
   

  

API Guide 

8.9 ARUBA IOT WEBSOCKET INTERFACE 
Aruba WLAN IoT WebSocket Interface Documentation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  

2 
 

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

 

CHANGELIST 

 
 
 
 
 
 

Copyright Information  

© Copyright 2021 Hewlett Packard Enterprise Development LP.  

Open Source Code  

This product includes code licensed under the GNU General Public License, the GNU Lesser General Public License, and/or certain 
other open source licenses. A complete machine-readable copy of the source code corresponding to such code is available upon 
request. This offer is valid to anyone in receipt of this information and shall expire three years following the date of the final 
distribution of this product version by Hewlett Packard Enterprise Company. To obtain such source code, send a check or money 
order in the amount of US $10.00 to:  

Hewlett Packard Enterprise Company 6280 America Center Drive 
San Jose, CA 95002 
USA  

 
  

Version Date Notes 

0.3 10/20/2021 Updated certain BLE southbound api examples from AOS 8.9 

0.2 06/15/2021 Updated with generic filters and USB serial device type fillter 

0.1 06/15/2021 Initial Document Revision 



  

3 
 

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

CONTENTS  

8.9 Aruba IoT WebSocket interface ........................................................................................................................1 
1. Introduction ......................................................................................................................................................4 

a. Solution Overview .......................................................................................................................................4 
b. Transport Services ......................................................................................................................................5 

2. Configuration ....................................................................................................................................................6 
3. Authentication and Authorization .................................................................................................................. 10 

a. Authentication Handshake ....................................................................................................................... 10 
b. Authentication Request ............................................................................................................................ 10 
c. Authentication Response ......................................................................................................................... 11 
d. Token Expiration and Token Refresh ...................................................................................................... 12 

4. AP Health Information ................................................................................................................................... 13 
5. BLE Telemetry .............................................................................................................................................. 14 
6. BLE Data ....................................................................................................................................................... 17 
7. BLE Connections .......................................................................................................................................... 19 

a. Encoding 19 
b. Command Overview................................................................................................................................. 21 

i. bleConnect ......................................................................................................................................... 21 
ii. bleDisconnect ..................................................................................................................................... 24 
iii. gattRead ............................................................................................................................................. 25 
iv. gattWrite ............................................................................................................................................. 27 
v. gattWriteWithResponse ..................................................................................................................... 28 
vi. gattNotification .................................................................................................................................... 30 
vii. gattIndication ...................................................................................................................................... 31 
viii. bleAuthenticate ................................................................................................................................... 32 
ix. bleEncrypt ........................................................................................................................................... 34 

8. Wi-Fi telemetry .............................................................................................................................................. 36 
9. Wi-Fi RTLS data............................................................................................................................................ 37 
10. Zigbee Sockets Data ..................................................................................................................................... 38 
11. Serial data ..................................................................................................................................................... 40 
 
 
 
 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

1. Introduction 
Aruba WLAN provides a public Internet of Things (IoT) interface for applications like location services, IoT device 

management applications, etc. The IoT interface sets up a connection between the Aruba WLAN and the partner 

application. Customers can configure the IoT interface by creating an IoT transport profile on the Controller or Instant 

AP. The IoT transport profile can be customized to serve a diverse set of applications. This document describes the 

“Telemetry WebSocket” server interface for transporting IoT related data, such as telemetry reports, commands or IoT 

data packets. This document is intended for application developers who want to build a secure and scalable IoT 

application that can consume the IoT data made available over the WebSocket interface. 

The following is a list of frequently used terms in the document:  

• Access Point (AP) – The Aruba AP contains the IoT radio. The communication with IoT devices will be referred to as 

communication between the remote device and the AP.  

• ArubaOS (AOS) – This is the software that runs on Aruba WLAN infrastructure (APs, controllers), containing the 

Aruba code for the IoT transport profiles.  

• Northbound – This is communication from Aruba WLAN infrastructure to the partner application.  

• Southbound – This is communication from the partner application to the Aruba WLAN infrastructure. 

• IoT Transport Profile – This is the profile that the user will configure on the WLAN management console to setup the 

transport between Aruba WLAN and the partner application.  

 

a. Solution Overview 

 

Figure 1: Overview of Aruba WLAN deployment (controller-based) with IoT Telemetry WebSocket Interface. 

Figure 1 shows an overview of the different components involved in transporting IoT data between the Aruba WLAN 



 

5 
 

infrastructure and the partner application/management server when the “Telemetry WebSocket” server type is 

configured by the user. As suggested by the name, the data is transported over a WebSocket connection. It is highly 

recommended to use a secure WebSocket connection to improve data confidentiality and reliability. The messages 

being sent over the WebSocket are formatted using Google Protocol Buffers version 2. The message structure is defined 

in proto definition files available on the Aruba ASP portal (search for ArubaOS WLAN InstantOS 8.9.0.x IoT Interface - 

Protobuf Specification on https://asp.arubanetworks.com/downloads).  

For controller-based deployments, each controller establishes a single WebSocket connection per transport profile (of 

type Telemetry WebSocket) to the 3rd party server. Traffic from multiple APs goes over the same, shared WebSocket 

connection in case of controller-based deployments. In cases where multiple APs are connected to a controller, the 

controller becomes a bottleneck as the amount of IoT traffic increases. This requires end-users to configure the IoT 

transport profile with the appropriate parameters so that messages from the APs are not dropped at the controller due 

to resource contention (inadequate buffers). In the case of controller-less/Instant deployments, each Instant AP opens 

its own WebSocket connection per transport profile to the server. This shifts the scaling burden from the WLAN 

infrastructure to the 3rd party server, which will now need to support multiple WebSocket connections per deployment. 

b. Transport Services 

Once the IoT interface connection is established, it can transport data for the different IoT transport services shown in 

Table 1. The transport services are a UI-only concept, first made visible in ArubaOS and Instant 8.9. Once one or more 

transport services are selected in the UI, the user can setup the different configuration options available for each 

specific transport service. 

Service Purpose 

BLE Telemetry Periodic telemetry reports with structured data from each device 

BLE Data  BLE advertisement frames and Scan-Response frames 

Wi-Fi Data Periodic reports about nearby Wi-Fi clients 

Zigbee Data Zigbee data frames to/from Zigbee socket devices 

Serial Data Data frames to/from USB devices plugged into the AP  

Table 1: Transport Services enabled by IoT transport profiles.  

To setup a transport service, the appropriate knobs need to be configured in the IoT transport profile. The transport 

profile knobs for the “Telemetry WebSocket” server interface are described in detail in Chapter 2. Except for the WiFi 

data transport services, all other transport services allow for Southbound communication with the IoT devices over the 

WebSocket interface. The message structure for the Northbound and Southbound messages is defined in the proto 

definition files available on the Aruba ASP portal.  

Note: In previous versions of the Aruba IoT WebSocket Interface Guide, “BLE Connections” was described as a separate 

transport service. While this is no difference in functionality from previous ArubaOS or Instant versions, the “BLE 

Connections” (described in Chapter 7) feature is always available whenever the BLE Telemetry or BLE Data transport 

services are selected via the UI, hence it is no longer listed as a separate service. 

Note: Please refer to the IoT section in the ArubaOS and Aruba Instant  8.9.0.0 User Guides 

(https://asp.arubanetworks.com/downloads) for information on additional profiles such as the IoT radio profile that are 

required for proper operation of the AP’s IoT radio/s to support the workings of the IoT transport profiles. 

  

https://asp.arubanetworks.com/downloads
https://asp.arubanetworks.com/downloads


 

6 
 

2. Configuration 
Table 2 lists the attributes in the IoT transport profile that are applicable when the “Telemetry WebSocket” server type is 

selected in the transport profile configuration.   

