoW in the Service Layer
Here’s what our new service layer looks like:

Service layer using UoW (src/allocation/service_layer/services.py)
def add_batch(
        ref: str, sku: str, qty: int, eta: Optional[date],

88 | Chapter 6: Unit of Work Pattern

https://oreil.ly/0LVj3


        uow: unit_of_work.AbstractUnitOfWork  
):
    with uow:
        uow.batches.add(model.Batch(ref, sku, qty, eta))
        uow.commit()

def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork  
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        batches = uow.batches.list()
        if not is_valid_sku(line.sku, batches):
            raise InvalidSku(f'Invalid sku {line.sku}')
        batchref = model.allocate(line, batches)
        uow.commit()
    return batchref

Our service layer now has only the one dependency, once again on an abstract
UoW.

Explicit Tests for Commit/Rollback Behavior
To convince ourselves that the commit/rollback behavior works, we wrote a couple of
tests:

Integration tests for rollback behavior (tests/integration/test_uow.py)
def test_rolls_back_uncommitted_work_by_default(session_factory):
    uow = unit_of_work.SqlAlchemyUnitOfWork(session_factory)
    with uow:
        insert_batch(uow.session, 'batch1', 'MEDIUM-PLINTH', 100, None)

    new_session = session_factory()
    rows = list(new_session.execute('SELECT * FROM "batches"'))
    assert rows == []

def test_rolls_back_on_error(session_factory):
    class MyException(Exception):
        pass

    uow = unit_of_work.SqlAlchemyUnitOfWork(session_factory)
    with pytest.raises(MyException):
        with uow:
            insert_batch(uow.session, 'batch1', 'LARGE-FORK', 100, None)
            raise MyException()

    new_session = session_factory()

Explicit Tests for Commit/Rollback Behavior | 89



    rows = list(new_session.execute('SELECT * FROM "batches"'))
    assert rows == []

We haven’t shown it here, but it can be worth testing some of the
more “obscure” database behavior, like transactions, against the
“real” database—that is, the same engine. For now, we’re getting
away with using SQLite instead of Postgres, but in Chapter 7, we’ll
switch some of the tests to using the real database. It’s convenient
that our UoW class makes that easy!

Explicit Versus Implicit Commits
Now we briefly digress on different ways of implementing the UoW pattern.

We could imagine a slightly different version of the UoW that commits by default and
rolls back only if it spots an exception:

A UoW with implicit commit… (src/allocation/unit_of_work.py)
class AbstractUnitOfWork(abc.ABC):

    def __enter__(self):
        return self

    def __exit__(self, exn_type, exn_value, traceback):
        if exn_type is None:
            self.commit()  
        else:
            self.rollback()  

Should we have an implicit commit in the happy path?

And roll back only on exception?

It would allow us to save a line of code and to remove the explicit commit from our
client code:

...would save us a line of code (src/allocation/service_layer/services.py)
def add_batch(ref: str, sku: str, qty: int, eta: Optional[date], uow):
    with uow:
        uow.batches.add(model.Batch(ref, sku, qty, eta))
        # uow.commit()

This is a judgment call, but we tend to prefer requiring the explicit commit so that we
have to choose when to flush state.

Although we use an extra line of code, this makes the software safe by default. The
default behavior is to not change anything. In turn, that makes our code easier to rea‐

90 | Chapter 6: Unit of Work Pattern



son about because there’s only one code path that leads to changes in the system: total
success and an explicit commit. Any other code path, any exception, any early exit
from the UoW’s scope leads to a safe state.

Similarly, we prefer to roll back by default because it’s easier to understand; this rolls
back to the last commit, so either the user did one, or we blow their changes away.
Harsh but simple.

Examples: Using UoW to Group Multiple Operations into
an Atomic Unit
Here are a few examples showing the Unit of Work pattern in use. You can see how it
leads to simple reasoning about what blocks of code happen together.

Example 1: Reallocate
Suppose we want to be able to deallocate and then reallocate orders:

Reallocate service function
def reallocate(line: OrderLine, uow: AbstractUnitOfWork) -> str:
    with uow:
        batch = uow.batches.get(sku=line.sku)
        if batch is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        batch.deallocate(line)  
        allocate(line)  
        uow.commit()

If deallocate() fails, we don’t want to call allocate(), obviously.

If allocate() fails, we probably don’t want to actually commit the deallocate()
either.

Example 2: Change Batch Quantity
Our shipping company gives us a call to say that one of the container doors opened,
and half our sofas have fallen into the Indian Ocean. Oops!

Change quantity
def change_batch_quantity(batchref: str, new_qty: int, uow: AbstractUnitOfWork):
    with uow:
        batch = uow.batches.get(reference=batchref)
        batch.change_purchased_quantity(new_qty)
        while batch.available_quantity < 0:
            line = batch.deallocate_one()  
        uow.commit()

Examples: Using UoW to Group Multiple Operations into an Atomic Unit | 91



Here we may need to deallocate any number of lines. If we get a failure at any
stage, we probably want to commit none of the changes.

Tidying Up the Integration Tests
We now have three sets of tests, all essentially pointing at the database: test_orm.py,
test_repository.py, and test_uow.py. Should we throw any away?

└── tests
    ├── conftest.py
    ├── e2e
    │   └── test_api.py
    ├── integration
    │   ├── test_orm.py
    │   ├── test_repository.py
    │   └── test_uow.py
    ├── pytest.ini
    └── unit
        ├── test_allocate.py
        ├── test_batches.py
        └── test_services.py

You should always feel free to throw away tests if you think they’re not going to add
value longer term. We’d say that test_orm.py was primarily a tool to help us learn
SQLAlchemy, so we won’t need that long term, especially if the main things it’s doing
are covered in test_repository.py. That last test, you might keep around, but we could
certainly see an argument for just keeping everything at the highest possible level of
abstraction (just as we did for the unit tests).

Exercise for the Reader
For this chapter, probably the best thing to try is to implement a UoW from scratch.
The code, as always, is on GitHub. You could either follow the model we have quite
closely, or perhaps experiment with separating the UoW (whose responsibilities are
commit(), rollback(), and providing the .batches repository) from the context
manager, whose job is to initialize things, and then do the commit or rollback on exit.
If you feel like going all-functional rather than messing about with all these classes,
you could use @contextmanager from contextlib.

We’ve stripped out both the actual UoW and the fakes, as well as paring back the
abstract UoW. Why not send us a link to your repo if you come up with something
you’re particularly proud of?

92 | Chapter 6: Unit of Work Pattern

https://github.com/cosmicpython/code/tree/chapter_06_uow_exercise


This is another example of the lesson from Chapter 5: as we build
better abstractions, we can move our tests to run against them,
which leaves us free to change the underlying details.

Wrap-Up
Hopefully we’ve convinced you that the Unit of Work pattern is useful, and that the
context manager is a really nice Pythonic way of visually grouping code into blocks
that we want to happen atomically.

This pattern is so useful, in fact, that SQLAlchemy already uses a UoW in the shape of
the Session object. The Session object in SQLAlchemy is the way that your applica‐
tion loads data from the database.

Every time you load a new entity from the database, the session begins to track
changes to the entity, and when the session is flushed, all your changes are persisted
together. Why do we go to the effort of abstracting away the SQLAlchemy session if it
already implements the pattern we want?

Table 6-1 discusses some of the trade-offs.

Table 6-1. Unit of Work pattern: the trade-offs

Pros Cons

• We have a nice abstraction over the concept of atomic operations,
and the context manager makes it easy to see, visually, what blocks
of code are grouped together atomically.

• We have explicit control over when a transaction starts and
finishes, and our application fails in a way that is safe by default.
We never have to worry that an operation is partially committed.

• It’s a nice place to put all your repositories so client code can access
them.

• As you’ll see in later chapters, atomicity isn’t only about
transactions; it can help us work with events and the message bus.

• Your ORM probably already has some perfectly
good abstractions around atomicity. SQLAlchemy
even has context managers. You can go a long
way just passing a session around.

• We’ve made it look easy, but you have to think
quite carefully about things like rollbacks,
multithreading, and nested transactions. Perhaps
just sticking to what Django or Flask-SQLAlchemy
gives you will keep your life simpler.

For one thing, the Session API is rich and supports operations that we don’t want or
need in our domain. Our UnitOfWork simplifies the session to its essential core: it can
be started, committed, or thrown away.

For another, we’re using the UnitOfWork to access our Repository objects. This is a
neat bit of developer usability that we couldn’t do with a plain SQLAlchemy Session.

Wrap-Up | 93



Unit of Work Pattern Recap
The Unit of Work pattern is an abstraction around data integrity

It helps to enforce the consistency of our domain model, and improves perfor‐
mance, by letting us perform a single flush operation at the end of an operation.

It works closely with the Repository and Service Layer patterns
The Unit of Work pattern completes our abstractions over data access by repre‐
senting atomic updates. Each of our service-layer use cases runs in a single unit
of work that succeeds or fails as a block.

This is a lovely case for a context manager
Context managers are an idiomatic way of defining scope in Python. We can use
a context manager to automatically roll back our work at the end of a request,
which means the system is safe by default.

SQLAlchemy already implements this pattern
We introduce an even simpler abstraction over the SQLAlchemy Session object
in order to “narrow” the interface between the ORM and our code. This helps to
keep us loosely coupled.

Lastly, we’re motivated again by the dependency inversion principle: our service layer
depends on a thin abstraction, and we attach a concrete implementation at the out‐
side edge of the system. This lines up nicely with SQLAlchemy’s own recommenda‐
tions:

Keep the life cycle of the session (and usually the transaction) separate and external.
The most comprehensive approach, recommended for more substantial applications,
will try to keep the details of session, transaction, and exception management as far as
possible from the details of the program doing its work.

—SQLALchemy “Session Basics” Documentation

94 | Chapter 6: Unit of Work Pattern

https://oreil.ly/tS0E0
https://oreil.ly/tS0E0


CHAPTER 7

Aggregates and Consistency Boundaries

In this chapter, we’d like to revisit our domain model to talk about invariants and
constraints, and see how our domain objects can maintain their own internal consis‐
tency, both conceptually and in persistent storage. We’ll discuss the concept of a con‐
sistency boundary and show how making it explicit can help us to build high-
performance software without compromising maintainability.

Figure 7-1 shows a preview of where we’re headed: we’ll introduce a new model object
called Product to wrap multiple batches, and we’ll make the old allocate() domain
service available as a method on Product instead.

Figure 7-1. Adding the Product aggregate

Why? Let’s find out.

95



The code for this chapter is in the appendix_csvs branch on
GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout appendix_csvs
# or to code along, checkout the previous chapter:
git checkout chapter_06_uow

Why Not Just Run Everything in a Spreadsheet?
What’s the point of a domain model, anyway? What’s the fundamental problem we’re
trying to address?

Couldn’t we just run everything in a spreadsheet? Many of our users would be
delighted by that. Business users like spreadsheets because they’re simple, familiar,
and yet enormously powerful.

In fact, an enormous number of business processes do operate by manually sending
spreadsheets back and forth over email. This “CSV over SMTP” architecture has low
initial complexity but tends not to scale very well because it’s difficult to apply logic
and maintain consistency.

Who is allowed to view this particular field? Who’s allowed to update it? What hap‐
pens when we try to order –350 chairs, or 10,000,000 tables? Can an employee have a
negative salary?

These are the constraints of a system. Much of the domain logic we write exists to
enforce these constraints in order to maintain the invariants of the system. The invar‐
iants are the things that have to be true whenever we finish an operation.

Invariants, Constraints, and Consistency
The two words are somewhat interchangeable, but a constraint is a rule that restricts
the possible states our model can get into, while an invariant is defined a little more
precisely as a condition that is always true.

If we were writing a hotel-booking system, we might have the constraint that double
bookings are not allowed. This supports the invariant that a room cannot have more
than one booking for the same night.

Of course, sometimes we might need to temporarily bend the rules. Perhaps we need
to shuffle the rooms around because of a VIP booking. While we’re moving bookings
around in memory, we might be double booked, but our domain model should
ensure that, when we’re finished, we end up in a final consistent state, where the
invariants are met. If we can’t find a way to accommodate all our guests, we should
raise an error and refuse to complete the operation.

96 | Chapter 7: Aggregates and Consistency Boundaries

https://oreil.ly/vlnGg
https://oreil.ly/vlnGg


Let’s look at a couple of concrete examples from our business requirements; we’ll start
with this one:

An order line can be allocated to only one batch at a time.
—The business

This is a business rule that imposes an invariant. The invariant is that an order line is
allocated to either zero or one batch, but never more than one. We need to make sure
that our code never accidentally calls Batch.allocate() on two different batches for
the same line, and currently, there’s nothing there to explicitly stop us from doing
that.

Invariants, Concurrency, and Locks
Let’s look at another one of our business rules:

We can’t allocate to a batch if the available quantity is less than the quantity of the
order line.

—The business

Here the constraint is that we can’t allocate more stock than is available to a batch, so
we never oversell stock by allocating two customers to the same physical cushion, for
example. Every time we update the state of the system, our code needs to ensure that
we don’t break the invariant, which is that the available quantity must be greater than
or equal to zero.

In a single-threaded, single-user application, it’s relatively easy for us to maintain this
invariant. We can just allocate stock one line at a time, and raise an error if there’s no
stock available.

This gets much harder when we introduce the idea of concurrency. Suddenly we
might be allocating stock for multiple order lines simultaneously. We might even be
allocating order lines at the same time as processing changes to the batches
themselves.

We usually solve this problem by applying locks to our database tables. This prevents
two operations from happening simultaneously on the same row or same table.

As we start to think about scaling up our app, we realize that our model of allocating
lines against all available batches may not scale. If we process tens of thousands of
orders per hour, and hundreds of thousands of order lines, we can’t hold a lock over
the whole batches table for every single one—we’ll get deadlocks or performance
problems at the very least.

Invariants, Constraints, and Consistency | 97



What Is an Aggregate?
OK, so if we can’t lock the whole database every time we want to allocate an order
line, what should we do instead? We want to protect the invariants of our system but
allow for the greatest degree of concurrency. Maintaining our invariants inevitably
means preventing concurrent writes; if multiple users can allocate DEADLY-SPOON at
the same time, we run the risk of overallocating.

On the other hand, there’s no reason we can’t allocate DEADLY-SPOON at the same time
as FLIMSY-DESK. It’s safe to allocate two products at the same time because there’s no
invariant that covers them both. We don’t need them to be consistent with each other.

The Aggregate pattern is a design pattern from the DDD community that helps us to
resolve this tension. An aggregate is just a domain object that contains other domain
objects and lets us treat the whole collection as a single unit.

The only way to modify the objects inside the aggregate is to load the whole thing,
and to call methods on the aggregate itself.

As a model gets more complex and grows more entity and value objects, referencing
each other in a tangled graph, it can be hard to keep track of who can modify what.
Especially when we have collections in the model as we do (our batches are a collec‐
tion), it’s a good idea to nominate some entities to be the single entrypoint for modi‐
fying their related objects. It makes the system conceptually simpler and easy to
reason about if you nominate some objects to be in charge of consistency for the oth‐
ers.

For example, if we’re building a shopping site, the Cart might make a good aggregate:
it’s a collection of items that we can treat as a single unit. Importantly, we want to load
the entire basket as a single blob from our data store. We don’t want two requests to
modify the basket at the same time, or we run the risk of weird concurrency errors.
Instead, we want each change to the basket to run in a single database transaction.

We don’t want to modify multiple baskets in a transaction, because there’s no use case
for changing the baskets of several customers at the same time. Each basket is a single
consistency boundary responsible for maintaining its own invariants.

An AGGREGATE is a cluster of associated objects that we treat as a unit for the pur‐
pose of data changes.

—Eric Evans, Domain-Driven Design blue book

Per Evans, our aggregate has a root entity (the Cart) that encapsulates access to items.
Each item has its own identity, but other parts of the system will always refer to the
Cart only as an indivisible whole.

98 | Chapter 7: Aggregates and Consistency Boundaries



Just as we sometimes use _leading_underscores to mark methods
or functions as “private,” you can think of aggregates as being the
“public” classes of our model, and the rest of the entities and value
objects as “private.”

Choosing an Aggregate
What aggregate should we use for our system? The choice is somewhat arbitrary, but
it’s important. The aggregate will be the boundary where we make sure every opera‐
tion ends in a consistent state. This helps us to reason about our software and prevent
weird race issues. We want to draw a boundary around a small number of objects—
the smaller, the better, for performance—that have to be consistent with one another,
and we need to give this boundary a good name.

The object we’re manipulating under the covers is Batch. What do we call a collection
of batches? How should we divide all the batches in the system into discrete islands of
consistency?

We could use Shipment as our boundary. Each shipment contains several batches, and
they all travel to our warehouse at the same time. Or perhaps we could use Warehouse
as our boundary: each warehouse contains many batches, and counting all the stock
at the same time could make sense.

Neither of these concepts really satisfies us, though. We should be able to allocate
DEADLY-SPOONs and FLIMSY-DESKs at the same time, even if they’re in the same ware‐
house or the same shipment. These concepts have the wrong granularity.

When we allocate an order line, we’re interested only in batches that have the same
SKU as the order line. Some sort of concept like GlobalSkuStock could work: a col‐
lection of all the batches for a given SKU.

It’s an unwieldy name, though, so after some bikeshedding via SkuStock, Stock, Pro
ductStock, and so on, we decided to simply call it Product—after all, that was the
first concept we came across in our exploration of the domain language back in
Chapter 1.

So the plan is this: when we want to allocate an order line, instead of Figure 7-2,
where we look up all the Batch objects in the world and pass them to the allocate()
domain service…

Choosing an Aggregate | 99



Figure 7-2. Before: allocate against all batches using the domain service

…we’ll move to the world of Figure 7-3, in which there is a new Product object for
the particular SKU of our order line, and it will be in charge of all the batches for that
SKU, and we can call a .allocate() method on that instead.

Figure 7-3. After: ask Product to allocate against its batches

Let’s see how that looks in code form:

100 | Chapter 7: Aggregates and Consistency Boundaries



Our chosen aggregate, Product (src/allocation/domain/model.py)
class Product:

    def __init__(self, sku: str, batches: List[Batch]):
        self.sku = sku  
        self.batches = batches  

    def allocate(self, line: OrderLine) -> str:  
        try:
            batch = next(
                b for b in sorted(self.batches) if b.can_allocate(line)
            )
            batch.allocate(line)
            return batch.reference
        except StopIteration:
            raise OutOfStock(f'Out of stock for sku {line.sku}')

Product’s main identifier is the sku.

Our Product class holds a reference to a collection of batches for that SKU.

Finally, we can move the allocate() domain service to be a method on the
Product aggregate.

This Product might not look like what you’d expect a Product
model to look like. No price, no description, no dimensions. Our
allocation service doesn’t care about any of those things. This is the
power of bounded contexts; the concept of a product in one app
can be very different from another. See the following sidebar for
more discussion.

Choosing an Aggregate | 101



Aggregates, Bounded Contexts, and Microservices
One of the most important contributions from Evans and the DDD community is the
concept of bounded contexts.

In essence, this was a reaction against attempts to capture entire businesses into a sin‐
gle model. The word customer means different things to people in sales, customer ser‐
vice, logistics, support, and so on. Attributes needed in one context are irrelevant in
another; more perniciously, concepts with the same name can have entirely different
meanings in different contexts. Rather than trying to build a single model (or class, or
database) to capture all the use cases, it’s better to have several models, draw bound‐
aries around each context, and handle the translation between different contexts
explicitly.

This concept translates very well to the world of microservices, where each microser‐
vice is free to have its own concept of “customer” and its own rules for translating that
to and from other microservices it integrates with.

In our example, the allocation service has Product(sku, batches), whereas the
ecommerce will have Product(sku, description, price, image_url, dimen

sions, etc...). As a rule of thumb, your domain models should include only the
data that they need for performing calculations.

Whether or not you have a microservices architecture, a key consideration in choos‐
ing your aggregates is also choosing the bounded context that they will operate in. By
restricting the context, you can keep your number of aggregates low and their size
manageable.

Once again, we find ourselves forced to say that we can’t give this issue the treatment
it deserves here, and we can only encourage you to read up on it elsewhere. The
Fowler link at the start of this sidebar is a good starting point, and either (or indeed,
any) DDD book will have a chapter or more on bounded contexts.

One Aggregate = One Repository
Once you define certain entities to be aggregates, we need to apply the rule that they
are the only entities that are publicly accessible to the outside world. In other words,
the only repositories we are allowed should be repositories that return aggregates.

The rule that repositories should only return aggregates is the main
place where we enforce the convention that aggregates are the only
way into our domain model. Be wary of breaking it!

102 | Chapter 7: Aggregates and Consistency Boundaries

https://martinfowler.com/bliki/BoundedContext.html


In our case, we’ll switch from BatchRepository to ProductRepository:

Our new UoW and repository (unit_of_work.py and repository.py)
class AbstractUnitOfWork(abc.ABC):
    products: repository.AbstractProductRepository

...

class AbstractProductRepository(abc.ABC):

    @abc.abstractmethod
    def add(self, product):
        ...

    @abc.abstractmethod
    def get(self, sku) -> model.Product:
        ...

The ORM layer will need some tweaks so that the right batches automatically get
loaded and associated with Product objects. The nice thing is, the Repository pattern
means we don’t have to worry about that yet. We can just use our FakeRepository
and then feed through the new model into our service layer to see how it looks with
Product as its main entrypoint:

Service layer (src/allocation/service_layer/services.py)
def add_batch(
        ref: str, sku: str, qty: int, eta: Optional[date],
        uow: unit_of_work.AbstractUnitOfWork
):
    with uow:
        product = uow.products.get(sku=sku)
        if product is None:
            product = model.Product(sku, batches=[])
            uow.products.add(product)
        product.batches.append(model.Batch(ref, sku, qty, eta))
        uow.commit()

def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        product = uow.products.get(sku=line.sku)
        if product is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        batchref = product.allocate(line)
        uow.commit()
    return batchref

One Aggregate = One Repository | 103



What About Performance?
We’ve mentioned a few times that we’re modeling with aggregates because we want to
have high-performance software, but here we are loading all the batches when we
only need one. You might expect that to be inefficient, but there are a few reasons
why we’re comfortable here.

First, we’re purposefully modeling our data so that we can make a single query to the
database to read, and a single update to persist our changes. This tends to perform
much better than systems that issue lots of ad hoc queries. In systems that don’t
model this way, we often find that transactions slowly get longer and more complex
as the software evolves.

Second, our data structures are minimal and comprise a few strings and integers per
row. We can easily load tens or even hundreds of batches in a few milliseconds.

Third, we expect to have only 20 or so batches of each product at a time. Once a batch
is used up, we can discount it from our calculations. This means that the amount of
data we’re fetching shouldn’t get out of control over time.

If we did expect to have thousands of active batches for a product, we’d have a couple
of options. For one, we could use lazy-loading for the batches in a product. From the
perspective of our code, nothing would change, but in the background, SQLAlchemy
would page through data for us. This would lead to more requests, each fetching a
smaller number of rows. Because we need to find only a single batch with enough
capacity for our order, this might work pretty well.

Exercise for the Reader
You’ve just seen the main top layers of the code, so this shouldn’t be too hard, but we’d
like you to implement the Product aggregate starting from Batch, just as we did.

Of course, you could cheat and copy/paste from the previous listings, but even if you
do that, you’ll still have to solve a few challenges on your own, like adding the model
to the ORM and making sure all the moving parts can talk to each other, which we
hope will be instructive.

You’ll find the code on GitHub. We’ve put in a “cheating” implementation in the dele‐
gates to the existing allocate() function, so you should be able to evolve that toward
the real thing.

We’ve marked a couple of tests with @pytest.skip(). After you’ve read the rest of this
chapter, come back to these tests to have a go at implementing version numbers.
Bonus points if you can get SQLAlchemy to do them for you by magic!

104 | Chapter 7: Aggregates and Consistency Boundaries

https://github.com/cosmicpython/code/tree/chapter_07_aggregate_exercise


If all else failed, we’d just look for a different aggregate. Maybe we could split up
batches by region or by warehouse. Maybe we could redesign our data access strategy
around the shipment concept. The Aggregate pattern is designed to help manage
some technical constraints around consistency and performance. There isn’t one cor‐
rect aggregate, and we should feel comfortable changing our minds if we find our
boundaries are causing performance woes.

Optimistic Concurrency with Version Numbers
We have our new aggregate, so we’ve solved the conceptual problem of choosing an
object to be in charge of consistency boundaries. Let’s now spend a little time talking
about how to enforce data integrity at the database level.

This section has a lot of implementation details; for example, some
of it is Postgres-specific. But more generally, we’re showing one way
of managing concurrency issues, but it is just one approach. Real
requirements in this area vary a lot from project to project. You
shouldn’t expect to be able to copy and paste code from here into
production.

We don’t want to hold a lock over the entire batches table, but how will we imple‐
ment holding a lock over just the rows for a particular SKU?

One answer is to have a single attribute on the Product model that acts as a marker
for the whole state change being complete and to use it as the single resource that
concurrent workers can fight over. If two transactions read the state of the world for
batches at the same time, and both want to update the allocations tables, we force
both to also try to update the version_number in the products table, in such a way
that only one of them can win and the world stays consistent.

Figure 7-4 illustrates two concurrent transactions doing their read operations at the
same time, so they see a Product with, for example, version=3. They both call Prod
uct.allocate() in order to modify a state. But we set up our database integrity rules
such that only one of them is allowed to commit the new Product with version=4,
and the other update is rejected.

Version numbers are just one way to implement optimistic locking.
You could achieve the same thing by setting the Postgres transac‐
tion isolation level to SERIALIZABLE, but that often comes at a
severe performance cost. Version numbers also make implicit con‐
cepts explicit.

Optimistic Concurrency with Version Numbers | 105



Figure 7-4. Sequence diagram: two transactions attempting a concurrent update on
Product

106 | Chapter 7: Aggregates and Consistency Boundaries



Optimistic Concurrency Control and Retries
What we’ve implemented here is called optimistic concurrency control because our
default assumption is that everything will be fine when two users want to make
changes to the database. We think it’s unlikely that they will conflict with each other,
so we let them go ahead and just make sure we have a way to notice if there is a
problem.

Pessimistic concurrency control works under the assumption that two users are going
to cause conflicts, and we want to prevent conflicts in all cases, so we lock everything
just to be safe. In our example, that would mean locking the whole batches table, or
using SELECT FOR UPDATE—we’re pretending that we’ve ruled those out for perfor‐
mance reasons, but in real life you’d want to do some evaluations and measurements
of your own.

With pessimistic locking, you don’t need to think about handling failures because the
database will prevent them for you (although you do need to think about deadlocks).
With optimistic locking, you need to explicitly handle the possibility of failures in the
(hopefully unlikely) case of a clash.

The usual way to handle a failure is to retry the failed operation from the beginning.
Imagine we have two customers, Harry and Bob, and each submits an order for
SHINY-TABLE. Both threads load the product at version 1 and allocate stock. The data‐
base prevents the concurrent update, and Bob’s order fails with an error. When we
retry the operation, Bob’s order loads the product at version 2 and tries to allocate
again. If there is enough stock left, all is well; otherwise, he’ll receive OutOfStock.
Most operations can be retried this way in the case of a concurrency problem.

Read more on retries in “Recovering from Errors Synchronously” on page 158 and
“Footguns” on page 226.

Implementation Options for Version Numbers
There are essentially three options for implementing version numbers:

1. version_number lives in the domain; we add it to the Product constructor, and
Product.allocate() is responsible for incrementing it.

2. The service layer could do it! The version number isn’t strictly a domain concern,
so instead our service layer could assume that the current version number is
attached to Product by the repository, and the service layer will increment it
before it does the commit().

3. Since it’s arguably an infrastructure concern, the UoW and repository could do it
by magic. The repository has access to version numbers for any products it

Optimistic Concurrency with Version Numbers | 107



1 Perhaps we could get some ORM/SQLAlchemy magic to tell us when an object is dirty, but how would that
work in the generic case—for example, for a CsvRepository?

retrieves, and when the UoW does a commit, it can increment the version num‐
ber for any products it knows about, assuming them to have changed.

Option 3 isn’t ideal, because there’s no real way of doing it without having to assume
that all products have changed, so we’ll be incrementing version numbers when we
don’t have to.1

Option 2 involves mixing the responsibility for mutating state between the service
layer and the domain layer, so it’s a little messy as well.

So in the end, even though version numbers don’t have to be a domain concern, you
might decide the cleanest trade-off is to put them in the domain:

Our chosen aggregate, Product (src/allocation/domain/model.py)
class Product:

    def __init__(self, sku: str, batches: List[Batch], version_number: int = 0):  
        self.sku = sku
        self.batches = batches
        self.version_number = version_number  

    def allocate(self, line: OrderLine) -> str:
        try:
            batch = next(
                b for b in sorted(self.batches) if b.can_allocate(line)
            )
            batch.allocate(line)
            self.version_number += 1  
            return batch.reference
        except StopIteration:
            raise OutOfStock(f'Out of stock for sku {line.sku}')

There it is!

If you’re scratching your head at this version number business, it
might help to remember that the number isn’t important. What’s
important is that the Product database row is modified whenever
we make a change to the Product aggregate. The version number is
a simple, human-comprehensible way to model a thing that
changes on every write, but it could equally be a random UUID
every time.

108 | Chapter 7: Aggregates and Consistency Boundaries



2 time.sleep() works well in our use case, but it’s not the most reliable or efficient way to reproduce concur‐
rency bugs. Consider using semaphores or similar synchronization primitives shared between your threads to
get better guarantees of behavior.

Testing for Our Data Integrity Rules
Now to make sure we can get the behavior we want: if we have two concurrent
attempts to do allocation against the same Product, one of them should fail, because
they can’t both update the version number.

First, let’s simulate a “slow” transaction using a function that does allocation and then
does an explicit sleep:2

time.sleep can reproduce concurrency behavior (tests/integration/test_uow.py)
def try_to_allocate(orderid, sku, exceptions):
    line = model.OrderLine(orderid, sku, 10)
    try:
        with unit_of_work.SqlAlchemyUnitOfWork() as uow:
            product = uow.products.get(sku=sku)
            product.allocate(line)
            time.sleep(0.2)
            uow.commit()
    except Exception as e:
        print(traceback.format_exc())
        exceptions.append(e)

Then we have our test invoke this slow allocation twice, concurrently, using threads:

An integration test for concurrency behavior (tests/integration/test_uow.py)
def test_concurrent_updates_to_version_are_not_allowed(postgres_session_factory):
    sku, batch = random_sku(), random_batchref()
    session = postgres_session_factory()
    insert_batch(session, batch, sku, 100, eta=None, product_version=1)
    session.commit()

    order1, order2 = random_orderid(1), random_orderid(2)
    exceptions = []  # type: List[Exception]
    try_to_allocate_order1 = lambda: try_to_allocate(order1, sku, exceptions)
    try_to_allocate_order2 = lambda: try_to_allocate(order2, sku, exceptions)
    thread1 = threading.Thread(target=try_to_allocate_order1)  
    thread2 = threading.Thread(target=try_to_allocate_order2)  
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()

    [[version]] = session.execute(
        "SELECT version_number FROM products WHERE sku=:sku",

Testing for Our Data Integrity Rules | 109



3 If you’re not using Postgres, you’ll need to read different documentation. Annoyingly, different databases all
have quite different definitions. Oracle’s SERIALIZABLE is equivalent to Postgres’s REPEATABLE READ, for
example.

        dict(sku=sku),
    )
    assert version == 2  
    [exception] = exceptions
    assert 'could not serialize access due to concurrent update' in str(exception)  

    orders = list(session.execute(
        "SELECT orderid FROM allocations"
        " JOIN batches ON allocations.batch_id = batches.id"
        " JOIN order_lines ON allocations.orderline_id = order_lines.id"
        " WHERE order_lines.sku=:sku",
        dict(sku=sku),
    ))
    assert len(orders) == 1  
    with unit_of_work.SqlAlchemyUnitOfWork() as uow:
        uow.session.execute('select 1')

We start two threads that will reliably produce the concurrency behavior we
want: read1, read2, write1, write2.

We assert that the version number has been incremented only once.

We can also check on the specific exception if we like.

And we double-check that only one allocation has gotten through.

Enforcing Concurrency Rules by Using Database Transaction
Isolation Levels
To get the test to pass as it is, we can set the transaction isolation level on our session:

Set isolation level for session (src/allocation/service_layer/unit_of_work.py)
DEFAULT_SESSION_FACTORY = sessionmaker(bind=create_engine(
    config.get_postgres_uri(),
    isolation_level="REPEATABLE READ",
))

Transaction isolation levels are tricky stuff, so it’s worth spending
time understanding the Postgres documentation.3

110 | Chapter 7: Aggregates and Consistency Boundaries

https://oreil.ly/5vxJA


Pessimistic Concurrency Control Example: SELECT FOR UPDATE
There are multiple ways to approach this, but we’ll show one. SELECT FOR UPDATE
produces different behavior; two concurrent transactions will not be allowed to do a
read on the same rows at the same time:

SELECT FOR UPDATE is a way of picking a row or rows to use as a lock (although those
rows don’t have to be the ones you update). If two transactions both try to SELECT
FOR UPDATE a row at the same time, one will win, and the other will wait until the lock
is released. So this is an example of pessimistic concurrency control.

Here’s how you can use the SQLAlchemy DSL to specify FOR UPDATE at query time:

SQLAlchemy with_for_update (src/allocation/adapters/repository.py)
    def get(self, sku):
        return self.session.query(model.Product) \
                           .filter_by(sku=sku) \
                           .with_for_update() \
                           .first()

This will have the effect of changing the concurrency pattern from

read1, read2, write1, write2(fail)

to

read1, write1, read2, write2(succeed)

Some people refer to this as the “read-modify-write” failure mode. Read “PostgreSQL
Anti-Patterns: Read-Modify-Write Cycles” for a good overview.

We don’t really have time to discuss all the trade-offs between REPEATABLE READ and
SELECT FOR UPDATE, or optimistic versus pessimistic locking in general. But if you
have a test like the one we’ve shown, you can specify the behavior you want and see
how it changes. You can also use the test as a basis for performing some performance
experiments.

