
Chapter 6 - Playbook
Organization - Roles, Includes,
and Imports
So far, we’ve used fairly straightforward examples in this book. Most examples are
created for a particular server, and are in one long playbook.

Ansible is flexible when it comes to organizing tasks in more efficient ways so
you can make playbooks more maintainable, reusable, and powerful. We’ll look
at two ways to split up tasks more efficiently using includes and roles, and we’ll
explore Ansible Galaxy, a repository of some community-maintained roles that help
configure common packages and applications.

Imports

We’ve already seen one of the most basic ways of including other files in Chapter 4,
when vars_files was used to place variables into a separate vars.yml file instead
of inline with the playbook:

- hosts: all

vars_files:

- vars.yml

Tasks can easily be included in a similar way. In the tasks: section of your playbook,
you can add import_tasks directives like so:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 121

tasks:

- import_tasks: imported-tasks.yml

Just like with variable include files, tasks are formatted in a flat list in the included
file. As an example, the imported-tasks.yml could look like this:

- name: Add profile info for user.

copy:

src: example_profile

dest: "/home/{{ username }}/.profile"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0744

- name: Add private keys for user.

copy:

src: "{{ item.src }}"

dest: "/home/{{ username }}/.ssh/{{ item.dest }}"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0600

with_items: "{{ ssh_private_keys }}"

- name: Restart example service.

service: name=example state=restarted

In this case, you’d probably want to name the file user.yml, since it’s used to
configure a user account and restart some service. Now, in this and any other
playbook that provisions or configures a server, if you want to configure a particular
user’s account, add the following in your playbook’s tasks section:

tasks:

- import_tasks: user.yml

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 122

We used {{ username }} and {{ ssh_private_keys }} variables in this include file
instead of hard-coded values so we could make this include file reusable. You could
define the variables in your playbook’s inline variables or an included variables file,
but Ansible also lets you pass variables directly into includes using normal YAML
syntax. For example:

tasks:

- import_tasks: user.yml

vars:

username: johndoe

ssh_private_keys:

- { src: /path/to/johndoe/key1, dest: id_rsa }

- { src: /path/to/johndoe/key2, dest: id_rsa_2 }

- import_tasks: user.yml

vars:

username: janedoe

ssh_private_keys:

- { src: /path/to/janedoe/key1, dest: id_rsa }

- { src: /path/to/janedoe/key2, dest: id_rsa_2 }

Imported files can even import other files, so you could have something like the
following:

tasks:

- import_tasks: user-config.yml

inside user-config.yml

- import_tasks: ssh-setup.yml

Includes

If you use import_tasks, Ansible statically imports the task file as if it were part of
the main playbook, once, before the Ansible play is executed.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 123

If you need to have included tasks that are dynamic—that is, they need to do different
things depending on how the rest of the playbook runs—then you can use include_-
tasks rather than import_tasks.

As an example, in one of my Ansible projects, I have a task file log_paths.yml with
the following:

- name: Check for existing log files in dynamic log_file_paths variable.

find:

paths: "{{ item }}"

patterns: '*.log'

register: found_log_file_paths

with_items: "{{ log_file_paths }}"

In this case, the log_file_paths variable is set by a task earlier in my playbook—so
this include file wouldn’t be able to know the value of that variable until the playbook
has already partly completed.

So when I include this task file, I have to do so dynamically, for example:

- include_tasks: log_paths.yml

Early on, Ansible only had static include available for task inclusion, but
as playbooks became more complex, people need to be able to include
tasks that were processed when run (instead of added to the list of tasks
before the play started running). So Ansible 2.1 introduced the static

flag for include:. This worked, but overloaded the use of one keyword,
so in Ansible 2.4, the use of include: was deprecated and you should use
import_tasks if your tasks can basically be inlined before the playbook
runs, or include_tasks if the tasks might need to be more dynamic (e.g.
registering and reacting to a new registered variable).

Dynamic includes

Until Ansible 2.0, includes were always processed when your playbook run started
(just like import_tasks behaves now), so you couldn’t do things like load a particular

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 124

include when some condition was met. Ansible 2.0 and later evaluates includes
during playbook execution, so you can do something like the following:

Include extra tasks file, only if it's present at runtime.