Category Name Description 

Destination Server URL Server URL for sending telemetry 

Proxy Proxy server for sending telemetry 

Frequency Reporting Interval Reporting interval in seconds 

Authentication Authentication Mode OAuth2 Authentication Mode (None/Password/Client-Credentials) 

Authentication URL Server URL for authentication 

Username Username for authentication 

Password Password for authentication 

Access Token String used by server to separate traffic from multiple entities (IAP/controller) 

Client ID This ID identifies the sender to the server 

Client Secret Authentication parameter used in conjunction with client ID 

Device Filters Device Class  A list of device class tags to filter the devices included in the reports 

Company Identifier A list of BT SIG company identifiers 

Service UUID A list of 16-bit service UUIDs 

Local Name  A list of local name sub strings 

MAC OUI A list of MAC OUI values 

UUID  A list of UUIDs to filter the devices included in the reports. Applies only to 

iBeacon devices 

UID Namespace  A list of UID namespaces to filter devices included in the reports. Applies only 

Eddystone-UID devices 

URL  A list of URL strings to filter devices included in the reports. Applies only 

Eddystone-URL devices. The string listed here can be partial URL strings 

Cell Size  A proximity filter. Devices outside the cell will not be reported. Size is specified in 

meters. Setting to 0 disables the cell size filter 

Movement  Filters devices that do not change distance. Specified in meters. Applicable only 

if a cell size is set. Setting to 0 disables the movement filter 

Age  Age filter. Devices without recent activity will not be reported 

Vendor  A list of Vendor IDs or Vendor Names which are used to filter reporting 

ZSD  A set of Zigbee Socket Devices to filter. This applies only to devices that conform 

to the ZSD device class 

RTLS Dest. MAC Sets the destination MAC address filter for RTLS tags device class. 

USB Serial Device Type Specify the type of USB device from a list of available supported types. 

Content specifiers RSSI Reporting Format Set the preferred format for RSSI reporting 

 Environment type The type of environment that the APs are deployed in. The environment 

determines the RF fading factor that is used for the translation from RSSI to 

distance  

 Custom Fading Factor For manually setting the fading factor. Applies only when Environment Type is 

set to Custom 

 Device Count Only For those interested in a count of devices seen, but not the actual content of 

those devices 

 Data Filter This is a mechanism to suppress fields in the telemetry reports, that are not 

required by the receiver 

 BLE data forwarding Forwards raw BLE payload for devices with known class labels 

 Per Frame Filtering Check device class of every BLE frame before forwarding it 

Table 2: IoT Transport Profile Configuration Parameters relevant to “Telemetry WebSocket” server type. For more information 
on the proper values and formats of the configuration parameters mentioned above, please refer to the ArubaOS and Instant 

User Guide for 8.9 on the Aruba ASP portal (https://asp.arubanetworks.com/downloads). 

https://asp.arubanetworks.com/downloads


 

7 
 

While most of the above fields are self-explanatory, a deeper explanation of some of the configuration parameters 

shown in Table is provided below: 

• Company Identifier Filter 

A company identifier filter will only report BLE devices that contain at least one of the configured values of the 

BT SIG registered company identifier as part of their advertisements or scan response packet payloads. For 

example: iBeacon packets contain Apple’s BT SIG identifier 0x004C in the manufacturer specific advertising data 

element. The user can filter on iBeacon packets by specifying Apple’s BT SIG identifier (004C) as part of the IoT 

transport profile configuration. 

 

• Service UUID Filter 

A service UUID filter will only report BLE devices that contain at least one of the configured values of the BT SIG 

registered 16-bit service UUIDs as part of their advertisements or scan response packet payloads. For example: 

Eddystone packets contain Google’s BT SIG service UUID 0xFEAA in the 16-bit service UUID advertising data 

element. The user can filter on Eddystone packets by specifying Google’s BT SIG 16-bit service UUID (FEAA) as 

part of the IoT transport profile configuration. 

 

• Local Name Filter 

The Local Name Filter will only report BLE devices that contain at least one of the configured sub-string values in 

the local name advertising data element in a device’s advertisements or scan response packet payloads.  

 

• MAC OUI Filter 

User can input a comma-separated list of MAC OUI values (should not include “:” as separator between the bytes 

of the MAC OUI). This filter will only report BLE devices wherein their MAC address has the same MAC OUI as 

that in the list of configured values. 

 

• USB Serial Device Type Filter 

Prior to the availability of this knob, the serial data from ALL the connected USB devices would be forwarded to 

ALL the transport profiles. Now, the user can specify the USB device type from which data should be forwarded 

to a particular transport profile when the serial data device class filter is configured. For example: In a 

deployment, if APs in one area have EnOcean devices and Piera devices in a different area, then the user can 

configure one transport profile with filter set to EnOcean and another transport profile with filter set to Piera. 

This way, the data from the EnOcean devices only goes to the profile with the EnOcean USB serial device filter, 

and data from the Piera device will only be transported to the profile with Piera USB serial device filter.   

 

• Cell Size Filter 

A proximity-based filter that will only report devices that are found to be within an “x” meter radius around the 

access point. This distance is calculated with an algorithm based off the RSSI value. The default value for this 

field is “0”, which translates to the cell size filter being disabled. This field accepts integer values from 2 to 100, 

and the unit is meter. 
 

• Movement Filter 

This filter is active when the cell size filter is also configured. When this filter is enabled, devices will only be 

reported if the difference between their current and prior distance is more than the configured filter value. For 

example, if the movement filter is configured to be 2 meters, a device that is calculated to have moved 1 meter 



 

8 
 

will not be reported, while a device that moves 5 meters will be reported. The default value for this field is “0”, 

which corresponds to the movement filter being disabled. This field accepts integer values from 2 to 30, and the 

unit is meter. 

 

• Age Filter 

The Age Filter is used to only report devices in which we have received an update (either BLE advertisement or 

scan response) in the configured time. For instance, if the age filter is set to 30 seconds, only devices which have 

been heard in the last 30 seconds will be reported. If there is a device that received an update 45 seconds 

before, this device will not be reported. The default value for this field is “0”, which corresponds to the age filter 

being disabled. This field accepts integer values from 30 to 3600, and the unit is second. 

 

• Vendor Filter 

The Vendor Filter allows a user to input either Bluetooth SIG Vendor IDs, or freeform Vendor Name strings, 

which will be used to filter the devices reported. If this is configured, the only devices that will be reported are 

the devices that match the configured Vendor ID or Vendor Name.  

 

• RSSI Reporting Format 

We currently support five different RSSI reporting formats when sending reports to subscribers. The reporting 

formats are: 
o Last: Only the last RSSI value that was observed for the device will be reported.  

o Average: The average RSSI over the reporting interval will be reported. 

o Max: The maximum RSSI value that was seen over the reporting interval will be reported. This maximum 

value resets each telemetry reporting interval and will be updated accordingly. 

o Bulk: The last 20 RSSI values that were observed for the device since the previous telemetry report will 

be reported in an array format. 

o Smooth: A single smoothed out RSSI value will be reported for each telemetry report. This is done by 

attempting to remove outliers from the RSSI values received by the AP. 

 

• Environment Type 

We currently support five different pre-defined environment types to help adjust RSSI based distance values to 

better fit the environment in which the BLE devices are operating in as follows: 

o Auditorium: 

o Office: 

o Outdoor: 

o Shipboard: 

o Warehouse: 

For best results, you should choose the value that closest corresponds to the environment in which BLE is 

operating. 