Wrap-Up
Specific choices around concurrency control vary a lot based on business circumstan‐
ces and storage technology choices, but we’d like to bring this chapter back to the
conceptual idea of an aggregate: we explicitly model an object as being the main
entrypoint to some subset of our model, and as being in charge of enforcing the
invariants and business rules that apply across all of those objects.

Choosing the right aggregate is key, and it’s a decision you may revisit over time. You
can read more about it in multiple DDD books. We also recommend these three

Wrap-Up | 111

https://oreil.ly/i8wKL
https://oreil.ly/uXeZI
https://oreil.ly/uXeZI


online papers on effective aggregate design by Vaughn Vernon (the “red book”
author).

Table 7-1 has some thoughts on the trade-offs of implementing the Aggregate pattern.

Table 7-1. Aggregates: the trade-offs

Pros Cons

• Python might not have “official” public and private methods, but we do
have the underscores convention, because it’s often useful to try to
indicate what’s for “internal” use and what’s for “outside code” to use.
Choosing aggregates is just the next level up: it lets you decide which of
your domain model classes are the public ones, and which aren’t.

• Modeling our operations around explicit consistency boundaries helps us
avoid performance problems with our ORM.

• Putting the aggregate in sole charge of state changes to its subsidiary
models makes the system easier to reason about, and makes it easier to
control invariants.

• Yet another new concept for new developers
to take on. Explaining entities versus value
objects was already a mental load; now
there’s a third type of domain model object?

• Sticking rigidly to the rule that we modify
only one aggregate at a time is a big mental
shift.

• Dealing with eventual consistency between
aggregates can be complex.

Aggregates and Consistency Boundaries Recap
Aggregates are your entrypoints into the domain model

By restricting the number of ways that things can be changed, we make the sys‐
tem easier to reason about.

Aggregates are in charge of a consistency boundary
An aggregate’s job is to be able to manage our business rules about invariants as
they apply to a group of related objects. It’s the aggregate’s job to check that the
objects within its remit are consistent with each other and with our rules, and to
reject changes that would break the rules.

Aggregates and concurrency issues go together
When thinking about implementing these consistency checks, we end up think‐
ing about transactions and locks. Choosing the right aggregate is about perfor‐
mance as well as conceptual organization of your domain.

112 | Chapter 7: Aggregates and Consistency Boundaries

https://dddcommunity.org/library/vernon_2011


Part I Recap
Do you remember Figure 7-5, the diagram we showed at the beginning of Part I to
preview where we were heading?

Figure 7-5. A component diagram for our app at the end of Part I

So that’s where we are at the end of Part I. What have we achieved? We’ve seen how to
build a domain model that’s exercised by a set of high-level unit tests. Our tests are
living documentation: they describe the behavior of our system—the rules upon
which we agreed with our business stakeholders—in nice readable code. When our
business requirements change, we have confidence that our tests will help us to prove
the new functionality, and when new developers join the project, they can read our
tests to understand how things work.

Part I Recap | 113



We’ve decoupled the infrastructural parts of our system, like the database and API
handlers, so that we can plug them into the outside of our application. This helps us
to keep our codebase well organized and stops us from building a big ball of mud.

By applying the dependency inversion principle, and by using ports-and-adapters-
inspired patterns like Repository and Unit of Work, we’ve made it possible to do TDD
in both high gear and low gear and to maintain a healthy test pyramid. We can test
our system edge to edge, and the need for integration and end-to-end tests is kept to a
minimum.

Lastly, we’ve talked about the idea of consistency boundaries. We don’t want to lock
our entire system whenever we make a change, so we have to choose which parts are
consistent with one another.

For a small system, this is everything you need to go and play with the ideas of
domain-driven design. You now have the tools to build database-agnostic domain
models that represent the shared language of your business experts. Hurrah!

At the risk of laboring the point—we’ve been at pains to point out
that each pattern comes at a cost. Each layer of indirection has a
price in terms of complexity and duplication in our code and will
be confusing to programmers who’ve never seen these patterns
before. If your app is essentially a simple CRUD wrapper around a
database and isn’t likely to be anything more than that in the fore‐
seeable future, you don’t need these patterns. Go ahead and use
Django, and save yourself a lot of bother.

In Part II, we’ll zoom out and talk about a bigger topic: if aggregates are our bound‐
ary, and we can update only one at a time, how do we model processes that cross con‐
sistency boundaries?

114 | Chapter 7: Aggregates and Consistency Boundaries



PART II

Event-Driven Architecture

I’m sorry that I long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea.
The big idea is “messaging."…The key in making great and growable systems is much
more to design how its modules communicate rather than what their internal proper‐
ties and behaviors should be.

—Alan Kay

It’s all very well being able to write one domain model to manage a single bit of busi‐
ness process, but what happens when we need to write many models? In the real
world, our applications sit within an organization and need to exchange information
with other parts of the system. You may remember our context diagram shown in
Figure II-1.

Faced with this requirement, many teams reach for microservices integrated via
HTTP APIs. But if they’re not careful, they’ll end up producing the most chaotic mess
of all: the distributed big ball of mud.

In Part II, we’ll show how the techniques from Part I can be extended to distributed
systems. We’ll zoom out to look at how we can compose a system from many small
components that interact through asynchronous message passing.

We’ll see how our Service Layer and Unit of Work patterns allow us to reconfigure
our app to run as an asynchronous message processor, and how event-driven systems
help us to decouple aggregates and applications from one another.



Figure II-1. But exactly how will all these systems talk to each other?

We’ll look at the following patterns and techniques:

Domain Events
Trigger workflows that cross consistency boundaries.

Message Bus
Provide a unified way of invoking use cases from any endpoint.

CQRS
Separating reads and writes avoids awkward compromises in an event-driven
architecture and enables performance and scalability improvements.

Plus, we’ll add a dependency injection framework. This has nothing to do with event-
driven architecture per se, but it tidies up an awful lot of loose ends.



CHAPTER 8

Events and the Message Bus

So far we’ve spent a lot of time and energy on a simple problem that we could easily
have solved with Django. You might be asking if the increased testability and expres‐
siveness are really worth all the effort.

In practice, though, we find that it’s not the obvious features that make a mess of our
codebases: it’s the goop around the edge. It’s reporting, and permissions, and work‐
flows that touch a zillion objects.

Our example will be a typical notification requirement: when we can’t allocate an
order because we’re out of stock, we should alert the buying team. They’ll go and fix
the problem by buying more stock, and all will be well.

For a first version, our product owner says we can just send the alert by email.

Let’s see how our architecture holds up when we need to plug in some of the mun‐
dane stuff that makes up so much of our systems.

We’ll start by doing the simplest, most expeditious thing, and talk about why it’s
exactly this kind of decision that leads us to the Big Ball of Mud.

Then we’ll show how to use the Domain Events pattern to separate side effects from
our use cases, and how to use a simple Message Bus pattern for triggering behavior
based on those events. We’ll show a few options for creating those events and how to
pass them to the message bus, and finally we’ll show how the Unit of Work pattern
can be modified to connect the two together elegantly, as previewed in Figure 8-1.

117



Figure 8-1. Events flowing through the system

The code for this chapter is in the chapter_08_events_and_mes‐
sage_bus branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_08_events_and_message_bus
# or to code along, checkout the previous chapter:
git checkout chapter_07_aggregate

Avoiding Making a Mess
So. Email alerts when we run out of stock. When we have new requirements like ones
that really have nothing to do with the core domain, it’s all too easy to start dumping
these things into our web controllers.

First, Let’s Avoid Making a Mess of Our Web Controllers
As a one-off hack, this might be OK:

Just whack it in the endpoint—what could go wrong? (src/allocation/entrypoints/flask_app.py)
@app.route("/allocate", methods=['POST'])
def allocate_endpoint():
    line = model.OrderLine(

118 | Chapter 8: Events and the Message Bus

https://oreil.ly/M-JuL


        request.json['orderid'],
        request.json['sku'],
        request.json['qty'],
    )
    try:
        uow = unit_of_work.SqlAlchemyUnitOfWork()
        batchref = services.allocate(line, uow)
    except (model.OutOfStock, services.InvalidSku) as e:
        send_mail(
            'out of stock',
            'stock_admin@made.com',
            f'{line.orderid} - {line.sku}'
        )
        return jsonify({'message': str(e)}), 400

    return jsonify({'batchref': batchref}), 201

…but it’s easy to see how we can quickly end up in a mess by patching things up like
this. Sending email isn’t the job of our HTTP layer, and we’d like to be able to unit test
this new feature.

And Let’s Not Make a Mess of Our Model Either
Assuming we don’t want to put this code into our web controllers, because we want
them to be as thin as possible, we may look at putting it right at the source, in the
model:

Email-sending code in our model isn’t lovely either (src/allocation/domain/model.py)
    def allocate(self, line: OrderLine) -> str:
        try:
            batch = next(
                b for b in sorted(self.batches) if b.can_allocate(line)
            )
            #...
        except StopIteration:
            email.send_mail('stock@made.com', f'Out of stock for {line.sku}')
            raise OutOfStock(f'Out of stock for sku {line.sku}')

But that’s even worse! We don’t want our model to have any dependencies on infra‐
structure concerns like email.send_mail.

This email-sending thing is unwelcome goop messing up the nice clean flow of our
system. What we’d like is to keep our domain model focused on the rule “You can’t
allocate more stuff than is actually available.”

The domain model’s job is to know that we’re out of stock, but the responsibility of
sending an alert belongs elsewhere. We should be able to turn this feature on or off,
or to switch to SMS notifications instead, without needing to change the rules of our
domain model.

Avoiding Making a Mess | 119



1 This principle is the S in SOLID.

Or the Service Layer!
The requirement “Try to allocate some stock, and send an email if it fails” is an exam‐
ple of workflow orchestration: it’s a set of steps that the system has to follow to
achieve a goal.

We’ve written a service layer to manage orchestration for us, but even here the feature
feels out of place:

And in the service layer, it’s out of place (src/allocation/service_layer/services.py)
def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        product = uow.products.get(sku=line.sku)
        if product is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        try:
            batchref = product.allocate(line)
            uow.commit()
            return batchref
        except model.OutOfStock:
            email.send_mail('stock@made.com', f'Out of stock for {line.sku}')
            raise

Catching an exception and reraising it? It could be worse, but it’s definitely making us
unhappy. Why is it so hard to find a suitable home for this code?

Single Responsibility Principle
Really, this is a violation of the single responsibility principle (SRP).1 Our use case is
allocation. Our endpoint, service function, and domain methods are all called
allocate, not allocate_and_send_mail_if_out_of_stock.

Rule of thumb: if you can’t describe what your function does
without using words like “then” or “and,” you might be violating
the SRP.

120 | Chapter 8: Events and the Message Bus

https://oreil.ly/AIdSD


2 Our tech reviewer Ed Jung likes to say that the move from imperative to event-based flow control changes
what used to be orchestration into choreography.

One formulation of the SRP is that each class should have only a single reason to
change. When we switch from email to SMS, we shouldn’t have to update our allo
cate() function, because that’s clearly a separate responsibility.

To solve the problem, we’re going to split the orchestration into separate steps so that
the different concerns don’t get tangled up.2 The domain model’s job is to know that
we’re out of stock, but the responsibility of sending an alert belongs elsewhere. We
should be able to turn this feature on or off, or to switch to SMS notifications instead,
without needing to change the rules of our domain model.

We’d also like to keep the service layer free of implementation details. We want to
apply the dependency inversion principle to notifications so that our service layer
depends on an abstraction, in the same way as we avoid depending on the database by
using a unit of work.

All Aboard the Message Bus!
The patterns we’re going to introduce here are Domain Events and the Message Bus.
We can implement them in a few ways, so we’ll show a couple before settling on the
one we like most.

The Model Records Events
First, rather than being concerned about emails, our model will be in charge of
recording events—facts about things that have happened. We’ll use a message bus to
respond to events and invoke a new operation.

Events Are Simple Dataclasses
An event is a kind of value object. Events don’t have any behavior, because they’re pure
data structures. We always name events in the language of the domain, and we think
of them as part of our domain model.

We could store them in model.py, but we may as well keep them in their own file (this
might be a good time to consider refactoring out a directory called domain so that we
have domain/model.py and domain/events.py):

All Aboard the Message Bus! | 121



Event classes (src/allocation/domain/events.py)
from dataclasses import dataclass

class Event:  
    pass

@dataclass
class OutOfStock(Event):  
    sku: str

Once we have a number of events, we’ll find it useful to have a parent class that
can store common attributes. It’s also useful for type hints in our message bus, as
you’ll see shortly.

dataclasses are great for domain events too.

The Model Raises Events
When our domain model records a fact that happened, we say it raises an event.

Here’s what it will look like from the outside; if we ask Product to allocate but it can’t,
it should raise an event:

Test our aggregate to raise events (tests/unit/test_product.py)
def test_records_out_of_stock_event_if_cannot_allocate():
    batch = Batch('batch1', 'SMALL-FORK', 10, eta=today)
    product = Product(sku="SMALL-FORK", batches=[batch])
    product.allocate(OrderLine('order1', 'SMALL-FORK', 10))

    allocation = product.allocate(OrderLine('order2', 'SMALL-FORK', 1))
    assert product.events[-1] == events.OutOfStock(sku="SMALL-FORK")  
    assert allocation is None

Our aggregate will expose a new attribute called .events that will contain a list of
facts about what has happened, in the form of Event objects.

Here’s what the model looks like on the inside:

The model raises a domain event (src/allocation/domain/model.py)
class Product:

    def __init__(self, sku: str, batches: List[Batch], version_number: int = 0):
        self.sku = sku
        self.batches = batches
        self.version_number = version_number
        self.events = []  # type: List[events.Event]  

    def allocate(self, line: OrderLine) -> str:

122 | Chapter 8: Events and the Message Bus



        try:
            #...
        except StopIteration:
            self.events.append(events.OutOfStock(line.sku))  
            # raise OutOfStock(f'Out of stock for sku {line.sku}')  
            return None

Here’s our new .events attribute in use.

Rather than invoking some email-sending code directly, we record those events
at the place they occur, using only the language of the domain.

We’re also going to stop raising an exception for the out-of-stock case. The event
will do the job the exception was doing.

We’re actually addressing a code smell we had until now, which is
that we were using exceptions for control flow. In general, if you’re
implementing domain events, don’t raise exceptions to describe the
same domain concept. As you’ll see later when we handle events in
the Unit of Work pattern, it’s confusing to have to reason about
events and exceptions together.

The Message Bus Maps Events to Handlers
A message bus basically says, “When I see this event, I should invoke the following
handler function.” In other words, it’s a simple publish-subscribe system. Handlers
are subscribed to receive events, which we publish to the bus. It sounds harder than it
is, and we usually implement it with a dict:

Simple message bus (src/allocation/service_layer/messagebus.py)
def handle(event: events.Event):
    for handler in HANDLERS[type(event)]:
        handler(event)

def send_out_of_stock_notification(event: events.OutOfStock):
    email.send_mail(
        'stock@made.com',
        f'Out of stock for {event.sku}',
    )

HANDLERS = {
    events.OutOfStock: [send_out_of_stock_notification],

}  # type: Dict[Type[events.Event], List[Callable]]

All Aboard the Message Bus! | 123

https://oreil.ly/IQB51


Note that the message bus as implemented doesn’t give us concur‐
rency because only one handler will run at a time. Our objective
isn’t to support parallel threads but to separate tasks conceptually,
and to keep each UoW as small as possible. This helps us to under‐
stand the codebase because the “recipe” for how to run each use
case is written in a single place. See the following sidebar.

Is This Like Celery?
Celery is a popular tool in the Python world for deferring self-contained chunks of
work to an asynchronous task queue. The message bus we’re presenting here is very
different, so the short answer to the above question is no; our message bus has more
in common with a Node.js app, a UI event loop, or an actor framework.

If you do have a requirement for moving work off the main thread, you can still use
our event-based metaphors, but we suggest you use external events for that. There’s
more discussion in Table 11-1, but essentially, if you implement a way of persisting
events to a centralized store, you can subscribe other containers or other microservi‐
ces to them. Then that same concept of using events to separate responsibilities across
units of work within a single process/service can be extended across multiple pro‐
cesses—which may be different containers within the same service, or totally different
microservices.

If you follow us in this approach, your API for distributing tasks is your event
classes—or a JSON representation of them. This allows you a lot of flexibility in who
you distribute tasks to; they need not necessarily be Python services. Celery’s API for
distributing tasks is essentially “function name plus arguments,” which is more
restrictive, and Python-only.

Option 1: The Service Layer Takes Events from the Model
and Puts Them on the Message Bus
Our domain model raises events, and our message bus will call the right handlers
whenever an event happens. Now all we need is to connect the two. We need some‐
thing to catch events from the model and pass them to the message bus—the publish‐
ing step.

The simplest way to do this is by adding some code into our service layer:

The service layer with an explicit message bus (src/allocation/service_layer/services.py)
from . import messagebus
...

def allocate(

124 | Chapter 8: Events and the Message Bus



        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        product = uow.products.get(sku=line.sku)
        if product is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        try:  
            batchref = product.allocate(line)
            uow.commit()
            return batchref
        finally:  
            messagebus.handle(product.events)  

We keep the try/finally from our ugly earlier implementation (we haven’t got‐
ten rid of all exceptions yet, just OutOfStock).

But now, instead of depending directly on an email infrastructure, the service
layer is just in charge of passing events from the model up to the message bus.

That already avoids some of the ugliness that we had in our naive implementation,
and we have several systems that work like this one, in which the service layer explic‐
itly collects events from aggregates and passes them to the message bus.

Option 2: The Service Layer Raises Its Own Events
Another variant on this that we’ve used is to have the service layer in charge of creat‐
ing and raising events directly, rather than having them raised by the domain model:

Service layer calls messagebus.handle directly (src/allocation/service_layer/services.py)
def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        product = uow.products.get(sku=line.sku)
        if product is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        batchref = product.allocate(line)
        uow.commit() 

        if batchref is None:
            messagebus.handle(events.OutOfStock(line.sku))
        return batchref

Option 2: The Service Layer Raises Its Own Events | 125



As before, we commit even if we fail to allocate because the code is simpler this
way and it’s easier to reason about: we always commit unless something goes
wrong. Committing when we haven’t changed anything is safe and keeps the
code uncluttered.

Again, we have applications in production that implement the pattern in this way.
What works for you will depend on the particular trade-offs you face, but we’d like to
show you what we think is the most elegant solution, in which we put the unit of
work in charge of collecting and raising events.

Option 3: The UoW Publishes Events to the Message Bus
The UoW already has a try/finally, and it knows about all the aggregates currently
in play because it provides access to the repository. So it’s a good place to spot events
and pass them to the message bus:

The UoW meets the message bus (src/allocation/service_layer/unit_of_work.py)
class AbstractUnitOfWork(abc.ABC):
    ...

    def commit(self):
        self._commit()  
        self.publish_events()  

    def publish_events(self):  
        for product in self.products.seen:  
            while product.events:
                event = product.events.pop(0)
                messagebus.handle(event)

    @abc.abstractmethod
    def _commit(self):
        raise NotImplementedError

...

class SqlAlchemyUnitOfWork(AbstractUnitOfWork):
    ...

    def _commit(self):  
        self.session.commit()

We’ll change our commit method to require a private ._commit() method from
subclasses.

After committing, we run through all the objects that our repository has seen and
pass their events to the message bus.

126 | Chapter 8: Events and the Message Bus



That relies on the repository keeping track of aggregates that have been loaded
using a new attribute, .seen, as you’ll see in the next listing.

Are you wondering what happens if one of the handlers fails? We’ll
discuss error handling in detail in Chapter 10.

Repository tracks aggregates that pass through it (src/allocation/adapters/repository.py)
class AbstractRepository(abc.ABC):

    def __init__(self):
        self.seen = set()  # type: Set[model.Product]  

    def add(self, product: model.Product):  
        self._add(product)
        self.seen.add(product)

    def get(self, sku) -> model.Product:  
        product = self._get(sku)
        if product:
            self.seen.add(product)
        return product

    @abc.abstractmethod
    def _add(self, product: model.Product):  
        raise NotImplementedError

    @abc.abstractmethod  
    def _get(self, sku) -> model.Product:
        raise NotImplementedError

class SqlAlchemyRepository(AbstractRepository):

    def __init__(self, session):
        super().__init__()
        self.session = session

    def _add(self, product):  
        self.session.add(product)

    def _get(self, sku):  
        return self.session.query(model.Product).filter_by(sku=sku).first()

For the UoW to be able to publish new events, it needs to be able to ask the
repository for which Product objects have been used during this session. We use

Option 3: The UoW Publishes Events to the Message Bus | 127



a set called .seen to store them. That means our implementations need to call
super().__init__().

The parent add() method adds things to .seen, and now requires subclasses to
implement ._add().

Similarly, .get() delegates to a ._get() function, to be implemented by sub‐
classes, in order to capture objects seen.

The use of ._underscorey() methods and subclassing is definitely
not the only way you could implement these patterns. Have a go at
the Exercise for the Reader in this chapter and experiment with
some alternatives.

After the UoW and repository collaborate in this way to automatically keep track of
live objects and process their events, the service layer can be totally free of event-
handling concerns:

Service layer is clean again (src/allocation/service_layer/services.py)
def allocate(
        orderid: str, sku: str, qty: int,
        uow: unit_of_work.AbstractUnitOfWork
) -> str:
    line = OrderLine(orderid, sku, qty)
    with uow:
        product = uow.products.get(sku=line.sku)
        if product is None:
            raise InvalidSku(f'Invalid sku {line.sku}')
        batchref = product.allocate(line)
        uow.commit()
        return batchref

We do also have to remember to change the fakes in the service layer and make them
call super() in the right places, and to implement underscorey methods, but the
changes are minimal:

Service-layer fakes need tweaking (tests/unit/test_services.py)
class FakeRepository(repository.AbstractRepository):

    def __init__(self, products):
        super().__init__()
        self._products = set(products)

    def _add(self, product):
        self._products.add(product)

128 | Chapter 8: Events and the Message Bus



    def _get(self, sku):
        return next((p for p in self._products if p.sku == sku), None)

...

class FakeUnitOfWork(unit_of_work.AbstractUnitOfWork):
    ...

    def _commit(self):
        self.committed = True

Exercise for the Reader
Are you finding all those ._add() and ._commit() methods “super-gross,” in the
words of our beloved tech reviewer Hynek? Does it “make you want to beat Harry
around the head with a plushie snake”? Hey, our code listings are only meant to be
examples, not the perfect solution! Why not go see if you can do better?

One composition over inheritance way to go would be to implement a wrapper class:
A wrapper adds functionality and then delegates (src/adapters/repository.py)

class TrackingRepository:
    seen: Set[model.Product]

    def __init__(self, repo: AbstractRepository):
        self.seen = set()  # type: Set[model.Product]
        self._repo = repo

    def add(self, product: model.Product):  

        self._repo.add(product)  
        self.seen.add(product)

    def get(self, sku) -> model.Product:
        product = self._repo.get(sku)
        if product:
            self.seen.add(product)
        return product

By wrapping the repository, we can call the actual .add() and .get() methods,
avoiding weird underscorey methods.

See if you can apply a similar pattern to our UoW class in order to get rid of those
Java-y _commit() methods too. You can find the code on GitHub.

Switching all the ABCs to typing.Protocol is a good way to force yourself to avoid
using inheritance. Let us know if you come up with something nice!

Option 3: The UoW Publishes Events to the Message Bus | 129

https://github.com/cosmicpython/code/tree/chapter_08_events_and_message_bus_exercise


You might be starting to worry that maintaining these fakes is going to be a mainte‐
nance burden. There’s no doubt that it is work, but in our experience it’s not a lot of
work. Once your project is up and running, the interface for your repository and
UoW abstractions really don’t change much. And if you’re using ABCs, they’ll help
remind you when things get out of sync.

Wrap-Up
Domain events give us a way to handle workflows in our system. We often find, lis‐
tening to our domain experts, that they express requirements in a causal or temporal
way—for example, “When we try to allocate stock but there’s none available, then we
should send an email to the buying team.”

The magic words “When X, then Y” often tell us about an event that we can make
concrete in our system. Treating events as first-class things in our model helps us
make our code more testable and observable, and it helps isolate concerns.

And Table 8-1 shows the trade-offs as we see them.

Table 8-1. Domain events: the trade-offs

Pros Cons

• A message bus gives us a nice way to
separate responsibilities when we have to
take multiple actions in response to a
request.

• Event handlers are nicely decoupled from
the “core” application logic, making it easy
to change their implementation later.

• Domain events are a great way to model
the real world, and we can use them as
part of our business language when
modeling with stakeholders.

• The message bus is an additional thing to wrap your head around; the
implementation in which the unit of work raises events for us is neat but
also magic. It’s not obvious when we call commit that we’re also going
to go and send email to people.

• What’s more, that hidden event-handling code executes synchronously,
meaning your service-layer function doesn’t finish until all the handlers for
any events are finished. That could cause unexpected performance
problems in your web endpoints (adding asynchronous processing is
possible but makes things even more confusing).

• More generally, event-driven workflows can be confusing because after
things are split across a chain of multiple handlers, there is no single place
in the system where you can understand how a request will be fulfilled.

• You also open yourself up to the possibility of circular dependencies
between your event handlers, and infinite loops.

Events are useful for more than just sending email, though. In Chapter 7 we spent a
lot of time convincing you that you should define aggregates, or boundaries where we
guarantee consistency. People often ask, “What should I do if I need to change multi‐
ple aggregates as part of a request?” Now we have the tools we need to answer that
question.

If we have two things that can be transactionally isolated (e.g., an order and a
product), then we can make them eventually consistent by using events. When an

130 | Chapter 8: Events and the Message Bus



order is canceled, we should find the products that were allocated to it and remove
the allocations.

Domain Events and the Message Bus Recap
Events can help with the single responsibility principle

Code gets tangled up when we mix multiple concerns in one place. Events can
help us to keep things tidy by separating primary use cases from secondary ones.
We also use events for communicating between aggregates so that we don’t need
to run long-running transactions that lock against multiple tables.

A message bus routes messages to handlers
You can think of a message bus as a dict that maps from events to their consum‐
ers. It doesn’t “know” anything about the meaning of events; it’s just a piece of
dumb infrastructure for getting messages around the system.

Option 1: Service layer raises events and passes them to message bus
The simplest way to start using events in your system is to raise them from han‐
dlers by calling bus.handle(some_new_event) after you commit your unit of
work.

Option 2: Domain model raises events, service layer passes them to message bus
The logic about when to raise an event really should live with the model, so we
can improve our system’s design and testability by raising events from the
domain model. It’s easy for our handlers to collect events off the model objects
after commit and pass them to the bus.

Option 3: UoW collects events from aggregates and passes them to message bus
Adding bus.handle(aggregate.events) to every handler is annoying, so we can
tidy up by making our unit of work responsible for raising events that were
raised by loaded objects. This is the most complex design and might rely on
ORM magic, but it’s clean and easy to use once it’s set up.

In Chapter 9, we’ll look at this idea in more detail as we build a more complex work‐
flow with our new message bus.

Wrap-Up | 131





CHAPTER 9

Going to Town on the Message Bus

In this chapter, we’ll start to make events more fundamental to the internal structure
of our application. We’ll move from the current state in Figure 9-1, where events are
an optional side effect…

Figure 9-1. Before: the message bus is an optional add-on

133



…to the situation in Figure 9-2, where everything goes via the message bus, and our
app has been transformed fundamentally into a message processor.

Figure 9-2. The message bus is now the main entrypoint to the service layer

The code for this chapter is in the chapter_09_all_messagebus
branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_09_all_messagebus
# or to code along, checkout the previous chapter:
git checkout chapter_08_events_and_message_bus

134 | Chapter 9: Going to Town on the Message Bus

https://oreil.ly/oKNkn


1 Event-based modeling is so popular that a practice called event storming has been developed for facilitating
event-based requirements gathering and domain model elaboration.

A New Requirement Leads Us to a New Architecture
Rich Hickey talks about situated software, meaning software that runs for extended
periods of time, managing a real-world process. Examples include warehouse-
management systems, logistics schedulers, and payroll systems.

This software is tricky to write because unexpected things happen all the time in the
real world of physical objects and unreliable humans. For example:

• During a stock-take, we discover that three SPRINGY-MATTRESSes have been water
damaged by a leaky roof.

• A consignment of RELIABLE-FORKs is missing the required documentation and is
held in customs for several weeks. Three RELIABLE-FORKs subsequently fail safety
testing and are destroyed.

• A global shortage of sequins means we’re unable to manufacture our next batch
of SPARKLY-BOOKCASE.

In these types of situations, we learn about the need to change batch quantities when
they’re already in the system. Perhaps someone made a mistake on the number in the
manifest, or perhaps some sofas fell off a truck. Following a conversation with the
business,1 we model the situation as in Figure 9-3.

Figure 9-3. Batch quantity changed means deallocate and reallocate

An event we’ll call BatchQuantityChanged should lead us to change the quantity on
the batch, yes, but also to apply a business rule: if the new quantity drops to less than
the total already allocated, we need to deallocate those orders from that batch. Then
each one will require a new allocation, which we can capture as an event called Allo
cationRequired.

Perhaps you’re already anticipating that our internal message bus and events can help
implement this requirement. We could define a service called change_batch_quan
tity that knows how to adjust batch quantities and also how to deallocate any excess
order lines, and then each deallocation can emit an AllocationRequired event that

A New Requirement Leads Us to a New Architecture | 135



2 If you’ve done a bit of reading about event-driven architectures, you may be thinking, “Some of these events
sound more like commands!” Bear with us! We’re trying to introduce one concept at a time. In the next chap‐
ter, we’ll introduce the distinction between commands and events.

can be forwarded to the existing allocate service, in separate transactions. Once
again, our message bus helps us to enforce the single responsibility principle, and it
allows us to make choices about transactions and data integrity.

Imagining an Architecture Change: Everything Will Be an
Event Handler
But before we jump in, think about where we’re headed. There are two kinds of flows
through our system:

• API calls that are handled by a service-layer function
• Internal events (which might be raised as a side effect of a service-layer function)

and their handlers (which in turn call service-layer functions)

Wouldn’t it be easier if everything was an event handler? If we rethink our API calls
as capturing events, the service-layer functions can be event handlers too, and we no
longer need to make a distinction between internal and external event handlers:

• services.allocate() could be the handler for an AllocationRequired event
and could emit Allocated events as its output.

• services.add_batch() could be the handler for a BatchCreated event.2

Our new requirement will fit the same pattern:

• An event called BatchQuantityChanged can invoke a handler called
change_batch_quantity().

• And the new AllocationRequired events that it may raise can be passed on to
services.allocate() too, so there is no conceptual difference between a brand-
new allocation coming from the API and a reallocation that’s internally triggered
by a deallocation.

All sound like a bit much? Let’s work toward it all gradually. We’ll follow the Prepara‐
tory Refactoring workflow, aka “Make the change easy; then make the easy change”:

1. We refactor our service layer into event handlers. We can get used to the idea of
events being the way we describe inputs to the system. In particular, the existing
services.allocate() function will become the handler for an event called Allo
cationRequired.

136 | Chapter 9: Going to Town on the Message Bus

https://oreil.ly/W3RZM
https://oreil.ly/W3RZM


2. We build an end-to-end test that puts BatchQuantityChanged events into the sys‐
tem and looks for Allocated events coming out.

3. Our implementation will conceptually be very simple: a new handler for Batch
QuantityChanged events, whose implementation will emit AllocationRequired
events, which in turn will be handled by the exact same handler for allocations
that the API uses.

Along the way, we’ll make a small tweak to the message bus and UoW, moving the
responsibility for putting new events on the message bus into the message bus itself.

Refactoring Service Functions to Message Handlers
We start by defining the two events that capture our current API inputs—Allocation

Required and BatchCreated:

BatchCreated and AllocationRequired events (src/allocation/domain/events.py)
@dataclass
class BatchCreated(Event):
    ref: str
    sku: str
    qty: int
    eta: Optional[date] = None

...

@dataclass
class AllocationRequired(Event):
    orderid: str
    sku: str
    qty: int

Then we rename services.py to handlers.py; we add the existing message handler for
send_out_of_stock_notification; and most importantly, we change all the han‐
dlers so that they have the same inputs, an event and a UoW:

Handlers and services are the same thing (src/allocation/service_layer/handlers.py)
def add_batch(
        event: events.BatchCreated, uow: unit_of_work.AbstractUnitOfWork
):
    with uow:
        product = uow.products.get(sku=event.sku)
        ...

def allocate(
        event: events.AllocationRequired, uow: unit_of_work.AbstractUnitOfWork
) -> str:

Refactoring Service Functions to Message Handlers | 137



    line = OrderLine(event.orderid, event.sku, event.qty)
    ...

def send_out_of_stock_notification(
        event: events.OutOfStock, uow: unit_of_work.AbstractUnitOfWork,
):
    email.send(
        'stock@made.com',
        f'Out of stock for {event.sku}',
    )

The change might be clearer as a diff:

Changing from services to handlers (src/allocation/service_layer/handlers.py)
 def add_batch(
-        ref: str, sku: str, qty: int, eta: Optional[date],
-        uow: unit_of_work.AbstractUnitOfWork
+        event: events.BatchCreated, uow: unit_of_work.AbstractUnitOfWork
 ):
     with uow:
-        product = uow.products.get(sku=sku)
+        product = uow.products.get(sku=event.sku)
     ...

 def allocate(
-        orderid: str, sku: str, qty: int,
-        uow: unit_of_work.AbstractUnitOfWork
+        event: events.AllocationRequired, uow: unit_of_work.AbstractUnitOfWork
 ) -> str:
-    line = OrderLine(orderid, sku, qty)
+    line = OrderLine(event.orderid, event.sku, event.qty)
     ...

+
+def send_out_of_stock_notification(
+        event: events.OutOfStock, uow: unit_of_work.AbstractUnitOfWork,
+):
+    email.send(
     ...

Along the way, we’ve made our service-layer’s API more structured and more consis‐
tent. It was a scattering of primitives, and now it uses well-defined objects (see the
following sidebar).

138 | Chapter 9: Going to Town on the Message Bus



From Domain Objects, via Primitive Obsession, to
Events as an Interface

Some of you may remember “Fully Decoupling the Service-Layer Tests from the
Domain” on page 75, in which we changed our service-layer API from being in terms
of domain objects to primitives. And now we’re moving back, but to different objects? 
What gives?