- name: Check if extra_tasks.yml is present.

stat: path=tasks/extra-tasks.yml

register: extra_tasks_file

connection: local

- include_tasks: tasks/extra-tasks.yml

when: extra_tasks_file.stat.exists

If the file tasks/extra-tasks.yml is not present, Ansible skips the include_tasks.
You can even use a with_items loop (or any other with_* loop) with includes.
Includes evaluated during playback execution can make your playbooks much more
flexible!

Handler imports and includes

Handlers can be imported or included just like tasks, within a playbook’s handlers
section. For example:

handlers:

- import_tasks: handlers.yml

This can be helpful in limiting the noise in your main playbook, since handlers are
usually used for things like restarting services or loading a configuration, and can
distract from the playbook’s primary purpose.

Playbook imports

Playbooks can even be included in other playbooks, using the same import syntax
in the top level of your playbook (though for playbooks, you only have import_-

playbook available, as they cannot be dynamic like task includes). For example, if
you have two playbooks—one to set up your webservers (web.yml), and one to set up
your database servers (db.yml), you could use the following playbook to run both at
the same time:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 125

- hosts: all

remote_user: root

tasks:

[...]

- import_playbook: web.yml

- import_playbook: db.yml

This way, you can create playbooks to configure all the servers in your infrastructure,
then create a master playbook that includes each of the individual playbooks. When
you want to initialize your infrastructure, make changes across your entire fleet of
servers, or check tomake sure their configurationmatches your playbook definitions,
you can run one ansible-playbook command!

Complete includes example

What if I told you we could remake the 137-line Drupal LAMP server playbook from
Chapter 4 in just 21 lines? With includes, it’s easy; just break out each of the sets of
tasks into their own include files, and you’ll end up with a main playbook like this:

1 ---

2 - hosts: all

3

4 vars_files:

5 - vars.yml

6

7 pre_tasks:

8 - name: Update apt cache if needed.

9 apt: update_cache=yes cache_valid_time=3600

10

11 handlers:

12 - import_tasks: handlers/handlers.yml

13

14 tasks:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 126

15 - import_tasks: tasks/common.yml

16 - import_tasks: tasks/apache.yml

17 - import_tasks: tasks/php.yml

18 - import_tasks: tasks/mysql.yml

19 - import_tasks: tasks/composer.yml

20 - import_tasks: tasks/drush.yml

21 - import_tasks: tasks/drupal.yml

All you need to do is create two new folders in the same folder where you saved
the Drupal playbook.yml file, handlers and tasks, then create files inside for each
section of the playbook.

For example, inside handlers/handlers.yml, you’d have:

1 ---

2 - name: restart apache

3 service: name=apache2 state=restarted

And inside tasks/drush.yml:

1 ---

2 - name: Check out drush 8.x branch.

3 git:

4 repo: https://github.com/drush-ops/drush.git

5 version: 8.x

6 dest: /opt/drush

7

8 - name: Install Drush dependencies with Composer."

9 shell: >

10 /usr/local/bin/composer install

11 chdir=/opt/drush

12 creates=/opt/drush/vendor/autoload.php

13

14 - name: Create drush bin symlink.

15 file:

16 src: /opt/drush/drush

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 127

17 dest: /usr/local/bin/drush

18 state: link

Separating all the tasks into separate task files means you’ll have more files to
manage for your playbook, but it helps keep the main playbook more compact. It’s
easier to see all the installation and configuration steps the playbook contains, and it
separates tasks into individual, maintainable groupings. Instead of having to browse
one playbook with twenty-three separate tasks, you now maintain eight included
files with two to five tasks, each.

It’s much easier to maintain small groupings of related tasks than one long playbook.
However, there’s no reason to try to start writing a playbook with lots of individual
includes. Most of the time, it’s best to start with a monolithic playbook while you’re
working on the setup and configuration details, then move sets of tasks out to
included files after you start seeing logical groupings.