 

• Custom Fading Factor 

If the above environment type offsets do not properly fit your environment, a custom fading factor can be 

configured which is a custom environment type. This value will only be considered if “Environment Type” is 

configured to custom. This field accepts integer values in the range of 10 to 40. 

 



 

9 
 

• Data Filter 

This is a list of fields to suppress in the telemetry reports. The data filter is a string that is a comma separated 

list of index-paths. Each index path refers to the protobuf field numbers. For example, the value “3.3, 3.12” 

would suppress the ‘reported.model’ field and the ‘reported.beacons’ field in the telemetry reports. 

 

• BLE Data Forwarding and 
Per Frame Filtering 

When BLE data forwarding is enabled, the raw payload contained within a BLE packet is forwarded to the 

configured server. The per frame filtering knob is a modifier on top of the BLE data forwarding knob. When 

only BLE data forwarding is enabled, all BLE packets for a device having a known device class filter label are 

forwarded. For example: If a device advertises an iBeacon frame and an Eddystone frame, and in the transport 

profile we have selected only iBeacon, then for this device we will forward both iBeacon and Eddystone frames. 

Now, if we enable the per frame filtering knob in addition to the BLE data forwarding knob, then only the raw 

payloads from the iBeacon frames will be forwarded. 

 

Note: Some of the configuration options might be shown in the UI only for a particular transport service. For example: 

USB Serial Device Type will be displayed only when the Serial Data transport service is selected. On the other hand, the 

CLI will display and allow users to select certain combinations which do not go together in practice. In such cases, that 

specific parameter configuration will be ignored, and the transport profile behavior might not match user expectation. 

 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

3. Authentication and Authorization 
For the IoT transport profile, authentication is optional. When authentication is desired, there are two options available 

to the user: 

1. User Credentials: user needs to configure an authentication URL, username, password, and client ID in the 

profile. 

2. Client Credentials: user needs to configure an authentication URL, client credentials and client ID in the profile.  

Authorization is expressed using an access token that is present in every message sent to the server. In an 

authenticated connection, the access token is obtained during authentication. If authentication is not required, then 

user only needs to populate the server URL and access token.  

a. Authentication Handshake 

Authentication is always done using HTTPS, subsequent API calls are done using secure WebSockets. 

b. Authentication Request 

This is an HTTPS POST operation. Depending upon the type of authentication (User Credentials/Clients Credentials), the 

HTTPS POST body contains different JSON content as follows:  

 
Sample JSON when User Credentials are configured 
{ 

    "grant_type": “password”, 

    "username": <username>, 

    "password": <password>, 

    "client_id": <ClientID>, 

    "scope": “Aruba_IoT_Framework” 

} 

Figure 2: Authentication Workflow 



 

11 
 

Sample JSON when Client Credentials are configured 
{ 

    "grant_type": “client_credentials”, 

    "client_secret": <Client Secret>, 

    "client_id": <ClientID>, 

    "scope": “Aruba_IoT_Framework” 

} 
 

• When using “User Credentials”, the “username”, “password” and “client  id” fields are taken verbatim from 

the IoT transport profile. 

• When using “Client Credentials”, the “client secret” and “client ID” fields are taken verbatim from the IoT 

transport profile. 

• If there is no client ID configured in the IoT transport profile, then the “client_id” field will be omitted 

from the JSON in the POST body.  

c. Authentication Response 

For successful authentication, we look for the following content in the response body: 

 
{ 

    "access_token": <access_token>, 

    "token_type": "bearer", 

    "refresh_token": <refresh_token>, 

    "expires_in": <time>, 

    "api_url": <API URL>, 

} 
 

• “access_token” is mandatory. 

• “token_type” is optional, but if it is present, the value must be set to “bearer ”. 

• “refresh_token” is optional and will be used for token refresh if present instead of a full re-

authentication. 

• “expires_in” is optional, but if it is not present, we assume that the token is valid until we receive an 

error. 

• “api_url” is optional. If it is present, we will use this value rather than the server URL specified in the IoT 

transport profile. 

We currently look for the following errors for authentication: 

Error Code Error Reason Action 

401 Unauthorized Upon reception of this error, the system will try to authenticate again 

 

For Telemetry WebSocket connections, the access token will be included in the payload of every message. Please see 

the telemetry proto files for the exact definition. In the return messages, the server can include a status message to 

indicate if the token was invalid. 

 



 

12 
 

d. Token Expiration and Token Refresh 

During the authentication handshake, if we receive the “expires_in” field along with the access token, we will support 

token expiration. As soon as the authentication handshake happens, we will store the “expires_in” time, and after that 

amount of time, we will consider the access token invalid. We currently support a minimum “expires_in” time for 300s, 

and a maximum time of 1 month. At this point we have two options, either a full re-authentication where we redo an 

authentication handshake and restart the connection, or if the server provided a refresh token, we would attempt to 

refresh the access token using the refresh token. 

 

If a refresh token is provided, instead of immediately tearing down the connection, we will first attempt to get a fresh 

access token from the server. This refresh will use a grant type of “refresh_token” instead of a grant type of “password”. If 

we are unable to get a new access token, or the server returns a 401 Error Code, we will fall back to tearing down the 

connection and redoing the full authentication handshake.  

 
{ 

    "grant_type": “refresh_token”, 

    "refresh_token": <Refresh Token>, 

    "client_id": <ClientID>, 

    "scope": “Aruba_IoT_Framework” 

} 
 

 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

4. AP Health Information 
Once the WebSocket connection is set up, each AP will send an AP Health message to the server every 120s. The message 

contains information about the reporter AP, the onboard and external radios, and any other supported external USB 

serial devices. 

 

Sample AP Health Update Message 
 

{ 

  "meta": { 

    "version": "1", 

    "access_token": "0123456789", 

    "nbTopic": "apHealthUpdate" 

  }, 

  "reporter": { 

    "name": "515-2", 

    "mac": "904c81cf3886", 

    "ipv4": "192.168.8.122", 

    "hwType": "AP-515", 

    "swVersion": "8.9.0.0-8.9.0.0", 

    "swBuild": "81161", 

    "time": "1630102303" 

  }, 

  "apHealth": { 

    "apStatus": "healthy", 

    "radio": [ 

      { 

        "mac": "204c0339e22c", 

        "hardware": "gen2", 

        "firmware": "arubaDefault", 

        "health": "healthy", 

        "external": false 

      } 

    ], 

    "usb": [ 

      { 

        "identifier": "ENOCEAN_USB:f6a68e740ecc549496d4b63072a33920", 

        "health": "healthy" 

      } 

    ] 

  } 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

5. BLE Telemetry 
The BLE telemetry transport service sends periodic reports about all the BLE devices that are discovered by an AP. The AP 

will continually listen for advertisements and scan responses. The AP will parse/decode these packets to the best of its 

abilities and update the telemetry in its internal table. Periodically, the contents of this table will be reported as BLE 

telemetry data. Once an IoT transport profile is properly configured on the AP/Controller, northbound telemetry 

messages will be sent to the server at every reporting interval. This will continue indefinitely until the profile is removed. 

These telemetry reports contain a summary of all the BLE devices that are seen by a particular AP. For each individual 

BLE device, we only populate the information that we have for the device. 

 

Note: In AOS and Instant 8.9, the BLE telemetry transport service is always enabled.  