In OO circles, people talk about primitive obsession as an anti-pattern: avoid primi‐
tives in public APIs, and instead wrap them with custom value classes, they would say.
In the Python world, a lot of people would be quite skeptical of that as a rule of
thumb. When mindlessly applied, it’s certainly a recipe for unnecessary complexity.
So that’s not what we’re doing per se.

The move from domain objects to primitives bought us a nice bit of decoupling: our
client code was no longer coupled directly to the domain, so the service layer could
present an API that stays the same even if we decide to make changes to our model,
and vice versa.

So have we gone backward? Well, our core domain model objects are still free to vary,
but instead we’ve coupled the external world to our event classes. They’re part of the
domain too, but the hope is that they vary less often, so they’re a sensible artifact to
couple on.

And what have we bought ourselves? Now, when invoking a use case in our applica‐
tion, we no longer need to remember a particular combination of primitives, but just
a single event class that represents the input to our application. That’s conceptually
quite nice. On top of that, as you’ll see in Appendix E, those event classes can be a
nice place to do some input validation.

The Message Bus Now Collects Events from the UoW
Our event handlers now need a UoW. In addition, as our message bus becomes more
central to our application, it makes sense to put it explicitly in charge of collecting
and processing new events. There was a bit of a circular dependency between the
UoW and message bus until now, so this will make it one-way:

Handle takes a UoW and manages a queue (src/allocation/service_layer/messagebus.py)
def handle(event: events.Event, uow: unit_of_work.AbstractUnitOfWork):  
    queue = [event]  
    while queue:
        event = queue.pop(0)  
        for handler in HANDLERS[type(event)]:  
            handler(event, uow=uow)  
            queue.extend(uow.collect_new_events())  

Refactoring Service Functions to Message Handlers | 139



The message bus now gets passed the UoW each time it starts up.

When we begin handling our first event, we start a queue.

We pop events from the front of the queue and invoke their handlers (the
HANDLERS dict hasn’t changed; it still maps event types to handler functions).

The message bus passes the UoW down to each handler.

After each handler finishes, we collect any new events that have been generated
and add them to the queue.

In unit_of_work.py, publish_events() becomes a less active method, col

lect_new_events():

UoW no longer puts events directly on the bus (src/allocation/service_layer/unit_of_work.py)
-from . import messagebus  
-

 class AbstractUnitOfWork(abc.ABC):
@@ -23,13 +21,11 @@ class AbstractUnitOfWork(abc.ABC):

     def commit(self):
         self._commit()
-        self.publish_events()  

-    def publish_events(self):
+    def collect_new_events(self):
         for product in self.products.seen:
             while product.events:
-                event = product.events.pop(0)
-                messagebus.handle(event)
+                yield product.events.pop(0)  

The unit_of_work module now no longer depends on messagebus.

We no longer publish_events automatically on commit. The message bus is
keeping track of the event queue instead.

And the UoW no longer actively puts events on the message bus; it just makes
them available.

140 | Chapter 9: Going to Town on the Message Bus



Our Tests Are All Written in Terms of Events Too
Our tests now operate by creating events and putting them on the message bus, rather
than invoking service-layer functions directly:

Handler tests use events (tests/unit/test_handlers.py)
class TestAddBatch:

     def test_for_new_product(self):
         uow = FakeUnitOfWork()
-        services.add_batch("b1", "CRUNCHY-ARMCHAIR", 100, None, uow)
+        messagebus.handle(
+            events.BatchCreated("b1", "CRUNCHY-ARMCHAIR", 100, None), uow
+        )
         assert uow.products.get("CRUNCHY-ARMCHAIR") is not None
         assert uow.committed

...

 class TestAllocate:

     def test_returns_allocation(self):
         uow = FakeUnitOfWork()
-        services.add_batch("batch1", "COMPLICATED-LAMP", 100, None, uow)
-        result = services.allocate("o1", "COMPLICATED-LAMP", 10, uow)
+        messagebus.handle(
+            events.BatchCreated("batch1", "COMPLICATED-LAMP", 100, None), uow
+        )
+        result = messagebus.handle(
+            events.AllocationRequired("o1", "COMPLICATED-LAMP", 10), uow
+        )
         assert result == "batch1"

A Temporary Ugly Hack: The Message Bus Has to Return Results
Our API and our service layer currently want to know the allocated batch reference
when they invoke our allocate() handler. This means we need to put in a temporary
hack on our message bus to let it return events:

Message bus returns results (src/allocation/service_layer/messagebus.py)
 def handle(event: events.Event, uow: unit_of_work.AbstractUnitOfWork):
+    results = []
     queue = [event]
     while queue:
         event = queue.pop(0)
         for handler in HANDLERS[type(event)]:
-            handler(event, uow=uow)
+            results.append(handler(event, uow=uow))

Refactoring Service Functions to Message Handlers | 141



             queue.extend(uow.collect_new_events())
+    return results

It’s because we’re mixing the read and write responsibilities in our system. We’ll come 
back to fix this wart in Chapter 12.

Modifying Our API to Work with Events

Flask changing to message bus as a diff (src/allocation/entrypoints/flask_app.py)
 @app.route("/allocate", methods=['POST'])
 def allocate_endpoint():
     try:
-        batchref = services.allocate(
-            request.json['orderid'],  
-            request.json['sku'],
-            request.json['qty'],
-            unit_of_work.SqlAlchemyUnitOfWork(),
+        event = events.AllocationRequired(  
+            request.json['orderid'], request.json['sku'], request.json['qty'],
         )
+        results = messagebus.handle(event, unit_of_work.SqlAlchemyUnitOfWork())  
+        batchref = results.pop(0)
     except InvalidSku as e:

Instead of calling the service layer with a bunch of primitives extracted from the
request JSON…

We instantiate an event.

Then we pass it to the message bus.

And we should be back to a fully functional application, but one that’s now fully
event-driven:

• What used to be service-layer functions are now event handlers.
• That makes them the same as the functions we invoke for handling internal

events raised by our domain model.
• We use events as our data structure for capturing inputs to the system, as well as

for handing off of internal work packages.
• The entire app is now best described as a message processor, or an event pro‐

cessor if you prefer. We’ll talk about the distinction in the next chapter.

142 | Chapter 9: Going to Town on the Message Bus



Implementing Our New Requirement
We’re done with our refactoring phase. Let’s see if we really have “made the change
easy.” Let’s implement our new requirement, shown in Figure 9-4: we’ll receive as our
inputs some new BatchQuantityChanged events and pass them to a handler, which in
turn might emit some AllocationRequired events, and those in turn will go back to
our existing handler for reallocation.

Figure 9-4. Sequence diagram for reallocation flow

When you split things out like this across two units of work, you
now have two database transactions, so you are opening yourself
up to integrity issues: something could happen that means the first
transaction completes but the second one does not. You’ll need to
think about whether this is acceptable, and whether you need to
notice when it happens and do something about it. See “Footguns”
on page 226 for more discussion.

Our New Event
The event that tells us a batch quantity has changed is simple; it just needs a batch
reference and a new quantity:

New event (src/allocation/domain/events.py)
@dataclass
class BatchQuantityChanged(Event):
    ref: str
    qty: int

Implementing Our New Requirement | 143



Test-Driving a New Handler
Following the lessons learned in Chapter 4, we can operate in “high gear” and write
our unit tests at the highest possible level of abstraction, in terms of events. Here’s
what they might look like:

Handler tests for change_batch_quantity (tests/unit/test_handlers.py)
class TestChangeBatchQuantity:

    def test_changes_available_quantity(self):
        uow = FakeUnitOfWork()
        messagebus.handle(
            events.BatchCreated("batch1", "ADORABLE-SETTEE", 100, None), uow
        )
        [batch] = uow.products.get(sku="ADORABLE-SETTEE").batches
        assert batch.available_quantity == 100  

        messagebus.handle(events.BatchQuantityChanged("batch1", 50), uow)

        assert batch.available_quantity == 50  

    def test_reallocates_if_necessary(self):
        uow = FakeUnitOfWork()
        event_history = [
            events.BatchCreated("batch1", "INDIFFERENT-TABLE", 50, None),
            events.BatchCreated("batch2", "INDIFFERENT-TABLE", 50, date.today()),
            events.AllocationRequired("order1", "INDIFFERENT-TABLE", 20),
            events.AllocationRequired("order2", "INDIFFERENT-TABLE", 20),
        ]
        for e in event_history:
            messagebus.handle(e, uow)
        [batch1, batch2] = uow.products.get(sku="INDIFFERENT-TABLE").batches
        assert batch1.available_quantity == 10
        assert batch2.available_quantity == 50

        messagebus.handle(events.BatchQuantityChanged("batch1", 25), uow)

        # order1 or order2 will be deallocated, so we'll have 25 - 20
        assert batch1.available_quantity == 5  
        # and 20 will be reallocated to the next batch
        assert batch2.available_quantity == 30  

The simple case would be trivially easy to implement; we just modify a quantity.

But if we try to change the quantity to less than has been allocated, we’ll need to
deallocate at least one order, and we expect to reallocate it to a new batch.

144 | Chapter 9: Going to Town on the Message Bus



Implementation
Our new handler is very simple:

Handler delegates to model layer (src/allocation/service_layer/handlers.py)
def change_batch_quantity(
        event: events.BatchQuantityChanged, uow: unit_of_work.AbstractUnitOfWork
):
    with uow:
        product = uow.products.get_by_batchref(batchref=event.ref)
        product.change_batch_quantity(ref=event.ref, qty=event.qty)
        uow.commit()

We realize we’ll need a new query type on our repository:

A new query type on our repository (src/allocation/adapters/repository.py)
class AbstractRepository(abc.ABC):
    ...

    def get(self, sku) -> model.Product:
        ...

    def get_by_batchref(self, batchref) -> model.Product:
        product = self._get_by_batchref(batchref)
        if product:
            self.seen.add(product)
        return product

    @abc.abstractmethod
    def _add(self, product: model.Product):
        raise NotImplementedError

    @abc.abstractmethod
    def _get(self, sku) -> model.Product:
        raise NotImplementedError

    @abc.abstractmethod
    def _get_by_batchref(self, batchref) -> model.Product:
        raise NotImplementedError
    ...

class SqlAlchemyRepository(AbstractRepository):
    ...

    def _get(self, sku):
        return self.session.query(model.Product).filter_by(sku=sku).first()

    def _get_by_batchref(self, batchref):
        return self.session.query(model.Product).join(model.Batch).filter(
            orm.batches.c.reference == batchref,
        ).first()

Test-Driving a New Handler | 145



And on our FakeRepository too:

Updating the fake repo too (tests/unit/test_handlers.py)
class FakeRepository(repository.AbstractRepository):
    ...

    def _get(self, sku):
        return next((p for p in self._products if p.sku == sku), None)

    def _get_by_batchref(self, batchref):
        return next((
            p for p in self._products for b in p.batches
            if b.reference == batchref
        ), None)

We’re adding a query to our repository to make this use case easier
to implement. So long as our query is returning a single aggregate,
we’re not bending any rules. If you find yourself writing complex
queries on your repositories, you might want to consider a differ‐
ent design. Methods like get_most_popular_products or
find_products_by_order_id in particular would definitely trigger
our spidey sense. Chapter 11 and the epilogue have some tips on
managing complex queries.

A New Method on the Domain Model
We add the new method to the model, which does the quantity change and dealloca‐
tion(s) inline and publishes a new event. We also modify the existing allocate func‐
tion to publish an event:

Our model evolves to capture the new requirement (src/allocation/domain/model.py)
class Product:
    ...

    def change_batch_quantity(self, ref: str, qty: int):
        batch = next(b for b in self.batches if b.reference == ref)
        batch._purchased_quantity = qty
        while batch.available_quantity < 0:
            line = batch.deallocate_one()
            self.events.append(
                events.AllocationRequired(line.orderid, line.sku, line.qty)
            )
...

class Batch:
    ...

146 | Chapter 9: Going to Town on the Message Bus



    def deallocate_one(self) -> OrderLine:
        return self._allocations.pop()

We wire up our new handler:

The message bus grows (src/allocation/service_layer/messagebus.py)
HANDLERS = {
    events.BatchCreated: [handlers.add_batch],
    events.BatchQuantityChanged: [handlers.change_batch_quantity],
    events.AllocationRequired: [handlers.allocate],
    events.OutOfStock: [handlers.send_out_of_stock_notification],

}  # type: Dict[Type[events.Event], List[Callable]]

And our new requirement is fully implemented.

Optionally: Unit Testing Event Handlers in Isolation with a
Fake Message Bus
Our main test for the reallocation workflow is edge-to-edge (see the example code in
“Test-Driving a New Handler” on page 144). It uses the real message bus, and it tests
the whole flow, where the BatchQuantityChanged event handler triggers deallocation,
and emits new AllocationRequired events, which in turn are handled by their own
handlers. One test covers a chain of multiple events and handlers.

Depending on the complexity of your chain of events, you may decide that you want
to test some handlers in isolation from one another. You can do this using a “fake”
message bus.

In our case, we actually intervene by modifying the publish_events() method on
FakeUnitOfWork and decoupling it from the real message bus, instead making it
record what events it sees:

Fake message bus implemented in UoW (tests/unit/test_handlers.py)
class FakeUnitOfWorkWithFakeMessageBus(FakeUnitOfWork):

    def __init__(self):
        super().__init__()
        self.events_published = []  # type: List[events.Event]

    def publish_events(self):
        for product in self.products.seen:
            while product.events:
                self.events_published.append(product.events.pop(0))

Now when we invoke messagebus.handle() using the FakeUnitOfWorkWithFakeMes
sageBus, it runs only the handler for that event. So we can write a more isolated unit

Optionally: Unit Testing Event Handlers in Isolation with a Fake Message Bus | 147



test: instead of checking all the side effects, we just check that BatchQuantityChanged
leads to AllocationRequired if the quantity drops below the total already allocated:

Testing reallocation in isolation (tests/unit/test_handlers.py)
def test_reallocates_if_necessary_isolated():
    uow = FakeUnitOfWorkWithFakeMessageBus()

    # test setup as before
    event_history = [
        events.BatchCreated("batch1", "INDIFFERENT-TABLE", 50, None),
        events.BatchCreated("batch2", "INDIFFERENT-TABLE", 50, date.today()),
        events.AllocationRequired("order1", "INDIFFERENT-TABLE", 20),
        events.AllocationRequired("order2", "INDIFFERENT-TABLE", 20),
    ]
    for e in event_history:
        messagebus.handle(e, uow)
    [batch1, batch2] = uow.products.get(sku="INDIFFERENT-TABLE").batches
    assert batch1.available_quantity == 10
    assert batch2.available_quantity == 50

    messagebus.handle(events.BatchQuantityChanged("batch1", 25), uow)

    # assert on new events emitted rather than downstream side-effects
    [reallocation_event] = uow.events_published
    assert isinstance(reallocation_event, events.AllocationRequired)
    assert reallocation_event.orderid in {'order1', 'order2'}
    assert reallocation_event.sku == 'INDIFFERENT-TABLE'

Whether you want to do this or not depends on the complexity of your chain of
events. We say, start out with edge-to-edge testing, and resort to this only if necessary.

148 | Chapter 9: Going to Town on the Message Bus



3 The “simple” implementation in this chapter essentially uses the messagebus.py module itself to implement the
Singleton Pattern.

Exercise for the Reader
A great way to force yourself to really understand some code is to refactor it. In the
discussion of testing handlers in isolation, we used something called FakeUnitOfWork
WithFakeMessageBus, which is unnecessarily complicated and violates the SRP.

If we change the message bus to being a class,3 then building a FakeMessageBus is
more straightforward:

An abstract message bus and its real and fake versions
class AbstractMessageBus:
    HANDLERS: Dict[Type[events.Event], List[Callable]]

    def handle(self, event: events.Event):
        for handler in self.HANDLERS[type(event)]:
            handler(event)

class MessageBus(AbstractMessageBus):
    HANDLERS = {
        events.OutOfStock: [send_out_of_stock_notification],

    }

class FakeMessageBus(messagebus.AbstractMessageBus):
    def __init__(self):
        self.events_published = []  # type: List[events.Event]
        self.handlers = {
            events.OutOfStock: [lambda e: self.events_published.append(e)]
        }

So jump into the code on GitHub and see if you can get a class-based version work‐
ing, and then write a version of test_reallocates_if_necessary_isolated() from
earlier.

We use a class-based message bus in Chapter 13, if you need more inspiration.

Wrap-Up
Let’s look back at what we’ve achieved, and think about why we did it.

Wrap-Up | 149

https://github.com/cosmicpython/code/tree/chapter_09_all_messagebus


What Have We Achieved?
Events are simple dataclasses that define the data structures for inputs and internal
messages within our system. This is quite powerful from a DDD standpoint, since
events often translate really well into business language (look up event storming if you
haven’t already).

Handlers are the way we react to events. They can call down to our model or call out
to external services. We can define multiple handlers for a single event if we want to.
Handlers can also raise other events. This allows us to be very granular about what a
handler does and really stick to the SRP.

Why Have We Achieved?
Our ongoing objective with these architectural patterns is to try to have the complex‐
ity of our application grow more slowly than its size. When we go all in on the mes‐
sage bus, as always we pay a price in terms of architectural complexity (see Table 9-1),
but we buy ourselves a pattern that can handle almost arbitrarily complex require‐
ments without needing any further conceptual or architectural change to the way we
do things.

Here we’ve added quite a complicated use case (change quantity, deallocate, start new
transaction, reallocate, publish external notification), but architecturally, there’s been
no cost in terms of complexity. We’ve added new events, new handlers, and a new
external adapter (for email), all of which are existing categories of things in our archi‐
tecture that we understand and know how to reason about, and that are easy to
explain to newcomers. Our moving parts each have one job, they’re connected to
each other in well-defined ways, and there are no unexpected side effects.

Table 9-1. Whole app is a message bus: the trade-offs

Pros Cons

• Handlers and services are the
same thing, so that’s simpler.

• We have a nice data structure
for inputs to the system.

• A message bus is still a slightly unpredictable way of doing things from a web point
of view. You don’t know in advance when things are going to end.

• There will be duplication of fields and structure between model objects and events,
which will have a maintenance cost. Adding a field to one usually means adding a
field to at least one of the others.

Now, you may be wondering, where are those BatchQuantityChanged events going to
come from? The answer is revealed in a couple chapters’ time. But first, let’s talk
about events versus commands.

150 | Chapter 9: Going to Town on the Message Bus



CHAPTER 10

Commands and Command Handler

In the previous chapter, we talked about using events as a way of representing the
inputs to our system, and we turned our application into a message-processing
machine.

To achieve that, we converted all our use-case functions to event handlers. When the
API receives a POST to create a new batch, it builds a new BatchCreated event and
handles it as if it were an internal event. This might feel counterintuitive. After all, the
batch hasn’t been created yet; that’s why we called the API. We’re going to fix that con‐
ceptual wart by introducing commands and showing how they can be handled by the
same message bus but with slightly different rules.

The code for this chapter is in the chapter_10_commands branch
on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_10_commands
# or to code along, checkout the previous chapter:
git checkout chapter_09_all_messagebus

Commands and Events
Like events, commands are a type of message—instructions sent by one part of a sys‐
tem to another. We usually represent commands with dumb data structures and can
handle them in much the same way as events.

The differences between commands and events, though, are important.

Commands are sent by one actor to another specific actor with the expectation that a
particular thing will happen as a result. When we post a form to an API handler, we

151

https://oreil.ly/U_VGa


are sending a command. We name commands with imperative mood verb phrases
like “allocate stock” or “delay shipment.”

Commands capture intent. They express our wish for the system to do something. As
a result, when they fail, the sender needs to receive error information.

Events are broadcast by an actor to all interested listeners. When we publish Batch
QuantityChanged, we don’t know who’s going to pick it up. We name events with
past-tense verb phrases like “order allocated to stock” or “shipment delayed.”

We often use events to spread the knowledge about successful commands.

Events capture facts about things that happened in the past. Since we don’t know
who’s handling an event, senders should not care whether the receivers succeeded or
failed. Table 10-1 recaps the differences.

Table 10-1. Events versus commands

Event Command
Named Past tense Imperative mood

Error handling Fail independently Fail noisily

Sent to All listeners One recipient

What kinds of commands do we have in our system right now?

Pulling out some commands (src/allocation/domain/commands.py)
class Command:
    pass

@dataclass
class Allocate(Command):  
    orderid: str
    sku: str
    qty: int

@dataclass
class CreateBatch(Command):  
    ref: str
    sku: str
    qty: int
    eta: Optional[date] = None

@dataclass
class ChangeBatchQuantity(Command):  
    ref: str
    qty: int

commands.Allocate will replace events.AllocationRequired.

152 | Chapter 10: Commands and Command Handler



commands.CreateBatch will replace events.BatchCreated.

commands.ChangeBatchQuantity will replace events.BatchQuantityChanged.

Differences in Exception Handling
Just changing the names and verbs is all very well, but that won’t change the behavior
of our system. We want to treat events and commands similarly, but not exactly the
same. Let’s see how our message bus changes:

Dispatch events and commands differently (src/allocation/service_layer/messagebus.py)
Message = Union[commands.Command, events.Event]

def handle(message: Message, uow: unit_of_work.AbstractUnitOfWork):  
    results = []
    queue = [message]
    while queue:
        message = queue.pop(0)
        if isinstance(message, events.Event):
            handle_event(message, queue, uow)  
        elif isinstance(message, commands.Command):
            cmd_result = handle_command(message, queue, uow)  
            results.append(cmd_result)
        else:
            raise Exception(f'{message} was not an Event or Command')
    return results

It still has a main handle() entrypoint that takes a message, which may be a
command or an event.

We dispatch events and commands to two different helper functions, shown
next.

Here’s how we handle events:

Events cannot interrupt the flow (src/allocation/service_layer/messagebus.py)
def handle_event(
    event: events.Event,
    queue: List[Message],
    uow: unit_of_work.AbstractUnitOfWork
):
    for handler in EVENT_HANDLERS[type(event)]:  
        try:
            logger.debug('handling event %s with handler %s', event, handler)
            handler(event, uow=uow)
            queue.extend(uow.collect_new_events())
        except Exception:

Differences in Exception Handling | 153



            logger.exception('Exception handling event %s', event)
            continue  

Events go to a dispatcher that can delegate to multiple handlers per event.

It catches and logs errors but doesn’t let them interrupt message processing.

And here’s how we do commands:

Commands reraise exceptions (src/allocation/service_layer/messagebus.py)
def handle_command(
    command: commands.Command,
    queue: List[Message],
    uow: unit_of_work.AbstractUnitOfWork
):
    logger.debug('handling command %s', command)
    try:
        handler = COMMAND_HANDLERS[type(command)]  
        result = handler(command, uow=uow)
        queue.extend(uow.collect_new_events())
        return result  
    except Exception:
        logger.exception('Exception handling command %s', command)
        raise  

The command dispatcher expects just one handler per command.

If any errors are raised, they fail fast and will bubble up.

return result is only temporary; as mentioned in “A Temporary Ugly Hack:
The Message Bus Has to Return Results” on page 141, it’s a temporary hack to
allow the message bus to return the batch reference for the API to use. We’ll fix
this in Chapter 12.

We also change the single HANDLERS dict into different ones for commands and
events. Commands can have only one handler, according to our convention:

New handlers dicts (src/allocation/service_layer/messagebus.py)
EVENT_HANDLERS = {
    events.OutOfStock: [handlers.send_out_of_stock_notification],
}  # type: Dict[Type[events.Event], List[Callable]]

COMMAND_HANDLERS = {
    commands.Allocate: handlers.allocate,
    commands.CreateBatch: handlers.add_batch,
    commands.ChangeBatchQuantity: handlers.change_batch_quantity,
}  # type: Dict[Type[commands.Command], Callable]

154 | Chapter 10: Commands and Command Handler



Discussion: Events, Commands, and Error Handling
Many developers get uncomfortable at this point and ask, “What happens when an
event fails to process? How am I supposed to make sure the system is in a consistent
state?” If we manage to process half of the events during messagebus.handle before
an out-of-memory error kills our process, how do we mitigate problems caused by
the lost messages?

Let’s start with the worst case: we fail to handle an event, and the system is left in an
inconsistent state. What kind of error would cause this? Often in our systems we can
end up in an inconsistent state when only half an operation is completed.

For example, we could allocate three units of DESIRABLE_BEANBAG to a customer’s
order but somehow fail to reduce the amount of remaining stock. This would cause
an inconsistent state: the three units of stock are both allocated and available, depend‐
ing on how you look at it. Later, we might allocate those same beanbags to another
customer, causing a headache for customer support.

In our allocation service, though, we’ve already taken steps to prevent that happening.
We’ve carefully identified aggregates that act as consistency boundaries, and we’ve
introduced a UoW that manages the atomic success or failure of an update to an
aggregate.

For example, when we allocate stock to an order, our consistency boundary is the
Product aggregate. This means that we can’t accidentally overallocate: either a partic‐
ular order line is allocated to the product, or it is not—there’s no room for inconsis‐
tent states.

By definition, we don’t require two aggregates to be immediately consistent, so if we
fail to process an event and update only a single aggregate, our system can still be
made eventually consistent. We shouldn’t violate any constraints of the system.

With this example in mind, we can better understand the reason for splitting mes‐
sages into commands and events. When a user wants to make the system do some‐
thing, we represent their request as a command. That command should modify a
single aggregate and either succeed or fail in totality. Any other bookkeeping, cleanup,
and notification we need to do can happen via an event. We don’t require the event
handlers to succeed in order for the command to be successful.

Let’s look at another example (from a different, imaginary projet) to see why not.

Imagine we are building an ecommerce website that sells expensive luxury goods.
Our marketing department wants to reward customers for repeat visits. We will flag
customers as VIPs after they make their third purchase, and this will entitle them to
priority treatment and special offers. Our acceptance criteria for this story reads as
follows:

Discussion: Events, Commands, and Error Handling | 155



Given a customer with two orders in their history,
When the customer places a third order,
Then they should be flagged as a VIP.

When a customer first becomes a VIP
Then we should send them an email to congratulate them

Using the techniques we’ve already discussed in this book, we decide that we want to
build a new History aggregate that records orders and can raise domain events when
rules are met. We will structure the code like this:

VIP customer (example code for a different project)
class History:  # Aggregate

    def __init__(self, customer_id: int):
        self.orders = set() # Set[HistoryEntry]
        self.customer_id = customer_id

    def record_order(self, order_id: str, order_amount: int): 
        entry = HistoryEntry(order_id, order_amount)

        if entry in self.orders:
            return

        self.orders.add(entry)

        if len(self.orders) == 3:
            self.events.append(
                CustomerBecameVIP(self.customer_id)
            )

def create_order_from_basket(uow, cmd: CreateOrder): 
    with uow:
        order = Order.from_basket(cmd.customer_id, cmd.basket_items)
        uow.orders.add(order)
        uow.commit() # raises OrderCreated

def update_customer_history(uow, event: OrderCreated): 
    with uow:
        history = uow.order_history.get(event.customer_id)
        history.record_order(event.order_id, event.order_amount)
        uow.commit() # raises CustomerBecameVIP

def congratulate_vip_customer(uow, event: CustomerBecameVip): 
    with uow:
        customer = uow.customers.get(event.customer_id)
        email.send(
            customer.email_address,

156 | Chapter 10: Commands and Command Handler



            f'Congratulations {customer.first_name}!'
        )

The History aggregate captures the rules indicating when a customer becomes a
VIP. This puts us in a good place to handle changes when the rules become more
complex in the future.

Our first handler creates an order for the customer and raises a domain event
OrderCreated.

Our second handler updates the History object to record that an order was
created.

Finally, we send an email to the customer when they become a VIP.

Using this code, we can gain some intuition about error handling in an event-driven
system.

In our current implementation, we raise events about an aggregate after we persist
our state to the database. What if we raised those events before we persisted, and com‐
mitted all our changes at the same time? That way, we could be sure that all the work
was complete. Wouldn’t that be safer?

What happens, though, if the email server is slightly overloaded? If all the work has to
complete at the same time, a busy email server can stop us from taking money for
orders.

What happens if there is a bug in the implementation of the History aggregate?
Should we fail to take your money just because we can’t recognize you as a VIP?

By separating out these concerns, we have made it possible for things to fail in isola‐
tion, which improves the overall reliability of the system. The only part of this code
that has to complete is the command handler that creates an order. This is the only
part that a customer cares about, and it’s the part that our business stakeholders
should prioritize.

Notice how we’ve deliberately aligned our transactional boundaries to the start and
end of the business processes. The names that we use in the code match the jargon
used by our business stakeholders, and the handlers we’ve written match the steps of
our natural language acceptance criteria. This concordance of names and structure
helps us to reason about our systems as they grow larger and more complex.

Discussion: Events, Commands, and Error Handling | 157



Recovering from Errors Synchronously
Hopefully we’ve convinced you that it’s OK for events to fail independently from the
commands that raised them. What should we do, then, to make sure we can recover
from errors when they inevitably occur?

The first thing we need is to know when an error has occurred, and for that we usu‐
ally rely on logs.

Let’s look again at the handle_event method from our message bus:

Current handle function (src/allocation/service_layer/messagebus.py)
def handle_event(
    event: events.Event,
    queue: List[Message],
    uow: unit_of_work.AbstractUnitOfWork
):
    for handler in EVENT_HANDLERS[type(event)]:
        try:
            logger.debug('handling event %s with handler %s', event, handler)
            handler(event, uow=uow)
            queue.extend(uow.collect_new_events())
        except Exception:
            logger.exception('Exception handling event %s', event)
            continue

When we handle a message in our system, the first thing we do is write a log line to
record what we’re about to do. For our CustomerBecameVIP use case, the logs might
read as follows:

Handling event CustomerBecameVIP(customer_id=12345)
with handler <function congratulate_vip_customer at 0x10ebc9a60>

Because we’ve chosen to use dataclasses for our message types, we get a neatly printed
summary of the incoming data that we can copy and paste into a Python shell to re-
create the object.

When an error occurs, we can use the logged data to either reproduce the problem in
a unit test or replay the message into the system.

Manual replay works well for cases where we need to fix a bug before we can re-
process an event, but our systems will always experience some background level of
transient failure. This includes things like network hiccups, table deadlocks, and brief
downtime caused by deployments.

For most of those cases, we can recover elegantly by trying again. As the proverb says,
“If at first you don’t succeed, retry the operation with an exponentially increasing
back-off period.”

158 | Chapter 10: Commands and Command Handler



Handle with retry (src/allocation/service_layer/messagebus.py)
from tenacity import Retrying, RetryError, stop_after_attempt, wait_exponential 

...

def handle_event(
    event: events.Event,
    queue: List[Message],
    uow: unit_of_work.AbstractUnitOfWork
):

    for handler in EVENT_HANDLERS[type(event)]:
        try:
            for attempt in Retrying(  
                stop=stop_after_attempt(3),
                wait=wait_exponential()
            ):

                with attempt:
                    logger.debug('handling event %s with handler %s', event, handler)
                    handler(event, uow=uow)
                    queue.extend(uow.collect_new_events())
        except RetryError as retry_failure:
            logger.error(
                'Failed to handle event %s times, giving up!,
                retry_failure.last_attempt.attempt_number
            )
            continue

Tenacity is a Python library that implements common patterns for retrying.

Here we configure our message bus to retry operations up to three times, with an
exponentially increasing wait between attempts.

Retrying operations that might fail is probably the single best way to improve the
resilience of our software. Again, the Unit of Work and Command Handler patterns
mean that each attempt starts from a consistent state and won’t leave things half-
finished.

At some point, regardless of tenacity, we’ll have to give up trying
to process the message. Building reliable systems with distributed
messages is hard, and we have to skim over some tricky bits. There
are pointers to more reference materials in the epilogue.

Recovering from Errors Synchronously | 159



Wrap-Up
In this book we decided to introduce the concept of events before the concept of
commands, but other guides often do it the other way around. Making explicit the
requests that our system can respond to by giving them a name and their own data
structure is quite a fundamental thing to do. You’ll sometimes see people use the
name Command Handler pattern to describe what we’re doing with Events, Com‐
mands, and Message Bus.

Table 10-2 discusses some of the things you should think about before you jump on
board.

Table 10-2. Splitting commands and events: the trade-offs

Pros Cons

• Treating commands and events differently helps us
understand which things have to succeed and which
things we can tidy up later.

• CreateBatch is definitely a less confusing name
than BatchCreated. We are being explicit about
the intent of our users, and explicit is better than
implicit, right?

• The semantic differences between commands and events can
be subtle. Expect bikeshedding arguments over the
differences.

• We’re expressly inviting failure. We know that sometimes
things will break, and we’re choosing to handle that by
making the failures smaller and more isolated. This can make
the system harder to reason about and requires better
monitoring.

In Chapter 11 we’ll talk about using events as an integration pattern.

160 | Chapter 10: Commands and Command Handler



CHAPTER 11

Event-Driven Architecture: Using Events to
Integrate Microservices

In the preceding chapter, we never actually spoke about how we would receive the
“batch quantity changed” events, or indeed, how we might notify the outside world
about reallocations.

We have a microservice with a web API, but what about other ways of talking to other
systems? How will we know if, say, a shipment is delayed or the quantity is amended?
How will we tell the warehouse system that an order has been allocated and needs to
be sent to a customer?

In this chapter, we’d like to show how the events metaphor can be extended to encom‐
pass the way that we handle incoming and outgoing messages from the system. Inter‐
nally, the core of our application is now a message processor. Let’s follow through on
that so it becomes a message processor externally as well. As shown in Figure 11-1,
our application will receive events from external sources via an external message bus
(we’ll use Redis pub/sub queues as an example) and publish its outputs, in the form of
events, back there as well.

161



Figure 11-1. Our application is a message processor

The code for this chapter is in the chapter_11_external_events
branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_11_external_events
# or to code along, checkout the previous chapter:
git checkout chapter_10_commands

Distributed Ball of Mud, and Thinking in Nouns
Before we get into that, let’s talk about the alternatives. We regularly talk to engineers
who are trying to build out a microservices architecture. Often they are migrating
from an existing application, and their first instinct is to split their system into nouns.

What nouns have we introduced so far in our system? Well, we have batches of stock,
orders, products, and customers. So a naive attempt at breaking up the system might
have looked like Figure 11-2 (notice that we’ve named our system after a noun,
Batches, instead of Allocation).