You can also use tags (demonstrated in the previous chapter) to limit the playbook
run to a certain task file. Using the above example, if you wanted to add a ‘drush’
tag to the included drush file (so you could run ansible-playbook playbook.yml

--tags=drush and only run the drush tasks), you can change line 20 to the following:

20 - import_tasks: tasks/drush.yml tags=drush

You can find the entire example Drupal LAMP server
playbook using include files in this book’s code repository at
https://github.com/geerlingguy/ansible-for-devops⁶⁸, in the includes

directory.

You can’t use variables for task include file names when using import_-

tasks (like you could with include_vars directives, e.g. include_vars:
"{{ ansible_os_family }}.yml" as a task, or with vars_files), but you
can when using include_tasks (dynamically). In either case, it might be
easier to accomplish conditional task inclusion using a different playbook
structure, or roles, which we will discuss next.

⁶⁸https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 128

Roles

Including playbooks inside other playbooks makes your playbook organization
a little more sane, but once you start wrapping up your entire infrastructure’s
configuration in playbooks, you might end up with something resembling Russian
nesting dolls.

Wouldn’t it be nice if there were a way to take bits of related configuration, and
package them together nicely? Additionally, what if we could take these packages
(often configuring the same thing on many different servers) and make them flexible
so that we can use the same package throughout our infrastructure, with slightly
different settings on individual servers or groups of servers?

Ansible Roles can do all that and more!

Let’s dive into what makes an Ansible role by taking one of the playbook examples
from Chapter 4 and splitting it into a more flexible structure using roles.

Role scaffolding

Instead of requiring you to explicitly include certain files and playbooks in a role,
Ansible automatically includes any main.yml files inside specific directories that
make up the role.

There are only two directories required to make a working Ansible role:

role_name/

meta/

tasks/

If you create a directory structure like the one shown above, with a main.yml file in
each directory, Ansible will run all the tasks defined in tasks/main.yml if you call
the role from your playbook using the following syntax:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 129

1 ---

2 - hosts: all

3 roles:

4 - role_name

Your roles can live in a couple different places: the default global Ansible role path
(configurable in /etc/ansible/ansible.cfg), or a roles folder in the same directory
as your main playbook file.

Another simple way to build the scaffolding for a role is to use the
command: ansible-galaxy init role_name. Running this command
creates an example role in the current working directory, which you can
modify to suit your needs. Using the init command also ensures the role
is structured correctly in case you want to someday contribute the role to
Ansible Galaxy.

Building your first role

Let’s clean up the Node.js server example from Chapter four, and break out one of the
main parts of the configuration—installing Node.js and any required npm modules.

Create a roles folder in the same directory as the main playbook.yml file like we
created in Chapter 4’s first example. Inside the roles folder, create a new folder:
nodejs (which will be our role’s name). Create two folders inside the nodejs role
directory: meta and tasks.

Inside the meta folder, add a simple main.yml file with the following contents:

1 ---

2 dependencies: []

The meta information for your role is defined in this file. In basic examples and
simple roles, you just need to list any role dependencies (other roles that are required
to be run before the current role can do its work). You can add more to this file to
describe your role to Ansible and to Ansible Galaxy, but we’ll dive deeper into meta
information later. For now, save the file and head over to the tasks folder.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 130

Create a main.yml file in this folder, and add the following contents (basically copying
and pasting the configuration from the Chapter 4 example):

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 yum: name=npm state=present enablerepo=epel

4

5 - name: Install forever module (to run our Node.js app).

6 npm: name=forever global=yes state=present

The Node.js directory structure should now look like the following:

1 nodejs-app/

2 app/

3 app.js

4 package.json

5 playbook.yml

6 roles/

7 nodejs/

8 meta/

9 main.yml

10 tasks/

11 main.yml

You now have a complete Ansible role that you can use in your node.js server
configuration playbook. Delete the Node.js app installation lines from playbook.yml,
and reformat the playbook so the other tasks run first (in a pre_tasks: section instead
of tasks:), then the role, then the rest of the tasks (in the main tasks: section).
Something like:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 131

pre_tasks:

EPEL/GPG setup, firewall configuration...

roles:

- nodejs

tasks:

Node.js app deployment tasks...