  
Figure 3: Example of an IoT transport profile with periodic telemetry reports 

 
Sample Telemetry Message 

{ 
  "meta": { 

    "version": "1", 

    "access_token": "0123456789", 

    "nbTopic": "telemetry" 

  }, 

  "reporter": { 

    "name": "515-2", 

    "mac": "904c81cf3886", 

    "ipv4": "192.168.8.122", 

    "hwType": "AP-515", 

    "swVersion": "8.9.0.0-8.9.0.0", 

    "swBuild": "81161", 

    "time": "1630100306" 

  }, 

  "reported": [ 



 

15 
 

    { 

      "mac": "00a05011880a", 

      "deviceClass": [ 

        "eddystone", 

        "abbSensor" 

      ], 

      "lastSeen": "1630100303", 

      "bevent": { 

        "event": "update" 

      }, 

      "rssi": { 

        "avg": -77 

      }, 

      "beacons": [ 

        { 

          "eddystone": { 

            "power": -20, 

            "uid": { 

              "nid": "1000800000805f9b0131", 

              "bid": "00a05011880a" 

            } 

          } 

        } 

      ], 

      "sensors": { 

        "temperatureC": 0 

      }, 

      "stats": { 

        "frame_cnt": 3 

      }, 

      "vendorName": "ABB" 

    }, 

    { 

      "mac": "a0e6f82c080f", 

      "deviceClass": [ 

        "arubaBeacon", 

        "iBeacon" 

      ], 

      "model": "LS-BT20", 

      "firmware": { 

        "bankA": "1.2-15" 

      }, 

      "lastSeen": "1630100306", 

      "bevent": { 

        "event": "update" 

      }, 

      "rssi": { 

        "avg": -87 

      }, 

      "beacons": [ 

        { 

          "ibeacon": { 

            "uuid": "4152554ef99b4a3b86d0947070693a78", 

            "major": 3001, 

            "minor": 3001, 

            "power": -69 

          } 

        } 

      ], 

      "txpower": 10, 

      "sensors": { 

        "battery": 50 

      }, 

      "stats": { 

        "uptime": "10380", 

        "frame_cnt": 16 

      }, 



 

16 
 

      "vendorName": "Aruba", 

      "companyIdentifier": [ 

        { 

          "value": 76, 

          "description": "Apple, Inc." 

        }, 

        { 

          "value": 283, 

          "description": "Hewlett Packard Enterprise" 

        } 

      ] 

    } 

  ] 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

6. BLE Data 
The BLE data transport service forwards all BLE advertisement and scan response frames from all classified BLE devices 

(match device classes or generic filters such as company identifier, service UUID, local name and MAC OUI) as configured 

in the transport profile. When this transport service is enabled via UI, the BLE Data Forwarding knob is set in the 

transport profile. The Per Frame Filtering knob allows for stricter filtering by only forwarding frames that match the 

configured filter, i.e., any frames originating from the BLE device that do not match the configured filter is not forwarded. 

These options increase the traffic over the WebSocket, as you will receive a message for every BLE advertisement and 

scan response for eligible devices.  

 

Note: BLE data forwarding happens in addition to the periodic telemetry reporting. The two happen in parallel. If BLE 

data forwarding is the main method for which a subscriber would like to receive data, a high “reporting interval” value 

should be configured in the IoT transport profile. 

 

Figure 4: Example of an IoT transport profile with BLE data forwarding  

Sample BLE Data Forwarding Message 
{ 

  "meta": { 

    "version": "1", 

    "access_token": "0123456789", 

    "nbTopic": "bleData" 

  }, 

  "reporter": { 

    "name": "515-2", 

    "mac": "904c81cf3886", 

    "ipv4": "192.168.8.122", 

    "hwType": "AP-515", 

    "swVersion": "8.9.0.0-8.9.0.0", 

    "swBuild": "81161", 

    "time": "1630176248" 

  }, 



 

18 
 

  "bleData": [ 

    { 

      "mac": "a0e6f82c09c9", 

      "frameType": "adv_ind", 

      "data": "0201061aff4c0002154152554ef99b4a3b86d0947070693a7800000000b5", 

      "rssi": -58, 

      "addrType": "addr_type_public" 

    } 

  ] 

} 

 

 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

7. BLE Connections 
The BLE Connections feature allows the configured IoT server to connect to BLE devices using the Southbound APIs.  

ArubaOS has pre-defined primitives to connect and interact with BLE devices remotely via the SB IoT interface. This 

allows our partners to reach out and manage their devices via the Aruba WLAN infrastructure. This service is generic to 

all BLE devices. The operations map closely to the BLE GATT protocol. 

 
Primitive Description 

Connect Scan for a BLE device, set up a connection and discover characteristics 

Disconnect Disconnect an active connection 

Read Read from a BLE device using the GATT protocol 

Write Write to a BLE device using the GATT protocol 

Notifications Subscribe for notifications from a BLE device 

Indications Subscribe for indications from a BLE device 

Authenticate Enable supported BLE authentication method 

Encrypt Encrypt BLE data using the bonding key 

 

a. Encoding 

The commands and responses for the BLE connections service are all messages going up and down the IoT 

Interface WebSocket. The messages are encoded using the Google Protocol Buffer method. We use the proto2 

version of the protocol. The definitions can be found on the Aruba ASP portal.  

When it comes to the .proto definitions, you will notice all fields are listed as optional. This is by design to increase the 

forward compatibility of the API definitions in the .proto file. While this is the case, each API call has some fields that 

must be supplied to properly process the specified operation. These will be defined for each operation.  

Southbound Action Message Fields Explained 

An overview of the fields in a Southbound Action message are in the chart below. This is a superset of all the fields that 

might be present in a southbound action. Not all the fields should be present for every command.  

Field Value Description 

meta   

version uint64 Version of .proto definition. Currently only supported version is “1” 

sbTopic SbTopic Enum Enum value as defined in aruba-iot-types.proto file 

receiver   

apMac MAC Address MAC Address of AP which will process the action 

actions   

actionId string 3rd Party Server defined string to correlate responses to actions 

type ActionType Enum Enum value as defined in aruba-iot-types.proto file 



 

20 
 

 

Northbound Action Status Message Fields Explained 

After specific actions have been completed, status messages will be returned to the 3rd party server. These messages 

will differ based on the type of action that was completed. For each action type, the expected response will be 

described. An overview of the different fields that can be present in a response follow.  

Note: Only fields that pertain specifically to BLE connections are explained here. 

deviceMac MAC Address MAC Address of remote BLE device 

serviceUuid bytes String containing either 16bit or 128bit UUID for GATT Service 

characteristicUuid byes String containing either 16bit or 128bit UUID for GATT Characteristic 

timeOut uint32 Timeout value in seconds for the action to be completed 

value bytes Data in a byte format to be written to characteristic in write commands 

authentication Authentication 

submessage 

BLE Security/authentication related information 

bondingKey BleBondingKey 

submessage 

Encryption key which is generated when bonding is enabled for pairing 

status   

connectCode ConnectCode Enum Enum value defined in aruba-iot-sb-status.proto 

connectDescription string The server response description for the connection code 

Field Value Description 

meta   

version uint64 Version of .proto definition. Currently only supported version is “1” 

accessToken string Access Token present in all northbound frames which the server must 

verify 

nbTopic NbTopic Enum Enum value as defined in aruba-iot-types.proto file 

reporter   

name, mac, etc.  Varies Information about the AP that processed the action will be listed here 

actionResults   

actionId string 3rd Party Server defined string to correlate responses to actions 

type ActionType Enum Enum value as defined in aruba-iot-types.proto file 

deviceMac MAC Address MAC Address of remote BLE device 

status ActionStatus Enum Enum value as defined in aruba-iot-nb-action-results.proto file 

statusString string Optional additional freeform information  

bondingKey BleBondingKey Encryption key which is generated when bonding is enabled for pairing 



 

21 
 

 

b. Command Overview 

i. bleConnect 

The bleConnect command will send an operation for a specific AP to attempt to connect to a specified BLE device. There 

are no prerequisites to this command. In response to a successful bleConnect action, the server gets an “MTU Update” 

message (nbTopic is set to “status”), followed by a “Connection Successful” message (nbTopic is set to “actionResults”). 