162 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices

https://oreil.ly/UiwRS


Figure 11-2. Context diagram with noun-based services

Each “thing” in our system has an associated service, which exposes an HTTP API.

Let’s work through an example happy-path flow in Figure 11-3: our users visit a web‐
site and can choose from products that are in stock. When they add an item to their
basket, we will reserve some stock for them. When an order is complete, we confirm
the reservation, which causes us to send dispatch instructions to the warehouse. Let’s
also say, if this is the customer’s third order, we want to update the customer record to
flag them as a VIP.

Distributed Ball of Mud, and Thinking in Nouns | 163



Figure 11-3. Command flow 1

We can think of each of these steps as a command in our system: ReserveStock,
ConfirmReservation, DispatchGoods, MakeCustomerVIP, and so forth.

This style of architecture, where we create a microservice per database table and treat
our HTTP APIs as CRUD interfaces to anemic models, is the most common initial
way for people to approach service-oriented design.

This works fine for systems that are very simple, but it can quickly degrade into a dis‐
tributed ball of mud.

To see why, let’s consider another case. Sometimes, when stock arrives at the ware‐
house, we discover that items have been water damaged during transit. We can’t sell
water-damaged sofas, so we have to throw them away and request more stock from
our partners. We also need to update our stock model, and that might mean we need
to reallocate a customer’s order.

Where does this logic go?

Well, the Warehouse system knows that the stock has been damaged, so maybe it
should own this process, as shown in Figure 11-4.

164 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices



Figure 11-4. Command flow 2

This sort of works too, but now our dependency graph is a mess. To allocate stock,
the Orders service drives the Batches system, which drives Warehouse; but in order to
handle problems at the warehouse, our Warehouse system drives Batches, which
drives Orders.

Multiply this by all the other workflows we need to provide, and you can see how
services quickly get tangled up.

Error Handling in Distributed Systems
“Things break” is a universal law of software engineering. What happens in our sys‐
tem when one of our requests fails? Let’s say that a network error happens right after
we take a user’s order for three MISBEGOTTEN-RUG, as shown in Figure 11-5.

We have two options here: we can place the order anyway and leave it unallocated, or
we can refuse to take the order because the allocation can’t be guaranteed. The failure
state of our batches service has bubbled up and is affecting the reliability of our order
service.

When two things have to be changed together, we say that they are coupled. We can
think of this failure cascade as a kind of temporal coupling: every part of the system
has to work at the same time for any part of it to work. As the system gets bigger,
there is an exponentially increasing probability that some part is degraded.

Error Handling in Distributed Systems | 165



Figure 11-5. Command flow with error

Connascence
We’re using the term coupling here, but there’s another way to describe the relation‐
ships between our systems. Connascence is a term used by some authors to describe
the different types of coupling.

Connascence isn’t bad, but some types of connascence are stronger than others. We
want to have strong connascence locally, as when two classes are closely related, but
weak connascence at a distance.

In our first example of a distributed ball of mud, we see Connascence of Execution:
multiple components need to know the correct order of work for an operation to be
successful.

When thinking about error conditions here, we’re talking about Connascence of Tim‐
ing: multiple things have to happen, one after another, for the operation to work.

When we replace our RPC-style system with events, we replace both of these types of
connascence with a weaker type. That’s Connascence of Name: multiple components
need to agree only on the name of an event and the names of fields it carries.

We can never completely avoid coupling, except by having our software not talk to
any other software. What we want is to avoid inappropriate coupling. Connascence
provides a mental model for understanding the strength and type of coupling inher‐
ent in different architectural styles. Read all about it at connascence.io.

166 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices

http://www.connascence.io


The Alternative: Temporal Decoupling Using
Asynchronous Messaging
How do we get appropriate coupling? We’ve already seen part of the answer, which is
that we should think in terms of verbs, not nouns. Our domain model is about mod‐
eling a business process. It’s not a static data model about a thing; it’s a model of a
verb.

So instead of thinking about a system for orders and a system for batches, we think
about a system for ordering and a system for allocating, and so on.

When we separate things this way, it’s a little easier to see which system should be
responsible for what. When thinking about ordering, really we want to make sure that
when we place an order, the order is placed. Everything else can happen later, so long
as it happens.

If this sounds familiar, it should! Segregating responsibilities is the
same process we went through when designing our aggregates and
commands.

Like aggregates, microservices should be consistency boundaries. Between two serv‐
ices, we can accept eventual consistency, and that means we don’t need to rely on syn‐
chronous calls. Each service accepts commands from the outside world and raises
events to record the result. Other services can listen to those events to trigger the next
steps in the workflow.

To avoid the Distributed Ball of Mud anti-pattern, instead of temporally coupled
HTTP API calls, we want to use asynchronous messaging to integrate our systems.
We want our BatchQuantityChanged messages to come in as external messages from
upstream systems, and we want our system to publish Allocated events for down‐
stream systems to listen to.

Why is this better? First, because things can fail independently, it’s easier to handle
degraded behavior: we can still take orders if the allocation system is having a bad
day.

Second, we’re reducing the strength of coupling between our systems. If we need to
change the order of operations or to introduce new steps in the process, we can do
that locally.

The Alternative: Temporal Decoupling Using Asynchronous Messaging | 167



Using a Redis Pub/Sub Channel for Integration
Let’s see how it will all work concretely. We’ll need some way of getting events out of
one system and into another, like our message bus, but for services. This piece of
infrastructure is often called a message broker. The role of a message broker is to take
messages from publishers and deliver them to subscribers.

At MADE.com, we use Event Store; Kafka or RabbitMQ are valid alternatives. A
lightweight solution based on Redis pub/sub channels can also work just fine, and
because Redis is much more generally familiar to people, we thought we’d use it for
this book.

We’re glossing over the complexity involved in choosing the right
messaging platform. Concerns like message ordering, failure han‐
dling, and idempotency all need to be thought through. For a few
pointers, see “Footguns” on page 226.

Our new flow will look like Figure 11-6: Redis provides the BatchQuantityChanged
event that kicks off the whole process, and our Allocated event is published back out
to Redis again at the end.

Figure 11-6. Sequence diagram for reallocation flow

168 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices

https://eventstore.org
https://redis.io/topics/pubsub


Test-Driving It All Using an End-to-End Test
Here’s how we might start with an end-to-end test. We can use our existing API to
create batches, and then we’ll test both inbound and outbound messages:

An end-to-end test for our pub/sub model (tests/e2e/test_external_events.py)
def test_change_batch_quantity_leading_to_reallocation():
    # start with two batches and an order allocated to one of them  
    orderid, sku = random_orderid(), random_sku()
    earlier_batch, later_batch = random_batchref('old'), random_batchref('newer')
    api_client.post_to_add_batch(earlier_batch, sku, qty=10, eta='2011-01-02')  
    api_client.post_to_add_batch(later_batch, sku, qty=10, eta='2011-01-02')
    response = api_client.post_to_allocate(orderid, sku, 10)  
    assert response.json()['batchref'] == earlier_batch

    subscription = redis_client.subscribe_to('line_allocated')  

    # change quantity on allocated batch so it's less than our order  
    redis_client.publish_message('change_batch_quantity', {  
        'batchref': earlier_batch, 'qty': 5
    })

    # wait until we see a message saying the order has been reallocated  
    messages = []
    for attempt in Retrying(stop=stop_after_delay(3), reraise=True):  
        with attempt:
            message = subscription.get_message(timeout=1)
            if message:
                messages.append(message)
                print(messages)
            data = json.loads(messages[-1]['data'])
            assert data['orderid'] == orderid
            assert data['batchref'] == later_batch

You can read the story of what’s going on in this test from the comments: we
want to send an event into the system that causes an order line to be reallocated,
and we see that reallocation come out as an event in Redis too.

api_client is a little helper that we refactored out to share between our two test
types; it wraps our calls to requests.post.

redis_client is another little test helper, the details of which don’t really matter;
its job is to be able to send and receive messages from various Redis channels.
We’ll use a channel called change_batch_quantity to send in our request to
change the quantity for a batch, and we’ll listen to another channel called
line_allocated to look out for the expected reallocation.

Test-Driving It All Using an End-to-End Test | 169



Because of the asynchronous nature of the system under test, we need to use the
tenacity library again to add a retry loop—first, because it may take some time
for our new line_allocated message to arrive, but also because it won’t be the
only message on that channel.

Redis Is Another Thin Adapter Around Our Message Bus
Our Redis pub/sub listener (we call it an event consumer) is very much like Flask: it
translates from the outside world to our events:

Simple Redis message listener (src/allocation/entrypoints/redis_eventconsumer.py)
r = redis.Redis(**config.get_redis_host_and_port())

def main():
    orm.start_mappers()
    pubsub = r.pubsub(ignore_subscribe_messages=True)
    pubsub.subscribe('change_batch_quantity')  

    for m in pubsub.listen():
        handle_change_batch_quantity(m)

def handle_change_batch_quantity(m):
    logging.debug('handling %s', m)
    data = json.loads(m['data'])  
    cmd = commands.ChangeBatchQuantity(ref=data['batchref'], qty=data['qty'])  
    messagebus.handle(cmd, uow=unit_of_work.SqlAlchemyUnitOfWork())

main() subscribes us to the change_batch_quantity channel on load.

Our main job as an entrypoint to the system is to deserialize JSON, convert it to a
Command, and pass it to the service layer—much as the Flask adapter does.

We also build a new downstream adapter to do the opposite job—converting domain
events to public events:

Simple Redis message publisher (src/allocation/adapters/redis_eventpublisher.py)
r = redis.Redis(**config.get_redis_host_and_port())

def publish(channel, event: events.Event):  
    logging.debug('publishing: channel=%s, event=%s', channel, event)
    r.publish(channel, json.dumps(asdict(event)))

170 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices



We take a hardcoded channel here, but you could also store a mapping between
event classes/names and the appropriate channel, allowing one or more message
types to go to different channels.

Our New Outgoing Event
Here’s what the Allocated event will look like:

New event (src/allocation/domain/events.py)
@dataclass
class Allocated(Event):
    orderid: str
    sku: str
    qty: int
    batchref: str

It captures everything we need to know about an allocation: the details of the order
line, and which batch it was allocated to.

We add it into our model’s allocate() method (having added a test first, naturally):

Product.allocate() emits new event to record what happened (src/allocation/domain/model.py)
class Product:
    ...
    def allocate(self, line: OrderLine) -> str:
        ...

            batch.allocate(line)
            self.version_number += 1
            self.events.append(events.Allocated(
                orderid=line.orderid, sku=line.sku, qty=line.qty,
                batchref=batch.reference,
            ))
            return batch.reference

The handler for ChangeBatchQuantity already exists, so all we need to add is a han‐
dler that publishes the outgoing event:

The message bus grows (src/allocation/service_layer/messagebus.py)
HANDLERS = {
    events.Allocated: [handlers.publish_allocated_event],
    events.OutOfStock: [handlers.send_out_of_stock_notification],
}  # type: Dict[Type[events.Event], List[Callable]]

Publishing the event uses our helper function from the Redis wrapper:

Test-Driving It All Using an End-to-End Test | 171



Publish to Redis (src/allocation/service_layer/handlers.py)
def publish_allocated_event(
        event: events.Allocated, uow: unit_of_work.AbstractUnitOfWork,
):
    redis_eventpublisher.publish('line_allocated', event)

Internal Versus External Events
It’s a good idea to keep the distinction between internal and external events clear.
Some events may come from the outside, and some events may get upgraded and
published externally, but not all of them will. This is particularly important if you get
into event sourcing (very much a topic for another book, though).

Outbound events are one of the places it’s important to apply vali‐
dation. See Appendix E for some validation philosophy and
examples.

Exercise for the Reader
A nice simple one for this chapter: make it so that the main allocate() use case can
also be invoked by an event on a Redis channel, as well as (or instead of) via the API.

You will likely want to add a new E2E test and feed through some changes into
redis_eventconsumer.py.

Wrap-Up
Events can come from the outside, but they can also be published externally—our
publish handler converts an event to a message on a Redis channel. We use events to
talk to the outside world. This kind of temporal decoupling buys us a lot of flexibility
in our application integrations, but as always, it comes at a cost.

Event notification is nice because it implies a low level of coupling, and is pretty simple
to set up. It can become problematic, however, if there really is a logical flow that runs
over various event notifications...It can be hard to see such a flow as it’s not explicit in
any program text....This can make it hard to debug and modify.

—Martin Fowler, “What do you mean by ‘Event-Driven’”

Table 11-1 shows some trade-offs to think about.

172 | Chapter 11: Event-Driven Architecture: Using Events to Integrate Microservices

https://oreil.ly/FXVil
https://oreil.ly/uaPNt


Table 11-1. Event-based microservices integration: the trade-offs

Pros Cons

• Avoids the distributed big ball of mud.
• Services are decoupled: it’s easier to change

individual services and add new ones.

• The overall flows of information are harder to see.
• Eventual consistency is a new concept to deal with.
• Message reliability and choices around at-least-once versus at-most-

once delivery need thinking through.

More generally, if you’re moving from a model of synchronous messaging to an async
one, you also open up a whole host of problems having to do with message reliability
and eventual consistency. Read on to “Footguns” on page 226.

Wrap-Up | 173





CHAPTER 12

Command-Query Responsibility
Segregation (CQRS)

In this chapter, we’re going to start with a fairly uncontroversial insight: reads (quer‐
ies) and writes (commands) are different, so they should be treated differently (or
have their responsibilities segregated, if you will). Then we’re going to push that
insight as far as we can.

If you’re anything like Harry, this will all seem extreme at first, but hopefully we can
make the argument that it’s not totally unreasonable.

Figure 12-1 shows where we might end up.

The code for this chapter is in the chapter_12_cqrs branch on
GitHub.

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_12_cqrs
# or to code along, checkout the previous chapter:
git checkout chapter_11_external_events

First, though, why bother?

175

https://oreil.ly/YbWGT
https://oreil.ly/YbWGT


Figure 12-1. Separating reads from writes

Domain Models Are for Writing
We’ve spent a lot of time in this book talking about how to build software that enfor‐
ces the rules of our domain. These rules, or constraints, will be different for every
application, and they make up the interesting core of our systems.

In this book, we’ve set explicit constraints like “You can’t allocate more stock than is
available,” as well as implicit constraints like “Each order line is allocated to a single
batch.”

We wrote down these rules as unit tests at the beginning of the book:

176 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



Our basic domain tests (tests/unit/test_batches.py)
def test_allocating_to_a_batch_reduces_the_available_quantity():
    batch = Batch("batch-001", "SMALL-TABLE", qty=20, eta=date.today())
    line = OrderLine('order-ref', "SMALL-TABLE", 2)

    batch.allocate(line)

    assert batch.available_quantity == 18

...

def test_cannot_allocate_if_available_smaller_than_required():
    small_batch, large_line = make_batch_and_line("ELEGANT-LAMP", 2, 20)
    assert small_batch.can_allocate(large_line) is False

To apply these rules properly, we needed to ensure that operations were consistent,
and so we introduced patterns like Unit of Work and Aggregate that help us commit
small chunks of work.

To communicate changes between those small chunks, we introduced the Domain
Events pattern so we can write rules like “When stock is damaged or lost, adjust the
available quantity on the batch, and reallocate orders if necessary.”

All of this complexity exists so we can enforce rules when we change the state of our
system. We’ve built a flexible set of tools for writing data.

What about reads, though?

Most Users Aren’t Going to Buy Your Furniture
At MADE.com, we have a system very like the allocation service. In a busy day, we
might process one hundred orders in an hour, and we have a big gnarly system for
allocating stock to those orders.

In that same busy day, though, we might have one hundred product views per second.
Each time somebody visits a product page, or a product listing page, we need to fig‐
ure out whether the product is still in stock and how long it will take us to deliver it.

The domain is the same—we’re concerned with batches of stock, and their arrival
date, and the amount that’s still available—but the access pattern is very different. For
example, our customers won’t notice if the query is a few seconds out of date, but if
our allocate service is inconsistent, we’ll make a mess of their orders. We can take
advantage of this difference by making our reads eventually consistent in order to
make them perform better.

Most Users Aren’t Going to Buy Your Furniture | 177



Is Read Consistency Truly Attainable?
This idea of trading consistency against performance makes a lot of developers
nervous at first, so let’s talk quickly about that.

Let’s imagine that our “Get Available Stock” query is 30 seconds out of date when Bob
visits the page for ASYMMETRICAL-DRESSER. Meanwhile, though, Harry has already
bought the last item. When we try to allocate Bob’s order, we’ll get a failure, and we’ll
need to either cancel his order or buy more stock and delay his delivery.

People who’ve worked only with relational data stores get really nervous about this
problem, but it’s worth considering two other scenarios to gain some perspective.

First, let’s imagine that Bob and Harry both visit the page at the same time. Harry goes
off to make coffee, and by the time he returns, Bob has already bought the last
dresser. When Harry places his order, we send it to the allocation service, and because
there’s not enough stock, we have to refund his payment or buy more stock and delay
his delivery.

As soon as we render the product page, the data is already stale. This insight is key to
understanding why reads can be safely inconsistent: we’ll always need to check the
current state of our system when we come to allocate, because all distributed systems
are inconsistent. As soon as you have a web server and two customers, you have the
potential for stale data.

OK, let’s assume we solve that problem somehow: we magically build a totally consis‐
tent web application where nobody ever sees stale data. This time Harry gets to the
page first and buys his dresser.

Unfortunately for him, when the warehouse staff tries to dispatch his furniture, it falls
off the forklift and smashes into a zillion pieces. Now what?

The only options are to either call Harry and refund his order or buy more stock and
delay delivery.

No matter what we do, we’re always going to find that our software systems are incon‐
sistent with reality, and so we’ll always need business processes to cope with these
edge cases. It’s OK to trade performance for consistency on the read side, because
stale data is essentially unavoidable.

We can think of these requirements as forming two halves of a system: the read side
and the write side, shown in Table 12-1.

For the write side, our fancy domain architectural patterns help us to evolve our sys‐
tem over time, but the complexity we’ve built so far doesn’t buy anything for reading
data. The service layer, the unit of work, and the clever domain model are just bloat.

178 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



Table 12-1. Read versus write

Read side Write side
Behavior Simple read Complex business logic

Cacheability Highly cacheable Uncacheable

Consistency Can be stale Must be transactionally consistent

Post/Redirect/Get and CQS
If you do web development, you’re probably familiar with the Post/Redirect/Get pat‐
tern. In this technique, a web endpoint accepts an HTTP POST and responds with a
redirect to see the result. For example, we might accept a POST to /batches to create a
new batch and redirect the user to /batches/123 to see their newly created batch.

This approach fixes the problems that arise when users refresh the results page in
their browser or try to bookmark a results page. In the case of a refresh, it can lead to
our users double-submitting data and thus buying two sofas when they needed only
one. In the case of a bookmark, our hapless customers will end up with a broken page
when they try to GET a POST endpoint.

Both these problems happen because we’re returning data in response to a write oper‐
ation. Post/Redirect/Get sidesteps the issue by separating the read and write phases of
our operation.

This technique is a simple example of command-query separation (CQS). In CQS we
follow one simple rule: functions should either modify state or answer questions, but
never both. This makes software easier to reason about: we should always be able to
ask, “Are the lights on?” without flicking the light switch.

When building APIs, we can apply the same design technique by
returning a 201 Created, or a 202 Accepted, with a Location header
containing the URI of our new resources. What’s important here
isn’t the status code we use but the logical separation of work into a
write phase and a query phase.

As you’ll see, we can use the CQS principle to make our systems faster and more scal‐
able, but first, let’s fix the CQS violation in our existing code. Ages ago, we introduced
an allocate endpoint that takes an order and calls our service layer to allocate some
stock. At the end of the call, we return a 200 OK and the batch ID. That’s led to some
ugly design flaws so that we can get the data we need. Let’s change it to return a sim‐
ple OK message and instead provide a new read-only endpoint to retrieve allocation
state:

Post/Redirect/Get and CQS | 179



API test does a GET after the POST (tests/e2e/test_api.py)
@pytest.mark.usefixtures('postgres_db')
@pytest.mark.usefixtures('restart_api')
def test_happy_path_returns_202_and_batch_is_allocated():
    orderid = random_orderid()
    sku, othersku = random_sku(), random_sku('other')
    earlybatch = random_batchref(1)
    laterbatch = random_batchref(2)
    otherbatch = random_batchref(3)
    api_client.post_to_add_batch(laterbatch, sku, 100, '2011-01-02')
    api_client.post_to_add_batch(earlybatch, sku, 100, '2011-01-01')
    api_client.post_to_add_batch(otherbatch, othersku, 100, None)

    r = api_client.post_to_allocate(orderid, sku, qty=3)
    assert r.status_code == 202

    r = api_client.get_allocation(orderid)
    assert r.ok
    assert r.json() == [
        {'sku': sku, 'batchref': earlybatch},
    ]

@pytest.mark.usefixtures('postgres_db')
@pytest.mark.usefixtures('restart_api')
def test_unhappy_path_returns_400_and_error_message():
    unknown_sku, orderid = random_sku(), random_orderid()
    r = api_client.post_to_allocate(
        orderid, unknown_sku, qty=20, expect_success=False,
    )
    assert r.status_code == 400
    assert r.json()['message'] == f'Invalid sku {unknown_sku}'

    r = api_client.get_allocation(orderid)
    assert r.status_code == 404

OK, what might the Flask app look like?

Endpoint for viewing allocations (src/allocation/entrypoints/flask_app.py)
from allocation import views
...

@app.route("/allocations/<orderid>", methods=['GET'])
def allocations_view_endpoint(orderid):
    uow = unit_of_work.SqlAlchemyUnitOfWork()
    result = views.allocations(orderid, uow)  
    if not result:
        return 'not found', 404
    return jsonify(result), 200

180 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



All right, a views.py, fair enough; we can keep read-only stuff in there, and it’ll be
a real views.py, not like Django’s, something that knows how to build read-only
views of our data…

Hold On to Your Lunch, Folks
Hmm, so we can probably just add a list method to our existing repository object:

Views do…raw SQL? (src/allocation/views.py)
from allocation.service_layer import unit_of_work

def allocations(orderid: str, uow: unit_of_work.SqlAlchemyUnitOfWork):
    with uow:
        results = list(uow.session.execute(
            'SELECT ol.sku, b.reference'
            ' FROM allocations AS a'
            ' JOIN batches AS b ON a.batch_id = b.id'
            ' JOIN order_lines AS ol ON a.orderline_id = ol.id'
            ' WHERE ol.orderid = :orderid',
            dict(orderid=orderid)
        ))
    return [{'sku': sku, 'batchref': batchref} for sku, batchref in results]

Excuse me? Raw SQL?

If you’re anything like Harry encountering this pattern for the first time, you’ll be
wondering what on earth Bob has been smoking. We’re hand-rolling our own SQL
now, and converting database rows directly to dicts? After all the effort we put into
building a nice domain model? And what about the Repository pattern? Isn’t that
meant to be our abstraction around the database? Why don’t we reuse that?

Well, let’s explore that seemingly simpler alternative first, and see what it looks like in
practice.

We’ll still keep our view in a separate views.py module; enforcing a clear distinction
between reads and writes in your application is still a good idea. We apply command-
query separation, and it’s easy to see which code modifies state (the event handlers)
and which code just retrieves read-only state (the views).

Splitting out your read-only views from your state-modifying com‐
mand and event handlers is probably a good idea, even if you don’t
want to go to full-blown CQRS.

Hold On to Your Lunch, Folks | 181



Testing CQRS Views
Before we get into exploring various options, let’s talk about testing. Whichever
approaches you decide to go for, you’re probably going to need at least one integra‐
tion test. Something like this:

An integration test for a view (tests/integration/test_views.py)
def test_allocations_view(sqlite_session_factory):
    uow = unit_of_work.SqlAlchemyUnitOfWork(sqlite_session_factory)
    messagebus.handle(commands.CreateBatch('sku1batch', 'sku1', 50, None), uow)  
    messagebus.handle(commands.CreateBatch('sku2batch', 'sku2', 50, today), uow)
    messagebus.handle(commands.Allocate('order1', 'sku1', 20), uow)
    messagebus.handle(commands.Allocate('order1', 'sku2', 20), uow)
    # add a spurious batch and order to make sure we're getting the right ones
    messagebus.handle(commands.CreateBatch('sku1batch-later', 'sku1', 50, today), uow)
    messagebus.handle(commands.Allocate('otherorder', 'sku1', 30), uow)
    messagebus.handle(commands.Allocate('otherorder', 'sku2', 10), uow)

    assert views.allocations('order1', uow) == [
        {'sku': 'sku1', 'batchref': 'sku1batch'},
        {'sku': 'sku2', 'batchref': 'sku2batch'},
    ]

We do the setup for the integration test by using the public entrypoint to our
application, the message bus. That keeps our tests decoupled from any imple‐
mentation/infrastructure details about how things get stored.

“Obvious” Alternative 1: Using the Existing Repository
How about adding a helper method to our products repository?

A simple view that uses the repository (src/allocation/views.py)
from allocation import unit_of_work

def allocations(orderid: str, uow: unit_of_work.AbstractUnitOfWork):
    with uow:
        products = uow.products.for_order(orderid=orderid)  
        batches = [b for p in products for b in p.batches]  
        return [
            {'sku': b.sku, 'batchref': b.reference}
            for b in batches
            if orderid in b.orderids  
        ]

Our repository returns Product objects, and we need to find all the products for
the SKUs in a given order, so we’ll build a new helper method
called .for_order() on the repository.

182 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



Now we have products but we actually want batch references, so we get all the
possible batches with a list comprehension.

We filter again to get just the batches for our specific order. That, in turn, relies
on our Batch objects being able to tell us which order IDs it has allocated.

We implement that last using a .orderid property:

An arguably unnecessary property on our model (src/allocation/domain/model.py)
class Batch:
    ...

    @property
    def orderids(self):
        return {l.orderid for l in self._allocations}

You can start to see that reusing our existing repository and domain model classes is
not as straightforward as you might have assumed. We’ve had to add new helper
methods to both, and we’re doing a bunch of looping and filtering in Python, which is
work that would be done much more efficiently by the database.

So yes, on the plus side we’re reusing our existing abstractions, but on the downside,
it all feels quite clunky.

Your Domain Model Is Not Optimized for Read Operations
What we’re seeing here are the effects of having a domain model that is designed pri‐
marily for write operations, while our requirements for reads are often conceptually
quite different.

This is the chin-stroking-architect’s justification for CQRS. As we’ve said before, a
domain model is not a data model—we’re trying to capture the way the business
works: workflow, rules around state changes, messages exchanged; concerns about
how the system reacts to external events and user input. Most of this stuff is totally
irrelevant for read-only operations.

This justification for CQRS is related to the justification for the
Domain Model pattern. If you’re building a simple CRUD app,
reads and writes are going to be closely related, so you don’t need a
domain model or CQRS. But the more complex your domain, the
more likely you are to need both.

To make a facile point, your domain classes will have multiple methods for modifying
state, and you won’t need any of them for read-only operations.

Your Domain Model Is Not Optimized for Read Operations | 183



As the complexity of your domain model grows, you will find yourself making more
and more choices about how to structure that model, which make it more and more
awkward to use for read operations.

“Obvious” Alternative 2: Using the ORM
You may be thinking, OK, if our repository is clunky, and working with Products is
clunky, then I can at least use my ORM and work with Batches. That’s what it’s for!

A simple view that uses the ORM (src/allocation/views.py)
from allocation import unit_of_work, model

def allocations(orderid: str, uow: unit_of_work.AbstractUnitOfWork):
    with uow:
        batches = uow.session.query(model.Batch).join(
            model.OrderLine, model.Batch._allocations
        ).filter(
            model.OrderLine.orderid == orderid
        )
        return [
            {'sku': b.sku, 'batchref': b.batchref}
            for b in batches
        ]

But is that actually any easier to write or understand than the raw SQL version from
the code example in “Hold On to Your Lunch, Folks” on page 181? It may not look
too bad up there, but we can tell you it took several attempts, and plenty of digging
through the SQLAlchemy docs. SQL is just SQL.

But the ORM can also expose us to performance problems.

SELECT N+1 and Other Performance Considerations
The so-called SELECT N+1 problem is a common performance problem with ORMs:
when retrieving a list of objects, your ORM will often perform an initial query to, say,
get all the IDs of the objects it needs, and then issue individual queries for each object
to retrieve their attributes. This is especially likely if there are any foreign-key rela‐
tionships on your objects.

In all fairness, we should say that SQLAlchemy is quite good at
avoiding the SELECT N+1 problem. It doesn’t display it in the pre‐
ceding example, and you can request eager loading explicitly to
avoid it when dealing with joined objects.

184 | Chapter 12: Command-Query Responsibility Segregation (CQRS)

https://oreil.ly/OkBOS
https://oreil.ly/XKDDm


Beyond SELECT N+1, you may have other reasons for wanting to decouple the way
you persist state changes from the way that you retrieve current state. A set of fully
normalized relational tables is a good way to make sure that write operations never
cause data corruption. But retrieving data using lots of joins can be slow. It’s common
in such cases to add some denormalized views, build read replicas, or even add cach‐
ing layers.

Time to Completely Jump the Shark
On that note: have we convinced you that our raw SQL version isn’t so weird as it first
seemed? Perhaps we were exaggerating for effect? Just you wait.

So, reasonable or not, that hardcoded SQL query is pretty ugly, right? What if we
made it nicer…

A much nicer query (src/allocation/views.py)
def allocations(orderid: str, uow: unit_of_work.SqlAlchemyUnitOfWork):
    with uow:
        results = list(uow.session.execute(
            'SELECT sku, batchref FROM allocations_view WHERE orderid = :orderid',
            dict(orderid=orderid)
        ))
        ...

…by keeping a totally separate, denormalized data store for our view model?

Hee hee hee, no foreign keys, just strings, YOLO (src/allocation/adapters/orm.py)
allocations_view = Table(
    'allocations_view', metadata,
    Column('orderid', String(255)),
    Column('sku', String(255)),
    Column('batchref', String(255)),
)

OK, nicer-looking SQL queries wouldn’t be a justification for anything really, but
building a denormalized copy of your data that’s optimized for read operations isn’t
uncommon, once you’ve reached the limits of what you can do with indexes.

Even with well-tuned indexes, a relational database uses a lot of CPU to perform
joins. The fastest queries will always be SELECT * from mytable WHERE key

= :value.

More than raw speed, though, this approach buys us scale. When we’re writing data
to a relational database, we need to make sure that we get a lock over the rows we’re
changing so we don’t run into consistency problems.

Time to Completely Jump the Shark | 185



If multiple clients are changing data at the same time, we’ll have weird race condi‐
tions. When we’re reading data, though, there’s no limit to the number of clients that
can concurrently execute. For this reason, read-only stores can be horizontally scaled
out.

Because read replicas can be inconsistent, there’s no limit to how
many we can have. If you’re struggling to scale a system with a
complex data store, ask whether you could build a simpler read
model.

Keeping the read model up to date is the challenge! Database views (materialized or
otherwise) and triggers are a common solution, but that limits you to your database.
We’d like to show you how to reuse our event-driven architecture instead.

Updating a Read Model Table Using an Event Handler
We add a second handler to the Allocated event:

Allocated event gets a new handler (src/allocation/service_layer/messagebus.py)
EVENT_HANDLERS = {
    events.Allocated: [
        handlers.publish_allocated_event,
        handlers.add_allocation_to_read_model
    ],

Here’s what our update-view-model code looks like:

Update on allocation (src/allocation/service_layer/handlers.py)
def add_allocation_to_read_model(
        event: events.Allocated, uow: unit_of_work.SqlAlchemyUnitOfWork,
):
    with uow:
        uow.session.execute(
            'INSERT INTO allocations_view (orderid, sku, batchref)'
            ' VALUES (:orderid, :sku, :batchref)',
            dict(orderid=event.orderid, sku=event.sku, batchref=event.batchref)
        )
        uow.commit()

Believe it or not, that will pretty much work! And it will work against the exact same
integration tests as the rest of our options.

OK, you’ll also need to handle Deallocated:

186 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



A second listener for read model updates
events.Deallocated: [
    handlers.remove_allocation_from_read_model,
    handlers.reallocate
],

...

def remove_allocation_from_read_model(
        event: events.Deallocated, uow: unit_of_work.SqlAlchemyUnitOfWork,
):
    with uow:
        uow.session.execute(
            'DELETE FROM allocations_view '
            ' WHERE orderid = :orderid AND sku = :sku',

Figure 12-2 shows the flow across the two requests.

Figure 12-2. Sequence diagram for read model

Time to Completely Jump the Shark | 187



In Figure 12-2, you can see two transactions in the POST/write operation, one to
update the write model and one to update the read model, which the GET/read oper‐
ation can use.

Rebuilding from Scratch
“What happens when it breaks?” should be the first question we ask as engineers.

How do we deal with a view model that hasn’t been updated because of a bug or tem‐
porary outage? Well, this is just another case where events and commands can fail
independently.

If we never updated the view model, and the ASYMMETRICAL-DRESSER was forever in
stock, that would be annoying for customers, but the allocate service would still fail,
and we’d take action to fix the problem.

Rebuilding a view model is easy, though. Since we’re using a service layer to update
our view model, we can write a tool that does the following:

• Queries the current state of the write side to work out what’s currently allocated
• Calls the add_allocate_to_read_model handler for each allocated item

We can use this technique to create entirely new read models from historical data.

Changing Our Read Model Implementation Is Easy
Let’s see the flexibility that our event-driven model buys us in action, by seeing what
happens if we ever decide we want to implement a read model by using a totally sepa‐
rate storage engine, Redis.

Just watch:

Handlers update a Redis read model (src/allocation/service_layer/handlers.py)
def add_allocation_to_read_model(event: events.Allocated, _):
    redis_eventpublisher.update_readmodel(event.orderid, event.sku, event.batchref)

def remove_allocation_from_read_model(event: events.Deallocated, _):
    redis_eventpublisher.update_readmodel(event.orderid, event.sku, None)

The helpers in our Redis module are one-liners:

Redis read model read and update (src/allocation/adapters/redis_eventpublisher.py)
def update_readmodel(orderid, sku, batchref):
    r.hset(orderid, sku, batchref)

188 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



def get_readmodel(orderid):
    return r.hgetall(orderid)

(Maybe the name redis_eventpublisher.py is a misnomer now, but you get the idea.)