You can view the full example of this playbook in the ansible-for-devops
code repository⁶⁹.

Once you finish reformatting the main playbook, everything will run exactly the
same during an ansible-playbook run, with the exception of the tasks inside the
nodejs role being prefixed with nodejs | [Task name here].

This little bit of extra data shown during playbook runs is useful because it
automatically prefixes tasks with the role that provides them, without you having
to add in descriptions as part of the name values of the tasks.

Our role isn’t all that helpful at this point, though, because it still does only one
thing, and it’s not really flexible enough to be used on other servers that might need
different Node.js modules to be installed.

More flexibility with role vars and defaults

To make our role more flexible, we can make it use a list of npm modules instead of
a hardcoded value, then allow playbooks using the role to provide their own module
list variable to override our role’s default list.

When running a role’s tasks, Ansible picks up variables defined in a role’s vars/main.yml
file and defaults/main.yml (I’ll get to the differences between the two later), but will
allow your playbooks to override the defaults or other role-provided variables if you
want.

Modify the tasks/main.yml file to use a list variable and iterate through the list to
install as many packages as your playbook wants:

⁶⁹https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 132

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 yum: name=npm state=present enablerepo=epel

4

5 - name: Install npm modules required by our app.

6 npm: name={{ item }} global=yes state=present

7 with_items: "{{ node_npm_modules }}"

Let’s provide a sane default for the new node_npm_modules variable in defaults/main.yml:

1 ---

2 node_npm_modules:

3 - forever

Now, if you run the playbook as-is, it will still do the exact same thing—install the
forevermodule. But since the role is more flexible, we could create a new playbook
like our first, but add a variable (either in a vars section or in an included file via
vars_files) to override the default, like so:

1 node_npm_modules:

2 - forever

3 - async

4 - request

When you run the playbook with this custom variable (we didn’t change anything
with our nodejs role), all three of the above npm modules will be installed.

Hopefully you’re beginning to see how this can be powerful!

Imagine if you had a playbook structure like:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 133

1 ---

2 - hosts: appservers

3 roles:

4 - yum-repo-setup

5 - firewall

6 - nodejs

7 - app-deploy

Each one of the roles lives in its own isolated world, and can be shared with other
servers and groups of servers in your infrastructure.

• A yum-repo-setup role could enable certain repositories and import their GPG
keys.

• A firewall role could have per-server or per-inventory-group options for ports
and services to allow or deny.

• An app-deploy role could deploy your app to a directory (configurable per-
server) and set certain app options per-server or per-group.

These things are easy to manage when you have small bits of functionality separated
into different roles. Instead of managing 100+ lines of playbook tasks, and manually
prefixing every name: with something like “Common |” or “App Deploy |”, you now
manage a few roles with 10-20 lines of YAML each.

On top of that, when you’re building your main playbooks, they can be extremely
simple (like the above example), enabling you to see everything being configured
and deployed on a particular server without scrolling through dozens of included
playbook files and hundreds of tasks.

Variable precedence: Note that Ansible handles variables placed in in-
cluded files in defaults with less precedence than those placed in vars.
If you have certain variables you need to allow hosts/playbooks to easily
override, you should probably put them into defaults. If they are common
variables that should almost always be the values defined in your role,
put them into vars. For more on variable precedence, see the aptly-named
“Variable Precedence” section in the previous chapter.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 134

Other role parts: handlers, files, and templates

Handlers

In one of the prior examples, we introduced handlers—tasks that could be called via
the notify option after any playbook task resulted in a change—and an example
handler for restarting Apache was given:

1 handlers:

2 - name: restart apache

3 service: name=apache2 state=restarted

In Ansible roles, handlers are first-class citizens, alongside tasks, variables, and
other configuration. You can store handlers directly inside a main.yml file inside
a role’s handlers directory. So if we had a role for Apache configuration, our
handlers/main.yml file could look like this:

1 ---

2 - name: restart apache

3 service: name=apache2 state=restarted

You can call handlers defined in a role’s handlers folder just like those included
directly in your playbooks (e.g. notify: restart apache).