Example Request 

{ 

 "meta": { 

  "access_token": "0123456789", 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

submessage  

characteristics   

deviceMac MAC Address MAC Address of remote BLE device 

serviceUuid bytes String containing either 16bit or 128bit UUID for GATT Service 

characteristicUuid bytes String containing either 16bit or 128bit UUID for GATT Characteristic 

value bytes Value populated after read commands or from notifications 

description string GATT Characteristic description 

Properties CharProperty Enum Enum value as defined in aruba-iot-nb-characteristics.proto file 

status   

deviceMac MAC Address MAC Address of remote BLE Device 

status StatusValue Enum Emun value as defined in aruba-iot-nb-status.proto 

statusString string Additional freeform information string 

connUpdate ConnUpdate 

submessage 

The negotiated MTU Value between BLE central and peripheral 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

Request Optional Parameters • Timeout 

Possible Responses • success 

• actionTimeout 

• apNotFound 

• deviceNotFound 

• alreadyConnected 



 

22 
 

  "serviceUuid": null, 

  "value": null, 

  "characteristicUuid": null, 

  "actionId": "10000001", 

  "timeOut": 30, 

  "type": "bleConnect" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

Example Response 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "status" 

 }, 

 "reporter": { 

  "name": "515-2", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1630347095" 

 }, 

 "status": { 

  "deviceMac": "e4f2057ee868", 

  "status": "connectionUpdate", 

  "statusString": "MTU Value Updated", 

  "connUpdate": { 

   "mtu_value": 247 

  } 

 } 

} 

 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "515-2", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1630347095" 

 }, 

 "results": [{ 

  "actionId": "10000001", 

  "type": "bleConnect", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "Connection Successful!" 

 }] 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

Service and Characteristic Discovery 

After connecting to a BLE device, the bleConnect command also triggers a full GATT service and characteristic discovery. 

This will happen without user intervention. Once this action is completed, the full list of characteristics will be forwarded 

back to the partner application in the “characteristics” northbound topic. This is the indication that the full service and 

characteristic discovery has been completed. An example of this response is provided below. 

Example Response 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "characteristics" 

 }, 

 "reporter": { 

  "name": "515-2", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1630347097" 

 }, 

 "characteristics": [{ 

   "deviceMac": "e4f2057ee868", 

   "serviceUuid": "1800", 

   "characteristicUuid": "2a00", 

   "properties": [ 

    "read" 

   ] 

  }, 

  { 

   "deviceMac": "e4f2057ee868", 

   "serviceUuid": "1800", 

   "characteristicUuid": "2a01", 

   "properties": [ 

    "read" 

   ] 

  }, 

  { 

   "deviceMac": "e4f2057ee868", 

   "serviceUuid": "1801", 

   "characteristicUuid": "2a05", 

   "properties": [ 

    "indicate" 

   ] 

  }, 

  { 

   "deviceMac": "e4f2057ee868", 

   "serviceUuid": "19b10000e8f2537e4f6cd104768a1214", 

   "characteristicUuid": "19b10001e8f2537e4f6cd104768a1214", 

   "properties": [ 

    "read", 

    "writeWithResponse" 

   ] 

  } 

 ] 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

ii. bleDisconnect 

The bleDisconnect command will terminate the connection between the specified AP, and a specific remote BLE device.  

Example Request 

{ 

 "meta": { 

  "access_token": "0123456789", 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

  "serviceUuid": null, 

  "value": null, 

  "characteristicUuid": null, 

  "actionId": "10000010", 

  "timeOut": 20, 

  "type": "bleDisconnect" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

Example Response 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "515-2", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1630347097" 

 }, 

 "results": [{ 

  "actionId": "10000010", 

  "type": "bleDisconnect", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "Disconnect Successful!" 

 }] 

} 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

Request Optional Parameters • Timeout 

Possible Responses • success 

• apNotFound 

• deviceNotFound 

• actionTimeout 

• notConnected 



 

25 
 

iii. gattRead 

The gattRead command must only be called after a connection between an AP and remote BLE device has been 

established. This command will read the value of the specified GATT characteristic on the remote device.  

The response to gattRead differs slightly from the previous commands, as it can come in two different forms. In case of 

a successful operation, the 3rd party server will receive a response with the northbound topic (nbTopic) set to 

“characteristics”. The message will contain a “results” topic containing the actionId value among others. It will also 

contain the status enum and a status string that says “gattRead Successful!”. The actual value of the gattRead command 

will be contained in the “characteristics” topic, alongwith the device MAC, service UUID and characteristic UUID.  

If an error occurred during a gattRead operation, the 3rd party server will receive a response with the northbound topic 

(nbTopic) set to “actionResults”. The response will have a “results” topic with the status enum for the gattRead failure.  

 

 

Example Request 

{ 

 "meta": { 

  "access_token": "0123456789", 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

  "serviceUuid": "1800", 

  "value": null, 

  "characteristicUuid": "2a00", 

  "actionId": "10000012", 

  "timeOut": 20, 

  "type": "gattRead" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

• Service UUID 

• Characteristic UUID 

Request Optional Parameters • Timeout 

Possible Responses • success  

• apNotFound 

• deviceNotFound 

• actionTimeout 

• notConnected 

• characteristicNotFound 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

gattRead Responses 

gattRead Response #1: Success  

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "characteristics" 

 }, 

 "reporter": { 

  "name": "515-2", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634687322" 

 }, 

 "results": [{ 

  "actionId": "10000012", 

  "type": "gattRead", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "gattRead Successful!" 

 }], 

 "characteristics": [{ 

  "deviceMac": "e4f2057ee868", 

  "serviceUuid": "1800", 

  "characteristicUuid": "2a00", 

  "value": "4152554e" 

 }] 

} 

 

gattRead Response #2: Failure  

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634777487" 

 }, 

 "results": [{ 

  "actionId": "10000012", 

  "type": "gattRead", 

  "deviceMac": "e4f2057ee868", 

  "status": "notConnected" 

 }] 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

gattRead Response #3: Failure  

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634796273" 

 }, 

 "results": [{ 

  "actionId": "00000014", 

  "type": "gattRead", 

  "deviceMac": "e4f2057ee868", 

  "status": "characteristicNotFound" 

 }] 

} 

 

iv. gattWrite 

The gattWrite command must only be called after a connection between an AP and remote BLE device has been 

established. This command will perform a GATT write without response to the specified characteristic, with the 

specified value. It is the 3rd party server’s responsibility to know the capabilities of the characteristic beforehand or use 

the results of the service-characteristic discovery (after the bleConnect step) to determine that information and set the 

southbound message payload appropriately.  

After the timeout specified in the southbound message expires, the results of the GATT write without response 

transaction are sent to the server with the “actionResults” northbound message topic (nbTopic). The message contains a 

“results” topic with the status set to “actionTimeout” and the statusString set to “gattwrite successful”. 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

• Service UUID 

• Characteristic UUID 

• Value 

Request Optional Parameters • Timeout 

Possible Responses • actionTimeout 

• apNotFound 

• deviceNotFound 

• notConnected 

• characteristicNotFound 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

Example Request 

{ 

 "meta": { 

  "access_token": "0123456789", 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

  "serviceUuid": "19b10000e8f2537e4f6cd104768a1214", 

  "value": "0A", 

  "characteristicUuid": "2103", 

  "actionId": "20000012", 

  "timeOut": 20, 

  "type": "gattWrite" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

Example Response 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634798868" 

 }, 

 "results": [{ 

  "actionId": "20000012", 

  "type": "gattWrite", 

  "deviceMac": "e4f2057ee868", 

  "status": "actionTimeout", 

  "statusString": "gattwrite successful" 

 }] 

} 

 

v. gattWriteWithResponse 

The gattWriteWithResponse command must only be called after a connection between an AP and remote BLE device 

has been established. This command will perform a GATT write with response to the specified characteristic, with the 

specified value. It is the 3rd party server’s responsibility to know the capabilities of the characteristic beforehand or use 

the results of the service-characteristic discovery (after the bleConnect step) to determine that information and set the 

southbound message payload appropriately.  