And the view itself changes very slightly to adapt to its new backend:

View adapted to Redis (src/allocation/views.py)
def allocations(orderid):
    batches = redis_eventpublisher.get_readmodel(orderid)
    return [
        {'batchref': b.decode(), 'sku': s.decode()}
        for s, b in batches.items()
    ]

And the exact same integration tests that we had before still pass, because they are
written at a level of abstraction that’s decoupled from the implementation: setup puts
messages on the message bus, and the assertions are against our view.

Event handlers are a great way to manage updates to a read model,
if you decide you need one. They also make it easy to change the
implementation of that read model at a later date.

Exercise for the Reader
Implement another view, this time to show the allocation for a single order line.

Here the trade-offs between using hardcoded SQL versus going via a repository
should be much more blurry. Try a few versions (maybe including going to Redis),
and see which you prefer.

Wrap-Up
Table 12-2 proposes some pros and cons for each of our options.

As it happens, the allocation service at MADE.com does use “full-blown” CQRS, with
a read model stored in Redis, and even a second layer of cache provided by Varnish.
But its use cases are quite a bit different from what we’ve shown here. For the kind of
allocation service we’re building, it seems unlikely that you’d need to use a separate
read model and event handlers for updating it.

But as your domain model becomes richer and more complex, a simplified read
model become ever more compelling.

Wrap-Up | 189



Table 12-2. Trade-offs of various view model options

Option Pros Cons
Just use repositories Simple, consistent approach. Expect performance issues with complex query

patterns.

Use custom queries
with your ORM

Allows reuse of DB configuration and model
definitions.

Adds another query language with its own quirks
and syntax.

Use hand-rolled SQL Offers fine control over performance with a
standard query syntax.

Changes to DB schema have to be made to your
hand-rolled queries and your ORM definitions.
Highly normalized schemas may still have
performance limitations.

Create separate read
stores with events

Read-only copies are easy to scale out. Views
can be constructed when data changes so
that queries are as simple as possible.

Complex technique. Harry will be forever suspicious
of your tastes and motives.

Often, your read operations will be acting on the same conceptual objects as your
write model, so using the ORM, adding some read methods to your repositories, and
using domain model classes for your read operations is just fine.

In our book example, the read operations act on quite different conceptual entities to
our domain model. The allocation service thinks in terms of Batches for a single
SKU, but users care about allocations for a whole order, with multiple SKUs, so using
the ORM ends up being a little awkward. We’d be quite tempted to go with the raw-
SQL view we showed right at the beginning of the chapter.

On that note, let’s sally forth into our final chapter.

190 | Chapter 12: Command-Query Responsibility Segregation (CQRS)



CHAPTER 13

Dependency Injection (and Bootstrapping)

Dependency injection (DI) is regarded with suspicion in the Python world. And
we’ve managed just fine without it so far in the example code for this book!

In this chapter, we’ll explore some of the pain points in our code that lead us to con‐
sider using DI, and we’ll present some options for how to do it, leaving it to you to
pick which you think is most Pythonic.

We’ll also add a new component to our architecture called bootstrap.py; it will be in
charge of dependency injection, as well as some other initialization stuff that we often
need. We’ll explain why this sort of thing is called a composition root in OO languages,
and why bootstrap script is just fine for our purposes.

Figure 13-1 shows what our app looks like without a bootstrapper: the entrypoints do
a lot of initialization and passing around of our main dependency, the UoW.

If you haven’t already, it’s worth reading Chapter 3 before continu‐
ing with this chapter, particularly the discussion of functional ver‐
sus object-oriented dependency management.

191



Figure 13-1. Without bootstrap: entrypoints do a lot

The code for this chapter is in the chapter_13_dependency_injec‐
tion branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout chapter_13_dependency_injection
# or to code along, checkout the previous chapter:
git checkout chapter_12_cqrs

Figure 13-2 shows our bootstrapper taking over those responsibilities.

192 | Chapter 13: Dependency Injection (and Bootstrapping)

https://oreil.ly/-B7e6


Figure 13-2. Bootstrap takes care of all that in one place

Implicit Versus Explicit Dependencies
Depending on your particular brain type, you may have a slight feeling of unease at
the back of your mind at this point. Let’s bring it out into the open. We’ve shown you
two ways of managing dependencies and testing them.

For our database dependency, we’ve built a careful framework of explicit dependen‐
cies and easy options for overriding them in tests. Our main handler functions
declare an explicit dependency on the UoW:

Implicit Versus Explicit Dependencies | 193



Our handlers have an explicit dependency on the UoW (src/allocation/service_layer/handlers.py)
def allocate(
        cmd: commands.Allocate, uow: unit_of_work.AbstractUnitOfWork
):

And that makes it easy to swap in a fake UoW in our service-layer tests:

Service-layer tests against a fake UoW: (tests/unit/test_services.py)
    uow = FakeUnitOfWork()
    messagebus.handle([...], uow)

The UoW itself declares an explicit dependency on the session factory:

The UoW depends on a session factory (src/allocation/service_layer/unit_of_work.py)
class SqlAlchemyUnitOfWork(AbstractUnitOfWork):

    def __init__(self, session_factory=DEFAULT_SESSION_FACTORY):
        self.session_factory = session_factory
        ...

We take advantage of it in our integration tests to be able to sometimes use SQLite
instead of Postgres:

Integration tests against a different DB (tests/integration/test_uow.py)
def test_rolls_back_uncommitted_work_by_default(sqlite_session_factory):
    uow = unit_of_work.SqlAlchemyUnitOfWork(sqlite_session_factory)  

Integration tests swap out the default Postgres session_factory for a SQLite
one.

Aren’t Explicit Dependencies Totally Weird and Java-y?
If you’re used to the way things normally happen in Python, you’ll be thinking all this
is a bit weird. The standard way to do things is to declare our dependency implicitly
by simply importing it, and then if we ever need to change it for tests, we can mon‐
keypatch, as is Right and True in dynamic languages:

Email sending as a normal import-based dependency (src/allocation/service_layer/handlers.py)
from allocation.adapters import email, redis_eventpublisher  
...

def send_out_of_stock_notification(
        event: events.OutOfStock, uow: unit_of_work.AbstractUnitOfWork,
):
    email.send(  
        'stock@made.com',

194 | Chapter 13: Dependency Injection (and Bootstrapping)



        f'Out of stock for {event.sku}',
    )

Hardcoded import

Calls specific email sender directly

Why pollute our application code with unnecessary arguments just for the sake of our 
tests? mock.patch makes monkeypatching nice and easy:

mock dot patch, thank you Michael Foord (tests/unit/test_handlers.py)
    with mock.patch("allocation.adapters.email.send") as mock_send_mail:
        ...

The trouble is that we’ve made it look easy because our toy example doesn’t send real
email (email.send_mail just does a print), but in real life, you’d end up having to
call mock.patch for every single test that might cause an out-of-stock notification. If
you’ve worked on codebases with lots of mocks used to prevent unwanted side effects,
you’ll know how annoying that mocky boilerplate gets.

And you’ll know that mocks tightly couple us to the implementation. By choosing to
monkeypatch email.send_mail, we are tied to doing import email, and if we ever
want to do from email import send_mail, a trivial refactor, we’d have to change all
our mocks.

So it’s a trade-off. Yes, declaring explicit dependencies is unnecessary, strictly speak‐
ing, and using them would make our application code marginally more complex. But
in return, we’d get tests that are easier to write and manage.

On top of that, declaring an explicit dependency is an example of the dependency
inversion principle—rather than having an (implicit) dependency on a specific detail,
we have an (explicit) dependency on an abstraction:

Explicit is better than implicit.
—The Zen of Python

The explicit dependency is more abstract (src/allocation/service_layer/handlers.py)
def send_out_of_stock_notification(
        event: events.OutOfStock, send_mail: Callable,
):
    send_mail(
        'stock@made.com',
        f'Out of stock for {event.sku}',
    )

But if we do change to declaring all these dependencies explicitly, who will inject
them, and how? So far, we’ve really been dealing with only passing the UoW around:

Aren’t Explicit Dependencies Totally Weird and Java-y? | 195



1 Because Python is not a “pure” OO language, Python developers aren’t necessarily used to the concept of
needing to compose a set of objects into a working application. We just pick our entrypoint and run code from
top to bottom.

2 Mark Seemann calls this Pure DI or sometimes Vanilla DI.

our tests use FakeUnitOfWork, while Flask and Redis eventconsumer entrypoints use
the real UoW, and the message bus passes them onto our command handlers. If we
add real and fake email classes, who will create them and pass them on?

That’s extra (duplicated) cruft for Flask, Redis, and our tests. Moreover, putting all the
responsibility for passing dependencies to the right handler onto the message bus
feels like a violation of the SRP.

Instead, we’ll reach for a pattern called Composition Root (a bootstrap script to you
and me),1 and we’ll do a bit of “manual DI” (dependency injection without a frame‐
work). See Figure 13-3.2

Figure 13-3. Bootstrapper between entrypoints and message bus

Preparing Handlers: Manual DI with Closures and Partials
One way to turn a function with dependencies into one that’s ready to be called later
with those dependencies already injected is to use closures or partial functions to
compose the function with its dependencies:

Examples of DI using closures or partial functions
# existing allocate function, with abstract uow dependency
def allocate(
        cmd: commands.Allocate, uow: unit_of_work.AbstractUnitOfWork
):
    line = OrderLine(cmd.orderid, cmd.sku, cmd.qty)
    with uow:
        ...

196 | Chapter 13: Dependency Injection (and Bootstrapping)

https://oreil.ly/iGpDL


# bootstrap script prepares actual UoW

def bootstrap(..):
    uow = unit_of_work.SqlAlchemyUnitOfWork()

    # prepare a version of the allocate fn with UoW dependency captured in a closure
    allocate_composed = lambda cmd: allocate(cmd, uow)

    # or, equivalently (this gets you a nicer stack trace)
    def allocate_composed(cmd):
        return allocate(cmd, uow)

    # alternatively with a partial
    import functools
    allocate_composed = functools.partial(allocate, uow=uow)  

# later at runtime, we can call the partial function, and it will have
# the UoW already bound
allocate_composed(cmd)

The difference between closures (lambdas or named functions) and func
tools.partial is that the former use late binding of variables, which can be a
source of confusion if any of the dependencies are mutable.

Here’s the same pattern again for the send_out_of_stock_notification() handler,
which has different dependencies:

Another closure and partial functions example
def send_out_of_stock_notification(
        event: events.OutOfStock, send_mail: Callable,
):
    send_mail(
        'stock@made.com',
        ...

# prepare a version of the send_out_of_stock_notification with dependencies
sosn_composed  = lambda event: send_out_of_stock_notification(event, email.send_mail)

...
# later, at runtime:
sosn_composed(event)  # will have email.send_mail already injected in

An Alternative Using Classes
Closures and partial functions will feel familiar to people who’ve done a bit of func‐
tional programming. Here’s an alternative using classes, which may appeal to others.
It requires rewriting all our handler functions as classes, though:

An Alternative Using Classes | 197

https://docs.python-guide.org/writing/gotchas/#late-binding-closures


DI using classes
# we replace the old `def allocate(cmd, uow)` with:

class AllocateHandler:

    def __init__(self, uow: unit_of_work.AbstractUnitOfWork):  
        self.uow = uow

    def __call__(self, cmd: commands.Allocate):  
        line = OrderLine(cmd.orderid, cmd.sku, cmd.qty)
        with self.uow:
            # rest of handler method as before
            ...

# bootstrap script prepares actual UoW
uow = unit_of_work.SqlAlchemyUnitOfWork()

# then prepares a version of the allocate fn with dependencies already injected
allocate = AllocateHandler(uow)

...
# later at runtime, we can call the handler instance, and it will have
# the UoW already injected
allocate(cmd)

The class is designed to produce a callable function, so it has a call method.

But we use the init to declare the dependencies it requires. This sort of thing
will feel familiar if you’ve ever made class-based descriptors, or a class-based con‐
text manager that takes arguments.

Use whichever you and your team feel more comfortable with.

198 | Chapter 13: Dependency Injection (and Bootstrapping)



A Bootstrap Script
We want our bootstrap script to do the following:

1. Declare default dependencies but allow us to override them
2. Do the “init” stuff that we need to get our app started
3. Inject all the dependencies into our handlers
4. Give us back the core object for our app, the message bus

Here’s a first cut:

A bootstrap function (src/allocation/bootstrap.py)
def bootstrap(
    start_orm: bool = True,  
    uow: unit_of_work.AbstractUnitOfWork = unit_of_work.SqlAlchemyUnitOfWork(),  
    send_mail: Callable = email.send,
    publish: Callable = redis_eventpublisher.publish,
) -> messagebus.MessageBus:

    if start_orm:
        orm.start_mappers()  

    dependencies = {'uow': uow, 'send_mail': send_mail, 'publish': publish}
    injected_event_handlers = {  
        event_type: [
            inject_dependencies(handler, dependencies)
            for handler in event_handlers
        ]
        for event_type, event_handlers in handlers.EVENT_HANDLERS.items()
    }
    injected_command_handlers = {  
        command_type: inject_dependencies(handler, dependencies)
        for command_type, handler in handlers.COMMAND_HANDLERS.items()
    }

    return messagebus.MessageBus(  
        uow=uow,
        event_handlers=injected_event_handlers,
        command_handlers=injected_command_handlers,
    )

orm.start_mappers() is our example of initialization work that needs to be done
once at the beginning of an app. We also see things like setting up the logging
module.

A Bootstrap Script | 199



We can use the argument defaults to define what the normal/production defaults
are. It’s nice to have them in a single place, but sometimes dependencies have
some side effects at construction time, in which case you might prefer to default
them to None instead.

We build up our injected versions of the handler mappings by using a function
called inject_dependencies(), which we’ll show next.

We return a configured message bus ready for use.

Here’s how we inject dependencies into a handler function by inspecting it:

DI by inspecting function signatures (src/allocation/bootstrap.py)
def inject_dependencies(handler, dependencies):
    params = inspect.signature(handler).parameters  
    deps = {
        name: dependency
        for name, dependency in dependencies.items()  
        if name in params
    }
    return lambda message: handler(message, **deps)  

We inspect our command/event handler’s arguments.

We match them by name to our dependencies.

We inject them as kwargs to produce a partial.

Even-More-Manual DI with Less Magic
If you’re finding the preceding inspect code a little harder to grok, this even simpler
version may appeal to you.

Harry wrote the code for inject_dependencies() as a first cut of how to do “man‐
ual” dependency injection, and when he saw it, Bob accused him of overengineering
and writing his own DI framework.

It honestly didn’t even occur to Harry that you could do it any more plainly, but you
can, like this:

Manually creating partial functions inline (src/allocation/bootstrap.py)
    injected_event_handlers = {
        events.Allocated: [
            lambda e: handlers.publish_allocated_event(e, publish),
            lambda e: handlers.add_allocation_to_read_model(e, uow),
        ],
        events.Deallocated: [

200 | Chapter 13: Dependency Injection (and Bootstrapping)



            lambda e: handlers.remove_allocation_from_read_model(e, uow),
            lambda e: handlers.reallocate(e, uow),
        ],
        events.OutOfStock: [
            lambda e: handlers.send_out_of_stock_notification(e, send_mail)
        ]
    }
    injected_command_handlers = {
        commands.Allocate: lambda c: handlers.allocate(c, uow),
        commands.CreateBatch: \
            lambda c: handlers.add_batch(c, uow),
        commands.ChangeBatchQuantity: \
            lambda c: handlers.change_batch_quantity(c, uow),
    }

Harry says he couldn’t even imagine writing out that many lines of code and having to
look up that many function arguments manually. This is a perfectly viable solution,
though, since it’s only one line of code or so per handler you add, and thus not a mas‐
sive maintenance burden even if you have dozens of handlers.

Our app is structured in such a way that we always want to do dependency injection
in only one place, the handler functions, so this super-manual solution and Harry’s
inspect()-based one will both work fine.

If you find yourself wanting to do DI in more things and at different times, or if you
ever get into dependency chains (in which your dependencies have their own depen‐
dencies, and so on), you may get some mileage out of a “real” DI framework.

At MADE, we’ve used Inject in a few places, and it’s fine, although it makes Pylint
unhappy. You might also check out Punq, as written by Bob himself, or the DRY-
Python crew’s dependencies.

Message Bus Is Given Handlers at Runtime
Our message bus will no longer be static; it needs to have the already-injected han‐
dlers given to it. So we turn it from being a module into a configurable class:

MessageBus as a class (src/allocation/service_layer/messagebus.py)
class MessageBus:  

    def __init__(
        self,
        uow: unit_of_work.AbstractUnitOfWork,
        event_handlers: Dict[Type[events.Event], List[Callable]],  
        command_handlers: Dict[Type[commands.Command], Callable],  
    ):
        self.uow = uow
        self.event_handlers = event_handlers

Message Bus Is Given Handlers at Runtime | 201

https://pypi.org/project/Inject
https://pypi.org/project/punq
https://github.com/dry-python/dependencies


        self.command_handlers = command_handlers

    def handle(self, message: Message):  
        self.queue = [message]  
        while self.queue:
            message = self.queue.pop(0)
            if isinstance(message, events.Event):
                self.handle_event(message)
            elif isinstance(message, commands.Command):
                self.handle_command(message)
            else:
                raise Exception(f'{message} was not an Event or Command')

The message bus becomes a class…

…which is given its already-dependency-injected handlers.

The main handle() function is substantially the same, with just a few attributes
and methods moved onto self.

Using self.queue like this is not thread-safe, which might be a problem if you’re
using threads, because the bus instance is global in the Flask app context as we’ve
written it. Just something to watch out for.

What else changes in the bus?

Event and command handler logic stays the same (src/allocation/service_layer/messagebus.py)
    def handle_event(self, event: events.Event):
        for handler in self.event_handlers[type(event)]:  
            try:
                logger.debug('handling event %s with handler %s', event, handler)
                handler(event)  
                self.queue.extend(self.uow.collect_new_events())
            except Exception:
                logger.exception('Exception handling event %s', event)
                continue

    def handle_command(self, command: commands.Command):
        logger.debug('handling command %s', command)
        try:
            handler = self.command_handlers[type(command)]  
            handler(command)  
            self.queue.extend(self.uow.collect_new_events())
        except Exception:
            logger.exception('Exception handling command %s', command)
            raise

202 | Chapter 13: Dependency Injection (and Bootstrapping)



3 However, it’s still a global in the flask_app module scope, if that makes sense. This may cause problems if you
ever find yourself wanting to test your Flask app in-process by using the Flask Test Client instead of using
Docker as we do. It’s worth researching Flask app factories if you get into this.

handle_event and handle_command are substantially the same, but instead of
indexing into a static EVENT_HANDLERS or COMMAND_HANDLERS dict, they use the
versions on self.

Instead of passing a UoW into the handler, we expect the handlers to already
have all their dependencies, so all they need is a single argument, the specific
event or command.

Using Bootstrap in Our Entrypoints
In our application’s entrypoints, we now just call bootstrap.bootstrap() and get a
message bus that’s ready to go, rather than configuring a UoW and the rest of it:

Flask calls bootstrap (src/allocation/entrypoints/flask_app.py)
-from allocation import views
+from allocation import bootstrap, views

 app = Flask(__name__)
-orm.start_mappers()  
+bus = bootstrap.bootstrap()

 @app.route("/add_batch", methods=['POST'])
@@ -19,8 +16,7 @@ def add_batch():
     cmd = commands.CreateBatch(
         request.json['ref'], request.json['sku'], request.json['qty'], eta,
     )
-    uow = unit_of_work.SqlAlchemyUnitOfWork()  
-    messagebus.handle(cmd, uow)
+    bus.handle(cmd)  
     return 'OK', 201

We no longer need to call start_orm(); the bootstrap script’s initialization stages
will do that.

We no longer need to explicitly build a particular type of UoW; the bootstrap
script defaults take care of it.

And our message bus is now a specific instance rather than the global module.3

Using Bootstrap in Our Entrypoints | 203

https://oreil.ly/_a6Kl


Initializing DI in Our Tests
In tests, we can use bootstrap.bootstrap() with overridden defaults to get a custom
message bus. Here’s an example in an integration test:

Overriding bootstrap defaults (tests/integration/test_views.py)
@pytest.fixture
def sqlite_bus(sqlite_session_factory):
    bus = bootstrap.bootstrap(
        start_orm=True,  
        uow=unit_of_work.SqlAlchemyUnitOfWork(sqlite_session_factory),  
        send_mail=lambda *args: None,  
        publish=lambda *args: None,  
    )
    yield bus
    clear_mappers()

def test_allocations_view(sqlite_bus):
    sqlite_bus.handle(commands.CreateBatch('sku1batch', 'sku1', 50, None))
    sqlite_bus.handle(commands.CreateBatch('sku2batch', 'sku2', 50, date.today()))
    ...
    assert views.allocations('order1', sqlite_bus.uow) == [
        {'sku': 'sku1', 'batchref': 'sku1batch'},
        {'sku': 'sku2', 'batchref': 'sku2batch'},
    ]

We do still want to start the ORM…

…because we’re going to use a real UoW, albeit with an in-memory database.

But we don’t need to send email or publish, so we make those noops.

In our unit tests, in contrast, we can reuse our FakeUnitOfWork:

Bootstrap in unit test (tests/unit/test_handlers.py)
def bootstrap_test_app():
    return bootstrap.bootstrap(
        start_orm=False,  
        uow=FakeUnitOfWork(),  
        send_mail=lambda *args: None,  
        publish=lambda *args: None,  
    )

No need to start the ORM…

…because the fake UoW doesn’t use one.

We want to fake out our email and Redis adapters too.

204 | Chapter 13: Dependency Injection (and Bootstrapping)



So that gets rid of a little duplication, and we’ve moved a bunch of setup and sensible
defaults into a single place.

Exercise for the Reader 1
Change all the handlers to being classes as per the DI using classes example, and
amend the bootstrapper’s DI code as appropriate. This will let you know whether you
prefer the functional approach or the class-based approach when it comes to your
own projects.

Building an Adapter “Properly”: A Worked Example
To really get a feel for how it all works, let’s work through an example of how you
might “properly” build an adapter and do dependency injection for it.

At the moment, we have two types of dependencies:

Two types of dependencies (src/allocation/service_layer/messagebus.py)
    uow: unit_of_work.AbstractUnitOfWork,  
    send_mail: Callable,  
    publish: Callable,  

The UoW has an abstract base class. This is the heavyweight option for declaring
and managing your external dependency. We’d use this for the case when the
dependency is relatively complex.

Our email sender and pub/sub publisher are defined as functions. This works
just fine for simple dependencies.

Here are some of the things we find ourselves injecting at work:

• An S3 filesystem client
• A key/value store client
• A requests session object

Most of these will have more-complex APIs that you can’t capture as a single func‐
tion: read and write, GET and POST, and so on.

Even though it’s simple, let’s use send_mail as an example to talk through how you
might define a more complex dependency.

Building an Adapter “Properly”: A Worked Example | 205



Define the Abstract and Concrete Implementations
We’ll imagine a more generic notifications API. Could be email, could be SMS, could
be Slack posts one day.

An ABC and a concrete implementation (src/allocation/adapters/notifications.py)
class AbstractNotifications(abc.ABC):

    @abc.abstractmethod
    def send(self, destination, message):
        raise NotImplementedError

...

class EmailNotifications(AbstractNotifications):

    def __init__(self, smtp_host=DEFAULT_HOST, port=DEFAULT_PORT):
        self.server = smtplib.SMTP(smtp_host, port=port)
        self.server.noop()

    def send(self, destination, message):
        msg = f'Subject: allocation service notification\n{message}'
        self.server.sendmail(
            from_addr='allocations@example.com',
            to_addrs=[destination],
            msg=msg
        )

We change the dependency in the bootstrap script:

Notifications in message bus (src/allocation/bootstrap.py)
 def bootstrap(
     start_orm: bool = True,
     uow: unit_of_work.AbstractUnitOfWork = unit_of_work.SqlAlchemyUnitOfWork(),
-    send_mail: Callable = email.send,
+    notifications: AbstractNotifications = EmailNotifications(),
     publish: Callable = redis_eventpublisher.publish,
 ) -> messagebus.MessageBus:

Make a Fake Version for Your Tests
We work through and define a fake version for unit testing:

Fake notifications (tests/unit/test_handlers.py)
class FakeNotifications(notifications.AbstractNotifications):

    def __init__(self):
        self.sent = defaultdict(list)  # type: Dict[str, List[str]]

    def send(self, destination, message):

206 | Chapter 13: Dependency Injection (and Bootstrapping)



        self.sent[destination].append(message)
...

And we use it in our tests:

Tests change slightly (tests/unit/test_handlers.py)
    def test_sends_email_on_out_of_stock_error(self):
        fake_notifs = FakeNotifications()
        bus = bootstrap.bootstrap(
            start_orm=False,
            uow=FakeUnitOfWork(),
            notifications=fake_notifs,
            publish=lambda *args: None,
        )
        bus.handle(commands.CreateBatch("b1", "POPULAR-CURTAINS", 9, None))
        bus.handle(commands.Allocate("o1", "POPULAR-CURTAINS", 10))
        assert fake_notifs.sent['stock@made.com'] == [
            f"Out of stock for POPULAR-CURTAINS",
        ]

Figure Out How to Integration Test the Real Thing
Now we test the real thing, usually with an end-to-end or integration test. We’ve used
MailHog as a real-ish email server for our Docker dev environment:

Docker-compose config with real fake email server (docker-compose.yml)
version: "3"

services:

  redis_pubsub:
    build:
      context: .
      dockerfile: Dockerfile
    image: allocation-image
    ...

  api:
    image: allocation-image
    ...

  postgres:
    image: postgres:9.6
    ...

  redis:
    image: redis:alpine
    ...

  mailhog:

Building an Adapter “Properly”: A Worked Example | 207

https://github.com/mailhog/MailHog


    image: mailhog/mailhog
    ports:
      - "11025:1025"
      - "18025:8025"

In our integration tests, we use the real EmailNotifications class, talking to the
MailHog server in the Docker cluster:

Integration test for email (tests/integration/test_email.py)
@pytest.fixture
def bus(sqlite_session_factory):
    bus = bootstrap.bootstrap(
        start_orm=True,
        uow=unit_of_work.SqlAlchemyUnitOfWork(sqlite_session_factory),
        notifications=notifications.EmailNotifications(),  
        publish=lambda *args: None,
    )
    yield bus
    clear_mappers()

def get_email_from_mailhog(sku):  
    host, port = map(config.get_email_host_and_port().get, ['host', 'http_port'])
    all_emails = requests.get(f'http://{host}:{port}/api/v2/messages').json()
    return next(m for m in all_emails['items'] if sku in str(m))

def test_out_of_stock_email(bus):
    sku = random_sku()
    bus.handle(commands.CreateBatch('batch1', sku, 9, None))  
    bus.handle(commands.Allocate('order1', sku, 10))
    email = get_email_from_mailhog(sku)
    assert email['Raw']['From'] == 'allocations@example.com'  
    assert email['Raw']['To'] == ['stock@made.com']
    assert f'Out of stock for {sku}' in email['Raw']['Data']

We use our bootstrapper to build a message bus that talks to the real notifications
class.

We figure out how to fetch emails from our “real” email server.

We use the bus to do our test setup.

Against all the odds, this actually worked, pretty much at the first go!

And that’s it really.

208 | Chapter 13: Dependency Injection (and Bootstrapping)



Exercise for the Reader 2
You could do two things for practice regarding adapters:

1. Try swapping out our notifications from email to SMS notifications using Twilio,
for example, or Slack notifications. Can you find a good equivalent to MailHog
for integration testing?

2. In a similar way to what we did moving from send_mail to a Notifications
class, try refactoring our redis_eventpublisher that is currently just a Callable
to some sort of more formal adapter/base class/protocol.

Wrap-Up
Once you have more than one adapter, you’ll start to feel a lot of pain from passing
dependencies around manually, unless you do some kind of dependency injection.

Setting up dependency injection is just one of many typical setup/initialization activi‐
ties that you need to do just once when starting your app. Putting this all together
into a bootstrap script is often a good idea.

The bootstrap script is also good as a place to provide sensible default configuration
for your adapters, and as a single place to override those adapters with fakes for your
tests.

A dependency injection framework can be useful if you find yourself needing to do
DI at multiple levels—if you have chained dependencies of components that all need
DI, for example.

This chapter also presented a worked example of changing an implicit/simple
dependency into a “proper” adapter, factoring out an ABC, defining its real and fake
implementations, and thinking through integration testing.

Wrap-Up | 209



DI and Bootstrap Recap
In summary:

1. Define your API using an ABC.
2. Implement the real thing.
3. Build a fake and use it for unit/service-layer/handler tests.
4. Find a less fake version you can put into your Docker environment.
5. Test the less fake “real” thing.
6. Profit!

These were the last patterns we wanted to cover, which brings us to the end of Part II.
In the epilogue, we’ll try to give you some pointers for applying these techniques in
the Real WorldTM.

210 | Chapter 13: Dependency Injection (and Bootstrapping)



Epilogue

What Now?
Phew! We’ve covered a lot of ground in this book, and for most of our audience all of
these ideas are new. With that in mind, we can’t hope to make you experts in these
techniques. All we can really do is show you the broad-brush ideas, and just enough
code for you to go ahead and write something from scratch.

The code we’ve shown in this book isn’t battle-hardened production code: it’s a set of
Lego blocks that you can play with to make your first house, spaceship, and
skyscraper.

That leaves us with two big tasks. We want to talk about how to start applying these
ideas for real in an existing system, and we need to warn you about some of the
things we had to skip. We’ve given you a whole new arsenal of ways to shoot yourself
in the foot, so we should discuss some basic firearms safety.

How Do I Get There from Here?
Chances are that a lot of you are thinking something like this:

“OK Bob and Harry, that’s all well and good, and if I ever get hired to work on a
green-field new service, I know what to do. But in the meantime, I’m here with my
big ball of Django mud, and I don’t see any way to get to your nice, clean, perfect,
untainted, simplistic model. Not from here.”

We hear you. Once you’ve already built a big ball of mud, it’s hard to know how to
start improving things. Really, we need to tackle things step by step.

First things first: what problem are you trying to solve? Is the software too hard to
change? Is the performance unacceptable? Have you got weird, inexplicable bugs?

Having a clear goal in mind will help you to prioritize the work that needs to be done
and, importantly, communicate the reasons for doing it to the rest of the team.

211



Businesses tend to have pragmatic approaches to technical debt and refactoring, so
long as engineers can make a reasoned argument for fixing things.

Making complex changes to a system is often an easier sell if you
link it to feature work. Perhaps you’re launching a new product or
opening your service to new markets? This is the right time to
spend engineering resources on fixing the foundations. With a six-
month project to deliver, it’s easier to make the argument for three
weeks of cleanup work. Bob refers to this as architecture tax.

Separating Entangled Responsibilities
At the beginning of the book, we said that the main characteristic of a big ball of mud
is homogeneity: every part of the system looks the same, because we haven’t been
clear about the responsibilities of each component. To fix that, we’ll need to start sep‐
arating out responsibilities and introducing clear boundaries. One of the first things
we can do is to start building a service layer (Figure E-1).

Figure E-1. Domain of a collaboration system

This was the system in which Bob first learned how to break apart a ball of mud, and
it was a doozy. There was logic everywhere—in the web pages, in manager objects, in
helpers, in fat service classes that we’d written to abstract the managers and helpers,
and in hairy command objects that we’d written to break apart the services.

212 | Epilogue



If you’re working in a system that’s reached this point, the situation can feel hopeless,
but it’s never too late to start weeding an overgrown garden. Eventually, we hired an
architect who knew what he was doing, and he helped us get things back under con‐
trol.

Start by working out the use cases of your system. If you have a user interface, what
actions does it perform? If you have a backend processing component, maybe each
cron job or Celery job is a single use case. Each of your use cases needs to have an
imperative name: Apply Billing Charges, Clean Abandoned Accounts, or Raise Pur‐
chase Order, for example.

In our case, most of our use cases were part of the manager classes and had names
like Create Workspace or Delete Document Version. Each use case was invoked from
a web frontend.

We aim to create a single function or class for each of these supported operations that
deals with orchestrating the work to be done. Each use case should do the following:

• Start its own database transaction if needed
• Fetch any required data
• Check any preconditions (see the Ensure pattern in Appendix E)
• Update the domain model
• Persist any changes

Each use case should succeed or fail as an atomic unit. You might need to call one use
case from another. That’s OK; just make a note of it, and try to avoid long-running
database transactions.

One of the biggest problems we had was that manager methods
called other manager methods, and data access could happen from
the model objects themselves. It was hard to understand what each
operation did without going on a treasure hunt across the code‐
base. Pulling all the logic into a single method, and using a UoW to
control our transactions, made the system easier to reason about.

Epilogue | 213



Case Study: Layering an Overgrown System
Many years ago, Bob worked for a software company that had outsourced the first
version of its application, an online collaboration platform for sharing and working
on files.

When the company brought development in-house, it passed through several genera‐
tions of developers’ hands, and each wave of new developers added more complexity
to the code’s structure.

At its heart, the system was an ASP.NET Web Forms application, built with an NHi‐
bernate ORM. Users would upload documents into workspaces, where they could
invite other workspace members to review, comment on, or modify their work.

Most of the complexity of the application was in the permissions model because each
document was contained in a folder, and folders allowed read, write, and edit permis‐
sions, much like a Linux filesystem.

Additionally, each workspace belonged to an account, and the account had quotas
attached to it via a billing package.

As a result, every read or write operation against a document had to load an enor‐
mous number of objects from the database in order to test permissions and quotas.
Creating a new workspace involved hundreds of database queries as we set up the
permissions structure, invited users, and set up sample content.

Some of the code for operations was in web handlers that ran when a user clicked a
button or submitted a form; some of it was in manager objects that held code for
orchestrating work; and some of it was in the domain model. Model objects would
make database calls or copy files on disk, and the test coverage was abysmal.

To fix the problem, we first introduced a service layer so that all of the code for creat‐
ing a document or workspace was in one place and could be understood. This
involved pulling data access code out of the domain model and into command han‐
dlers. Likewise, we pulled orchestration code out of the managers and the web han‐
dlers and pushed it into handlers.