Files and Templates

For the following examples, let’s assume our role is structured with files and
templates inside files and templates directories, respectively:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 135

1 roles/

2 example/

3 files/

4 example.conf

5 meta/

6 main.yml

7 templates/

8 example.xml.j2

9 tasks/

10 main.yml

when copying a file directly to the server, add the filename or the full path from
within a role’s files directory, like so:

- name: Copy configuration file to server directly.

copy:

src: example.conf

dest: /etc/myapp/example.conf

mode: 0644

Similarly, when specifying a template, add the filename or the full path from within
a role’s templates directory, like so:

- name: Copy configuration file to server using a template.

template:

src: example.xml.j2

dest: /etc/myapp/example.xml

mode: 0644

The copymodule copies files fromwithin themodule’s files folder, and the template
module runs given template files through the Jinja templating engine, merging in any
variables available during your playbook run before copying the file to the server.

Organizing more complex and cross-platform roles

For simple package installation and configuration roles, you can get by with placing
all tasks, variables, and handlers directly in the respective main.yml file Ansible

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 136

automatically loads. But you can also include other files from within a role’s
main.yml files if needed.

As a rule of thumb, I keep my playbook and role task files under 100 lines of YAML
if at all possible. It’s easier to keep the entire set of tasks in my head while making
changes or fixing bugs. If I start nearing that limit, I usually split the tasks into logical
groupings, and include files from the main.yml file.

Let’s take a look at the way my geerlingguy.apache role is set up (it’s available on
Ansible Galaxy⁷⁰ and can be downloaded to your roles directory with the command
ansible-galaxy install geerlingguy.apache; we’ll discuss Ansible Galaxy itself
later).

Initially, the role’s main tasks/main.yml file looked something like the following
(generally speaking):

1 - name: Ensure Apache is installed (via apt).

2

3 - name: Configure Apache with lineinfile.

4

5 - name: Enable Apache modules.

Soon after creating the role, though, I wanted tomake the role workwith both Debian
and RHEL hosts. I could’ve added two sets of tasks in the main.yml file, resulting in
twice the number of tasks and a bunch of extra when statements:

1 - name: Ensure Apache is installed (via apt).

2 when: ansible_os_family == 'Debian'

3

4 - name: Ensure Apache is installed (via yum).

5 when: ansible_os_family == 'RedHat'

6

7 - name: Configure Apache with lineinfile (Debian).

8 when: ansible_os_family == 'Debian'

9

10 - name: Configure Apache with lineinfile (RHEL).

⁷⁰https://galaxy.ansible.com/geerlingguy/apache/

https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 137

11 when: ansible_os_family == 'RedHat'

12

13 - name: Enable Apache modules (Debian).

14 when: ansible_os_family == 'Debian'

15

16 - name: Other OS-agnostic tasks...

If I had gone this route, and continued with the rest of the playbook tasks in one file,
I would’ve quickly surpassed my informal 100-line limit. So I chose to use includes
in my main tasks file:

1 - name: Include OS-specific variables.

2 include_vars: "{{ ansible_os_family }}.yml"

3

4 - name: Include OS-specific setup tasks.

5 include_tasks: setup-{{ ansible_os_family }}.yml

6

7 - name: Other OS-agnostic tasks...

Two important things to notice about this style of distribution-specific inclusion:

1. When including vars and tasks files (with include_vars or include_tasks), you
can actually use variables in the name of the file. This is handy in many situ-
ations; here we’re including a vars file in the format distribution_name.yml.
For our purposes, since the role will be used on Debian and RHEL-based hosts,
we can create Debian.yml and RedHat.yml files in our role’s defaults and vars

folders, and put distribution-specific variables there.
2. For the tasks, we include tasks files in the role’s tasks directory, for example

setup-Debian.yml or setup-RedHat.yml.