Unlike the gattWrite command, the gattWriteWithResponse command will send a message with the “actionResults” 

northbound topic to the server on success after a response packet is received from the connected device. The message 

contains a “results” topic with the status set to “success” and the statusString set to “WriteWithResponse Successful!”. 

 



 

29 
 

Example Request 

{ 

 "meta": { 

  "access_token": "0123456789", 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

  "serviceUuid": "19b10000e8f2537e4f6cd104768a1214", 

  "value": "AA", 

  "characteristicUuid": "2103", 

  "actionId": "20000012", 

  "timeOut": 5, 

  "type": "gattWriteWithResponse" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

Example Response 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634800495" 

 }, 

 "results": [{ 

  "actionId": "20000012", 

  "type": "gattWriteWithResponse", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "WriteWithResponse Successful!" 

 }] 

} 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

• Service UUID 

• Characteristic UUID 

• Value 

Request Optional Parameters • Timeout 

Possible Responses • success 

• actionTimeout 

• apNotFound 

• deviceNotFound 

• notConnected 

• characteristicNotFound 



 

30 
 

 

vi. gattNotification 

The gattNotification command must only be called after a connection between an AP and remote BLE device has been 

established. This command will attempt to subscribe or unsubscribe to notifications for the specified characteristic. To 

subscribe to notifications, you must send a value of “1”, and to unsubscribe from notifications, you must send a value of 

“0”. 

Example Request 

{ 

 "meta": { 

  "access_token": null, 

  "version": 1, 

  "sbTopic": "actions" 

 }, 

 "actions": [{ 

  "deviceMac": "e4:f2:05:7e:e8:68", 

  "serviceUuid": "fa01", 

  "value": "01", 

  "characteristicUuid": "2103", 

  "actionId": "00000002", 

  "timeOut": 20, 

  "type": "gattNotification" 

 }], 

 "receiver": { 

  "apMac": "90:4c:81:cf:38:86", 

  "all": false 

 } 

} 

 

gattNotification Responses 

For gattNotification actions, the response structure differs from previous actions. When you subscribe or unsubscribe 

to notifications on a GATT characteristic, if the AP was successfully able to perform the operation, you will get a success 

status returned in the “actionResults” northbound message topic. Following a successful subscription to notifications, 

any notifications on the GATT characteristics that the 3rd party server has subscribed to will be forwarded back 

asynchronously. An example of a successful subscription, and an example of a notification value being forwarded are 

shown as follows: 

Request Required Parameters • ActionId 

• Type 

• Device MAC 

• Service UUID 

• Characteristic UUID 

• Value 

Request Optional Parameters • Timeout 

Possible Responses • success 

• notConnected 

• characteristicNotFound  

• apNotFound 

• deviceNotFound 



 

31 
 

gattNotification Response – Successful subscription 

gattNotification Response – Forwarded Notification Value 

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "characteristics" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634801712" 

 }, 

 "results": [{ 

  "actionId": "00000002", 

  "type": "gattNotification", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "gattNotification value update received" 

 }], 

 "characteristics": [{ 

  "deviceMac": "e4f2057ee868", 

  "serviceUuid": "fa01", 

  "characteristicUuid": "2103", 

  "value": "07" 

 }] 

} 

 

vii. gattIndication 

The gattIndication actions are very similar to gattNotification actions. All the actions and responses are the same, just the 

action type will be “gattIndication” as opposed to “gattNotification”. The same subscription response messages are sent 

to the third-party server. The only difference between the two, is gattNotification and gattIndication work different at the 

BLE level, and some peripheral BLE devices require gattIndication.  

{ 

 "meta": { 

  "version": "1", 

  "access_token": "0123456789", 

  "nbTopic": "actionResults" 

 }, 

 "reporter": { 

  "name": "i515", 

  "mac": "904c81cf3886", 

  "ipv4": "192.168.8.122", 

  "hwType": "AP-515", 

  "swVersion": "8.9.0.0-8.9.0.0", 

  "swBuild": "81161", 

  "time": "1634801697" 

 }, 

 "results": [{ 

  "actionId": "00000002", 

  "type": "gattNotification", 

  "deviceMac": "e4f2057ee868", 

  "status": "success", 

  "statusString": "Notifications will now be forwarded" 

 }] 

} 



 

32 
 

viii. bleAuthenticate 

After connection is established, authentication might be required because of security considerations. The table below 

shows the possible authentication combinations supported by our infrastructure (AuthenticationMethod): 

 

Method Description 

none Legacy mode. No MITM is enabled 

passkey Legacy mode. Passkey is used. MITM is enabled. 

oob Legacy mode. KeyOob is required. MITM is enabled 

lescNone LESC mode. No MITM is enabled 

lescPasskey LESC mode. Passkey is used. MITM is enabled 

lescOob LESC mode. KeyOob is used. MITM is enabled 

 
Below figure shows the details of different combinations: 

 
 
The message ‘Authentication’ is used to construct the information used for authentication: 

Field Type Description 

method AuthenticationMethod This is a required field. Specify which method is used for 

authentication. 

bonding bool Whether bonding is enabled, which also could depend on whether 

peer's bond is enabled. 

passkey string Whether passkey is used. Passkey is 6 numeric digits (‘0’ - ‘9’). 

‘0’ will be prefixed if length of passkey is less than 6. 

Required when method is 'passkey' or 'lescPasskey'. 

keyOob bytes 16-bytes hexadecimal key. 0 will be prefixed if its length is less than 

16. 

This is required when method is 'oob' or 'lescOob'. 

keyOwn bytes 16-bytes hexadecimal key. 0 will be prefixed if its length is less than 

16. 

This is required when lesc is used, and peer uses the server's keyOwn 

or passkey is used 

If bonding is enabled, a bonding key will be returned once authentication succeeds. 

 



 

33 
 

Sample lescOob Request 
{ 

  "meta": { 

    "access_token": null, 

    "version": 1, 

    "sbTopic": "actions" 

  }, 

  "actions": [ 

    { 

      "deviceMac": "c3bb362273bb", 

      "serviceUuid": null, 

      "value": null, 

      "characteristicUuid": null, 

      "actionId": "1111", 

      "timeOut": 60, 

      "type": "bleConnect" 

    }, 

    { 

      "serviceUuid": null, 

      "value": null, 

      "characteristicUuid": null, 

      "authentication": { 

        "bonding": true, 

        "method": "lescOob", 

        "passkey": "123456", 

        "keyOwn":"1234567890ABCDEF", 

        "keyOob":"FEDCBA0987654321" 

      }, 

      "actionId": "2222", 

      "timeOut": 60, 

      "deviceMac": "c3bb362273bb", 

      "type": "bleAuthenticate" 

    } 

  ], 

  "receiver": { 

    "apMac": "204c03c1a519", 

    "all": false 

  } 

} 

 

Sample Response corresponding to Request 
{ 

  "meta": { 

    "version": "1", 

    "access_token": "1234567890", 

    "nbTopic": "actionResults" 

  }, 

  "reporter": { 

    "name": "AP555", 

    "mac": "9c8cd8cf2d77", 

    "ipv4": "192.16.1.5", 

    "ipv6": "fe80::9e8c:d8ff:fecf:2d77", 

    "hwType": "AP-555", 

    "swVersion": "8.8.0.0-mm-dev", 

    "swBuild": "77282", 

    "time": "1601480094" 

  }, 

  "results": [ 

    { 

      "actionId": "2222", 

      "type": "bleAuthenticate", 



 

34 
 

      "deviceMac": "c3bb362273bb", 

      "status": "success", 

      "bondingKey": { 

        "key": 

"ce07afb0b8a0269e9e9f30fd7ba2518ba9f493f184c4398ae486996859ef47440181bbb83c09bb3142da4d70a6ca3c1d04d1e4

f223686de5f1942809192b6d692670b5672f2adebf4bd3e20ee69b438b" 

      } 

    } 

  ] 

} 

 

ix. bleEncrypt 

After authentication is successful, the link will be encrypted. As authentication can take time, we provide a method to 

encrypt link quickly without performing full authentication. The bonding key from the last successful authentication is 

cached. We can encrypt the link directly with this bonding key. The bonding key will be changed after each successful 

authentication. 