The resulting command handlers were long and messy, but we’d made a start at intro‐
ducing order to the chaos.

It’s fine if you have duplication in the use-case functions. We’re not
trying to write perfect code; we’re just trying to extract some mean‐
ingful layers. It’s better to duplicate some code in a few places than
to have use-case functions calling one another in a long chain.

214 | Epilogue



This is a good opportunity to pull any data-access or orchestration code out of the
domain model and into the use cases. We should also try to pull I/O concerns (e.g.,
sending email, writing files) out of the domain model and up into the use-case func‐
tions. We apply the techniques from Chapter 3 on abstractions to keep our handlers
unit testable even when they’re performing I/O.

These use-case functions will mostly be about logging, data access, and error han‐
dling. Once you’ve done this step, you’ll have a grasp of what your program actually
does, and a way to make sure each operation has a clearly defined start and finish.
We’ll have taken a step toward building a pure domain model.

Read Working Effectively with Legacy Code by Michael C. Feathers (Prentice Hall) for
guidance on getting legacy code under test and starting separating responsibilities.

Identifying Aggregates and Bounded Contexts
Part of the problem with the codebase in our case study was that the object graph was
highly connected. Each account had many workspaces, and each workspace had
many members, all of whom had their own accounts. Each workspace contained
many documents, which had many versions.

You can’t express the full horror of the thing in a class diagram. For one thing, there
wasn’t really a single account related to a user. Instead, there was a bizarre rule requir‐
ing you to enumerate all of the accounts associated to the user via the workspaces and
take the one with the earliest creation date.

Every object in the system was part of an inheritance hierarchy that included Secure
Object and Version. This inheritance hierarchy was mirrored directly in the database
schema, so that every query had to join across 10 different tables and look at a dis‐
criminator column just to tell what kind of objects you were working with.

The codebase made it easy to “dot” your way through these objects like so:

user.account.workspaces[0].documents.versions[1].owner.account.settings[0];

Building a system this way with Django ORM or SQLAlchemy is easy but is to be
avoided. Although it’s convenient, it makes it very hard to reason about performance
because each property might trigger a lookup to the database.

Epilogue | 215



Aggregates are a consistency boundary. In general, each use case
should update a single aggregate at a time. One handler fetches one
aggregate from a repository, modifies its state, and raises any events
that happen as a result. If you need data from another part of the
system, it’s totally fine to use a read model, but avoid updating mul‐
tiple aggregates in a single transaction. When we choose to separate
code into different aggregates, we’re explicitly choosing to make
them eventually consistent with one another.

A bunch of operations required us to loop over objects this way—for example:

# Lock a user's workspaces for nonpayment

def lock_account(user):
    for workspace in user.account.workspaces:
        workspace.archive()

Or even recurse over collections of folders and documents:

def lock_documents_in_folder(folder):

    for doc in folder.documents:
         doc.archive()

     for child in folder.children:
         lock_documents_in_folder(child)

These operations killed performance, but fixing them meant giving up our single
object graph. Instead, we began to identify aggregates and to break the direct links
between objects.

We talked about the infamous SELECT N+1 problem in Chapter 12,
and how we might choose to use different techniques when reading
data for queries versus reading data for commands.

Mostly we did this by replacing direct references with identifiers.

216 | Epilogue



Before aggregates:

After modeling with aggregates:

Epilogue | 217



Bidirectional links are often a sign that your aggregates aren’t right.
In our original code, a Document knew about its containing Folder,
and the Folder had a collection of Documents. This makes it easy to
traverse the object graph but stops us from thinking properly about
the consistency boundaries we need. We break apart aggregates by
using references instead. In the new model, a Document had refer‐
ence to its parent_folder but had no way to directly access the
Folder.

If we needed to read data, we avoided writing complex loops and transforms and
tried to replace them with straight SQL. For example, one of our screens was a tree
view of folders and documents.

This screen was incredibly heavy on the database, because it relied on nested for
loops that triggered a lazy-loaded ORM.

We use this same technique in Chapter 11, where we replace a nes‐
ted loop over ORM objects with a simple SQL query. It’s the first
step in a CQRS approach.

After a lot of head-scratching, we replaced the ORM code with a big, ugly stored pro‐
cedure. The code looked horrible, but it was much faster and helped to break the
links between Folder and Document.

When we needed to write data, we changed a single aggregate at a time, and we intro‐
duced a message bus to handle events. For example, in the new model, when we
locked an account, we could first query for all the affected workspaces via SELECT id
FROM workspace WHERE account_id = ?.

We could then raise a new command for each workspace:

for workspace_id in workspaces:
    bus.handle(LockWorkspace(workspace_id))

An Event-Driven Approach to Go to Microservices via
Strangler Pattern
The Strangler Fig pattern involves creating a new system around the edges of an old
system, while keeping it running. Bits of old functionality are gradually intercepted
and replaced, until the old system is left doing nothing at all and can be switched off.

When building the availability service, we used a technique called event interception
to move functionality from one place to another. This is a three-step process:

218 | Epilogue



1. Raise events to represent the changes happening in a system you want to replace.
2. Build a second system that consumes those events and uses them to build its own

domain model.
3. Replace the older system with the new.

We used event interception to move from Figure E-2…

Figure E-2. Before: strong, bidirectional coupling based on XML-RPC

to Figure E-3.

Figure E-3. After: loose coupling with asynchronous events (you can find a high-
resolution version of this diagram at cosmicpython.com)

Practically, this was a several month-long project. Our first step was to write a
domain model that could represent batches, shipments, and products. We used TDD
to build a toy system that could answer a single question: “If I want N units of
HAZARDOUS_RUG, how long will they take to be delivered?”

When deploying an event-driven system, start with a “walking
skeleton.” Deploying a system that just logs its input forces us to
tackle all the infrastructural questions and start working in
production.

Epilogue | 219



Case Study: Carving Out a Microservice to Replace a Domain
MADE.com started out with two monoliths: one for the frontend ecommerce applica‐
tion, and one for the backend fulfillment system.

The two systems communicated through XML-RPC. Periodically, the backend system
would wake up and query the frontend system to find out about new orders. When it
had imported all the new orders, it would send RPC commands to update the stock
levels.

Over time this synchronization process became slower and slower until, one Christ‐
mas, it took longer than 24 hours to import a single day’s orders. Bob was hired to
break the system into a set of event-driven services.

First, we identified that the slowest part of the process was calculating and synchro‐
nizing the available stock. What we needed was a system that could listen to external
events and keep a running total of how much stock was available.

We exposed that information via an API, so that the user’s browser could ask how
much stock was available for each product and how long it would take to deliver to
their address.

Whenever a product ran out of stock completely, we would raise a new event that the
ecommerce platform could use to take a product off sale. Because we didn’t know
how much load we would need to handle, we wrote the system with a CQRS pattern.
Whenever the amount of stock changed, we would update a Redis database with a
cached view model. Our Flask API queried these view models instead of running the
complex domain model.

As a result, we could answer the question “How much stock is available?” in 2 to 3
milliseconds, and now the API frequently handles hundreds of requests a second for
sustained periods.

If this all sounds a little familiar, well, now you know where our example app came
from!

Once we had a working domain model, we switched to building out some infrastruc‐
tural pieces. Our first production deployment was a tiny system that could receive a
batch_created event and log its JSON representation. This is the “Hello World” of
event-driven architecture. It forced us to deploy a message bus, hook up a producer
and consumer, build a deployment pipeline, and write a simple message handler.

Given a deployment pipeline, the infrastructure we needed, and a basic domain
model, we were off. A couple months later, we were in production and serving real
customers.

220 | Epilogue



Convincing Your Stakeholders to Try Something New
If you’re thinking about carving a new system out of a big ball of mud, you’re proba‐
bly suffering problems with reliability, performance, maintainability, or all three
simultaneously. Deep, intractable problems call for drastic measures!

We recommend domain modeling as a first step. In many overgrown systems, the
engineers, product owners, and customers no longer speak the same language. Busi‐
ness stakeholders speak about the system in abstract, process-focused terms, while
developers are forced to speak about the system as it physically exists in its wild and
chaotic state.

Case Study: The User Model
We mentioned earlier that the account and user model in our first system were bound
together by a “bizarre rule.” This is a perfect example of how engineering and busi‐
ness stakeholders can drift apart.

In this system, accounts parented workspaces, and users were members of workspaces.
Workspaces were the fundamental unit for applying permissions and quotas. If a user
joined a workspace and didn’t already have an account, we would associate them with
the account that owned that workspace.

This was messy and ad hoc, but it worked fine until the day a product owner asked
for a new feature:

When a user joins a company, we want to add them to some default workspaces for
the company, like the HR workspace or the Company Announcements workspace.

We had to explain to them that there was no such thing as a company, and there was
no sense in which a user joined an account. Moreover, a “company” might have many
accounts owned by different users, and a new user might be invited to any one of
them.

Years of adding hacks and work-arounds to a broken model caught up with us, and
we had to rewrite the entire user management function as a brand-new system.

Figuring out how to model your domain is a complex task that’s the subject of many
decent books in its own right. We like to use interactive techniques like event storm‐
ing and CRC modeling, because humans are good at collaborating through play.
Event modeling is another technique that brings engineers and product owners
together to understand a system in terms of commands, queries, and events.

Epilogue | 221



Check out www.eventmodeling.org and www.eventstorming.org for
some great guides to visual modeling of systems with events.

The goal is to be able to talk about the system by using the same ubiquitous language,
so that you can agree on where the complexity lies.

We’ve found a lot of value in treating domain problems as TDD kata. For example,
the first code we wrote for the availability service was the batch and order line model.
You can treat this as a lunchtime workshop, or as a spike at the beginning of a project.
Once you can demonstrate the value of modeling, it’s easier to make the argument for
structuring the project to optimize for modeling.

Case Study: David Seddon on Taking Small Steps
Hi, I’m David, one of the tech reviewers on this book. I’ve worked on several complex
Django monoliths, and so I’ve known the pain that Bob and Harry have made all sorts
of grand promises about soothing.

When I was first exposed to the patterns described here, I was rather excited. I had suc‐
cessfully used some of the techniques already on smaller projects, but here was a blue‐
print for much larger, database-backed systems like the one I work on in my day job. So I
started trying to figure out how I could implement that blueprint at my current organi‐
zation.

I chose to tackle a problem area of the codebase that had always bothered me. I began by
implementing it as a use case. But I found myself running into unexpected questions.
There were things that I hadn’t considered while reading that now made it difficult to see
what to do. Was it a problem if my use case interacted with two different aggregates?
Could one use case call another? And how was it going to exist within a system that fol‐
lowed different architectural principles without resulting in a horrible mess?

What happened to that oh-so-promising blueprint? Did I actually understand the ideas
well enough to put them into practice? Was it even suitable for my application? Even if it
was, would any of my colleagues agree to such a major change? Were these just nice
ideas for me to fantasize about while I got on with real life?

It took me a while to realize that I could start small. I didn’t need to be a purist or to get
it right the first time: I could experiment, finding what worked for me.

And so that’s what I’ve done. I’ve been able to apply some of the ideas in a few places.
I’ve built new features whose business logic can be tested without the database or mocks.
And as a team, we’ve introduced a service layer to help define the jobs the system does.

222 | Epilogue



If you start trying to apply these patterns in your work, you may go through similar feel‐
ings to begin with. When the nice theory of a book meets the reality of your codebase, it
can be demoralizing.

My advice is to focus on a specific problem and ask yourself how you can put the relevant
ideas to use, perhaps in an initially limited and imperfect fashion. You may discover, as I
did, that the first problem you pick might be a bit too difficult; if so, move on to some‐
thing else. Don’t try to boil the ocean, and don’t be too afraid of making mistakes. It will
be a learning experience, and you can be confident that you’re moving roughly in a
direction that others have found useful.

So, if you’re feeling the pain too, give these ideas a try. Don’t feel you need permission to
rearchitect everything. Just look for somewhere small to start. And above all, do it to
solve a specific problem. If you’re successful in solving it, you’ll know you got something
right—and others will too.

Questions Our Tech Reviewers Asked That We Couldn’t
Work into Prose
Here are some questions we heard during drafting that we couldn’t find a good place
to address elsewhere in the book:

Do I need to do all of this at once? Can I just do a bit at a time?
No, you can absolutely adopt these techniques bit by bit. If you have an existing
system, we recommend building a service layer to try to keep orchestration in
one place. Once you have that, it’s much easier to push logic into the model and
push edge concerns like validation or error handling to the entrypoints.

It’s worth having a service layer even if you still have a big, messy Django ORM
because it’s a way to start understanding the boundaries of operations.

Extracting use cases will break a lot of my existing code; it’s too tangled
Just copy and paste. It’s OK to cause more duplication in the short term. Think of
this as a multistep process. Your code is in a bad state now, so copy and paste it to
a new place and then make that new code clean and tidy.

Once you’ve done that, you can replace uses of the old code with calls to your
new code and finally delete the mess. Fixing large codebases is a messy and pain‐
ful process. Don’t expect things to get instantly better, and don’t worry if some
bits of your application stay messy.

Do I need to do CQRS? That sounds weird. Can’t I just use repositories?
Of course you can! The techniques we’re presenting in this book are intended to
make your life easier. They’re not some kind of ascetic discipline with which to
punish yourself.

Epilogue | 223



In our first case-study system, we had a lot of View Builder objects that used
repositories to fetch data and then performed some transformations to return
dumb read models. The advantage is that when you hit a performance problem,
it’s easy to rewrite a view builder to use custom queries or raw SQL.

How should use cases interact across a larger system? Is it a problem for one to call
another?

This might be an interim step. Again, in the first case study, we had handlers that
would need to invoke other handlers. This gets really messy, though, and it’s
much better to move to using a message bus to separate these concerns.

Generally, your system will have a single message bus implementation and a
bunch of subdomains that center on a particular aggregate or set of aggregates.
When your use case has finished, it can raise an event, and a handler elsewhere
can run.

Is it a code smell for a use case to use multiple repositories/aggregates, and if so, why?
An aggregate is a consistency boundary, so if your use case needs to update two
aggregates atomically (within the same transaction), then your consistency
boundary is wrong, strictly speaking. Ideally you should think about moving to a
new aggregate that wraps up all the things you want to change at the same time.

If you’re actually updating only one aggregate and using the other(s) for read-
only access, then that’s fine, although you could consider building a read/view
model to get you that data instead—it makes things cleaner if each use case has
only one aggregate.

If you do need to modify two aggregates, but the two operations don’t have to be
in the same transaction/UoW, then consider splitting the work out into two dif‐
ferent handlers and using a domain event to carry information between the two.
You can read more in these papers on aggregate design by Vaughn Vernon.

What if I have a read-only but business-logic-heavy system?
View models can have complex logic in them. In this book, we’ve encouraged you
to separate your read and write models because they have different consistency
and throughput requirements. Mostly, we can use simpler logic for reads, but
that’s not always true. In particular, permissions and authorization models can
add a lot of complexity to our read side.

We’ve written systems in which the view models needed extensive unit tests. In
those systems, we split a view builder from a view fetcher, as in Figure E-4.

224 | Epilogue

https://oreil.ly/sufKE


Figure E-4. A view builder and view fetcher (you can find a high-resolution version of
this diagram at cosmicpython.com)

+ This makes it easy to test the view builder by giving it mocked data (e.g., a list of
dicts). “Fancy CQRS” with event handlers is really a way of running our complex
view logic whenever we write so that we can avoid running it when we read.

Do I need to build microservices to do this stuff?
Egads, no! These techniques predate microservices by a decade or so. Aggregates,
domain events, and dependency inversion are ways to control complexity in large
systems. It just so happens that when you’ve built a set of use cases and a model
for a business process, moving it to its own service is relatively easy, but that’s not
a requirement.

I’m using Django. Can I still do this?
We have an entire appendix just for you: Appendix D!

Epilogue | 225



Footguns
OK, so we’ve given you a whole bunch of new toys to play with. Here’s the fine print.
Harry and Bob do not recommend that you copy and paste our code into a produc‐
tion system and rebuild your automated trading platform on Redis pub/sub. For rea‐
sons of brevity and simplicity, we’ve hand-waved a lot of tricky subjects. Here’s a list
of things we think you should know before trying this for real.

Reliable messaging is hard
Redis pub/sub is not reliable and shouldn’t be used as a general-purpose messag‐
ing tool. We picked it because it’s familiar and easy to run. At MADE, we run
Event Store as our messaging tool, but we’ve had experience with RabbitMQ and
Amazon EventBridge.

Tyler Treat has some excellent blog posts on his site bravenewgeek.com; you
should read at least read “You Cannot Have Exactly-Once Delivery” and “What
You Want Is What You Don’t: Understanding Trade-Offs in Distributed Messag‐
ing”.

We explicitly choose small, focused transactions that can fail independently
In Chapter 8, we update our process so that deallocating an order line and reallo‐
cating the line happen in two separate units of work. You will need monitoring to
know when these transactions fail, and tooling to replay events. Some of this is
made easier by using a transaction log as your message broker (e.g., Kafka or
EventStore). You might also look at the Outbox pattern.

We don’t discuss idempotency
We haven’t given any real thought to what happens when handlers are retried. In
practice you will want to make handlers idempotent so that calling them repeat‐
edly with the same message will not make repeated changes to state. This is a key
technique for building reliability, because it enables us to safely retry events when
they fail.

There’s a lot of good material on idempotent message handling, try starting with
“How to Ensure Idempotency in an Eventual Consistent DDD/CQRS Application”
and “(Un)Reliability in Messaging”.

Your events will need to change their schema over time
You’ll need to find some way of documenting your events and sharing schema
with consumers. We like using JSON schema and markdown because it’s simple
but there is other prior art. Greg Young wrote an entire book on managing event-
driven systems over time: Versioning in an Event Sourced System (Leanpub).

226 | Epilogue

https://oreil.ly/pcstD
https://oreil.ly/j8bmF
https://oreil.ly/j8bmF
https://oreil.ly/j8bmF
https://oreil.ly/sLfnp
https://oreil.ly/yERzR
https://oreil.ly/Ekuhi


More Required Reading
A few more books we’d like to recommend to help you on your way:

• Clean Architectures in Python by Leonardo Giordani (Leanpub), which came out
in 2019, is one of the few previous books on application architecture in Python.

• Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf (Addison-
Wesley Professional) is a pretty good start for messaging patterns.

• Monolith to Microservices by Sam Newman (O’Reilly), and Newman’s first book,
Building Microservices (O’Reilly). The Strangler Fig pattern is mentioned as a
favorite, along with many others. These are good to check out if you’re thinking
of moving to microservices, and they’re also good on integration patterns and the
considerations of async messaging-based integration.

Wrap-Up
Phew! That’s a lot of warnings and reading suggestions; we hope we haven’t scared
you off completely. Our goal with this book is to give you just enough knowledge and
intuition for you to start building some of this for yourself. We would love to hear
how you get on and what problems you’re facing with the techniques in your own
systems, so why not get in touch with us over at www.cosmicpython.com?

Epilogue | 227





APPENDIX A

Summary Diagram and Table

Here’s what our architecture looks like by the end of the book:

229



Table A-1 recaps each pattern and what it does.

Table A-1. The components of our architecture and what they all do

Layer Component Description
Domain
Defines the business logic.

Entity A domain object whose attributes may change but
that has a recognizable identity over time.

Value object An immutable domain object whose attributes
entirely define it. It is fungible with other identical
objects.

Aggregate Cluster of associated objects that we treat as a unit
for the purpose of data changes. Defines and
enforces a consistency boundary.

Event Represents something that happened.

Command Represents a job the system should perform.

Service Layer
Defines the jobs the system should perform and
orchestrates different components.

Handler Receives a command or an event and performs
what needs to happen.

Unit of work Abstraction around data integrity. Each unit of
work represents an atomic update. Makes
repositories available. Tracks new events on
retrieved aggregates.

Message bus
(internal)

Handles commands and events by routing them to
the appropriate handler.

Adapters (Secondary)
Concrete implementations of an interface that goes
from our system to the outside world (I/O).

Repository Abstraction around persistent storage. Each
aggregate has its own repository.

Event publisher Pushes events onto the external message bus.

Entrypoints (Primary adapters)
Translate external inputs into calls into the service
layer.

Web Receives web requests and translates them into
commands, passing them to the internal message
bus.

Event consumer Reads events from the external message bus and
translates them into commands, passing them to
the internal message bus.

N/A External
message bus
(message
broker)

A piece of infrastructure that different services use
to intercommunicate, via events.

230 | Appendix A: Summary Diagram and Table



APPENDIX B

A Template Project Structure

Around Chapter 4, we moved from just having everything in one folder to a more
structured tree, and we thought it might be of interest to outline the moving parts.

The code for this appendix is in the appendix_project_structure
branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout appendix_project_structure

The basic folder structure looks like this:

Project tree
.
├── Dockerfile  
├── Makefile  
├── README.md
├── docker-compose.yml  
├── license.txt
├── mypy.ini
├── requirements.txt
├── src  
│   ├── allocation
│   │   ├── __init__.py
│   │   ├── adapters
│   │   │   ├── __init__.py
│   │   │   ├── orm.py
│   │   │   └── repository.py
│   │   ├── config.py
│   │   ├── domain
│   │   │   ├── __init__.py
│   │   │   └── model.py

231

https://oreil.ly/1rDRC


1 Splitting out images for production and testing is sometimes a good idea, but we’ve tended to find that going
further and trying to split out different images for different types of application code (e.g., Web API versus
pub/sub client) usually ends up being more trouble than it’s worth; the cost in terms of complexity and longer
rebuild/CI times is too high. YMMV.

2 A pure-Python alternative to Makefiles is Invoke, worth checking out if everyone on your team knows Python
(or at least knows it better than Bash!).

3 “Testing and Packaging” by Hynek Schlawack provides more information on src folders.

│   │   ├── entrypoints
│   │   │   ├── __init__.py
│   │   │   └── flask_app.py
│   │   └── service_layer
│   │       ├── __init__.py
│   │       └── services.py
│   └── setup.py  
└── tests  
    ├── conftest.py  
    ├── e2e
    │   └── test_api.py
    ├── integration
    │   ├── test_orm.py
    │   └── test_repository.py
    ├── pytest.ini  
    └── unit
        ├── test_allocate.py
        ├── test_batches.py
        └── test_services.py

Our docker-compose.yml and our Dockerfile are the main bits of configuration for
the containers that run our app, and they can also run the tests (for CI). A more
complex project might have several Dockerfiles, although we’ve found that mini‐
mizing the number of images is usually a good idea.1

A Makefile provides the entrypoint for all the typical commands a developer (or a
CI server) might want to run during their normal workflow: make build, make
test, and so on.2 This is optional. You could just use docker-compose and pyt
est directly, but if nothing else, it’s nice to have all the “common commands” in a
list somewhere, and unlike documentation, a Makefile is code so it has less ten‐
dency to become out of date.

All the source code for our app, including the domain model, the Flask app, and
infrastructure code, lives in a Python package inside src,3 which we install using
pip install -e and the setup.py file. This makes imports easy. Currently, the
structure within this module is totally flat, but for a more complex project, you’d
expect to grow a folder hierarchy that includes domain_model/, infrastructure/,
services/, and api/.

232 | Appendix B: A Template Project Structure

http://www.pyinvoke.org
https://hynek.me/articles/testing-packaging


Tests live in their own folder. Subfolders distinguish different test types and allow
you to run them separately. We can keep shared fixtures (conftest.py) in the main
tests folder and nest more specific ones if we wish. This is also the place to keep
pytest.ini.

The pytest docs are really good on test layout and importability.

Let’s look at a few of these files and concepts in more detail.

Env Vars, 12-Factor, and Config, Inside and Outside
Containers
The basic problem we’re trying to solve here is that we need different config settings
for the following:

• Running code or tests directly from your own dev machine, perhaps talking to
mapped ports from Docker containers

• Running on the containers themselves, with “real” ports and hostnames
• Different container environments (dev, staging, prod, and so on)

Configuration through environment variables as suggested by the 12-factor manifesto
will solve this problem, but concretely, how do we implement it in our code and our
containers?

Config.py
Whenever our application code needs access to some config, it’s going to get it from a
file called config.py. Here are a couple of examples from our app:

Sample config functions (src/allocation/config.py)
import os

def get_postgres_uri():  
    host = os.environ.get('DB_HOST', 'localhost')  
    port = 54321 if host == 'localhost' else 5432
    password = os.environ.get('DB_PASSWORD', 'abc123')
    user, db_name = 'allocation', 'allocation'
    return f"postgresql://{user}:{password}@{host}:{port}/{db_name}"

A Template Project Structure | 233

https://oreil.ly/QVb9Q
https://12factor.net/config


4 This gives us a local development setup that “just works” (as much as possible). You may prefer to fail hard on
missing environment variables instead, particularly if any of the defaults would be insecure in production.

5 Harry is a bit YAML-weary. It’s everywhere, and yet he can never remember the syntax or how it’s supposed to
indent.

def get_api_url():
    host = os.environ.get('API_HOST', 'localhost')
    port = 5005 if host == 'localhost' else 80
    return f"http://{host}:{port}"

We use functions for getting the current config, rather than constants available at
import time, because that allows client code to modify os.environ if it needs to.

config.py also defines some default settings, designed to work when running the
code from the developer’s local machine.4

An elegant Python package called environ-config is worth looking at if you get tired of
hand-rolling your own environment-based config functions.

Don’t let this config module become a dumping ground that is full
of things only vaguely related to config and that is then imported
all over the place. Keep things immutable and modify them only
via environment variables. If you decide to use a bootstrap script,
you can make it the only place (other than tests) that config is
imported to.

Docker-Compose and Containers Config
We use a lightweight Docker container orchestration tool called docker-compose. It’s
main configuration is via a YAML file (sigh):5

docker-compose config file (docker-compose.yml)
version: "3"
services:

  app:  
    build:
      context: .
      dockerfile: Dockerfile
    depends_on:
      - postgres
    environment:  
      - DB_HOST=postgres  
      - DB_PASSWORD=abc123
      - API_HOST=app
      - PYTHONDONTWRITEBYTECODE=1  

234 | Appendix B: A Template Project Structure

https://github.com/hynek/environ-config


    volumes:  
      - ./src:/src
      - ./tests:/tests
    ports:
      - "5005:80"  

  postgres:
    image: postgres:9.6  
    environment:
      - POSTGRES_USER=allocation
      - POSTGRES_PASSWORD=abc123
    ports:
      - "54321:5432"

In the docker-compose file, we define the different services (containers) that we
need for our app. Usually one main image contains all our code, and we can use it
to run our API, our tests, or any other service that needs access to the domain
model.

You’ll probably have other infrastructure services, including a database. In pro‐
duction you might not use containers for this; you might have a cloud provider
instead, but docker-compose gives us a way of producing a similar service for dev
or CI.

The environment stanza lets you set the environment variables for your contain‐
ers, the hostnames and ports as seen from inside the Docker cluster. If you have
enough containers that information starts to be duplicated in these sections, you
can use environment_file instead. We usually call ours container.env.

Inside a cluster, docker-compose sets up networking such that containers are
available to each other via hostnames named after their service name.

Pro tip: if you’re mounting volumes to share source folders between your local
dev machine and the container, the PYTHONDONTWRITEBYTECODE environment
variable tells Python to not write .pyc files, and that will save you from having
millions of root-owned files sprinkled all over your local filesystem, being all
annoying to delete and causing weird Python compiler errors besides.

Mounting our source and test code as volumes means we don’t need to rebuild
our containers every time we make a code change.

A Template Project Structure | 235



6 On a CI server, you may not be able to expose arbitrary ports reliably, but it’s only a convenience for local dev.
You can find ways of making these port mappings optional (e.g., with docker-compose.override.yml).

7 For more setup.py tips, see this article on packaging by Hynek.

The ports section allows us to expose the ports from inside the containers to the
outside world6—these correspond to the default ports we set in config.py.

Inside Docker, other containers are available through hostnames
named after their service name. Outside Docker, they are available
on localhost, at the port defined in the ports section.

Installing Your Source as a Package
All our application code (everything except tests, really) lives inside an src folder:

The src folder
├── src
│   ├── allocation  
│   │   ├── config.py
│   │   └── ...
│   └── setup.py  

Subfolders define top-level module names. You can have multiple if you like.

And setup.py is the file you need to make it pip-installable, shown next.

pip-installable modules in three lines (src/setup.py)
from setuptools import setup

setup(
    name='allocation',
    version='0.1',
    packages=['allocation'],
)

That’s all you need. packages= specifies the names of subfolders that you want to
install as top-level modules. The name entry is just cosmetic, but it’s required. For a
package that’s never actually going to hit PyPI, it’ll do fine.7

236 | Appendix B: A Template Project Structure

https://oreil.ly/KMWDz


Dockerfile
Dockerfiles are going to be very project-specific, but here are a few key stages you’ll
expect to see:

Our Dockerfile (Dockerfile)
FROM python:3.8-alpine

RUN apk add --no-cache --virtual .build-deps gcc postgresql-dev musl-dev python3-dev
RUN apk add libpq

COPY requirements.txt /tmp/
RUN pip install -r /tmp/requirements.txt

RUN apk del --no-cache .build-deps

RUN mkdir -p /src
COPY src/ /src/
RUN pip install -e /src
COPY tests/ /tests/

WORKDIR /src
ENV FLASK_APP=allocation/entrypoints/flask_app.py FLASK_DEBUG=1 PYTHONUNBUFFERED=1
CMD flask run --host=0.0.0.0 --port=80

Installing system-level dependencies

Installing our Python dependencies (you may want to split out your dev from
prod dependencies; we haven’t here, for simplicity)

Copying and installing our source

Optionally configuring a default startup command (you’ll probably override this
a lot from the command line)

One thing to note is that we install things in the order of how fre‐
quently they are likely to change. This allows us to maximize
Docker build cache reuse. I can’t tell you how much pain and frus‐
tration underlies this lesson. For this and many more Python
Dockerfile improvement tips, check out “Production-Ready
Docker Packaging”.

A Template Project Structure | 237

https://pythonspeed.com/docker
https://pythonspeed.com/docker


Tests
Our tests are kept alongside everything else, as shown here:

Tests folder tree
└── tests
    ├── conftest.py
    ├── e2e
    │   └── test_api.py
    ├── integration
    │   ├── test_orm.py
    │   └── test_repository.py
    ├── pytest.ini
    └── unit
        ├── test_allocate.py
        ├── test_batches.py
        └── test_services.py

Nothing particularly clever here, just some separation of different test types that
you’re likely to want to run separately, and some files for common fixtures, config,
and so on.

There’s no src folder or setup.py in the test folders because we usually haven’t needed
to make tests pip-installable, but if you have difficulties with import paths, you might
find it helps.

Wrap-Up
These are our basic building blocks:

• Source code in an src folder, pip-installable using setup.py
• Some Docker config for spinning up a local cluster that mirrors production as far

as possible
• Configuration via environment variables, centralized in a Python file called con‐

fig.py, with defaults allowing things to run outside containers
• A Makefile for useful command-line, um, commands

We doubt that anyone will end up with exactly the same solutions we did, but we
hope you find some inspiration here.

238 | Appendix B: A Template Project Structure



APPENDIX C

Swapping Out the Infrastructure:
Do Everything with CSVs

This appendix is intended as a little illustration of the benefits of the Repository, Unit
of Work, and Service Layer patterns. It’s intended to follow from Chapter 6.

Just as we finish building out our Flask API and getting it ready for release, the busi‐
ness comes to us apologetically, saying they’re not ready to use our API and asking if
we could build a thing that reads just batches and orders from a couple of CSVs and
outputs a third CSV with allocations.

Ordinarily this is the kind of thing that might have a team cursing and spitting and
making notes for their memoirs. But not us! Oh no, we’ve ensured that our infra‐
structure concerns are nicely decoupled from our domain model and service layer.
Switching to CSVs will be a simple matter of writing a couple of new Repository and
UnitOfWork classes, and then we’ll be able to reuse all of our logic from the domain
layer and the service layer.

Here’s an E2E test to show you how the CSVs flow in and out:

A first CSV test (tests/e2e/test_csv.py)
def test_cli_app_reads_csvs_with_batches_and_orders_and_outputs_allocations(
        make_csv
):
    sku1, sku2 = random_ref('s1'), random_ref('s2')
    batch1, batch2, batch3 = random_ref('b1'), random_ref('b2'), random_ref('b3')
    order_ref = random_ref('o')
    make_csv('batches.csv', [
        ['ref', 'sku', 'qty', 'eta'],
        [batch1, sku1, 100, ''],
        [batch2, sku2, 100, '2011-01-01'],
        [batch3, sku2, 100, '2011-01-02'],

239



    ])
    orders_csv = make_csv('orders.csv', [
        ['orderid', 'sku', 'qty'],
        [order_ref, sku1, 3],
        [order_ref, sku2, 12],
    ])

    run_cli_script(orders_csv.parent)

    expected_output_csv = orders_csv.parent / 'allocations.csv'
    with open(expected_output_csv) as f:
        rows = list(csv.reader(f))
    assert rows == [
        ['orderid', 'sku', 'qty', 'batchref'],
        [order_ref, sku1, '3', batch1],
        [order_ref, sku2, '12', batch2],
    ]

Diving in and implementing without thinking about repositories and all that jazz,
you might start with something like this:

A first cut of our CSV reader/writer (src/bin/allocate-from-csv)
#!/usr/bin/env python
import csv
import sys
from datetime import datetime
from pathlib import Path

from allocation import model

def load_batches(batches_path):
    batches = []
    with batches_path.open() as inf:
        reader = csv.DictReader(inf)
        for row in reader:
            if row['eta']:
                eta = datetime.strptime(row['eta'], '%Y-%m-%d').date()
            else:
                eta = None
            batches.append(model.Batch(
                ref=row['ref'],
                sku=row['sku'],
                qty=int(row['qty']),
                eta=eta
            ))
    return batches

def main(folder):
    batches_path = Path(folder) / 'batches.csv'

240 | Appendix C: Swapping Out the Infrastructure: Do Everything with CSVs



    orders_path = Path(folder) / 'orders.csv'
    allocations_path = Path(folder) / 'allocations.csv'

    batches = load_batches(batches_path)

    with orders_path.open() as inf, allocations_path.open('w') as outf:
        reader = csv.DictReader(inf)
        writer = csv.writer(outf)
        writer.writerow(['orderid', 'sku', 'batchref'])
        for row in reader:
            orderid, sku = row['orderid'], row['sku']
            qty = int(row['qty'])
            line = model.OrderLine(orderid, sku, qty)
            batchref = model.allocate(line, batches)
            writer.writerow([line.orderid, line.sku, batchref])

if __name__ == '__main__':
    main(sys.argv[1])

It’s not looking too bad! And we’re reusing our domain model objects and our
domain service.

