Proyecto de Diagnóstico y Corrección de Cableado

Sistema HVAC Carrier + Termostato Nest

Antonio Pérez

1 de diciembre de 2025

1. Objetivo del proyecto

El objetivo de este trabajo fue diagnosticar y corregir los problemas de funcionamiento del sistema HVAC residencial con manejadora *Carrier* y termostato *Nest*.

Los síntomas principales eran:

- El ventilador interior (blower) encendía, pero el compresor exterior no siempre arrancaba.
- El Nest mostraba comportamientos inestables típicos de falta de alimentación adecuada (problemas con el cable común C).

El alcance incluyó:

- Revisión de la placa de características y de los esquemas de fábrica.
- Trazado completo del cableado de bajo voltaje entre manejadora, termostato Nest y unidad de condensación.
- Corrección del cableado y verificación del funcionamiento final.

2. Descripción del sistema

La Figura 1 muestra la manejadora de aire Carrier con el kit de resistencia eléctrica instalado. Es un sistema típico de 1 etapa de enfriamiento y 1 etapa de calefacción eléctrica (1H/1C), alimentado a 208/230 V.

Figura 1: Vista general de la manejadora Carrier instalada en el clóset técnico.

En la placa de datos del calentador eléctrico (Figura 2) se observan los valores de MCA y MOCP, así como advertencias sobre el uso de filtros y flujo de aire.

Figura 2: Placa del calentador eléctrico y advertencia de flujo de aire.

Los esquemas de potencia y control de la manejadora y del kit eléctrico se muestran en las

Figuras 3 y 4. Estos diagramas fueron la base para identificar correctamente las terminales de bajo voltaje (R, C, G, W, Y).

Figura 3: Esquema eléctrico principal de la manejadora (sección de control y transformador).

Figura 4: Esquema del kit de resistencia eléctrica Warren Technology.

3. Identificación del cableado de control

La tarjeta de control de la manejadora tiene un conector de bajo voltaje identificado como ORW2Y C, donde:

- ullet $oldsymbol{O} = señal$ de bomba de calor (no utilizada en este sistema).
- Arr R = alimentación 24 VAC (hot del transformador).
- $\mathbf{W2} = \text{segunda etapa de calor (no utilizada)}.$
- $\mathbf{Y} = \text{enfriamiento} / \text{compresor.}$
- C = común del transformador (retorno 24 VAC).

En la Figura 5 se aprecia dicho conector con los conductores ya organizados.

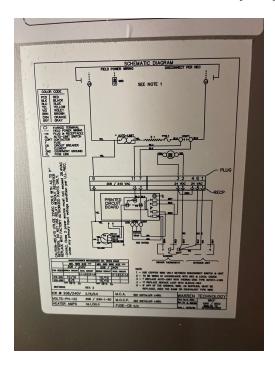


Figura 5: Tarjeta de control de la manejadora: conector ORW2Y C de bajo voltaje.

Dentro de la manejadora existe un manojo de empalmes de baja tensión (Figura 6), donde se unen:

- El cable que viene del termostato.
- El cable que va hacia la unidad exterior (condensadora).
- Los cables que salen de la tarjeta de control.

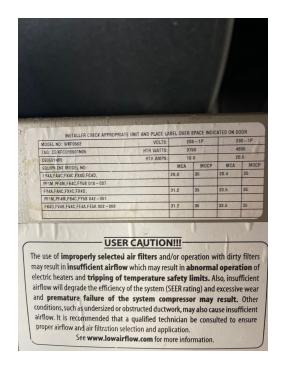


Figura 6: Empalmes de baja tensión entre tarjeta, termostato y condensadora.

En la condensadora se inspeccionó el contactor y el capacitor dual (Figura 7), confirmando que el lado de control recibe la señal desde el conductor Y (amarillo) y el común C.

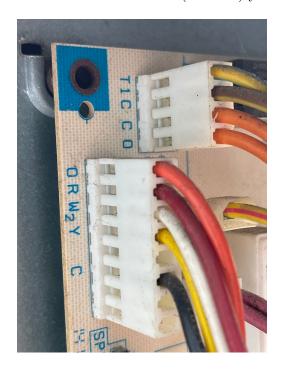


Figura 7: Unidad exterior: contactor y capacitor dual con conexiones de control.

Finalmente, la Figura 8 muestra la base del termostato Nest con el cableado final corregido.

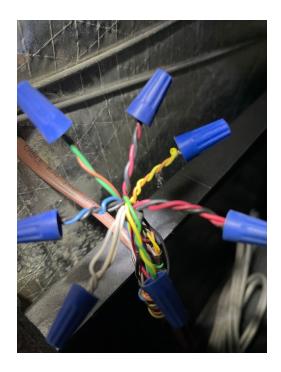


Figura 8: Base del termostato Nest con el cableado final corregido.