 

Sample SB Request 
{ 

  "meta": { 

    "access_token": null, 

    "version": 1, 

    "sbTopic": "actions" 

  }, 

  "actions": [ 

    { 

      "deviceMac": "c3bb362273bb", 

      "serviceUuid": null, 

      "value": null, 

      "characteristicUuid": null, 

      "actionId": "1111", 

      "timeOut": 60, 

      "type": "bleConnect" 

    }, 

    { 

      "serviceUuid": null, 

      "value": null, 

      "characteristicUuid": null, 

      "bondingKey": { 

        "key": 

"b59ef03bcc80b3a20b8e1ab7768b5dfa03b987679c927c4c1ed90632f90c24b5279d08d081e1c349c99d5257bff624a9e48d91

23f8d685616ea5ccf247d6145208dbc4fcef4e495cc8a8bfc952235ef6" 

      }, 

      "actionId": "2222", 

      "timeOut": 60, 

      "deviceMac": "c3bb362273bb", 

      "type": "bleEncrypt" 

    } 

], 

  "receiver": { 

    "apMac": "204c03c1a519", 

    "all": false 

  } 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

 

Sample NB Response 
{ 

  "meta": { 

    "version": "1", 

    "access_token": "1234567890", 

    "nbTopic": "actionResults" 

  }, 

  "reporter": { 

    "name": "AP515", 

    "mac": "904c81cf378c", 

    "ipv4": "192.16.1.6", 

    "ipv6": "fe80::924c:81ff:fecf:378c", 

    "hwType": "AP-515", 

    "swVersion": "8.8.0.0-mm-dev", 

    "swBuild": "77185", 

    "time": "1600684063" 

  }, 

  "results": [ 

    { 

      "actionId": "2222", 

      "type": "bleEncrypt", 

      "deviceMac": "c3bb362273bb", 

      "status": "success" 

    } 

  ] 

} 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

8. Wi-Fi telemetry 
The Wi-Fi telemetry service sends periodic reports about all the Wi-Fi devices that are discovered by an AP. The AP sees 

over the air wireless frames from devices that are in the vicinity of the AP. The AP classifies these devices into (a) 

associated stations: devices for which we observe bi-directional frames, i.e., going from AP to station and from station to 

AP, and (b) unassociated stations: devices for which we observe frames either going to the devices or from the device to 

its associated AP. At every reporting interval, in the periodic report for each station, we will send the tuple of station MAC 

address, received signal strength (RSSI), and device class. 

 

To enable the WiFi telemetry service in the IoT transport profile, the user will need to include the wifi-assoc-sta and wifi-

unassoc-sta classes in the device class filter. The configured server will receive one or more Google Protocol buffer 

encoded messages, depending upon the number of observed stations, at every reporting interval.  

 

Note: WiFi telemetry is only available when the server type is set to Telemetry-Websocket.  

 

Sample Message 

 
{ 

   "meta": { 

      "version": "1", 

      "access_token": "any", 

      "nbTopic": "telemetry" 

   }, 

   "reporter": { 

      "name": "Aruba_AP1", 

      "mac": "004e35c76a08", 

      "ipv4": "10.5.0.120", 

      "ipv6": "fe80::24e:35ff:fec7:6a08", 

      "hwType": "AP-365", 

      "swVersion": "8.6.0.4", 

      "swBuild": "74969", 

      "time": "1587663421" 

   }, 

   "wifiData": [ 

      { 

         "mac": "9a5da1e7a59d", 

         "deviceClass": [ 

            "wifiUnassocSta" 

         ], 

         "rssi": -87 

      }, 

      { 

         "mac": "205415caed1a", 

         "deviceClass": [ 

            "wifiAssocSta" 

         ], 

         "rssi": -75 

      } 

   ] 

} 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

9. Wi-Fi RTLS data 
The WiFi RTLS data telemetry service forwards the wireless data frames that originate from unassociated Wi-Fi tags to the 

configured server. Wireless packets from unassociated Wi-Fi tags are distinguished from other frames based on the 

wireless packet type, and the values of the toDS and fromDS flags in the frame control field. When the incoming packet is 

a data frame with either toDS = 1 and fromDS = 1, or toDS = 0 and fromDS = 0, then the AP tries to match the MAC 

address from the Address 1 field to the destination MAC address configured in the transport profile. If it is a match then 

the AP generates a report with the device MAC address, received signal strength (RSSI), device class (set to “wifiTag”) and 

the payload of the wireless frame.  

 

To enable the WiFi RTLS data telemetry service in the IoT transport profile, the user will need to include the wifi-tags class 

in the device class filter. Whenever the AP sees a frame that matches the MAC address configured in the rtlsDestMAC 

field in the IoT transport profile, it will immediately send a report to the configured server as a Google Protocol buffer 

encoded message.  

 

Note: WiFi telemetry is only available when the server type is set to Telemetry-Websocket.  

 

Example Message 

 
{ 

   "meta": { 

      "version": "1", 

      "access_token": "test", 

      "nbTopic": "telemetry" 

   }, 

   "reporter": { 

      "name": "Aruba_AP1", 

      "mac": "004e35c76a08", 

      "ipv4": "10.5.0.120", 

      "ipv6": "fe80::24e:35ff:fec7:6a08", 

      "hwType": "AP-365", 

      "swVersion": "8.6.0.4", 

      "swBuild": "74969", 

      "time": "1590518273" 

   }, 

   "wifiData": [ 

      { 

         "mac": "000ccc48c5a1", 

         "deviceClass": [ 

            "wifiTag" 

         ], 

         "rssi": -51, 

         "rtls_payload": "00130b060200020033020722bc5a000006770407000ccc00001200" 

      } 

   ] 

} 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

10. Zigbee Sockets Data 
Aruba defines a new concept for Zigbee data communication called Zigbee Socket Device (ZSD), which can 

simplify the usage for sending/receiving data over Zigbee. ZSD specifies two parts:  

• inbound sockets: Inbound socket is used for receiving data from peer device.  

• outbound sockets: Outbound socket is used for sending data to peer device.  

Socket consists of 4 members: source-endpoint, destination-endpoint, profile ID and cluster ID. These four 

parameters are defined into a message ‘ZbE2PC’ (e2pc) in the API. When a ZSD is bound to an ATW transport 

profile by configuration, all data related to the e2pc can be transmitted over the ZSD. In fact, e2pc specifies a 

data tunnel between server and clients. Different services have different e2pc. Sometimes, e2pc for sending is 

also different from the one for receiving. Similarly, e2pc is like the port of TCP/UDP. Different port s can indicate 

different services. In the Zigbee world, each connected device has a short network address which is allocated by 

coordinator/router. This short network address can be treated as the IP address. In Aruba implementation, we 

use the IEEE address of client device to send data, which is more generic. In the Zigbee stack, we will convert the 

IEEE address to short address if we have it.  