But it’s not going to work. Existing allocations need to also be part of our permanent
CSV storage. We can write a second test to force us to improve things:

And another one, with existing allocations (tests/e2e/test_csv.py)
def test_cli_app_also_reads_existing_allocations_and_can_append_to_them(
        make_csv
):
    sku = random_ref('s')
    batch1, batch2 = random_ref('b1'), random_ref('b2')
    old_order, new_order = random_ref('o1'), random_ref('o2')
    make_csv('batches.csv', [
        ['ref', 'sku', 'qty', 'eta'],
        [batch1, sku, 10, '2011-01-01'],
        [batch2, sku, 10, '2011-01-02'],
    ])
    make_csv('allocations.csv', [
        ['orderid', 'sku', 'qty', 'batchref'],
        [old_order, sku, 10, batch1],
    ])
    orders_csv = make_csv('orders.csv', [
        ['orderid', 'sku', 'qty'],
        [new_order, sku, 7],
    ])

    run_cli_script(orders_csv.parent)

    expected_output_csv = orders_csv.parent / 'allocations.csv'

Swapping Out the Infrastructure: Do Everything with CSVs | 241



    with open(expected_output_csv) as f:
        rows = list(csv.reader(f))
    assert rows == [
        ['orderid', 'sku', 'qty', 'batchref'],
        [old_order, sku, '10', batch1],
        [new_order, sku, '7', batch2],
    ]

And we could keep hacking about and adding extra lines to that load_batches func‐
tion, and some sort of way of tracking and saving new allocations—but we already
have a model for doing that! It’s called our Repository and Unit of Work patterns.

All we need to do (“all we need to do”) is reimplement those same abstractions, but
with CSVs underlying them instead of a database. And as you’ll see, it really is rela‐
tively straightforward.

Implementing a Repository and Unit of Work for CSVs
Here’s what a CSV-based repository could look like. It abstracts away all the logic for
reading CSVs from disk, including the fact that it has to read two different CSVs (one
for batches and one for allocations), and it gives us just the familiar .list() API,
which provides the illusion of an in-memory collection of domain objects:

A repository that uses CSV as its storage mechanism (src/allocation/service_layer/csv_uow.py)
class CsvRepository(repository.AbstractRepository):

    def __init__(self, folder):
        self._batches_path = Path(folder) / 'batches.csv'
        self._allocations_path = Path(folder) / 'allocations.csv'
        self._batches = {}  # type: Dict[str, model.Batch]
        self._load()

    def get(self, reference):
        return self._batches.get(reference)

    def add(self, batch):
        self._batches[batch.reference] = batch

    def _load(self):
        with self._batches_path.open() as f:
            reader = csv.DictReader(f)
            for row in reader:
                ref, sku = row['ref'], row['sku']
                qty = int(row['qty'])
                if row['eta']:
                    eta = datetime.strptime(row['eta'], '%Y-%m-%d').date()
                else:
                    eta = None
                self._batches[ref] = model.Batch(

242 | Appendix C: Swapping Out the Infrastructure: Do Everything with CSVs



                    ref=ref, sku=sku, qty=qty, eta=eta
                )
        if self._allocations_path.exists() is False:
            return
        with self._allocations_path.open() as f:
            reader = csv.DictReader(f)
            for row in reader:
                batchref, orderid, sku = row['batchref'], row['orderid'], row['sku']
                qty = int(row['qty'])
                line = model.OrderLine(orderid, sku, qty)
                batch = self._batches[batchref]
                batch._allocations.add(line)

    def list(self):
        return list(self._batches.values())

And here’s what a UoW for CSVs would look like:

A UoW for CSVs: commit = csv.writer (src/allocation/service_layer/csv_uow.py)
class CsvUnitOfWork(unit_of_work.AbstractUnitOfWork):

    def __init__(self, folder):
        self.batches = CsvRepository(folder)

    def commit(self):
        with self.batches._allocations_path.open('w') as f:
            writer = csv.writer(f)
            writer.writerow(['orderid', 'sku', 'qty', 'batchref'])
            for batch in self.batches.list():
                for line in batch._allocations:
                    writer.writerow(
                        [line.orderid, line.sku, line.qty, batch.reference]
                    )

    def rollback(self):
        pass

And once we have that, our CLI app for reading and writing batches and allocations
to CSV is pared down to what it should be—a bit of code for reading order lines, and
a bit of code that invokes our existing service layer:

Swapping Out the Infrastructure: Do Everything with CSVs | 243



Allocation with CSVs in nine lines (src/bin/allocate-from-csv)
def main(folder):
    orders_path = Path(folder) / 'orders.csv'
    uow = csv_uow.CsvUnitOfWork(folder)
    with orders_path.open() as f:
        reader = csv.DictReader(f)
        for row in reader:
            orderid, sku = row['orderid'], row['sku']
            qty = int(row['qty'])
            services.allocate(orderid, sku, qty, uow)

Ta-da! Now are y’all impressed or what?

Much love,

Bob and Harry

244 | Appendix C: Swapping Out the Infrastructure: Do Everything with CSVs



APPENDIX D

Repository and Unit of Work
Patterns with Django

Suppose you wanted to use Django instead of SQLAlchemy and Flask. How might
things look? The first thing is to choose where to install it. We put it in a separate
package next to our main allocation code:

├── src
│   ├── allocation
│   │   ├── __init__.py
│   │   ├── adapters
│   │   │   ├── __init__.py
...
│   ├── djangoproject
│   │   ├── alloc
│   │   │   ├── __init__.py
│   │   │   ├── apps.py
│   │   │   ├── migrations
│   │   │   │   ├── 0001_initial.py
│   │   │   │   └── __init__.py
│   │   │   ├── models.py
│   │   │   └── views.py
│   │   ├── django_project
│   │   │   ├── __init__.py
│   │   │   ├── settings.py
│   │   │   ├── urls.py
│   │   │   └── wsgi.py
│   │   └── manage.py
│   └── setup.py
└── tests
    ├── conftest.py
    ├── e2e
    │   └── test_api.py

245



    ├── integration
    │   ├── test_repository.py
...

The code for this appendix is in the appendix_django branch on
GitHub:

git clone https://github.com/cosmicpython/code.git
cd code
git checkout appendix_django

Repository Pattern with Django
We used a plug-in called pytest-django to help with test database management.

Rewriting the first repository test was a minimal change—just rewriting some raw
SQL with a call to the Django ORM/QuerySet language:

First repository test adapted (tests/integration/test_repository.py)
from djangoproject.alloc import models as django_models

@pytest.mark.django_db
def test_repository_can_save_a_batch():
    batch = model.Batch("batch1", "RUSTY-SOAPDISH", 100, eta=date(2011, 12, 25))

    repo = repository.DjangoRepository()
    repo.add(batch)

    [saved_batch] = django_models.Batch.objects.all()
    assert saved_batch.reference == batch.reference
    assert saved_batch.sku == batch.sku
    assert saved_batch.qty == batch._purchased_quantity
    assert saved_batch.eta == batch.eta

The second test is a bit more involved since it has allocations, but it is still made up of
familiar-looking Django code:

Second repository test is more involved (tests/integration/test_repository.py)
@pytest.mark.django_db
def test_repository_can_retrieve_a_batch_with_allocations():
    sku = "PONY-STATUE"
    d_line = django_models.OrderLine.objects.create(orderid="order1", sku=sku, qty=12)
    d_b1 = django_models.Batch.objects.create(
    reference="batch1", sku=sku, qty=100, eta=None
)
    d_b2 = django_models.Batch.objects.create(
    reference="batch2", sku=sku, qty=100, eta=None
)
    django_models.Allocation.objects.create(line=d_line, batch=d_batch1)

246 | Appendix D: Repository and Unit of Work Patterns with Django

https://oreil.ly/A-I76
https://oreil.ly/A-I76
https://github.com/pytest-dev/pytest-django


1 The DRY-Python project people have built a tool called mappers that looks like it might help minimize boiler‐
plate for this sort of thing.

    repo = repository.DjangoRepository()
    retrieved = repo.get("batch1")

    expected = model.Batch("batch1", sku, 100, eta=None)
    assert retrieved == expected  # Batch.__eq__ only compares reference
    assert retrieved.sku == expected.sku
    assert retrieved._purchased_quantity == expected._purchased_quantity
    assert retrieved._allocations == {
        model.OrderLine("order1", sku, 12),
    }

Here’s how the actual repository ends up looking:

A Django repository (src/allocation/adapters/repository.py)
class DjangoRepository(AbstractRepository):

    def add(self, batch):
        super().add(batch)
        self.update(batch)

    def update(self, batch):
        django_models.Batch.update_from_domain(batch)

    def _get(self, reference):
        return django_models.Batch.objects.filter(
            reference=reference
        ).first().to_domain()

    def list(self):
        return [b.to_domain() for b in django_models.Batch.objects.all()]

You can see that the implementation relies on the Django models having some cus‐
tom methods for translating to and from our domain model.1

Custom Methods on Django ORM Classes to Translate to/from Our
Domain Model
Those custom methods look something like this:

Django ORM with custom methods for domain model conversion (src/djangoproject/alloc/models.py)
from django.db import models
from allocation.domain import model as domain_model

class Batch(models.Model):

Repository and Unit of Work Patterns with Django | 247

https://mappers.readthedocs.io/en/latest


2 @mr-bo-jangles suggested you might be able to use update_or_create, but that’s beyond our Django-fu.

    reference = models.CharField(max_length=255)
    sku = models.CharField(max_length=255)
    qty = models.IntegerField()
    eta = models.DateField(blank=True, null=True)

    @staticmethod
    def update_from_domain(batch: domain_model.Batch):
        try:
            b = Batch.objects.get(reference=batch.reference)  
        except Batch.DoesNotExist:
            b = Batch(reference=batch.reference)  
        b.sku = batch.sku
        b.qty = batch._purchased_quantity
        b.eta = batch.eta  
        b.save()
        b.allocation_set.set(
            Allocation.from_domain(l, b)  
            for l in batch._allocations
        )

    def to_domain(self) -> domain_model.Batch:
        b = domain_model.Batch(
            ref=self.reference, sku=self.sku, qty=self.qty, eta=self.eta
        )
        b._allocations = set(
            a.line.to_domain()
            for a in self.allocation_set.all()
        )
        return b

class OrderLine(models.Model):
    #...

For value objects, objects.get_or_create can work, but for entities, you proba‐
bly need an explicit try-get/except to handle the upsert.2

We’ve shown the most complex example here. If you do decide to do this, be
aware that there will be boilerplate! Thankfully it’s not very complex boilerplate.

Relationships also need some careful, custom handling.

248 | Appendix D: Repository and Unit of Work Patterns with Django

https://oreil.ly/HTq1r


As in Chapter 2, we use dependency inversion. The ORM (Django)
depends on the model and not the other way around.

Unit of Work Pattern with Django
The tests don’t change too much:

Adapted UoW tests (tests/integration/test_uow.py)
def insert_batch(ref, sku, qty, eta):  
    django_models.Batch.objects.create(reference=ref, sku=sku, qty=qty, eta=eta)

def get_allocated_batch_ref(orderid, sku):  
    return django_models.Allocation.objects.get(
        line__orderid=orderid, line__sku=sku
    ).batch.reference

@pytest.mark.django_db(transaction=True)
def test_uow_can_retrieve_a_batch_and_allocate_to_it():
    insert_batch('batch1', 'HIPSTER-WORKBENCH', 100, None)

    uow = unit_of_work.DjangoUnitOfWork()
    with uow:
        batch = uow.batches.get(reference='batch1')
        line = model.OrderLine('o1', 'HIPSTER-WORKBENCH', 10)
        batch.allocate(line)
        uow.commit()

    batchref = get_allocated_batch_ref('o1', 'HIPSTER-WORKBENCH')
    assert batchref == 'batch1'

@pytest.mark.django_db(transaction=True)  
def test_rolls_back_uncommitted_work_by_default():
    ...

@pytest.mark.django_db(transaction=True)  
def test_rolls_back_on_error():
    ...

Because we had little helper functions in these tests, the actual main bodies of the
tests are pretty much the same as they were with SQLAlchemy.

The pytest-django mark.django_db(transaction=True) is required to test our
custom transaction/rollback behaviors.

Repository and Unit of Work Patterns with Django | 249



And the implementation is quite simple, although it took me a few tries to find which
invocation of Django’s transaction magic would work:

UoW adapted for Django (src/allocation/service_layer/unit_of_work.py)
class DjangoUnitOfWork(AbstractUnitOfWork):

    def __enter__(self):
        self.batches = repository.DjangoRepository()
        transaction.set_autocommit(False)  
        return super().__enter__()

    def __exit__(self, *args):
        super().__exit__(*args)
        transaction.set_autocommit(True)

    def commit(self):
        for batch in self.batches.seen:  
            self.batches.update(batch)  
        transaction.commit()  

    def rollback(self):
        transaction.rollback()  

set_autocommit(False) was the best way to tell Django to stop automatically
committing each ORM operation immediately, and to begin a transaction.

Then we use the explicit rollback and commits.

One difficulty: because, unlike with SQLAlchemy, we’re not instrumenting the
domain model instances themselves, the commit() command needs to explicitly
go through all the objects that have been touched by every repository and man‐
ually update them back to the ORM.

API: Django Views Are Adapters
The Django views.py file ends up being almost identical to the old flask_app.py,
because our architecture means it’s a very thin wrapper around our service layer
(which didn’t change at all, by the way):

Flask app → Django views (src/djangoproject/alloc/views.py)
os.environ['DJANGO_SETTINGS_MODULE'] = 'djangoproject.django_project.settings'
django.setup()

@csrf_exempt
def add_batch(request):
    data = json.loads(request.body)
    eta = data['eta']

250 | Appendix D: Repository and Unit of Work Patterns with Django



    if eta is not None:
        eta = datetime.fromisoformat(eta).date()
    services.add_batch(
        data['ref'], data['sku'], data['qty'], eta,
        unit_of_work.DjangoUnitOfWork(),
    )
    return HttpResponse('OK', status=201)

@csrf_exempt
def allocate(request):
    data = json.loads(request.body)
    try:
        batchref = services.allocate(
            data['orderid'],
            data['sku'],
            data['qty'],
            unit_of_work.DjangoUnitOfWork(),
        )
    except (model.OutOfStock, services.InvalidSku) as e:
        return JsonResponse({'message': str(e)}, status=400)

    return JsonResponse({'batchref': batchref}, status=201)

Why Was This All So Hard?
OK, it works, but it does feel like more effort than Flask/SQLAlchemy. Why is that?

The main reason at a low level is because Django’s ORM doesn’t work in the same
way. We don’t have an equivalent of the SQLAlchemy classical mapper, so our Active
Record and our domain model can’t be the same object. Instead we have to build a
manual translation layer behind the repository. That’s more work (although once it’s
done, the ongoing maintenance burden shouldn’t be too high).

Because Django is so tightly coupled to the database, you have to use helpers like
pytest-django and think carefully about test databases, right from the very first line
of code, in a way that we didn’t have to when we started out with our pure domain
model.

But at a higher level, the entire reason that Django is so great is that it’s designed
around the sweet spot of making it easy to build CRUD apps with minimal boiler‐
plate. But the entire thrust of our book is about what to do when your app is no
longer a simple CRUD app.

At that point, Django starts hindering more than it helps. Things like the Django
admin, which are so awesome when you start out, become actively dangerous if the
whole point of your app is to build a complex set of rules and modeling around the
workflow of state changes. The Django admin bypasses all of that.

Repository and Unit of Work Patterns with Django | 251



What to Do If You Already Have Django
So what should you do if you want to apply some of the patterns in this book to a
Django app? We’d say the following:

• The Repository and Unit of Work patterns are going to be quite a lot of work.
The main thing they will buy you in the short term is faster unit tests, so evaluate
whether that benefit feels worth it in your case. In the longer term, they decouple
your app from Django and the database, so if you anticipate wanting to migrate
away from either of those, Repository and UoW are a good idea.

• The Service Layer pattern might be of interest if you’re seeing a lot of duplication
in your views.py. It can be a good way of thinking about your use cases separately
from your web endpoints.

• You can still theoretically do DDD and domain modeling with Django models,
tightly coupled as they are to the database; you may be slowed by migrations, but
it shouldn’t be fatal. So as long as your app is not too complex and your tests not
too slow, you may be able to get something out of the fat models approach: push
as much logic down to your models as possible, and apply patterns like Entity,
Value Object, and Aggregate. However, see the following caveat.

With that said, word in the Django community is that people find that the fat models
approach runs into scalability problems of its own, particularly around managing
interdependencies between apps. In those cases, there’s a lot to be said for extracting
out a business logic or domain layer to sit between your views and forms and your
models.py, which you can then keep as minimal as possible.

Steps Along the Way
Suppose you’re working on a Django project that you’re not sure is going to get com‐
plex enough to warrant the patterns we recommend, but you still want to put a few
steps in place to make your life easier, both in the medium term and if you want to
migrate to some of our patterns later. Consider the following:

• One piece of advice we’ve heard is to put a logic.py into every Django app from
day one. This gives you a place to put business logic, and to keep your forms,
views, and models free of business logic. It can become a stepping-stone for mov‐
ing to a fully decoupled domain model and/or service layer later.

• A business-logic layer might start out working with Django model objects and
only later become fully decoupled from the framework and work on plain Python
data structures.

252 | Appendix D: Repository and Unit of Work Patterns with Django

https://oreil.ly/Nbpjj


• For the read side, you can get some of the benefits of CQRS by putting reads into
one place, avoiding ORM calls sprinkled all over the place.

• When separating out modules for reads and modules for domain logic, it may be
worth decoupling yourself from the Django apps hierarchy. Business concerns
will cut across them.

We’d like to give a shout-out to David Seddon and Ashia Zawaduk
for talking through some of the ideas in this appendix. They did
their best to stop us from saying anything really stupid about a
topic we don’t really have enough personal experience of, but they
may have failed.

For more thoughts and actual lived experience dealing with existing applications,
refer to the epilogue.

Repository and Unit of Work Patterns with Django | 253





APPENDIX E

Validation

Whenever we’re teaching and talking about these techniques, one question that
comes up over and over is “Where should I do validation? Does that belong with my
business logic in the domain model, or is that an infrastructural concern?”

As with any architectural question, the answer is: it depends!

The most important consideration is that we want to keep our code well separated so
that each part of the system is simple. We don’t want to clutter our code with irrele‐
vant detail.

What Is Validation, Anyway?
When people use the word validation, they usually mean a process whereby they test
the inputs of an operation to make sure that they match certain criteria. Inputs that
match the criteria are considered valid, and inputs that don’t are invalid.

If the input is invalid, the operation can’t continue but should exit with some kind of
error. In other words, validation is about creating preconditions. We find it useful to
separate our preconditions into three subtypes: syntax, semantics, and pragmatics.

Validating Syntax
In linguistics, the syntax of a language is the set of rules that govern the structure of
grammatical sentences. For example, in English, the sentence “Allocate three units of
TASTELESS-LAMP to order twenty-seven” is grammatically sound, while the phrase
“hat hat hat hat hat hat wibble” is not. We can describe grammatically correct senten‐
ces as well formed.

255



How does this map to our application? Here are some examples of syntactic rules:

• An Allocate command must have an order ID, a SKU, and a quantity.
• A quantity is a positive integer.
• A SKU is a string.

These are rules about the shape and structure of incoming data. An Allocate com‐
mand without a SKU or an order ID isn’t a valid message. It’s the equivalent of the
phrase “Allocate three to.”

We tend to validate these rules at the edge of the system. Our rule of thumb is that a
message handler should always receive only a message that is well-formed and con‐
tains all required information.

One option is to put your validation logic on the message type itself:

Validation on the message class (src/allocation/commands.py)
from schema import And, Schema, Use

@dataclass
class Allocate(Command):

    _schema = Schema({  
        'orderid': int,
         sku: str,
         qty: And(Use(int), lambda n: n > 0)
     }, ignore_extra_keys=True)

    orderid: str
    sku: str
    qty: int

    @classmethod
    def from_json(cls, data):  
       data = json.loads(data)
       return cls(**_schema.validate(data))

The schema library lets us describe the structure and validation of our messages
in a nice declarative way.

The from_json method reads a string as JSON and turns it into our message
type.

This can get repetitive, though, since we need to specify our fields twice, so we might
want to introduce a helper library that can unify the validation and declaration of our
message types:

256 | Appendix E: Validation

https://pypi.org/project/schema


A command factory with schema (src/allocation/commands.py)
def command(name, **fields):  
    schema = Schema(And(Use(json.loads), fields), ignore_extra_keys=True)  
    cls = make_dataclass(name, fields.keys())
    cls.from_json = lambda s: cls(**schema.validate(s))  
    return cls

def greater_than_zero(x):
    return x > 0

quantity = And(Use(int), greater_than_zero)  

Allocate = command(  
    orderid=int,
    sku=str,
    qty=quantity
)

AddStock = command(
    sku=str,
    qty=quantity

The command function takes a message name, plus kwargs for the fields of the
message payload, where the name of the kwarg is the name of the field and the
value is the parser.

We use the make_dataclass function from the dataclass module to dynamically
create our message type.

We patch the from_json method onto our dynamic dataclass.

We can create reusable parsers for quantity, SKU, and so on to keep things DRY.

Declaring a message type becomes a one-liner.

This comes at the expense of losing the types on your dataclass, so bear that trade-off
in mind.

Postel’s Law and the Tolerant Reader Pattern
Postel’s law, or the robustness principle, tells us, “Be liberal in what you accept, and
conservative in what you emit.” We think this applies particularly well in the context
of integration with our other systems. The idea here is that we should be strict when‐
ever we’re sending messages to other systems, but as lenient as possible when we’re
receiving messages from others.

Validation | 257



For example, our system could validate the format of a SKU. We’ve been using made-
up SKUs like UNFORGIVING-CUSHION and MISBEGOTTEN-POUFFE. These follow a simple
pattern: two words, separated by dashes, where the second word is the type of prod‐
uct and the first word is an adjective.

Developers love to validate this kind of thing in their messages, and reject anything
that looks like an invalid SKU. This causes horrible problems down the line when
some anarchist releases a product named COMFY-CHAISE-LONGUE or when a snafu at
the supplier results in a shipment of CHEAP-CARPET-2.

Really, as the allocation system, it’s none of our business what the format of a SKU
might be. All we need is an identifier, so we can simply describe it as a string. This
means that the procurement system can change the format whenever they like, and
we won’t care.

This same principle applies to order numbers, customer phone numbers, and much
more. For the most part, we can ignore the internal structure of strings.

Similarly, developers love to validate incoming messages with tools like JSON
Schema, or to build libraries that validate incoming messages and share them among
systems. This likewise fails the robustness test.

Let’s imagine, for example, that the procurement system adds new fields to the Change
BatchQuantity message that record the reason for the change and the email of the
user responsible for the change.

Since these fields don’t matter to the allocation service, we should simply ignore
them. We can do that in the schema library by passing the keyword arg
ignore_extra_keys=True.

This pattern, whereby we extract only the fields we care about and do minimal vali‐
dation of them, is the Tolerant Reader pattern.

Validate as little as possible. Read only the fields you need, and
don’t overspecify their contents. This will help your system stay
robust when other systems change over time. Resist the temptation
to share message definitions between systems: instead, make it easy
to define the data you depend on. For more info, see Martin Fowl‐
er’s article on the Tolerant Reader pattern.

258 | Appendix E: Validation

https://oreil.ly/YL_La


Is Postel Always Right?
Mentioning Postel can be quite triggering to some people. They will tell you that
Postel is the precise reason that everything on the internet is broken and we can’t have
nice things. Ask Hynek about SSLv3 one day.

We like the Tolerant Reader approach in the particular context of event-based integra‐
tion between services that we control, because it allows for independent evolution of
those services.

If you’re in charge of an API that’s open to the public on the big bad internet, there
might be good reasons to be more conservative about what inputs you allow.

Validating at the Edge
Earlier, we said that we want to avoid cluttering our code with irrelevant details. In
particular, we don’t want to code defensively inside our domain model. Instead, we
want to make sure that requests are known to be valid before our domain model or
use-case handlers see them. This helps our code stay clean and maintainable over the
long term. We sometimes refer to this as validating at the edge of the system.

In addition to keeping your code clean and free of endless checks and asserts, bear in
mind that invalid data wandering through your system is a time bomb; the deeper it
gets, the more damage it can do, and the fewer tools you have to respond to it.

Back in Chapter 8, we said that the message bus was a great place to put cross-cutting
concerns, and validation is a perfect example of that. Here’s how we might change our
bus to perform validation for us:

Validation
class MessageBus:

    def handle_message(self, name: str, body: str):
        try:
            message_type = next(mt for mt in EVENT_HANDLERS if mt.__name__ == name)
            message = message_type.from_json(body)
            self.handle([message])
        except StopIteration:
            raise KeyError(f"Unknown message name {name}")
        except ValidationError as e:
            logging.error(
                f'invalid message of type {name}\n'
                f'{body}\n'
                f'{e}'
            )
            raise e

Validation | 259

https://oreil.ly/bzLmb


Here’s how we might use that method from our Flask API endpoint:

API bubbles up validation errors (src/allocation/flask_app.py)
@app.route("/change_quantity", methods=['POST'])
def change_batch_quantity():
    try:
        bus.handle_message('ChangeBatchQuantity', request.body)
    except ValidationError as e:
        return bad_request(e)
    except exceptions.InvalidSku as e:
        return jsonify({'message': str(e)}), 400

def bad_request(e: ValidationError):
    return e.code, 400

And here’s how we might plug it in to our asynchronous message processor:

Validation errors when handling Redis messages (src/allocation/redis_pubsub.py)
def handle_change_batch_quantity(m, bus: messagebus.MessageBus):
    try:
        bus.handle_message('ChangeBatchQuantity', m)
    except ValidationError:
       print('Skipping invalid message')
    except exceptions.InvalidSku as e:
        print(f'Unable to change stock for missing sku {e}')

Notice that our entrypoints are solely concerned with how to get a message from the
outside world and how to report success or failure. Our message bus takes care of val‐
idating our requests and routing them to the correct handler, and our handlers are
exclusively focused on the logic of our use case.

When you receive an invalid message, there’s usually little you can
do but log the error and continue. At MADE we use metrics to
count the number of messages a system receives, and how many of
those are successfully processed, skipped, or invalid. Our monitor‐
ing tools will alert us if we see spikes in the numbers of bad mes‐
sages.

Validating Semantics
While syntax is concerned with the structure of messages, semantics is the study of
meaning in messages. The sentence “Undo no dogs from ellipsis four” is syntactically
valid and has the same structure as the sentence “Allocate one teapot to order five,"”
but it is meaningless.

We can read this JSON blob as an Allocate command but can’t successfully execute
it, because it’s nonsense:

260 | Appendix E: Validation



A meaningless message
{
  "orderid": "superman",
  "sku": "zygote",
  "qty": -1
}

We tend to validate semantic concerns at the message-handler layer with a kind of
contract-based programming:

Preconditions (src/allocation/ensure.py)
"""
This module contains preconditions that we apply to our handlers.
"""

class MessageUnprocessable(Exception):  

    def __init__(self, message):
        self.message = message

class ProductNotFound(MessageUnprocessable):  
   """"
   This exception is raised when we try to perform an action on a product
   that doesn't exist in our database.
   """"

    def __init__(self, message):
        super().__init__(message)
        self.sku = message.sku

def product_exists(event, uow):  
    product = uow.products.get(event.sku)
    if product is None:
        raise ProductNotFound(event)

We use a common base class for errors that mean a message is invalid.

Using a specific error type for this problem makes it easier to report on and han‐
dle the error. For example, it’s easy to map ProductNotFound to a 404 in Flask.

product_exists is a precondition. If the condition is False, we raise an error.

This keeps the main flow of our logic in the service layer clean and declarative:

Ensure calls in services (src/allocation/services.py)
# services.py

from allocation import ensure

Validation | 261



def allocate(event, uow):
    line = mode.OrderLine(event.orderid, event.sku, event.qty)
    with uow:
        ensure.product_exists(uow, event)

        product = uow.products.get(line.sku)
        product.allocate(line)
        uow.commit()

We can extend this technique to make sure that we apply messages idempotently. For
example, we want to make sure that we don’t insert a batch of stock more than once.

If we get asked to create a batch that already exists, we’ll log a warning and continue
to the next message:

Raise SkipMessage exception for ignorable events (src/allocation/services.py)
class SkipMessage (Exception):
    """"
    This exception is raised when a message can't be processed, but there's no
    incorrect behavior. For example, we might receive the same message multiple
    times, or we might receive a message that is now out of date.
    """"

    def __init__(self, reason):
        self.reason = reason

def batch_is_new(self, event, uow):
    batch = uow.batches.get(event.batchid)
    if batch is not None:
        raise SkipMessage(f"Batch with id {event.batchid} already exists")

Introducing a SkipMessage exception lets us handle these cases in a generic way in
our message bus:

The bus now knows how to skip (src/allocation/messagebus.py)
class MessageBus:

    def handle_message(self, message):
        try:
           ...
       except SkipMessage as e:
           logging.warn(f"Skipping message {message.id} because {e.reason}")

There are a couple of pitfalls to be aware of here. First, we need to be sure that we’re
using the same UoW that we use for the main logic of our use case. Otherwise, we
open ourselves to irritating concurrency bugs.

262 | Appendix E: Validation



Second, we should try to avoid putting all our business logic into these precondition
checks. As a rule of thumb, if a rule can be tested inside our domain model, then it
should be tested in the domain model.

Validating Pragmatics
Pragmatics is the study of how we understand language in context. After we have
parsed a message and grasped its meaning, we still need to process it in context. For
example, if you get a comment on a pull request saying, “I think this is very brave,” it
may mean that the reviewer admires your courage—unless they’re British, in which
case, they’re trying to tell you that what you’re doing is insanely risky, and only a fool
would attempt it. Context is everything.

Validation Recap
Validation means different things to different people

When talking about validation, make sure you’re clear about what you’re validat‐
ing. We find it useful to think about syntax, semantics, and pragmatics: the struc‐
ture of messages, the meaningfulness of messages, and the business logic
governing our response to messages.

Validate at the edge when possible
Validating required fields and the permissible ranges of numbers is boring, and
we want to keep it out of our nice clean codebase. Handlers should always receive
only valid messages.

Only validate what you require
Use the Tolerant Reader pattern: read only the fields your application needs and
don’t overspecify their internal structure. Treating fields as opaque strings buys
you a lot of flexibility.

Spend time writing helpers for validation
Having a nice declarative way to validate incoming messages and apply precondi‐
tions to your handlers will make your codebase much cleaner. It’s worth investing
time to make boring code easy to maintain.

Locate each of the three types of validation in the right place
Validating syntax can happen on message classes, validating semantics can hap‐
pen in the service layer or on the message bus, and validating pragmatics belongs
in the domain model.

Validation | 263



Once you’ve validated the syntax and semantics of your commands
at the edges of your system, the domain is the place for the rest of
your validation. Validation of pragmatics is often a core part of
your business rules.

In software terms, the pragmatics of an operation are usually managed by the domain
model. When we receive a message like “allocate three million units of SCARCE-CLOCK
to order 76543,” the message is syntactically valid and semantically valid, but we’re
unable to comply because we don’t have the stock available.