After setting things up this way, I put RHEL and CentOS-specific tasks (like yum tasks)
into tasks/setup-RedHat.yml, and Debian and Ubuntu-specific tasks (like apt tasks)
into tasks/setup-Debian.yml. There are other ways of making roles work cross-
platform, but using distribution-specific variables files and included task files is one
of the simplest.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 138

Now this Apache role can be used across different distributions, and with clever
usage of variables in tasks and in configuration templates, it can be used in a wide
variety of infrastructure that needs Apache installed.

Ansible Galaxy

Ansible roles are powerful and flexible; they allow you to encapsulate sets of
configuration and deployable units of playbooks, variables, templates, and other files,
so you can easily reuse them across different servers.

It’s annoying to have to start from scratch every time, though; wouldn’t it be better
if people could share roles for commonly-installed applications and services?

Enter Ansible Galaxy⁷¹.

Ansible Galaxy, or just ‘Galaxy’, is a repository of community-contributed roles for
common Ansible content. There are already hundreds of roles available which can
configure and deploy common applications, and they’re all available through the
ansible-galaxy command, introduced in Ansible 1.4.2.

Galaxy offers the ability to add, download, and rate roles. With an account, you can
contribute your own roles or rate others’ roles (though you don’t need an account to
use roles).

Getting roles from Galaxy

One of the primary functions of the ansible-galaxy command is retrieving roles
from Galaxy. Roles must be downloaded before they can be used in playbooks.

Remember the basic LAMP (Linux, Apache, MySQL and PHP) server we installed
earlier in the book? Let’s create it again, but this time, using a few roles from Galaxy:

$ ansible-galaxy install geerlingguy.apache geerlingguy.mysql geerlingg\

uy.php

⁷¹https://galaxy.ansible.com/

https://galaxy.ansible.com/
https://galaxy.ansible.com/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 139

The latest version of a role will be downloaded if no version is specified.
To specify a version, add the version after the role name, for example: $
ansible-galaxy install geerlingguy.apache,1.0.0.

Ansible Galaxy is still evolving rapidly, and has seen many improvements.
There are a few areas where Galaxy could use some improvement (like
browsing for roles by Operating System in the online interface, or auto-
matically downloading roles that are included in playbooks), but most of
these little bugs or rough spots will be fixed in time. Please check Ansible
Galaxy’s About⁷² page and stay tuned to Ansible’s blog for the latest
updates.

Using role requirements files to manage dependencies

If your infrastructure configuration requires five, ten, fifteen or more Ansible roles,
installing them all via ansible-galaxy install commands can be exhausting.
Additionally, if you host roles internally (e.g. via an internal Git or Mercurial
repository), you can’t install the roles through Ansible Galaxy. You can, however,
pass the ansible-galaxy command a “requirements” file with the -r option to
automatically download all dependencies.

Ansible allows a simple .txt format that is very basic (though this format is
deprecated and may be removed), but you should use the more standard and
expressive YAML format, which allows you to install roles from Ansible Galaxy,
GitHub, an HTTP download, BitBucket, or your own repository. It also allows
you to specify the path into which the roles should be downloaded. An example
requirements.yml file looks like this:

⁷²https://galaxy.ansible.com/intro

https://galaxy.ansible.com/intro
https://galaxy.ansible.com/intro

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 140

1 ---

2 # From Ansible Galaxy, latest version.

3 - src: geerlingguy.firewall

4

5 # From Ansible Galaxy, specifying the version.

6 - src: geerlingguy.php

7 version: 3.5.1

8

9 # From GitHub, with a custom name and version.

10 - src: https://github.com/geerlingguy/ansible-role-passenger

11 name: passenger

12 version: 1.2.0

13

14 # From a web server, with a custom name.

15 - src: https://www.example.com/ansible/roles/my-role-name.tar.gz

16 name: my-role

To install the roles defined in a requirements file, use the command ansible-galaxy

install -r requirements.yml. For more documentation on Ansible requirements
files, see the official documentation: Installing Multiple Roles From a File⁷³.

A LAMP server in nine lines of YAML

With the Apache, MySQL, and PHP roles installed, we can quickly create a LAMP
server. This example assumes you already have an Ubuntu-based linux VM or server
booted and can connect to it or runAnsible as a provisioner via Vagrant on it, and that
you’ve run the ansible-galaxy install command above to download the required
roles.