The Northbound message from the inbound socket contains the following fields:  

Request Required Parameters • radio_mac 

IEEE MAC of radio where data is received from  

Request Optional Parameters • report 

Send data to server. 

• ack 

This is used for acknowledgement for the SbZbMsg when ‘reqid’ is specified. 

The ack includes ‘result’ (SUCCEEDED, FAILED) and ‘code’ which gives the exact 

failure reason. 

• response 

 This is used for the ‘read’ request from SbZbMsg. 

Possible Responses So far, we have no acknowledgement or response for the ‘report’.  

 

Sample Northbound Message: 
{ 

    "meta":{ 

        "version":1, 

        "nbTopic":"zbNbData" 

    }, 

    "reporter":{ 

        "mac":"80:8d:b7:c0:0d:95"                    //AP MAC 

    }, 

    "zigbee":{ 

        "radioMac":"20:4c:03:ff:fe:13:8c:84",        //AP Zigbee radio MAC 

        "report":{ 



 

39 
 

            "mac":"00:13:a2:00:41:58:3a:7c",         //EndDevice MAC 
            "e2pc":{ 

                "destination":{ 

                    "endpoint":2, 

                    "profileId":28674, 

                    "clusterId":64514 

                }, 

                "sourceEndpoint":52 

            }, 

            "payload":"000F000A001122334455" 

        } 

    } 

} 

The Southbound message destined for the outbound socket contains the following fields: 

Request Required Parameters • radio_mac 

IEEE MAC of radio used for sending data  

Request Optional Parameters • send 

Send data to peer device. It includes 4 required parameters: reqid, mac, e2pc 

and payload. 

• request 

Not implemented in AOS.  it includes these operations: ‘read’, ‘write’, 

‘action’(for other actions). 

Possible Responses • SUCCEEDED 

• FAILED 

Sample Southbound Message: 
{ 

    "meta":{ 

        "version":1, 

        "sbTopic":3 

    }, 

    "receiver":{ 

        "apMac":"80:8d:b7:c0:0d:95"                   //AP MAC  

    }, 

    "zigbee":{ 

        "radioMac":"20:4c:03:ff:fe:13:8c:84",         //AP Zigbee radio MAC 

        "send":{ 

            "mac":"00:13:a2:00:41:58:3a:ce",          //EndDevice MAC 

            "e2pc":{ 

                "destination":{ 

                    "endpoint":101, 

                    "clusterId":28673, 

                    "profileId":61441 

                }, 

                "sourceEndpoint":151 

            }, 

            "payload":"7001000A001122334455", 

            "reqid":"1" 

        } 

    } 

} 

 



 

  

 

API GUIDE 
8.9 ARUBA IOT WEBSOCKET INTERFACE 

 

www.arubanetworks.com                                                                                                                                                                     

 

6280 America Center Drive | San Jose, CA 95002 
PHONE: 1.408.941.4300 | FAX: 1.408.752.0626 | info@arubanetworks.com 

11. Serial data 
Starting AOS 8.7, Aruba APs support data forwarding service for 3rd party IoT radios that are connected to the AP 

via the USB port. Every 3rd party radio requires custom integration involving bundling the device driver, port 

configuration and message parsing subroutines into the AP's software image. When the 3rd party IoT radio is 

plugged into the USB port, it presents itself as a serial over USB device to the AP after the appropriate driver 

installation.  

 

The serial data sent by the 3rd party radio to the AP is encoded into a Google Protocol Buffer formatted message 

and forwarded to the server configured in the IoT transport profile. The server can also send a Google Protocol 

Buffer formatted message to the AP (Southbound), which will be forwarded to the 3rd party device, i.e., the serial 

data bytes will be written to the serial port. The serial data forwarding service is only available when the server 

type is Telemetry-WebSocket. In every SB communication the server needs to populate the correct USB serial 

device identifier to ensure that the message is forwarded to the correct device. The device identifier is part of 

each AP Health Update message and NB serial data messages.  In addition, the device identifier is included in the 

output of the “ble-config” CLI command.  

 

Example Northbound Message 

 
{ 

  "meta": { 

    "version": "1", 

    "access_token": "0123456789", 

    "nbTopic": "serialDataNb" 

  }, 

  "reporter": { 

    "name": "515-2", 

    "mac": "904c81cf3886", 

    "ipv4": "192.168.8.122", 

    "hwType": "AP-515", 

    "swVersion": "8.8.0.0-8.8.0.0", 

    "swBuild": "79680", 

    "time": "1616700759" 

  }, 

  "nbSData": [ 

    { 

      "nbSerialPayload": "55000807013dd006490412f2948001ffffffff4d009d", 

      "nbDeviceId": "ENOCEAN_USB:f6a68e740ecc549496d4b63072a33920" 

    } 

  ] 

} 

 

Example Southbound Message 
{ 

    "meta": { 

        "access_token": "0123456789", 

        "version": 1, 

        "sbTopic": "serialDataSb" 

    }, 

    "sbSData": [{ 

        "sbDeviceId": "ENOCEAN_USB:f6a68e740ecc549496d4b63072a33920", 

        "sbSerialPayload": "5500010005700309" 

    }], 

    "receiver": { 

        "apMac": "904c81cf3886", 

        "all": false 



 

41 
 

    } 

} 

 
Example Response to Southbound Message 
{ 

  "meta": { 

    "version": "1", 

    "access_token": "0123456789", 

    "nbTopic": "serialDataNb" 

  }, 

  "reporter": { 

    "name": "515-2", 

    "mac": "904c81cf3886", 

    "ipv4": "192.168.8.122", 

    "hwType": "AP-515", 

    "swVersion": "8.8.0.0-8.8.0.0", 

    "swBuild": "79680", 

    "time": "1616700509" 

  }, 

  "nbSData": [ 

    { 

      "nbSerialPayload": 

"55002100022600010208000103040004129f1e454f010354434d3531355500000000000000000039", 

      "nbDeviceId": "ENOCEAN_USB:f6a68e740ecc549496d4b63072a33920" 

    } 

  ] 

} 

 
 

© Copyright 2021 Hewlett Packard Enterprise Development LP 

All Rights Reserved 

 
  


	8.9 Aruba IoT WebSocket interface
	1. Introduction
	a. Solution Overview
	b. Transport Services

	2. Configuration
	 Company Identifier Filter
	 Service UUID Filter
	 Local Name Filter
	 MAC OUI Filter
	 USB Serial Device Type Filter
	 Cell Size Filter
	 Movement Filter
	 Age Filter
	 Vendor Filter
	 RSSI Reporting Format
	 Environment Type
	 Custom Fading Factor
	 Data Filter
	 BLE Data Forwarding and Per Frame Filtering

	3. Authentication and Authorization
	a. Authentication Handshake
	b. Authentication Request
	c. Authentication Response
	d. Token Expiration and Token Refresh

	4. AP Health Information
	5. BLE Telemetry
	6. BLE Data
	7. BLE Connections
	a. Encoding
	b. Command Overview
	i. bleConnect
	ii. bleDisconnect
	iii. gattRead
	iv. gattWrite
	v. gattWriteWithResponse
	vi. gattNotification
	vii. gattIndication
	viii. bleAuthenticate
	ix. bleEncrypt


	8. Wi-Fi telemetry
	9. Wi-Fi RTLS data
	10. Zigbee Sockets Data
	11. Serial data