264 | Appendix E: Validation



Index

Symbols
@abc.abstractmethod, 32

A
abstract base classes (ABCs)

ABC for the repository, 32
defining for notifications, 206
switching to typing.Protocol, 129
using duck typing and protocols instead of,

33
using for ports, 38

abstract methods, 32
abstractions, 41-54

abstracting state to aid testability, 43-45
AbstractRepository, service function

depending on, 64
AbstractUnitOfWork, 85
choosing right abstraction, 46-47
explicit dependencies are more abstract, 195
implementing chosen abstraction, 47-53

edge-to-edge testing with fakes and
dependency injection, 49-51

not using mock.patch for testing, 51
simplifying interface between business logic

and I/O, 53
using to reduce coupling, 42

adapters
building adapter and doing dependency

injection for it, 205-210
defining abstract and concrete imple‐

mentations, 206
defined, 37
Django views, 250
exercise for the reader, 209

ports-and-adapters inspired patterns, 114
putting into folder, 68

Aggregate pattern, 98
aggregates

about, 98
acting as consistency boundaries, 155
and consistency boundaries recap, 111
changing multiple aggregates in a request,

130
choosing an aggregrate, 99-102
exercise for the reader, 104
History aggregate recording orders and rais‐

ing domain events, 156
identifying aggregates and bounded con‐

texts, 215-218
one aggregrate = one repository, 102
optimistic concurrency with version num‐

bers, 105-108
performance and, 104
Product aggregate, 95
pros and cons or trade-offs, 112
query on repository returning single aggre‐

gate, 146
raising events about, 157
repository keeping track of aggregates pass‐

ing through it, 127
testing for data integrity rules, 109-111
testing Product object to raise events, 122
UoW collecting events from and passing

them to message bus, 131
allocate service

allocating against all batches with, 99
moving to be a method on Product aggre‐

gate, 101

265



Allocated event, 171
AllocationRequired event, 137

passing to services.allocate, 136
Anemic Domain anti-pattern, 70
APIs

adding API for adding a batch, 78
Django views as adapters, 250
end-to-end test of allocate API, 57
modifying API to work with events, 142
using repository directly in API endpoint,

36
without Unit of Work pattern, talking

directly to three layers, 81
application services, 66
architecture, summary diagram and table,

229-230
asynchronous messaging, temporal decoupling

with, 167
atomic operations, 81

Unit of Work as abstraction over, 93
using Unit of Work to group operations into

atomic unit, 91-92

B
Ball of Mud pattern, 42

distributed ball of mud and thinking in
nouns, 162-165

separating responsibilities, 212
BatchCreated event, 137

services.add_batch as handler for, 136
batches

allocating against all batches using domain
service, 99

asking Product to allocate against, 100
batch quantities changed means deallocate

and reallocate, 135
collection of, 99

BatchQuantityChanged event
implementing, 143
invoking handler change_batch_quantity,

136
Bernhardt, Gary, 47
bootstrapping, 191

bootstrapping script, capabilities of, 199
changing notifications dependency in boot‐

strap script, 206
dependency injection and bootstrap recap,

209
dependency injection with, 196

initializing dependency injection in tests,
204

using in entrypoints, 203
using to build message bus that talks to real

notification class, 208
bounded contexts, 102

identifying aggregates and, 215-218
product concept and, 101

business logic
abstractions simplifying interface with

messy I/O, 53
separating from state in code, 47

business logic layer, 6
business rules

invariants, concurrency, and locks, 97
invariants, constraints, and consistency, 97

C
Celery tool, 124
change_batch_quantity

handler tests for, 144
implementation, handler delegating to

model layer, 145
choreography, 121
classes, dependency injection using, 197
classical mapping, 28
closures

dependency injection using, 196
difference from partial functions, 197

cohesion, high, between coupled elements, 41
collaborators, 84
collections, 98
Command Handler pattern, 160
command-query responsibility segregation

(CQRS), 175-190
building read-only views into our data, 181
changing read model implementation to use

Redis, 188
denormalized copy of your data optimized

for read operations, 185
domain model not optimized for read oper‐

ations, 183
domain models for writing, 176
full-blown CQRS versus simpler options,

189
Post/Redirect/Get pattern and CQS, 179
read side and write side, 178
reads, 177

consistency of, 178

266 | Index



rebuilding view model from scratch, 188
SELECT N+1 and other performance prob‐

lems, 184
simple view using existing repository, 182
testing views, 182
trade-offs for view model options, 189
updating read model table using event han‐

dler, 186
view that uses the ORM, 184

commands, 151-160
command flow to reserve stock, confirm

reservation, dispatch goods, and make
customer VIP, 163

command flow when warehouse knows
stock is damaged, 164

command flow with error, 165
command handler logic in message bus, 202
events versus, 151-152
events, commands, and error handling,

155-157
recovering from errors synchronously,

158
exception handling, 154
handlers for, 154
in our system now, 152
program output as list of commands, 46
splitting commands and events, trade-offs,

160
commits

commit method, 87
explicit tests for, 89
explicit versus implicit, 90

component diagram at end of Part One, 113
composition over inheritance in TrackingRepo‐

sitory wrapper class, 129
composition root, 191, 196
concurrency, 97

aggregates and concurrency issues, 112
allowing for greatest degree of, 98
enforcing rules using database transactions,

110
integration test for, 109
not provided by message bus implementa‐

tion, 124
optimistic concurrency with version num‐

bers, 105-108
pessimistic concurrency example, SELECT

FOR UPDATE, 111

reproducing behavior with time.sleep func‐
tion, 109

connascence, 166
consistency, 96

attainment of read consistency, 178
eventually consistent reads, 177

consistency boundaries, 95, 98
aggregates acting as, 155
microservices as, 167
recap, 112

constraints, 96
context manager, 82

starting Unit of Work as, 84
Unit of Work and, 85-88

control flow, using exceptions for, 123
coupling, 41

avoiding inappropriate coupling, 166
disadvantages of, 42
domain logic coupled with I/O, 45
failure cascade as temporal coupling, 165
in tests that use mocks, 51
reducing by abstracting away details, 42
separating what you want to do from how to

do it, 46
temporal decoupling using asynchronous

messaging, 167
trade-off between design feedback and, 73

CQRS (see command-query responsibility seg‐
regation)

CQS (command-query separation), 179
CRUD wrapper around a database, 114
CSV over SMTP architecture, 96
CSVs, doing everything with, 239-244

D
data access, applying dependency inversion

principle to, 25
data integrity

issues arising from splitting operation
across two UoWs, 143

testing for, 109-111
data storage, Repository pattern and, 23
databases

SQLAlchemy adding session for Unit of
Work, 86

testing allocations persisted to database, 59
testing transactions against real database, 90
Unit of Work pattern managing state for, 82

dataclasses

Index | 267



events, 121
use for message types, 158
use for value objects, 15

deallocate service, building (exerise), 66
dependencies

abstract dependencies of service layer, 68
testing, 68

circular dependencies between event han‐
dlers, 130

depending on abstractions, 64
edge-to-edge testing with dependency injec‐

tion, 49-51
keeping all domain dependencies in fixture

functions, 76
none in domain model, 25
real service layer dependencies at runtime,

68
service layer dependency on abstract UoW,

89
UoW no longer dependent on message bus,

139
dependency chains, 201
dependency injection, 191-198

by inspecting function signatures, 200
explicit dependencies are better than

implicit dependencies, 194
implicit versus explicit dependencies, 193
manual creation of partial functions inline,

200
manual DI with closures or partial func‐

tions, 196
recap of DI and bootstrap, 209
using classes, 197
using DI framework, 201

dependency inversion principle, 26, 94
declaring explicit dependency as example of,

195
ORM depends on the data model, 28

dictionaries
dictionary of hashes to paths, 48
for filesystem operations, 46
HANDLERS dicts for commands and

events, 154
directory structure, putting project into folders,

67
Distributed Ball of Mud anti-pattern

and thinking in nouns, 162-165
avoiding, 167

Django, 245-253

applying patterns to Django app, 252
steps along the way, 252

installing, 245
ORM example, 28
Repository pattern with, 246-249
Unit of Work pattern with, 249-250
using, difficulty of, 251
views are adapters, 250

Docker dev environment with real fake email
server, 207

domain driven design (DDD), 5, 7
(see also domain model; domain modeling)
Aggregate pattern, 98
bounded contexts, 102
choosing the right aggregate, references on,

111
domain, defined, 6
Repository pattern and, 33

Domain Events pattern, 117
domain exceptions, 20
domain language, 9
domain layer

fully decoupling service layer from, 75-77
tests moving to service layer, 72

reasons for, 73
domain model, 26-31

deciding whether to write tests against, 73
Django custom ORM methods for conver‐

sion, 247
email sending code in, avoiding, 119
events from, passing to message bus in ser‐

vice layer, 124
folder for, 67
getting benefits of rich model, 70
invariants, constraints, and consistency, 96
maintaining small core of tests written

against, 79
new method on, change_batch_quantity,

146
not optimized for read operations, 183
persisting, 24
raising events, 122
raising events and service layer passing

them to message bus, 131
trade-offs as a diagram, 39
translating to relational database

normal ORM way, model depends on
ORM, 27

ORM depends on the model, 28

268 | Index



using spreadsheets instead of, 96
writing data, 176
writing tests against, 75

domain modeling, 5-21
domain language, 9
functions for domain services, 19-22
unit testing domain models, 10-19

dataclasses for value objects, 15
value objects and entities, 17

domain services, 19, 66
function for, 19

driven adapters, 68
duck typing, 33

for ports, 38

E
E2E tests (see end-to-end tests)
eager loading, 184
edge-to-edge testing, 49-51
Effective Aggregate Design (Vernon), 111
email alerts, sending when out of stock,

118-120
end-to-end tests

aiming for one test per feature, 79
decoupling of service layer from domain,

carrying through to, 78
of allocate API, 57
replacement with unit tests, 53

__enter__ and __exit__ magic methods, 86, 87
entities

defined, 17
identity equality, 18
value objects versus, 21

entrypoints, 68
__eq__magic method, 18
equality operators, implementing on entities, 18
error handling

counting as a feature, 79
events, commands, and, 155-157
in distributed systems, 165-167

errors, recovering from synchronously, 158
Evans, Eric, 98
event handlers

imagined architecture in which everything
is an event handler, 136

in message bus, 202
managing updates to read model, 189
updating read model table using, 186

event storming, 135

event-driven architecture
going to microservices via Strangler pattern,

218-220
using events to integrate microservices,

161-173
events

changing schema over time, 226
commands versus, 151-153
events, commands, and error handling,

155-157
internal versus external, 172
splitting command and events, trade-offs,

160
events and the message bus, 117-130

domain events and message bus recap, 131
domain model raising events, 122
events as simple dataclasses, 121
events flowing through the system, 117
message bus mapping events to handlers,

123
pros and cons or trade-offs, 130
recording events, 121
sending email alerts when out of stock,

118-120
avoiding messing up domain model, 119
avoiding messing up web controllers,

118
out of place in the service layer, 120
violating the single responsibility princi‐

ple, 120
service layer raising its own events, 125
service layer with explicit message bus, 124
transforming our app into message pro‐

cessor, 133-150
imagined architecture, everything will be

an event handler, 136
implementing the new requirement,

143-144
modifying API to work with events, 142
new requirement and new architecture,

135
refactoring service functions to message

handlers, 137
temporary hack, message bus returning

results, 141
test driving new handler, 144
tests writtern to in terms of events, 141
unit testing event handlers with fake

message bus, 147

Index | 269



whole app as message bus, trade-offs,
150

UoW publishes events to message bus, 126
eventually consistent reads, 177
exception handling, differences for events and

commands, 153
exceptions

expressing domain concepts, 20
using for control flow, 123

external events, 124, 161-173
extreme programming (XP), exhortation to lis‐

ten to the code, 74

F
faking

FakeNotifications for unit testing, 206
FakeRepository, 61

adding fixture function on, 76
new query type on, 146
using to unit test the service layer, 62

fakes versus mocks, 52
FakeSession, using to unit test the service

layer, 62
FakeUnitOfWork for service layer testing,

87
faking I/O in edge-to-edge test, 49
tweaking fakes in service layer to call super

and implement underscorey methods,
128

filesystems
writing code to synchronize source and tar‐

get directories, 43-45
choosing right abstraction, 46-47
implementing chosen abstraction, 47-53

fixture functions, keeping all domain depen‐
dencies in, 76

Flask framework, 25
API endpoint, 36
calling bootstrap in entrypoints, 203
endpoint for viewing allocations, 180
Flask API and service layer, 55-70

app delegating to service layer, 64
connecting the app to real world, 57
different types of services, 66
end-to-end tests for happy and unhappy

paths, 65
error conditions requiring database

checks, 60
first API end-to-end test, 57-58

first cut of the app, 58-60
introducing service layer and fake repo

to unit test it, 61-63
putting project into folders, 67
service layer benefits, 68
service layer dependencies, 68
service layer pros and cons, 70
typical service layer function, 63

putting API endpoint in front of allocate
domain service, 57

Fowler, Martin, 52, 172
Freeman, Steve, 53
Functional Core, Imperative Shell (FCIS), 47
functions, 21

for domain services, 20
service layer, 63

G
"Global Complexity, Local Simplicity" post, 39
__gt__ magic method, 20

H
handlers

event and command handlers in message
bus, 202

new HANDLERS dicts for commands and
events, 154

__hash__ magic method, 18
hashing a file, 43

dictionary of hashes to paths, 46
hoisting I/O, 53

I
I/O

disentangling details from program logic, 47
domain logic tightly coupled to, 45
simplifying interface with business logic

using abstractions, 53
idempotent message handling, 226
identity equality (entities), 18
implicit versus explicit commits, 90
importing dependenies, 194
inheritance, avoiding use of with wrapper class,

129
integration tests

for concurrency behavior, 109
test-driving Unit of Work with, 84

interfaces, Python and, 37

270 | Index



invariants
invariants, concurrency, and locks, 97
invariants, constraints, and consistency, 96
protecting while allowing concurrency, 98

inward-facing adapters, 68
isolation levels (transaction), 110

J
Jung, Ed, 53

K
katas, 41

L
layered architecture, 25

case study, layering an overgrown system,
214

locks on database tables, 97
optimistic locking, 105, 107
pessimistic locking, 107

London-school versus classic-style TDD, 52

M
magic methods

allowing use of domain model with
idiomatic Python, 20

__enter__ and __exit__, 86
__eq__, 18
__hash__, 18

MagicMock objects, 52
mappers, 28
message brokers, 168
message bus

abstract message bus and its real and fake
versions, 149

before, message buse as optional add-on,
133

Celery and, 124
class given handlers at runtime, 201
dispatching events and commands differ‐

ently, 153
event and command handler logic staying

the same, 202
getting custom with overridden bootstrap

defaults, 204
handler publishing outgoing event, 171
handle_event method, 158
handle_event with retries, 158

mapping events to handlers, 123
now collecting events from UoW, 139
now the main entrypoint to service layer,

134
pros and cons or trade-offs, 130
recap, 131
Redis pub/sub listener as thin adapter

around, 170
returning results in temporary hack, 141
service layer raising events and calling mes‐

sagebus.handle, 125
service layer with explicit message bus, 124
Unit of Work publishing events to, 126
unit testing event handlers with fake mes‐

sage bus, 147
whole app as, trade-offs, 150
wiring up new event handlers to, 147

Message Bus pattern, 117
messaging

asynchronous, temporal decoupling with,
167

idempotent message handling, 226
reliable messaging is hard, 226
using Redis pub/sub channel for microser‐

vices integration, 168
microservices

bounded contexts and, 102
event-based integration, 161-173

distributed Ball of Mud and thinking in
nouns, 162-165

error handling in distributed systems,
165-167

temporal decoupling using asynchro‐
nous messaging, 167

testing with end-to-end test, 169-172
trade-offs, 173
using Redis pub/sub channel for ntegra‐

tion, 168
event-driven approach, using Strangler pat‐

tern, 218-220
minimum viable product, 24
mock.patch method, 51, 195
mocking

avoiding use of mock.patch, 51
don't mock what you don't own, 88
mocks versus fakes, 52
overmocked tests, pitfalls of, 53

"Mocks Aren't Stubs" (Fowler), 52
model (domain), 6

Index | 271



N
named tuples, 16

(see also dataclasses)
nouns, splitting system into, 162-165

O
object neighborhoods, 84
object-oriented composition, 53
object-oriented design principles, 21
object-relational mappers (ORMs), 27

associating right batches with Product
objects, 103

Django ORM example, 28
Django, custom methods to translate to/

from domain model, 247
ORM depends on the data model, 28

testing the ORM, 29
orm.start_mappers function, 199
Repository pattern and, 36
SELECT N+1 performance problem, 184
simple view using the ORM, 184
SQLAlchemy, model depends on ORM, 27

onion architecture, 25
optimistic concurrency with version numbers,

105-108
orchestration, 61

changing to choreography, 121
using application service, 66

orchestration layer (see service layer)
Outbox pattern, 226

P
partial functions

dependency injection with, 196
difference from closures, 197
manually creating inline, 200

patterns, deciding whether you need to use
them, 114

PEP 544 protocols, 33
performance

consistency boundaries and, 95, 112
impact of using aggregates, 99, 104

persistence ignorance, 27
trade-offs, 38

pessimistic concurrency, 107
example, SELECT FOR UPDATE, 111

ports
defined, 37

ports-and-adapters inspired patterns, 114
putting in folder with adapters, 68

Post/Redirect/Get pattern, 179
command-query separation (CQS), 179

PostgreSQL
Anti-Patterns: Read-Modify-Write Cycles,

111
documentation for transaction isolation lev‐

els, 110
managing concurrency issues, 105
SERIALIZABLE transaction isolation level,

105
preparatory refactoring workflow, 136
primitives

moving from domain objects to, in service
layer, 139

primitive obsession, 139
Product object, 95

acting as consistency boundary, 155
asking Product to allocate against its

batches, 100
code for, 100
service layer using, 103
two transactions attempting concurrent

update on, 105
version numbers implemented on, 107

ProductRepository object, 103
projects

organizing into folders, 67
template project structure, 231-238

protocols, abstract base classes, duck typing,
and, 33

publish-subscribe system
message bus as

handlers subscribed to receive events,
123

publishing step, 124
using Redis pub/sub channel for microser‐

vices integration, 168
PyCon talk on Mocking Pitfalls, 53
pytest

@pytest.skip, 104
fixtures, 45
pytest-django plug-in, 246, 251
session argument, 30

Q
queries, 175

272 | Index



(see also command-query responsibility
segregation)

questions from tech reviewers, 223-226

R
read-modify-write failure mode, 111
reallocate service function, 91
reallocation

sequence diagram for flow, 143
testing in isolation using fake message bus,

148
Redis pub/sub channel, using for microservices

integration, 168
testing pub/sub model, 169

publishing outgoing event, 171
Redis as thin adapter around message

bus, 170
Redis, changing read model implementation to

use, 188
repositories

adding list method to existing repository
object, 181

CSV-based repository, 242
new query type on our repository, 145
one aggregrate = one repository, 102
repository keeping track of aggregates pass‐

ing through it, 127
service layer function depending on abstract

repository, 64
simple view using existing repository, 182
TrackerRepository wrapper class, 129
Unit of Work collaborating with, 83

Repository pattern, 23, 31-39
and persistence ignorance, trade-offs, 38
building fake repository for tests, 37
ORMs and, 36
recap of important points, 39
simplest possible repository, 32
testing the repository with retrieving a com‐

plex object, 34
testing the repository with saving an object,

34
trade-offs, 33
typical repository, 36
using repository directly in API endpoint,

36
with Django, 246-249

resources, additional required reading, 227
responsibilities of code, 46

separating responsibilities, 212
case study, layering overgrown system,

214
retries

message bus handle_event with, 158
optimistic concurrency control and, 107
Tenacity library for, 159

Rhodes, Brandon, 53
rollbacks, 86

explicit tests for, 89
rollback method, 87

S
seams, 53
secondary adapters, 68
Seemann, Mark, blog post, 26
SELECT * FROM WHERE queries, 185
SELECT FOR UPDATE statement, 107

pessimistic concurrency control example
with, 111

SELECT N+1, 184
service functions

making them event handlers, 136
refactoring to message handlers, 137

service layer, 55-70
benefits of, 68
benefits to test-driven development, 79
connecting our application to real world, 57
dependencies of, 68

real dependencies at runtime, 68
testing, 68

difference between domain service and, 66
domain layer tests moving to, 72

reasons for, 73
end-to-end test of allocate API, testing

happy and unhappy paths, 65
error conditions requiring database checks

in Flask app, 60
first cut of Flask app, 58-60
Flask app delegating to, 64
from domain objects to primitives to events

as interface, 139
fully decoupling from the domain, 75-77
introducing and using FakeRepository to

unit test it, 61-66
message bus as main entrypoint, 134
pros and cons or trade-offs, 70
putting project in folders, 67

Index | 273



raising events and passing them to message
bus, 131

raising its own events, 125
sending email alerts when out of stock,

avoiding, 120
taking events from model and putting them

on message bus, 124
totally free of event handling concerns, 128
tweaking fakes in to call super and imple‐

ment underscorey methods, 128
typical service function, 63
using Product objects, 103
using Unit of Work in, 88
using, test pyramid and, 72
writing bulk of tests against, 79
writing tests against, 74

service-layer services vs. domain services, 19
services

application service and domain service, 66
service layer tests only using services, 77

Session object, 93
set, fake repository as wrapper around, 37
simplifying abstractions, 46
single responsibility principle (SRP), 120
Singleton pattern, messagebus.py implement‐

ing, 149
situated software, 135
Software Engineering Stack Exchange site, 52
spreadsheets, using instead of domain model,

96
spy objects, 51
SQL

generating for domain model objects, 27
helpers for Unit of Work, 85
ORM and Repository pattern as abstrac‐

tions in front of, 36
raw SQL in views, 181
repository test for retrieving complex

object, 34
repository test for saving an object, 34

SQLAlchemy
database session for Unit of Work, 86

not mocking, 88
declarative syntax, model depends on ORM,

27
explicit ORM mapping with SQLAlchemy

Table objects, 28
SELECT N+1 problem and, 184
Session object, 93

using directly in API endpoint, 31
using DSL to specify FOR UPDATE, 111

stakeholders, convincing to try something new,
221-223

state
abstracting to aid testability, 43-45
splitting off from logic in the program, 47

storage, 23
(see also repositories; Repository pattern)
permanent, UoW providing entrypoint to,

84
Strangler pattern, going to microservices via,

219-220
stubbing, mocks and stubs, 52
super function, 128

tweaking fakes in service layer to call, 128
synchronous execution of event-handling code,

130

T
temporal coupling, 165
temporal decoupling using asynchronous mes‐

saging, 167
Tenacity library, 159
test doubles

mocks versus fakes, 52
mocks versus stubs, 52
using lists to build, 51

"Test-Driven Development: That's Not What
We Meant", 53

test-driven development (TDD), 71-79
benefits of service layer to, 79
classic versus London-school, 52
deciding what kinds of tests to write, 73
domain layer tests moving to service layer,

72
fully decoupling service layer from the

domain, 75-77
adding missing service, 76
carrying improvement through to E2E

tests, 78
keeping all domain dependencies in fix‐

ture functions, 76
high and low gear, 74
test pyramid with service layer added, 72
test pyramid, examining, 71
types of tests, rules of thumb for, 80
unit tests operating at lower level, acting

directly on model, 71

274 | Index



testing
abstracting state to aid testability, 43-45
after implementing chosen abstraction,

47-53
avoiding use of mock.patch, 51-53
edge-to-edge testing with fakes and

dependency injection, 49-51
end-to-end test of pub/sub model, 169
fake database session at service layer, 62
fake UoW for service layer testing, 87
for data integrity rules, 109-111
integration test for CQRS view, 182
integration test for overriding bootstrap

defaults, 204
integration tests for rollback behavior, 89
tests folder tree, 238
tests written in terms of events, 141

handler tests for change_batch_quantity,
144

unit testing event handlers with fake
message bus, 147

Unit of Work with integration tests, 84
tidying up tests, 92

unit test for bootstrap, 204
unit testing with fakes at service layer, 62

time.sleep function, 109
reproducing concurrency behavior with,

109
transactions

concurrent, attempting update on Product,
105

simulating a slow transaction, 109
Unit of Work and, 93
using to enforce concurrency rules, 110

type hints, 11, 15

U
underscorey methods

avoiding by implementing TrackingReposi‐
tory wrapper class, 129

tweaking fakes in service layer to imple‐
ment, 128

Unit of Work pattern, 32, 81-93
and its context manager, 85

fake UoW for testing, 87
real UoW using SQLAlchemy session, 86

benefits of using, 93
collaboration with repository, 83

explicit tests for commit/rollback behavior,
89

explicit versus implicit commits, 90
fake message bus implemented in UoW, 147
getting rid of underscorey methods in UoW

class, 129
managing database state, 82
message bus now collecting events from

UoW, 139
modifying to connect domain events and

message bus, 117
pros and cons or trade-offs, 93
recap of important points, 94
splitting operations across two UoWs, 143
test driving with integration tests, 84
tidying up integration tests, 92
UoW and product repository, 103
UoW collecting events from aggregates and

passing them to message bus, 131
UoW for CSVs, 243
UoW managing success or failure of aggre‐

gate update, 155
UoW publishing events to message bus, 126
using UoW in service layer, 88
using UoW to group multiple operations

into atomic unit, 91-92
changing batch quantity example, 91
reallocate function example, 91

with Django, 249-250
without, API talking directly to three layers,

81
unit testing, 62

(see also test-driven development; testing)
of domain models, 10-19
unit tests replacing end-to-end tests, 53

unittest.mock function, 52
UoW (see Unit of Work pattern)
use-case layer (see service layer)

V
validation, 255-264
value objects

defined, 16
and entities, 17
entities versus, 21
math with, 16
using dataclasses for, 15

Vens, Rob, 39
Vernon, Vaughn, 111

Index | 275



version numbers
implementation options for, 107
in the products table, implementing opti‐

mistic locking, 105
views

Django views as adapters, 250
keeping totally separate, denormalized data‐

store for view model, 185
read-only, 180
rebuilding view model from scratch, 188
simple view that uses the ORM, 184

simple view that uses the repository, 182
testing CQRS views, 182
trade-offs for view model options, 189
updating read model table using event han‐

dler, 186

W
web controllers, sending email alerts via, avoid‐

ing, 118

276 | Index



About the Authors
Harry Percival spent a few years being deeply unhappy as a management consultant.
Soon he rediscovered his true geek nature and was lucky enough to fall in with a
bunch of XP fanatics, working on pioneering the sadly defunct Resolver One spread‐
sheet. He worked at PythonAnywhere LLP, spreading the gospel of TDD worldwide
at talks, workshops, and conferences. He is now with MADE.com.

Bob Gregory is a UK-based software architect with MADE.com. He has been build‐
ing event-driven systems with domain-driven design for more than a decade.

Colophon
The animal on the cover of Architecture Patterns with Python is a Burmese python
(Python bivitattus). As you might expect, the Burmese python is native to Southeast
Asia. Today it lives in jungles and marshes in South Asia, Myanmar, China, and Indo‐
nesia; it’s also invasive in Florida’s Everglades.

Burmese pythons are one of the world’s largest species of snakes. These nocturnal,
carnivorous constrictors can grow to 23 feet and 200 pounds. Females are larger than
males. They can lay up to a hundred eggs in one clutch. In the wild, Burmese pythons
live an average of 20 to 25 years.

The markings on a Burmese python begin with an arrow-shaped spot of light brown
on top of the head and continue along the body in rectangles that stand out against its
otherwise tan scales. Before they reach their full size, which takes two to three years,
Burmese pythons live in trees hunting small mammals and birds. They also swim for
long stretches of time—going up to 30 minutes without air.

Because of habitat destruction, the Burmese python has a conservation status of Vul‐
nerable. Many of the animals on O’Reilly’s covers are endangered; all of them are
important to the world.

The color illustration is by Jose Marzan, based on a black-and-white engraving from
Encyclopedie D’Histoire Naturelle. The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.



There’s much more  
where this came from.
Experience books, videos, live online  
training courses, and more from O’Reilly  
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Managing Complexity, Solving Business Problems
	Why Python?
	TDD, DDD, and Event-Driven Architecture
	Who Should Read This Book
	A Brief Overview of What You’ll Learn
	Part I, Building an Architecture to Support Domain Modeling
	Part II, Event-Driven Architecture
	Addtional Content

	Example Code and Coding Along
	License
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact O’Reilly
	Acknowledgments

	Introduction
	Why Do Our Designs Go Wrong?
	Encapsulation and Abstractions
	Layering
	The Dependency Inversion Principle
	A Place for All Our Business Logic: The Domain Model

	Part I. Building an Architecture to Support Domain Modeling
	Chapter 1. Domain Modeling
	What Is a Domain Model?
	Exploring the Domain Language
	Unit Testing Domain Models
	Dataclasses Are Great for Value Objects
	Value Objects and Entities

	Not Everything Has to Be an Object: A Domain Service Function
	Python’s Magic Methods Let Us Use Our Models with Idiomatic Python
	Exceptions Can Express Domain Concepts Too


	Chapter 2. Repository Pattern
	Persisting Our Domain Model
	Some Pseudocode: What Are We Going to Need?
	Applying the DIP to Data Access
	Reminder: Our Model
	The “Normal” ORM Way: Model Depends on ORM
	Inverting the Dependency: ORM Depends on Model

	Introducing the Repository Pattern
	The Repository in the Abstract
	What Is the Trade-Off?

	Building a Fake Repository for Tests Is Now Trivial!
	What Is a Port and What Is an Adapter, in Python?
	Wrap-Up

	Chapter 3. A Brief Interlude: On Coupling and Abstractions
	Abstracting State Aids Testability
	Choosing the Right Abstraction(s)
	Implementing Our Chosen Abstractions
	Testing Edge to Edge with Fakes and Dependency Injection
	Why Not Just Patch It Out?

	Wrap-Up

	Chapter 4. Our First Use Case: Flask API and Service Layer
	Connecting Our Application to the Real World
	A First End-to-End Test
	The Straightforward Implementation
	Error Conditions That Require Database Checks
	Introducing a Service Layer, and Using FakeRepository to Unit Test It
	A Typical Service Function

	Why Is Everything Called a Service?
	Putting Things in Folders to See Where It All Belongs
	Wrap-Up
	The DIP in Action


	Chapter 5. TDD in High Gear and Low Gear
	How Is Our Test Pyramid Looking?
	Should Domain Layer Tests Move to the Service Layer?
	On Deciding What Kind of Tests to Write
	High and Low Gear
	Fully Decoupling the Service-Layer Tests from the Domain
	Mitigation: Keep All Domain Dependencies in Fixture Functions
	Adding a Missing Service

	Carrying the Improvement Through to the E2E Tests
	Wrap-Up

	Chapter 6. Unit of Work Pattern
	The Unit of Work Collaborates with the Repository
	Test-Driving a UoW with Integration Tests
	Unit of Work and Its Context Manager
	The Real Unit of Work Uses SQLAlchemy Sessions
	Fake Unit of Work for Testing

	Using the UoW in the Service Layer
	Explicit Tests for Commit/Rollback Behavior
	Explicit Versus Implicit Commits
	Examples: Using UoW to Group Multiple Operations into an Atomic Unit
	Example 1: Reallocate
	Example 2: Change Batch Quantity

	Tidying Up the Integration Tests
	Wrap-Up

	Chapter 7. Aggregates and Consistency Boundaries
	Why Not Just Run Everything in a Spreadsheet?
	Invariants, Constraints, and Consistency
	Invariants, Concurrency, and Locks

	What Is an Aggregate?
	Choosing an Aggregate
	One Aggregate = One Repository
	What About Performance?
	Optimistic Concurrency with Version Numbers
	Implementation Options for Version Numbers

	Testing for Our Data Integrity Rules
	Enforcing Concurrency Rules by Using Database Transaction Isolation Levels
	Pessimistic Concurrency Control Example: SELECT FOR UPDATE

	Wrap-Up
	Part I Recap


	Part II. Event-Driven Architecture
	Chapter 8. Events and the Message Bus
	Avoiding Making a Mess
	First, Let’s Avoid Making a Mess of Our Web Controllers
	And Let’s Not Make a Mess of Our Model Either
	Or the Service Layer!

	Single Responsibility Principle
	All Aboard the Message Bus!
	The Model Records Events
	Events Are Simple Dataclasses
	The Model Raises Events
	The Message Bus Maps Events to Handlers

	Option 1: The Service Layer Takes Events from the Model and Puts Them on the Message Bus
	Option 2: The Service Layer Raises Its Own Events
	Option 3: The UoW Publishes Events to the Message Bus
	Wrap-Up

	Chapter 9. Going to Town on the Message Bus
	A New Requirement Leads Us to a New Architecture
	Imagining an Architecture Change: Everything Will Be an Event Handler

	Refactoring Service Functions to Message Handlers
	The Message Bus Now Collects Events from the UoW
	Our Tests Are All Written in Terms of Events Too
	A Temporary Ugly Hack: The Message Bus Has to Return Results
	Modifying Our API to Work with Events

	Implementing Our New Requirement
	Our New Event

	Test-Driving a New Handler
	Implementation
	A New Method on the Domain Model

	Optionally: Unit Testing Event Handlers in Isolation with a Fake Message Bus
	Wrap-Up
	What Have We Achieved?
	Why Have We Achieved?


	Chapter 10. Commands and Command Handler
	Commands and Events
	Differences in Exception Handling
	Discussion: Events, Commands, and Error Handling
	Recovering from Errors Synchronously
	Wrap-Up

	Chapter 11. Event-Driven Architecture: Using Events to Integrate Microservices
	Distributed Ball of Mud, and Thinking in Nouns
	Error Handling in Distributed Systems
	The Alternative: Temporal Decoupling Using Asynchronous Messaging
	Using a Redis Pub/Sub Channel for Integration
	Test-Driving It All Using an End-to-End Test
	Redis Is Another Thin Adapter Around Our Message Bus
	Our New Outgoing Event

	Internal Versus External Events
	Wrap-Up

	Chapter 12. Command-Query Responsibility Segregation (CQRS)
	Domain Models Are for Writing
	Most Users Aren’t Going to Buy Your Furniture
	Post/Redirect/Get and CQS
	Hold On to Your Lunch, Folks
	Testing CQRS Views
	“Obvious” Alternative 1: Using the Existing Repository
	Your Domain Model Is Not Optimized for Read Operations
	“Obvious” Alternative 2: Using the ORM
	SELECT N+1 and Other Performance Considerations
	Time to Completely Jump the Shark
	Updating a Read Model Table Using an Event Handler

	Changing Our Read Model Implementation Is Easy
	Wrap-Up

	Chapter 13. Dependency Injection (and Bootstrapping)
	Implicit Versus Explicit Dependencies
	Aren’t Explicit Dependencies Totally Weird and Java-y?
	Preparing Handlers: Manual DI with Closures and Partials
	An Alternative Using Classes
	A Bootstrap Script
	Message Bus Is Given Handlers at Runtime
	Using Bootstrap in Our Entrypoints
	Initializing DI in Our Tests
	Building an Adapter “Properly”: A Worked Example
	Define the Abstract and Concrete Implementations
	Make a Fake Version for Your Tests
	Figure Out How to Integration Test the Real Thing

	Wrap-Up


	Epilogue
	What Now?
	How Do I Get There from Here?
	Separating Entangled Responsibilities
	Identifying Aggregates and Bounded Contexts
	An Event-Driven Approach to Go to Microservices via Strangler Pattern
	Convincing Your Stakeholders to Try Something New
	Questions Our Tech Reviewers Asked That We Couldn’t Work into Prose
	Footguns
	More Required Reading
	Wrap-Up

	Appendix A. Summary Diagram and Table
	Appendix B. A Template Project Structure
	Env Vars, 12-Factor, and Config, Inside and Outside Containers
	Config.py
	Docker-Compose and Containers Config
	Installing Your Source as a Package
	Dockerfile
	Tests
	Wrap-Up

	Appendix C. Swapping Out the Infrastructure: Do Everything with CSVs
	Implementing a Repository and Unit of Work for CSVs

	Appendix D. Repository and Unit of Work Patterns with Django
	Repository Pattern with Django
	Custom Methods on Django ORM Classes to Translate to/from Our Domain Model

	Unit of Work Pattern with Django
	API: Django Views Are Adapters
	Why Was This All So Hard?
	What to Do If You Already Have Django
	Steps Along the Way

	Appendix E. Validation
	What Is Validation, Anyway?
	Validating Syntax
	Postel’s Law and the Tolerant Reader Pattern
	Validating at the Edge
	Validating Semantics
	Validating Pragmatics

	Index
	About the Authors
	Colophon


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