First, create an Ansible playbook named lamp.yml with the following contents:

⁷³https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file
https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 141

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.mysql

7 - geerlingguy.apache

8 - geerlingguy.php

9 - geerlingguy.php-mysql

Now, run the playbook against a host:

$ ansible-playbook -i path/to/custom-inventory lamp.yml

After a few minutes, an entire LAMP server should be set up and running. If you
add in a few variables, you can configure virtualhosts, PHP configuration options,
MySQL server settings, etc.

On RHEL servers, you should add the role geerlingguy.repo-epel to
the roles list after installing it via ansible-galaxy, because some of the
required PHP packages are only available in EPEL⁷⁴.

We’ve effectively reduced about thirty lines of YAML (from previous examples
dealing with LAMP or LAMP-like servers) down to four. Obviously, the roles have
extra code in them, but the power here is in abstraction. Since most companies
have many servers using similar software, but with slightly different configurations,
having centralized, flexible roles saves a lot of repetition.

You could think of Galaxy roles as glorified packages; they not only install software,
but they configure it exactly how you want it, every time, with minimal adjustment.
Additionally, many of these roles work across different flavors of Linux and UNIX,
so you have better configuration portability!

⁷⁴https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 142

A Solr server in seven lines of YAML

Let’s grab a couple more roles and build an Apache Solr search server, which requires
Java to be installed and configured.

$ ansible-galaxy install geerlingguy.java geerlingguy.solr

Then create a playbook named solr.yml with the following contents:

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.java

7 - geerlingguy.solr

Now we have a fully-functional Solr server, and we could add some variables to
configure it exactly how we want, by using a non-default port, or changing the
memory allocation for Solr.

A role’s page on the Ansible Galaxy website highlights available variables for setting
things like what version of Solr to install, where to install it, etc. For an example, view
the geerlingguy.solr Galaxy page⁷⁵.

You can build a wide variety of servers with minimal effort with existing contributed
roles on Galaxy. Instead of having to maintain lengthy playbooks and roles unique to
each server, Galaxy lets you build a list of the required roles, and a few variables that
set up the servers with the proper versions and paths. Configuration management
with Ansible Galaxy becomes true configuration management—you get to spend
more time managing your server’s configuration, and less time on packaging and
building individual services!

⁷⁵https://galaxy.ansible.com/geerlingguy/solr/

https://galaxy.ansible.com/geerlingguy/solr/
https://galaxy.ansible.com/geerlingguy/solr/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 143

Helpful Galaxy commands

Some other helpful ansible-galaxy commands you might use from time to time:

• ansible-galaxy list displays a list of installed roles, with version numbers
• ansible-galaxy remove [role] removes an installed role
• ansible-galaxy init can be used to create a role template suitable for
submission to Ansible Galaxy

You can configure the default pathwhere Ansible roles will be downloaded by editing
your ansible.cfg configuration file (normally located in /etc/ansible/ansible.cfg),
and setting a roles_path in the [defaults] section.

Contributing to Ansible Galaxy

If you’ve been working on some useful Ansible roles, and you’d like to share them
with others, all you need to do is make sure they follow Ansible Galaxy’s basic
template (especially within the meta/main.yml and README.md files). To get started,
use ansible-galaxy init to generate a basic Galaxy template, and make your own
role match the Galaxy template’s structure.

Then push your role up to a new project on GitHub (I usually name my Galaxy roles
like ansible-role-[rolename], so I can easily see them when browsing my repos on
GitHub), and add a new role while logged into galaxy.ansible.com, under the ‘My
Content’ tab.

Summary

Using includes and Ansible roles organizes Playbooks and makes themmaintainable.
This chapter introduced different ways of including tasks, playbooks, and handlers,
the power and flexible structure of roles, and how you can utilize Ansible Galaxy,
the community repository of configurable Ansible roles that do just about anything.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 144

/ When the only tool you own is a hammer, \

| every problem begins to resemble a |

\ nail. (Abraham Maslow) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