Tabla de asignación de conductores

Con base en los esquemas y en la inspección física se definió la siguiente tabla de asignación de cables:

Color	Función	Terminal
Rojo	Alimentación 24 VAC	R
Amarillo	Señal de enfriamiento (compresor)	Y
Verde	Ventilador interior (blower)	G
Blanco	Calefacción eléctrica	W
Azul/Negro	Común del transformador 24 VAC	С

Cuadro 1: Asignación final de conductores de control.

En el Nest se utilizaron las terminales:

- $ightharpoonup \mathbf{R}
 ightharpoonup \mathrm{Rojo}$
- $\bullet \ Y1 \to {\rm Amarillo}$
- ${\color{red}\bullet} \;\; \mathbf{G} \to \mathrm{Verde}$
- ${\color{red}\bullet} \ \mathbf{W1} \to \mathrm{Blanco}$
- $lackbox{ } \mathbf{C}
 ightarrow \mathrm{Azul} \ (\mathrm{com\'un})$

4. Problema detectado

Durante la primera instalación del Nest se heredó parte de la lógica del termostato antiguo, que:

- No utilizaba cable común (C) porque estaba alimentado por baterías.
- Tenía puentes o empalmes hechos únicamente para que el ventilador y el calor funcionaran, sin considerar los requerimientos de alimentación continua del Nest.

Al instalar el Nest:

- El cable C no estaba correctamente llevado desde la tarjeta de la manejadora hasta la base del Nest.
- 2. En el manojo de empalmes (Figura 6) el conductor de **Y** hacia la condensadora no tenía siempre continuidad efectiva, por lo que el contactor exterior no se energizaba.

Como consecuencia:

- El Nest no recibía una referencia estable de 24 VAC entre R y C, provocando comportamiento errático.
- El ventilador interior sí podía arrancar (orden **G**), pero el compresor exterior no siempre recibía la señal **Y**, por lo que no había enfriamiento.

En resumen, el problema fue una combinación de falta de cable común C en el Nest y empalmes de baja tensión mal organizados, que afectaban la señal de enfriamiento Y.

5. Solución implementada

La corrección se realizó en varias etapas:

1. Trazado y limpieza de empalmes

Se identificó cada conductor en el manojo de baja tensión (Figura 6), verificando:

- Continuidad de R, C, G, W y Y entre la tarjeta, el termostato y la condensadora.
- Empalmes sueltos o mezclados que pudieran interrumpir la señal.

Se rehicieron los empalmes con wire nuts nuevos, agrupando únicamente los conductores que correspondían a cada función.

2. Conexión correcta en la tarjeta de la manejadora

En la tarjeta de control (Figura 5) se conectaron los cables de la siguiente forma:

- \blacksquare R de la tarjeta \leftrightarrow rojo hacia termostato y rojo hacia condensadora (cuando aplica).
- lacktriangle C de la tarjeta \leftrightarrow azul/negro hacia termostato y común hacia condensadora.
- ullet Y de la tarjeta \leftrightarrow amarillo hacia termostato y amarillo hacia contactor exterior.
- \blacksquare \mathbf{G} y \mathbf{W} conectados sólo entre tarjeta y termostato.

3. Cableado final del Nest

En la base del Nest (Figura 8) se dejó el siguiente cableado:

Terminal Nest	Color	
R	Rojo	
\mathbf{C}	Azul	
Y1	Amarillo	
G	Verde	
W1	Blanco	

Cuadro 2: Cableado final del termostato Nest.

Se eliminaron puentes innecesarios (como RC–RH) que pertenecían al termostato anterior y no son requeridos por el Nest.

4. Verificación en la unidad exterior

En la condensadora (Figura 7) se comprobó que:

- La bobina del contactor recibe Y y C.
- El capacitor y las conexiones de potencia estaban en buen estado.

5. Pruebas finales

Finalmente se realizaron las siguientes pruebas:

- Medición de 24 VAC estables entre R y C en el Nest.
- Orden de *cool* desde el termostato: el blower interior arrancó y el contactor de la unidad exterior se energizó correctamente.
- Se verificó enfriamiento efectivo en la vivienda y ciclos de apagado/encendido normales.

Tras la corrección del cable común C y la reorganización de los empalmes de baja tensión, el sistema HVAC funciona de forma estable y el Nest queda correctamente alimentado y controlando tanto ventilador como compresor.

6. Conclusiones

- Los termostatos inteligentes como Nest requieren alimentación permanente por cable común C; reutilizar el cableado de un termostato antiguo sin C suele causar problemas.
- En sistemas con manejadora interior y condensadora exterior es crítico mantener ordenados los empalmes de baja tensión (R, C, Y, G, W) para garantizar continuidad.
- El uso de los esquemas de fábrica (Figuras 3 y 4) unido a la inspección física permitió identificar con precisión la causa raíz y documentar un cableado final seguro y reproducible.